
The Neo4j Operations Manual
v4.3

Table of Contents
1. Introduction . 2

1.1. Neo4j editions . 2

1.1.1. Performance and scalability . 3

1.2. Versioning. 4

2. Installation . 5

2.1. System requirements . 5

2.1.1. Supported platforms . 5

2.1.2. Hardware requirements. 5

2.1.3. Software requirements . 7

2.1.4. Filesystem. 7

2.1.5. Java . 7

2.2. Neo4j Browser. 8

2.3. Neo4j Desktop . 8

2.4. Linux installation . 8

2.4.1. Debian-based distributions (.deb) . 9

Installation. 9

File locations. 13

Operation . 13

Starting the service automatically on system start . 13

2.4.2. Red Hat, CentOS, Fedora, and Amazon Linux distributions (.rpm) . 13

Install on Red Hat, CentOS, Fedora, or Amazon Linux . 13

Install on SUSE . 15

Offline installation . 15

Starting the service automatically on system start . 17

2.4.3. Linux executable (.tar) . 17

Install Neo4j from a tarball . 17

Configure Neo4j to start automatically on system boot . 18

Setting the number of open files . 19

2.4.4. Neo4j system service. 20

Configuration . 20

Controlling the service . 20

Log . 21

2.5. macOS installation . 21

2.5.1. Unix console application . 21

2.5.2. macOS service. 22

2.5.3. macOS file descriptor limits . 22

2.6. Windows installation . 22

2.6.1. Windows console application . 22

2.6.2. Windows service . 23

Java options . 23

2.6.3. Windows PowerShell module . 24

System requirements . 24

Managing Neo4j on Windows . 24

How do I import the module? . 25

How do I get help about the module?. 25

Example usage. 25

Common PowerShell parameters . 26

3. Cloud deployments. 27

3.1. Neo4j cloud VMs. 27

3.1.1. Basics and file Locations. 27

3.1.2. VM configuration . 27

3.1.3. Configuration via VM tags . 27

3.1.4. Interacting with the Neo4j Service . 28

3.2. Neo4j on Amazon EC2 . 28

3.2.1. Neo4j deployment automation on AWS . 28

Prerequisites . 28

CloudFormation . 28

Creating a CloudFormation stack . 29

Deploying Neo4j Enterprise Standalone . 29

Deploying Neo4j Enterprise Causal Cluster. 29

Deploying Neo4j Community Standalone . 30

Checking to see if your instance is up. 30

Cleaning up and removing your stack . 31

3.3. Neo4j on Google Cloud Platform. 31

3.3.1. Single instances (VM-based) . 31

Prerequisites . 31

Create a firewall rule to access your instance. 31

Create a Google compute instance from the Neo4j public image. 32

Access your new instance. 33

Access your instance via SSH . 33

Delete your instance. 33

3.3.2. Causal Clusters (VM-based). 34

Prerequisites . 34

Deploy Neo4j via the GCP Marketplace . 34

Start using Neo4j Browser . 34

Access your instance via SSH . 34

Your cluster default configuration . 34

What’s next . 35

Terminating the deployment. 35

3.3.3. Neo4j deployments automation on Google Cloud Platform (GCP) . 35

Prerequisites . 35

Google Cloud Deployment Manager. 35

Creating a Deployment Manager stack . 35

Deploying Neo4j Enterprise Edition with a Causal Cluster . 36

Deploying Neo4j Enterprise (or Community) Edition in standalone mode . 37

3.4. Neo4j on Microsoft Azure . 39

3.4.1. Single instances (VM-based) . 39

Prerequisites . 39

Deploy Neo4j via the Azure Marketplace. 39

Access your new instance. 39

Access your instance via SSH . 39

Deleting the instance . 40

3.4.2. Causal Clusters (VM-based). 40

Prerequisites . 40

Deploy Neo4j from the Azure Marketplace . 40

Start using Neo4j Browser . 40

Access your instance via SSH . 41

Your cluster default configuration . 41

What’s next . 41

Terminating the deployment. 41

3.4.3. Neo4j deployments automation on Azure. 41

Prerequisites . 41

Azure Resource Manager . 42

Creating an ARM deployment job . 42

Deploying Neo4j Enterprise Causal Cluster. 42

Deploying Neo4j Enterprise Standalone . 43

Cleaning up and removing your deployment . 45

4. Docker . 46

4.1. Introduction . 46

4.1.1. Neo4j editions . 46

4.1.2. Using the Neo4j Docker image . 47

4.1.3. Using NEO4J_AUTH to set an initial password. 47

4.1.4. Persisting data using Volumes . 47

4.1.5. Running Neo4j as a non-root user . 48

4.1.6. More useful Docker Run options . 48

4.1.7. Offline installation of Neo4j Docker image . 49

4.2. Configuration. 49

4.2.1. Environment variables . 50

4.2.2. Mounting the /conf volume. 50

4.2.3. Customize а Neo4j Docker image . 51

4.3. Clustering . 51

4.3.1. Deploy a cluster with Docker Compose. 51

4.3.2. Deploy a cluster using environment variables . 55

Cluster environment variables Enterprise edition . 56

Set up a cluster on a single Docker host . 56

Set up a cluster on multiple Docker hosts . 57

4.4. Docker specific operations . 58

4.4.1. Use Neo4j Admin . 58

4.4.2. Use Neo4j Import . 58

4.4.3. Use Neo4j Admin for memory recommendations . 59

4.4.4. Use Cypher Shell . 59

Retrieve data from a database in a Neo4j Docker container . 59

Pass a Cypher script file to a Neo4j Docker container . 60

4.4.5. Install user-defined procedures. 62

4.4.6. Configure Neo4j Labs plugins . 62

4.5. Security . 63

4.5.1. SSL Encryption . 63

Set up your certificate folders. 63

Configure SSL via neo4j.conf . 64

Configure SSL via Docker environment variables . 65

4.6. Docker maintenance operations . 66

4.6.1. Dump and load a Neo4j database (offline) . 66

4.6.2. Back up and restore a Neo4j database (online) Enterprise edition . 66

Back up a database Enterprise edition . 67

Restore a database Enterprise edition . 67

4.6.3. Upgrade Neo4j on Docker . 68

4.6.4. Monitor Neo4j . 69

4.7. Docker specific configuration settings . 69

5. Kubernetes . 79

5.1. Introduction . 79

5.2. Configure a Neo4j Helm chart and create a Neo4j Helm release . 80

5.2.1. Prerequisites . 80

5.2.2. Configure a Neo4j Helm chart . 80

5.2.3. Create a release name for your Neo4j instance . 80

5.2.4. Install Neo4j from the public Helm chart repository . 81

5.3. Quickstart: Deploy a Neo4j instance to a Google Kubernetes Engine (GKE) cluster 81

5.3.1. Prerequisites . 81

5.3.2. Create a GCP persistent disk . 82

5.3.3. Create a Helm deployment values file . 82

5.3.4. Install Neo4j . 83

5.3.5. Verify the installation . 83

5.3.6. Uninstall Neo4j and clean up the created resources. 84

Uninstall Neo4j Helm deployment. 84

Fully remove all the data and resources . 85

5.4. Quickstart: Deploy a Neo4j instance to an AWS Elastic Kubernetes Service (EKS) cluster 86

5.4.1. Prerequisites . 86

5.4.2. Create an AWS EBS disk . 87

5.4.3. Create a Helm deployment values file . 87

5.4.4. Install Neo4j . 87

5.4.5. Verify the installation . 88

5.4.6. Uninstall Neo4j and clean up the created resources. 89

Uninstall Neo4j Helm deployment. 89

Fully remove all the data and resources . 90

5.5. Quickstart: Deploy a Neo4j instance to an Azure Kubernetes Service (AKS) cluster. 90

5.5.1. Prerequisites . 90

5.5.2. Create an Azure managed disk . 91

5.5.3. Create a Helm deployment values file . 92

5.5.4. Install Neo4j . 92

5.5.5. Verify the installation . 93

5.5.6. Uninstall Neo4j and clean up the created resources. 94

Uninstall Neo4j Helm deployment. 94

Fully remove all the data and resources . 95

5.6. Quickstart: Deploy a Neo4j instance to a local Kubernetes installation via Docker Desktop for

Mac . 95

5.6.1. Prerequisites . 95

5.6.2. Create a Helm deployment values file . 95

5.6.3. Create a Neo4j instance using dynamically provisioned storage . 96

5.6.4. Verify the installation . 97

5.6.5. Uninstall Neo4j and clean up your Docker Desktop . 98

Uninstall Neo4j Helm deployment. 98

Fully remove all the data and resources . 99

5.7. Configure and install Neo4j using Helm . 99

5.7.1. Create a custom values.yaml file . 99

5.7.2. Set Neo4j configuration . 104

5.7.3. Set an initial password . 105

5.7.4. Configure SSL. 105

5.7.5. Configure resource allocation . 106

5.7.6. Configure a service account. 107

5.7.7. Configure a custom container image . 107

5.8. Volume mounts and persistent volumes with the Neo4j Helm charts . 107

5.8.1. Volume mounts . 107

5.8.2. Persistent volumes . 108

5.8.3. Mapping volume mounts to persistent volumes . 108

mode: share . 109

mode: defaultStorageClass. 109

mode: dynamic . 109

mode: volume . 110

mode: selector . 111

mode: volumeClaimTemplate. 111

5.8.4. Provision persistent volumes with Neo4j Helm chart . 111

Provision persistent volumes manually . 112

Provision persistent volumes dynamically. 114

5.9. Access a Neo4j Helm release . 115

5.9.1. Supported Kubernetes services . 115

5.9.2. Applications accessing Neo4j from inside Kubernetes . 116

Access Neo4j using DNS . 116

Access Neo4j using K8s label selector. 116

Ad-hoc external access using kubectl port-forward . 117

5.9.3. Applications accessing Neo4j from outside Kubernetes . 117

5.9.4. Customizing Kubernetes resources . 118

5.9.5. Accessing Neo4j for DBMS administration and monitoring . 118

Access Neo4j using DNS . 118

Access Neo4j using kubectl for troubleshooting . 119

5.10. Import Data . 119

5.10.1. Importing data into Neo4j on Kubernetes . 119

5.10.2. Configure the import volume mount . 119

5.10.3. Copy files to the import volume using kubectl cp . 120

5.10.4. Use neo4j-admin import . 120

5.11. Operations. 121

5.11.1. Using APOC core only . 121

5.11.2. Install plugins . 121

Add plugins using a custom container image. 121

Add plugins using a plugins volume. 122

5.12. Monitoring . 123

5.12.1. Logging . 123

5.12.2. Log collection . 123

5.12.3. Metrics . 123

5.13. Kubernetes maintenance operations . 124

5.13.1. Online maintenance . 124

5.13.2. Offline maintenance . 125

Put the Neo4j instance in offline mode . 125

Run task in offline mode . 125

Put the Neo4j instance in online mode . 126

5.13.3. Reset the neo4j user password . 126

5.13.4. Dump and load databases (offline) . 127

Dump the neo4j and system databases . 127

Load the neo4j and system databases . 128

5.13.5. Back up and restore a Neo4j database (online) Enterprise edition . 128

Back up the neo4j database. 128

Restore neo4j database . 128

5.13.6. Upgrade Neo4j on Kubernetes . 129

5.13.7. Scale a Neo4j deployment . 130

5.14. Troubleshooting . 131

5.14.1. Locate and investigate problems with the Neo4j Helm chart . 131

5.14.2. Neo4j crashes or restarts unexpectedly . 132

Describe the Neo4j Pod . 133

Check Neo4j logs and metrics . 134

Check container logs . 134

6. Configuration . 136

6.1. The neo4j.conf file . 136

6.1.1. Introduction . 136

6.1.2. Syntax. 136

6.1.3. JVM-specific configuration settings . 137

6.1.4. List currently active settings . 137

6.2. Command expansion. 138

6.2.1. How it works. 138

6.2.2. Enabling . 138

6.2.3. Logging . 139

6.2.4. Error Handling. 139

6.3. File locations . 139

6.3.1. Default file locations . 139

6.3.2. Customize your file locations. 142

6.3.3. File permissions . 142

6.4. Ports . 143

6.4.1. Backup Enterprise edition . 144

6.4.2. HTTP. 144

6.4.3. HTTPS . 145

6.4.4. Bolt . 145

6.4.5. Causal Cluster Enterprise edition . 146

6.4.6. Graphite monitoring. 146

6.4.7. Prometheus monitoring . 147

6.4.8. JMX monitoring. 147

6.4.9. Remote debugging . 147

6.5. Configure connectors . 148

6.5.1. Available connectors . 148

6.5.2. Configuration options . 148

6.5.3. Options for Bolt thread pooling. 149

6.5.4. Defaults for addresses . 149

6.6. Set an initial password . 150

6.7. Configure plugins . 151

6.7.1. Install and configure plugins . 152

6.8. Dynamic settings . 153

6.8.1. Introduction . 153

6.8.2. Discover dynamic settings . 153

6.8.3. Update dynamic settings . 153

6.8.4. Dynamic settings reference . 154

6.9. Transaction log . 157

6.9.1. Transaction logging . 158

6.9.2. Log location . 158

6.9.3. Log rotation . 159

6.9.4. Log retention. 159

6.9.5. Log pruning . 160

7. Manage databases. 162

7.1. Introduction . 162

7.1.1. Concepts . 162

7.1.2. The system database . 163

7.1.3. The default and home database . 164

7.1.4. Per-user home databases Enterprise edition . 165

7.2. Administration and configuration . 165

7.2.1. Administrative commands . 165

7.2.2. Configuration parameters . 166

7.3. Queries . 168

7.3.1. Show the status of a specific database. 169

7.3.2. Show the status of all databases . 169

7.3.3. Show the status of the default database . 170

7.3.4. Create a database Enterprise edition . 171

7.3.5. Switch a database Enterprise edition . 173

7.3.6. Create or replace a database. 173

7.3.7. Stop a database . 175

7.3.8. Start a database . 177

7.3.9. Drop or remove a database Enterprise edition . 179

7.4. Error handling . 179

7.4.1. Observing errors. 179

7.4.2. Database states . 180

7.4.3. Retrying failed operations . 181

7.4.4. Quarantined databases. 183

7.5. Databases in a cluster . 184

7.5.1. Change the default database . 185

7.5.2. Run Cypher administrative commands from Cypher Shell on a cluster . 185

8. Clustering. 189

8.1. Introduction . 189

8.1.1. Overview . 189

8.1.2. Operational view . 190

8.1.3. Primary servers. 190

8.1.4. Secondary servers . 191

8.1.5. Causal consistency . 191

8.2. Deploy a cluster . 193

8.2.1. Introduction . 193

8.2.2. Configure a cluster with Single and Read Replica instances . 193

8.2.3. Configure a cluster with Core instances . 195

8.2.4. Add a Core Server to an existing cluster. 198

8.2.5. Add a Secondary server to an existing cluster. 198

8.2.6. Detach a Secondary server from an existing cluster . 199

8.3. Seed a cluster . 200

8.3.1. Introduction . 200

8.3.2. Seed a cluster from a database dump (offline) . 201

8.3.3. Seed a cluster from a database backup (online) . 201

Restore a database on each Core instance . 202

Restore a database using a designated seeder . 203

8.3.4. Seed a cluster using the import tool. 204

8.4. Discovery . 204

8.4.1. Overview . 204

Discovery using a list of server addresses . 205

Discovery using DNS with multiple records . 205

Discovery in Kubernetes . 206

8.5. Intra-cluster encryption. 206

8.5.1. Introduction . 207

8.5.2. Example deployment. 207

Generate and install cryptographic objects. 207

Configure the cluster SSL policy . 208

Validate the secure operation of the cluster . 209

8.6. Internals of clustering . 210

8.6.1. Elections and leadership. 210

8.6.2. Leadership balancing . 210

8.6.3. Multi-database and the reconciler . 210

8.6.4. Server-side routing . 211

8.6.5. Store copy . 213

Using the Replica instance in case of failure. 214

8.6.6. On-disk state. 215

8.7. Settings reference . 215

8.7.1. Common server settings. 215

8.7.2. Multi-data center settings . 220

8.8. Clustering glossary . 222

9. Fabric . 225

9.1. Introduction . 225

9.1.1. Overview . 225

9.1.2. Fabric concepts. 225

The fabric database . 225

Fabric graphs. 226

9.1.3. Deployment examples . 226

Development deployment. 226

Cluster deployment with no single point of failure . 227

Multi-cluster deployment . 228

9.2. Configuration . 229

9.2.1. Fabric database setup. 229

Local development setup example . 229

Remote development setup example. 230

Naming graphs . 231

Cluster setup with no single point of failure example. 232

Cluster routing context . 233

9.2.2. Authentication and authorization . 233

Credentials . 233

User and role administration . 234

Privileges on the Fabric database . 234

9.2.3. Important settings . 234

System settings. 234

Graph settings. 234

Drivers settings . 235

9.3. Queries . 236

9.3.1. Query a single graph . 236

9.3.2. Query multiple graphs. 236

9.3.3. Query all graphs . 237

9.3.4. Query result aggregation . 237

9.3.5. Correlated subquery . 237

9.3.6. Updating query. 238

9.3.7. Mapping functions . 238

9.3.8. Fabric built-in functions . 239

9.4. Further considerations . 239

9.5. Sharding data with the copy command. 240

10. Backup and restore . 243

10.1. Backup and restore planning . 243

10.1.1. Backup and restore strategy . 243

10.1.2. Backup and restore options. 244

10.1.3. Databases to backup . 246

10.1.4. Additional files to back up . 246

10.1.5. Storage considerations. 246

10.2. Backup modes . 246

10.2.1. Full backup . 246

10.2.2. Incremental backup . 247

10.3. Back up an online database. 247

10.3.1. Command . 248

Usage . 248

Syntax . 248

Options . 248

Exit codes . 251

10.3.2. Online backup configurations . 252

Server configuration. 252

Memory configuration . 252

Computational resources configurations . 253

Security configurations . 254

Cluster configurations . 254

10.3.3. Examples . 255

10.4. Prepare a database for restoring . 255

10.4.1. Command . 255

Syntax . 255

Options . 255

10.4.2. Example . 256

10.5. Restore a database backup . 256

10.5.1. Command . 256

Syntax . 257

Options . 257

10.5.2. Example . 258

10.6. Back up an offline database . 258

10.6.1. Command . 258

Usage . 258

Syntax . 259

Options . 259

10.6.2. Example . 259

10.7. Restore a database dump . 259

10.7.1. Command . 259

Syntax . 260

Options . 260

10.7.2. Example . 260

10.8. Copy a database store . 261

10.8.1. Command . 261

Usage . 262

Syntax . 262

Options . 262

10.8.2. Examples . 265

11. Authentication and authorization. 267

11.1. Introduction. 267

11.2. Built-in roles . 268

11.3. Recover admin user and password . 272

11.3.1. Disable authentication . 272

11.3.2. Recover a lost password . 274

11.3.3. Recover an unassigned admin role . 275

11.3.4. Recover the admin role. 275

11.3.5. Post-recovery steps . 276

11.4. Fine-grained access control. 277

11.4.1. The data model . 277

11.4.2. Security . 279

11.4.3. Access control using built-in roles . 280

11.4.4. Sub-graph access control using privileges . 281

Privileges of itadmin . 282

Privileges of researcher . 284

Privileges of doctor . 286

Privileges of receptionist . 288

Privileges of nurses . 291

Privileges of junior nurses. 293

Building a custom administrator role . 295

11.5. Integration with LDAP directory services. 296

11.5.1. Introduction. 297

11.5.2. LDAP dynamic configuration settings. 297

11.5.3. Set Neo4j to use LDAP. 298

11.5.4. Map the LDAP groups to the Neo4j roles. 298

11.5.5. Configure Neo4j to use Active Directory . 298

Configure Neo4j to support LDAP user ID authentication. 298

Configure Neo4j to support attribute authentication . 299

Configure Neo4j to support sAMAccountName authentication by setting user_dn_template 300

11.5.6. Configure Neo4j to use OpenLDAP. 300

11.5.7. Verify the LDAP configuration . 301

11.5.8. The auth cache. 302

11.5.9. Available methods of encryption . 303

Use LDAP with encryption via StartTLS . 303

Use LDAP with encrypted LDAPS . 303

11.5.10. Use a self-signed certificate (SSL) in a test environment . 304

11.6. Manage procedure and user-defined function permissions . 304

11.6.1. Introduction. 304

11.6.2. Manage procedure permissions . 304

11.6.3. Manage user-defined function permissions. 305

11.6.4. Manage procedure and user-defined function permissions from config setting Deprecated 306

11.7. Terminology . 307

12. Security . 309

12.1. Securing extensions . 309

12.1.1. Allow listing . 309

12.2. SSL framework. 310

12.2.1. SSL providers . 310

12.2.2. Certificates . 311

Validate the key and the certificate. 311

Transform the certificates . 311

12.2.3. Connectors . 312

12.2.4. Configuration . 312

Configure SSL over Bolt . 313

Connect with SSL over Bolt . 315

Configure SSL over HTTPS . 316

Configure SSL for intra-cluster communications . 318

Configure SSL for backup communication . 320

Other configurations for SSL . 322

Using OCSP stapling . 323

12.2.5. SSL logs. 324

12.2.6. Terminology . 324

12.3. Browser credentials handling . 326

12.4. Security checklist . 326

13. Monitoring . 329

13.1. Metrics . 330

13.2. Types of metrics. 330

13.2.1. Global metrics. 330

13.2.2. Database metrics. 331

13.2.3. Expose metrics . 331

Enable metrics logging . 332

Graphite . 332

Prometheus . 332

CSV files . 333

JMX MBeans . 333

13.2.4. Metrics reference . 334

General-purpose metrics . 334

14. Metrics specific to Causal Clustering. 339

15. Java Virtual Machine Metrics . 341

15.1. Logging . 342

15.1.1. Log files Enterprise edition . 342

15.1.2. Log format. 343

15.1.3. User log . 343

15.1.4. Debug log . 344

15.1.5. Garbage collection log . 345

15.1.6. HTTP log . 345

15.1.7. Security log Enterprise edition . 345

Security log configuration . 346

15.1.8. Query log Enterprise edition . 347

Query log configuration. 347

Attach metadata to a transaction . 353

JSON format. 355

15.2. Query management. 357

15.2.1. List all running queries . 357

15.2.2. List all active locks for a query . 359

15.2.3. Terminate multiple queries . 360

15.2.4. Terminate a single query . 361

15.3. Transaction management . 362

15.3.1. Configure transaction timeout . 362

15.3.2. Configure lock acquisition timeout. 363

15.3.3. List all running transactions. 363

15.4. Connection management. 365

15.4.1. List all network connections . 365

15.4.2. Terminate multiple network connections . 367

15.4.3. Terminate a single network connection . 368

15.5. Background job management. 369

15.5.1. Listing active background jobs . 370

15.5.2. Listing failed job executions . 371

15.6. Monitoring a Neo4j cluster. 372

15.6.1. Procedures for monitoring a Causal Cluster . 373

Find out the role of a cluster member. 373

Gain an overview over the instances in the cluster . 374

Get routing recommendations . 375

15.6.2. Endpoints for status information . 376

Adjusting security settings for Causal Clustering endpoints. 376

Unified endpoints . 376

15.7. Monitoring individual database states . 382

15.7.1. Listing Databases . 382

15.7.2. Listing a single database . 385

16. Performance . 388

16.1. Memory configuration. 388

16.1.1. Overview . 388

16.1.2. Considerations . 390

16.1.3. Capacity planning . 391

16.1.4. Limit transaction memory usage . 393

16.2. Index configuration . 394

16.2.1. Introduction. 394

16.2.2. B-tree indexes . 395

Limitations . 395

Index migration . 396

Procedures to create index and index backed constraint . 396

16.2.3. Full-text indexes . 397

Configuration. 398

16.2.4. Token lookup indexes . 398

Use and significance . 399

Databases created before version 4.3 . 399

16.3. Tuning of the garbage collector . 400

16.4. Bolt thread pool configuration . 401

16.4.1. How thread pooling works . 401

16.4.2. Configuration options . 402

16.4.3. How to size your Bolt thread pool . 402

16.5. Linux file system tuning . 403

16.6. Disks, RAM and other tips . 403

16.6.1. Storage . 403

16.6.2. Page cache . 404

16.6.3. Active page cache warmup Enterprise edition . 404

16.6.4. Checkpoint IOPS limit Enterprise edition . 405

16.7. Statistics and execution plans. 406

16.7.1. Configure statistics collection . 406

Automatic statistics collection . 406

Manual statistics collection. 406

16.7.2. Configure the replanning of execution plans . 407

Automatic replanning . 407

Manual replanning . 407

16.8. Space reuse. 408

16.8.1. ID files . 408

16.8.2. Reclaim unused space . 409

17. Tools . 414

17.1. Neo4j CLI tool . 414

17.1.1. Syntax and commands . 414

17.1.2. Environment variables . 415

17.2. Neo4j Admin. 416

17.2.1. Introduction. 416

17.2.2. Syntax and commands . 416

17.2.3. Environment variables . 418

17.2.4. Environment variables . 418

17.2.5. Exit codes . 419

17.2.6. Consistency checker . 419

17.2.7. Neo4j Admin report. 421

17.2.8. Display store information. 424

Syntax . 424

Options . 424

Examples . 425

Store format — aligned. 426

Store format — standard. 427

Store format — high_limit Enterprise edition . 427

17.2.9. Memory recommendations . 428

17.2.10. Import . 429

Syntax . 430

Options . 431

CSV header format. 438

Node files . 438

Relationship files. 439

Properties . 440

Using ID spaces . 442

Skipping columns . 443

Import compressed files . 444

Resuming a stopped or cancelled import Enterprise edition . 444

17.2.11. Unbind a Core Server . 444

Command. 444

Examples of usage . 445

Archive cluster state . 445

17.2.12. Push to cloud . 446

Syntax . 446

Options . 446

Limitations . 447

Output . 447

Examples . 447

17.3. Cypher Shell . 449

17.3.1. About Cypher Shell CLI . 449

17.3.2. Syntax . 449

17.3.3. Running Cypher Shell within the Neo4j distribution . 451

17.3.4. Running Cypher Shell from a different server . 452

17.3.5. Available commands. 452

17.3.6. Running Cypher statements . 453

17.3.7. Query parameters . 454

17.3.8. Transactions . 455

17.3.9. Procedures . 457

17.3.10. Supported operating systems . 457

Appendix A: Reference. 457

17.A.1. Configuration settings . 457

17.A.2. Procedures . 556

Procedures, editions, and modes . 556

List of procedures . 556

Procedure descriptions . 560

Appendix B: Tutorials . 579

17.B.1. Set up a local Causal Cluster. 579

Introduction . 579

Download Neo4j . 579

Set up the Core servers . 580

Check the status of the cluster . 582

Set up the Read Replicas . 583

Check the status of the cluster . 585

17.B.2. Back up and restore a database in Causal Cluster . 586

Prepare to back up your database . 586

Back up your database . 588

Delete the database that you want to replace . 588

Restore the database backup on all cluster members . 589

Create the database backup on the cluster leader . 590

Recreate the database users and roles . 591

17.B.3. Neo4j Admin import . 591

Import a small data set . 592

CSV file delimiters . 594

Using separate header files . 595

Multiple input files . 596

Using the same label for every node . 598

Using the same relationship type for every relationship . 600

Properties . 601

ID space . 601

Skip relationships referring to missing nodes. 602

Skip nodes with same ID. 604

17.B.4. Set up and use Fabric . 605

Model your data for Fabric . 605

Configure Fabric with three databases . 608

Import data in your databases . 611

Retrieve data with a single Cypher query . 614

Appendix C: Advanced Causal Clustering . 617

17.C.1. Causal Clustering lifecycle. 618

Introduction . 618

Discovery protocol . 618

Core membership . 619

Read Replica membership . 620

Transacting via the Raft protocol . 621

Catchup protocol . 622

Read Replica shutdown . 623

Core shutdown . 623

17.C.2. Multi-data center . 624

Licensing for multi-data center operations . 624

17.C.3. Multi-data center design . 625

Introduction . 625

Core Server deployment scenarios . 625

Allowing Read Replicas to catch up from other Read Replicas . 628

17.C.4. Multi-data center operations. 632

Enable multi-data center operations . 633

Server groups . 633

Strategy plugins . 634

17.C.5. Multi-data center load balancing . 638

Introduction . 638

Prerequisite configuration. 639

The load balancing framework . 639

Load balancing examples . 641

17.C.6. Data center disaster recovery. 643

Data center loss scenario . 643

Procedure for recovering from data center loss . 645

17.4. Embedded usage . 646

Appendix D: Deprecated security procedures . 646

17.D.1. Enterprise Edition . 647

Activate a suspended user . 648

Assign a role to the user . 649

Change the current user’s password . 649

Change the given user’s password. 650

Create a new role . 651

Create a new user. 651

Delete the specified role . 652

Delete the specified user. 653

List all available roles . 653

List all roles assigned to the specified user. 654

List all local users . 655

List all users currently assigned the specified role . 656

Unassign a role from the user . 657

Suspend the specified user. 658

17.D.2. Community Edition . 659

Change the current user’s password . 659

Add a user . 659

Delete a user . 660

List all native users . 661

© 2023

Documentation license: Creative Commons 4.0

This manual covers the following areas:

• Introduction — Introduction of Neo4j Community and Enterprise Editions.

• Installation — Instructions on how to install Neo4j in different deployment contexts.

• Cloud deployments — Information on how to deploy Neo4j on cloud platforms.

• Docker — Instructions on how to use Neo4j on Docker.

• Kubernetes — Instructions on how to use Neo4j on Kuberenetes.

• Configuration — Instructions on how to configure certain parts of Neo4j.

• Manage databases — Instructions on how to manage multiple active databases with Neo4j.

• Clustering — Comprehensive descriptions of Neo4j Causal Clustering.

• Fabric — Instructions on how to configure and use Neo4j Fabric.

• Backup and restore — Instructions on how to back up and restore Neo4j deployments.

• Authentication and authorization — Instructions on user management and role-based access control.

• Security — Instructions on server security.

• Monitoring — Instructions on setting up Neo4j monitoring.

• Performance — Instructions on how to go about performance tuning for Neo4j.

• Tools — Description of Neo4j tools.

• Reference — Listings of all Neo4j configuration parameters.

• Tutorials — Step-by-step instructions on various scenarios for setting up Neo4j.

• Advanced Causal Clustering — Advanced concepts and actions for Neo4j Causal Clustering.

• Deprecated security procedures — Deprecated security procedures.

For information on upgrading and migrating Neo4j, see Neo4j Upgrade and Migration
Guide.

Who should read this?

This manual is written for:

• the engineer performing the Neo4j production deployment.

• the operations engineer supporting and maintaining the Neo4j production database.

• the enterprise architect investigating database options.

• the infrastructure architect planning the Neo4j production deployment.

1

https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf

Chapter 1. Introduction
Neo4j is the world’s leading graph database. The architecture is designed for optimal management,
storage, and traversal of nodes and relationships. The graph database takes a property graph approach,
which is beneficial for both traversal performance and operations runtime. Neo4j offers dedicated memory
management and memory-efficient operations.

Neo4j is scalable and can be deployed as a standalone server or across multiple machines in a fault-
tolerant cluster for production environments. Other features for production applications include hot
backups and extensive monitoring.

1.1. Neo4j editions
There are two editions of self-managed Neo4j to choose from, the Community Edition (CE) and the
Enterprise Edition (EE). The Enterprise Edition includes all that Community Edition offers, plus extra
enterprise requirements such as backups, clustering, and failover capabilities.

Community Edition

The Community Edition is a fully functional edition of Neo4j, suitable for single-instance deployments. It
fully supports key Neo4j features, such as ACID-compliant transactions, Cypher, and programming
APIs. It is ideal for learning Neo4j, do-it-yourself projects, and applications in small workgroups.

Enterprise Edition

The Enterprise Edition extends the functionality of Community Edition to include key features for
performance and scalability, such as a clustering architecture and online backup functionality.
Additional security features include role-based access control and LDAP support, for example, Active
Directory. It is the choice for production systems with requirements for scale and availability, such as
commercial and critical internal solutions.

The following table compares the available key features in both editions:

Table 1. Community Edition vs Enterprise Edition key features

Feature Community Edition Enterprise Edition

Property graph model

Native graph processing & storage

ACID-compliant transactions

Cypher graph query language

Neo4j Browser with syntax highlighting

Bolt Protocol

Language drivers for C#, Go, Java, JavaScript & Python [1]

High-performance native API

High-performance caching

2

Feature Community Edition Enterprise Edition

Cost-based query optimizer

Graph algorithms to support AI initiatives [1]

Fast writes via native label indexes

Composite indexes

Full-text node & relationship indexes

Store copy

Auto-reuse of space

Multiple databases (beyond the system and default databases)

Slotted and Pipelined Cypher runtimes

Property-existence constraints

Node Key constraints

Listing and terminating running queries

Role-based access control

Sub-graph access control

LDAP and Active Directory integration

Kerberos security option

1.1.1. Performance and scalability

Table 2. Performance and scalability features

Feature Community Edition Enterprise Edition

Causal Clustering for global scale applications

Enterprise lock manager accesses all cores on server

Intra-cluster encryption

Offline backups

Online backups

Encrypted backups

Rolling upgrades

Automatic cache warming

Routing and load balancing with Neo4j Drivers

Advanced monitoring

3

Feature Community Edition Enterprise Edition

Graph size limitations 34 billion nodes, 34
billion relationships,

and 68 billion
properties

No limit

Bulk import tool

Bulk import tool, resumable

1.2. Versioning
Neo4j uses semantic versioning (Semantic Versioning Specification 2.0.0). Given a version number
MAJOR.MINOR.PATCH, the increment is based on:

• MAJOR version - incompatible API changes towards previous MAJOR version.

• MINOR version - functionality in a backwards compatible manner.

• PATCH release - backwards compatible bug fixes.

Neo4j’s fully managed cloud service Neo4j Aura uses only MAJOR versioning.

[1] Must be downloaded and installed separately.

4

https://semver.org/
https://neo4j.com/cloud/aura/

Chapter 2. Installation
The topics described are:

• System requirements — The system requirements for a production deployment of Neo4j.

• Neo4j Browser — About Neo4j Browser.

• Neo4j Desktop — About Neo4j Desktop.

• Linux — Installation instructions for Linux.

• macOS — Installation instructions for macOS.

• Windows — Installation instructions for Windows.

Installation-free options

Neo4j AuraDB is a fully managed Neo4j database, hosted in the cloud and requires no
installation. For more information, see the AuraDB product page and AuraDB
documentation.

Neo4j can be run in a Docker container. For information on running Neo4j on Docker, see
Docker.

2.1. System requirements
Neo4j can be installed in many environments and for different scopes, therefore system requirements
largely depends on the use of the software. This section distinguishes between a personal/development
installation, and a server-based installation.

Neo4j AuraDB is a fully managed Neo4j database, hosted in the cloud and requires no
installation. For more information, see the AuraDB product page and AuraDB
documentation.

2.1.1. Supported platforms

Neo4j is supported on systems with x86_64 architectures, whether they are a physical, virtual, or
containerized environments.

2.1.2. Hardware requirements

In terms of minimum hardware requirements, follow these guidelines:

Table 3. Hardware requirement guidelines.

CPU Performance is generally memory or I/O bound for large graphs, and compute
bound for graphs that fit in memory.

5

https://neo4j.com/aura/
https://neo4j.com/docs/aura/current/
https://neo4j.com/docs/aura/current/
https://neo4j.com/aura/
https://neo4j.com/docs/aura/current/
https://neo4j.com/docs/aura/current/

Memory More memory allows for larger graphs, but it needs to be configured properly
to avoid disruptive garbage collection operations.

Storage Aside from capacity, the performance characteristics of the disk are the most
important when selecting storage:

• Neo4j workloads tend significantly toward random reads.

• Select media with low average seek time: SSD over spinning disks.

• Consult Disks, RAM and other tips for more details.

For personal use and software development:

Table 4. Hardware requirement guidelines for personal use and software development.

CPU Intel Core i3 minimum, Intel Core i7 recommended.

Memory 2GB minimum, 16GB or more recommended.

Storage 10GB SATA Minimum, SSD with SATA Express or NVMe recommended.

For cloud environments:

Table 5. Hardware requirement guidelines for cloud environments.

CPU 2vCPU minimum, 16+ recommended, possibly Xeon processors.

Memory 2GB minimum, size depends on workloads: in some cases, it is recommended
to use instances with memory that fits the size of the graph in use.

Storage 10GB minimum block storage, attached NVMe SSD recommended.

Storage size depends on the size of the databases.

For server-based, on-premise environments:

Table 6. Hardware requirement guidelines for server-based, on-premise environments.

CPU Intel Xeon processors.

Memory 8GB minimum, size depends on workloads; in some cases, it is recommended
to use instances with memory that fits the size of the graph in use.

6

Storage SATA i7.2K RPM 6Gbps Hard Drive minimum, NVMe SSD recommended.

Storage size depends on the size of the databases.

2.1.3. Software requirements

For personal use and software development:

Table 7. Software requirements for personal use and software development.

Operating System Supported JDK

MacOS 10.14+ ZuluJDK 11

Ubuntu Desktop 16.04+ OpenJDK 11, OracleJDK 11, and ZuluJDK 11

Debian 10+ OpenJDK 11, OracleJDK 11, and ZuluJDK 11

SuSE 15+ Oracle JDK 11

Windows 10 OracleJDK 11 and ZuluJDK 11

For cloud environments, and server-based, on-premise environments:

Table 8. Software requirements for cloud environments, and server-based, on-premise environments.

Operating System Supported JDK

Ubuntu Server 16.04+ OpenJDK 11, OracleJDK 11, and ZuluJDK 11

Red Hat Enterprise Linux Server 7.9+ Red Hat OpenJDK 11, Oracle JDK 11, and ZuluJDK 11

CentOS Server 7 OpenJDK 11

Amazon Linux AMI 2018.03+ Amazon Corretto 11, OpenJDK 11, and OracleJDK 11

Windows Server 2016+ OracleJDK 11 and ZuluJDK 11

For more information on Red Hat Enterprise Linux Life Cycle, refer to their official documentation.

2.1.4. Filesystem

For proper ACID behavior, the filesystem must support flush (fsync, fdatasync). See Linux file system
tuning for a discussion on how to configure the filesystem in Linux for optimal performance.

2.1.5. Java

It is required to have a pre-installed, compatible Java Virtual Machine (JVM) to run a Neo4j instance. The
minimum requirement is Java Runtime Environment (JRE).

Table 9. Neo4j version and JVM requirements.

Neo4j Version JVM compliancy

3.x Java SE 8 Platform Specificaton

7

https://access.redhat.com/support/policy/updates/errata/#RHEL8_and_9_Life_Cycle

Neo4j Version JVM compliancy

4.x Java SE 11 Platform Specificaton

Neo4j Desktop is available for developers and personal users. Neo4j Desktop is bundled with a JVM. For
more information on how to use Neo4j Desktop and its capabilities, see the Neo4j Desktop documentation.

2.2. Neo4j Browser
Neo4j Browser is a tool for developers to interact with the graph. It is the default interface for both
Enterprise and Community Editions of the Neo4j database.

Neo4j Browser is bundled with Neo4j database, including both Neo4j Server and Neo4j Desktop.

For more information on how to use Neo4j Browser and its capabilities, see the Neo4j
Browser documentation.

The following web browsers are supported:

• Chrome (Latest version)

• Firefox (Latest version)

• Edge (Latest version)

 Internet Explorer web browser is not supported.

2.3. Neo4j Desktop
Neo4j Desktop is a convenient way for developers to work with local Neo4j databases.

 Neo4j Desktop is not suited for production environments.

To install Neo4j Desktop, go to Neo4j Download Center and follow the instructions.

For more information on how to use Neo4j Desktop and its capabilities, see the Neo4j
Desktop documentation.

2.4. Linux installation
This section describes the following:

• Install Neo4j on Debian and Debian-based distributions

◦ Installation

◦ File locations

◦ Operation

• Deploy Neo4j using the Neo4j RPM package

8

https://neo4j.com/docs/desktop-manual/current/
https://neo4j.com/docs/browser-manual/current/
https://neo4j.com/docs/browser-manual/current/
https://neo4j.com/download-center
https://neo4j.com/docs/desktop-manual/current/
https://neo4j.com/docs/desktop-manual/current/

◦ Install on Red Hat, CentOS, Fedora or Amazon Linux

▪ Standard installation

▪ Non-interactive installation of Neo4j Enterprise Edition

◦ Install on SUSE

◦ Offline installation

• Install Neo4j on Linux from a tarball

◦ Unix console application

◦ Linux service

◦ Setting the number of open files

• Install Neo4j as a system service

◦ Configuration

◦ Controlling the service

◦ Log

2.4.1. Debian-based distributions (.deb)

Installation

To install Neo4j on Debian you need to make sure of the following:

• An OpenJDK Java 11 runtime is installed or available through your package manager.

• The repository containing the Neo4j Debian package is known to the package manager.

Java Prerequisites (Oracle Java and Ubuntu 16.04+ only)

Neo4j 4.3 requires the Java 11 runtime. Java 11 is not included in Ubuntu 16.04 LTS and will have to be
set up manually prior to installing or upgrading to Neo4j 4.3, as described below. Ubuntu 18.04 onwards
already has the Openjdk Java 11 package available through apt.

Oracle Java and Debian

Neo4j is compatible with Oracle Java on Debian/Ubuntu Linux, but should be installed via tarball. The
Debian installer may still be used, but it will install OpenJDK Java 11 in addition to any existing Java
installations.

This is due to changes in Oracle’s Debian package manifest between Java versions 8 and 11.

echo "deb http://httpredir.debian.org/debian stretch-backports main" | sudo tee -a
/etc/apt/sources.list.d/stretch-backports.list
sudo apt-get update
sudo apt-get install openjdk-11-jre

9

If you already had a different version of Java installed, see Dealing with multiple installed Java versions to
make sure Java 11 is the default version. You are now ready to install Neo4j.

Java 11 on Ubuntu 16.04

Add the official OpenJDK package repository to apt:

sudo add-apt-repository -y ppa:openjdk-r/ppa
sudo apt-get update

You are now ready to install Neo4j, which will install Java 11 automatically if it is not already installed. See
Dealing with multiple installed Java versions to make sure you can start Neo4j after install.

Dealing with multiple installed Java versions

It is important that you configure your default Java version to point to Java 11, or Neo4j 4.3.21 will be
unable to start. Do so with the update-java-alternatives command.

• First list all your installed version of Java with update-java-alternatives --list

Your results may vary, but this is an example of the output:

java-1.11.0-openjdk-amd64 1071 /usr/lib/jvm/java-1.11.0-openjdk-amd64
java-1.8.0-openjdk-amd64 1069 /usr/lib/jvm/java-1.8.0-openjdk-amd64

• Identify your Java 11 version, in this case it is java-1.11.0-openjdk-amd64. Then set it as the default
with (replacing <java11name> with the appropriate name from above)

sudo update-java-alternatives --jre --set <java11name>

Add the repository

The Debian package is available from https://debian.neo4j.com.

• To use the repository for generally available versions of Neo4j, run:

wget -O - https://debian.neo4j.com/neotechnology.gpg.key | sudo apt-key add -
echo 'deb https://debian.neo4j.com stable latest' | sudo tee -a /etc/apt/sources.list.d/neo4j.list
sudo apt-get update

To avoid the risk of the apt package manager accidentally forcing a database upgrade, different major
and minor releases of Neo4j are also available separately inside the repository. To install Neo4j this
way, specify the major and minor version required, in place of latest.

We recommend the following method for production or business critical installations:

10

https://debian.neo4j.com

wget -O - https://debian.neo4j.com/neotechnology.gpg.key | sudo apt-key add -
echo 'deb https://debian.neo4j.com stable 4.3' | sudo tee -a /etc/apt/sources.list.d/neo4j.list
sudo apt-get update

• Once the repository has been added into apt, you can verify which Neo4j versions are available by
running:

apt list -a neo4j

In Ubuntu server installations you will also need to make sure that the universe
repository is enabled. If the universe repository is not present, the Neo4j installation will
fail with the error Depends: daemon but it is not installable.

This can be fixed by running the command:

sudo add-apt-repository universe

Install Neo4j

To install Neo4j Community Edition:

sudo apt-get install neo4j=1:4.3.21

To install Neo4j Enterprise Edition:

sudo apt-get install neo4j-enterprise=1:4.3.21

Note that the version includes an epoch version component (1:), in accordance with the Debian policy on
versioning.

Versions of Neo4j that are not yet generally available may differ in naming.

The naming structure of packages are normally composed as neo4j-
enterprise=1:<version>~<release>. For example, Neo4j Enterprise Edition Milestone
Release 3 would be: neo4j-enterprise=1:4.0.0~beta03mr03.

Refer to the download page for more information regarding the name of packages.

When installing Neo4j Enterprise Edition, you will be prompted to accept the license agreement. Once the
license agreement is accepted installation begins. Your answer to the license agreement prompt will be
remembered for future installations on the same system.

To forget the stored answer, and trigger the license agreement prompt on subsequent installation, use
debconf-communicate to purge the stored answer:

11

https://www.debian.org/doc/debian-policy/#s-f-version
https://www.debian.org/doc/debian-policy/#s-f-version

echo purge | sudo debconf-communicate neo4j-enterprise

Non-interactive installation of Neo4j Enterprise Edition

For Neo4j Enterprise Edition, the license agreement is presented in an interactive prompt. If you require
non-interactive installation of Neo4j Enterprise Edition, you can indicate that you have read and accepted
the license agreement using debconf-set-selections:

echo "neo4j-enterprise neo4j/question select I ACCEPT" | sudo debconf-set-selections
echo "neo4j-enterprise neo4j/license note" | sudo debconf-set-selections

Offline installation

If you cannot reach https://debian.neo4j.com, perhaps due to a firewall, you will need to obtain Neo4j via
an alternative machine which has the relevant access, and then move the package manually.

It is important to note that using this method will mean that the offline machine will not
receive the dependencies that are that are normally downloaded and installed
automatically when using apt for installing Neo4j; Cypher Shell and Java (if not installed
already):

• The Cypher Shell package can be downloaded from Neo4j Download Center.

• For information on supported versions of Java, see System requirements.

1. Run the following to download the required Debian software package:

◦ Neo4j Enterprise Edition:

curl -O https://dist.neo4j.org/deb/neo4j-enterprise_4.3.21_all.deb

To list all files that the Debian software package (.deb file) installs:

dpkg --contents neo4j_4.3.21_all.deb

◦ Neo4j Community Edition:

curl -O https://dist.neo4j.org/deb/neo4j_4.3.21_all.deb

2. Manually move the downloaded Debian package to the offline machine.

3. Run the following on the offline machine to install Neo4j:

sudo dpkg -i <deb file name>

12

https://debian.neo4j.com
https://neo4j.com/download-center

File locations

File locations for all Neo4j packages are documented here.

Operation

Most Neo4j configuration goes into neo4j.conf.

For operating systems using systemd, some package-specific options are set in neo4j.service and can be
edited using systemctl edit neo4j.service.

For operating systems that are not using systemd, some package-specific options are set in
/etc/default/neo4j.

Environment variable Default value Details

NEO4J_SHUTDOWN_TIMEOUT 120 Timeout in seconds when waiting for
Neo4j to stop. If it takes longer than this
then the shutdown is considered to
have failed. This may need to be
increased if the system serves long-
running transactions.

NEO4J_ULIMIT_NOFILE 60000 Maximum number of file handles that
can be opened by the Neo4j process.

Starting the service automatically on system start

On Debian-based distributions, Neo4j is enabled to start automatically on system boot by default.

Before starting up the database for the first time, it is recommended to use the set-
initial-password command of neo4j-admin to define the password for the native user
neo4j.

If the password is not set explicitly using this method, it will be set to the default
password neo4j. In that case, you will be prompted to change the default password at
first login.

For more information, see Set an initial password.

For more information on operating the Neo4j system service, see Neo4j system service.

2.4.2. Red Hat, CentOS, Fedora, and Amazon Linux distributions (.rpm)

Install on Red Hat, CentOS, Fedora, or Amazon Linux

Standard installation

1. Add the repository.

13

Use the following as root to add the repository:

rpm --import https://debian.neo4j.com/neotechnology.gpg.key
cat <<EOF > /etc/yum.repos.d/neo4j.repo
[neo4j]
name=Neo4j RPM Repository
baseurl=https://yum.neo4j.com/stable
enabled=1
gpgcheck=1
EOF

2. Ensure the correct Java version.

Neo4j 4.3 requires the Java 11 runtime. Most of our supported RPM Linux distributions have Java 11
available by default. There is some minor setup required for Amazon Linux, and for compatibility with
Oracle Java 11:

◦ Java 11 on Amazon Linux:

To enable OpenJDK 11 on Amazon Linux run the shell command:

amazon-linux-extras enable java-openjdk11

You are now ready to install Neo4j 4.3.21, which will install Java 11 automatically if it is not already
installed.

◦ Oracle Java 11:

Oracle and OpenJDK provide incompatible RPM packages for Java 11. We provide an adapter for
Oracle Java 11 which must be installed before Neo4j. The adapter contains no code, but will stop
the package manger from installing OpenJDK 11 as a dependency despite an existing Java 11
installation.

This step assumes that you have performed the previous step to set up the yum repository.

a. Download and install the Oracle Java 11 JDK from the Oracle website.

b. Install the adapter:

sudo yum install https://dist.neo4j.org/neo4j-java11-adapter.noarch.rpm

The SHA-256 of the adapter package can be verified against https://dist.neo4j.org/neo4j-
java11-adapter.noarch.rpm.sha256.

You are now ready to install Neo4j 4.3.21.

3. Install Neo4j.

◦ To install Neo4j Community Edition as root:

yum install neo4j-4.3.21

◦ To install Neo4j Enterprise Edition as root:

14

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://dist.neo4j.org/neo4j-java11-adapter.noarch.rpm.sha256
https://dist.neo4j.org/neo4j-java11-adapter.noarch.rpm.sha256

yum install neo4j-enterprise-4.3.21

4. Run the following to return the version and edition of Neo4j that has been installed:

rpm -qa | grep neo

 Neo4j supports Security-Enhanced Linux (SELinux), by default.

Non-interactive installation of Neo4j Enterprise Edition

When installing Neo4j Enterprise Edition, you will be required to accept the license agreement before
installation is allowed to complete. This is an interactive prompt. If you require non-interactive installation
of Neo4j Enterprise Edition, you can indicate that you have read and accepted the license agreement by
setting the environment variable NEO4J_ACCEPT_LICENSE_AGREEMENT to yes:

NEO4J_ACCEPT_LICENSE_AGREEMENT=yes yum install neo4j-enterprise-4.3.21

Install on SUSE

For SUSE-based distributions the steps are as follows:

1. Use the following as root to add the repository:

zypper addrepo --refresh https://yum.neo4j.com/stable neo4j-repository

2. Install Neo4j.

◦ To install Neo4j Community Edition as root:

zypper install neo4j-4.3.21

◦ To install Neo4j Enterprise Edition as root:

zypper install neo4j-enterprise-4.3.21

Offline installation

If you cannot reach https://yum.neo4j.com/stable to install Neo4j using RPM, perhaps due to a firewall,
you will need to obtain Neo4j via an alternative machine that has the relevant access, and then move the
RPM package manually.

15

It is important to note that using this method will mean that the offline machine will not
receive the dependencies that are normally downloaded and installed automatically
when using yum for installing Neo4j; Neo4j Cypher Shell and Java.

For information on supported versions of Java, see System requirements.

Downloading the RPM installers

The Cypher Shell RPM package can be downloaded from Neo4j Download Center.

1. Run the following to obtain the required Neo4j RPM package:

◦ Neo4j Enterprise Edition:

curl -O https://dist.neo4j.org/rpm/neo4j-enterprise-4.3.21-1.noarch.rpm

◦ Neo4j Community Edition:

curl -O https://dist.neo4j.org/rpm/neo4j-4.3.21-1.noarch.rpm

2. Manually move the downloaded RPM packages to the offline machine.

If using Oracle Java 11, the same dependency issues apply as with the standard installation. You will need
to additionally download and install the Java adaptor described in that section:

• To install Neo4j Enterprise Edition as root:

curl -O https://dist.neo4j.org/neo4j-java11-adapter.noarch.rpm

Performing an offline installation

Offline upgrade from 4.0.0 or later

• Neo4j 4.0.0 and onwards already require Java 11, so there should be no additional Java setup required.

• Neo4j Cypher Shell must be installed before Neo4j, because it is a dependency.

• Run the following on the offline machine to install Neo4j Cypher Shell and Neo4j simultaneously:

rpm -U <Cypher Shell RPM file name> <Neo4j RPM file name>

This must be one single command, and Neo4j Cypher Shell must be the first package in the command.

16

https://neo4j.com/download-center/#cyphershell

Offline upgrade from 3.5 or earlier

• Due to dependency conflicts with older versions, for offline upgrades from 3.5 or earlier, Neo4j Cypher
Shell and Neo4j must be upgraded simultaneously.

• Before you begin, you will need to have Java 11 pre-installed. For Oracle Java 11 only, you must install
the Oracle Java adapter before trying to install Neo4j.

• Run the following on the offline machine to install Neo4j Cypher Shell and Neo4j simultaneously:

rpm -U <Cypher Shell RPM file name> <Neo4j RPM file name>

This must be one single command, and Neo4j Cypher Shell must be the first package in the command.

Starting the service automatically on system start

To enable Neo4j to start automatically on system boot, run the following command:

systemctl enable neo4j

Before starting up the database for the first time, it is recommended to use the set-
initial-password command of neo4j-admin to define the password for the native user
neo4j.

If the password is not set explicitly using this method, it will be set to the default
password neo4j. In that case, you will be prompted to change the default password at
first login.

For more information, see Set an initial password.

For more information on operating the Neo4j system service, see Neo4j system service.

2.4.3. Linux executable (.tar)

Before you install Neo4j on Linux from a tarball and run it as a console application or a service, check
System Requirements to see if your setup is suitable.

Install Neo4j from a tarball

1. If it is not already installed, get OpenJDK 11 or Oracle Java 11.

2. Download the latest Neo4j tarball from Neo4j Download Center and unpack it:

tar zxf neo4j-enterprise-4.3.21-unix.tar.gz

3. Move the extracted files to your server’s /opt directory and create a symlink to it:

mv neo4j-enterprise-4.3.21 /opt/
ln -s /opt/neo4j-enterprise-4.3.21 /opt/neo4j

17

http://openjdk.java.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://neo4j.com/download-center/

4. Create a neo4j user and group:

groupadd neo4j
useradd -g neo4j neo4j -s /bin/bash

5. Give the directory the correct ownership using one of the options:

◦ Ubuntu

chown -R neo4j:adm /opt/neo4j-enterprise-4.3.21

◦ RedHat

chown -R neo4j /opt/neo4j-enterprise-4.3.21

6. Start Neo4j:

a. To run Neo4j as a console application, use: <NEO4J_HOME>/bin/neo4j console.

b. To run Neo4j in a background process, use: <NEO4J_HOME>/bin/neo4j start.

7. Open http://localhost:7474 in your web browser.

8. Connect using the username neo4j with the default password neo4j. You will then be prompted to
change the password.

9. Stop the server by typing Ctrl-C in the console.

Configure Neo4j to start automatically on system boot

You can create a Neo4j service and configure it to start automatically on system boot.

1. Create the file /lib/systemd/system/neo4j.service with the following contents:

[Unit]
Description=Neo4j Graph Database
After=network-online.target
Wants=network-online.target

[Service]
ExecStart=/opt/neo4j/bin/neo4j console
Restart=on-abnormal
User=neo4j
Group=neo4j
Environment="NEO4J_CONF=/opt/neo4j/conf" "NEO4J_HOME=/opt/neo4j"
LimitNOFILE=60000
TimeoutSec=120

[Install]
WantedBy=multi-user.target
//Reload systemctl to pick up the new service file
systemctl daemon-reload

2. Configure Neo4j to start at boot time:

systemctl enable neo4j

18

http://localhost:7474

3. Start Neo4j:

systemctl start neo4j

4. Check the status of the newly created service:

systemctl status neo4j

5. Reboot the system (if desired) to verify that Neo4j restarts on boot:

reboot

For more information on operating the Neo4j system service, see Neo4j system service.

Setting the number of open files

Linux platforms impose an upper limit on the number of concurrently open files per user and session. To
check your limit for the current session, run the command ulimit -n. The default value is 1024.

user@localhost:~$ ulimit -n
1024

However, if you experience exceptions on Too many open files or Could not stat() directory, you have
to increase the limit to 40000 or more, depending on your usage patterns. This is especially true when
many indexes are used, or the server installation sees too many open network connections or sockets.

A quick solution is the command ulimit -n <the-new-limit>, but it will set a new limit only for the root
user and will affect only the current session. If you want to set the value system-wide, follow the
instructions for your platform.

The following steps set the open file descriptor limit to 60000 for the user neo4j under Ubuntu 16.04 LTS,
Debian 8, CentOS 7, or later versions.

Running Neo4j as a service

1. Open the neo4j.service file with root privileges.

user@localhost:~$ sudo systemctl edit neo4j.service

2. Append the [Service] section to the neo4j.service file.

[Service]
LimitNOFILE=60000

19

Running Neo4j as an interactive user (e.g., for testing purposes)

1. Open the user.conf file with root privileges in a text editor, for example, Vim.

user@localhost:~$ sudo vi /etc/systemd/user.conf

2. Uncomment and define the value of DefaultLimitNOFILE, found in the [Manager] section.

[Manager]
...
DefaultLimitNOFILE=60000

3. Open the /etc/security/limits.conf file.

user@localhost:~$ sudo vi /etc/security/limits.conf

4. Define the following values:

neo4j soft nofile 60000
neo4j hard nofile 60000

5. Reload the systemd settings.

user@localhost:~$ sudo systemctl daemon-reload

6. Reboot your machine.

2.4.4. Neo4j system service

Setting the number of open files.

For instructions on how to set the number of concurrent files that a user can have open,
see Setting the number of open files.

Configuration

Configuration is stored in /etc/neo4j/neo4j.conf. See File locations for a complete catalog of where files are
found for the various packages.

Controlling the service

System services are controlled with the systemctl command. It accepts a number of commands:

systemctl {start|stop|restart} neo4j

Service customizations can be placed in a service override file. To edit your specific options, do the
following command which will open up an editor of the appropriate file:

20

systemctl edit neo4j

Then place any customizations under a [Service] section. The following example lists default values that
may be interesting to change for some users:

[Service]
The user and group which the service runs as.
User=neo4j
Group=neo4j
If it takes longer than this then the shutdown is considered to have failed.
This may need to be increased if the system serves long-running transactions.
TimeoutSec=120

You can print the effective service, including possible overrides, with:

systemctl cat neo4j

Remember to restart neo4j if you change any settings.

systemctl restart neo4j

Log

The neo4j log is written to journald which can be viewed using the journalctl command:

journalctl -e -u neo4j

journald automatically rotates the log after a certain time and by default it commonly does not persist
across reboots. Please see man journald.conf for further details.

2.5. macOS installation

2.5.1. Unix console application

1. If it is not already installed, get OpenJDK 11 or Oracle Java 11.

2. Download the latest release from Neo4j Download Center.

Select the appropriate tar.gz distribution for your platform.

3. Make sure to download Neo4j from Neo4j Download Center and always check that the SHA hash of
the downloaded file is correct:

a. To find the correct SHA hash, go to Neo4j Download Center and click on SHA-256 which will be
located below your downloaded file.

b. Using the appropriate commands for your platform, display the SHA-256 hash for the file that you
downloaded.

c. Ensure that the two are identical.

21

http://openjdk.java.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://neo4j.com/download-center
https://neo4j.com/download-center

4. Extract the contents of the archive, using tar -xf <filename>

Refer to the top-level extracted directory as: NEO4J_HOME

5. Change directory to: $NEO4J_HOME

Run ./bin/neo4j console

6. Stop the server by typing Ctrl-C in the console.

When Neo4j runs in console mode, logs are printed to the terminal.

2.5.2. macOS service

Use the standard macOS system tools to create a service based on the neo4j command.

2.5.3. macOS file descriptor limits

The limit of open file descriptors may have to be increased if a database has many indexes or if there are
many connections to the database. The currently configured open file descriptor limitation on your macOS
system can be inspected with the launchctl limit maxfiles command. The method for changing the limit
may differ depending on the version of macOS. Consult the documentation for your operating system in
order to find out the appropriate command.

If you raise the limit above 10240, then you must also add the following setting to your neo4j.conf file:

dbms.jvm.additional=-XX:-MaxFDLimit

Without this setting, the file descriptor limit for the JVM will not be increased beyond 10240. Note,
however, that this only applies to macOS. On all other operating systems, you should always leave the
MaxFDLimit JVM setting enabled.

2.6. Windows installation

2.6.1. Windows console application

1. If it is not already installed, get OpenJDK 11 or Oracle Java 11.

2. Download the latest release from Neo4j Download Center.

Select the appropriate ZIP distribution.

3. Make sure to download Neo4j from Neo4j Download Center and always check that the SHA hash of
the downloaded file is correct:

a. To find the correct SHA hash, go to Neo4j Download Center and click on SHA-256 which will be
located below your downloaded file.

b. Using the appropriate commands for your platform, display the SHA-256 hash for the file that you
downloaded.

22

http://openjdk.java.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://neo4j.com/download-center
https://neo4j.com/download-center

c. Ensure that the two are identical.

4. Right-click the downloaded file, click Extract All.

5. Change directory to the top-level extracted directory.

Run bin\neo4j console

6. Stop the server by typing Ctrl-C in the console.

2.6.2. Windows service

Neo4j can also be run as a Windows service. Install the service with bin\neo4j install-service, and start
it with bin\neo4j start.

The available commands for bin\neo4j are: help, start, stop, restart, status, install-service,
uninstall-service, and update-service.

When installing a new release of Neo4j, you must first run bin\neo4j uninstall-
service on any previously installed versions.

Java options

When Neo4j is installed as a service, Java options are stored in the service configuration. Changes to these
options after the service is installed will not take effect until the service configuration is updated. For
example, changing the setting dbms.memory.heap.max_size in neo4j.conf will not take effect until the
service is updated and restarted. To update the service, run bin\neo4j update-service. Then restart the
service to run it with the new configuration.

The same applies to the path to where Java is installed on the system. If the path changes, for example
when upgrading to a new version of Java, it is necessary to run the update-service command and restart
the service. Then the new Java location will be used by the service.

23

Example 1. Update service example

1. Install service

bin\neo4j install-service

2. Change memory configuration

echo dbms.memory.heap.initial_size=8g >> conf\neo4j.conf
echo dbms.memory.heap.max_size=16g >> conf\neo4j.conf

3. Update service

bin\neo4j update-service

4. Restart service

bin\neo4j restart

2.6.3. Windows PowerShell module

The Neo4j PowerShell module allows administrators to:

• Install, start and stop Neo4j Windows® Services.

• Start tools, such as Neo4j Admin and Cypher Shell.

The PowerShell module is installed as part of the ZIP file distributions of Neo4j.

System requirements

• Requires PowerShell v2.0 or above.

• Supported on either 32 or 64 bit operating systems.

Managing Neo4j on Windows

On Windows, it is sometimes necessary to Unblock a downloaded ZIP file before you can import its
contents as a module. If you right-click on the ZIP file and choose "Properties" you will get a dialog which
includes an "Unblock" button, which will enable you to import the module.

Running scripts has to be enabled on the system. This can, for example, be achieved by executing the
following from an elevated PowerShell prompt:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

For more information, see About execution policies.

24

https://neo4j.com/download/other-releases/#releases
https://technet.microsoft.com/en-us/library/hh847748.aspx

The PowerShell module will display a warning if it detects that you do not have administrative rights.

How do I import the module?

The module file is located in the bin directory of your Neo4j installation, i.e. where you unzipped the
downloaded file. For example, if Neo4j was installed in C:\Neo4j then the module would be imported like
this:

Import-Module C:\Neo4j\bin\Neo4j-Management.psd1

This will add the module to the current session.

Once the module has been imported you can start an interactive console version of a Neo4j Server like this:

Invoke-Neo4j console

To stop the server, issue Ctrl-C in the console window that was created by the command.

How do I get help about the module?

Once the module is imported you can query the available commands like this:

Get-Command -Module Neo4j-Management

The output should be similar to the following:

CommandType Name Version Source
----------- ---- ------- ------
Function Invoke-Neo4j 4.3.21 Neo4j-Management
Function Invoke-Neo4jAdmin 4.3.21 Neo4j-Management
Function Invoke-Neo4jBackup 4.3.21 Neo4j-Management
Function Invoke-Neo4jImport 4.3.21 Neo4j-Management
Function Invoke-Neo4jShell 4.3.21 Neo4j-Management

The module also supports the standard PowerShell help commands.

Get-Help Invoke-Neo4j

Run the following to see examples of help commands:

Get-Help Invoke-Neo4j -examples

Example usage

• List of available commands:

Invoke-Neo4j

25

• Current status of the Neo4j service:

Invoke-Neo4j status

• Install the service with verbose output:

Invoke-Neo4j install-service -Verbose

• Available commands for administrative tasks:

Invoke-Neo4jAdmin

Common PowerShell parameters

The module commands support the common PowerShell parameter of Verbose.

26

Chapter 3. Cloud deployments
The topics covered are:

• Neo4j cloud VMs  — Deploying Neo4j on cloud virtual machines.

• Neo4j on Amazon EC2 — Deploying Neo4j on Amazon EC2.

• Neo4j on Google Cloud Platform — Deploying Neo4j on Google Cloud Platform (GCP).

• Neo4j on Microsoft Azure — Deploying Neo4j on Microsoft Azure.

Other cloud deployment options

Neo4j Aura is a fully managed Neo4j database, hosted in the cloud and requires no
installation. For more information, see the Aura product and support pages.

Neo4j can be run in a Docker container. For information on running Neo4j on Docker, see
Docker.

3.1. Neo4j cloud VMs

3.1.1. Basics and file Locations

Neo4j cloud VMs are based on the Ubuntu distribution of Linux. When Neo4j is installed on a VM, the
method used to do this matches the Debian install instructions provided in the Debian. Because cloud
images are based on the standard Neo4j Debian package, file locations match the file locations described
in the File locations, where neo4j-home is set to /var/lib/neo4j. The remainder of this page deals only with
topics that are different from a standard Linux install. If you have any other questions not covered by this
page, consult Linux installation.

3.1.2. VM configuration

For the cloud version of Neo4j, you must not modify the /etc/neo4j/neo4j.conf file
directly, but rather modify /etc/neo4j/neo4j.template.

The system service that restarts Neo4j calls a shell script called pre-neo4j.sh.

In cloud environments, much of the external configuration environment may change. A machine may have
a different IP address or a different set of tags when it restarts. Because of this dynamic nature, the pre-
neo4j.sh script dynamically overwrites the normal neo4j.conf file each time the system service starts. As a
result, you must configure the template to do those substitutions and not the configuration file itself, as it
will be automatically overwritten.

3.1.3. Configuration via VM tags

On cloud platforms, you may set general neo4j.conf configuration parameters as tags on the VM, which
will be picked up and substituted into the configuration file. In this way, for example, you might set a tag
on a VM of dbms_backup_enabled with the value false to disable the backup port. When changing VM

27

https://neo4j.com/aura/
https://aura.support.neo4j.com/

tags, the configuration is not immediately applied to the Neo4j system service running inside of the VM. To
affect these changes, please restart the system service.

Naming conventions for tags follow the same conventions as docker containers. Dots in
a configuration parameter’s name must be replaced by underscore characters.

3.1.4. Interacting with the Neo4j Service

You can get system status for neo4j within the VM by executing the following:

systemctl status neo4j

3.2. Neo4j on Amazon EC2
There are several options for running Neo4j on AWS EC2, depending on what you want to do.

To automate Neo4j deployment on AWS, see Neo4j deployment automation on AWS.

The following links provide more information for running Neo4j on AWS:

• Neo4j Enterprise Causal Clusters in AWS Marketplace – Launching a multi-VM clustered configuration
from AWS Marketplace, with the choice to configure many aspects of the cluster, including the number
of core nodes, read replicas, hardware sizing, encrypted EBS volumes, and other options.

• Hosting Neo4j on AWS EC2 AMI – Launching Neo4j using the Amazon’s command-line tool.

• Community Edition in AWS Marketplace – Installing Neo4j Community from the AWS marketplace.

3.2.1. Neo4j deployment automation on AWS

Prerequisites

• You have installed the AWS command-line interface.

• You have generated an access token.

• You have defined the environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

• You have installed jq tool for working with JSON responses. See the Download jq page.

CloudFormation

Neo4j provides CloudFormation templates for Neo4j Enterprise standalone, Neo4j Causal Cluster (highly-
available clusters), and Neo4j Community.

CloudFormation is a recipe that tells AWS how to deploy a whole set of interrelated resources.

The Neo4j CloudFormation templates have the following properties:

• Deploying one or more EC2 VMs in a specified region.

28

https://aws.amazon.com/marketplace/pp/B07D441G55
https://neo4j.com/developer/neo4j-cloud-aws-ec2-ami/
https://aws.amazon.com/marketplace/pp/B071P26C9D
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://stedolan.github.io/jq/download/

• Deploying EC2 VMs in multiple availability zones within a region, so that if one goes down, your entire
database does not go down.

• Deploying a new virtual private cloud (VPC) and installing Neo4j in it. In this way, you can control
network access by tuning your VPC and security rules.

Creating a CloudFormation stack

Depending on what Neo4j edition you want to deploy, you create a CloudFormation stack by running a
bash script. Each script contains the following configurations:

• The URL of the Neo4j stack template that tells AWS what to deploy.

• Various parameters that control how much hardware you want to use.

• SSHKEY – the name of your SSH key on AWS to be used to SSH into the instances as the user “ubuntu”.

• NetworkWhitelist - it is set to 0.0.0.0/0 by default, which means that any IP on the internet can
contact your instance. If you want to lock it down to just your company’s IP block, this is where you
must specify that.

• INSTANCE - the AWS instance type you want to launch, which controls your database capacity.

• REGION - specifies where to deploy Neo4j. Possible values are: us-east-1, us-east-2, us-west-1, us-
west-2, eu-west-1, eu-central-1, ap-southeast-1, ap-northeast-1, ap-south-1, and sa-east-1.

Deploying Neo4j Enterprise Standalone

To deploy Neo4j Enterprise Standalone, use the Single instance template. It does not have high-availability
failover capabilities, but it is a very fast way to get started.

#!/bin/bash
VERSION=4.3.21
export SINGLE_TEMPLATE=http://neo4j-cloudformation.s3.amazonaws.com/neo4j-enterprise-standalone-stack-
$VERSION.json
export STACKNAME=neo4j-enterprise-$(echo $VERSION | sed s/[^A-Za-z0-9]/-/g)
export INSTANCE=r4.large
export REGION=us-east-1
export SSHKEY=my-ssh-keyname
aws cloudformation create-stack \
 --stack-name $STACKNAME \
 --region $REGION \
 --template-url $SINGLE_TEMPLATE \
 --parameters ParameterKey=InstanceType,ParameterValue=$INSTANCE \
 ParameterKey=NetworkWhitelist,ParameterValue=0.0.0.0/0 \
 ParameterKey=Password,ParameterValue=s00pers3cret \
 ParameterKey=SSHKeyName,ParameterValue=$SSHKEY \
 ParameterKey=VolumeSizeGB,ParameterValue=37 \
 ParameterKey=VolumeType,ParameterValue=gp2 \
 --capabilities CAPABILITY_NAMED_IAM

Deploying Neo4j Enterprise Causal Cluster

To deploy Neo4j Enterprise Causal Cluster, use the Causal Cluster template.

You indicate how many core servers you want in your cluster by configuring the
ClusterNodes parameter. Minimum value: 3.

29

#!/bin/bash
VERSION=4.3.21
export CLUSTER_TEMPLATE=http://neo4j-cloudformation.s3.amazonaws.com/neo4j-enterprise-stack-$VERSION.json
export STACKNAME=neo4j-enterprise-$(echo $VERSION | sed s/[^A-Za-z0-9]/-/g)
export INSTANCE=r4.large
export REGION=us-east-1
export SSHKEY=my-ssh-keyname
aws cloudformation create-stack \
 --stack-name $STACKNAME \
 --region $REGION \
 --template-url $CLUSTER_TEMPLATE \
 --parameters ParameterKey=ClusterNodes,ParameterValue=3 \
 ParameterKey=InstanceType,ParameterValue=$INSTANCE \
 ParameterKey=NetworkWhitelist,ParameterValue=0.0.0.0/0 \
 ParameterKey=Password,ParameterValue=s00pers3cret \
 ParameterKey=SSHKeyName,ParameterValue=$SSHKEY \
 ParameterKey=VolumeSizeGB,ParameterValue=37 \
 ParameterKey=VolumeType,ParameterValue=gp2 \
 --capabilities CAPABILITY_NAMED_IAM

Deploying Neo4j Community Standalone

To deploy Neo4j Community Standalone, use the Community template.

#!/bin/bash
VERSION=4.3.21
export COMMUNITY_TEMPLATE=http://neo4j-cloudformation.s3.amazonaws.com/neo4j-community-standalone-stack-
$VERSION.json
export STACKNAME=neo4j-comm-$(echo $VERSION | sed s/[^A-Za-z0-9]/-/g)
export INSTANCE=r4.large
export REGION=us-east-1
export SSHKEY=my-ssh-keyname
aws cloudformation create-stack \
 --stack-name $STACKNAME \
 --region $REGION \
 --template-url $COMMUNITY_TEMPLATE \
 --parameters ParameterKey=InstanceType,ParameterValue=$INSTANCE \
 ParameterKey=NetworkWhitelist,ParameterValue=0.0.0.0/0 \
 ParameterKey=Password,ParameterValue=s00pers3cret \
 ParameterKey=SSHKeyName,ParameterValue=$SSHKEY \
 ParameterKey=VolumeSizeGB,ParameterValue=37 \
 ParameterKey=VolumeType,ParameterValue=gp2 \
 --capabilities CAPABILITY_NAMED_IAM

Checking to see if your instance is up

In each case, the commands submit a CloudFormation stack to be deployed, but they do not wait for the
stack to be available. If you want to wait for the CloudFormation stack to finish deploying, use the
following command:

aws cloudformation wait stack-create-complete --region $REGION --stack-name "$STACKNAME"

Finally, you can get the stack outputs, like this:

aws cloudformation describe-stacks --region $REGION --stack-name "$STACKNAME"

In general, this outputs a lot JSON content. To cut straight to the outputs of the stack, use the jq tool.

jq -r '.Stacks[0].Outputs[]'

30

The result is a set of outputs with the IP address and password of your new instance. By the time the
CloudFormation template finishes deploying, the service will be live and ready to go.

Cleaning up and removing your stack

When you are done with your CloudFormation stack, you can delete it by using the following script:

#!/bin/bash
echo "Deleting stack $1"
aws cloudformation delete-stack --stack-name "$1" --region us-east-1

3.3. Neo4j on Google Cloud Platform
There are several options for running Neo4j on GCP, depending on what you want to do.

• Single instances (VM-based) — Launching a single instance from an image.

• Causal Clusters (VM-Based) — Deploying Neo4j on GCP.

• Neo4j deployments automation on GCP – Automating Neo4j deployments on GCP.

3.3.1. Single instances (VM-based)

Prerequisites

• You know how to run and operate Neo4j locally.

• You know how to access cloud-hosted Neo4j from your application. See the Driver Manual.

• You have installed and set up Google Cloud SDK to be able to use the gcloud command-line tool.

• You have authenticated your gcloud CLI, to interact with your GCP projects.

Create a firewall rule to access your instance

Create a firewall rule to be able to access your instance when it is launched:

gcloud compute firewall-rules create allow-neo4j-bolt-http-https \ ①
 --allow tcp:7473,tcp:7474,tcp:7687 \ ②
 --source-ranges 0.0.0.0/0 \ ③
 --target-tags neo4j ④

① Create a firewall rule with the name allow-neo4j-bolt-http-https.

② Allow traffic on ports:

• 7473 (HTTPS, for Neo4j Browser and HTTP API).

• 7474 (HTTP, for Neo4j Browser and HTTP API).

• 7687 (Bolt Protocol).

③ The ranges, provided with the --source-ranges argument, allow the entire Internet to contact your new
instance.

31

https://neo4j.com/docs/driver-manual/4.0/
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/docs/authorizing

④ The --target-tags argument specifies that this rule applies only to VMs tagged with neo4j.
When you launch your instance, you have to apply that tag to it.

Create a Google compute instance from the Neo4j public image

1. List all available Neo4j public images.

The images are published in a GCP project called launcher-public, so by listing images in that project,
you can see what is available.

launcher-public images

gcloud compute images list --project launcher-public

launcher-public images — filtered on Neo4j 4.X versions

gcloud compute images list --project launcher-public | grep --extended-regexp "neo4j-
(community|enterprise)-1-4-.*"

For example, the image neo4j-enterprise-1-4-2-2-apoc includes Neo4j Enterprise 4.2.2 with the
APOC plugin.

2. Create a new instance.

You create and launch an instance by using the following gcloud commands:

gcloud config set project <project-id> ①
gcloud compute instances create my-neo4j-instance --image-project launcher-public \ ②
 --image <neo4j-image-name> \ ③
 --tags neo4j ④

① Set your project configuration to ensure you know where you are launching your instance.

② Launch an image found in the provided public project launcher-public.

③ Replace <neo4j-image-name> with the image name you want to launch.

④ The --tags argument allows you to configure the correct network permissions.
By default, Google blocks all external access to the network services unless you open them.

3. Note the EXTERNAL_IP.

When the launch is successful, you get the following result:

Example output

Created [https://www.googleapis.com/compute/v1/projects/testbed-187316/zones/us-east1-b/instances/my-
neo4j-instance].
NAME ZONE MACHINE_TYPE PREEMPTIBLE INTERNAL_IP EXTERNAL_IP STATUS
my-neo4j-instance europe-north1-a n1-standard-1 192.0.2.0 203.0.113.0 RUNNING

Note the IP address[2] in the EXTERNAL_IP column, this is for the Neo4j server.

32

The gcloud tool comes with many command-line options. For more details on how to
deal with machine type, memory, available storage, etc., consult the Google Cloud
documentation.

Access your new instance

Navigate to http://[EXTERNAL_IP]:7474/browser or https://[EXTERNAL_IP]:7473/browser, log in with the
default username neo4j and password neo4j, and change the password, when prompted.

Neo4j 3.X versions include a self-signed certificate for TLS. Because you do not have a
hostname or a valid SSL certificate configured by default, your browser will warn you
that the certificate is not trusted.

Neo4j 4.X versions do not include any certificate for TLS. You can configure the
certificate later.

Access your instance via SSH

You can run the following command to SSH into the instance:

ssh

gcloud compute ssh my-neo4j-instance

Inside the VM, you can check the status of the neo4j service:

systemctl

sudo systemctl status neo4j

● neo4j.service - Neo4j Graph Database
 Loaded: loaded (/etc/systemd/system/neo4j.service; enabled; vendor preset: enabled)
 Active: active (running) since Thu 2021-01-01 13:01:02 UTC; 40min ago
 Main PID: 937 (java)
 Tasks: 62 (limit: 4401)
 CGroup: /system.slice/neo4j.service
 └─937 /usr/bin/java -cp
/var/lib/neo4j/plugins:/etc/neo4j:/usr/share/neo4j/lib/*:/var/lib/neo4j/plugins/* -XX:+UseG1GC -XX:
-OmitStackTraceInFastThrow

For details on internals of Google VMs, including how to stop and start system services, configure Neo4j
from the VM, etc., consult Neo4j cloud VMs.

Delete your instance

You can run the following command to delete your instance:

gcloud compute instances delete my-neo4j-instance

33

https://cloud.google.com/sdk/gcloud/reference/compute/instances/create
https://cloud.google.com/sdk/gcloud/reference/compute/instances/create

3.3.2. Causal Clusters (VM-based)

Neo4j Enterprise is registered in GCP Marketplace.

Prerequisites

• You have a Neo4j Enterprise license.

• You are familiar with the Causal Cluster architecture.

• You know how to access cloud-hosted Neo4j from your application. See the Driver Manual.

Deploy Neo4j via the GCP Marketplace

Deploy Neo4j Enterprise from the Google Cloud Launcher console following the interactive prompts.

Once the deploy finishes, save the URL, username, and password.

Start using Neo4j Browser

Use your browser to access the cloud-based database URL, and log in with the initial username and
password provided. You may see an SSL warning screen because the out-of-the-box deployment uses an
unsigned SSL certificate. The initial password is set to a strong, random password and is saved as a
metadata entry on the VMs.

To verify that the cluster has formed correctly, run the following Cypher statement:

CALL dbms.cluster.overview()

The result is one leader and minimum two followers. The IP addresses and endpoints must be the same as
the ones for your running instances, displayed by the Compute Engine.

Access your instance via SSH

Cluster members are regular Google Compute Engine VMs. Therefore, you can access any of them via SSH
from the Deployment Manager screen, or by running the following command in the Google Cloud CLI:

gcloud compute ssh my-cluster-deploy-vm-1

For details on internals of Google VMs, including how to stop and start system services, configure Neo4j
from the VM, etc., consult Neo4j cloud VMs.

Your cluster default configuration

The following notes are provided on your default cluster configuration.

• Ports 7687 (bolt) and 7473 (HTTPS access) are the only ports exposed to the entire internet. Consider
narrowing the access to these ports to only your needed networks. External unencrypted HTTP access
is disabled by default.

34

https://neo4j.com/docs/driver-manual/4.0/
https://console.cloud.google.com/marketplace/product/neo4j/neo4j-enterprise-edition

• Ports 5000, 6000, and 7000 are enabled only for internal network access (10.0.0.8), between the cluster
nodes.

• Because cloud VMs can start and stop with different IP addresses, the configuration of these VMs is
driven by a file in /etc/neo4j/neo4j.template. Configuration changes must be made to the template, not
to the /etc/neo4j/neo4j.conf file, which is overwritten with the template substitutions at every startup.
The template allows you to configure aspects of the cluster with the VMs metadata. The template’s
behavior and layout match the usual neo4j.conf file.

What’s next

• Visit Clustering for more information on how to configure your cluster.

• Add users and change passwords as necessary.

• Consider creating DNS entries with Google to be able to address your cluster with client applications
under a single hostname.

Terminating the deployment

You can use the deployment manager to delete the deployment. To ensure data safety, the disks that back
the VMs are not removed when you delete the cluster deployment.

3.3.3. Neo4j deployments automation on Google Cloud Platform (GCP)

Automate Neo4j deployment when you want to integrate Neo4j into your CI/CD pipeline to be able to
create/destroy instances temporarily, or to spin up a sample instance.

Prerequisites

• You have installed and set up Google Cloud SDK to be able to use the gcloud command-line tool.

• You have authenticated your gcloud CLI, to make sure it can interact with your GCP projects.

Google Cloud Deployment Manager

Neo4j provides Deployment Manager templates for Neo4j Causal Cluster (highly available clusters), and
VM images for Neo4j Enterprise standalone. Deployment Manager is a recipe that tells GCP how to deploy
a whole set of interrelated resources. By deploying all of this as a stack you can keep all of your resources
together, and delete just one thing when you are done.

Creating a Deployment Manager stack

Depending on what Neo4j edition you want to deploy, you create a Deployment Manager stack by running
a bash script.

Each script contains the following configurations:

• The URL of the Neo4j stack template that tells GCP what to deploy.

• Various parameters that control how much hardware you want to use.

35

https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/docs/authorizing

• MACHINE - the GCP machine type you want to launch, which controls how much hardware you will be
giving to your database.

• DISK_TYPE and DISK_SIZE- controls whether Neo4j uses standard spinning magnetic platters (pd-
standard) or SSD disks (pd-ssd), and how many GB of storage you want to allocate. Note that with
some disk sizes, GCP warns that the root partition type may need to be resized if the underlying OS
does not support the disk size. This warning can be ignored, because the underlying OS will recognize
any disk size.

• ZONE - specifies where to deploy Neo4j.

• PROJECT - the project ID you want to deploy on GCP.

Deploying Neo4j Enterprise Edition with a Causal Cluster

To deploy Neo4j Enterprise Edition with a Causal Cluster, use the Causal Cluster template.

You indicate how many core servers and read replicas you want in your cluster by
configuring the CORES and READ_REPLICAS parameters.

#!/bin/bash
export NAME=neo4j-cluster
PROJECT=my-gcp-project-ID
MACHINE=n1-standard-2
DISK_TYPE=pd-ssd
DISK_SIZE=64
ZONE=us-east1-b
CORES=3
READ_REPLICAS=0
NEO4J_VERSION=4.3.21
TEMPLATE_URL=https://storage.googleapis.com/neo4j-deploy/$NEO4J_VERSION/causal-cluster/neo4j-causal-
cluster.jinja
OUTPUT=$(gcloud deployment-manager deployments create $NAME \
 --project $PROJECT \
 --template "$TEMPLATE_URL" \
 --properties "zone:'$ZONE',clusterNodes:'$CORES',readReplicas:'$READ_REPLICAS
',bootDiskSizeGb:$DISK_SIZE,bootDiskType:'$DISK_TYPE',machineType:'$MACHINE'")
echo $OUTPUT
PASSWORD=$(echo $OUTPUT | perl -ne 'm/password\s+([^\s]+)/; print $1;')
IP=$(echo $OUTPUT | perl -ne 'm/vm1URL\s+https:\/\/([^\s]+):/; print $1; ')
echo NEO4J_URI=bolt+routing://$IP
echo NEO4J_PASSWORD=$PASSWORD
echo STACK_NAME=$NAME

After you configure the parameters of what you are deploying, you call to gcloud deployment-manager
deployments create to do the work. The variable OUTPUT contains all the information about your
deployment. Then, you use perl to pull out the password and IP address of your new deployment, because
it will have a strong randomly assigned password.

This command blocks and does not succeed until the entire stack is deployed and ready.
This means that by the time you get the IP address back, your Neo4j is up. If you lose
these stack outputs (IP, password, and so on), you can find them in your Deployment
Manager window within the GCP console.

To delete your deployment, take note of the STACK_NAME and use the utility script:

36

#!/bin/bash
PROJECT=my-google-project-id
if [-z $1] ; then
 echo "Usage: call me with deployment name"
 exit 1
fi
gcloud -q deployment-manager deployments delete $1 --project $PROJECT
OPTIONAL! Destroy the disk
gcloud --quiet compute disks delete $(gcloud compute disks list --project $PROJECT --filter="name~'$1'"
--uri)

When you delete Neo4j stacks on GCP, the GCP disks are left behind, to make it hard for
you to accidentally destroy your valuable data. To completely clean up your disks,
uncomment the last line of the script.

Deploying Neo4j Enterprise (or Community) Edition in standalone mode

To deploy Neo4j Enterprise Edition in standalone mode, create a simple VM and configure its
firewall/security rules. It will not have high-availability failover capabilities, but it is a very fast way to get
started.

You choose a random password by running some random bytes through a hash. The script also provides
an example of polling and waiting until the VM service comes up, and then changing the Neo4j default
password.

The launcher-public project on GCP hosts Neo4j’s VM images for GCP. In the example script, neo4j-
enterprise-1–3–5–3-apoc is used, but other versions are also available. By substituting a different image
name here, you can use this same technique to run Neo4j Community Edition in standalone mode.

37

#!/bin/bash
export PROJECT=my-gcp-project-id
export MACHINE=n1-standard-2
export DISK_TYPE=pd-ssd
export DISK_SIZE=64GB
export ZONE=us-east1-b
export NEO4J_VERSION=4.3.21
export PASSWORD=$(head -n 20 /dev/urandom | md5)
export STACK_NAME=neo4j-standalone
export IMAGE=neo4j-enterprise-1-3-5-3-apoc
Setup firewalling.
echo "Creating firewall rules"
gcloud compute firewall-rules create "$STACK_NAME" \
 --allow tcp:7473,tcp:7687 \
 --source-ranges 0.0.0.0/0 \
 --target-tags neo4j \
 --project $PROJECT
if [$? -ne 0] ; then
 echo "Firewall creation failed. Bailing out"
 exit 1
fi
echo "Creating instance"
OUTPUT=$(gcloud compute instances create $STACK_NAME \
 --project $PROJECT \
 --image $IMAGE \
 --tags neo4j \
 --machine-type $MACHINE \
 --boot-disk-size $DISK_SIZE \
 --boot-disk-type $DISK_TYPE \
 --image-project launcher-public)
echo $OUTPUT
Pull out the IP addresses, and toss out the private internal one (10.*)
IP=$(echo $OUTPUT | grep -oE '((1?[0-9][0-9]?|2[0-4][0-9]|25[0-5])\.){3}(1?[0-9][0-9]?|2[0-4][0-9]|25[0-
5])' | grep --invert-match "^10\.")
echo "Discovered new machine IP at $IP"
tries=0
while true ; do
 OUTPUT=$(echo "CALL dbms.changePassword('$PASSWORD');" | cypher-shell -a $IP -u neo4j -p "neo4j" 2>&1)
 EC=$?
 echo $OUTPUT

 if [$EC -eq 0]; then
 echo "Machine is up ... $tries tries"
 break
fi
 if [$tries -gt 30] ; then
 echo STACK_NAME=$STACK_NAME
 echo "Machine is not coming up, giving up"
 exit 1
 fi
 tries=$(($tries+1))
 echo "Machine is not up yet ... $tries tries"
 sleep 1;
done
echo NEO4J_URI=bolt://$IP:7687
echo NEO4J_PASSWORD=$PASSWORD
echo STACK_NAME=$STACK_NAME
exit 0

To delete your deployment, take note of the STACK_NAME and use the utility script:

#!/bin/bash
export PROJECT=my-google-project-id
if [-z $1] ; then
 echo "Missing argument"
 exit 1
fi
echo "Deleting instance and firewall rules"
gcloud compute instances delete --quiet "$1" --project "$PROJECT" && gcloud compute firewall-rules --quiet
delete "$1" --project "$PROJECT"
exit $?

38

3.4. Neo4j on Microsoft Azure
There are several options for running Neo4j on Azure, depending on what you want to do.

• Single instances (VM-based) — Deploying Neo4j single instances on Azure.

• Causal Clusters (VM-Based) — Deploying Neo4j Causal cluster on Azure.

• Neo4j deployments automation on Azure – Automating Neo4j deployments on Azure.

3.4.1. Single instances (VM-based)

Prerequisites

• You know how to run and operate Neo4j locally.

• You have a Neo4j Enterprise or a trial license for Azure.

• You know how to access cloud-hosted Neo4j from your application. See the Driver Manual.

• You have installed and set up Azure Command Line Interface.

Deploy Neo4j via the Azure Marketplace

Deploy Neo4j Enterprise VM from the Azure Marketplace following the interactive prompts.

The most important setting to consider are Size, which controls the available CPU and
memory, and optionally Disks, where you configure high-speed SSDs and larger disk
capacity sizes. It is recommended to create a new resource group to hold the artifacts of
your deployment.

Once the deploy finishes, save the URL, username, and password.

Access your new instance

Navigate to https://[MY_Azure_IP]:7473 and log in with the username neo4j and password neo4j. You
will be prompted to change the password immediately.

Because you do not have a hostname or a valid SSL certificate configured by default, your browser will
warn you that the certificate is not trusted. You can configure the certificate later.

Access your instance via SSH

You can use any SSH client as normal to connect to the public IP of your instance. Use the administrative
user credentials (password or SSH key) configured during the launch. This user has sudo access on the
machine.

Inside the VM, you can check the status of the neo4j service:

39

https://neo4j.com/lp/enterprise-cloud/?utm_content=azure-marketplace
https://neo4j.com/docs/driver-manual/4.0/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/neo4j.neo4j-ee?tab=Overview

$ sudo systemctl status neo4j
neo4j.service - Neo4j Graph Database
 Loaded: loaded (/etc/systemd/system/neo4j.service; enabled; vendor preset: enabled)
 Active: active (running) since Wed 2018-03-14 11:19:56 UTC; 15min ago
 Main PID: 1290 (pre-neo4j.sh)
 Tasks: 46
 Memory: 325.7M
 CPU: 20.690s
 CGroup: /system.slice/neo4j.service
 ├─1290 /bin/bash /etc/neo4j/pre-neo4j.sh
 └─1430 /usr/bin/java -cp /var/lib/neo4j/plugins:/etc/neo4j:/usr/share/neo4j/lib/
:/var/lib/neo4j/plugins/ -server -XX:+UseG1GC

For details on internals of Azure VMs, including how to stop and start system services, configure Neo4j
from the VM, etc., consult Neo4j cloud VMs.

Deleting the instance

You can remove the infrastructure by deleting the entire resource group you created as part of the
deployment. If you deployed into an existing resource group, you have to individually delete the resources
that are part of the deployment.

3.4.2. Causal Clusters (VM-based)

Prerequisites

• You have a Neo4j Enterprise or a trial license for Azure.

• You are familiar with the Causal Cluster architecture.

• You know how to access cloud-hosted Neo4j from your application. See the Driver Manual.

Deploy Neo4j from the Azure Marketplace

Deploy Neo4j Enterprise Causal Cluster from the Azure Marketplace following the interactive prompts.
Create a new resource group to hold the artifacts of your deployment, as the admin account name is used
for SSH access to the machines in your cluster.

Once the deploy finishes, save the URL, username, and password.

At the end of the deployment process, Azure runs a validation. If the validation fails, it
might be because you have chosen VMs that are too large and exceed your Azure quota.
Choose smaller VMs or increase your VM quota.

Start using Neo4j Browser

Use your browser to access the cloud-based database URL, and log in with the initial username and
password provided. You may see an SSL warning screen because the out-of-the-box deployment uses an
unsigned SSL certificate.

To verify that the cluster has formed correctly, run the following Cypher statement:

40

https://neo4j.com/lp/enterprise-cloud/?utm_content=azure-marketplace
https://neo4j.com/docs/driver-manual/4.0/
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/neo4j.neo4j-ee?tab=Overview

CALL dbms.cluster.overview().

Access your instance via SSH

You can SSH into any of the machines using the configured hostname and admin credentials.

For details on internals of Azure VMs, including how to stop and start system services, configure Neo4j
from the VM, etc., consult Neo4j cloud VMs.

Your cluster default configuration

The following notes are provided on your default cluster configuration.

• Ports 7687 (bolt) and 7473 (HTTPS access) are the only ports exposed to the entire internet. Consider
narrowing the access to these ports to only your needed networks. External unencrypted HTTP access
is disabled by default.

• Ports 5000, 6000, and 7000 are enabled only for internal network access (10.0.0.8), between the cluster
nodes.

What’s next

• Visit Clustering for more information on how to configure your cluster.

• Add users and change passwords as necessary.

• Consider creating DNS entries with Google to be able to address your cluster with client applications
under a single hostname.

Terminating the deployment

You can remove the infrastructure by deleting the entire resource group you created as part of the
deployment.

3.4.3. Neo4j deployments automation on Azure

Automate Neo4j deployment when you want to integrate Neo4j into your CI/CD pipeline to be able to
create/destroy instances temporarily, or to spin up a sample instance.

Prerequisites

• You have installed the Azure command-line interface.

• You have installed jq tool for working with JSON responses. See the Download jq page.

• You have authenticated your az CLI to be able to interact with your resource groups and use the right
subscription by default. For more information on how to change the tool subscription, see the Azure
CLI documentation.

41

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://stedolan.github.io/jq/download/
https://docs.microsoft.com/en-us/cli/azure/manage-azure-subscriptions-azure-cli?view=azure-cli-latest#change-the-active-subscription
https://docs.microsoft.com/en-us/cli/azure/manage-azure-subscriptions-azure-cli?view=azure-cli-latest#change-the-active-subscription

Azure Resource Manager

Neo4j provides Azure Resource Manager (ARM) templates for Neo4j Enterprise standalone and Neo4j
Causal Cluster (highly-available clusters).

ARM templates are a recipe that tells Azure how to deploy a whole set of interrelated resources. By
deploying all of this as a stack you can keep all your resources together, and manage the entire instance by
managing this resource group.

Creating an ARM deployment job

Depending on what Neo4j edition you want to deploy, you create ARM Deployment job by running a shell
script.

Each script contains the following configurations:

• The URL of the Neo4j stack template that tells Azure what to deploy.

• Various parameters that control how much hardware you want to use.

• VM_SIZE – the Azure VM type you want to launch, which controls how much hardware you will be
using.

• DISK_SIZE and DISK_TYPE – controls whether Neo4j uses standard spinning magnetic platters (pd-
standard) or SSD disks (pd-ssd), and how many GB of storage you want to allocate.

• LOCATION - specifies where to deploy Neo4j.

• Authentication details - the administrative username and password for access to the VMs.

Deploying Neo4j Enterprise Causal Cluster

To deploy Neo4j Enterprise Causal Cluster, use the Causal Cluster template.

You indicate how many core servers and read replicas you want in your cluster by
configuring the CORE_NODES and READ_REPLICAS parameters.

Take note of the TEMPLATE_BASE parameter, which contains the Neo4j version you want to launch. This can
be adjusted to any version of Neo4j where there are published ARM templates. Create a simple JSON file
with your deployment configurations and pass it to ARM. Based on your inputs, ARM produces a set of
infrastructure as an output.

42

#!/bin/bash
export CORE_NODES=3
export READ_REPLICAS=0
export NEO4J_PASSWORD=s00pers3cR3T:
export ADMIN_AUTH_TYPE=password
export USERNAME=graph-hacker
export ADMIN_PASSWORD=s00pers3cR3T:
export VM_SIZE=Standard_B2ms
export DISK_TYPE=StandardSSD_LRS
export DISK_SIZE=256
export IP_ALLOCATION=Dynamic
export SEED=$(head -c 3 /dev/urandom | base64 | sed 's/[^a-zA-Z0-9]/X/g')
export RESOURCE_GROUP="neo4j-RG-${SEED}"
export CLUSTERNAME="neo4j-${SEED}"
export DEPLOYMENT=neo4j-bmdeploy
export LOCATION="East US"
The ARM template to deploy.
export TEMPLATE_BASE=http://neo4j-arm.s3.amazonaws.com/3.5.16/causal-cluster/
export TEMPLATE_URL=${TEMPLATE_BASE}mainTemplate.json
echo $(cat <<JSON
{
"ClusterName": { "value": "${CLUSTERNAME}" },
"CoreNodes": { "value": ${CORE_NODES} },
"ReadReplicas": { "value": ${READ_REPLICAS} },
"VmSize": { "value": "${VM_SIZE}" },
"DataDiskType": { "value": "${DISK_TYPE}" },
"DataDiskSizeGB": { "value": ${DISK_SIZE} },
"AdminUserName": { "value": "${USERNAME}" },
"AdminAuthType": { "value": "${ADMIN_AUTH_TYPE}" },
"AdminCredential": { "value": "${ADMIN_PASSWORD}" },
"PublicIPAllocationMethod": { "value": "${IP_ALLOCATION}" },
"Neo4jPassword": { "value": "${NEO4J_PASSWORD}" },
"_artifactsLocation": { "value": "${TEMPLATE_BASE}" }
}
JSON
) > "${RESOURCE_GROUP}.json"
echo "Creating resource group named ${RESOURCE_GROUP}"
if ! az group create --name "${RESOURCE_GROUP}" --location "${LOCATION}"; then
 echo STACK_NAME=$RESOURCE_GROUP
 echo "Failed to create necessary resource group ${RESOURCE_GROUP}"
 exit 1
fi
echo "Creating deployment"
az group deployment create \
 --template-uri "$TEMPLATE_URL" \
 --parameters @./${RESOURCE_GROUP}.json \
 --resource-group "${RESOURCE_GROUP}" \
 --name "${DEPLOYMENT}"
if [$? -ne 0] ; then
 echo STACK_NAME=$RESOURCE_GROUP
 echo "Stack deploy failed"
 exit 1
fi
JSON Path to server response where the IP address is.
ADDR_FIELD=".[].virtualMachine.network.publicIpAddresses[0].ipAddress"
IP_ADDRESS=$(az vm list-ip-addresses --resource-group "${RESOURCE_GROUP}" | jq -r "$ADDR_FIELD" | head -n
1)
echo STACK_NAME=$RESOURCE_GROUP
echo NEO4J_URI=bolt+routing://$IP_ADDRESS:7687

As a result, a new resource group is created with all the assets, and you get a URI of a bolt endpoint you
can use. Alternatively, go to https://<IP address>:7473/ to access Neo4j Browser for your new clustered
instance.

Deploying Neo4j Enterprise Standalone

To deploy Neo4j Enterprise Standalone, create a simple VM and configure its firewall/security rules. It will
not have high-availability failover capabilities, but it is a very fast way to get started.

43

https://<IP

Neo4j provides the VM through an Azure marketplace offer. To refer to the right VM image, you need to
know the publisher (that’s Neo4j), the “offer” (Neo4j version series), and SKU (the particular Neo4j
version). Because you are not using ARM for this deployment, the script polls and waits until the VM
service comes up, and then changes the Neo4j default password. At the top, you can choose a different
password for the neo4j user as for a system administrator. Make sure to customize the SUBSCRIPTION
variable to make this work.

#!/bin/bash
export LOCATION=eastus
export SUBSCRIPTION=My-Subscription-Name
export RG=neo4j-standalone-RG
export NAME=neo4j-standalone
export ADMIN_USERNAME=graph-hacker
export ADMIN_PASSWORD=ch00se:A@PASSw0rd
export NEO4J_PASSWORD=ch00se:A@PASSw0rd
export NETWORK_SECURITY_GROUP=neo4j-nsg
Options: https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
export VM_SIZE=Standard_D2_v3
Can change this to static if desired
export ADDRESS_ALLOCATION=dynamic
Configuration bits of what you're launching
Publisher:Offer:Sku:Version
export PUBLISHER=neo4j
export OFFER=neo4j-enterprise-3_5
export SKU=neo4j_3_5_5_apoc
export VERSION=latest
export IMAGE=$PUBLISHER:$OFFER:$SKU:$VERSION
echo "Creating resource group named $RG"
az group create --location $LOCATION \
 --name $RG \
 --subscription $SUBSCRIPTION
echo "Creating Network Security Group named $NETWORK_SECURITY_GROUP"
az network nsg create \
 --resource-group $RG \
 --location $LOCATION \
 --name $NETWORK_SECURITY_GROUP
echo "Assigning NSG rules to allow inbound traffic on Neo4j ports..."
prio=1000
for port in 7473 7474 7687; do
 az network nsg rule create \
 --resource-group $RG \
 --nsg-name "$NETWORK_SECURITY_GROUP" \
 --name neo4j-allow-$port \
 --protocol tcp \
 --priority $prio \
 --destination-port-range $port
 prio=$(($prio+1))
done
echo "Creating Neo4j VM named $NAME"
az vm create --name $NAME \
 --resource-group $RG \
 --image $IMAGE \
 --vnet-name $NAME-vnet \
 --subnet $NAME-subnet \
 --admin-username "$ADMIN_USERNAME" \
 --admin-password "$ADMIN_PASSWORD" \
 --public-ip-address-allocation $ADDRESS_ALLOCATION \
 --size $VM_SIZE
if [$? -ne 0] ; then
 echo "VM creation failed"
 exit 1
fi
echo "Updating NIC to have your NSG"
Uses default assigned NIC name
az network nic update \
 --resource-group "$RG" \
 --name "${NAME}VMNic" \
 --network-security-group "$NETWORK_SECURITY_GROUP"
Get the IP address of our instance
IP_ADDRESS=$(az vm list-ip-addresses -g "$RG" -n "$NAME" | jq -r
'.[0].virtualMachine.network.publicIpAddresses[0].ipAddress')
export NEO4J_URI=bolt://$IP_ADDRESS

44

Change password
echo "Checking if Neo4j is up and changing password...."
while true; do
 if curl -s -I http://$IP_ADDRESS:7474 | grep "200 OK"; then
 echo "Neo4j is up; changing default password" 2>&1
 curl -v -H "Content-Type: application/json" \
 -XPOST -d '{"password":"'$NEO4J_PASSWORD'"}' \
 -u neo4j:neo4j \
 http://$IP_ADDRESS:7474/user/neo4j/password 2>&1
 echo "Password reset, signaling success" 2>&1
 break
 fi
 echo "Waiting for neo4j to come up" 2>&1
 sleep 1
done
echo NEO4J_URI=$NEO4J_URI
exit 0

Cleaning up and removing your deployment

When you are done with your deployment, you can delete the entire resource group by using the following
script:

#!/bin/bash
if [-z $1] ; then
 echo "Usage: call me with deployment name"
 exit 1
fi
STACK_NAME=$1
if [-f "$STACK_NAME.json"] ; then
 rm -f "$STACK_NAME.json"
fi
az group delete -n "$STACK_NAME" --no-wait --yes
exit $?

[2] https://tools.ietf.org/html/rfc5737

45

https://tools.ietf.org/html/rfc5737

Chapter 4. Docker
This chapter describes the following:

• Introduction — Introduction to running Neo4j in a Docker container.

• Configuration — How to configure Neo4j to run in a Docker container.

• Clustering — How to set up Causal Clustering when using Docker.

• Docker specific operations - Descriptions of various operations that are specific to using Docker.

• Security - Information about using encryption with the Docker image.

• Docker maintenance operations How to maintain Neo4j when running in a Docker container.

• Docker specific configuration settings - A conversion table for the Neo4j configuration settings to
Docker format.

Docker does not run natively on macOS or Windows. For running Docker on macOS and
Windows, please consult the documentation provided by Docker.

4.1. Introduction
Docker can be downloaded for macOS, Windows, and Linux operating systems from
https://www.docker.com/get-started. DockerHub hosts an official Neo4j image that provides a standard,
ready-to-run package of Neo4j Community Edition and Enterprise Edition for a variety of versions.

4.1.1. Neo4j editions

Tags are available for both Community Edition and Enterprise Edition. Version-specific Enterprise Edition
tags have an -enterprise suffix, for example: neo4j:4.3.21-enterprise. Community Edition tags have no
suffix, for example neo4j:4.3.21. The latest Neo4j Enterprise Edition release is available as
neo4j:enterprise.

All supported tags can be found at https://hub.docker.com/_/neo4j/tags.

Neo4j Enterprise Edition license

To use Neo4j Enterprise Edition, you must accept the license agreement by setting the environment
variable NEO4J_ACCEPT_LICENSE_AGREEMENT=yes.

© Network Engine for Objects in Lund AB. 2022. All Rights Reserved. Use of this
Software without a proper commercial license with Neo4j, Inc. or its affiliates is
prohibited.

Email inquiries can be directed to: licensing@neo4j.com

More information is also available at: https://neo4j.com/licensing/

46

https://docs.docker.com/engine/installation
https://www.docker.com/get-started
https://hub.docker.com/_/neo4j
https://hub.docker.com/_/neo4j/tags
mailto:licensing@neo4j.com
https://neo4j.com/licensing/

4.1.2. Using the Neo4j Docker image

You can start a Neo4j container by using the following command. Note that this Neo4j container will not
persist data between restarts and will have the default username/password.

docker run \
 --restart always \
 --publish=7474:7474 --publish=7687:7687 \
 neo4j:4.3.21

You can try out your Neo4j container by opening http://localhost:7474/ (the Neo4j’s Browser interface) in a
web browser. By default, Neo4j requires authentication and prompts you to log in with a
username/password of neo4j/neo4j at the first connection. You are then prompted to set a new password.

The following sections provide more information about how to set an initial password, configure Neo4j to
persist data between restarts, and use the Neo4j Docker image.

4.1.3. Using NEO4J_AUTH to set an initial password

When using Neo4j in a Docker container, you can set the initial password for the container directly by
specifying the NEO4J_AUTH in your run directive:

docker run \
 --restart always \
 --publish=7474:7474 --publish=7687:7687 \
 --env NEO4J_AUTH=neo4j/your_password \
 neo4j:4.3.21

Alternatively, you can disable authentication by specifying NEO4J_AUTH to none:

--env NEO4J_AUTH=none

Please note that there is currently no way to change the initial username from neo4j.

4.1.4. Persisting data using Volumes

The --volume option maps a local folder to the container, where you can persist data between restarts.

docker run \
 --restart always \
 --publish=7474:7474 --publish=7687:7687 \
 --env NEO4J_AUTH=neo4j/your_password \
 --volume /path/to/your/data:/data \
 --volume= /path/to/your/logs:/logs \
 neo4j:4.3.21

The folders that you want to mount must exist before starting Docker, otherwise, Neo4j will fail to start
due to permissions errors.

47

http://localhost:7474/

If you have mounted a /data volume containing an existing database, setting NEO4J_AUTH
will have no effect. The Neo4j Docker service will start, but you will need a username
and password already associated with the database to log in.

4.1.5. Running Neo4j as a non-root user

For security reasons, Neo4j runs as the neo4j user inside the container. You can specify which user to run
as by invoking docker with the --user argument. For example, the following runs Neo4j as your current
user:

docker run \
 --publish=7474:7474 --publish=7687:7687 \
 --user="$(id -u):$(id -g)" \
 neo4j:4.3.21

4.1.6. More useful Docker Run options

This table lists some of the options available:

Table 10. Options for docker run

Option Description Example

--name Name your container to avoid
generic ID

docker run --name myneo4j neo4j

-p Specify which container port to
expose

docker run -p7687:7687 neo4j

-d Detach container to run in
background

docker run -d neo4j

-v Bind mount a volume docker run -v $HOME/neo4j/data:/data
neo4j

--env Set config as environment
variables for the Neo4j database

docker run --env
NEO4J_AUTH=neo4j/test

--restart Control whether Neo4j containers
start automatically when they
exit, or when Docker restarts.

docker run --restart always

--help Output full list of docker run
options

docker run --help

48

The --restart always option sets the Neo4j container (and Neo4j) to restart
automatically whenever the Docker daemon is restarted.

If you no longer want to have the container auto-start on machine boot, you can disable
this setting using the flag no:

docker update --restart=no <containerID>

For more information on Docker restart policies, see The official Docker documentation.

4.1.7. Offline installation of Neo4j Docker image

Docker provides the docker save command for downloading an image into a .tar package so that it can
be used offline, or transferred to a machine without internet access.

This is an example command to save the neo4j:4.3.21 image to a .tar file:

docker save -o neo4j-4.3.21.tar neo4j:4.3.21

To load a docker image from a .tar file created by docker save, use the docker load command. For
example:

docker load --input neo4j-4.3.21.tar

For complete instructions on using the docker save and docker load commands, refer to:

• The official docker save documentation.

• The official docker load documentation.

4.2. Configuration
The default configuration provided by this image is intended for learning about Neo4j, but must be
modified to make it suitable for production use. In particular, the default memory assignments to Neo4j are
very limited (NEO4J_dbms_memory_pagecache_size=512M and NEO4J_dbms_memory_heap_max__size=512M), to
allow multiple containers to be run on the same server. You can read more about configuring Neo4j in the
Docker specific configuration settings.

There are three ways to modify the configuration:

• Set environment variables.

• Mount a /conf volume.

• Build a new image.

Which one to choose depends on how much you need to customize the image.

49

https://docs.docker.com/config/containers/start-containers-automatically
https://docs.docker.com/engine/reference/commandline/save/
https://docs.docker.com/engine/reference/commandline/save/
https://docs.docker.com/engine/reference/commandline/save/
https://docs.docker.com/engine/reference/commandline/load/
https://docs.docker.com/engine/reference/commandline/load/
https://docs.docker.com/engine/reference/commandline/load/

4.2.1. Environment variables

Pass environment variables to the container when you run it.

docker run \
 --detach \
 --publish=7474:7474 --publish=7687:7687 \
 --volume=$HOME/neo4j/data:/data \
 --volume=$HOME/neo4j/logs:/logs \
 --env NEO4J_dbms_memory_pagecache_size=4G \
 neo4j:4.3.21

Any configuration value (see Configuration settings) can be passed using the following naming scheme:

• Prefix with NEO4J_.

• Underscores must be written twice: _ is written as __.

• Periods are converted to underscores: . is written as _.

As an example, dbms.tx_log.rotation.size could be set by specifying the following argument to Docker:

--env NEO4J_dbms_tx__log_rotation_size

Variables which can take multiple options, such as dbms_jvm_additional, must be defined just once, and
include a concatenation of the multiple values. For example:

--env NEO4J_dbms_jvm_additional="-Dcom.sun.management.jmxremote.authenticate=true
-Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.password.file=
$HOME/conf/jmx.password -Dcom.sun.management.jmxremote.access.file=$HOME/conf/jmx.access
-Dcom.sun.management.jmxremote.port=3637"

4.2.2. Mounting the /conf volume

To make arbitrary modifications to the Neo4j configuration, provide the container with a /conf volume.

docker run \
 --detach \
 --publish=7474:7474 --publish=7687:7687 \
 --volume=$HOME/neo4j/data:/data \
 --volume=$HOME/neo4j/logs:/logs \
 --volume=$HOME/neo4j/conf:/conf \
 neo4j:4.3.21

Any configuration files in the /conf volume will override files provided by the image. So if you want to
change one value in a file you must ensure that the rest of the file is complete and correct. Environment
variables passed to the container by Docker will still override the values in configuration files in /conf
volume.

If you use a configuration volume you must make sure to listen on all network interfaces.
This can be done by setting dbms.default_listen_address=0.0.0.0.

To dump an initial set of configuration files, run the image with the dump-config command.

50

docker run --rm \
 --volume=$HOME/neo4j/conf:/conf \
 neo4j:4.3.21 dump-config

4.2.3. Customize а Neo4j Docker image

To customize a Neo4j Docker image, you create a custom Dockerfile based on a Neo4j image (using the
FROM instruction), build that image, and run a container based on it.

It is recommended to specify an explicit version of the base Neo4j Docker image. For
available Neo4j Docker images, see https://hub.docker.com/_/neo4j.

Additionally, you can pass EXTENSION_SCRIPT as an environment variable, pointing to a location in a folder
you need to mount. You can use this script to perform an additional initialization or configuration of the
environment, for example, loading credentials or dynamically setting neo4j.conf settings, etc. The Neo4j
image entrypoint script will check for the presence of an EXTENSION_SCRIPT environment variable. If set, it
will first execute the entrypoint code, then the extension script specified, and finally, it will start Neo4j.

The following is an example of how to create a custom Dockerfile based on a Neo4j image, build the
image, and run a container based on it. It also shows how to use the EXTENSION_SCRIPT feature.

Create a custom Dockerfile based on a Neo4j image:

/example/Dockerfile

FROM neo4j:4.3.21-enterprise
COPY extension_script.sh /extension_script.sh
ENV EXTENSION_SCRIPT=/extension_script.sh

/example/extension_script.sh

echo "extension logic"

Build the custom image:

docker build --file /example/Dockerfile --tag neo4j:4.3.21-enterprise-custom-container-1 /example

Create and run a container based on the custom image:

docker run --interactive --tty --name custom-container-1 -p7687:7687 -p7474:7474 -p7473:7473 --env
NEO4J_AUTH=neo4j/password --env NEO4J_ACCEPT_LICENSE_AGREEMENT=yes neo4j:4.3.21-enterprise-custom-
container-1

The recommended best practices and methods for building efficient Docker images can be found at the
Docker documentation → Best practices for writing Dockerfiles.

4.3. Clustering

4.3.1. Deploy a cluster with Docker Compose

You can deploy a cluster using Docker Compose. Docker Compose is a management tool for Docker
containers. You use a YAML file to define the infrastructure of all your cluster members in one file. Then, by
running the single command docker-compose up, you create and start all the members without the need to
invoke each of them individually. For more information about Docker Compose, see the Docker Compose

51

https://hub.docker.com/_/neo4j
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/compose/

official documentation.

Prerequisites

• Verify that you have installed Docker Compose. For more information, see the Install Docker Compose
official documentation.

Procedure

1. Prepare your docker-compose.yml file using the following example. For more information, see the
Docker Compose official Service configuration reference.

52

https://docs.docker.com/compose/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/compose-file/#service-configuration-reference

Example 2. Example docker-compose.yml file

53

version: '3.8'

x-shared:
 &common
 NEO4J_AUTH: neo4j/foobar ①
 NEO4J_ACCEPT_LICENSE_AGREEMENT: "yes"
 NEO4J_causal__clustering_initial__discovery__members: core1:5000,core2:5000,core3:5000 ②
 NEO4J_dbms_memory_pagecache_size: "100M" ③
 NEO4J_dbms_memory_heap_initial__size: "100M" ④

x-shared-core:
 &common-core
 <<: *common
 NEO4J_dbms_mode: CORE
 NEO4J_causal__clustering_minimum__core__cluster__size__at__formation: 3

networks: ⑤
 lan:

services:

 core1:
 image: neo4j:4.3-enterprise
 networks:
 - lan ⑥
 ports: ⑦
 - "7474:7474"
 - "7687:7687"
 environment:
 <<: *common-core
 NEO4J_causal__clustering_discovery__advertised__address: core1:5000 ⑧
 NEO4J_causal__clustering_transaction__advertised__address: core1:6000 ⑨
 NEO4J_causal__clustering_raft__advertised__address: core1:7000 ⑩

 core2:
 image: neo4j:4.3-enterprise
 networks:
 - lan
 ports:
 - "7475:7474"
 - "7688:7687"
 environment:
 <<: *common-core
 NEO4J_causal__clustering_discovery__advertised__address: core2:5000
 NEO4J_causal__clustering_transaction__advertised__address: core2:6000
 NEO4J_causal__clustering_raft__advertised__address: core2:7000

 core3:
 image: neo4j:4.3-enterprise
 networks:
 - lan
 ports:
 - "7476:7474"
 - "7689:7687"
 environment:
 <<: *common-core
 NEO4J_causal__clustering_discovery__advertised__address: core3:5000
 NEO4J_causal__clustering_transaction__advertised__address: core3:6000
 NEO4J_causal__clustering_raft__advertised__address: core3:7000

 readreplica1:
 image: neo4j:4.3-enterprise
 networks:
 - lan
 ports:
 - "7477:7474"
 - "7690:7687"
 environment:
 <<: *common
 NEO4J_dbms_mode: READ_REPLICA
 NEO4J_causal__clustering_discovery__advertised__address: readreplica1:5000
 NEO4J_causal__clustering_transaction__advertised__address: readreplica1:6000
 NEO4J_causal__clustering_raft__advertised__address: readreplica1:7000

① Initial password for the container.

54

For more information on Neo4j authentication, see Using NEO4J_AUTH to set an initial password
and Running Neo4j as a non-root user.

② The values of initial_discovery_members match the advertised addresses and ports of the
NEO4J_causalClustering_discoveryAdvertisedAddress setting.

③ Setting that specifies how much memory Neo4j is allowed to use for the page cache.

④ Setting that specifies the initial JVM heap size.

For further information, Memory configuration.

⑤ Custom top-level network.

For more information on how and why to use custom networks, see Docker official
documentation.

⑥ Service-level network, which specifies the networks, from the list of the top-level networks (in
this case only lan), that the server will connect to.

⑦ The ports that will be accessible from outside the container - HTTP (7474) and Bolt (7687).

For more information on the Neo4j ports, see Ports.

⑧ Address (the public hostname/IP address of the machine) and port setting that specifies
where this instance advertises for discovery protocol messages from other members of the
cluster.

⑨ Address (the public hostname/IP address of the machine) and port setting that specifies
where this instance advertises for requests for transactions in the transaction-shipping
catchup protocol.

⑩ Address (the public hostname/IP address of the machine) and port setting that specifies
where this instance advertises for Raft messages within the Core cluster.

2. Deploy your cluster by running docker-compose up from your project folder.

3. Open core1 at http://core1-public-address:7474.

4. Authenticate with the default neo4j/your_password credentials.

5. Check the status of the cluster by running the following in Neo4j Browser:

:sysinfo

4.3.2. Deploy a cluster using environment variables

You can set up containers in a cluster to talk to each other using environment variables. Each container
must have a network route to each of the others, and the
NEO4J_causal__clustering_expected__core__cluster__size and
NEO4J_causal__clustering_initial__discovery__members environment variables must be set for Cores.
Read Replicas only need to define NEO4J_causal__clustering_initial__discovery__members.

55

https://docs.docker.com/compose/networking/#specify-custom-networks
https://docs.docker.com/compose/networking/#specify-custom-networks
http://core1-public-address:7474

Cluster environment variables Enterprise edition

The following environment variables are specific to clustering, and are available in the Neo4j Enterprise
Edition:

• NEO4J_dbms_mode: the database mode, defaults to SINGLE, set to CORE or READ_REPLICA for fault tolerant
clustering.

• NEO4J_causal__clustering_expected__core__cluster__size: the initial cluster size (number of Core
instances) at startup.

• NEO4J_causal__clustering_initial__discovery__members: the network addresses of an initial set of
Core cluster members.

• NEO4J_causal__clustering_discovery__advertised__address: hostname/IP address and port to
advertise for member discovery management communication.

• NEO4J_causal__clustering_transaction__advertised__address: hostname/IP address and port to
advertise for transaction handling.

• NEO4J_causal__clustering_raft__advertised__address: hostname/IP address and port to advertise
for cluster communication.

See Settings reference for more details of Neo4j clustering settings.

Set up a cluster on a single Docker host

Within a single Docker host, you can use the default ports for HTTP, HTTPS, and Bolt. For each container,
these ports are mapped to a different set of ports on the Docker host.

56

Example of a docker run command for deploying a cluster with 3 COREs

docker network create --driver=bridge cluster

docker run --name=core1 --detach --network=cluster \
 --publish=7474:7474 --publish=7473:7473 --publish=7687:7687 \
 --hostname=core1 \
 --env NEO4J_dbms_mode=CORE \
 --env NEO4J_causal__clustering_expected__core__cluster__size=3 \
 --env NEO4J_causal__clustering_initial__discovery__members=core1:5000,core2:5000,core3:5000 \
 --env NEO4J_ACCEPT_LICENSE_AGREEMENT=yes \
 --env NEO4J_dbms_connector_bolt_advertised__address=localhost:7687 \
 --env NEO4J_dbms_connector_http_advertised__address=localhost:7474 \
 neo4j:4.3.21-enterprise

docker run --name=core2 --detach --network=cluster \
 --publish=8474:7474 --publish=8473:7473 --publish=8687:7687 \
 --hostname=core2 \
 --env NEO4J_dbms_mode=CORE \
 --env NEO4J_causal__clustering_expected__core__cluster__size=3 \
 --env NEO4J_causal__clustering_initial__discovery__members=core1:5000,core2:5000,core3:5000 \
 --env NEO4J_ACCEPT_LICENSE_AGREEMENT=yes \
 --env NEO4J_dbms_connector_bolt_advertised__address=localhost:8687 \
 --env NEO4J_dbms_connector_http_advertised__address=localhost:8474 \
 neo4j:4.3.21-enterprise

docker run --name=core3 --detach --network=cluster \
 --publish=9474:7474 --publish=9473:7473 --publish=9687:7687 \
 --hostname=core3 \
 --env NEO4J_dbms_mode=CORE \
 --env NEO4J_causal__clustering_expected__core__cluster__size=3 \
 --env NEO4J_causal__clustering_initial__discovery__members=core1:5000,core2:5000,core3:5000 \
 --env NEO4J_ACCEPT_LICENSE_AGREEMENT=yes \
 --env NEO4J_dbms_connector_bolt_advertised__address=localhost:9687 \
 --env NEO4J_dbms_connector_http_advertised__address=localhost:9474 \
 neo4j:4.3.21-enterprise

Additional instances can be added to the cluster in an ad-hoc fashion.

Example of a docker run command for adding a Read Replica to the cluster

docker run --name=read-replica1 --detach --network=cluster \
 --publish=10474:7474 --publish=10473:7473 --publish=10687:7687 \
 --hostname=read-replica1 \
 --env NEO4J_dbms_mode=READ_REPLICA \
 --env NEO4J_causal__clustering_initial__discovery__members=core1:5000,core2:5000,core3:5000 \
 --env NEO4J_ACCEPT_LICENSE_AGREEMENT=yes \
 --env NEO4J_dbms_connector_bolt_advertised__address=localhost:10687 \
 --env NEO4J_dbms_connector_http_advertised__address=localhost:10474 \
 neo4j:4.3.21-enterprise

Set up a cluster on multiple Docker hosts

To get the cluster high-availability characteristics, however, it is more sensible to put the cluster nodes on
different physical machines.

When each container is running on its own physical machine, and the Docker network is not used, you
have to define the advertised addresses to enable the communication between the physical machines.
Each container must also bind to the host machine’s network. For more information about container
networking, see the Docker official documentation.

57

https://docs.docker.com/config/containers/container-networking/

Example of a docker run command for invoking a cluster member

docker run --name=neo4j-core --detach \
 --network=host \
 --publish=7474:7474 --publish=7687:7687 \
 --publish=5000:5000 --publish=6000:6000 --publish=7000:7000 \
 --hostname=public-address \
 --env NEO4J_dbms_mode=CORE \
 --env NEO4J_causal__clustering_expected__core__cluster__size=3 \
 --env NEO4J_causal__clustering_initial__discovery__members=core1-public-address:5000,core2-
public-address:5000,core3-public-address:5000 \
 --env NEO4J_causal__clustering_discovery__advertised__address=public-address:5000 \
 --env NEO4J_causal__clustering_transaction__advertised__address=public-address:6000 \
 --env NEO4J_causal__clustering_raft__advertised__address=public-address:7000 \
 --env NEO4J_dbms_connectors_default__advertised__address=public-address \
 --env NEO4J_ACCEPT_LICENSE_AGREEMENT=yes \
 --env NEO4J_dbms_connector_bolt_advertised__address=public-address:7687 \
 --env NEO4J_dbms_connector_http_advertised__address=public-address:7474 \
 neo4j:4.3.21-enterprise

Where public-address is the public hostname or ip-address of the machine.

Please note that if you are starting a Read Replica as above, you must publish the
discovery port. For example, --publish=5000:5000.

In versions prior to Neo4j 4.0, this was only necessary with Core servers.

4.4. Docker specific operations

4.4.1. Use Neo4j Admin

The Neo4j Admin tool can be run locally within a container using the following command:

docker exec --interactive --tty <containerID/name> neo4j-admin <command>

To determine the container ID or name, run docker ps to list the currently running Docker containers.

For more information about the neo4j-admin commands, see Neo4j Admin.

4.4.2. Use Neo4j Import

The Neo4j Import tool can be run locally within a container using the following command:

docker exec --interactive --tty <containerID/name> neo4j-admin import <options>

For more information about the neo4j-admin import syntax and options, see Syntax and Options.

Prerequisites

• Verify that you have created the folders that you want to mount as volumes to the Neo4j docker
container.

• Verify that the CSV files that you want to load into Neo4j are formatted as per CSV header format.

58

• Verify that you have added the CSV files to the folder that will be mounted to /import in your container.

Import CSV files into the Neo4j Docker container using the Neo4j import tool

This is an example of how to start a container with mounted volumes /data and /import, to ensure the
persistence of the data in them, and load the CSV files using the neo4j-admin import command. You can
add the flag --rm to automatically remove the container’s file system when the container exits.

docker run --interactive --tty --rm \
 --publish=7474:7474 --publish=7687:7687 \
 --volume=$HOME/neo4j/data:/data \
 --volume=$HOME/neo4j/import:/import \
 --user="$(id -u):$(id -g)" \
 neo4j:4.3.21 \
neo4j-admin import --nodes=Movies=/import/movies_header.csv,/import/movies.csv \
--nodes=Actors=/import/actors_header.csv,/import/actors.csv \
--relationships=ACTED_IN=/import/roles_header.csv,/import/roles.csv

4.4.3. Use Neo4j Admin for memory recommendations

The neo4j-admin memrec command with the argument --docker outputs environmental variables that can
be passed to a Neo4j docker container. The recommended use is to save the generated environment
variables to a file and pass the file to a docker container using the --env-file docker option. The following
example shows how neo4j-admin memrec --docker provides a memory recommendation in a docker-
friendly format.

Example 3. Invoke neo4j-admin memrec --docker

$neo4j-home> bin/neo4j-admin memrec --memory=16g --docker

...

...

...
Based on the above, the following memory settings are recommended:
NEO4J_dbms_memory_heap_initial__size=5g
NEO4J_dbms_memory_heap_max__size=5g
NEO4J_dbms_memory_pagecache_size=7g

4.4.4. Use Cypher Shell

The Neo4j Cypher Shell tool can be run locally within a container using the following command:

docker exec --interactive --tty <containerID/name> cypher-shell <options>

For more information about the cypher-shell syntax and options, see Syntax.

Retrieve data from a database in a Neo4j Docker container

The following is an example of how to use the cypher-shell command to retrieve data from the neo4j
database.

1. Run a new container, mounting the same volume /data as in the import example.

59

docker run --interactive --tty --name <containerID/name> \
 --publish=7474:7474 --publish=7687:7687 \
 --volume=$HOME/neo4j/data:/data \
 --user="$(id -u):$(id -g)" \
 neo4j:4.3.21

2. Use the container ID or name to get into the container, and then, run the cypher-shell command and
authenticate.

docker exec --interactive --tty <containerID/name> cypher-shell -u neo4j -p <password>

3. Retrieve some data.

neo4j@neo4j> match (n:Actors)-[r]->(m:Movies) return n.name AS Actors, m.title AS Movies, m.year AS
MovieYear;
+---+
| Actors | Movies | MovieYear |
+---+
"Keanu Reeves"	"The Matrix Revolutions"	2003
"Keanu Reeves"	"The Matrix Reloaded"	2003
"Keanu Reeves"	"The Matrix"	1999
"Laurence Fishburne"	"The Matrix Revolutions"	2003
"Laurence Fishburne"	"The Matrix Reloaded"	2003
"Laurence Fishburne"	"The Matrix"	1999
"Carrie-Anne Moss"	"The Matrix Revolutions"	2003
"Carrie-Anne Moss"	"The Matrix Reloaded"	2003
"Carrie-Anne Moss"	"The Matrix"	1999
+---+

9 rows available after 61 ms, consumed after another 7 ms

Pass a Cypher script file to a Neo4j Docker container

There are different ways to pass a Cypher script file to a Neo4j Docker container, all of them using the
Cypher Shell tool.

• Using the --file option of the cypher-shell command followed by the file name. After the statements
are executed cypher-shell shuts down.

• Using the :source command followed by the file name when in the Cypher interactive shell.

• Using the commands cat or curl with cypher-shell to pipe the contents of your script file into your
container.

To use the --file option or the :source command of Cypher Shell, the Cypher script file
must be readable from inside the container, otherwise cypher-shell will not be able to
open the file. The folder containing the examples must be mounted to the container
when the container is started.

The following are syntax examples of how to use these commands:

example.cypher script

match (n:Actors)-[r]->(m:Movies) return n.name AS Actors, m.title AS Movies, m.year AS MovieYear;

60

Invoke cypher-shell with the --file option

Put the example.cypher file in the local folder ./examples.

Start a Neo4j container and mount the ./examples folder inside the container:

docker run --rm \
--volume /path/to/local/examples:/examples \
--publish=7474:7474 \
--publish=7687:7687 \
--env NEO4J_AUTH=neo4j/<password> \
neo4j:4.3.21

Run the Cypher Shell tool with the --file option passing the example.cypher file:

docker exec --interactive --tty <containerID/name> cypher-shell -u neo4j -p <password> --file
/examples/example.cypher

Use the :source command to run a Cypher script file

Put the example.cypher file in the local folder ./examples.

Start a Neo4j container and mount the ./examples folder inside the container:

docker run --rm \
--volume /path/to/local/examples:/examples \
--publish=7474:7474 \
--publish=7687:7687 \
--env NEO4J_AUTH=neo4j/<password> \
neo4j:4.3.21

Use the container ID or name to get into the container, and then, run the cypher-shell command and
authenticate.

docker exec --interactive --tty <containerID/name> cypher-shell -u neo4j -p <password>

Invoke the :source command followed by the file name.

neo4j@neo4j> :source example.cypher

Invoke curl with Cypher Shell

curl http://mysite.com/config/example.cypher | sudo docker exec --interactive <containerID/name> cypher-
shell -u neo4j -p <password>

Invoke cat with Cypher Shell

cat example.cypher | sudo docker exec --interactive <containerID/name> cypher-shell -u neo4j -p
<password>

Example output

Actors, Movies, MovieYear
"Keanu Reeves", "The Matrix Revolutions", 2003
"Keanu Reeves", "The Matrix Reloaded", 2003
"Keanu Reeves", "The Matrix", 1999
"Laurence Fishburne", "The Matrix Revolutions", 2003
"Laurence Fishburne", "The Matrix Reloaded", 2003
"Laurence Fishburne", "The Matrix", 1999
"Carrie-Anne Moss", "The Matrix Revolutions", 2003
"Carrie-Anne Moss", "The Matrix Reloaded", 2003
"Carrie-Anne Moss", "The Matrix", 1999

These commands take the contents of the script file and pass it into the Docker container using Cypher
Shell. Then, they run a Cypher example, LOAD CSV dataset, which might be hosted somewhere on a server

61

(with curl), create indexes, constraints, or do other administrative operations.

4.4.5. Install user-defined procedures

To install user-defined procedures, mount the /plugins volume containing the jars.

docker run --publish=7474:7474 --publish=7687:7687 --volume=$HOME/neo4j/plugins:/plugins neo4j:4.3.21

4.4.6. Configure Neo4j Labs plugins

The Neo4j Docker image includes a startup script which can automatically download and configure certain
Neo4j plugins at runtime.

This feature is intended to facilitate using Neo4j Labs plugins in development
environments, but it is not recommended for use in production environments.

To use plugins in production with Neo4j Docker containers, see Install user-defined
procedures.

The NEO4JLABS_PLUGINS environment variable can be used to specify the plugins to install using this
method. This should be set to a JSON-formatted list of supported plugins.

For example, to install the APOC plugin (apoc), you can use the Docker argument;

--env NEO4JLABS_PLUGINS='["apoc"]'

and run the following command:

docker run -it --rm \
 --publish=7474:7474 --publish=7687:7687 \
 --user="$(id -u):$(id -g)" \
 -e NEO4J_AUTH=none \
 --env NEO4JLABS_PLUGINS='["apoc"]' \
 neo4j:4.3.21

For example, to install the APOC plugin (apoc) and the Neo Semantics plugin (n10s), you can use the
following Docker argument:

--env NEO4JLABS_PLUGINS='["apoc", "n10s"]'

Table 11. Supported Neo4j Labs plugins

Name Key Further information

APOC apoc https://neo4j.com/labs/apoc/

Bloom Enterprise edition [3] bloom Neo4j Bloom

62

https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-procedures
https://neo4j.com/labs/apoc/
https://neo4j.com/docs/pdf/bloom-user-guide-.pdf

Name Key Further information

Graph Data Science graph-data-science Graph Data Science

Neo Semantics n10s https://neo4j.com/labs/nsmtx-rdf/

Streams streams Neo4j Streaming Data
Integrations User Guide

Graph-algorithms Deprecated graph-algorithms Graph Algorithms

Running Bloom in a Docker container requires Neo4j Docker image 4.2.3-enterprise or
later.

4.5. Security

4.5.1. SSL Encryption

Neo4j on Docker supports Neo4j’s native SSL Framework for setting up secure Bolt and HTTPS
communications. To configure these settings in Docker, you either set them in the neo4j.conf file, or pass
them to Docker as Docker environment variables.

Set up your certificate folders

1. Verify that you have SSL public certificate(s) and private key(s).

The certificates must be issued by a trusted certificate authority (CA), such as
https://www.openssl.org/ or https://letsencrypt.org/.

The default file names are private.key and public.crt.

2. Create a local folder to store your certificates.

For example, $HOME/neo4j/certificates. This folder will be later mounted to /ssl of your container.

3. In you local folder (e.g. $HOME/neo4j/certificates), create a folder for the SSL policy of each of your
communication channels that you want to secure. There, you will store your certificates and private
keys.

It is recommended to use different certificates for the different communication channels (bolt and
https).

In the following examples, <scope> substitutes the name of the communication channel.

$ mkdir $HOME/neo4j/certificates/<scope>

63

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-.pdf
https://neo4j.com/labs/nsmtx-rdf/
https://neo4j.com/docs/pdf/neo4j-kafka-streams-.pdf
https://neo4j.com/docs/pdf/neo4j-kafka-streams-.pdf
https://neo4j.com/docs/pdf/neo4j-graph-algorithms-.pdf
https://www.openssl.org/
https://letsencrypt.org/

4. In each of your <scope> folders, create a /trusted and a /revoked folder for the trusted and revoked
certificates.

$ mkdir $HOME/neo4j/certificates/<scope>/trusted
$ mkdir $HOME/neo4j/certificates/<scope>/revoked

5. Finally, you add your certificates to the respective <scope> folder.

The <scope> folder(s) should now show the following listings:

$ ls $HOME/neo4j/certificates/<scope>
-r-------- ... private.key
-rw-r--r-- ... public.crt
drwxr-xr-x ... revoked
drwxr-xr-x ... trusted

Configure SSL via neo4j.conf

In the neo4j.conf file, configure the following settings for the policies that you want to use:

Https SSL configuration
dbms.connector.https.enabled=true
dbms.ssl.policy.https.enabled=true
dbms.ssl.policy.https.base_directory=certificates/https
dbms.ssl.policy.https.private_key=private.key
dbms.ssl.policy.https.public_certificate=public.crt

Bolt SSL configuration
dbms.ssl.policy.bolt.enabled=true
dbms.ssl.policy.bolt.base_directory=certificates/bolt
dbms.ssl.policy.bolt.private_key=private.key
dbms.ssl.policy.bolt.public_certificate=public.crt

For more information on configuring SSL policies, see Configuration.

For more information on configuring connectors, see Configuration options.

64

Example 4. A docker run command that launches a container with SSL policy enabled via neo4j.conf.

docker run \
 --publish=7473:7473 \ ①
 --publish=7687:7687 \
 --user="$(id -u):$(id -g)" \ ②
 --volume=$HOME/neo4j/certificates:/ssl \ ③
 --volume=$HOME/neo4j/conf:/conf \ ④
 neo4j:4.3.21

① The port to access the HTTPS endpoint.

② Docker will be started as the current user (assuming the current user has read-access to the
certificates).

③ The volume that contains the SSL policies that you want to set up Neo4j to use.

④ The volume that contains the neo4j.conf file. In this example, the neo4j.conf is in the
$HOME/neo4j/conf folder of the host.

Configure SSL via Docker environment variables

As an alternative to configuring SSL via the neo4j.conf file, you can set an SSL policy by passing its
configuration values to the Neo4j Docker container as environment variables. For more information on how
to convert the Neo4j settings to the form accepted by Docker, see Environment variables:

Example 5. A docker run command that launches a container with SSL policy enabled via Docker
environment variables.

docker run \
 --publish=7473:7473 \ ①
 --publish=7687:7687 \
 --user="$(id -u):$(id -g)" \ ②
 --volume=$HOME/neo4j/certificates:/ssl \ ③
 --env NEO4J_dbms_connector_https_enabled=true \ ④
 --env NEO4J_dbms_ssl_policy_https_enabled=true \ ⑤
 --env NEO4J_dbms_ssl_policy_https_base__directory=/ssl/https \ ⑥
 neo4j:4.3.21

① The port to access the HTTPS endpoint.

② Docker will be started as the current user (assuming the current user has read-access to the
certificates).

③ The volume that contains the SSL policies that you want to set up Neo4j to use.

④ The HTTPS connector is disabled by default. Therefore, you must set
dbms.connector.https.enabled to true, to be able Neo4j to listen for incoming connections on the
HTTPS port. However, for the Bolt SSL policy, you do not have to pass this parameter as the Bolt
connector is enabled by default.

⑤ The SSL policy that you want to set up for Neo4j.

⑥ The base directory under which SSL certificates and keys are searched for. Note that the value is
the docker volume folder /ssl/https and not the /certificate/https folder of the host.

65

4.6. Docker maintenance operations

4.6.1. Dump and load a Neo4j database (offline)

The neo4j-admin dump and neo4j-admin load commands can be run locally to dump and load an offline
database.

The following are examples of how to dump and load the default neo4j database. Because these
commands are run on a stopped database, you have to launch two containers for each operation (dump
and load), with the --rm flag.

Example 6. Invoke neo4j-admin dump to dump your database.

docker run --interactive --tty --rm \
 --publish=7474:7474 --publish=7687:7687 \
 --volume=$HOME/neo4j/data:/data \ ①
 --volume=$HOME/neo4j/backups:/backups \ ②
 --user="$(id -u):$(id -g)" \
 neo4j:4.3.21 \
neo4j-admin dump --database=neo4j --to=/backups/<dump-name>.dump

① The volume that contains the database that you want to dump.

② The volume that will be used for the dumped database.

Example 7. Invoke neo4j-admin load to load your data into the new database.

docker run --interactive --tty --rm \
 --publish=7474:7474 --publish=7687:7687 \
 --volume=$HOME/neo4j/data:/data \ ①
 --volume=$HOME/neo4j/backups:/backups \ ②
 --user="$(id -u):$(id -g)" \
 neo4j:4.3.21 \
neo4j-admin load --from=/backups/<dump-name>.dump --database=neo4j --force

① The volume that contains the database, into which you want to load the dumped data.

② The volume that stores the database dump.

Finally, you launch a container with the volume that contains the newly loaded database, and start using it.

For more information on the neo4j-admin dump and load syntax and options, see neo4j-
admin dump and neo4j-admin load.
For more information on managing volumes, see the official Docker documentation.

4.6.2. Back up and restore a Neo4j database (online) Enterprise edition

The Neo4j backup and restore commands can be run locally to backup and restore a live database.

66

https://docs.docker.com/storage/volumes/

Back up a database Enterprise edition

To back up a database, you must first mount the host backup folder onto the container. Because Docker
does not allow new mounts to be added to a running container, you have to do this when starting the
container.

Example 8. A docker run command that mounts the host backup folder to a Neo4j container.

docker run --name <container name> \
 --detach \
 --publish=7474:7474 --publish=7687:7687 \
 --volume=$HOME/neo4j-enterprise/data:/data \ ①
 --volume=$HOME/neo4j-enterprise/backups:/backups \ ②
 --user="$(id -u):$(id -g)" \
 --env NEO4J_ACCEPT_LICENSE_AGREEMENT=yes \ ③
 --env NEO4J_dbms_backup_enabled=true \ ④
 neo4j:4.3.21-enterprise

① The volume that contains the database that you want to back up.

② The volume that will be used for the database backup.

③ The environment variable that states that you have accepted the Neo4j Enterprise Edition license
agreement.

④ The environment variable that enables online backups.

Example 9. Invoke neo4j-admin backup to back up an online database.

docker exec --interactive --tty <container name> neo4j-admin backup --backup-dir=/backups --database
=<database name>

For more information on the neo4j-admin backup syntax and options, see Back up an
online database.

Restore a database Enterprise edition

The following are examples of how to restore a database backup on a stopped database in a running
Neo4j instance.

67

Example 10. A docker run command that creates a container to be used for restoring a database backup.

docker run --name <container name> \
 --detach \
 --publish=7474:7474 --publish=7687:7687 \
 --volume=$HOME/neo4j-enterprise/data:/data \ ①
 --volume=$HOME/neo4j-enterprise/backups:/backups \ ②
 --user="$(id -u):$(id -g)" \
 --env NEO4J_ACCEPT_LICENSE_AGREEMENT=yes \ ③
 neo4j:4.3.21-enterprise

① The volume that contains all your databases.

② The volume that contains the database backup.

③ The environment variable that states that you have accepted the Neo4j Enterprise Edition license
agreement.

Example 11. Invoke cypher-shell to stop the database that you want to use for the backup restore.

docker exec -it <containerID/name> cypher-shell -u neo4j -p <my-password> -d system "stop database
<database name>;"

Example 12. Invoke neo4j-admin restore to restore a database backup.

docker exec --interactive --tty <containerID/name> neo4j-admin restore --from=/backups/<database
backup name> --database=<database name>

For more information on the neo4j-admin restore syntax and options, see Restore a
database backup.

Finally, you can use the Cypher Shell tool to verify that your data has been restored.

4.6.3. Upgrade Neo4j on Docker

The following is an example of a docker run command that launches a container and upgrades a Neo4j
database stored in a Docker volume or a host folder.

docker run \
 --publish=7474:7474 --publish=7687:7687 \
 --volume=$HOME/neo4j/data:/data \ ①
 --env dbms_allow__upgrade=true \ ②
 neo4j:4.3.21 \③

① The volume that contains the database that you want to upgrade.

② The environment variable that enables the upgrade.

③ The new version of the Neo4j Docker image to which you want to upgrade your database.

68

The upgrade to a later patch release of Neo4j 4.3 is straightforward — stop the container
and then restart it using the later Neo4j docker image. For more details on upgrading,
see Upgrade and Migration Guide → Upgrade to a newer PATCH release.

4.6.4. Monitor Neo4j

Neo4j logging output is written to files in the /logs directory. This directory is mounted as a /logs volume.

For more information about configuring Neo4j, see Configuration.
For more information about the Neo4j log files, see Logging.

Since a docker instance is run as neo4j console, you would not normally expect to see neo4j.log in the
/logs directory. However, you can still get it by running:

docker logs <containerID/name>

It is also possible to configure Neo4j to write the logs to a file by setting the configuration
NEO4J_dbms_logs_user_stdout__enabled=true as an environment variable.

4.7. Docker specific configuration settings
The Neo4j configuration settings can be passed to a Docker container using the following naming scheme:

• Prefix with NEO4J_.

• Underscores convert to double underscores: _ is written as __.

• Periods convert to underscores: . is written as _.

For example, browser.post_connect_cmd converts to NEO4J_browser_post__connect__cmd, or in other
words, s/\./_/g and s/_/__/g.

The following table is a complete reference of the Neo4j configuration settings converted to the Docker-
supported format.

For more information on the configuration descriptions, valid values, and default values, see Configuration
settings.

Neo4j format Docker format

browser.allow_outgoing_connections NEO4J_browser_allow__outgoing__connections

browser.credential_timeout NEO4J_browser_credential__timeout

browser.post_connect_cmd NEO4J_browser_post__connect__cmd

browser.remote_content_hostname_whitelist NEO4J_browser_remote__content__hostname__whitelist

browser.retain_connection_credentials NEO4J_browser_retain__connection__credentials

causal_clustering.catch_up_client_inactivity_timeout NEO4J_causal__clustering_catch__up__client__inactivity
__timeout

causal_clustering.catchup_batch_size NEO4J_causal__clustering_catchup__batch__size

69

https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#upgrade_patch
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#upgrade_patch
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#upgrade_patch

Neo4j format Docker format

causal_clustering.cluster_allow_reads_on_followers NEO4J_causal__clustering_cluster__allow__reads__on__fo
llowers

causal_clustering.cluster_binding_timeout NEO4J_causal__clustering_cluster__binding__timeout

causal_clustering.cluster_topology_refresh NEO4J_causal__clustering_cluster__topology__refresh

causal_clustering.command_applier_parallelism NEO4J_causal__clustering_command__applier__parallelism

causal_clustering.connect-randomly-to-server-group NEO4J_causal__clustering_connect-randomly-to-server-
group

causal_clustering.discovery_advertised_address NEO4J_causal__clustering_discovery__advertised__addres
s

causal_clustering.discovery_listen_address NEO4J_causal__clustering_discovery__listen__address

causal_clustering.discovery_type NEO4J_causal__clustering_discovery__type

causal_clustering.election_failure_detection_window NEO4J_causal__clustering_election__failure__detection_
_window

causal_clustering.enable_pre_voting NEO4J_causal__clustering_enable__pre__voting

causal_clustering.global_session_tracker_state_size NEO4J_causal__clustering_global__session__tracker__sta
te__size

causal_clustering.handshake_timeout NEO4J_causal__clustering_handshake__timeout

causal_clustering.in_flight_cache.max_entries NEO4J_causal__clustering_in__flight__cache_max__entrie
s

causal_clustering.in_flight_cache.type NEO4J_causal__clustering_in_flight_cache_type

causal_clustering.initial_discovery_members NEO4J_causal__clustering_initial__discovery__members

causal_clustering.join_catch_up_max_lag NEO4J_causal__clustering_join__catch__up__max__lag

causal_clustering.join_catch_up_timeout NEO4J_causal__clustering_join__catch__up__timeout

causal_clustering.kubernetes.address NEO4J_causal__clustering_kubernetes_address

causal_clustering.kubernetes.ca_crt NEO4J_causal__clustering_kubernetes_ca__crt

causal_clustering.kubernetes.label_selector NEO4J_causal__clustering_kubernetes_label__selector

causal_clustering.kubernetes.namespace NEO4J_causal__clustering_kubernetes_namespace

causal_clustering.kubernetes.service_port_name NEO4J_causal__clustering_kubernetes_service_port_name

causal_clustering.kubernetes.token NEO4J_causal__clustering_kubernetes_token

causal_clustering.last_applied_state_size NEO4J_causal__clustering_last__applied__state__size

causal_clustering.leader_election_timeout NEO4J_causal__clustering_leader__election__timeout

causal_clustering.leader_failure_detection_window NEO4J_causal__clustering_leader__failure__detection__w
indow

causal_clustering.leadership_balancing NEO4J_causal__clustering_leadership__balancing

causal_clustering.load_balancing.plugin NEO4J_causal__clustering_load__balancing_plugin

causal_clustering.load_balancing.shuffle NEO4J_causal__clustering_load__balancing_shuffle

causal_clustering.log_shipping_max_lag NEO4J_causal__clustering_log__shipping__max__lag

causal_clustering.log_shipping_retry_timeout NEO4J_causal__clustering_log__shipping__retry__timeout

causal_clustering.middleware.logging.level NEO4J_causal__clustering_middleware_logging_level

causal_clustering.minimum_core_cluster_size_at_formati
on

NEO4J_causal__clustering_minimum__core__cluster__size_
_at__formation

70

Neo4j format Docker format

causal_clustering.minimum_core_cluster_size_at_runtime NEO4J_causal__clustering_minimum__core__cluster__size_
_at__runtime

causal_clustering.multi_dc_license NEO4J_causal__clustering_multi__dc__license

causal_clustering.protocol_implementations.catchup NEO4J_causal__clustering_protocol__implementations_cat
chup

causal_clustering.protocol_implementations.compression NEO4J_causal__clustering_protocol__implementations_com
pression

causal_clustering.protocol_implementations.raft NEO4J_causal__clustering_protocol__implementations_raf
t

causal_clustering.pull_interval NEO4J_causal__clustering_pull__interval

causal_clustering.raft_advertised_address NEO4J_causal__clustering_raft__advertised__address

causal_clustering.raft_handler_parallelism NEO4J_causal__clustering_raft__handler__parallelism

causal_clustering.raft_in_queue_max_bytes NEO4J_causal__clustering_raft__in__queue__max__bytes

causal_clustering.raft_listen_address NEO4J_causal__clustering_raft__listen__address

causal_clustering.raft_log_implementation NEO4J_causal__clustering_raft__log__implementation

causal_clustering.raft_log_prune_strategy NEO4J_causal__clustering_raft__log__prune__strategy

causal_clustering.raft_log_pruning_frequency NEO4J_causal__clustering_raft__log__pruning__frequency

causal_clustering.raft_log_reader_pool_size NEO4J_causal__clustering_raft__log__reader__pool__size

causal_clustering.raft_log_rotation_size NEO4J_causal__clustering_raft__log__rotation__size

causal_clustering.raft_membership_state_size NEO4J_causal__clustering_raft__membership__state__size

causal_clustering.raft_term_state_size NEO4J_causal__clustering_raft__term__state__size

causal_clustering.raft_vote_state_size NEO4J_causal__clustering_raft__vote__state__size

causal_clustering.refuse_to_be_leader NEO4J_causal__clustering_refuse__to__be__leader

causal_clustering.replicated_lease_state_size NEO4J_causal__clustering_replicated__lease__state__siz
e

causal_clustering.replication_leader_await_timeout NEO4J_causal__clustering_replication__leader__await__t
imeout

causal_clustering.replication_retry_timeout_base NEO4J_causal__clustering_replication__retry__timeout__
base

causal_clustering.replication_retry_timeout_limit NEO4J_causal__clustering_replication__retry__timeout__
limit

causal_clustering.server_groups NEO4J_causal__clustering_server__groups

causal_clustering.state_machine_apply_max_batch_size NEO4J_causal__clustering_state__machine__apply__max__b
atch__size

causal_clustering.state_machine_flush_window_size NEO4J_causal__clustering_state__machine__flush__window
__size

causal_clustering.status_throughput_window NEO4J_causal__clustering_status__throughput__window

causal_clustering.store_copy_chunk_size NEO4J_causal__clustering_store__copy__chunk__size

causal_clustering.store_copy_max_retry_time_per_reques
t

NEO4J_causal__clustering_store__copy__max__retry__time
__per__request

causal_clustering.transaction_advertised_address NEO4J_causal__clustering_transaction__advertised__addr
ess

71

Neo4j format Docker format

causal_clustering.transaction_listen_address NEO4J_causal__clustering_transaction__listen__address

causal_clustering.unknown_address_logging_throttle NEO4J_causal__clustering_unknown__address__logging__th
rottle

causal_clustering.upstream_selection_strategy NEO4J_causal__clustering_upstream__selection__strategy

causal_clustering.user_defined_upstream_strategy NEO4J_causal__clustering_user__defined__upstream__stra
tegy

cypher.default_language_version NEO4J_cypher_default__language__version

cypher.forbid_exhaustive_shortestpath NEO4J_cypher_forbid__exhaustive__shortestpath

cypher.forbid_shortestpath_common_nodes NEO4J_cypher_forbid__shortestpath__common__nodes

cypher.hints_error NEO4J_cypher_hints__error

cypher.lenient_create_relationship NEO4J_cypher_lenient__create__relationship

cypher.min_replan_interval NEO4J_cypher_min__replan__interval

cypher.planner NEO4J_cypher_planner

cypher.statistics_divergence_threshold NEO4J_cypher_statistics__divergence__threshold

db.temporal.timezone NEO4J_db_temporal_timezone

dbms.allow_single_automatic_upgrade NEO4J_dbms_allow__single__automatic__upgrade

dbms.allow_upgrade NEO4J_dbms_allow__upgrade

dbms.backup.enabled NEO4J_dbms_backup_enabled

dbms.backup.listen_address NEO4J_dbms_backup_listen__address

dbms.checkpoint NEO4J_dbms_checkpoint

dbms.checkpoint.interval.time NEO4J_dbms_checkpoint_interval_time

dbms.checkpoint.interval.tx NEO4J_dbms_checkpoint_interval_tx

dbms.checkpoint.iops.limit NEO4J_dbms_checkpoint_iops_limit

dbms.config.strict_validation NEO4J_dbms_config_strict__validation

dbms.connector.bolt.advertised_address NEO4J_dbms_connector_bolt_advertised__address

dbms.connector.bolt.enabled NEO4J_dbms_connector_bolt_enabled

dbms.connector.bolt.listen_address NEO4J_dbms_connector_bolt_listen__address

dbms.connector.bolt.thread_pool_keep_alive NEO4J_dbms_connector_bolt_thread__pool__keep__alive

dbms.connector.bolt.thread_pool_max_size NEO4J_dbms_connector_bolt_thread__pool__max__size

dbms.connector.bolt.thread_pool_min_size NEO4J_dbms_connector_bolt_thread__pool__min__size

dbms.connector.bolt.tls_level NEO4J_dbms_connector_bolt_tls__level

dbms.connector.bolt.unsupported_thread_pool_shutdown_w
ait_time

NEO4J_dbms_connector_bolt_unsupported__thread__pool__s
hutdown__wait__time

dbms.connector.http.advertised_address NEO4J_dbms_connector_http_advertised__address

dbms.connector.http.enabled NEO4J_dbms_connector_http_enabled

dbms.connector.http.listen_address NEO4J_dbms_connector_http_listen__address

dbms.connector.https.advertised_address` NEO4J_dbms_connector_https_advertised__address

dbms.connector.https.enabled NEO4J_dbms_connector_https_enabled

72

Neo4j format Docker format

dbms.connector.https.listen_address NEO4J_dbms_connector_https_listen__address

dbms.db.timezone NEO4J_dbms_db_timezone

dbms.default_advertised_address NEO4J_dbms_default__advertised__address

dbms.default_database NEO4J_dbms_default__database

dbms.default_listen_address NEO4J_dbms_default__listen__address

dbms.directories.data NEO4J_dbms_directories_data

dbms.directories.dumps.root NEO4J_dbms_directories_dumps_root

dbms.directories.import NEO4J_dbms_directories_import

dbms.directories.lib NEO4J_dbms_directories_lib

dbms.directories.logs NEO4J_dbms_directories_logs

dbms.directories.metrics NEO4J_dbms_directories_metrics

dbms.directories.neo4j_home NEO4J_dbms_directories_neo4j__home

dbms.directories.plugins NEO4J_dbms_directories_plugins

dbms.directories.run NEO4J_dbms_directories_run

dbms.directories.transaction.logs.root NEO4J_dbms_directories_transaction_logs_root

dbms.dynamic.setting.whitelist NEO4J_dbms_dynamic_setting_whitelist

dbms.filewatcher.enabled NEO4J_dbms_filewatcher_enabled

dbms.import.csv.buffer_size NEO4J_dbms_import_csv_buffer__size

dbms.import.csv.legacy_quote_escaping NEO4J_dbms_import_csv_legacy__quote__escaping

dbms.index.default_schema_provider NEO4J_dbms_index_default__schema__provider

dbms.index.fulltext.default_analyzer NEO4J_dbms_index_fulltext_default__analyzer

dbms.index.fulltext.eventually_consistent NEO4J_dbms_index_fulltext_eventually__consistent

dbms.index.fulltext.eventually_consistent_index_update
_queue_max_length

NEO4J_dbms_index_fulltext_eventually__consistent__inde
x__update__queue__max__length

dbms.index_sampling.background_enabled NEO4J_dbms_index_sampling_background__enabled

dbms.index_sampling.sample_size_limit NEO4J_dbms_index_sampling_sample__size__limit

dbms.index_sampling.update_percentage NEO4J_dbms_index_sampling_update__percentage

dbms.index_searcher_cache_size NEO4J_dbms_index_searcher__cache__size

dbms.jvm.additional NEO4J_dbms_jvm_additional

dbms.lock.acquisition.timeout NEO4J_dbms_lock_acquisition_timeout

dbms.logs.debug.level NEO4J_dbms_logs_debug_level

dbms.logs.debug.path NEO4J_dbms_logs_debug_path

dbms.logs.debug.rotation.delay NEO4J_dbms_logs_debug_rotation_delay

dbms.logs.debug.rotation.keep_number NEO4J_dbms_logs_debug_rotation_keep__number

dbms.logs.debug.rotation.size NEO4J_dbms_logs_debug_rotation_size

dbms.logs.gc.enabled NEO4J_dbms_logs_gc_enabled

dbms.logs.gc.options NEO4J_dbms_logs_gc_options

73

Neo4j format Docker format

dbms.logs.gc.rotation.keep_number NEO4J_dbms_logs_gc_rotation_keep__number

dbms.logs.gc.rotation.size NEO4J_dbms_logs_gc_rotation_size

dbms.logs.http.enabled NEO4J_dbms_logs_http_enabled

dbms.logs.http.path NEO4J_dbms_logs_http_path

dbms.logs.http.rotation.keep_number NEO4J_dbms_logs_http_rotation_keep__number

dbms.logs.http.rotation.size NEO4J_dbms_logs_http_rotation_size

dbms.logs.query.allocation_logging_enabled NEO4J_dbms_logs_query_allocation__logging__enabled

dbms.logs.query.early_raw_logging_enabled NEO4J_dbms_logs_query_early__raw__logging__enabled

dbms.logs.query.enabled NEO4J_dbms_logs_query_enabled

dbms.logs.query.page_logging_enabled NEO4J_dbms_logs_query_page__logging__enabled

dbms.logs.query.parameter_full_entities NEO4J_dbms_logs_query_parameter__full__entities

dbms.logs.query.parameter_logging_enabled NEO4J_dbms_logs_query_parameter__logging__enabled

dbms.logs.query.path NEO4J_dbms_logs_query_path

dbms.logs.query.rotation.keep_number NEO4J_dbms_logs_query_rotation_keep__number

dbms.logs.query.rotation.size NEO4J_dbms_logs_query_rotation_size

dbms.logs.query.runtime_logging_enabled NEO4J_dbms_logs_query_runtime__logging__enabled

dbms.logs.query.threshold NEO4J_dbms_logs_query_threshold

dbms.logs.query.time_logging_enabled NEO4J_dbms_logs_query_time__logging__enabled

dbms.logs.security.level NEO4J_dbms_logs_security_level

dbms.logs.security.path NEO4J_dbms_logs_security_path

dbms.logs.security.rotation.delay NEO4J_dbms_logs_security_rotation_delay

dbms.logs.security.rotation.keep_number NEO4J_dbms_logs_security_rotation_keep__number

dbms.logs.security.rotation.size NEO4J_dbms_logs_security_rotation_size

dbms.logs.user.path NEO4J_dbms_logs_user_path

dbms.logs.user.rotation.delay NEO4J_dbms_logs_user_rotation_delay

dbms.logs.user.rotation.keep_number NEO4J_dbms_logs_user_rotation_keep__number

dbms.logs.user.rotation.size NEO4J_dbms_logs_user_rotation_size

dbms.logs.user.stdout_enabled NEO4J_dbms_logs_user_stdout__enabled

dbms.max_databases NEO4J_dbms_max__databases

dbms.memory.heap.initial_size NEO4J_dbms_memory_heap_initial__size

dbms.memory.heap.max_size NEO4J_dbms_memory_heap_max__size

dbms.memory.off_heap.block_cache_size NEO4J_dbms_memory_off__heap_block__cache__size

dbms.memory.off_heap.max_cacheable_block_size NEO4J_dbms_memory_off__heap_max__cacheable__block__siz
e

dbms.memory.off_heap.max_size NEO4J_dbms_memory_off__heap_max__size

dbms.memory.pagecache.direction NEO4J_dbms_memory_pagecache_direction

dbms.memory.pagecache.scan.prefetchers NEO4J_dbms_memory_pagecache_scan_prefetchers

74

Neo4j format Docker format

dbms.memory.pagecache.size NEO4J_dbms_memory_pagecache_size

dbms.memory.pagecache.swapper NEO4J_dbms_memory_pagecache_swapper

dbms.memory.pagecache.warmup.enable NEO4J_dbms_memory_pagecache_warmup_enable

dbms.memory.pagecache.warmup.preload NEO4J_dbms_memory_pagecache_warmup_preload

dbms.memory.pagecache.warmup.preload.whitelist NEO4J_dbms_memory_pagecache_warmup_preload_whitelist

dbms.memory.pagecache.warmup.profile.interval NEO4J_dbms_memory_pagecache_warmup_profile_interval

dbms.memory.tracking.enable NEO4J_dbms_memory_tracking_enable

dbms.memory.transaction.datababase_max_size NEO4J_dbms_memory_transaction_datababase__max__size

dbms.memory.transaction.global_max_size NEO4J_dbms_memory_transaction_global__max__size

dbms.memory.transaction.max_size NEO4J_dbms_memory_transaction_max__size

dbms.mode NEO4J_dbms_mode

dbms.netty.ssl.provider NEO4J_dbms_netty_ssl_provider

dbms.query_cache_size NEO4J_dbms_query__cache__size

dbms.read_only NEO4J_dbms_read__only

dbms.reconciler.max_backoff NEO4J_dbms_reconciler_max__backoff

dbms.reconciler.max_parallelism NEO4J_dbms_reconciler_max__parallelism

dbms.reconciler.may_retry NEO4J_dbms_reconciler_may__retry

dbms.reconciler.min_backoff NEO4J_dbms_reconciler_min__backoff

dbms.record_format NEO4J_dbms_record_format

dbms.recovery.fail_on_missing_files NEO4J_dbms_recovery_fail__on__missing__files

dbms.relationship_grouping_threshold NEO4J_dbms_relationship__grouping__threshold

dbms.rest.transaction.idle_timeout NEO4J_dbms_rest_transaction_idle__timeout

dbms.routing.advertised_address NEO4J_dbms_routing_advertised__address

dbms.routing.driver.api NEO4J_dbms_routing_driver_api

dbms.routing.driver.connection.connect_timeout NEO4J_dbms_routing_driver_connection_connect__timeout

dbms.routing.driver.connection.max_lifetime NEO4J_dbms_routing_driver_connection_max__lifetime

dbms.routing.driver.connection.pool.acquisition_timeou
t

NEO4J_dbms_routing_driver_connection_pool_acquisition_
_timeout

dbms.routing.driver.connection.pool.idle_test NEO4J_dbms_routing_driver_connection_pool_idle__test

dbms.routing.driver.connection.pool.max_size NEO4J_dbms_routing_driver_connection_pool_max__size

dbms.routing.driver.logging.level NEO4J_dbms_routing_driver_logging_level

dbms.routing.enabled NEO4J_dbms_routing_enabled

dbms.routing.listen_address NEO4J_dbms_routing_listen__address

dbms.routing_ttl NEO4J_dbms_routing__ttl

dbms.security.allow_csv_import_from_file_urls NEO4J_dbms_security_allow__csv__import__from__file__ur
ls

dbms.security.auth_cache_max_capacity NEO4J_dbms_security_auth__cache__max__capacity

dbms.security.auth_cache_ttl NEO4J_dbms_security_auth__cache__ttl

75

Neo4j format Docker format

dbms.security.auth_cache_use_ttl NEO4J_dbms_security_auth__cache__use__ttl

dbms.security.auth_enabled NEO4J_dbms_security_auth__enabled

dbms.security.auth_lock_time NEO4J_dbms_security_auth__lock__time

dbms.security.auth_max_failed_attempts NEO4J_dbms_security_auth__max__failed__attempts

dbms.security.authentication_providers NEO4J_dbms_security_authentication__providers

dbms.security.authorization_providers NEO4J_dbms_security_authorization__providers

dbms.security.causal_clustering_status_auth_enabled NEO4J_dbms_security_causal__clustering__status__auth__
enabled

dbms.security.http_access_control_allow_origin NEO4J_dbms_security_http__access__control__allow_origi
n

dbms.security.http_auth_whitelist NEO4J_dbms_security_http__auth__whitelist

dbms.security.http_strict_transport_security NEO4J_dbms_security_http__strict__transport__security

dbms.security.ldap.authentication.cache_enabled NEO4J_dbms_security_ldap_authentication_cache__enabled

dbms.security.ldap.authentication.mechanism NEO4J_dbms_security_ldap_authentication_mechanism

dbms.security.ldap.authentication.use_samaccountname NEO4J_dbms_security_ldap_authentication_use__samaccoun
tname

dbms.security.ldap.authentication.user_dn_template NEO4J_dbms_security_ldap_authentication_user__dn__temp
late

dbms.security.ldap.authorization.group_membership_attr
ibutes

NEO4J_dbms_security_ldap_authorization_group__membersh
ip__attributes

dbms.security.ldap.authorization.group_to_role_mapping NEO4J_dbms_security_ldap_authorization_group__to__role
__mapping

dbms.security.ldap.authorization.system_password NEO4J_dbms_security_ldap_authorization_system__passwor
d

dbms.security.ldap.authorization.system_username NEO4J_dbms_security_ldap_authorization_system__usernam
e

dbms.security.ldap.authorization.use_system_account NEO4J_dbms_security_ldap_authorization_use__system__ac
count

dbms.security.ldap.authorization.user_search_base NEO4J_dbms_security_ldap_authorization_user__search__b
ase

dbms.security.ldap.authorization.user_search_filter NEO4J_dbms_security_ldap_authorization_user__search__f
ilter

dbms.security.ldap.connection_timeout NEO4J_dbms_security__ldap_connection__timeout

dbms.security.ldap.host NEO4J_dbms_security__ldap__host

dbms.security.ldap.read_timeout NEO4J_dbms_security__ldap_read__timeout

dbms.security.ldap.referral NEO4J_dbms_security__ldap_referral

dbms.security.ldap.use_starttls NEO4J_dbms_security__ldap_use__starttls

dbms.security.log_successful_authentication NEO4J_dbms_security_log__successful__authentication

dbms.security.procedures.default_allowed NEO4J_dbms_security_procedures_default__allowed

dbms.security.procedures.roles NEO4J_dbms_security_procedures_roles

dbms.security.procedures.unrestricted NEO4J_dbms_security_procedures_unrestricted

dbms.security.procedures.whitelist NEO4J_dbms_security_procedures_whitelist

76

Neo4j format Docker format

dbms.shutdown_transaction_end_timeout NEO4J_dbms_shutdown__transaction__end__timeout

dbms.threads.worker_count NEO4J_dbms_threads_worker__count

dbms.track_query_allocation NEO4J_dbms_track__query__allocation

dbms.track_query_cpu_time NEO4J_dbms_track__query__cpu__time

dbms.transaction.bookmark_ready_timeout NEO4J_dbms_transaction_bookmark__ready__timeout

dbms.transaction.concurrent.maximum NEO4J_dbms_transaction_concurrent_maximum

dbms.transaction.monitor.check.interval NEO4J_dbms_transaction_monitor_check_interval

dbms.transaction.sampling.percentage NEO4J_dbms_transaction_sampling_percentage

dbms.transaction.timeout NEO4J_dbms_transaction_timeout

dbms.transaction.tracing.level NEO4J_dbms_transaction_tracing_level

dbms.tx_log.preallocate NEO4J_dbms_tx__log_preallocate

dbms.tx_log.rotation.retention_policy NEO4J_dbms_tx__log_rotation_retention__policy

dbms.tx_log.rotation.size NEO4J_dbms_tx__log_rotation_size

dbms.tx_state.memory_allocation NEO4J_dbms_tx__state_memory__allocation

dbms.unmanaged_extension_classes NEO4J_dbms_unmanaged__extension__classes

dbms.upgrade_max_processors NEO4J_dbms_upgrade__max__processors

dbms.windows_service_name NEO4J_dbms_windows__service__name

fabric.database.name NEO4J_fabric_database_name

fabric.driver.api NEO4J_fabric_driver_api

fabric.driver.connection.connect_timeout NEO4J_fabric_driver_connection_connect__timeout

fabric.driver.connection.max_lifetime NEO4J_fabric_driver_connection_max__lifetime

fabric.driver.connection.pool.acquisition_timeout NEO4J_fabric_driver_connection_pool_acquisition__timeo
ut

fabric.driver.connection.pool.idle_test NEO4J_fabric_driver_connection_pool_idle__test

fabric.driver.connection.pool.max_size NEO4J_fabric_driver_connection_pool_max__size

fabric.driver.logging.level NEO4J_fabric_driver_logging_level

fabric.routing.servers NEO4J_fabric_routing_servers

fabric.routing.ttl NEO4J_fabric_routing_ttl

fabric.stream.buffer.low_watermark NEO4J_fabric_stream_buffer_low__watermark

fabric.stream.buffer.size NEO4J_fabric_stream_buffer_size

fabric.stream.concurrency NEO4J_fabric_stream_concurrency

fabric.graph.<id>.uri NEO4J_fabric_graph_<id>_uri

fabric.graph.<id>.database NEO4J_fabric_graph_<id>_database

fabric.graph.<id>.name NEO4J_fabric_graph_<id>_name

metrics.bolt.messages.enabled NEO4J_metrics_bolt_messages_enabled

metrics.csv.enabled NEO4J_metrics_csv_enabled

metrics.csv.interval NEO4J_metrics_csv_interval

77

Neo4j format Docker format

metrics.csv.rotation.keep_number NEO4J_metrics_csv_rotation_keep__number

metrics.csv.rotation.size NEO4J_metrics_csv_rotation_size

metrics.cypher.replanning.enabled NEO4J_metrics_cypher_replanning_enabled

metrics.enabled NEO4J_metrics_enabled

metrics.graphite.enabled NEO4J_metrics_graphite_enabled

metrics.graphite.interval NEO4J_metrics_graphite_interval

metrics.graphite.server NEO4J_metrics_graphite_server

metrics.jmx.enabled NEO4J_metrics_jmx_enabled

metrics.jvm.buffers.enabled NEO4J_metrics_jvm_buffers_enabled

metrics.jvm.file.descriptors.enabled NEO4J_metrics_jvm_file_descriptors_enabled

metrics.jvm.gc.enabled NEO4J_metrics_jvm_gc_enabled

metrics.jvm.heap.enabled NEO4J_metrics_jvm_heap_enabled

metrics.jvm.memory.enabled NEO4J_metrics_jvm_memory_enabled

metrics.jvm.pause_time.enabled NEO4J_metrics_jvm_pause__time_enabled

metrics.jvm.threads.enabled NEO4J_metrics_jvm_threads_enabled

metrics.neo4j.causal_clustering.enabled NEO4J_metrics_neo4j_causal__clustering_enabled

metrics.neo4j.checkpointing.enabled NEO4J_metrics_neo4j_checkpointing_enabled

metrics.neo4j.counts.enabled NEO4J_metrics_neo4j_counts_enabled

metrics.neo4j.data.counts.enabled NEO4J_metrics_neo4j_data_counts_enabled

metrics.neo4j.database_operation_count.enabled NEO4J_metrics_neo4j_database__operation__count_enabled

metrics.neo4j.logs.enabled NEO4J_metrics_neo4j_logs_enabled

metrics.neo4j.pagecache.enabled NEO4J_metrics_neo4j_pagecache_enabled

metrics.neo4j.pools.enabled NEO4J_metrics_neo4j_pools_enabled

metrics.neo4j.server.enabled NEO4J_metrics_neo4j_server_enabled

metrics.neo4j.size.enabled NEO4J_metrics_neo4j_size_enabled

metrics.neo4j.tx.enabled NEO4J_metrics_neo4j_tx_enabled

metrics.prefix NEO4J_metrics_prefix

metrics.prometheus.enabled NEO4J_metrics_prometheus_enabled

metrics.prometheus.endpoint NEO4J_metrics_prometheus_endpoint

[3] The Bloom plugin requires a license and this needs to be provided as a shared volume. Please see Bloom User Guide →
Installing Bloom in a Docker container.

78

https://neo4j.com/docs/pdf/bloom-user-guide-current.pdf#bloom-docker
https://neo4j.com/docs/pdf/bloom-user-guide-current.pdf#bloom-docker
https://neo4j.com/docs/pdf/bloom-user-guide-current.pdf#bloom-docker
https://neo4j.com/docs/pdf/bloom-user-guide-current.pdf#bloom-docker

Chapter 5. Kubernetes

Currently, the Neo4j product supports Helm charts for a standalone server. If you are
interested in working with Neo4j Causal Clusters in Kubernetes, check the Neo4j-Helm
Labs project at https://neo4j.com/labs/.

This chapter describes the following:

• Introduction — Introduction to running a standalone Neo4j instance on a Kubernetes cluster.

• Configure a Neo4j Helm chart and create a Neo4j Helm release — How to configure a Neo4j Helm
chart and create a release name for your Neo4j instance.

• Quickstart: Deploy a Neo4j instance to a Google Kubernetes Engine (GKE) cluster — A quick start guide
for deploying a Neo4j instance to a Google Kubernetes Engine (GKE) cluster.

• Quickstart: Deploy a Neo4j instance to an AWS Elastic Kubernetes Service (EKS) cluster — A quick
start guide for deploying a Neo4j instance to a AWS Elastic Kubernetes Service (EKS) cluster.

• Quickstart: Deploy a Neo4j instance to an Azure Kubernetes Service (AKS) cluster — A quick start
guide for deploying a Neo4j instance to an Azure Kubernetes Service (AKS) cluster.

• Quickstart: Deploy a Neo4j instance to a local Kubernetes cluster with Docker Desktop — A quick start
guide for deploying a Neo4j instance to a local Kubernetes cluster (via Docker Desktop for Mac OS)
using Neo4j Helm charts.

• Configure and install Neo4j using a customized Helm chart — How to install a Neo4j instance with
your preferred configuration using a customized Helm chart.

• Persistent volumes — Information about the supported persistent volume types and how to use them
with the Neo4j Helm charts.

• Access a Neo4j Helm release — How to access a Neo4j instance running on Kubernetes.

• Import data — How to import data into a standalone Neo4j instance on a Kubernetes cluster.

• Operations — Descriptions of various operations that are specific to using Neo4j running on
Kubernetes.

• Monitoring How to monitor Neo4j when running on Kubernetes.

• Maintenance operations — How to maintain Neo4j when running on Kubernetes.

• Troubleshooting — Troubleshooting information that can help you diagnose and correct a problem.

5.1. Introduction
Neo4j v4.3 supports only Neo4j standalone server deployments on Kubernetes using Neo4j Helm charts. If
you want to deploy Neo4j Causal Clusters, consult the Neo4j-Helm Labs project at https://neo4j.com/labs/.

Helm (https://helm.sh/) is a “package manager for Kubernetes”. It usually runs on a
machine outside of Kubernetes and creates resources in Kubernetes by calling the
Kubernetes API. Helm installs and manages applications on Kubernetes using Helm
charts, which are distributed via Helm chart Repositories.

79

https://neo4j.com/labs/
https://neo4j.com/labs/
https://helm.sh/

The Neo4j Helm charts repository contains helm charts for a Neo4j standalone server (neo4j/neo4j-
standalone) and support charts to simplify configuration and operations.

5.2. Configure a Neo4j Helm chart and create a Neo4j Helm
release

5.2.1. Prerequisites

• Helm v3 (https://helm.sh).

5.2.2. Configure a Neo4j Helm chart

You configure a Neo4j Helm chart to be used for deploying a Neo4j instance.

1. Add the Neo4j Helm charts repository.

helm repo add neo4j https://helm.neo4j.com/neo4j

2. Get the latest charts from the chart repository:

helm repo update

3. View the available charts:

helm search repo neo4j --versions

An example result

neo4j/neo4j-standalone 4.3.21 4.3.21 Neo4j is the world's leading graph database

5.2.3. Create a release name for your Neo4j instance

Getting everything to work in Kubernetes requires that certain K8s objects have specific names that are
referenced elsewhere. Each individual Neo4j instance is a Helm “release” and has a release name. All other
names derive from this release name.

Release name must consist of lower case alphanumeric characters, - or ., and must start
and end with an alphanumeric character.

Set the release name as an environment variable, so that it is available in the rest of the session:

export RELEASE_NAME="<release-name>"

80

https://helm.sh

5.2.4. Install Neo4j from the public Helm chart repository

To install a standalone instance of Neo4j from the public Helm chart repository, run the following
commands:

helm install "${RELEASE_NAME}" neo4j/neo4j-standalone

For more information on how to configure and customize your Neo4j installation, see
Configure and install Neo4j using Helm.

5.3. Quickstart: Deploy a Neo4j instance to a Google
Kubernetes Engine (GKE) cluster

5.3.1. Prerequisites

• The gcloud command-line interface (CLI) (https://cloud.google.com/sdk/docs/install).

• The kubectl Kubernetes client command-line tool (https://kubernetes.io/docs/tasks/tools/).

• The helm command-line tool (https://helm.sh/docs/intro/install/).

• A Google Kubernetes Engine (GKE) cluster.

• Verify that your Kubernetes nodes have sufficient CPU and memory for your Neo4j deployment.

We recommend using nodes with at least 4 CPUs and 4GB of memory. This size can
usually fit a Neo4j instance with 1CPU and 2GB memory. For more information on
Neo4j’s system requirements, see System requirements.

• Verify that you have a valid license if you want to install Neo4j Enterprise Edition. For more
information, see https://neo4j.com/licensing/ or write to licensing@neo4j.com.

• All the shell commands in this guide assume that the GCP Project, compute zone, and region to use
have been set using the CLOUDSDK_CORE_PROJECT, CLOUDSDK_COMPUTE_ZONE, and
CLOUDSDK_COMPUTE_REGION environment variables, for example:

export CLOUDSDK_CORE_PROJECT="my-neo4j-project"
export CLOUDSDK_COMPUTE_ZONE="europe-west2-a"
export CLOUDSDK_COMPUTE_REGION="europe-west2"

If you do not have a GKE cluster, you can create a single-node one using:

gcloud container clusters create my-neo4j-gke-cluster --num-nodes=1 --machine-type "e2-
standard-2" --release-channel "stable"

You can configure kubectl to use your GKE cluster using:

gcloud container clusters get-credentials my-neo4j-gke-cluster

81

https://cloud.google.com/sdk/docs/install
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/
https://neo4j.com/licensing/
mailto:licensing@neo4j.com

To install Neo4j, perform the following steps:

• Create a Google Cloud Platform (GCP) persistent disk for the Neo4j instance.

• Create a Helm deployment values file.

• Install Neo4j using the deployment values file and the neo4j/neo4j-standalone Helm chart.

5.3.2. Create a GCP persistent disk

Create a GCP persistent disk using the following command. This is a normal GCP persistent disk and not
Kubernetes specific:

gcloud compute disks create --size 128Gi --type pd-ssd "my-neo4j-disk"

Example output

Created [https://www.googleapis.com/compute/v1/projects/my-neo4j-project/zones/europe-west2-a/disks/my-
neo4j-disk].
NAME ZONE SIZE_GB TYPE STATUS
my-neo4j-disk europe-west2-a 128 pd-ssd READY

New disks are unformatted. You must format and mount a disk before it
can be used. You can find instructions on how to do this at:

https://cloud.google.com/compute/docs/disks/add-persistent-disk#formatting

The message New disks are unformatted. You must format and mount a disk before it can be used.
should not be a cause for concern, and there is no need to take action to format the disk. If necessary, the
disk will be formatted automatically when used in Kubernetes.

5.3.3. Create a Helm deployment values file

Create a new file my-neo4j.values.yaml with the following content:

neo4j:
 resources:
 cpu: "1"
 memory: "2Gi"

 # Uncomment to set the initial password. You cannot use `neo4j` as this is the default password.
 #password: "my-initial-password"

 # Uncomment to use enterprise edition
 #edition: "enterprise"
 #acceptLicenseAgreement: "yes"

volumes:
 data:
 mode: "volume"
 volume:
 gcePersistentDisk:
 pdName: "my-neo4j-disk"

For details of all Neo4j Helm chart configuration options, see Configure and install Neo4j using a
customized Helm chart.

82

5.3.4. Install Neo4j

1. Ensure your Helm chart repositories are up to date:

helm repo update

2. Install Neo4j using the deployment values file created in Create a Helm deployment values file:

helm install my-neo4j-release neo4j/neo4j-standalone -f my-neo4j.values.yaml

Example output

NAME: my-neo4j-release
LAST DEPLOYED: Wed Jul 28 13:16:39 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thank you for installing neo4j-standalone.

Your release "my-neo4j-release" has been installed .

To view the progress of the rollout try:

 $ kubectl rollout status --watch --timeout=600s statefulset/my-neo4j-release

The neo4j user's password has been set to "bO7YDTVOgs7CS1".

Once rollout is complete you can log in to Neo4j at "neo4j://my-neo4j-
release.default.svc.cluster.local:7687". Try:

 $ kubectl run --rm -it --image "neo4j:4.3.21" cypher-shell \
 -- cypher-shell -a "neo4j://my-neo4j-release.default.svc.cluster.local:7687" -u neo4j -p
"bO7YDTVOgs7CS1"

Graphs are everywhere!

3. Run the kubectl rollout command provided in the output of helm install to watch the Neo4j’s
rollout until it is complete.

kubectl rollout status --watch --timeout=600s statefulset/my-neo4j-release

Since you have not passed a password for the neo4j user, the Neo4j Helm chart has
set an automatically generated one. You can find it in the Helm install output. Please
make a note of it.

5.3.5. Verify the installation

1. Check that the statefulset is OK. Initially it will not be ready but just check there is something there.

kubectl --namespace default get statefulsets

83

NAME READY AGE
my-neo4j-release 1/1 2m11s

2. Check that the pod is Running:

kubectl --namespace default get pods

NAME READY STATUS RESTARTS AGE
my-neo4j-release-0 1/1 Running 0 16m

3. Check that the pod logs look OK:

kubectl --namespace default exec my-neo4j-release-0 -- tail -n50 /logs/neo4j.log

2021-07-28 12:45:50.267+0000 INFO Command expansion is explicitly enabled for configuration
2021-07-28 12:45:50.280+0000 INFO Starting...
2021-07-28 12:45:55.680+0000 INFO ======== Neo4j 4.3.21 ========
2021-07-28 12:46:00.006+0000 INFO Bolt enabled on [0:0:0:0:0:0:0:0%0]:7687.
2021-07-28 12:46:02.476+0000 INFO Remote interface available at http://localhost:7474/
2021-07-28 12:46:02.478+0000 INFO Started.

4. Check that the services look OK:

kubectl get services --namespace default

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
kubernetes ClusterIP 10.112.0.1 <none> 443/TCP
28h
my-neo4j-release ClusterIP 10.112.10.159 <none> 7687/TCP,7474/TCP,7473/TCP
41m
my-neo4j-release-admin ClusterIP 10.112.4.73 <none>
6362/TCP,7687/TCP,7474/TCP,7473/TCP 41m
my-neo4j-release-neo4j LoadBalancer 10.112.6.75 34.140.48.23
7474:31420/TCP,7473:31591/TCP,7687:31650/TCP 41m

5. In a web browser, open the Neo4j Browser at http://<EXTERNAL-IP>:7474/browser.

6. Use the automatically generated password (as printed in the output of the helm install command) or
the one you have configured in the my-neo4j.values.yaml file.

5.3.6. Uninstall Neo4j and clean up the created resources

Uninstall Neo4j Helm deployment

Uninstall the Neo4j Helm deployment.

helm uninstall my-neo4j-release

84

http://<EXTERNAL-IP>:7474/browser

Example output

release "my-neo4j-release" uninstalled

Uninstalling the Helm release does not remove the GCP persistent disk, nor does it remove the data it
contains.

gcloud compute disks describe "my-neo4j-disk"

Example output

creationTimestamp: '2021-07-28T04:54:59.385-07:00'
id: '756334900703722364'
kind: compute#disk
labelFingerprint: 42WmSpB8rSM=
lastAttachTimestamp: '2021-07-28T05:45:03.723-07:00'
lastDetachTimestamp: '2021-07-28T06:00:18.793-07:00'
name: my-neo4j-disk
physicalBlockSizeBytes: '4096'
selfLink: https://www.googleapis.com/compute/v1/projects/my-neo4j-project/zones/europe-west2-a/disks/my-
neo4j-disk
sizeGb: '128'
status: READY
type: https://www.googleapis.com/compute/v1/projects/my-neo4j-project/zones/europe-west2-a/diskTypes/pd-
ssd
zone: https://www.googleapis.com/compute/v1/projects/my-neo4j-project/zones/europe-west2-a

If you re-create Neo4j with the same settings, it will pick up the same disk again, and all
the data will still be on it.

Even if the GKE cluster is deleted, the persistent disk with the Neo4j data will still exist.

Fully remove all the data and resources

After uninstalling the helm deployment, the only remaining step is to delete the GCP persistent disk.

1. Delete the GCP persistent disk:

gcloud compute disks delete my-neo4j-disk

Example output

The following disks will be deleted:
 - [my-neo4j-disk] in [europe-west2-a]
Do you want to continue (Y/n)? y
Deleted [https://www.googleapis.com/compute/v1/projects/my-neo4j-project/zones/europe-west2-
a/disks/my-neo4j-disk].

If you want to delete the entire GKE Kubernetes cluster, run:

gcloud container clusters delete my-neo4j-gke-cluster

85

5.4. Quickstart: Deploy a Neo4j instance to an AWS Elastic
Kubernetes Service (EKS) cluster

5.4.1. Prerequisites

• The aws command-line interface (CLI) (https://docs.aws.amazon.com/cli/latest/userguide/install-
cliv2.html).

• The eksctl command-line interface (CLI) (https://docs.aws.amazon.com/eks/latest/userguide/getting-
started-eksctl.html).

• The kubectl Kubernetes client command-line tool (https://kubernetes.io/docs/tasks/tools/).

• The helm command-line tool (https://helm.sh/docs/intro/install/).

◦ Add the neo4j Helm repository helm repo add neo4j https://helm.neo4j.com/neo4j.

• An AWS Elastic Kubernetes Service (EKS) cluster.

• Verify that your Kubernetes nodes have sufficient CPU and memory for your Neo4j deployment.

We recommend using nodes with at least 4 CPUs and 4GB of memory. This size can
usually fit a Neo4j instance with 1CPU and 2GB memory. For more information on
Neo4j’s system requirements, see System requirements.

• Verify that you have a valid license if you want to install Neo4j Enterprise Edition. For more
information, see https://neo4j.com/licensing/ or write to licensing@neo4j.com.

• All the shell commands in this guide assume that the AWS region and availability zone to use have
been set using the AWS_DEFAULT_REGION and AWS_AVAILABILITY_ZONE environment variables, for
example:

export AWS_DEFAULT_REGION="eu-west-1"
export AWS_AVAILABILITY_ZONE="eu-west-1c"

If you do not have an EKS cluster, you can create a single-node one using:

eksctl create cluster --name "my-neo4j-eks-cluster" --region "${AWS_DEFAULT_REGION}"
--nodegroup-name "neo4j-nodes" --node-zones "${AWS_AVAILABILITY_ZONE}" --nodes-min 1
--nodes-max 2 --node-type c4.xlarge --nodes 1 --node-volume-size 10 --ssh-access --with
-oidc

You can configure kubectl to use your EKS cluster using:

aws eks update-kubeconfig --name my-neo4j-eks-cluster

To install Neo4j, perform the following steps:

• Create an AWS EBS disk for the Neo4j instance.

• Create a Helm deployment values file.

86

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/
https://helm.neo4j.com/neo4j
https://neo4j.com/licensing/
mailto:licensing@neo4j.com

• Install Neo4j using the deployment values file and the neo4j/neo4j-standalone Helm chart.

5.4.2. Create an AWS EBS disk

Create an AWS EBS disk using the following command. This is a normal AWS EBS disk and not
Kubernetes specific:

aws ec2 create-volume --availability-zone=${AWS_AVAILABILITY_ZONE} --size=64 --volume-type=gp3 --tag
-specifications 'ResourceType=volume,Tags=[{Key=volume,Value=neo4j-k8s}]'

Fetch the ID of the disk that was just created.

aws ec2 describe-volumes --filters Name=tag:volume,Values=neo4j-k8s --query "Volumes[*].{ID:VolumeId}"
--output text

Example result

vol-0795be227aff63b2a

5.4.3. Create a Helm deployment values file

Create a new file my-neo4j.values.yaml with the following content, replacing <volume id> with the ID of
the disk you created:

neo4j:
 resources:
 cpu: "1"
 memory: "2Gi"

 # Uncomment to set the initial password. You cannot use `neo4j` as this is the default password.
 #password: "my-initial-password"

 # Uncomment to use enterprise edition
 #edition: "enterprise"
 #acceptLicenseAgreement: "yes"

volumes:
 data:
 mode: "volume"
 volume:
 awsElasticBlockStore:
 volumeID: "<volume id>"
 fsType: ext4

For details of all Neo4j Helm chart configuration options, see Configure and install Neo4j using a
customized Helm chart.

5.4.4. Install Neo4j

1. Ensure your Helm chart repositories are up to date:

helm repo update

2. Install Neo4j using the deployment values file created in Create a Helm deployment values file:

87

helm install my-neo4j-release neo4j/neo4j-standalone -f my-neo4j.values.yaml

Example output

NAME: my-neo4j-release
LAST DEPLOYED: Wed Jul 7 19:52:58 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thank you for installing neo4j-standalone.

Your release "my-neo4j-release" has been installed .

To view the progress of the rollout try:

 $ kubectl rollout status --watch --timeout=600s statefulset/my-neo4j-release

Once rollout is complete you can log in to Neo4j at "neo4j://my-neo4j-
release.default.svc.cluster.local:7687". Try:

 $ kubectl run --rm -it --image "neo4j:4.3.21" cypher-shell \
 -- cypher-shell -a "neo4j://my-neo4j-release.default.svc.cluster.local:7687" -u neo4j

Graphs are everywhere!

3. Run the kubectl rollout command provided in the output of helm install to watch the Neo4j’s
rollout until it is complete.

kubectl rollout status --watch --timeout=600s statefulset/my-neo4j-release

Since you have not passed a password for the neo4j user, the Neo4j Helm chart has
set an automatically generated one. You can find it in the Helm install output. Please
make a note of it.

5.4.5. Verify the installation

1. Check that the statefulset is OK. Initially it will not be ready but just check there is something there.

kubectl --namespace default get statefulsets

NAME READY AGE
my-neo4j-release 1/1 2m11s

2. Check that the pod is Running:

kubectl --namespace default get pods

NAME READY STATUS RESTARTS AGE
my-neo4j-release-0 1/1 Running 0 16m

3. Check that the pod logs look OK:

88

kubectl --namespace default exec my-neo4j-release-0 -- tail -n50 /logs/neo4j.log

2021-07-28 12:45:50.267+0000 INFO Command expansion is explicitly enabled for configuration
2021-07-28 12:45:50.280+0000 INFO Starting...
2021-07-28 12:45:55.680+0000 INFO ======== Neo4j 4.3.21 ========
2021-07-28 12:46:00.006+0000 INFO Bolt enabled on [0:0:0:0:0:0:0:0%0]:7687.
2021-07-28 12:46:02.476+0000 INFO Remote interface available at http://localhost:7474/
2021-07-28 12:46:02.478+0000 INFO Started.

4. Check that the services look OK:

kubectl get services --namespace default

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
kubernetes ClusterIP 10.112.0.1 <none> 443/TCP
28h
my-neo4j-release ClusterIP 10.112.10.159 <none> 7687/TCP,7474/TCP,7473/TCP
41m
my-neo4j-release-admin ClusterIP 10.112.4.73 <none>
6362/TCP,7687/TCP,7474/TCP,7473/TCP 41m
my-neo4j-release-neo4j LoadBalancer 10.112.6.75 34.140.48.23
7474:31420/TCP,7473:31591/TCP,7687:31650/TCP 41m

5. In a web browser, open the Neo4j Browser at http://<EXTERNAL-IP>:7474/browser.

6. Use the automatically generated password (as printed in the output of the helm install command) or
the one you have configured in the my-neo4j.values.yaml file.

5.4.6. Uninstall Neo4j and clean up the created resources

Uninstall Neo4j Helm deployment

1. Uninstall Neo4j Helm deployment.

helm uninstall my-neo4j-release

release "my-neo4j-release" uninstalled

2. Uninstalling the Helm Release does not remove the AWS EBS disk, nor does it remove the data it
contains:

aws ec2 describe-volumes --filters Name=tag:volume,Values=neo4j-k8s --query "Volumes[*].{ID:VolumeId}"
--output text

If you re-create Neo4j with the same settings, it will pick up the same disk again, and
all the data will still be on it.

Even if you delete the EKS cluster, the EBS disk with the Neo4j data will still exist.
Note that the disk will be deleted if its Resource Group is deleted.

89

http://<EXTERNAL-IP>:7474/browser

Fully remove all the data and resources

After uninstalling the helm deployment, the only remaining step is to delete the EBS disk.

1. Delete the AWS EBS disk using the volume ID:

aws ec2 delete-volume --volume-id "<volume id>"

If you are sure that you want to delete the entire EKS Kubernetes cluster, run:

eksctl delete cluster my-neo4j-eks-cluster

5.5. Quickstart: Deploy a Neo4j instance to an Azure
Kubernetes Service (AKS) cluster

5.5.1. Prerequisites

• The az command-line interface (CLI) (https://docs.microsoft.com/en-us/cli/azure/install-azure-cli).

• The kubectl Kubernetes client command-line tool (https://kubernetes.io/docs/tasks/tools/).

• The helm command-line tool (https://helm.sh/docs/intro/install/)

◦ Add the neo4j Helm repository helm repo add neo4j https://helm.neo4j.com/neo4j

• A Resource Group with:

◦ An Azure Kubernetes Service (AKS) cluster.

◦ The AKS cluster principal needs to be assigned roles that allow it to manage
Microsoft.Compute/disks in the Resource Group.

• Verify that your Kubernetes nodes have sufficient CPU and memory for your Neo4j deployment.

We recommend using nodes with at least 4 CPUs and 4GB of memory. This size can
usually fit a Neo4j instance with 1CPU and 2GB memory. For more information on
Neo4j’s system requirements, see System requirements.

• Verify that you have a valid license if you want to install Neo4j Enterprise Edition. For more
information, see https://neo4j.com/licensing/ or write to licensing@neo4j.com.

• All the shell commands in this guide assume that the Azure Resource Group and location to use have
been set using the AZURE_DEFAULTS_LOCATION and AZURE_DEFAULTS_GROUP environment variables, for
example:

export AZURE_DEFAULTS_GROUP="myneo4jrg"
export AZURE_DEFAULTS_LOCATION="northeurope"

90

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/
https://helm.neo4j.com/neo4j
https://neo4j.com/licensing/
mailto:licensing@neo4j.com

If you do not have an AKS cluster, you can create a single-node one using:

az aks create --name my-neo4j-aks-cluster --node-count=1

You can add the necessary role assignments to the AKS cluster using:

AKS_PRINCIPAL_ID="$(az aks show --name my-neo4j-aks-cluster \
 --query 'identity.principalId' --output tsv)"

az role assignment create --role "Virtual Machine Contributor" \
 --assignee-object-id "${AKS_PRINCIPAL_ID}"

update the AKS cluster's credentials so that it picks up the new role assignment
SP_SECRET="$(az ad sp credential reset --name "${AKS_PRINCIPAL_ID}" --query password -o
tsv)"

az aks update-credentials \
 --name my-neo4j-aks-cluster \
 --reset-service-principal \
 --service-principal "${AKS_PRINCIPAL_ID}" \
 --client-secret "${SP_SECRET}"

You can configure kubectl to use your AKS cluster using

az aks get-credentials --name my-neo4j-aks-cluster --admin

To install Neo4j, perform the following steps:

• Create an Azure managed disk for the Neo4j instance.

• Create a Helm deployment values file.

• Install Neo4j using the deployment values file and the neo4j/neo4j-standalone Helm chart.

5.5.2. Create an Azure managed disk

Create an Azure managed disk using the following command. This is a normal Azure managed disk and
not Kubernetes specific:

az disk create --name "my-neo4j-disk" --size-gb "64" --sku Premium_LRS --max-shares 1

Fetch the ID of the disk that was just created.

az disk show --name "my-neo4j-disk" --query id

Example result

"/subscriptions/00000000-0000-0000-0000-
000000000000/resourceGroups/myneo4jrg/providers/Microsoft.Compute/disks/my-neo4j-disk"

91

5.5.3. Create a Helm deployment values file

Create a new file my-neo4j.values.yaml with the following content, replacing <disk id> with the ID of the
disk you created:

neo4j:
 resources:
 cpu: "1"
 memory: "2Gi"

 # Uncomment to set the initial password. You cannot use `neo4j` as this is the default password.
 #password: "my-initial-password"

 # Uncomment to use enterprise edition
 #edition: "enterprise"
 #acceptLicenseAgreement: "yes"

volumes:
 data:
 mode: "volume"
 volume:
 azureDisk:
 diskName: "my-neo4j-disk"
 diskURI: "<disk id>"
 kind: Managed

For details of all Neo4j Helm chart configuration options, see Configure and install Neo4j using a
customized Helm chart.

5.5.4. Install Neo4j

1. Ensure your Helm chart repositories are up to date:

helm repo update

2. Install Neo4j using the deployment values file created in Create a Helm deployment values file:

helm install my-neo4j-release neo4j/neo4j-standalone -f my-neo4j.values.yaml

92

Example output

NAME: my-neo4j-release
LAST DEPLOYED: Wed Jul 7 19:52:58 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thank you for installing neo4j-standalone.

Your release "my-neo4j-release" has been installed .

To view the progress of the rollout try:

 $ kubectl rollout status --watch --timeout=600s statefulset/my-neo4j-release

Once rollout is complete you can log in to Neo4j at "neo4j://my-neo4j-
release.default.svc.cluster.local:7687". Try:

 $ kubectl run --rm -it --image "neo4j:4.3.21" cypher-shell \
 -- cypher-shell -a "neo4j://my-neo4j-release.default.svc.cluster.local:7687" -u neo4j

Graphs are everywhere!

3. Run the kubectl rollout command provided in the output of helm install to watch the Neo4j’s
rollout until it is complete.

kubectl rollout status --watch --timeout=600s statefulset/my-neo4j-release

Since you have not passed a password for the neo4j user, the Neo4j Helm chart has
set an automatically generated one. You can find it in the Helm install output. Please
make a note of it.

5.5.5. Verify the installation

1. Check that the statefulset is OK. Initially it will not be ready but just check there is something there.

kubectl --namespace default get statefulsets

NAME READY AGE
my-neo4j-release 1/1 2m11s

2. Check that the pod is Running:

kubectl --namespace default get pods

NAME READY STATUS RESTARTS AGE
my-neo4j-release-0 1/1 Running 0 16m

3. Check that the pod logs look OK:

kubectl --namespace default exec my-neo4j-release-0 -- tail -n50 /logs/neo4j.log

93

2021-07-28 12:45:50.267+0000 INFO Command expansion is explicitly enabled for configuration
2021-07-28 12:45:50.280+0000 INFO Starting...
2021-07-28 12:45:55.680+0000 INFO ======== Neo4j 4.3.21 ========
2021-07-28 12:46:00.006+0000 INFO Bolt enabled on [0:0:0:0:0:0:0:0%0]:7687.
2021-07-28 12:46:02.476+0000 INFO Remote interface available at http://localhost:7474/
2021-07-28 12:46:02.478+0000 INFO Started.

4. Check that the services look OK:

kubectl get services --namespace default

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
kubernetes ClusterIP 10.112.0.1 <none> 443/TCP
28h
my-neo4j-release ClusterIP 10.112.10.159 <none> 7687/TCP,7474/TCP,7473/TCP
41m
my-neo4j-release-admin ClusterIP 10.112.4.73 <none>
6362/TCP,7687/TCP,7474/TCP,7473/TCP 41m
my-neo4j-release-neo4j LoadBalancer 10.112.6.75 34.140.48.23
7474:31420/TCP,7473:31591/TCP,7687:31650/TCP 41m

5. In a web browser, open the Neo4j Browser at http://<EXTERNAL-IP>:7474/browser.

6. Use the automatically generated password (as printed in the output of the helm install command) or
the one you have configured in the my-neo4j.values.yaml file.

5.5.6. Uninstall Neo4j and clean up the created resources

Uninstall Neo4j Helm deployment

1. Uninstall Neo4j Helm deployment.

helm uninstall my-neo4j-release

release "my-neo4j-release" uninstalled

2. Uninstalling the Helm release does not remove the Azure managed disk, nor does it remove the data it
contains:

az disk show --name "my-neo4j-disk"

If you re-create Neo4j with the same settings, it will pick up the same disk again and
all the data will still be on it.

Even if you delete the AKS cluster, the managed disk with the Neo4j data will still
exist. Note that the disk will be deleted if its Resource Group is deleted.

94

http://<EXTERNAL-IP>:7474/browser

Fully remove all the data and resources

After uninstalling the helm deployment, the only remaining step is to delete the managed disk.

1. Delete the Azure managed disk:

az disks delete --name "my-neo4j-disk"

If you are sure that you want to delete the entire AKS Kubernetes cluster, run:

az aks delete --name my-neo4j-aks-cluster

5.6. Quickstart: Deploy a Neo4j instance to a local Kubernetes
installation via Docker Desktop for Mac

5.6.1. Prerequisites

• Verify that you have configured the Neo4j Helm charts and created a release name for your Neo4j
instance.

• Verify that you have installed Docker Desktop for Mac. For more information, see Docker official
documentation.

• Enable the Docker Desktop Kubernetes engine. For more information, see Docker official
documentation.

• Verify that you have sufficient CPU and RAM for your Neo4j deployment. For more information, see
System requirements.

• Verify that you do not have a running instance of Neo4j (e.g., via Neo4j Desktop or Neo4j Browser) to
avoid port clashes.

• Verify that you have a valid license if you want to install Neo4j Enterprise Edition. For more
information, see https://neo4j.com/licensing/ or write to licensing@neo4j.com.

5.6.2. Create a Helm deployment values file

Create a new file my-neo4j.values.yaml with the following content:

95

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/desktop/kubernetes/
https://docs.docker.com/desktop/kubernetes/
https://neo4j.com/licensing/
mailto:licensing@neo4j.com

neo4j:
 resources:
 cpu: "1"
 memory: "2Gi"

 # Uncomment to set the initial password. You cannot use `neo4j` as this is the default password.
 #password: "my-initial-password"

 # Uncomment to use enterprise edition
 #edition: "enterprise"
 #acceptLicenseAgreement: "yes"

volumes:
 data:
 mode: defaultStorageClass
 defaultStorageClass:
 requests:
 storage: 2Gi

For details of all Neo4j Helm chart configuration options, see Configure and install Neo4j using a
customized Helm chart.

By default, the helm chart installs Neo4j Community Edition. If you want to install Neo4j
Enterprise Edition, uncomment the configuration parameters edition: "enterprise"
and acceptLicenseAgreement: "yes" in my-neo4j.values.yaml.

5.6.3. Create a Neo4j instance using dynamically provisioned storage

1. Ensure your Helm chart repositories are up to date:

helm repo update

2. Install Neo4j using the deployment values file created in Create a Helm deployment values file:

helm install my-neo4j-release neo4j/neo4j-standalone -f my-neo4j.values.yaml

NAME: my-neo4j-release
LAST DEPLOYED: Thu Jun 10 10:43:01 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thank you for installing neo4j.

Your release "my-neo4j-release" has been installed .

To view the progress of the rollout try:

 $ kubectl rollout status --watch --timeout=600s statefulset/my-neo4j-release

Once rollout is complete you can log in to Neo4j at "neo4j://my-neo4j-
release.default.svc.cluster.local:7687". Try:

 $ kubectl run --rm -it --image "neo4j:4.3.21" cypher-shell \
 -- cypher-shell -a "neo4j://my-neo4j-release.default.svc.cluster.local:7687" -u neo4j

Graphs are everywhere!

The command creates a Neo4j StatefulSet that relies on the default Kubernetes StorageClass to

96

dynamically create a persistent volume. Generally speaking, when using Docker Desktop this volume
will not survive a Kubernetes restart.

3. Run the kubectl rollout command provided in the output of helm install to watch the Neo4j’s
rollout until it is complete.

kubectl rollout status --watch --timeout=600s statefulset/my-neo4j-release

Since you have not passed a password for the neo4j user, the Neo4j Helm chart has
set an automatically generated one. You can find it in the Helm install output. Please
make a note of it.

5.6.4. Verify the installation

1. Check that statefulset is OK. Initially it will not be ready but just check there is something there.

kubectl get statefulsets

NAME READY AGE
<release-name> 1/1 5m11s

2. Check that the PVC is OK (the STATUS must be Bound):

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
data-<release-name>-0 Bound <release-name>-pv 10Gi RWO manual 8m36s

3. Check that the pod is READY:

kubectl get pods

NAME READY STATUS RESTARTS AGE
<release-name>-0 1/1 Running 0 5m53s

4. Check that the pod logs look OK:

kubectl exec <pod-name> -- tail -n50 /logs/neo4j.log

97

Changed password for user 'neo4j'.
Directories in use:
 home: /var/lib/neo4j
 config: /config/
 logs: /data/logs
 plugins: /var/lib/neo4j/plugins
 import: /var/lib/neo4j/import
 data: /var/lib/neo4j/data
 certificates: /var/lib/neo4j/certificates
 run: /var/lib/neo4j/run
Starting Neo4j.
2021-06-02 17:38:27.791+0000 INFO Command expansion is explicitly enabled for configuration
2021-06-02 17:38:27.819+0000 INFO Starting...
2021-06-02 17:38:31.195+0000 INFO ======== Neo4j 4.3.21 ========
2021-06-02 17:38:34.168+0000 INFO Initializing system graph model for component 'security-users' with
version -1 and status UNINITIALIZED
2021-06-02 17:38:34.188+0000 INFO Setting up initial user from `auth.ini` file: neo4j
2021-06-02 17:38:34.190+0000 INFO Creating new user 'neo4j' (passwordChangeRequired=false,
suspended=false)
2021-06-02 17:38:34.205+0000 INFO Setting version for 'security-users' to 2
2021-06-02 17:38:34.214+0000 INFO After initialization of system graph model component 'security-
users' have version 2 and status CURRENT
2021-06-02 17:38:34.223+0000 INFO Performing postInitialization step for component 'security-users'
with version 2 and status CURRENT
2021-06-02 17:38:34.561+0000 INFO Bolt enabled on 0.0.0.0:7687.
2021-06-02 17:38:36.910+0000 INFO Remote interface available at http://localhost:7474/
2021-06-02 17:38:36.912+0000 INFO Started.

5. Check that the services look OK:

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
3d1h
my-neo4j-release ClusterIP 10.103.103.142 <none> 7687/TCP,7474/TCP,7473/TCP
2d8h
my-neo4j-release-admin ClusterIP 10.99.11.122 <none>
6362/TCP,7687/TCP,7474/TCP,7473/TCP 2d8h
my-neo4j-release-neo4j LoadBalancer 10.110.138.165 localhost
7474:31237/TCP,7473:32026/TCP,7687:32169/TCP 2d3h

6. Use port forwarding to get access to the browser:

kubectl port-forward svc/<release-name> tcp-bolt tcp-http tcp-https

7. In a web browser, open the Neo4j Browser at http://localhost:7474.

8. Use the automatically generated password (as printed in the output of the helm install command) or
the one you have set up with the helm install command.

5.6.5. Uninstall Neo4j and clean up your Docker Desktop

Uninstall Neo4j Helm deployment

1. Uninstall Neo4j Helm deployment.

helm uninstall <release-name>

98

http://localhost:7474

release "<release-name>" uninstalled

2. Check the name of the PersistentVolumeClaim (pvc):

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
data-<release-name>-0 Bound <release-name>-pv 1Ti RWO manual 43h

If you re-create Neo4j with the same settings, it will pick up the PVC again, and all
the data is still on it.

When you use dynamically provisioned volumes and delete the PersistentVolume,
the underlying data may or may not be removed, depending on the Docker Desktop
version and configuration.

Fully remove all the data and resources

To fully remove all the data and resources, delete the PersistentVolumeClaim in Kubernetes.

The dynamically provisioned volumes are automatically removed when the
PersistentVolumeClaim is deleted.

kubectl delete pvc <pvc-name>

persistentvolumeclaim "data-<release-name>-0" deleted

5.7. Configure and install Neo4j using Helm
Helm is different from “package managers”, such as apt, yum, and npm, because in addition to installing
applications, Helm allows rich configuration of applications. The customized configuration should be
expressed declaratively in a YAML formatted file, and then passed during installation.

 For more information, see Helm official documentation.

5.7.1. Create a custom values.yaml file

1. To see what options are configurable on the neo4j/neo4j-standalone chart, use helm show values:

helm show values neo4j/neo4j-standalone

Default values for Neo4j.
This is a YAML-formatted file.

neo4j:

99

https://helm.sh/docs/intro/using_helm/#customizing-the-chart-before-installing

 # Name of your cluster
 name: ""

 # If password is not set or empty a random password will be generated during installation
 password: ""

 # Neo4j Edition to use (community|enterprise)
 edition: "community"
 # set edition: "enterprise" to use Neo4j Enterprise Edition
 #
 # To use Neo4j Enterprise Edition you must have a Neo4j license agreement.
 #
 # More information is also available at: https://neo4j.com/licensing/
 # Email inquiries can be directed to: licensing@neo4j.com
 #
 # Set acceptLicenseAgreement: "yes" to confirm that you have a Neo4j license agreement.
 acceptLicenseAgreement: "no"
 #
 # set offlineMaintenanceModeEnabled: true to restart the StatefulSet without the Neo4j process
running
 # this can be used to perform tasks that cannot be performed when Neo4j is running such as `neo4j-
admin dump`
 offlineMaintenanceModeEnabled: false
 #
 # set resources for the Neo4j Container. The values set will be used for both "requests" and
"limit".
 resources:
 cpu: "1000m"
 memory: "2Gi"

Volumes for Neo4j
volumes:
 data:
 # REQUIRED: specify a volume mode to use for data
 # Valid values are share|selector|defaultStorageClass|volume|volumeClaimTemplate|dynamic
 # To get up-and-running quickly, for development or testing, use "defaultStorageClass" for a
dynamically provisioned volume of the default storage class.
 mode: ""

 # Only used if mode is set to "selector"
 # Will attach to existing volumes that match the selector
 selector:
 storageClassName: "manual"
 accessModes:
 - ReadWriteOnce
 requests:
 storage: 100Gi
 # A helm template to generate a label selector to match existing volumes n.b. both
storageClassName and label selector must match existing volumes
 selectorTemplate:
 matchLabels:
 app: "{{ .Values.neo4j.name }}"
 helm.neo4j.com/volume-role: "data"

 # Only used if mode is set to "defaultStorageClass"
 # Dynamic provisioning using the default storageClass
 defaultStorageClass:
 accessModes:
 - ReadWriteOnce
 requests:
 storage: 10Gi

 # Only used if mode is set to "dynamic"
 # Dynamic provisioning using the provided storageClass
 dynamic:
 storageClassName: "neo4j"
 accessModes:
 - ReadWriteOnce
 requests:
 storage: 100Gi

 # Only used if mode is set to "volume"
 # Provide an explicit volume to use
 volume:
 # If set an init container (running as root) will be added that runs:
 # `chown -R <securityContext.fsUser>:<securityContext.fsGroup>` AND `chmod -R g+rwx`
 # on the volume. This is useful for some filesystems (e.g. NFS) where Kubernetes fsUser or

100

fsGroup settings are not respected
 setOwnerAndGroupWritableFilePermissions: false

 # Example (using a specific Persistent Volume Claim)
 # persistentVolumeClaim:
 # claimName: my-neo4j-pvc

 # Only used if mode is set to "volumeClaimTemplate"
 # Provide an explicit volumeClaimTemplate to use
 volumeClaimTemplate: {}

 # provide a volume to use for backups
 # n.b. backups will be written to /backups on the volume
 # any of the volume modes shown above for data can be used for backups
 backups:
 mode: "share" # share an existing volume (e.g. the data volume)
 share:
 name: "data"

 # provide a volume to use for logs
 # n.b. logs will be written to /logs/$(POD_NAME) on the volume
 # any of the volume modes shown above for data can be used for logs
 logs:
 mode: "share" # share an existing volume (e.g. the data volume)
 share:
 name: "data"

 # provide a volume to use for csv metrics (csv metrics are only available in Neo4j Enterprise
Edition)
 # n.b. metrics will be written to /metrics/$(POD_NAME) on the volume
 # any of the volume modes shown above for data can be used for metrics
 metrics:
 mode: "share" # share an existing volume (e.g. the data volume)
 share:
 name: "data"

 # provide a volume to use for import storage
 # n.b. import will be mounted to /import on the underlying volume
 # any of the volume modes shown above for data can be used for import
 import:
 mode: "share" # share an existing volume (e.g. the data volume)
 share:
 name: "data"

 # provide a volume to use for licenses
 # n.b. licenses will be mounted to /licenses on the underlying volume
 # any of the volume modes shown above for data can be used for licenses
 licenses:
 mode: "share" # share an existing volume (e.g. the data volume)
 share:
 name: "data"

Services for Neo4j
services:
 # A ClusterIP service with the same name as the Helm Release name should be used for Neo4j Driver
connections originating inside the
 # Kubernetes cluster.
 default:
 # Annotations for the K8s Service object
 annotations: { }

 # A LoadBalancer Service for external Neo4j driver applications and Neo4j Browser
 neo4j:
 enabled: true

 # Annotations for the K8s Service object
 annotations: { }

 spec:
 # Type of service.
 type: LoadBalancer

 # in most cloud environments LoadBalancer type will receive an ephemeral public IP address
automatically. If you need to specify a static ip here use:
 # loadBalancerIP: ...

 # ports to include in neo4j service

101

 ports:
 http:
 enabled: true #Set this to false to remove HTTP from this service (this does not affect
whether http is enabled for the neo4j process)
 https:
 enabled: true #Set this to false to remove HTTPS from this service (this does not affect
whether https is enabled for the neo4j process)
 bolt:
 enabled: true #Set this to false to remove BOLT from this service (this does not affect
whether https is enabled for the neo4j process)

 # A service for admin/ops tasks including taking backups
 # This service is available even if the deployment is not "ready"
 admin:
 enabled: true
 # Annotations for the admin service
 annotations: { }
 spec:
 type: ClusterIP
 # n.b. there is no ports object for this service. Ports are autogenerated based on the neo4j
configuration

 # A "headless" service for admin/ops and Neo4j cluster-internal communications
 # This service is available even if the deployment is not "ready"
 internals:
 enabled: false
 # Annotations for the internals service
 annotations: { }
 # n.b. there is no ports object for this service. Ports are autogenerated based on the neo4j
configuration

Neo4j Configuration (yaml format)
config:
 dbms.config.strict_validation: "true"

securityContext defines privilege and access control settings for a Pod or Container. Making sure
that we dont run Neo4j as root user.
securityContext:
 runAsNonRoot: true
 runAsUser: 7474
 runAsGroup: 7474
 fsGroup: 7474
 fsGroupChangePolicy: "Always"

Readiness probes are set to know when a container is ready to be used.
Because Neo4j uses Java these values are large to distinguish between long Garbage Collection pauses
(which don't require a restart) and an actual failure.
These values should mark Neo4j as not ready after at most 5 minutes of problems (20 attempts * max
15 seconds between probes)
readinessProbe:
 failureThreshold: 20
 timeoutSeconds: 10
 periodSeconds: 5

Liveness probes are set to know when to restart a container.
Because Neo4j uses Java these values are large to distinguish between long Garbage Collection pauses
(which don't require a restart) and an actual failure.
These values should trigger a restart after at most 10 minutes of problems (40 attempts * max 15
seconds between probes)
livenessProbe:
 failureThreshold: 40
 timeoutSeconds: 10
 periodSeconds: 5

Startup probes are used to know when a container application has started.
If such a probe is configured, it disables liveness and readiness checks until it succeeds
When restoring Neo4j from a backup it's important that startup probe gives time for Neo4j to recover
and/or upgrade store files
When using Neo4j clusters it's important that startup probe give the Neo4j cluster time to form
startupProbe:
 failureThreshold: 1000
 periodSeconds: 5

top level setting called ssl to match the "ssl" from "dbms.ssl.policy"
ssl:
 # setting per "connector" matching neo4j config
 bolt:

102

 privateKey:
 secretName: # we set up the template to grab `private.key` from this secret
 subPath: # we specify the privateKey value name to get from the secret
 publicCertificate:
 secretName: # we set up the template to grab `public.crt` from this secret
 subPath: # we specify the publicCertificate value name to get from the secret
 trustedCerts:
 sources: [] # a sources array for a projected volume - this allows someone to (relatively)
easily mount multiple public certs from multiple secrets for example.
 revokedCerts:
 sources: [] # a sources array for a projected volume
 https:
 privateKey:
 secretName:
 subPath:
 publicCertificate:
 secretName:
 subPath:
 trustedCerts:
 sources: []
 revokedCerts:
 sources: []

Kubernetes cluster domain suffix
clusterDomain: "cluster.local"

Override image settings in Neo4j pod
image:
 imagePullPolicy: IfNotPresent
 # set a customImage if you want to use your own docker image
 # customImage: my-image:my-tag

additional environment variables for the Neo4j Container
env: {}

Other K8s configuration to apply to the Neo4j pod
podSpec:
 # Anti Affinity
 # If set to true then an anti-affinity rule is applied to prevent database pods with the same
`neo4j.name` running on a single Kubernetes node.
 # If set to false then no anti-affinity rules are applied
 # If set to an object then that object is used for the Neo4j podAntiAffinity
 podAntiAffinity: true

 # Name of service account to use for the Neo4j Pod (optional)
 # this is useful if you want to use Workload Identity to grant permissions to access cloud resources
e.g. cloud object storage (AWS S3 etc.)
 serviceAccountName: ""

 # How long the Neo4j pod is permitted to keep running after it has been signalled by Kubernetes to
stop. Once this timeout elapses the Neo4j process is forcibly terminated.
 # A large value is used because Neo4j takes time to flush in-memory data to disk on shutdown.
 terminationGracePeriodSeconds: 3600

 # initContainers for the Neo4j pod
 initContainers: []

 # additional runtime containers for the Neo4j pod
 containers: []

print the neo4j user password set during install to the `helm install` log
logInitialPassword: true

Jvm configuration for Neo4j
jvm:
 # If true any additional arguments are added after the Neo4j default jvm arguments.
 # If false Neo4j default jvm arguments are not used.
 useNeo4jDefaultJvmArguments: true
 # additionalJvmArguments is a list of strings. Each jvm argument should be a separate element
 additionalJvmArguments: []
 # - "-XX:+HeapDumpOnOutOfMemoryError"
 # - "-XX:HeapDumpPath=/logs/neo4j.hprof"

You can amend any of these settings in a values.yaml file. Passing that file during installation overrides
the default Helm chart configuration of the Neo4j installation on Kubernetes and the configuration of

103

the Neo4j database itself.

2. Create the neo4j-values.yaml file with the your preferred configuration. For example:

neo4j-values.yaml

neo4j:
 # Set the initial password. You cannot use `neo4j` as this is the default password.
 password: "my-password"
 resources:
 cpu: "2"
 memory: "5Gi"

volumes:
 data:
 mode: "defaultStorageClass"

Neo4j configuration (yaml format)
config:
 dbms.default_database: "neo4j"
 dbms.config.strict_validation: "true"

3. Pass the neo4j-values.yaml file during installation.

helm install <release-name> neo4j/neo4j-standalone -f neo4j-values.yaml

To see the values that have been set for a given release, use helm get values
<release-name>.

Some examples of possible K8s configurations
◦ Configure (or disable completely) the Kubernetes LoadBalancer that exposes Neo4j outside the

Kubernetes cluster by modifying the externalService object in the values.yml file.

◦ Set the securityContext used by Neo4j Pods by modifying the securityContext object in the
values.yml file.

◦ Configure manual persistent volume provisioning or set the StorageClass to be used as the
Neo4j persistent storage.

Some examples of possible Neo4j configurations
◦ All Neo4j configuration (neo4j.conf) settings can be set directly on the config object in the

values.yaml file.

◦ Neo4j can be configured to use SSL certificates contained in Kubernetes Secrets by modifying
the ssl object in the values file.

5.7.2. Set Neo4j configuration

The Neo4j Helm chart does not use a neo4j.conf file. Instead, the Neo4j configuration is set in the Helm
deployment’s values.yaml file under the config object.

The config object should contain a string map of neo4j.conf setting name to value. For example, this
config object configures the Neo4j metrics:

104

Neo4j configuration (yaml format)
config:
 metrics.enabled: "true"
 metrics.namespaces.enabled: "false"
 metrics.csv.interval: "10s"
 metrics.csv.rotation.keep_number: "2"
 metrics.csv.rotation.compression: "NONE"

All Neo4j config values must be YAML strings. It is important to put quotes around the
values, such as "true", "false", and "2", so that they are handled correctly as strings.

All neo4j.conf settings are supported except for dbms.jvm.additional. Additional JVM settings can be set
on the jvm object in the Helm deployment values.yaml file, as shown in the example:

Jvm configuration for Neo4j
jvm:
 additionalJvmArguments:
 - "-XX:+HeapDumpOnOutOfMemoryError"
 - "-XX:HeapDumpPath=/logs/neo4j.hprof"

To find out more about configuring Neo4j and the neo4j.conf file, see Configuration and The neo4j.conf file.

5.7.3. Set an initial password

You can set initial password for accessing Neo4j in the values.yaml file. If no initial password is set, the
Neo4j helm chart will automatically generate one.

neo4j:
 # If not set or empty a random password will be generated
 password: ""

The password will be printed out in the Helm install output, unless --set logInitialPassword=false is
used.

The initial Neo4j password is stored in a Kubernetes Secret. The password can be extracted from the
Secret using this command:

kubectl get secret <release-name>-auth -oyaml | yq -r '.data.NEO4J_AUTH' | base64 -d

To change the initial password, follow the steps in Maintenance operations - Reset the
Neo4j user password.

Once you change the password in Neo4j, the password stored in Kubernetes Secrets
will still exist but will no longer be valid.

5.7.4. Configure SSL

Neo4j SSL Framework can be used with Neo4j Helm charts. SSL public certificates and private keys to use
with a Neo4j Helm deployment must be stored in Kubernetes Secrets.

To enable Neo4j SSL policies, configure the ssl.<policy name> object in the Neo4j Helm deployment’s

105

values.yaml file to reference the Kubernetes Secrets containing the SSL certificates and keys to use. This
example shows how to configure the bolt ssl policy:

ssl:
 bolt:
 privateKey:
 secretName: bolt-cert
 subPath: private.key
 publicCertificate:
 secretName: bolt-cert
 subPath: public.crt

SSL policy objects can be specified for bolt, https, fabric, and backup.

When a private key is specified in the values.yaml file, the Neo4j ssl policy is enabled automatically. To
disable a policy, add dbms.ssl.policy.{{ $name }}.enabled: "false" to the config object.

Unencrypted http is not disabled automatically when https is enabled. If https is
enabled, add dbms.connector.http.enabled: "false" to the config object to disable
http.

5.7.5. Configure resource allocation

The resources (CPU, memory) for the Neo4j container are configured by setting neo4j.resources object in
the values.yaml file. The values set in the resources object are used for the Neo4j container’s resource
request and resource limit. For more information, see the Kubernetes container resources documentation.

neo4j:
 resources:
 cpu: "2"
 memory: "5Gi"

Then, you configure Neo4j to make use of the memory provided to the container. In particular, ensure that
dbms.memory.heap.max_size and dbms.memory.pagecache.size combined do not exceed the memory
configuration of the Neo4j container.
In Kubernetes, if the processes running in the Neo4j container exceed the configured memory limit, then
they will be killed by the underlying operating system. To avoid this, a good heuristic is to allow an
additional 1GB of memory headroom so that heap + pagecache + 1GB < available memory.

For example, a 5GB container could be configured like this:

neo4j:
 resources:
 cpu: "2"
 memory: "5Gi"

Neo4j configuration (yaml format)
config:
 dbms.memory.heap.initial_size: "3G"
 dbms.memory.heap.max_size: "3G"
 dbms.memory.pagecache.size: "1G"

dbms.memory.pagecache.size and dbms.memory.heap.initial_size are not the only settings available in
Neo4j to manage memory usage. For full details of how to configure memory usage in Neo4j, see

106

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Performance - Memory Configuration.

5.7.6. Configure a service account

In some deployment situations, it may be desirable to assign a Kubernetes Service Account to the Neo4j
pod. For example, if processes in the pod want to connect to services that require Service Account
authorization. To configure the Neo4j pod to use a Kubernetes service account, set
podSpec.serviceAccountName to the name of the service account to use.

For example:

neo4j-values.yaml
neo4j:
 password: "my-password"

podSpec:
 serviceAccountName: "neo4j-service-account"

The service account must already exist; the Neo4j Helm chart will not create or configure
the Service Account.

5.7.7. Configure a custom container image

The helm chart uses the official Neo4j Docker image that matches the version of the Helm chart. To
configure the helm chart to use a different container image, set the image.customImage property in the
values.yaml file.

This can be necessary when public container repositories are not accessible for security reasons. For
example, this values.yaml file configures Neo4j to use my-container-repository.io as the container
repository:

neo4j-values.yaml
neo4j:
 password: "my-password"

image:
 customImage: "my-container-repository.io/neo4j:4.3-enterprise"

5.8. Volume mounts and persistent volumes with the Neo4j
Helm charts

5.8.1. Volume mounts

A volume mount is part of a Kubernetes Pod spec that describes how and where a volume is mounted
within a container.

The Neo4j Helm chart creates the following volume mounts:

• backups mounted at /backups

107

• data mounted at /data

• import mounted at /import

• licenses mounted at /licenses

• logs mounted at /logs

• metrics mounted at /metrics (Neo4j Community Edition does not generate metrics)

It is also possible to specify a plugins volume mount (mounted at /plugins), but this is not created by the
default Helm chart.

5.8.2. Persistent volumes

PersistentVolume (PV) is a storage resource in the Kubernetes cluster that has a lifecycle independent of
any individual Pod that uses the PV.
PersistentVolumeClaim (PVC) is a request for a storage resource by a user. PVCs consume PV resources.
For more information about what PVs are and how they work, see the Kubernetes official documentation.

The type of PV used and its configuration can have a significant effect on the performance of Neo4j. Some
PV types are not suitable for use with Neo4j at all.

The volume type used for the data volume mount is particularly important. Neo4j supports the following
PV types for the data volume mount:

• awsElasticBlockStore (For more information, see Quickstart with AWS).

• azureDisk (For more information, see Quickstart with Azure).

• gcePersistentDisk (For more information, see Quickstart with GKE).

• hostPath when using Docker Desktop [4].

Neo4j data volume mounts do not support:

• azureFile

• nfs

For volume mounts other than the data volume mount, generally, all PV types are presumed to work.

hostPath, local, and emptyDir types are expected to perform well, provided suitable
underlying storage, such as SSD, is used. However, these volume types have operational
limitations and are not recommended.

It is also not recommended to use an HDD or cloud storage, such as AWS S3 mounted
as a drive.

5.8.3. Mapping volume mounts to persistent volumes

By default, the Neo4j Helm chart uses a single PV, named data, to support all chart’s volume mounts.

The volume used for each volume mount can be changed by modifying the volumes.<volume name> object

108

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

in the Helm chart values.

The Neo4j Helm chart volumes object supports different modes:

mode: share

Description

The volume mount shares the underlying volume from one of the other volume objects.

Example

The logs volume mount uses the data volume (this is the default behaviour).

volumes:
 logs:
 mode: "share"
 share:
 name: "data"

mode: defaultStorageClass

Description

The volume mount is backed by a PV that Kubernetes dynamically provisions using the default
StorageClass.

Example

A dynamically provisioned data volume with a size of 10Gi.

volumes:
 data:
 mode: "defaultStorageClass"
 defaultStorageClass:
 requests:
 storage: 10Gi

For the data volume, if requests.storage is not set, defaultStorageClass will default to
a 10Gi volume. For all other volumes, defaultStorageClass.requests.storage must be
set explicitly when using defaultStorageClass mode.

mode: dynamic

Description

The volume mount is backed by a PV that Kubernetes dynamically provisions using the specified
StorageClass.

Example

A dynamically provisioned import volume with a size of 1Ti using the neo4j storage class.

109

volumes:
 import:
 mode: dynamic
 dynamic:
 storageClassName: "neo4j"
 requests:
 storage: 1Ti

For the data volume, if requests.storage is not set, dynamic will default to a 100Gi
volume. For all other volumes, dynamic.requests.storage must be set explicitly when
using dynamic mode.

mode: volume

Description

A complete Kubernetes volume object can be specified for the volume mount. Generally, volumes
specified in this way have to be manually provisioned.

volume can be any valid Kubernetes volume type. This mode can be used in a variety of ways:

• Attach an existing PersistentVolume by name.

• Attach cloud disks/volumes, e.g., gcePersistentDisk, azureDisk, or awsElasticBlockStore without
creating Kubernetes PersistentVolumes.

• Attach the contents of a ConfigMap or Secret (as a read only volume).

For details of how to specify volume objects, see the Kubernetes documentation.

Example - mount an AWS EBS volume

The data volume mount backed by the specified EBS volume. When this method is used, the EBS
volume must already exist.

volumes:
 data:
 mode: volume
 volume:
 awsElasticBlockStore:
 volumeID: "vol-0795be227aff63b2a"
 fsType: ext4

Set file permissions on mounted volumes

The Neo4j helm chart supports an additional field not present in normal Kubernetes volume objects:
setOwnerAndGroupWritableFilePermissions: true|false. If set to true, an initContainer will be run to
modify the file permissions of the mounted volume, so that the contents can be written and read by the
Neo4j process. This is to help with certain volume implementations that are not aware of the
SecurityContext set on pods using them.

Example - reference an existing PersistentVolume

The backups volume mount backed by the specified PVC. When this method is used, the
persistentVolumeClaim object must already exist.

110

https://kubernetes.io/docs/concepts/storage/volumes/

volumes:
 backups:
 mode: volume
 volume:
 setOwnerAndGroupWritableFilePermissions: true
 persistentVolumeClaim:
 claimName: my-neo4j-pvc

mode: selector

Description

The volume to use is chosen from the existing PVs based on the provided selector object and a PVC,
which is dynamically generated.

If no matching PVs exist, the Neo4j pod will be unable to start. To match, a PV must have the specified
StorageClass, match the label selectorTemplate, and have sufficient storage capacity to meet the
requested storage amount.

Example

The data volume chosen from the available volumes with the neo4j storage class and the label
developer: alice.

volumes:
 import:
 mode: selector
 selector:
 storageClassName: "neo4j"
 requests:
 storage: 128Gi
 selectorTemplate:
 matchLabels:
 developer: "alice"

For the data volume, if requests.storage is not set, selector will default to a 100Gi
volume. For all other volumes, selector.requests.storage must be set explicitly when
using selector mode.

mode: volumeClaimTemplate

Description

A complete Kubernetes volumeClaimTemplate object is specified for the volume mount. Generally,
volumes specified in this way are dynamically provisioned. For details of how to specify
volumeClaimTemplate objects, see the Kubernetes documentation.

In all cases, do not forget to set the mode field when customizing the volumes object. If
not set, the default mode is used, regardless of the other properties set on the volume
object.

5.8.4. Provision persistent volumes with Neo4j Helm chart

With the Neo4j Helm charts, you can provision a PV manually or dynamically, using the default or a
custom StorageClass.

111

https://kubernetes.io/docs/home/

• Manual provisioning of persistent volumes. Recommended Default
Must be labelled with an app label that matches the name of the Neo4j Helm release.

• Dynamic provisioning using the default StorageClass. Recommended only for small-scale development
work.

• Dynamic provisioning using a dedicated StorageClass.

Provision persistent volumes manually

You provision a PV for Neo4j to use by explicitly creating it (for example, using kubectl create -f
persistentVolume.yaml) before installing the Neo4j Helm release. If no suitable PV exists, the Neo4j pod
will not start.

Why prefer manual provisioning?

• Manual provisioning provides the strongest protection against the automatic removal of volumes
containing critical data.

• The performance of Neo4j is very dependent on the latency, IOPS capacity, and throughput of the
storage it is using. Manual provisioning is the best way to ensure the underlying storage is
configured for Neo4j performance.

• Explicitly configuring the underlying storage before installing Neo4j is worthwhile because
changing the underlying storage after installation while preserving the data stored in Neo4j, is
difficult and may cause significant Neo4j downtime.

Link a Neo4j Helm release to the manually provisioned volumes

A Neo4j Helm release uses only manually provisioned PVs that have:

• storageClassName set to manual

• An app label — set in their metadata, which matches the name of the Neo4j Helm release.

• Sufficient storage capacity — the PV capacity must be greater than or equal to the value of
volumes.data.selector.requests.storage set for the Neo4j Helm release (default is 100Gi).

For example, if the release name is my-release and the requested storage is 100Gi, then the PV object
must have storageClassName, app label, and capacity as shown in this example:

apiVersion: v1
kind: PersistentVolume
metadata:
 labels:
 app: "my-release"
spec:
 capacity:
 Storage: 100Gi
 storageClassName: "manual"

Then, you install the Neo4j release using the same name:

helm install "my-release" neo4j/neo4j-standalone

112

Configure the Neo4j Helm release for manual provisioning

The Neo4j helm chart uses manual provisioning by default, so it is unnecessary to set any chart values
explicitly. The following default values are used for manual provisioning:

volumes:
 data:
 mode: "selector"
 selector:
 storageClassName: "manual"
 requests:
 storage: 100Gi

With this method a PVC is dynamically generated for the manually provisioned PV.

An alternative method for manual provisioning is to use a manually provisioned PVC. This is supported by
the Neo4j Helm chart using the volume mode. For example, to use a pre-existing PVC called my-neo4j-pvc
set these values:

volumes:
 data:
 mode: "volume"
 volume:
 persistentVolumeClaim:
 claimName: my-neo4j-pvc

Configure manual provisioning of persistent volumes

The instructions for manually provisioning PVs vary according to the type of PV being used and the
underlying infrastructure. In general, there are two steps:

1. Create the disk/volume to be used for storage in the underlying infrastructure. For example:

◦ If using a gcePersistentDisk volume — in Google Compute Engine, create the Persistent Disk.

◦ If using a hostPath volume — on the host node, create the path (directory).

2. Create a PV in Kubernetes that references the underlying resource created in step 1.

a. Ensure that the created PV’s app label matches the name of the Neo4j Helm release.

b. Ensure that the created PV’s capacity.storage matches the storage available on the underlying
infrastructure.

The performance of Neo4j is very dependent on the latency, IOPS capacity, and
throughput of the storage it is using. For the best performance of Neo4j, use the best
available disks (e.g., SSD) and set IOPS throttling/quotas to high values. For some cloud
providers, IOPS throttling is proportional to the size of the volume. In these cases, the
best performance is achieved by setting the size of the volume based on the desired
IOPS rather than the amount required for data storage.

113

Provision a persistent volume

Platform-specific instructions for provisioning PVs can be found in the Quickstart guides:

• Quickstart: Deploy a Neo4j instance to a Google Kubernetes Engine (GKE) cluster

• Quickstart: Deploy a Neo4j instance to an AWS Elastic Kubernetes Service (EKS) cluster

• Quickstart: Deploy a Neo4j instance to an Azure Kubernetes Service (AKS) cluster

Reuse a persistent volume

After uninstalling the Neo4j Helm chart, both the PVC and the PV remain and can be reused by a new
install of the helm chart. If you delete the PVC, the PV moves into a Released status and will not be
reusable.

To be able to reuse the PV by a new install of the Neo4j Helm chart, remove its connection to the previous
PVC:

1. Edit the PV by running the following command:

kubectl edit pv <pv-name>

2. Remove the section spec.claimRef.

The PV goes back to the Available status and can be reused by a new install of the Neo4j Helm chart.

Provision persistent volumes dynamically

When using dynamic provisioning, the Neo4j release depends on Kubernetes to create a PV on-demand
when Neo4j is installed.
For more information on dynamic provisioning, see the Kubernetes official documentation.

Why use dynamic provisioning?

Dynamic provisioning of PV for Neo4j is a good choice for development and test environments, where
the ease of installation is more important than flexibility in managing the underlying storage and
preservation of the stored data in all situations. With dynamic provisioning, a Neo4j Helm release uses
either a specific Kubernetes StorageClass or the default StorageClass of the running Kubernetes
cluster.

Using the default StorageClass is the quickest way to spin up and run Neo4j for simple tests, handling
small amounts of data. However, it is not recommended for large amounts of data, as it may lead to
performance issues.

It is recommended to create a dedicated StorageClass for Neo4j so that the underlying storage
configuration can be specified to match the Neo4j usage as much as possible.

The volumes object in the Neo4j values.yaml file is used to configure dynamic provisioning.

114

https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

Use the default StorageClass to dynamically provision persistent volumes

To use the default StorageClass and a storage size 100Gi, set the following values:

volumes:
 data:
 mode: "defaultStorageClass"
 defaultStorageClass:
 requests:
 storage: 100Gi

Use a dedicated StorageClass to dynamically provision persistent volumes

To use a dedicated StorageClass, you define it in a YAML file and create it using kubectl create. The
permitted specification values depend on the provisioner being used. Full details of StorageClass
specification are covered in the Kubernetes official documentation.

StorageClass called neo4j-storage that has a storage size 100Gi

volumes:
 import:
 mode: dynamic
 dynamic:
 storageClassName: "neo4j-storage"
 requests:
 storage: 1Ti

The performance of Neo4j is very dependent on the latency, IOPS capacity, and
throughput of the storage it is using. For the best performance of Neo4j, use the best
available disks (e.g., SSD) and set IOPS throttling/quotas to high values. For some cloud
providers, IOPS throttling is proportional to the size of the volume. In these cases, the
best performance is achieved by setting the size of the volume based on the desired
IOPS rather than the amount required for data storage.

5.9. Access a Neo4j Helm release
A Neo4j instance is accessible via Kubernetes Services. Neo4j has a number of different interfaces for
different application and operational purposes. For more details, see Neo4j ports.

5.9.1. Supported Kubernetes services

The Neo4j Helm chart publishes three K8s services:

• Neo4j Service — a ClusterIP service for application neo4j/bolt and http(s) connections to the Neo4j
database, originating from inside the Kubernetes cluster.

• Admin Service — a “Headless” (DNS only) service that includes all Neo4j ports. It can be used for
Neo4j DBMS administration, performing backups, and collecting metrics.

• External — a LoadBalancer service for application neo4j/bolt and http(s) connections originating from
outside the Kubernetes cluster.

115

https://kubernetes.io/docs/concepts/storage/storage-classes/

Table 12. K8s services per Neo4j interface

Neo4j Interface Default Port Neo4j Service Admin Service External Service

Bolt (neo4j:// and
bolt:// protocols)

7687 Yes Yes * Yes

Neo4j Browser HTTP 7474 Yes Yes * Yes

Neo4j Browser HTTPS 7473 Yes Yes * Yes

Neo4j Cypher HTTP
API

7474 Yes Yes * Yes

Neo4j Cypher HTTPS
API

7473 Yes Yes * Yes

Neo4j Backup 6362 No Yes No but configurable

Graphite Monitoring 2003 No Yes No

Prometheus Metrics 2004 No Yes No

Java Management
Extensions (JMX)

3637 No No but configurable No

*The Admin service bypasses health checks. This allows it to be used to make connections for
administrative purposes when the database is in an unhealthy state. However, you must not use it to
connect from applications that require the database to be in a healthy state.

5.9.2. Applications accessing Neo4j from inside Kubernetes

Access Neo4j using DNS

To access Neo4j from an application in the same Kubernetes cluster use the Neo4j service DNS address
<release-name>.<namespace>.svc.<cluster domain>.

The default cluster domain is cluster.local and the default namespace is default. Generally, the Neo4j
service DNS address is <release-name>.default.svc.cluster.local.

For example, if using the release name my-release in the default namespace, the cluster’s DNS address
would be my-release.default.svc.cluster.local, and the bolt address for use with Neo4j drivers would
be neo4j://my-release.default.svc.cluster.local:7687.

Access Neo4j using K8s label selector

Alternatively, the Neo4j service in Kubernetes can be located using Kubernetes service discovery by
searching with the label selector: helm.neo4j.com/service=neo4j,helm.neo4j.com/instance=<release-
name>.

For example:

116

install neo4j
helm install "my-release" …
lookup installed service
kubectl get service -l helm.neo4j.com/service=neo4j,helm.neo4j.com/instance=my-release

Ad-hoc external access using kubectl port-forward

In most cases, it is possible to access the Neo4j service from a developer machine outside the Kubernetes
cluster using kubectl port-forward. To access the Neo4j service for http(s) and neo4j/bolt from a
developer machine, use the following command:

kubectl port-forward svc/<release-name> tcp-bolt tcp-http tcp-https

Neo4j is accessible via the Neo4j browser at http://localhost:7474.

5.9.3. Applications accessing Neo4j from outside Kubernetes

To access Neo4j from an application outside the Kubernetes cluster, use the IP address of the external
service. The external IP(s) of the LoadBalancer can be found using kubectl:

• Using with the service name <release-name>-external:

kubectl get service <release-name>-external -ocustom-columns=ip:.status.loadBalancer.ingress[].ip

• Using a label selector:

kubectl get service -l helm.neo4j.com/service=external,helm.neo4j.com/name=<release-name> -ocustom
-columns=ip:.status.loadBalancer.ingress[].ip

If the Kubernetes LoadBalancer implementation that you are using supports setting a static IP, the IP
address of the LoadBalancer can be configured in the Neo4j Helm release by setting
externalService.loadBalancerIP. If a static IP address is not explicitly set, then Kubernetes does not
guarantee that a dynamically assigned IP address will not change.

When exposing a Neo4j database on the Internet, it is recommended to use a static IP and configure SSL
on the exposed services. For more information, see Configure SSL.

If you have static IPs, you can associate DNS with them and obtain trusted certificates.

The ports that are exposed on the external service can be configured in the Helm release by changing the
externalService object. The default values are:

117

http://localhost:7474

externalService:
 annotations: { }
 loadBalancerIP: NULL

 ports:
 http:
 enabled: true
 https:
 enabled: true
 bolt:
 enabled: true
 backup:
 enabled: false

Disabling / enabling a port on the externalService object removes it from the load balancer but does not
affect whether it is disabled/enabled in Neo4j.

 Backup is not secure unless SSL-with-client-auth is enforced in the Neo4j configuration.

5.9.4. Customizing Kubernetes resources

The Neo4j Helm chart creates various Kubernetes resources. Some of them can be customized by adding
extra configuration to the Helm deployment values file.

Table 13. Supported K8s resources customizations

Customization values.yaml field Type

Setting a pod securityContext for the
Neo4j Pod

securityContext PodSecurityContext

Adding annotations to Services neo4jService.annotations Annotations object for ClusterIP
service.

adminService.annotations Annotations object for headless (DNS)
service.

externalService.annotations Annotations object for LoadBalancer
service.

5.9.5. Accessing Neo4j for DBMS administration and monitoring

The Neo4j Helm chart creates the admin service for the purposes of Neo4j administration. The admin
service is a “Headless” service in Kubernetes and does not depend on Neo4j health checks. Therefore, it
permits connections to Neo4j even if Neo4j is not healthy. In general, that is not desirable for applications
but can be useful for administration and debugging.

Access Neo4j using DNS

To access the admin service inside Kubernetes use the DNS address <release-name>-
admin.<namespace>.svc.<cluster domain>.

For example, if using the release name my-release in the default namespace, the cluster’s DNS address
would be my-release-admin.default.svc.cluster.local.

118

The admin service can be used to access a range of Neo4j interfaces:

• Neo4j Bolt for Neo4j administration via Cypher commands

• Neo4j Backup for taking database backups

• Graphite for metrics collection

• Prometheus for metrics collection

• Java Management Extensions (JMX) for metrics collection and JVM administration

Access Neo4j using kubectl for troubleshooting

To get an interactive cypher-shell console for troubleshooting, use this command:

kubectl run -it --rm --image neo4j:4.3.21 cypher-shell -- cypher-shell -a bolt://my-release-
admin.default.svc.cluster.local

Generally, the neo4j:// protocol is used for connecting to Neo4j. For troubleshooting, though, the direct
bolt:// protocol is used because it allows a connection in some situations where a neo4j:// connection
will not succeed.

5.10. Import Data

5.10.1. Importing data into Neo4j on Kubernetes

The Neo4j Helm chart configures a volume mount at /import as the Neo4j import directory, as described in
File locations. You place all the files that you want to import in this volume.

To import data from CSV files into Neo4j, use the command neo4j-admin import or the cypher query LOAD
CSV.

• The neo4j-admin import command can be used to do batch imports of large amounts of data into a
previously unused database and can only be performed once per database.

• LOAD CSV cypher statement can be used to import small to medium-sized CSV files into an existing
database. LOAD CSV can be run as many times as needed and does not require an empty database. For
a simple example, see Getting Started Guide → Import data.

Depending on your Neo4j configuration, some methods support fetching data to import
from a remote location (e.g., using HTTP or fetching from cloud object storage).
Therefore, it is not always necessary to place the source data files in the Neo4j import
directory.

5.10.2. Configure the import volume mount

The default configuration of the /import volume mount is to share the /data volume mount. Generally, this
is sufficient, and it is unnecessary to explicitly configure an import volume in the Helm deployment’s
values.yaml file. For the full details of configuring volume mounts for a Neo4j Helm deployment, see

119

https://neo4j.com/docs/pdf/neo4j-getting-started-4.3.pdf#cypher-intro-load-csv
https://neo4j.com/docs/pdf/neo4j-getting-started-4.3.pdf#cypher-intro-load-csv
https://neo4j.com/docs/pdf/neo4j-getting-started-4.3.pdf#cypher-intro-load-csv

Volume mounts and persistent volumes.

This example shows how to configure /import to use a dynamically provisioned Persistent Volume of the
default StorageClass:

volumes:
 import:
 mode: "defaultStorageClass"
 defaultStorageClass:
 requests:
 storage: 100Gi

5.10.3. Copy files to the import volume using kubectl cp

Files can be copied to the import volume using kubectl cp. This example shows how to copy a local
directory my-files/ to /import/files-1 to a Neo4j instance with the release name my-graph-db in the
namespace default.

kubectl cp my-files/ default/my-graph-db-0:/import/files-1

Validate: list the contents of /import/files-1
kubectl exec my-graph-db-0 -- ls /import/files-1

Instead of using kubectl cp, data can also be loaded onto the /import directory by:

• using an additional container or initContainer to load data.

• using kubectl exec to run commands to load data.

• mounting a volume that is already populated with data.

 Data must be placed in the volume’s /import directory.

5.10.4. Use neo4j-admin import

The simplest way to run neo4j-admin import is to use kubectl exec to run it in the Neo4j container.
However, running neo4j-admin import to perform a large import in the same container as the Neo4j
process may cause resource contention problems, including causing either or both processes to be OOM
Killed by the node operating system. To avoid this, either use a separate container or initContainer or
place the Neo4j Helm deployment in offline maintenance mode to run neo4j-admin import.

neo4j-admin import cannot be used to replace an existing database while Neo4j is running. To replace an
existing database, either DROP the database or put the Neo4j Helm deployment into offline maintenance
mode before running neo4j-admin import.

An alternative approach to importing data into Neo4j is to run a separate Neo4j
standalone instance outside Kubernetes, perform the import on that Neo4j instance, and
then copy the resulting database into the Kubernetes-based Neo4j instance using the
backup and restore or dump and load procedures.

120

5.11. Operations

5.11.1. Using APOC core only

APOC core is shipped with Neo4j, but it is not installed in the Neo4j plugins directory. If APOC core is the
only plugin that you want to add to Neo4j, it is not necessary to perform plugin installation as described in
Install plugins. Instead, you can configure the helm deployment to use APOC core by upgrading the
deployment with this additional setting in the values.yaml file:

Neo4j configuration (yaml format)
config:
 dbms.directories.plugins: "/var/lib/neo4j/labs"
 dbms.security.procedures.unrestricted: "apoc.*"

Once the helm upgrade rollout is complete, check APOC core by running the following cypher query using
cypher-shell or Neo4j Browser:

RETURN apoc.version()

5.11.2. Install plugins

There are two recommended methods for adding Neo4j plugins to Neo4j Helm chart deployments. You
can use:

• a custom container image.

• a plugins volume.

Add plugins using a custom container image

The best method for adding plugins to Neo4j running in Kubernetes is to create a new Docker container
image that contains both Neo4j and the Neo4j plugins. This way, you can ensure when building the
container that the correct plugin version for the Neo4j version of the container is used, and the resulting
image encapsulates all Neo4j runtime dependencies.

Building a Docker container image that is based on the official Neo4j Docker image and does not override
the official image’s ENTRYPOINT and COMMAND is the recommended method to use with the Neo4j Helm chart,
as shown in this example Dockerfile:

ARG NEO4J_VERSION
FROM neo4j:{NEO4J_VERSION}

copy my-plugins into the Docker image
COPY my-plugins/ /var/lib/neo4j/plugins

install the apoc core plugin that is shipped with Neo4j
RUN cp /var/lib/neo4j/labs/apoc-* /var/lib/neo4j/plugins

Once the docker image has been built, push it to a container repository that is accessible to your
Kubernetes cluster.

121

CONTAINER_REPOSITORY="my-container-repository.io"
IMAGE_NAME="my-neo4j"

export this so that it's accessible as a docker build arg
export NEO4J_VERSION=4.3.21-enterprise

docker build --build-arg NEO4J_VERSION --tag ${CONTAINER_REPOSITORY}/${IMAGE_NAME}:${NEO4J_VERSION} .
docker push ${CONTAINER_REPOSITORY}/${IMAGE_NAME}:${NEO4J_VERSION}

To use the image that you have created, in the Neo4j Helm deployment’s values.yaml file, set
image.customImage to use the image. For more details, see Configure a custom container image.

Many plugins require additional Neo4j configuration to work correctly. Plugin
configuration should be set on the config object in the Helm deployment’s values.yaml
file. In some cases, plugin configuration can cause Neo4j’s strict config validation to fail.
Strict config validation can be disabled by setting dbms.config.strict_validation:
"false".

Add plugins using a plugins volume

An alternative method for adding Neo4j plugins to a Neo4j Helm deployment uses a plugins volume
mount. With this method the plugin jar files are stored on a Persistent Volume that is mounted to the
/plugins directory of the Neo4j container.

The simplest way to set up a persistent plugins volume is to share the Persistent Volume that is used for
storing Neo4j data. This example shows how to configure that in the Neo4j Helm deployment values.yaml
file:

neo4j-values.yaml
volumes:
 data:
 # your data volume configuration
 ...

 plugins:
 mode: "share"
 share:
 name: "data"

Details of different ways to configure volume mounts are covered in Mapping volume mounts to persistent
volumes.

The Neo4j container now has an empty /plugins directory backed by a persistent volume. Plugin jar files
can be copied on to the volume using kubectl cp. Because it is backed by a persistent volume, plugin files
will still persist even if the Neo4j pod is restarted or moved.

Neo4j only loads plugins on startup. Therefore, you have to restart the Neo4j pod to load them once all
plugins are in place. For example:

122

Copy plugin files into Neo4j container
kubectl cp my-plugins/* <namespace>/<neo4j-pod-name>:/plugins/

Restart Neo4j
kubectl rollout restart statefulset/<neo4j-statefulset-name>

Verify plugins are still present after restart
kubectl exec <neo4j-pod-name> -- ls /plugins

5.12. Monitoring

5.12.1. Logging

When using the Helm chart, Neo4j logging output is written to files in the /logs directory. This directory is
mounted on a PersistentVolume so that logs are persisted if the pod is moved or restarted. For full details
of Neo4j logging, see Neo4j logging.

• To view the Neo4j user log (neo4j.log), use the command kubectl exec:

Follow neo4j.log

kubectl exec <neo4j-pod-name> -- tail -f /logs/neo4j.log

• To copy the log files from a Neo4j instance, use kubectl cp:

Copy all logs

$ kubectl cp <neo4j-pod-name>:/logs neo4j-logs/
$ ls neo4j-logs
debug.log neo4j.log query.log security.log

5.12.2. Log collection

The Neo4j log output can be collected from the log files and sent to a unified location using tools, such as
Fluentd (https://www.fluentd.org) or Logstash (https://www.elastic.co/logstash). We recommend running
these either as "sidecar" containers in the Neo4j pods or as separate DaemonSets.

• For more information about Pods and the sidecar pattern, see Kubernetes Pod documentation.

• For more information about DaemonSets, see Kubernetes DaemonSet documentation.

• For more information and examples of these logging patterns, see Kubernetes cluster administration
documentation.

5.12.3. Metrics

If Neo4j is configured to listen for Graphite, JMX, or Prometheus connections for metrics, those services
can be accessed as described in Access a Neo4j Helm release.

The Helm chart supports standard Neo4j metrics configuration settings, for example:

123

https://www.fluentd.org
https://www.elastic.co/logstash
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://kubernetes.io/docs/concepts/cluster-administration/logging/

To listen for Prometheus connections
Neo4j configuration (yaml format)
config:
 metrics.prometheus.enabled: "true"
 metrics.prometheus.endpoint: "0.0.0.0:2004"

To publish Graphite connections
Neo4j configuration (yaml format)
config:
 metrics.graphite.enabled: "true"
 metrics.graphite.interval: "3s"
 metrics.graphite.server: "graphite.default.svc.cluster.local:2003"

To write CSV metrics
Neo4j configuration (yaml format)
config:
 metrics.csv.enabled: "true"
 metrics.csv.interval: "10s"

To enable JMX
Neo4j configuration (yaml format)
config:
 metrics.jmx.enabled: "true"

For more information and examples, see Neo4j metrics.

5.13. Kubernetes maintenance operations

5.13.1. Online maintenance

Online maintenance does not require stopping the neo4j process. It is performed using the command
kubectl exec.

To directly run tasks:

kubectl exec <release-name>-0 -- neo4j-admin store-info --all /var/lib/neo4j/data/databases --expand
-commands

All neo4j-admin commands need the --expand-commands flag to run in the Neo4j
container. This is because the Neo4j Helm chart defines the Neo4j configuration using
command expansion to dynamically resolve some configuration parameters at runtime.

To run a series of commands, use an interactive shell:

kubectl exec -it <release-name>-0 -- bash

Processes executed using kubectl exec count towards the Neo4j container’s memory
allocation. Therefore, running tasks that use a significant amount of memory or running
Neo4j in an extremely memory-constrained configuration could cause the Neo4j
container to be terminated by the underlying Operating System.

124

5.13.2. Offline maintenance

You use the Neo4j offline maintenance mode to perform maintenance tasks that require Neo4j to be
offline. In this mode, the neo4j process is not running. However, the Neo4j Pod does run, but it never
reaches the status READY.

Put the Neo4j instance in offline mode

1. To put the Neo4j instance in offline maintenance mode, you set the offlineMaintenanceModeEnabled:
true and upgrade the helm release.

◦ You can do that by using the values.yaml file:

a. Open your values.yaml file and add offlineMaintenanceModeEnabled: true to the neo4j object:

neo4j:
 offlineMaintenanceModeEnabled: true

b. Run helm upgrade to apply the changes:

helm upgrade <release-name> neo4j/neo4j-standalone -f values.yaml

◦ Alternatively, you can set neo4j.offlineMaintenanceModeEnabled to true as part of the helm
upgrade command:

helm upgrade <release-name> neo4j/neo4j-standalone --version={neo4j-version-exact} --set
neo4j.offlineMaintenanceModeEnabled=true

2. Poll kubectl get pods until the pod has restarted (STATUS=Running).

kubectl get pod <release-name>-0

3. Connect to the pod with an interactive shell:

kubectl exec -it "<release-name>-0" -- bash

4. View running java processes:

jps

19 Jps

The result shows no running java process other than jps itself.

Run task in offline mode

Offline maintenance tasks are performed using the command kubectl exec.

125

• To directly run tasks:

kubectl exec <release-name>-0 -- neo4j-admin store-info --all /var/lib/neo4j/data/databases --expand
-commands

• To run a series of commands, use an interactive shell:

kubectl exec -it <release-name>-0 -- bash

• For long running commands, use a shell and run tasks using nohup so they continue if the kubectl exec
connection is lost:

kubectl exec -it <release-name>-0 -- bash
 $ nohup neo4j-admin check-consistency --database=neo4j --expand-commands &>job.out </dev/null &
 $ tail -f job.out

Put the Neo4j instance in online mode

When you finish with the maintenance tasks, return the Neo4j instance to a normal operation:

• You can do that by using the values.yaml file:

1. Open your values.yaml file and add offlineMaintenanceModeEnabled: false to the neo4j object:

neo4j:
 offlineMaintenanceModeEnabled: false

2. Run helm upgrade to apply the changes:

helm upgrade <release-name> neo4j/neo4j-standalone -f values.yaml

• Alternatively, you can run helm upgrade with the flag set to false:

helm upgrade <release-name> neo4j/neo4j-standalone --version={neo4j-version-exact} --set
neo4j.offlineMaintenanceModeEnabled=false

5.13.3. Reset the neo4j user password

You reset the neo4j user password by disabling authentication and then re-enabling it.

1. In the values.yaml file, set dbms.security.auth_enabled: to false to disable the authentication:

All Neo4j config values must be YAML strings, not YAML booleans. Therefore, make
sure you put quotes around values, such as "true" or "false", so that they are
handled correctly by Kubernetes.

126

Neo4j Configuration (yaml format)
config:
 dbms.security.auth_enabled: "false"

2. Run the following command to apply the changes:

helm upgrade <release-name> neo4j/neo4j-standalone -f values.yaml

Authentication is now disabled.

3. Connect with cypher-shell and set the desired password:

ALTER USER neo4j SET PASSWORD '<new-password>'

4. Update the Neo4j configuration to enable authentication:

Neo4j Configuration (yaml format)
config:
 dbms.security.auth_enabled: "true"

5. Run the following command to apply the update and re-enable authentication:

helm upgrade <release-name> neo4j/neo4j-standalone -f values.yaml

Authentication is now enabled, and the Neo4j user password has been reset to the desired password.

5.13.4. Dump and load databases (offline)

You can use the neo4j-admin dump command to make a full backup (an archive) of an offline database(s)
and neo4j-admin load to load it back into a Neo4j deployment. These operations are performed in offline
maintenance mode.

Dump the neo4j and system databases

1. Put the Neo4j instance in offline mode.

2. Dump neo4j and system databases:

neo4j-admin dump --expand-commands --database=system --to /backups/system.dump && neo4j-admin dump
--expand-commands --database=neo4j --to /backups/neo4j.dump

3. Put the Neo4j instance in online mode.

4. Verify that Neo4j is working by refreshing Neo4j Browser.

For information about the command syntax, options, and usage, see Back up an offline
database.

127

Load the neo4j and system databases

1. Put the Neo4j instance in offline mode.

2. Run neo4j-admin load commands:

neo4j-admin load --expand-commands --database=system --from /backups/system.dump && neo4j-admin load
--expand-commands --database=neo4j --from /backups/neo4j.dump

For information about the command syntax, options, and usage, see Restore a
database dump.

3. Put the Neo4j instance in online mode.

4. Verify that Neo4j is working by refreshing Neo4j Browser.

5.13.5. Back up and restore a Neo4j database (online) Enterprise
edition

You can use the neo4j-admin backup command to make a full or incremental backup of an online
database(s) and neo4j-admin restore to restore it in a live Neo4j DBMS. These operations are performed
in online maintenance mode.

Back up the neo4j database

To back up the neo4j database, run the following command:

kubectl exec <release-name>-0 -- neo4j-admin backup --from=localhost:6362 --database=neo4j --backup
-dir=/backups --expand-commands

You may also want to use the option --include-metadata=all. It creates a cypher script,
which you can later use to restore the database’s users, roles, and privileges.

For information about the command syntax, options, memory configuration, and usage,
see Back up an online database.

Note that this operation consumes resources (CPU, RAM) in the Neo4j container
(competing with Neo4j itself). If your resources are constrained, you can run the backup
in a sidecar container in the same pod or from a remote K8s Pod/Job.

Restore neo4j database

To restore the neo4j database, you need to execute neo4j-admin restore command and create the
database in the system db.

For information about the command syntax, options, and usage, see Restore a database
backup.

128

1. Connect to the Neo4j standalone instance:

kubectl exec -it <release-name>-0 -- bash

2. Connect to your system database using cypher-shell:

cypher-shell -u neo4j -p <password> -d system

3. Drop the neo4j database and exit:

DROP DATABASE neo4j;

:exit;

4. Run the neo4j-admin restore command:

neo4j-admin restore --database=neo4j --from=/backups/neo4j --expand-commands

5. Connect to your system database using cypher-shell:

cypher-shell -u neo4j -p <password> -d system

6. Create neo4j database.

CREATE DATABASE neo4j;

7. Open the browser at http://<external-ip>:7474/browser/ and check that all data is successfully
restored.

8. Execute cypher command against neo4j database:

MATCH (n) RETURN n

If you have backed up your database with the option --include-metadata, you can
manually restore the users and roles metadata. For more information, see Restore a
database backup → Example.

5.13.6. Upgrade Neo4j on Kubernetes

To upgrade from Neo4j Community to Enterprise edition, run:

helm upgrade <release-name> neo4j/neo4j-standalone --set neo4j.edition=enterprise --set
neo4j.acceptNeo4jLicenseAgreement=yes

To upgrade to the next patch release of Neo4j, update your Neo4j values.yaml file and upgrade the helm

129

http://<external-ip>:7474/browser/

release.

1. Open the values.yaml file, using the code editor of your choice, and add the following line to the image
object:

image:
 customImage: neo4j:4.3.21

2. Run helm upgrade to apply the changes:

helm upgrade <release-name> neo4j/neo4j-standalone -f values.yaml

5.13.7. Scale a Neo4j deployment

To increase or decrease the resources (CPU, memory) available to Neo4j, change the neo4j.resources
object in the values.yaml file to set the desired resource usage, and then perform a helm upgrade.

If you change the memory allocated to the Neo4j container, you should also change the
Neo4j’s memory configuration (dbms.memory.heap.max_size and
dbms.memory.pagecache.size in particular). See Configure Resource Allocation for more
details.

For example:

1. Create a values.yaml file for a Neo4j instance with 1 CPU and 3 GB of memory:

values.yaml
neo4j:
 resources:
 cpu: "1"
 memory: "3Gi"

Neo4j Configuration (yaml format)
config:
 dbms.memory.heap.initial_size: "2G"
 dbms.memory.heap.max_size: "2G"
 dbms.memory.pagecache.size: "500m"

2. Run helm install to create the instance:

helm install <release-name> neo4j/neo4j-standalone -f values.yaml

3. Modify the values.yaml file to increase to 2 CPU and 4 GB of memory (allocating the additional
memory to the pagecache):

130

values.yaml
neo4j:
 resources:
 cpu: "2"
 memory: "4Gi"

Neo4j Configuration (yaml format)
config:
 dbms.memory.heap.initial_size: "2G"
 dbms.memory.heap.max_size: "2G"
 dbms.memory.pagecache.size: "1G"

4. Run helm upgrade to apply the change:

helm upgrade <release-name> neo4j/neo4j-standalone -f values.yaml

5.14. Troubleshooting

5.14.1. Locate and investigate problems with the Neo4j Helm chart

The rollout of the Neo4j Helm chart in Kubernetes can be thought of in these approximate steps:

1. Neo4j Pod is created.

2. Neo4j Pod is scheduled to run on a specific Kubernetes Node.

3. All Containers in the Neo4j Pod are created.

4. InitContainers in the Neo4j Pod are run.

5. Containers in the Neo4j Pod are run.

6. Startup and Readiness probes are checked.

After all these steps are completed successfully, the Neo4j StatefulSet, Pod, and Services must be in a
ready state. You should be able to connect to and use your Neo4j database.

If the Neo4j Helm chart is installed successfully, but Neo4j is not starting and reaching a ready state in
Kubernetes, then troubleshooting has two steps:

1. Check the state of resources in Kubernetes using kubectl get commands. This will identify which step
has failed.

2. Collect the information relevant to that step.

Depending on the failed step, you can collect information from Kubernetes (e.g., using kubectl describe)
and from the Neo4j process (e.g., checking the Neo4j debug log).

The following table provides simple steps to get started investigating problems with the Neo4j Helm chart
rollout. For more information on how to debug applications in Kubernetes, see the Kubernetes
documentation.

Table 14. Investigating problems with the Neo4j Helm chart rollout

Step Diagnosis Further investigation

131

https://kubernetes.io/docs/tasks/debug-application-cluster/debug-application/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-application/

Neo4j Pod created If kubectl get pod <release-name>-0
does not return a single Pod result,
there is a problem with the pod creation.

Describe the Neo4j StatefulSet — check
the output of kubectl describe
statefulset <release-name>.

Neo4j Pod scheduled If the state shown in kubectl get pod
<release-name>-0 is stuck in Pending,
there is a problem with pod scheduling.

Describe the Neo4j Pod kubectl
describe pod <release-name>-0 and
check the output.

Containers in the Neo4j Pod created If the state shown in kubectl get pod
<release-name>-0 is stuck in Waiting,
there is a problem with creating or
starting containers.

Describe the Neo4j Pod — check the
output of kubectl describe pod
<release-name>-0, paying particular
attention to Events.

InitContainers in the Neo4j Pod If the state shown in kubectl get pod
<release-name>-0 is stuck in Init:
(e.g.,Init:CrashLoopBackOff,
Init:Error etc.), there is a problem with
InitContainers.
Note that if the pod Status is
PodInitializing or Running, then
InitContainers have already finished
successfully.

Describe the Neo4j Pod — check the
output of kubectl describe pod
<release-name>-0, paying particular
attention to InitContainer (note the
InitContainer names) and Events.
Fetch InitContainer logs using kubectl
logs <pod-name> -c <init-container-
name>.

Containers in the Neo4j Pod running If the state shown in kubectl get pod
<release-name>-0 does NOT match any
of the states listed above, but the Pod
still does not reach Running, then there
is a problem running containers in the
Neo4j Pod.

Describe the Neo4j Pod — check the
output of kubectl describe pod
<release-name>-0, paying particular
attention to the Container state (note
the Container names) and Events. Fetch
Container logs using kubectl logs
<pod-name> -c <init-container-name>.
If the Neo4j Container is starting but
exits unexpectedly (e.g., state is
CrashLoopBackOff), follow the
instructions for Neo4j crashes or
restarts unexpectedly.

Startup and Readiness Probes If the state shown in kubectl get pod
<release-name>-0 is Running, but the
pod does not become ready, there is a
problem with Startup or Readiness
probes.

Describe the Neo4j Pod — check the
output of kubectl describe pod
<release-name>-0, paying particular
attention to Events and probes. Check
the pod log kubectl logs <release-
name>-0, the Neo4j log kubectl exec
<release-name>-0 -- tail -n 100
/logs/neo4j.log, and the Neo4j debug
log kubectl exec <release-name>-0 --
tail -n 500 /logs/debug.log.

5.14.2. Neo4j crashes or restarts unexpectedly

If the Neo4j Pod starts but then crashes or restarts unexpectedly, there are a range of possible causes.
Known causes include:

• An invalid or incorrect configuration of Neo4j, causing it to shut down shortly after the container is
started.

• The Neo4j Java process runs out of memory and exits with OutOfMemoryException.

132

• There has been some disruption affecting the Kubernetes Node where the Neo4j Pod is scheduled,
e.g., it is being shut drained or has shut down.

• Containers in the Neo4j Pod are shut down by the operating system for using more memory than the
resource limit configured for the container (OOMKilled).

• Very long Garbage Collection pauses cause the Neo4j Pod LivenessProbe to fail, causing Kubernetes
to restart Neo4j.

OOMKILLED and OutOfMemoryException appear very similar, but they appear in different
places and have different fixes. It is important to be aware of this and be sure of which
you are dealing with.

Here are some checks to help troubleshoot crashes and unexpected restarts:

Describe the Neo4j Pod

Use kubectl to describe the Neo4j Pod:

kubectl describe pod <release-name>-0`

Check the Neo4j container state

Check the State and Last State of the container. This shows how the Last State of a container that has
restarted after being OOMKilled appears:

$ kubectl describe pod neo4j-0

 State: Running
 Started: Mon, 1 Jan 2021 00:02:00 +0000
 Last State: Terminated
 Reason: OOMKilled
 Exit Code: 137
 Started: Mon, 1 Jan 2021 00:00:00 +0000
 Finished: Mon, 1 Jan 2021 00:01:00 +0000

Exit Code: 137 is indicative of OOMKilled if it appears here or in other logs, even if the
"OOMKilled" string is not present.

Check recent Events

The kubectl describe output shows older events at the top and more recent events at the bottom.
Generally, you can ignore older events.

A Killing event that shows that the Neo4j container was killed by the Kubernetes kubelet:

$ kubectl describe pod neo4j-0

133

Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 6m30s default-scheduler Successfully assigned default/neo4j-0 to k8s-node-a
...
Normal Killing 56s kubelet, k8s-node-a Killing container with id docker://neo4j-0-neo4j:Need
to kill Pod

It is not clear from this event log alone why Kubernetes decided that the Neo4j container should be killed.

The next steps in this example could be to check:

• if the container was OOMKilled.

• if the container failed Liveness or Startup probes.

• investigate the node to see if there was some reason why it might kill the container, e.g.,kubectl
describe node <k8s node>.

Check Neo4j logs and metrics

The Neo4j Helm chart configures Neo4j to persist logs and metrics on provided volumes. If no volume is
explicitly configured for logs or metrics, they are stored persistently on the Neo4j data volume. This
ensures that the logs and metrics outputs from an Neo4j instance that crashes or shuts down
unexpectedly are preserved.

Collect data from a running Neo4j Pod

• Download all Neo4j logs from a pod using kubectl cp commands:

kubectl cp <neo4j-pod-name>:/logs neo4j-logs/

• If CSV metrics collection is enabled for Neo4j (the default), download all Neo4j metrics from a pod
using:

kubectl cp <neo4j-pod-name>:/metrics neo4j-metrics/

Collect data from a not-running Neo4j Pod

If the Neo4j Pod is not running or is crashing so frequently that kubectl cp is not feasible, the Neo4j
deployment should be put into offline maintenance mode to collect logs and metrics.

Check container logs

The logs for the main Neo4j DBMS process are persisted to disk and can be accessed as described in
Check Neo4j logs and metrics. However, the logs for Neo4j startup and logs for other Containers in the
Neo4j Pod are sent to the container’s stdout and stderr streams. These container logs can be viewed
using kubectl logs <pod name> -c <container name>.

134

Unfortunately, if the container has restarted following a crash or unexpected shutdown, typically, kubectl
logs shows the logs for the new container instance (following the restart), and the logs for the previous
container instance (the instance that shut down unexpectedly) are not available via kubectl logs.

To capture the logs for a crashing container, you can try:

• View the container logs in a log collector/aggregator that is connected to your Kubernetes cluster, e.g.,
Stackdriver, Cloudwatch Logs, Logstash etc. If you are using a managed Kubernetes platform, this is
usually enabled by default.

• Use kubectl logs --follow to stream the logs of a running container until it crashes again.

[4] Not recommended because of inconsistencies in Docker Desktop handling of hostPath volumes.

135

Chapter 6. Configuration
The topics described are:

• The neo4j.conf file — An introduction to the primary configuration file in Neo4j.

• File locations — An overview of where files are stored in the different Neo4j distributions and the
necessary file permissions for running Neo4j.

• Ports — An overview of the ports relevant to a Neo4j installation.

• Configure Neo4j connectors — How to configure Neo4j connectors.

• Set initial password — How to set an initial password.

• Update dynamic settings — How to configure certain Neo4j parameters while Neo4j is running.

• Transaction logs — The transaction logs record all write operations in the database.

For a complete reference of Neo4j configuration settings, see Configuration settings.

6.1. The neo4j.conf file

 For a complete reference of Neo4j configuration settings, see Configuration settings.

6.1.1. Introduction

The neo4j.conf file is the main source of configuration settings in Neo4j and includes the mappings of
configuration setting keys to values. The location of the neo4j.conf file in the different configurations of
Neo4j is listed in Default file locations.

Most of the configuration settings in the neo4j.conf file apply directly to Neo4j itself, but there are also
other settings related to the Java Runtime (the JVM) on which Neo4j runs. For more information, see the
JVM specific configuration settings below. Many of the configuration settings are also used by the neo4j
launcher scripts.

6.1.2. Syntax

• The equals sign (=) maps configuration setting keys to configuration values.

• Lines that start with the number sign (#) are handled as comments.

• Empty lines are ignored.

• Configuring a setting in neo4j.conf will overwrite any default values. In case a setting can define a list
of values, and you wish to amend the default values with custom values, you will have to explicitly list
the default values along with the new values.

• There is no order for configuration settings, and each setting in the neo4j.conf file must be uniquely
specified. If you have multiple configuration settings with the same key, but different values, this can
lead to unpredictable behavior.

The only exception to this is dbms.jvm.additional. If you set more than one value for

136

dbms.jvm.additional, then each setting value will add another custom JVM argument to the java
launcher.

6.1.3. JVM-specific configuration settings

A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as
programs written in other languages that are also compiled to Java bytecode. The Java heap is where the
objects of a Java program live. Depending on the JVM implementation, the JVM heap size often determines
how and for how long time the virtual machine performs garbage collection.

Table 15. JVM-specific settings

Setting Description

dbms.memory.heap.initial_size Sets the initial heap size for the JVM. By default, the JVM
heap size is calculated based on the available system
resources.

dbms.memory.heap.max_size Sets the maximum size of the heap for the JVM. By default,
the maximum JVM heap size is calculated based on the
available system resources.

dbms.jvm.additional Sets additional options for the JVM. The options are set as a
string and can vary depending on JVM implementation.

If you want to have good control of the system behavior, it is recommended to set the
heap size parameters to the same value to avoid unwanted full garbage collection
pauses.

6.1.4. List currently active settings

You can use the procedure dbms.listConfig() to list the currently active configuration settings and their
values.

Example 13. List currently active configuration settings

CALL dbms.listConfig()
YIELD name, value
WHERE name STARTS WITH 'dbms.default'
RETURN name, value
ORDER BY name
LIMIT 3;

+---+
| name | value |
+---+
"dbms.default_advertised_address"	"localhost"
"dbms.default_database"	"neo4j"
"dbms.default_listen_address"	"localhost"
+---+

 For information about dynamic settings, see Update dynamic settings.

137

6.2. Command expansion
Command expansion provides an additional capability to configure Neo4j by allowing you to specify
scripts that set values sourced from external files. This is especially useful for:

• avoiding setting sensitive information, such as usernames, passwords, keys, etc., in the neo4j.conf file
in plain text.

• handling the configuration settings of instances running in environments where the file system is not
accessible.

6.2.1. How it works

The scripts are specified in the neo4j.conf file with a $ prefix and the script to execute within brackets (),
i.e., dbms.setting=$(script_to_execute).
The configuration accepts any command that can be executed within a child process by the user who
owns and executes the Neo4j server. This also means that, in the case of Neo4j set as a service, the
commands are executed within the service.

A generic example would be:

neo4j.configuration.example=$(/bin/bash echo "expanded value")

By providing such a configuration in the neo4j.conf file upon server start with command expansion
enabled, Neo4j evaluates the script and retrieves the value of the configuration settings prior to the
instantiation of Neo4j. The values are then passed to the starting Neo4j instance and kept in memory, in
the running instance.

You can also use the curl (https://curl.se/docs/manpage.html) command to fetch a token
or value for a configuration setting. For example, you can apply an extra level of security
by replacing any sensitive information in your neo4j.conf file with a secured reference to
a provider of some sort.

Scripts are run by the Neo4j process and are expected to exit with code 0 within a reasonable time. The
script output should be of a valid type for the setting. Failure to do so prevents Neo4j from starting.

 Scripts and their syntax differ between operating systems.

6.2.2. Enabling

The Neo4j startup script and the neo4j service can expand and execute the external commands by using
the argument --expand-commands.

bin/neo4j start --expand-commands

If the startup script does not receive the --expand-commands argument, commands in the configuration file
are treated as invalid settings.

138

https://curl.se/docs/manpage.html

Neo4j performs the following basic security checks on the neo4j.conf file. If they fail, Neo4j does not
evaluate the script commands in neo4j.conf, and the Neo4j process does not start.

On Unix (both Linux and Mac OS)

• The neo4j.conf file must, at least, be readable by its owner or by the user-group to which the owner
belongs.

• The Neo4j process must run as a user who is either the owner of the neo4j.conf file or in the user-
group which owns the neo4j.conf file.

The Linux permissions bitmask for the least restrictive permissions is 640. More
restrictive Linux permissions are also allowed. For example, the neo4j.conf file can have
no group permissions and only be readable by its owner (400 bitmask).

On Windows

• The neo4j.conf file must, at least, be readable by the user that the Neo4j process runs as.

6.2.3. Logging

The execution of scripts is logged in neo4j.log. For each setting that requires the execution of an external
command, Neo4j adds an entry into the log file that contains information, for example:

… Executing the external script to retrieve the value of <setting>...

6.2.4. Error Handling

The scripts' execution may generate two types of errors:

• Errors during the execution — These errors are reported in the debug.log, with a code returned from
the external execution. In this case, the execution stops and the server does not start.

• Errors for incorrect values — The returned value is not the one expected for the setting. In this case, the
server does not start.

For more information, see Exit codes.

6.3. File locations

6.3.1. Default file locations

The following table lists the default location of the Neo4j files, per type and distribution.

Table 16. Default file locations

139

File type Description Linux / macOS /
Docker

Windows Debian / RPM Neo4j Desktop [5]

Bin The Neo4j running
script and built-in
tools, such as,
cypher-shell and
neo4j-admin.

<neo4j-home>/bin <neo4j-home>\bin /usr/bin From the Open
dropdown menu of
your Neo4j
instance, select
Terminal, and
navigate to
<installation-
version>/bin.

Configuration [6] The Neo4j
configuration
settings and the
JMX access
credentials.

<neo4j-
home>/conf/neo4j.
conf

<neo4j-
home>\conf\neo4j.
conf

/etc/neo4j/neo4j.co
nf

From the Open
dropdown menu of
your Neo4j
instance, select
Terminal, and
navigate to
<installation-
version>/conf/neo4
j.conf.

Data [7] All data-related
content, such as
databases,
transactions,
cluster-state (if
applicable), dumps,
and cypher script
files (from the
neo4j-admin
restore command).

<neo4j-
home>/data

<neo4j-
home>\data

/var/lib/neo4j/data From the Open
dropdown menu of
your Neo4j
instance, select
Terminal, and
navigate to
<installation-
version>/data.

Import All CSV files that
the command LOAD
CSV uses as
sources to import
data in Neo4j.

<neo4j-
home>/import

<neo4j-
home>\import

/var/lib/neo4j/impor
t

From the Open
dropdown menu of
your Neo4j
instance, select
Terminal, and
navigate to
<installation-
version>/import.

Labs [8] Contains APOC
Core.

<neo4j-home>/labs <neo4j-home>\labs /var/lib/neo4j/labs From the Open
dropdown menu of
your Neo4j
instance, select
Terminal, and
navigate to
<installation-
version>/labs.

140

File type Description Linux / macOS /
Docker

Windows Debian / RPM Neo4j Desktop [5]

Lib All Neo4j
dependencies.

<neo4j-home>/lib <neo4j-home>\lib /usr/share/neo4j/lib From the Open
dropdown menu of
your Neo4j
instance, select
Terminal, and
navigate to
<installation-
version>/lib.

Licenses For storing license
files from Neo4j.

<neo4j-
home>/licenses

<neo4j-
home>\licenses

/var/lib/neo4j/licens
es

From the Open
dropdown menu of
your Neo4j
instance, select
Terminal, and
navigate to
<installation-
version>/licences.

Logs The Neo4j log files. <neo4j-home>/logs
[9]

<neo4j-home>\logs /var/log/neo4j/ [10] From the Open
dropdown menu of
your Neo4j
instance, select
Terminal, and
navigate to
<installation-
version>/logs.

Metrics The Neo4j built-in
metrics for
monitoring the
Neo4j DBMS and
each individual
database.

<neo4j-
home>/metrics

<neo4j-
home>\metrics

/var/lib/neo4j/metri
cs

From the Open
dropdown menu of
your Neo4j
instance, select
Terminal, and
navigate to
<installation-
version>/metrics.

Plugins Custom code that
extends Neo4j, for
example, user-
defined
procedures,
functions, and
security plugins.

<neo4j-
home>/plugins

<neo4j-
home>\plugins

/var/lib/neo4j/plugi
ns

From the Open
dropdown menu of
your Neo4j
instance, select
Terminal, and
navigate to
<installation-
version>/plugins.

Run The processes IDs. <neo4j-home>/run <neo4j-home>\run /var/lib/neo4j/run From the Open
dropdown menu of
your Neo4j
instance, select
Terminal, and
navigate to
<installation-
version>/run.

141

6.3.2. Customize your file locations

The file locations can also be customized by using environment variables and options.

The locations of <neo4j-home> and conf can be configured using environment variables:

Table 17. Configuration of <neo4j-home> and conf

Location Default Environment variable Notes

<neo4j-home> parent of bin NEO4J_HOME Must be set explicitly if bin is
not a subdirectory.

conf <neo4j-home>/conf NEO4J_CONF Must be set explicitly if it is
not a subdirectory of <neo4j-
home>.

The rest of the locations can be configured by uncommenting the respective setting in the conf/neo4j.conf
file and changing the default value.

#dbms.directories.data=data
#dbms.directories.plugins=plugins
#dbms.directories.logs=logs
#dbms.directories.lib=lib
#dbms.directories.run=run
#dbms.directories.licenses=licenses
#dbms.directories.metrics=metrics
#dbms.directories.transaction.logs.root=data/transactions
#dbms.directories.dumps.root=data/dumps

6.3.3. File permissions

The operating system user that Neo4j server runs as must have the following minimal permissions:

Read only

• conf

• import

• bin

• lib

• labs

• plugins

• products

• certificates

• licenses

Read and write

• data

• logs

• metrics

142

• run

Execute

• all files in bin

6.4. Ports
An overview of the Neo4j-specific ports. Note that these ports are in addition to those necessary for
ordinary network operation.

Specific recommendations on port openings cannot be made, as the firewall configuration must be
performed taking your particular conditions into consideration.

 When exposing network services, make sure they are always protected.

The listen address configuration settings will set the network interface and port to listen on. For example
the IP-address 127.0.0.1 and port 7687 can be set with the value 127.0.0.1:7687. The table below shows
an overview of available Neo4j-specific ports and related configuration settings.

Table 18. Listen address configuration settings overview

Name Default port Related configuration setting

Backup 6362 dbms.backup.listen_address

HTTP 7474 dbms.connector.http.listen_address

HTTPS 7473 dbms.connector.https.listen_address

Bolt 7687 dbms.connector.bolt.listen_address

Causal Cluster discovery management 5000 causal_clustering.discovery_listen_a
ddress

Causal Cluster transaction 6000 causal_clustering.transaction_listen
_address

Causal Cluster RAFT 7000 causal_clustering.raft_listen_addres
s

Causal Cluster routing connector 7688 dbms.routing.listen_address

Graphite monitoring 2003 metrics.graphite.server

Prometheus monitoring 2004 metrics.prometheus.endpoint

JMX monitoring 3637 dbms.jvm.additional=-
Dcom.sun.management.jmxremote.port=3
637

Remote debugging 5005 dbms.jvm.additional=-
agentlib:jdwp=transport=dt_socket,se
rver=y,suspend=n,address=*:5005

The configuration setting dbms.default_listen_address configures the default network
interface to listen for incoming connections.

The advertised address configuration settings are used for routing purposes. An advertised address is

143

composed by a hostname/IP-address and port. For example the IP-address 127.0.0.1 and port 7687 can
be set with the value 127.0.0.1:7687. If a host name resolution service has been configured, the
advertised address can use a hostname, for example example.com:7687. The table below shows an
overview of available Neo4j-specific ports and related configuration settings.

Table 19. Advertised address configuration settings overview

Name Default port Related configuration setting

HTTP 7474 dbms.connector.http.advertised_addre
ss

HTTPS 7473 dbms.connector.https.advertised_addr
ess

Bolt 7687 dbms.connector.bolt.advertised_addre
ss

Causal Cluster discovery management 5000 causal_clustering.discovery_advertis
ed_address

Causal Cluster transaction 6000 causal_clustering.transaction_advert
ised_address

Causal Cluster RAFT 7000 causal_clustering.raft_advertised_ad
dress

Causal Cluster routing connector 7688 dbms.routing.advertised_address

The configuration setting dbms.default_advertised_address configures the default
hostname/IP-address for advertised address.

6.4.1. Backup Enterprise edition

Default port: 6362

Table 20. Backup

Related configuration setting Default value Description

dbms.backup.listen_address 127.0.0.1:6362 Network interface and port for the
backup server to listen on.

dbms.backup.enabled true Enable support for running online
backups.

In production environments, external access to the backup port should be blocked by a firewall.

For more information, see Server configuration.

6.4.2. HTTP

Default port: 7474

Table 21. HTTP connector

144

Related configuration setting Default value Description

dbms.connector.http.listen_address :7474 Network interface and port for the HTTP
connector to listen on.

dbms.connector.http.advertised_address :7474 Advertised hostname/IP-address and
port for the HTTP connector.

dbms.connector.http.enabled true Enable the HTTP connector.

• The HTTP connector is enabled by default.

• The network communication is unencrypted.

• Used by Neo4j Browser and the HTTP API.

For more information, see Configure connectors.

6.4.3. HTTPS

Default port: 7473

Table 22. HTTPS connector

Related configuration setting Default value Description

dbms.connector.https.listen_address :7473 Network interface and port for the
HTTPS connector to listen on.

dbms.connector.https.advertised_address :7473 Advertised hostname/IP-address and
port for the HTTPS connector.

dbms.connector.https.enabled false Enable the HTTPS connector.

• The network communication is encrypted.

• Used by Neo4j Browser and the HTTP API.

For more information, see Configure connectors.

6.4.4. Bolt

Default port: 7687

Table 23. Bolt connector

Related configuration setting Default value Description

dbms.connector.bolt.listen_address :7687 Network interface and port for the Bolt
connector to listen on.

dbms.connector.bolt.advertised_address :7687 Advertised hostname/IP-address and
port for the Bolt connector.

dbms.connector.bolt.enabled true Enable the Bolt connector.

dbms.connector.bolt.tls_level DISABLED Encryption level for the Bolt connector.

145

• By default, the Bolt connector is enabled, but its encryption is turned off.

• Used by Cypher Shell, Neo4j Browser, and the official Neo4j drivers.

For more information, see Configure connectors.

6.4.5. Causal Cluster Enterprise edition

By default, the operating mode of a Neo4j instance (dbms.mode) is set to SINGLE.

Table 24. Cluster listen address

Name Default port Default value Related configuration setting

Discovery management 5000 :5000 causal_clustering.discover
y_listen_address

Transaction 6000 :6000 causal_clustering.transact
ion_listen_address

RAFT 7000 :7000 causal_clustering.raft_lis
ten_address

Routing connector 7688 :7688 dbms.routing.listen_addres
s

Table 25. Cluster advertised address

Name Default port Default value Related configuration setting

Discovery management 5000 :5000 causal_clustering.discover
y_advertised_address

Transaction 6000 :6000 causal_clustering.transact
ion_advertised_address

RAFT 7000 :7000 causal_clustering.raft_adv
ertised_address

Routing connector 7688 :7688 dbms.routing.advertised_ad
dress

The ports are likely be different in a production installation; therefore the potential opening of ports must
be modified accordingly.

For more information, see:

• Deploy a cluster

• Settings reference

6.4.6. Graphite monitoring

Default port: 2003

Table 26. Graphite

146

Related configuration setting Default value Description

metrics.graphite.server :2003 Hostname/IP-address and port of the
Graphite server.

metrics.graphite.enabled false Enable exporting metrics to the Graphite
server.

This is an outbound connection that enables a Neo4j instance to communicate with a Graphite server.

For further information, see Graphite and the Graphite official documentation.

6.4.7. Prometheus monitoring

Default port: 2004

Table 27. Prometheus

Related configuration setting Default value Description

metrics.prometheus.endpoint localhost:2004 Network interface and port for the
Prometheus endpoint to listen on.

metrics.prometheus.enabled false Enable exporting metrics with the
Prometheus endpoint.

For more information, see Prometheus.

6.4.8. JMX monitoring

Default port: 3637

Table 28. Java Management Extensions

Related configuration setting Default value Description

dbms.jvm.additional=-
Dcom.sun.management.jmxremote.port=3
637

3637 Additional setting for exposing the Java
Management Extensions (JMX).

For further information, see the official documentation on Monitoring and Management Using JMX.

6.4.9. Remote debugging

Default port: 5005

Table 29. Remote debugging

Related configuration setting Default value Description

dbms.jvm.additional=-
agentlib:jdwp=transport=dt_socket,se
rver=y,suspend=n,address=*:5005

:5005 Additional setting for exposing remote
debugging.

For more information, see the Java Reference → Setup for remote debugging.

147

https://graphite.readthedocs.io/en/stable/carbon-daemons.html
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#agent.html
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#server-debugging
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#server-debugging
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#server-debugging

6.5. Configure connectors

6.5.1. Available connectors

The table below lists the available Neo4j connectors:

Table 30. Neo4j connectors and port number

Connector name Protocol Default port number

dbms.connector.bolt Bolt 7687

dbms.connector.http HTTP 7474

dbms.connector.https HTTPS 7473

When configuring the HTTPS or Bolt connector, see also SSL framework for details on how to work with
SSL certificates.

6.5.2. Configuration options

The connectors are configured by settings on the format dbms.connector.<connector-name>.<setting-
suffix>>. The available suffixes are described in the table below:

Table 31. Configuration option suffixes for connectors

Option
name

Default Setting(s) Description

enabled true [11] dbms.connector.bolt.enabled,
dbms.connector.http.enabled,
dbms.connector.https.enabled [12]

This setting allows the client connector to be
enabled or disabled. When disabled, Neo4j
does not listen for incoming connections on
the relevant port.

listen_ad
dress

127.0.0.1:<conne
ctor-default-
port>

dbms.connector.bolt.listen_address,
dbms.connector.https.listen_address,
dbms.connector.http.listen_address

This setting specifies how Neo4j listens for
incoming connections. It consists of two
parts; an IP address (e.g. 127.0.0.1 or 0.0.0.0)
and a port number (e.g. 7687), and is
expressed in the format <ip-address>:<port-
number>. See below for an example of usage.

advertise
d_address

localhost:<conne
ctor-default-
port>

dbms.connector.bolt.advertised_address,
dbms.connector.https.advertised_address,
dbms.connector.http.advertised_address

This setting specifies the address that clients
should use for this connector. This is useful in
a Causal Cluster as it allows each server to
correctly advertise addresses of the other
servers in the cluster. The advertised address
consists of two parts; an address (fully
qualified domain name, hostname, or IP
address) and a port number (e.g. 7687), and
is expressed in the format <address>:<port-
number>. See below for an example of usage.

148

Option
name

Default Setting(s) Description

tls_level DISABLED dbms.connector.bolt.tls_level This setting is only applicable to the Bolt
connector. It allows the connector to accept
encrypted and/or unencrypted connections.
The default value is DISABLED, where only
unencrypted client connections are to be
accepted by this connector, and all encrypted
connections will be rejected.

Other values are REQUIRED and OPTIONAL. Use
REQUIRED when only encrypted client
connections are to be accepted by this
connector, and all unencrypted connections
will be rejected. Use OPTIONAL where either
encrypted or unencrypted client connections
are accepted by this connector.

Example 14. Specify listen_address for the Bolt connector

To listen for Bolt connections on all network interfaces (0.0.0.0) and on port 7000, set the
listen_address for the Bolt connector:

dbms.connector.bolt.listen_address=0.0.0.0:7000

Example 15. Specify advertised_address for the Bolt connector

If routing traffic via a proxy, or if port mappings are in use, it is possible to specify
advertised_address for each connector individually. For example, if port 7687 on the Neo4j Server is
mapped from port 9000 on the external network, specify the advertised_address for the Bolt
connector:

dbms.connector.bolt.advertised_address=<server-name>:9000

6.5.3. Options for Bolt thread pooling

See Bolt thread pool configuration to learn more about Bolt thread pooling and how to configure it on the
connector level.

6.5.4. Defaults for addresses

It is possible to specify defaults for the configuration options with listen_address and advertised_address
suffixes, as described below. Setting a default value will apply to all the connectors, unless specifically
configured for a certain connector.

dbms.default_listen_address

This configuration option defines a default IP address of the settings with the listen_address suffix for

149

all connectors. If the IP address part of the listen_address is not specified, it is inherited from the
shared setting dbms.default_listen_address.

Example 16. Specify listen_address for the Bolt connector

To listen for Bolt connections on all network interfaces (0.0.0.0) and on port 7000, set the
listen_address for the Bolt connector:

dbms.connector.bolt.listen_address=0.0.0.0:7000

This is equivalent to specifying the IP address by using the dbms.default_listen_address setting,
and then specifying the port number for the Bolt connector.

dbms.default_listen_address=0.0.0.0

dbms.connector.bolt.listen_address=:7000

dbms.default_advertised_address

This configuration option defines a default address of the settings with the advertised_address suffix
for all connectors. If the address part of the advertised_address is not specified, it is inherited from the
shared setting dbms.default_advertised_address.

Example 17. Specify advertised_address for the Bolt connector

Specify the address that clients should use for the Bolt connector:

dbms.connector.bolt.advertised_address=server1:9000

This is equivalent to specifying the address by using the dbms.default_advertised_address
setting, and then specifying the port number for the Bolt connector.

dbms.default_advertised_address=server1

dbms.connector.bolt.advertised_address=:9000

The default address settings can only accept the hostname or IP address portion of the
full socket address. Port numbers are protocol-specific, and can only be added by the
protocol-specific connector configuration.

For example, if you configure the default address value to be example.com:9999, Neo4j
will fail to start and you will get an error in neo4j.log.

6.6. Set an initial password
Use the set-initial-password command of neo4j-admin to define the password for the native user neo4j.
This must be performed before starting up the database for the first time.

150

If the password is not set explicitly using this method, it will be set to the default password neo4j. In that
case, you will be prompted to change the default password at first login.

Syntax:

neo4j-admin set-initial-password <password> [--require-password-change]

Example 18. Use the set-initial-password command of neo4j-admin

Set the password for the native neo4j user to 'h6u4%kr' before starting the database for the first
time.

$neo4j-home> bin/neo4j-admin set-initial-password h6u4%kr

Example 19. Use the set-initial-password command of neo4j-admin with the optional --require
-password-change flag

Set the password for the native neo4j user to 'secret' before starting the database for the first time.
You will be prompted to change this password to one of your own choice at first login.

$neo4j-home> bin/neo4j-admin set-initial-password secret --require-password-change

6.7. Configure plugins
Neo4j distributions come bundled with a range of pre-installed products, such as Graph Data Science
library, Bloom, and Ops Manager, which can be used to extend the Neo4j capabilities. The JAR files for
these products are located in the product and labs folders and can be installed as plugins.

If you want to use your own plugins, ensure that you add them to the designated plugins directory. This
directory serves as the central location where Neo4j looks for and loads the plugins at startup.

Bloom and GDS Enterprise require a license activation key to become available to the
user within Neo4j. Reach out to your Neo4j account representative or request a
representative to contact you.

The following plugins are supported:

Table 32. Supported Neo4j plugins

Name Key License required Further information

APOC apoc APOC user guide

Bloom bloom Neo4j Bloom

151

https://neo4j.com/contact-us/#sales-inquiry
https://neo4j.com/docs/apoc/current/
https://neo4j.com/docs/pdf/bloom-user-guide-.pdf

Name Key License required Further information

Streams streams Neo4j Streaming Data
Integrations User Guide

Graph Data Science graph-data-science Graph Data Science

Neo Semantics n10s Neo Semantics

Ops Manager ops-manager Neo4j Ops Manager

For more information on using plugins in a different Neo4j setup, see Java-Reference → Setting up a plugin
project.

6.7.1. Install and configure plugins

Here are the steps to enable the plugins:

1. Move or copy the plugins (.jar files) from <NEO4J_HOME>/products and <NEO4J_HOME>/labs to the
<NEO4J_HOME>/plugins directory. See the table in File locations for more information.

2. Add the following lines in $NEO4J_HOME/conf/neo4j.conf:

to enable GDS:

* dbms.security.procedures.unrestricted=gds.*
* dbms.security.procedures.allowlist=gds.*
* gds.enterprise.license_file=/path/to/my/license/keyfile

to enable Bloom:

* dbms.security.procedures.unrestricted=bloom.*
* dbms.bloom.license_file=/path/to/my/license/keyfile

to enable both GDS and Bloom:

* dbms.security.procedures.unrestricted=gds.*,bloom.*
* dbms.security.procedures.allowlist=gds.*
* gds.enterprise.license_file=/path/to/my/license/keyfile
* dbms.bloom.license_file=/path/to/my/license/keyfile

3. Install the plugins.

Refer to Bloom documentation, GDS documentation, and Neo4j Ops Manager documentation for more
details on how to install them.

All installed plugins will automatically be loaded every time Neo4j is started. Because of
that, the number of plugins may impact the startup time. Install only the necessary
plugins to avoid performance issues.

152

https://neo4j.com/docs/pdf/neo4j-kafka-streams-.pdf
https://neo4j.com/docs/pdf/neo4j-kafka-streams-.pdf
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-.pdf
https://neo4j.com/labs/nsmtx-rdf/
https://neo4j.com/docs/pdf/neo4j-ops-manager-.pdf
https://neo4j.com/docs/pdf/neo4j-desktop-manual-current.pdf#_build_dependencies
https://neo4j.com/docs/pdf/neo4j-desktop-manual-current.pdf#_build_dependencies
https://neo4j.com/docs/pdf/neo4j-desktop-manual-current.pdf#_build_dependencies
https://neo4j.com/docs/pdf/neo4j-desktop-manual-current.pdf#_build_dependencies
https://neo4j.com/docs/bloom-user-guide/current/bloom-installation/
https://neo4j.com/docs/graph-data-science/current/installation/
https://neo4j.com/docs/ops-manager/current

6.8. Dynamic settings

6.8.1. Introduction

Neo4j Enterprise Edition supports changing some configuration settings at runtime, without restarting the
service.

Changes to the configuration at runtime are not persisted. To avoid losing changes when
restarting Neo4j, make sure you update neo4j.conf as well.

In a clustered environment, CALL dbms.setConfigValue affects only the cluster member it
is run against, and it is not propagated to other members. If you want to change the
configuration settings on all cluster members, you have to run the procedure against
each of them and update their neo4j.conf file.

6.8.2. Discover dynamic settings

Use the procedure dbms.listConfig() to discover which configuration values can be dynamically updated,
or consult Dynamic settings reference.

Example 20. Discover dynamic settings

CALL dbms.listConfig()
YIELD name, dynamic
WHERE dynamic
RETURN name
ORDER BY name
LIMIT 4;

+--+
| name |
+--+
| "dbms.checkpoint.iops.limit" |
| "dbms.logs.query.allocation_logging_enabled" |
| "dbms.logs.query.enabled" |
| "dbms.logs.query.page_logging_enabled" |
+--+
4 rows

6.8.3. Update dynamic settings

An administrator is able to change some configuration settings at runtime, without restarting the service.

Syntax:

CALL dbms.setConfigValue(setting, value)

Returns:

Nothing on success.

153

Exceptions:

Unknown or invalid setting name.

The setting is not dynamic and can not be changed at runtime.

Invalid setting value.

The following example shows how to dynamically enable query logging.

Example 21. Set a config value

CALL dbms.setConfigValue('dbms.logs.query.enabled', 'info')

If an invalid value is passed, the procedure will show a message to that effect.

Example 22. Try to set invalid config value

CALL dbms.setConfigValue('dbms.logs.query.enabled', 'yes')

Failed to invoke procedure `dbms.setConfigValue`: Caused by:
org.neo4j.graphdb.config.InvalidSettingException: Bad value 'yes' for setting
'dbms.logs.query.enabled': 'yes' not one of [OFF, INFO, VERBOSE]

To reset a config value to its default, pass an empty string as the value argument.

Example 23. Reset a config value to default

CALL dbms.setConfigValue('dbms.logs.query.enabled', '')

6.8.4. Dynamic settings reference

causal_clustering.cluster_allow_reads_on_leader

Configure if the dbms.routing.getRoutingTable() procedure should include the leader as read endpoint
or return only read replicas/followers.

causal_clustering.connect_randomly_to_server_group

Comma separated list of groups to be used by the connect-randomly-to-server-group selection
strategy.

causal_clustering.server_groups

A list of group names for the server used when configuring load balancing and replication policies.

dbms.allow_single_automatic_upgrade

Whether to allow a system graph upgrade to happen automatically in single instance mode
(dbms.mode=SINGLE).

154

dbms.allow_upgrade

Whether to allow a store upgrade in case the current version of the database starts against an older
version of the store.

dbms.backup.incremental.strategy

Strategy for incremental backup.

dbms.checkpoint.iops.limit

Limit the number of IOs the background checkpoint process will consume per second.

dbms.databases.default_to_read_only

Whether or not any database on this instance are read_only by default.

dbms.databases.read_only

List of databases for which to prevent write queries.

dbms.databases.writable

List of databases for which to allow write queries.

dbms.lock.acquisition.timeout

The maximum time interval within which lock should be acquired. Zero (default) means timeout is
disabled.

dbms.logs.debug.level

Debug log level threshold.

dbms.logs.query.allocation_logging_enabled

Log allocated bytes for the executed queries being logged.

dbms.logs.query.early_raw_logging_enabled

Log query text and parameters without obfuscating passwords.

dbms.logs.query.enabled

Log executed queries.

dbms.logs.query.page_logging_enabled

Log page hits and page faults for the executed queries being logged.

dbms.logs.query.parameter_full_entities

Log complete parameter entities including id, labels or relationship type, and properties.

dbms.logs.query.parameter_logging_enabled

Log parameters for the executed queries being logged.

dbms.logs.query.rotation.keep_number

Maximum number of history files for the query log.

155

dbms.logs.query.rotation.size

The file size in bytes at which the query log will auto-rotate.

dbms.logs.query.runtime_logging_enabled

Logs which runtime that was used to run the query.

dbms.logs.query.threshold

If the execution of query takes more time than this threshold, the query is logged once completed -
provided query logging is set to INFO.

dbms.logs.query.time_logging_enabled

Log detailed time information for the executed queries being logged.

dbms.memory.pagecache.flush.buffer.enabled

Page cache can be configured to use a temporal buffer for flushing purposes.

dbms.memory.pagecache.flush.buffer.size_in_pages

Page cache can be configured to use a temporal buffer for flushing purposes.

dbms.memory.transaction.database_max_size

Limit the amount of memory that all transactions in one database can consume, in bytes (or kilobytes
with the 'k' suffix, megabytes with 'm' and gigabytes with 'g').

dbms.memory.transaction.global_max_size

Limit the amount of memory that all of the running transactions can consume, in bytes (or kilobytes
with the 'k' suffix, megabytes with 'm' and gigabytes with 'g').

dbms.memory.transaction.max_size

Limit the amount of memory that a single transaction can consume, in bytes (or kilobytes with the 'k'
suffix, megabytes with 'm' and gigabytes with 'g').

dbms.security.ldap.authentication.attribute

The attribute to use when looking up users. Using this setting requires
dbms.security.ldap.authentication.search_for_attribute to be true and thus
dbms.security.ldap.authorization.system_username and
dbms.security.ldap.authorization.system_password to be configured.

dbms.security.ldap.authentication.user_dn_template

LDAP user DN template.

dbms.security.ldap.authorization.group_membership_attributes

A list of attribute names on a user object that contains groups to be used for mapping to roles when
LDAP authorization is enabled.

dbms.security.ldap.authorization.group_to_role_mapping

An authorization mapping from LDAP group names to Neo4j role names.

156

dbms.security.ldap.authorization.user_search_base

The name of the base object or named context to search for user objects when LDAP authorization is
enabled.

dbms.security.ldap.authorization.user_search_filter

The LDAP search filter to search for a user principal when LDAP authorization is enabled.

dbms.track_query_allocation

Enables or disables tracking of how many bytes are allocated by the execution of a query.

dbms.track_query_cpu_time

Enables or disables tracking of how much time a query spends actively executing on the CPU.

dbms.transaction.concurrent.maximum

The maximum number of concurrently running transactions.

dbms.transaction.sampling.percentage

Transaction sampling percentage.

dbms.transaction.timeout

The maximum time interval of a transaction within which it should be completed.

dbms.transaction.tracing.level

Transaction creation tracing level.

dbms.tx_log.preallocate

Specify if Neo4j should try to preallocate logical log file in advance.

dbms.tx_log.rotation.retention_policy

Tell Neo4j how long logical transaction logs should be kept to backup the database.For example, "10
days" will prune logical logs that only contain transactions older than 10 days.Alternatively, "100k txs"
will keep the 100k latest transactions from each database and prune any older transactions.

dbms.tx_log.rotation.size

Specifies at which file size the logical log will auto-rotate.

dbms.upgrade_max_processors

Max number of processors used when upgrading the store.

fabric.routing.servers

A comma-separated list of Fabric instances that form a routing group.

6.9. Transaction log
• The transaction log record all write operations in the database.

• The transaction log is the "source of truth" in scenarios where the database needs to be recovered.

• The transaction log can be used to provide for incremental backups, as well as for cluster operations.

157

• For any given configuration, at least the latest non-empty transaction log will be kept.

Each database keeps its own directory with transaction logs. The root directory where the transaction log
folders are located is configured by dbms.directories.transaction.logs.root.

 The transaction log has nothing to do with log monitoring.

6.9.1. Transaction logging

The transaction logs record all write operations in the database. This includes additions or modifications to
data, as well as the addition or modification of any indexes or constraints.

• The transaction logs are the "source of truth" in scenarios where the database needs to be recovered.

• The transaction logs are used for providing incremental backups, as well as for cluster operations.

• For any given configuration, at least the latest non-empty transaction log will be kept.

An overview of configuration settings for transaction logging:

The transaction log configuration Default value Description

dbms.directories.transaction.logs.ro
ot

transactions Root location where Neo4j will store
transaction logs for configured
databases.

dbms.tx_log.preallocate true Specify if Neo4j should try to preallocate
logical log file in advance.

dbms.tx_log.rotation.retention_polic
y

7 days Make Neo4j keep the logical
transaction logs for being able to
backup the database. Can be
used for specifying the threshold
to prune logical logs after.

dbms.tx_log.rotation.size 250M Specifies at which file size the
logical log will auto-rotate.
Minimum accepted value is 128K
(128 KiB).

The retention and rotation policies for the Neo4j transaction logs, and how to configure them.

6.9.2. Log location

By default, transaction logs for a database are located at <neo4j-home>/data/transactions/<database-
name>. Each database keeps its own directory with transaction logs.

The root directory where those folders are located is configured by
dbms.directories.transaction.logs.root. For maximum performance, it is recommended to configure
transaction logs to be stored on a dedicated device.

158

6.9.3. Log rotation

Log rotation is configured using the parameter dbms.tx_log.rotation.size. By default, log switches
happen when log sizes surpass 250 MB.

6.9.4. Log retention

 Manually deleting transaction log files is not supported.

You can control the number of transaction logs that Neo4j keeps using the parameter
dbms.tx_log.rotation.retention_policy. It is set to 7 days by default, which means Neo4j keeps logical
logs that contain any transaction committed within 7 days. The configuration is dynamic, so if you need to
update it, you do not have to restart Neo4j for the change to take effect.

Other possible values are:

• true or keep_all — keep transaction logs indefinitely.

This option is not recommended due to the effectively unbounded storage usage.
Old transaction logs cannot be safely archived or removed by external jobs since
safe log pruning requires knowledge about the most recent successful checkpoint.

• false or keep_none — keep only the most recent non-empty log.

Log pruning is called only after checkpoint completion to ensure at least one checkpoint and points to a
valid place in the transaction log data. In reality, this means that all transaction logs created between
checkpoints will be kept for some time, and only after a checkpoint, the pruning strategy will remove
them. For more details on how to speed up checkpointing, see Log pruning. To force a checkpoint, run
the procedure call db.checkpoint().

This option is not recommended in production Enterprise Edition environments, as
incremental backups rely on the presence of the transaction logs since the last
backup.

• <number><optional unit> <type> where valid units are k, M, and G, and valid types are files, size, txs,
entries, hours, and days.

Table 33. Types that can be used to control log retention

Type Description Example

files The number of the most recent logical log files to keep. "10 files"

size Max disk size to allow log files to occupy. "300M size" or "1G size".

txs The number of transactions to keep. "250k txs" or "5M txs".

hours Keep logs that contain any transaction committed within N hours from
the current time.

"10 hours"

159

Type Description Example

days Keep logs that contain any transaction committed within N days from
the current time.

"50 days"

Example 24. Configure log retention policy

This example shows some different ways to configure the log retention policy.

◦ Keep transaction logs indefinitely:

dbms.tx_log.rotation.retention_policy=true

or

dbms.tx_log.rotation.retention_policy=keep_all

◦ Keep only the most recent non-empty log:

dbms.tx_log.rotation.retention_policy=false

or

dbms.tx_log.rotation.retention_policy=keep_none

◦ Keep logical logs which contain any transaction committed within 30 days:

dbms.tx_log.rotation.retention_policy=30 days

◦ Keep logical logs which contain any of the most recent 500 000 transactions:

dbms.tx_log.rotation.retention_policy=500k txs

6.9.5. Log pruning

Transaction log pruning refers to the safe and automatic removal of old, unnecessary transaction log files.
The transaction log can be pruned when one or more files fall outside of the configured retention policy.

Two things are necessary for a file to be removed:

• The file must have been rotated.

• At least one checkpoint must have happened in a more recent log file.

Observing that you have more transaction log files than you expected is likely due to checkpoints either
not happening frequently enough, or taking too long. This is a temporary condition and the gap between

160

expected and observed number of log files will be closed on the next successful checkpoint. The interval
between checkpoints can be configured using:

Checkpoint configuration Default value Description

dbms.checkpoint.interval.time 15m Configures the time interval between
check-points.

dbms.checkpoint.interval.tx 100000 Configures the transaction interval
between check-points.

If your goal is to have the least amount of transaction log data, it can also help to speed up the checkpoint
process itself. The configuration parameter dbms.checkpoint.iops.limit controls the number of IOs per
second the checkpoint process is allowed to use. Setting the value of this parameter to -1 allows unlimited
IOPS, which can speed up checkpointing.

Disabling the IOPS limit can cause transaction processing to slow down a bit. For more
information, see Checkpoint IOPS limit.

[5] Applicable to all operating systems where Neo4j Desktop is supported.
[6] For details about neo4j.conf, see: The neo4j.conf file.
[7] The data directory is internal to Neo4j and its structure is subject to change between versions without notice.
[8] For more information, see APOC User Guide → Installation.
[9] To view neo4j.log in Docker, use docker logs <containerID/name>.
[10] To view the neo4j.log for Debian and RPM, use journalctl --unit=neo4j.
[11] When Neo4j is used in embedded mode, the default value is false.
[12] The default value for dbms.connector.https.enabled is false.

161

https://neo4j.com/labs/apoc/4.3/installation/
https://neo4j.com/labs/apoc/4.3/installation/
https://neo4j.com/labs/apoc/4.3/installation/

Chapter 7. Manage databases
This chapter describes the following:

• Introduction

• Administration and configuration

• Queries

• Error handling

• Databases in a Causal Cluster

7.1. Introduction

7.1.1. Concepts

With Neo4j 4.3 you can create and use more than one active database at the same time.

DBMS

Neo4j is a Database Management System, or DBMS, capable of managing multiple databases. The
DBMS can manage a standalone server, or a group of servers in a Causal Cluster.

Instance

A Neo4j instance is a Java process that is running the Neo4j server code.

Transaction domain

A transaction domain is a collection of graphs that can be updated within the context of a single
transaction.

Execution context

An execution context is a runtime environment for the execution of a request. In practical terms, a
request may be a query, a transaction, or an internal function or procedure.

Database

A database is an administrative partition of a DBMS. In practical terms, it is a physical structure of files
organized within a directory or folder, that has the same name of the database. In logical terms, a
database is a container for one or more graphs.

A database defines a transaction domain and an execution context. This means that a transaction
cannot span across multiple databases. Similarly, a procedure is called within a database, although its
logic may access data that is stored in other databases.

A default installation of Neo4j 4.3 contains two databases:

• system - the system database, containing metadata on the DBMS and security configuration.

• neo4j - the default database, a single database for user data. This has a default name of neo4j. A
different name can be configured before starting Neo4j for the first time.

162

Graph

This is a data model within a database. In Neo4j 4.0 there is only one graph within each database, and
many administrative commands that refer to a specific graph do so using the database name.

In Neo4j Fabric, it is possible to refer to multiple graphs within the same transaction and Cypher query.

The following image illustrates a default installation, including the system database and a single database
named neo4j for user data:

Figure 1. A default Neo4j installation.

Editions

The edition of Neo4j determines the number of possible databases:

• Installations of Community Edition can have exactly one user database.

• Installations of Enterprise Edition can have any number of user databases.

All installations include the system database.

7.1.2. The system database

All installations include a built-in database named system, which contains meta-data and security
configuration.

The system database behaves differently than all other databases. In particular, when connected to this
database you can only perform a specific set of administrative functions, as described in detail in Cypher
Manual → Database management.

Most of the available administrative commands are restricted to users with specific administrative
privileges. An example of configuring security privileges is described in Fine-grained access control.
Access Control is described in detail in Cypher Manual → Access Control .

The following image illustrates an installation of Neo4j with multiple active databases, named marketing,
sales, and hr:

163

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control

Figure 2. A multiple database Neo4j installation.

7.1.3. The default and home database

If a user connects to Neo4j without specifying a database, they will be connected to a home database.
When choosing a home database the server will first use the home database configured for that user. If
the connecting user does not have a home database configured, the server will use the default database,
which every Neo4j instance has.

The default database is configurable. For details, see configuration parameters.

The following image illustrates an installation of Neo4j containing the three databases for user data,
named marketing, sales and hr, and the system database. The default database is sales:

Figure 3. A multiple database Neo4j installation, with a default database.

164

7.1.4. Per-user home databases Enterprise edition

Per-user home databases are controlled via the Cypher administration commands.

To set a home database for a user, this user must exist as a record in Neo4j. Therefore, for deployments
using auth providers other than native, you create a native user with a matching username and then set a
home database for that user. For more information on creating native users and configuring a home
database for a user, see Cypher Manual → User Management.

7.2. Administration and configuration

7.2.1. Administrative commands

Administrative commands should not be used during a rolling upgrade. For more
information, see Upgrade and Migration Guide → Upgrade a Causal Cluster.

For detailed information on Cypher administrative commands, see Cypher Manual →
Database management.

Before using administrative commands, it is important to understand the difference between stopped
databases, and dropped databases:

• Databases that are stopped with the STOP command are completely shutdown, and may be started
again through the START command. In a Causal Cluster, as long as a database is in a shutdown state, it
can not be considered available to other members of the cluster. It is not possible to do online backups
against shutdown databases and they need to be taken into special consideration during disaster
recovery, as they do not have a running Raft machine while shutdown.

• Dropped databases are completely removed and are not intended to be used again at all.

The following Cypher commands are used on the system database to manage multiple databases:

Command Description

CREATE DATABASE name Create and start a new database. Enterprise edition

DROP DATABASE name Drop (remove) an existing database. Enterprise
edition

START DATABASE name Start a database that has been stopped.

STOP DATABASE name Shut down a database.

SHOW DATABASE name Show the status of a specific database.

SHOW DATABASES Show the name and status of all the databases.

165

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#manage_users
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#manage_users
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#manage_users
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#causal_cluster
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#causal_cluster
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#causal_cluster
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases

Command Description

SHOW DEFAULT DATABASE Show the name and status of the default database.

SHOW HOME DATABASE Show the name and status of the home database
for the current user.

Naming rules for databases are as follows:

• Length must be between 3 and 63 characters.

• The first character of a name must be an ASCII alphabetic character.

• Subsequent characters must be ASCII alphabetic or numeric characters, dots or dashes;
[a..z][0..9].-

• Names are case-insensitive and normalized to lowercase.

• Names that begin with an underscore and with the prefix system are reserved for internal use.

All of the above commands are executed as Cypher commands, and the database name
is subject to the standard Cypher restrictions on valid identifiers. In particular, the -
(dash) and . (dot) characters are not legal in Cypher variables, and therefore names with
dashes must be enclosed within back-ticks. For example, CREATE DATABASE `main-db`.
Database names are the only identifier for which dots don’t need to be escaped. For
example, main.db is a valid database name.

For detailed information on Cypher administrative commands, see Cypher Manual → Database
management.

For examples of using the Cypher administrative commands to manage multiple active databases, see
Queries.

7.2.2. Configuration parameters

Configuration parameters are defined in the neo4j.conf file.

The following configuration parameters are applicable for managing databases:

166

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#naming
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases

Parameter name Description

dbms.default_database Name of the default database for the Neo4j instance. The
database is created if it does not exist when the instance
starts.

Default value: neo4j

In a clustered setup, the value of
dbms.default_database is only used to set
the initial default database. To change the
default database at a later point, see Change
the default database.

dbms.max_databases Maximum number of databases that can be used in a Neo4j
single instance or Causal Cluster. The number includes all the
online and offline databases. The value is an integer with a
minimum value of 2. Enterprise edition

Default value: 100

Once the limit has been reached, it is not
possible to create any additional databases.
Similarly, if the limit is changed to a number
lower than the total number of existing
databases, no additional databases can be
created.

dbms.databases.default_to_read_only Default mode of all databases. If this setting is set to true all
existing and new databases will be in read only mode, and so
will prevent write queries.

Default value: false

167

Parameter name Description

dbms.databases.read_only List of database names for which to prevent write queries.
This set can contain also not yet existing databases, but not
the system database.

Regardless of settings of
dbms.databases.default_to_read_only,
dbms.databases.read_only and
dbms.databases.writable the system
database will never be read-only and will
always accept write queries.

Example configuration:

dbms.databases.read_only=["foo", "bar"]

dbms.databases.writable List of database names for which to accept write queries. This
set can contain also not yet existing databases.
The value of this setting is ignored if
dbms.databases.default_to_read_only is set to false.
If a database name is present in both sets, the database will
be read-only and prevent write queries.

If most of your databases would read-only
with a few exceptions, it can be easier to set
config_dbms.databases.default_to_read_o
nly to true, and then put the names of the
non read-only databases into
dbms.databases.writeable.

Example configuration:

dbms.databases.read_only=["foo", "bar"]

7.3. Queries

For detailed information on Cypher administrative commands, see Cypher Manual →
Database management.

168

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases

All commands and example queries in this section are run in the Neo4j Cypher Shell
command-line interface (CLI).

Note that the cypher-shell queries are not case-sensitive, but must end with a
semicolon.

7.3.1. Show the status of a specific database

Example 25. SHOW DATABASE

neo4j@system> SHOW DATABASE neo4j;

In standalone mode:

+--
---+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
---+
| "neo4j" | "localhost:7687" | "standalone" | "online" | "online" | "" | TRUE |
TRUE |
+--
---+

1 row available after 100 ms, consumed after another 6 ms

Or in a Causal Cluster:

+--
---+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
---+
| "neo4j" | "localhost:7687" | "leader" | "online" | "online" | "" | TRUE |
TRUE |
| "neo4j" | "localhost:7688" | "follower" | "online" | "online" | "" | TRUE |
TRUE |
| "neo4j" | "localhost:7689" | "follower" | "online" | "online" | "" | TRUE |
TRUE |
+--
---+

3 row available after 100 ms, consumed after another 6 ms

7.3.2. Show the status of all databases

169

Example 26. SHOW DATABASES

neo4j@system> SHOW DATABASES;

In standalone mode:

+--
----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
----+
| "neo4j" | "localhost:7687" | "standalone" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
+--
----+

2 rows available after 5 ms, consumed after another 1 ms

Or in a Causal Cluster:

+--
----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
----+
| "neo4j" | "localhost:7687" | "leader" | "online" | "online" | "" | TRUE |
TRUE |
| "neo4j" | "localhost:7688" | "follower" | "online" | "online" | "" | TRUE |
TRUE |
| "neo4j" | "localhost:7689" | "follower" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "system" | "localhost:7688" | "leader" | "online" | "online" | "" | FALSE |
FALSE |
| "system" | "localhost:7689" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
+--
----+

6 rows available after 5 ms, consumed after another 1 ms

Switching between online and offline states is achieved using the START DATABASE and STOP DATABASE
commands.

7.3.3. Show the status of the default database

The config setting dbms.default_database defines which database is created and started by default when
Neo4j starts. The default value of this setting is neo4j.

170

Example 27. SHOW DEFAULT DATABASE

neo4j@system> SHOW DEFAULT DATABASE;

In standalone mode:

+---+
| name | address | role | requestedStatus | currentStatus | error |
+---+
| "neo4j" | "localhost:7687" | "standalone" | "online" | "online" | "" |
+---+

1 row available after 57 ms, consumed after another 2 ms

Or in a Causal Cluster:

+---+
| name | address | role | requestedStatus | currentStatus | error |
+---+
"neo4j"	"localhost:7687"	"follower"	"online"	"online"	""
"neo4j"	"localhost:7688"	"leader"	"online"	"online"	""
"neo4j"	"localhost:7689"	"follower"	"online"	"online"	""
+---+

3 row available after 57 ms, consumed after another 2 ms

You can change the default database by using dbms.default_database, and restarting the server.

In Community Edition, the default database is the only database available, other than the
system database.

7.3.4. Create a database Enterprise edition

171

Example 28. CREATE DATABASE

neo4j@system> CREATE DATABASE sales;

0 rows available after 108 ms, consumed after another 0 ms

neo4j@system> SHOW DATABASES;

In standalone mode:

+--
----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
----+
| "neo4j" | "localhost:7687" | "standalone" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
+--
----+

3 rows available after 4 ms, consumed after another 1 ms

Or in a Causal Cluster:

+--
----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
----+
| "neo4j" | "localhost:7687" | "leader" | "online" | "online" | "" | TRUE |
TRUE |
| "neo4j" | "localhost:7688" | "follower" | "online" | "online" | "" | TRUE |
TRUE |
| "neo4j" | "localhost:7689" | "follower" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "system" | "localhost:7688" | "leader" | "online" | "online" | "" | FALSE |
FALSE |
| "system" | "localhost:7689" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7687" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7688" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7689" | "leader" | "online" | "online" | "" | FALSE |
FALSE |
+--
----+

9 rows available after 4 ms, consumed after another 1 ms

172

7.3.5. Switch a database Enterprise edition

Example 29. :use <database-name>

neo4j@system> :use sales
neo4j@sales>

7.3.6. Create or replace a database

173

Example 30. CREATE OR REPLACE DATABASE

neo4j@sales> match (n) return count(n) as countNode;

+-----------+
| countNode |
+-----------+
| 115 |
+-----------+

1 row available after 12 ms, consumed after another 0 ms

neo4j@system> CREATE OR REPLACE DATABASE sales;

0 rows available after 64 ms, consumed after another 0 ms

neo4j@system> SHOW DATABASES;

In standalone mode:

+--
----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
----+
| "neo4j" | "localhost:7687" | "standalone" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
+--
----+

3 rows available after 2 ms, consumed after another 2 ms

Or in a Causal Cluster:

174

+--
----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
----+
| "neo4j" | "localhost:7687" | "leader" | "online" | "online" | "" | TRUE |
TRUE |
| "neo4j" | "localhost:7688" | "follower" | "online" | "online" | "" | TRUE |
TRUE |
| "neo4j" | "localhost:7689" | "follower" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "system" | "localhost:7688" | "leader" | "online" | "online" | "" | FALSE |
FALSE |
| "system" | "localhost:7689" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7687" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7688" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7689" | "leader" | "online" | "online" | "" | FALSE |
FALSE |
+--
----+

9 rows available after 2 ms, consumed after another 2 ms

neo4j@system> :use sales
neo4j@sales> match (n) return count(n) as countNode;

+-----------+
| countNode |
+-----------+
| 0 |
+-----------+

1 row available after 15 ms, consumed after another 1 ms

7.3.7. Stop a database

175

Example 31. STOP DATABASE

neo4j@system> STOP DATABASE sales;

0 rows available after 18 ms, consumed after another 6 ms

neo4j@system> SHOW DATABASES;

In standalone mode:

+--
----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
----+
| "neo4j" | "localhost:7687" | "standalone" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7687" | "standalone" | "offline" | "offline" | "" | FALSE |
FALSE |
+--
----+

3 rows available after 2 ms, consumed after another 1 ms

Or in a Causal Cluster:

+--
----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
----+
| "neo4j" | "localhost:7687" | "leader" | "online" | "online" | "" | TRUE |
TRUE |
| "neo4j" | "localhost:7688" | "follower" | "online" | "online" | "" | TRUE |
TRUE |
| "neo4j" | "localhost:7689" | "follower" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "system" | "localhost:7688" | "leader" | "online" | "online" | "" | FALSE |
FALSE |
| "system" | "localhost:7689" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7687" | "unknown" | "offline" | "offline" | "" | FALSE |
FALSE |
| "sales" | "localhost:7688" | "unknown" | "offline" | "offline" | "" | FALSE |
FALSE |
| "sales" | "localhost:7689" | "unknown" | "offline" | "offline" | "" | FALSE |
FALSE |
+--
----+

9 rows available after 2 ms, consumed after another 1 ms

neo4j@system> :use sales

176

Unable to get a routing table for database 'sales' because this database is unavailable
neo4j@sales[UNAVAILABLE]>

7.3.8. Start a database

177

Example 32. START DATABASE

neo4j@sales[UNAVAILABLE]> :use system
neo4j@system> START DATABASE sales;

0 rows available after 21 ms, consumed after another 1 ms

neo4j@system> SHOW DATABASES;

In standalone mode:

+--
----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
----+
| "neo4j" | "localhost:7687" | "standalone" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
+--
----+

3 rows available after 2 ms, consumed after another 1 ms

Or in a Causal Cluster:

+--
----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
----+
| "neo4j" | "localhost:7687" | "leader" | "online" | "online" | "" | TRUE |
TRUE |
| "neo4j" | "localhost:7688" | "follower" | "online" | "online" | "" | TRUE |
TRUE |
| "neo4j" | "localhost:7689" | "follower" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "system" | "localhost:7688" | "leader" | "online" | "online" | "" | FALSE |
FALSE |
| "system" | "localhost:7689" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7687" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7688" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "sales" | "localhost:7689" | "leader" | "online" | "online" | "" | FALSE |
FALSE |
+--
----+

9 rows available after 2 ms, consumed after another 1 ms

178

7.3.9. Drop or remove a database Enterprise edition

Example 33. DROP DATABASE

neo4j@system> DROP DATABASE sales;

0 rows available after 82 ms, consumed after another 1 ms

neo4j@system> SHOW DATABASES;

+--
----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
----+
| "neo4j" | "localhost:7687" | "standalone" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
+--
----+

2 rows available after 6 ms, consumed after another 0 ms

7.4. Error handling
When running the database management queries, such as CREATE DATABASE, it is possible to encounter
errors.

7.4.1. Observing errors

Because database management operations are performed asynchronously, these errors may not returned
immediately upon query execution. Instead, you must monitor the output of SHOW DATABASE; particularly the
error and currentStatus columns.

179

Example 34. Fail to create a database

neo4j@system> CREATE DATABASE foo;

0 rows available after 108 ms, consumed after another 0 ms

neo4j@system> SHOW DATABASE foo;

In standalone mode:

+--
----------------------+
| name | address | role | requestedStatus | currentStatus | error
| default | home |
+--
----------------------+
| "foo" | "localhost:7687" | "standalone" | "online" | "dirty" | "File system
permissions" | FALSE | FALSE |
+--
----------------------+

1 rows available after 4 ms, consumed after another 1 ms

In a Causal Cluster:

+--
--------------------+
| name | address | role | requestedStatus | currentStatus | error
| default | home |
+--
--------------------+
| "foo" | "localhost:7687" | "leader" | "online" | "online" | ""
| FALSE | FALSE |
| "foo" | "localhost:7688" | "follower" | "online" | "online" | ""
| FALSE | FALSE |
| "foo" | "localhost:7689" | "follower" | "online" | "dirty" | "File system
permissions" | FALSE | FALSE |
+--
--------------------+

3 row available after 100 ms, consumed after another 6 ms

7.4.2. Database states

A database management operation may fail for a number of reasons. For example, if the file system
instance has incorrect permissions, or Neo4j itself is misconfigured. As a result, the contents of the error
column in the SHOW DATABASE query results may vary significantly.

However, databases may only be in one of a select number of states:

Current state Description

initial The database has not yet been created.

180

Current state Description

online The database is running.

offline The database is not running.

store copying The database is currently being updated from
another instance of Neo4j.

dropped The database has been deleted.

dirty This state implies an error has occurred. The
database’s underlying store files may be invalid. For
more information, consult the server’s logs.

quarantined The database is effectively stopped and its state
may not be changed until no longer quarantined.

unknown This instance of Neo4j doesn’t know the state of
this database.

Most often, when a database management operation fails, Neo4j attempts to transition the database in
question to the offline state. If the system is certain that no store files have yet been created, it transitions
the database to initial instead. Similarly, if the system suspects that the store files underlying the
database are invalid (incomplete, partially deleted, or corrupt), then it transitions the database to dirty.

While dropped is a valid database state, it is only transiently observable, as database
records are removed from SHOW DATABASE results once the DROP operation is complete.

7.4.3. Retrying failed operations

Database management operations may be safely retried in the event of failure. However, these retries are
not guaranteed to succeed, and errors may persist through several attempts.

 If a database is in the quarantined state, retrying the last operation will not work.

181

Example 35. Retry to start a database

neo4j@system> START DATABASE foo;

0 rows available after 108 ms, consumed after another 0 ms

neo4j@system> SHOW DATABASE foo;

+--
----------------------+
| name | address | role | requestedStatus | currentStatus | error
| default | home |
+--
----------------------+
| "foo" | "localhost:7687" | "standalone" | "online" | "offline" | "File system
permissions" | FALSE | FALSE |
+--
----------------------+

1 rows available after 4 ms, consumed after another 1 ms

After investigating and addressing the underlying issue, you can start the database again and verify
that it is running properly:

neo4j@system> START DATABASE foo;

0 rows available after 108 ms, consumed after another 0 ms

neo4j@system> SHOW DATABASE foo;

+--
----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+--
----+
| "foo" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
+--
----+

1 rows available after 4 ms, consumed after another 1 ms

If repeated retries of a command have no effect, or if a database is in a dirty state, you may drop and
recreate the database, as detailed in Cypher Manual → Database management.

When running DROP DATABASE as part of an error handling operation, you can also
append DUMP DATA to the command. It produces a database dump that can be further
examined and potentially repaired.

182

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#databases

7.4.4. Quarantined databases

There are two ways to get a database into a quarantined state:

• By using the dbms.quarantineDatabase procedure locally to isolate a specific database. The procedure
must be executed on the instance whose copy of the database you want to quarantine. A reason for
that can be, for example, when a database is unable to start on a given instance due to a file system
permissions issue with the volume where the database is located or when a recently started database
begins to log errors. The quarantine state renders the database inaccessible on that instance and
prevents its state from being changed, for example, with the START DATABASE command.

If running in a cluster, database management commands such as START DATABASE
foo will still take effect on the instances which have not quarantined foo.

• When a database encounters a severe error during its normal run, which prevents it from a further
operation, Neo4j stops that database and brings it into a quarantined state. Meaning, it is not possible
to restart it with a simple START DATABASE command. You have to execute CALL
dbms.quarantineDatabase(databaseName, false) on the instance with the failing database in order to
lift the quarantine.

After lifting the quarantine, the instance will automatically try to bring the database to the desired state.

It is recommended to run the quarantine procedure over the bolt:// protocol rather than
neo4j://, which may route requests to unexpected instances.

Syntax:

CALL dbms.quarantineDatabase(databaseName,setStatus,reason)

Arguments:

Name Type Description

databaseName String The name of the database that will be
put into or removed from quarantine.

setStatus Boolean true for placing the database into
quarantine; false for lifting the
quarantine.

reason String (Optional) The reason for placing the
database in quarantine.

Returns:

Name Type Description

databaseName String The name of the database.

quarantined String Actual state.

183

Name Type Description

result String Result of the last operation. The result
contains the user, the time, and the
reason for the quarantine.

The dbms.quarantineDatabase procedure replaces dbms.cluster.quarantineDatabase,
which has been deprecated in Neo4j 4.3 and will be removed with the next major
version.

Quarantine a database

neo4j@system> CALL dbms.quarantineDatabase("foo",true);

+--+
| databaseName | quarantined | result |
+--+
| "foo" | TRUE | "By neo4j at 2020-10-15T15:10:41.348Z: No reason given" |
+--+

3 row available after 100 ms, consumed after another 6 ms

Check if a database is quarantined

neo4j@system> SHOW DATABASE foo;

+---
--+
| name | address | role | requestedStatus | currentStatus | error
| default | home |
+---
--+
| "foo" | "localhost:7688" | "unknown" | "online" | "quarantined" | "By neo4j at 2020-10-
15T15:10:41.348Z: No reason given" | FALSE | FALSE |
| "foo" | "localhost:7689" | "follower" | "online" | "online" | ""
| FALSE | FALSE |
| "foo" | "localhost:7687" | "leader" | "online" | "online" | ""
| FALSE | FALSE |
+---
--+

3 row available after 100 ms, consumed after another 6 ms

A quarantined state is persisted for user databases. This means that if a database is
quarantined, it will remain so even if that Neo4j instance is restarted. You can remove it
only by running the dbms.quarantineDatabase procedure on the instance where the
quarantined database is located, passing false for the setStatus parameter.

The one exception to this rule is for the built-in system database. Any quarantine for that
database is removed automatically after instance restart.

7.5. Databases in a cluster
Multiple databases in a cluster are managed the same way as a single instance. Administrators can use the
same Cypher commands described in Administrative commands to manage databases. This is based on

184

two main principles:

• All databases are available on all members of a cluster - this applies to Core servers and Read
Replicas.

• Administrative commands must be executed on the system database, on the Leader member of the
cluster.

7.5.1. Change the default database

You can use the procedure dbms.cluster.setDefaultDatabase("newDefaultDatabaseName") to change the
default database of a cluster.

1. Ensure that the database to be set as default exists, otherwise create it using the command CREATE
DATABASE <database-name>.

2. Show the name and status of the current default database by using the command SHOW DEFAULT
DATABASE.

3. Stop the current default database using the command STOP DATABASE <database-name>.

4. On the Leader member of the cluster, run CALL
dbms.cluster.setDefaultDatabase("newDefaultDatabaseName") against the system database to set the
new default database.

5. Optionally, you can start the previous default database as non-default by using START DATABASE
<database-name>.

7.5.2. Run Cypher administrative commands from Cypher Shell on a
cluster

For the following examples consider a cluster environment formed by 5 members, 3 Core servers, and 2
Read Replicas:

185

Example 36. View the members of a cluster

neo4j@neo4j> CALL dbms.cluster.overview();

+--
--+
| id | addresses |
databases | groups |
+--
--+
| "8c...3d" | ["bolt://localhost:7683", "http://localhost:7473", "https://localhost:7483"] | {neo4j:
"FOLLOWER", system: "FOLLOWER"} | [] |
| "8f...28" | ["bolt://localhost:7681", "http://localhost:7471", "https://localhost:7481"] | {neo4j:
"LEADER", system: "LEADER"} | [] |
| "e0...4d" | ["bolt://localhost:7684", "http://localhost:7474", "https://localhost:7484"] | {neo4j:
"READ_REPLICA", system: "READ_REPLICA"} | [] |
| "1a...64" | ["bolt://localhost:7682", "http://localhost:7472", "https://localhost:7482"] | {neo4j:
"FOLLOWER", system: "FOLLOWER"} | [] |
| "59...87" | ["bolt://localhost:7685", "http://localhost:7475", "https://localhost:7485"] | {neo4j:
"READ_REPLICA", system: "READ_REPLICA"} | [] |
+--
--+

5 rows available after 5 ms, consumed after another 0 ms

The leader is currently the instance exposing port 7681 for the bolt protocol, and 7471/7481 for the
http/https protocol.

Administrators can connect and execute Cypher commands in the following ways:

186

Example 37. Using the bolt:// scheme to connect to the Leader:

$ bin/cypher-shell -a bolt://localhost:7681 -d system -u neo4j -p neo4j1

Connected to Neo4j 4.0.0 at bolt://localhost:7681 as user neo4j.
Type :help for a list of available commands or :exit to exit the shell.
Note that Cypher queries must end with a semicolon.

neo4j@system> SHOW DATABASES YIELD name, currentStatus AS status, default;

+-------------------------------+
| name | status | default |
+-------------------------------+
| "neo4j" | "online" | TRUE |
| "system" | "online" | FALSE |
+-------------------------------+

2 rows available after 34 ms, consumed after another 0 ms

neo4j@system> CREATE DATABASE data001;

0 rows available after 378 ms, consumed after another 12 ms
Added 1 nodes, Set 4 properties, Added 1 labels
neo4j@system> SHOW DATABASES YIELD name, currentStatus AS status, default;
+--------------------------------+
| name | status | default |
+--------------------------------+
"neo4j"	"online"	TRUE
"system"	"online"	FALSE
"data001"	"online"	FALSE
+--------------------------------+

3 rows available after 2 ms, consumed after another 1 ms

187

Example 38. Using the neo4j:// scheme to connect to any Core member:

$ bin/cypher-shell -a neo4j://localhost:7683 -d system -u neo4j -p neo4j1

Connected to Neo4j 4.0.0 at neo4j://localhost:7683 as user neo4j.
Type :help for a list of available commands or :exit to exit the shell.
Note that Cypher queries must end with a semicolon.

neo4j@system> SHOW DATABASES YIELD name, currentStatus AS status, default;

+--------------------------------+
| name | status | default |
+--------------------------------+
"neo4j"	"online"	TRUE
"system"	"online"	FALSE
"data001"	"online"	FALSE
+--------------------------------+

3 rows available after 0 ms, consumed after another 0 ms

neo4j@system> CREATE DATABASE data002;

0 rows available after 8 ms, consumed after another 1 ms
Added 1 nodes, Set 4 properties, Added 1 labels

neo4j@system> SHOW DATABASES YIELD name, currentStatus AS status, default;

+--------------------------------+
| name | status | default |
+--------------------------------+
"neo4j"	"online"	TRUE
"system"	"online"	FALSE
"data001"	"online"	FALSE
"data002"	"online"	FALSE
+--------------------------------+

4 rows available after 33 ms, consumed after another 0 ms

The neo4j:// scheme is the equivalent to the bolt+routing: scheme available in earlier
versions of Neo4j, but it can be used seamlessly with a standalone and clustered DBMS.

188

Chapter 8. Clustering
This chapter describes the following:

• Introduction — An overview of the different Neo4j cluster topologies available.

• Deploy a cluster — The basics of configuring and deploying a new cluster.

• Seed a cluster — How to deploy a cluster with pre-existing data.

• Discovery — How members of a cluster discover each other.

• Intra-cluster encryption — How to secure the cluster communication.

• Internals — A few internals regarding the operation of the cluster.

• Settings reference — A summary of the most important Causal Cluster settings.

• Clustering glossary — A glossary of terms used in the clustering documentation.

Further information:

• For instructions on setting up clustering when running Neo4j in a Docker container, see Clustering on
Docker.

• For an example of managing multiple databases in a cluster, see Multiple databases in a cluster.

• For instructions on how you to upgrade your Neo4j cluster, see Upgrade a Causal Cluster.

• For a summary of the facilities that are available for monitoring a Neo4j cluster, see Monitoring (and
specifically, Monitoring a cluster).

• For a tutorial on setting up a test cluster locally on a single machine, see Set up a local Causal Cluster.

• For advanced concepts, including the implementation of the Raft Protocol, see Advanced Causal
Clustering

8.1. Introduction

8.1.1. Overview

Neo4j’s Causal Clustering provides three main features:

1. Safety: Primary Servers provide a fault tolerant platform for transaction processing which will remain
available while a simple majority of those servers are functioning.

2. Scale: Secondary Servers provide a scalable platform for graph queries that enables very large graph
workloads to be executed in a distributed topology.

3. Causal consistency: through the use of bookmarks, a client application is guaranteed to read at least its
own writes.

Together, this allows the end-user system to be fully functional and both read and write to the database in
the event of multiple hardware and network failures and makes reasoning about database interactions
straightforward.

189

https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#upgrade

The remainder of this section provides an overview of how causal clustering works in production, including
both operational and application aspects.

8.1.2. Operational view

From an operational point of view, it is useful to view the cluster as being composed of servers with two
different roles, referred to as Primary and Secondary servers.

Figure 4. Causal Cluster Architecture

The two roles are foundational in any production deployment but are managed at different scales from one
another and undertake different roles in managing the fault tolerance and scalability of the overall cluster.

8.1.3. Primary servers

The Primary servers are based on two types on instances:

• Single instance is an instance that operates without redundancy within the set of Primary servers and
allows read and write operations. Redundancy is achieved by adding Secondary servers, which
guarantee causal consistency but they do not safeguard data as Primary servers do. Therefore,
clusters based on a Single instance as Primary server are good for read scalability, but they are not
fault tolerant. If a fault occurs on the Single instance, there is a potential risk of data loss: it is the
responsibility of the application or of the tooling around the cluster to eliminate or minimize such risk.

• Core instance is an instance that allows read and write operations and its main responsibility is to
safeguard data. Core instances do so by replicating all transactions using the Raft protocol. Raft
ensures that the data is safely durable before confirming a transaction commit to the end user
application. In practice, this means once a majority of Core instances in a cluster (N/2+1) have accepted
the transaction, it is safe to acknowledge the commit to the end user application.

The safety requirement has an impact on write latency. Implicitly, writes are acknowledged by the
fastest majority, but as the number of Core instances in the cluster grows, so does the size of the

190

majority needed to acknowledge a write.

In practice, this means that there are relatively few machines in a typical Core instance cluster, enough
to provide sufficient fault tolerance for the specific deployment. This is calculated with the formula M =
2F + 1, where M is the number of Core instances required to tolerate F faults. For example:

◦ In order to tolerate two failed Core instances, you need to deploy a cluster of five Core instances.

◦ The smallest fault tolerant cluster, a cluster that can tolerate one fault, must have three Core
instances.

◦ It is also possible to create a Causal Cluster consisting of only two Core instances. However, that
cluster is not fault-tolerant. If one of the two servers fails, the remaining server becomes read-only.

With Core instances, should the cluster suffer enough Core failures, it can no longer
process writes and becomes read-only to preserve safety.

In version 4.3 of Neo4j Causal Cluster, Primary servers cannot be mixed: either one
Single instance is the Primary server or a set of Core instances are the Primary servers.

8.1.4. Secondary servers

In version 4.3 of Neo4j Causal Cluster, Secondary servers can only be one type of instance, called Read
Replica instances.

The main responsibility of Read Replica instances is to scale out read workloads. Read Replica instances
act like caches for the graph data and are fully capable of executing arbitrary (read-only) queries and
procedures.

Read Replica instances are asynchronously replicated from Primary Servers via transaction log shipping.
They periodically poll an upstream server for new transactions and have these shipped over. Many Read
Replica instances can be fed data from a relatively small number of Primary Servers, allowing for a large
fan-out of the query workload for scale.

Read Replica instances should typically be run in relatively large numbers and treated as disposable.
Losing a Read Replica instance does not impact the cluster’s availability, aside from the loss of its fraction
of graph query throughput. When Primary servers are Core instances, the loss of one or more Read
Replica instances does not affect the fault tolerance of the cluster.

When the Primary server is a Single instance, Secondary servers may be part of a Disaster Recovery
strategy. Due to its asynchronous nature, Read Replica instances may not provide all transactions
committed on the Primary server, but they may be set as a new Primary server in case the Single instance
is no longer available. The change of a Read Replica instance into a Single instance is a manual operation
that must be executed by a Database Administrator or by some tooling and it requires careful checks, in
order to identify the most up-to-date instance and the status of the other instances.

8.1.5. Causal consistency

While the operational mechanics of the cluster are interesting from an application point of view, it is also

191

helpful to think about how applications will use the database to get their work done. In many applications,
it is typically desirable to both read from the graph and write to the graph. Depending on the nature of the
workload, it is common to want reads from the graph to take into account previous writes to ensure causal
consistency.

Causal consistency is one of numerous consistency models used in distributed
computing. It ensures that causally related operations are seen by every instance in the
system in the same order. Consequently, client applications are guaranteed to read their
own writes, regardless of which instance they communicate with. This simplifies
interaction with large clusters, allowing clients to treat them as a single (logical) server.

Causal consistency makes it possible to write to Core Servers (where data is safe) and read those writes
from a Read Replica (where graph operations are scaled out). For example, causal consistency guarantees
that the write which created a user account will be present when that same user subsequently attempts to
log in.

Figure 5. Cluster setup with causal consistency via Neo4j drivers

On executing a transaction, the client can ask for a bookmark which it then presents as a parameter to

192

subsequent transactions. Using that bookmark the cluster can ensure that only servers which have
processed the client’s bookmarked transaction will run its next transaction. This provides a causal chain
which ensures correct read-after-write semantics from the client’s point of view.

Aside from the bookmark everything else is handled by the cluster. The database drivers work with the
cluster topology manager to choose the most appropriate Core Servers and Read Replicas to provide high
quality of service.

Since Neo4j clusters are causally consistent, in the remainder of this chapter, the terms causal cluster or
cluster are used to denote Neo4j installations consisting of primary and secondary servers.

8.2. Deploy a cluster

8.2.1. Introduction

This section describes how to set up a new cluster. Two scenarios are covered:

1. A four-instance cluster with one Single instance as Primary server and three Read Replica instances as
Secondary servers. This scenario is ideal for reporting and analytical workloads.

2. A three-instance cluster with three Core instances as Primary servers. This scenario is ideal for
transactional workloads.

Additionally, the process to turn a Secondary server into a standalone instance by detaching it from an
existing cluster is also described.

8.2.2. Configure a cluster with Single and Read Replica instances

The following configuration settings are important to consider when deploying a new cluster with a Single
instance as a Primary server. See also Settings reference for more detailed descriptions and examples.

This configuration is optimized for best scalability and it is recommended to be used for
reporting and analytical workloads. Clusters configured in this way do not provide
automatic failover and fault tolerance. In case of fault, if a cluster is not supported by
appropriate external tooling, data may be lost.

In the current version of Neo4j, the clustering-related parameters use the
causal_clustering namespace. This will be replaced with a more suitable namespace in
an upcoming release.

Table 34. Important settings for clusters with Single instance as Primary server

Option name Servers Description

dbms.default_advertised_address All (Primary and
Secondary)

The address that other machines are told to connect
to. In the typical case, this should be set to the fully
qualified domain name or the IP address of this server.

193

Option name Servers Description

dbms.mode Primary The operating mode of the server instance. The
Primary server is set as SINGLE.

Secondary The operating mode of the server instance. The
Secondary servers are set as READ_REPLICA.

dbms.clustering.enable=true Primary Allows a single instance to form a cluster and is only
evaluated when dbms.mode=SINGLE.

causal_clustering.initial_discovery_
members

Secondary This setting needs to be specified on Read Replica
instances and contains the network address for at
least the primary instance, but can also include
Secondary servers. This parameter must be set to the
same value on all cluster members. The behavior of
this setting can be modified by configuring the setting
causal_clustering.discovery_type. This is described
in detail in Discovery.

The following example shows how to set up a cluster with a Single instance as Primary server and three
Read Replica instances as Secondary servers.

194

Example 39. Configure a cluster with a Single instance as Primary server

In this example, one Primary server named single.example.com and three Secondary servers,
read_replica01.example.com, read_replica02.example.com and read_replica03.example.com are
configured. All instances have Neo4j Enterprise Edition installed. To form a cluster, the neo4j.conf
needs to be configured on each server. The Primary server, set as Single instance, is configured as
such:

neo4j.conf on single.example.com:

dbms.mode=SINGLE
dbms.clustering.enable=true
dbms.default_advertised_address=single.example.com

The neo4j.conf on the Secondary servers, set as Read Replica instances, is identical across all
instances:

neo4j.conf on read_replica01.example.com, read_replica02.example.com and
read_replica03.example.com:

dbms.mode=READ_REPLICA
dbms.default_advertised_address=read_replica<xx>.example.com
causal_clustering.initial_discovery_members=single.example.com:5000

Once all neo4j.conf files have been configured, the instances can be started and the cluster is ready.
After the cluster has started, it is possible to connect to any of the instances and run CALL
dbms.cluster.overview() to check the status of the cluster. This shows information about each
member of the cluster:

CALL dbms.cluster.overview();

+--
--+
| id | addresses
| databases | groups |
+--
--+
| "8e4133d7-4de1-469e-88ac-864571cb0a92" | ["bolt://read_replica1.example.com:7687",
"http://read_replica1.example.com:7474"] | {neo4j: "READ_REPLICA", system: "READ_REPLICA"} | [] |
| "eb6a4e88-9a5f-405b-b230-5bbbd681ec9e" | ["bolt://read_replica2.example.com:7687",
"http://read_replica2.example.com:7474"] | {neo4j: "READ_REPLICA", system: "READ_REPLICA"} | [] |
| "274e36db-d96f-4736-8a99-68851b1bbb0b" | ["bolt://read_replica3.example.com:7687",
"http://read_replica3.example.com:7474"] | {neo4j: "READ_REPLICA", system: "READ_REPLICA"} | [] |
| "6fd05bc6-760e-4644-bf02-05117a5d777d" | ["bolt://single.example.com:7687",
"http://single.example.com:7474"] | {neo4j: "LEADER", system: "LEADER"} |
[] |
+--
--+
4 rows available after 8 ms, consumed after another 3 ms

8.2.3. Configure a cluster with Core instances

The following configuration settings are important to consider when deploying a new cluster with Core
instances as Primary servers. See also Settings reference for more detailed descriptions and examples.

195

This configuration is optimized for fault tolerance, automatic failover and best scalability,
and it is recommended to be used for transactional workloads. In many cases and when
they are correctly configured, these clusters safeguard data and they do not require any
particular external tooling.

Table 35. Important settings for clusters with Core instances as Primary servers

Option name Servers Description

dbms.default_listen_address All (Primary and
Secondary)

The address or network interface this machine uses to
listen for incoming messages. Setting this value to
0.0.0.0 makes Neo4j bind to all available network
interfaces.

dbms.default_advertised_address All (Primary and
Secondary)

The address that other machines are told to connect
to. In the typical case, this should be set to the fully
qualified domain name or the IP address of this server.

dbms.mode Primary The operating mode of the server instance. The
Primary servers are set as CORE.

Secondary The operating mode of the server instance. The
Secondary servers are set as READ_REPLICA.

causal_clustering.minimum_core_clust
er_size_at_formation

Primary The minimum number of Core instances in the cluster
at formation. A cluster will not form without the
number of Cores defined by this setting, and this
should in general be configured to the full and fixed
amount.

causal_clustering.minimum_core_clust
er_size_at_runtime

Primary The minimum number of Core instances which will
exist in the consensus group.

causal_clustering.initial_discovery_
members

All (Primary and
Secondary)

The network addresses of an initial set of Core cluster
members that are available to bootstrap this Core or
Read Replica instance. In the default case, the initial
discovery members are given as a comma-separated
list of address/port pairs, and the default port for the
discovery service is :5000. It is good practice to set
this parameter to the same value on all Core Servers.

The behavior of this setting can be modified by
configuring the setting
causal_clustering.discovery_type. This is described
in detail in Discovery.

Listen configuration

Listening on 0.0.0.0 makes the ports publicly available. Make sure you understand the
security implications and strongly consider setting up encryption.

The following example shows how to set up a simple cluster with three Core servers:

196

Example 40. Configure a Core-only cluster

In this example, three Core instances named core01.example.com, core02.example.com and
core03.example.com are configured. Neo4j Enterprise Edition is installed on all three servers. They are
configured by preparing neo4j.conf on each server. Note that they are all identical, except for the
configuration of dbms.default_advertised_address:

neo4j.conf on core01.example.com:

dbms.default_listen_address=0.0.0.0
dbms.default_advertised_address=core01.example.com
dbms.mode=CORE
causal_clustering.initial_discovery_members=core01.example.com:5000,core02.example.com:5000,core03.ex
ample.com:5000

neo4j.conf on core02.example.com:

dbms.default_listen_address=0.0.0.0
dbms.default_advertised_address=core02.example.com
dbms.mode=CORE
causal_clustering.initial_discovery_members=core01.example.com:5000,core02.example.com:5000,core03.ex
ample.com:5000

neo4j.conf on core03.example.com:

dbms.default_listen_address=0.0.0.0
dbms.default_advertised_address=core03.example.com
dbms.mode=CORE
causal_clustering.initial_discovery_members=core01.example.com:5000,core02.example.com:5000,core03.ex
ample.com:5000

The Neo4j servers are ready to be started. The startup order does not matter.

After the cluster has started, it is possible to connect to any of the instances and run CALL
dbms.cluster.overview() to check the status of the cluster. This shows information about each
member of the cluster:

CALL dbms.cluster.overview();

+--
------------------------------------+
| id | addresses | databases
| groups |
+--
------------------------------------+
| "8e07406b-90b3-4311-a63f-85c45af63583" | ["bolt://core1:7687", "http://core1:7474"] | {neo4j:
"LEADER", system: "FOLLOWER"} | [] |
| "aeb6debe-d3ea-4644-bd68-304236f3813b" | ["bolt://core3:7687", "http://core3:7474"] | {neo4j:
"FOLLOWER", system: "FOLLOWER"} | [] |
| "b99ff25e-dc64-4c9c-8a50-ebc1aa0053cf" | ["bolt://core2:7687", "http://core2:7474"] | {neo4j:
"FOLLOWER", system: "LEADER"} | [] |
+--
------------------------------------+

197

Startup time

The instance may appear unavailable while it is joining the cluster. If you want to follow
along with the startup, you can follow the messages in neo4j.log.

8.2.4. Add a Core Server to an existing cluster

Core Servers are added to an existing cluster by starting a new Neo4j instance with the appropriate
configuration. The new server joins the existing cluster and becomes available once it has copied the data
from its peers. It may take some time for the new instance to perform the copy if the existing cluster
contains large amounts of data.

The setting causal_clustering.initial_discovery_members shall be updated on all the servers in the
cluster to include the new server.

Example 41. Add a Core Server to an existing cluster

In this example, a Core Server, core04.example.com, is added to the cluster created in Configure a
Core-only cluster.

Configure the following entries in neo4j.conf:

neo4j.conf on core04.example.com:

dbms.default_listen_address=0.0.0.0
dbms.default_advertised_address=core04.example.com
dbms.mode=CORE
causal_clustering.minimum_core_cluster_size_at_formation=3
causal_clustering.minimum_core_cluster_size_at_runtime=3
causal_clustering.initial_discovery_members=core01.example.com:5000,core02.example.com:5000,core03.ex
ample.com:5000,core04.example.com:5000

Note that the configuration is very similar to that of the previous servers. In this example, the new
server is not intended to be a permanent member of the cluster, thus it is not included in
causal_clustering.initial_discovery_members on the other Core members of the cluster.

Now start the new Core Server and let it add itself to the existing cluster.

8.2.5. Add a Secondary server to an existing cluster

In the 4.3 version of Neo4j, all Secondary servers are Read Replica instances. The initial configuration for
Read Replica instances is provided via neo4j.conf, as mentioned above in Configure a cluster with Single
and Read Replica instances. Since Read Replicas do not participate in cluster quorum decisions, their
configuration is shorter; they only need to know the addresses of at least one primary instance which they
can bind to in order to discover the cluster.

It is recommended to specify the addresses for all existing primary instances in a cluster
when adding a Read Replica. They can then select an appropriate Primary server from
which to copy data.

198

Example 42. Add a Secondary server to an existing cluster with a Single instance as Primary server

In this example, a Read Replica instance, replica04.example.com, is added to the cluster created in
Configure a cluster with a Single instance as Primary server.

Configure the following entries in neo4j.conf:

neo4j.conf on replica04.example.com:

dbms.default_advertised_address=read_replica04.example.com
dbms.mode=READ_REPLICA
causal_clustering.initial_discovery_members=single.example.com:5000

Now start the new Read Replica and let it add itself to the existing cluster.

Example 43. Add a Secondary server to an existing cluster with Core servers as Primary servers

In this example, a Read Replica, replica05.example.com, is added to the cluster created in Configure
a Core-only cluster.

Configure the following entries in neo4j.conf:

neo4j.conf on replica05.example.com:

dbms.default_advertised_address=read_replica05.example.com
dbms.mode=READ_REPLICA
causal_clustering.initial_discovery_members=core01.example.com:5000,core02.example.com:5000,core03.ex
ample.com:5000

Now start the new Read Replica and let it add itself to the existing cluster.

When adding a Secondary server to an existing cluster, only Primary servers need to be
listed in causal_clustering.initial_discovery_members. It is not necessary to include
existing Secondary servers, i.e. other Read Replica instances.

8.2.6. Detach a Secondary server from an existing cluster

It is possible to turn a Secondary server into a standalone instance that thus contains a snapshot of the
data in the cluster. This can, in theory, be done for a Core Server as well, but this is not recommended for
performance and safety reasons. As mentioned above, in the 4.3 version of Neo4j, all Secondary servers
are Read Replica instances.

199

Example 44. Detach a Read Replica and turn it into a stand alone instance

In this example, a Read Replica, replica01.example.com, is detached from a cluster. See Add a
Secondary server to an existing cluster above on how to add a Read Replica to a cluster.

First, ensure that the Read Replica is up-to-date, then shut it down. Once the Read Replica is shut
down, configure the following entry in neo4j.conf:

neo4j.conf on replica01.example.com:

dbms.mode=SINGLE

Start the instance again. It is now a standalone instance containing the same data as the cluster (at
the time of shutting down the Read Replica).

There is always a chance that the Read Replica is behind the Core Servers at any time. If
a transaction is being processed at the time of the shutdown of the Read Replica, this
transaction is eventually reflected in the remaining Cluster, but not on the detached
Read Replica. A way to ensure that a Read Replica contains a snapshot of a database in
the cluster at a point in time, is to pause the read Replica before shutting it down. See
dbms.cluster.readReplicaToggle() for more information.

8.3. Seed a cluster

8.3.1. Introduction

Regardless of whether you are just playing around with Neo4j or setting up a production environment, you
likely have some existing data that you want to transfer into your newly created cluster. Neo4j supports
seeding a cluster from a database dump, a database backup, or from another data source (with the Import
tool). For more information about the different backup options and how to use the Neo4j Import tool, see
Backup and restore options and Neo4j Admin.

It is possible to seed a cluster with a single database or multiple, including a full DBMS. Any seeding that
includes restoring the system database needs to be done offline, but any other databases can be seeded
online.

 The databases that you want to seed and the Neo4j cluster must be of the same version.

The process for seeding a cluster is essentially the same for clusters with Single and Read Replica
instances as for clusters with Core (and optional Read Replica) instances. However, using a designated
seeder is only applicable to clusters with Core instances. The seeding is usually performed on primary
instances only but it is possible to seed a Read Replica instance, yet it is not necessary unless for
performance reasons.

200

8.3.2. Seed a cluster from a database dump (offline)

This could be an offline backup (i.e. a dump) from a standalone Neo4j instance or a cluster member (e.g.,
an existing Read Replica instance). The following example seeds a newly created cluster with an example
DBMS consisting of the system database and the default database, neo4j from a dump. If you want to seed
a single user database, follow the steps in [causal-clustering-seed-from-backups] further on.

This scenario is useful in disaster recovery where some servers have retained their data
during a catastrophic event.

Moving files and directories manually in or out of a Neo4j installation is not
recommended and considered unsupported.

1. Create a new Neo4j Core-only cluster following the instructions in Configure a cluster with Core
instances but do not start any of the members. (If you have started any of the cluster members, stop
and unbind each started member.)

2. Use neo4j-admin load to seed each of the Core members in the cluster.

The examples assume that you are restoring one user database with the default name of neo4j and the
system database, containing the replicated configuration state. Modify the command line arguments to
match your exact setup.

neo4j-01$./bin/neo4j-admin load --from=/path/to/system.dump --database=system
neo4j-01$./bin/neo4j-admin load --from=/path/to/neo4j.dump --database=neo4j
neo4j-02$./bin/neo4j-admin load --from=/path/to/system.dump --database=system
neo4j-02$./bin/neo4j-admin load --from=/path/to/neo4j.dump --database=neo4j
neo4j-03$./bin/neo4j-admin load --from=/path/to/system.dump --database=system
neo4j-03$./bin/neo4j-admin load --from=/path/to/neo4j.dump --database=neo4j

3. Start each cluster member.

neo4j-01$./bin/neo4j start
neo4j-02$./bin/neo4j start
neo4j-03$./bin/neo4j start

The cluster forms and the replicated Neo4j DBMS deployment comes online.

8.3.3. Seed a cluster from a database backup (online)

 These scenarios are useful when you want to restore a database in a running cluster.

If you have a running Neo4j database that you want to seed in a running cluster, use neo4j-admin backup
to create a database backup. This could be a backup from a standalone Neo4j instance or another cluster
member (e.g., an existing Read Replica).

Neo4j supports two types of seeding in a running cluster. You can either transfer the database backup to
each Core instance or transfer it only to one Core instance and then use the CREATE DATABASE Cypher
command to seed the cluster. For more information on the CREATE DATABASE syntax and options, see
Cypher Manual → Creating databases.

201

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#administration-databases-create-database
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#administration-databases-create-database
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#administration-databases-create-database

Moving files and directories manually in or out of a Neo4j installation is not
recommended and considered unsupported.

Restore a database on each Core instance

Transfer the database backup to each Core instance in the cluster using the neo4j-admin restore
command and then use CREATE DATABASE to restore it. This example uses a user database called movies1.

1. To ensure that the movies1 database does not exist in the cluster, on one of the Core members, use
Cypher Shell and run DROP DATABASE movies1. Use the system database to connect. The command is
automatically routed to the appropriate Core instance and from there to the other cluster members.

DROP DATABASE movies1;

 Dropping a database also deletes the users and roles associated with it.

If you cannot drop the database because your seeds include the system database
(which cannot be dropped), you must run neo4j-admin unbind . However, this
removes the cluster state of the Core instance and in turn the instance needs to be
restarted in order to join the cluster. Thus, you are no longer restoring a database in
a running cluster. See Seed a cluster from a database dump (offline) instead for
instructions on how to seed an offline cluster.

2. Restore the database on each Core member in the cluster.

neo4j@core1$./bin/neo4j-admin restore --from=/path/to/movies1-backup-dir --database=movies1
neo4j@core2$./bin/neo4j-admin restore --from=/path/to/movies1-backup-dir --database=movies1
neo4j@core3$./bin/neo4j-admin restore --from=/path/to/movies1-backup-dir --database=movies1

However, restoring a database does not automatically create it.

3. On one of the Core instances, run CREATE DATABASE movies1 against the system database to create the
movies1 database. The command is automatically routed to the appropriate Core instance and from
there to the other cluster members.

CREATE DATABASE movies1;

0 rows
ready to start consuming query after 701 ms, results consumed after another 0 ms

4. Verify that the movies1 database is online on all members.

SHOW DATABASES;

202

+--+
| name | address | role | requestedStatus | currentStatus | error | default | home |
+--+
"neo4j"	"core1:7687"	"leader"	"online"	"online"	""	TRUE	TRUE
"neo4j"	"core3:7687"	"follower"	"online"	"online"	""	TRUE	TRUE
"neo4j"	"core2:7687"	"follower"	"online"	"online"	""	TRUE	TRUE
"movies1"	"core1:7687"	"leader"	"online"	"online"	""	FALSE	FALSE
"movies1"	"core3:7687"	"follower"	"online"	"online"	""	FALSE	FALSE
"movies1"	"core2:7687"	"follower"	"online"	"online"	""	FALSE	FALSE
"system"	"core1:7687"	"follower"	"online"	"online"	""	FALSE	FALSE
"system"	"core3:7687"	"follower"	"online"	"online"	""	FALSE	FALSE
"system"	"core2:7687"	"leader"	"online"	"online"	""	FALSE	FALSE
+--+

9 rows available after 3 ms, consumed after another 1 ms

Restore a database using a designated seeder

With a seeder, you transfer the database backup to one Core instance in the cluster using the neo4j-admin
restore command. Then you use that member as a designated seeder to create the backed-up database
on the other cluster members.

This example uses a user database called movies1 and a cluster that consists of three Core instances. The
movies1 database does not exist on any of the cluster members.

If a database with the same name as your backup already exists in your cluster, see step 1 in Restore a
database on each Core instance for details on how to drop it.

1. Restore the movies1 database on one of the Core instances. In this example, you use the core1
member.

neo4j@core1$./bin/neo4j-admin restore --from=/path/to/movies1-backup-dir --database=movies1

2. Find the server ID of core1 by logging in to Cypher Shell and running dbms.cluster.overview(). Use
any database to connect.

CALL dbms.cluster.overview();

+---
-----------------------------------+
| id | addresses | databases
| groups |
+---
-----------------------------------+
| "8e07406b-90b3-4311-a63f-85c45af63583" | ["bolt://core1:7687", "http://core1:7474"] | {neo4j:
"LEADER", system: "FOLLOWER"} | [] |
| "aeb6debe-d3ea-4644-bd68-304236f3813b" | ["bolt://core3:7687", "http://core3:7474"] | {neo4j:
"FOLLOWER", system: "FOLLOWER"} | [] |
| "b99ff25e-dc64-4c9c-8a50-ebc1aa0053cf" | ["bolt://core2:7687", "http://core2:7474"] | {neo4j:
"FOLLOWER", system: "LEADER"} | [] |
+---
-----------------------------------+

3. On one of the Core instances, use the system database and create the database movies1 using the
server ID of core1. The command is automatically routed to the appropriate Core instance and from
there to the other cluster members. If the movies1 database is of considerable size, the execution of the
command can take some time.

203

CREATE DATABASE movies1 OPTIONS {existingData: 'use', existingDataSeedInstance: '8e07406b-90b3-4311-
a63f-85c45af63583'};

0 rows
ready to start consuming query after 701 ms, results consumed after another 0 ms

4. Verify that the movies1 database is online on all cluster members.

SHOW DATABASES;

+--+
| name | address | role | requestedStatus | currentStatus | error | default | home |
+--+
"neo4j"	"core1:7687"	"leader"	"online"	"online"	""	TRUE	TRUE
"neo4j"	"core3:7687"	"follower"	"online"	"online"	""	TRUE	TRUE
"neo4j"	"core2:7687"	"follower"	"online"	"online"	""	TRUE	TRUE
"movies1"	"core1:7687"	"leader"	"online"	"online"	""	FALSE	FALSE
"movies1"	"core3:7687"	"follower"	"online"	"online"	""	FALSE	FALSE
"movies1"	"core2:7687"	"follower"	"online"	"online"	""	FALSE	FALSE
"system"	"core1:7687"	"follower"	"online"	"online"	""	FALSE	FALSE
"system"	"core3:7687"	"follower"	"online"	"online"	""	FALSE	FALSE
"system"	"core2:7687"	"leader"	"online"	"online"	""	FALSE	FALSE
+--+

9 rows available after 3 ms, consumed after another 1 ms

8.3.4. Seed a cluster using the import tool

To create a cluster based on imported data, it is recommended to first import the data into a standalone
Neo4j DBMS and then use an offline backup to seed the cluster.

1. Import the data.

a. Deploy a standalone Neo4j DBMS.

b. Import the data using the import tool.

2. Use neo4j-admin dump to create an offline backup of the neo4j database.

3. Seed a new cluster using the instructions in Seed a cluster from a database dump (offline).

Skip the system database in this scenario since it is not needed.

8.4. Discovery

8.4.1. Overview

In order to form or connect to a running cluster, a Core or a Read Replica instance needs to know the
addresses of some of the Primary Servers. This information is used to bind to the Primary servers in order
to run the discovery protocol and get the full information about the cluster. The best way to do this
depends on the configuration in each specific case.

204

A Single instance used as a Primary server does not need to be configured for discovery.
However, discovery_advertised_address and discovery_listen_address can be
configured if other addresses than the default are desired.

If the addresses of the other cluster members are known upfront, they can be listed explicitly. This is
convenient, but has limitations:

• If Core instances are replaced and the new members have different addresses, the list will become
outdated. An outdated list can be avoided by ensuring that the new members can be reached via the
same address as the old members, but this is not always practical.

• Under some circumstances the addresses are unknown when configuring the cluster. This can be the
case, for example, when using container orchestration to deploy a cluster.

Additional mechanisms for using DNS are provided for the cases where it is not practical or possible to
explicitly list the addresses of cluster members to discover.

The discovery configuration is just used for initial discovery and a running cluster will continuously
exchange information about changes to the topology. The behavior of the initial discovery is determined by
the parameters causal_clustering.discovery_type and causal_clustering.initial_discovery_members.

Discovery using a list of server addresses

If the addresses of the other cluster members are known upfront, they can be listed explicitly. In this case,
we use the default causal_clustering.discovery_type=LIST and hard code the addresses in the
configuration of each machine. This alternative is illustrated by Configure a Core-only cluster.

Discovery using DNS with multiple records

When using initial discovery with DNS, a DNS record lookup is performed when an instance starts up.
Once an instance has joined a cluster, further membership changes are communicated amongst Core
instances as part of the discovery service.

The following DNS-based mechanisms can be used to get the addresses of Core instances for discovery:

causal_clustering.discovery_type=DNS

With this configuration, the initial discovery members will be resolved from DNS A records to find the
IP addresses to contact. The value of causal_clustering.initial_discovery_members should be set to
a single domain name and the port of the discovery service. For example:
causal_clustering.initial_discovery_members=cluster01.example.com:5000. The domain name
should return an A record for every Core instance when a DNS lookup is performed. Each A record
returned by DNS should contain the IP address of the Core instance. The configured Primary server will
use all the IP addresses from the A records to join or form a cluster.

The discovery port must be the same on all Core instances when using this configuration. If this is not
possible, consider using the discovery type SRV instead.

causal_clustering.discovery_type=SRV

With this configuration, the initial discovery members will be resolved from DNS SRV records to find

205

the IP addresses/hostnames and discovery service ports to contact. The value of
causal_clustering.initial_discovery_members should be set to a single domain name and the port
set to 0. For example: causal_clustering.initial_discovery_members=cluster01.example.com:0. The
domain name should return a single SRV record when a DNS lookup is performed. The SRV record
returned by DNS should contain the IP address or hostname, and the discovery port, for the Core
Servers to be discovered. The configured Primary server will use all the addresses from the SRV record
to join or form a cluster.

In the current version of Neo4j, the clustering-related parameters use the
causal_clustering namespace. This will be replaced with a more suitable namespace in
an upcoming release.

Discovery in Kubernetes

A special case is when a cluster is running in Kubernetes and each Primary server is running as a
Kubernetes service. Then, the addresses of the Core instances can be obtained using the List Service API,
as described in the Kubernetes API documentation.

The following settings are used to configure for this scenario:

• Set causal_clustering.discovery_type=K8S.

• Set causal_clustering.kubernetes.label_selector to the label selector for the cluster services. For
more information, see the Kubernetes official documentation.

• Set causal_clustering.kubernetes.service_port_name to the name of the service port used in the
Kubernetes service definition for the Core’s discovery port. For more information, see the Kubernetes
official documentation

With this configuration, causal_clustering.initial_discovery_members is not used and any value
assigned to it will be ignored.

• The pod running Neo4j must use a service account which has permission to list
services. For further information, see the Kubernetes documentation on RBAC
authorization or ABAC authorization.

• The configured causal_clustering.discovery_advertised_address must exactly
match the Kubernetes-internal DNS name, which will be of the form <service-
name>.<namespace>.svc.cluster.local.

As with DNS-based methods, the Kubernetes record lookup is only performed at startup.

8.5. Intra-cluster encryption

Securing client to server communication is not covered in this chapter (e.g. Bolt, HTTPS,
Backup).

206

https://kubernetes.io/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#list-service-v1-core
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#serviceport-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#serviceport-v1-core
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/abac/

8.5.1. Introduction

The security solution for cluster communication is based on standard SSL/TLS technology (referred to
jointly as SSL). Encryption is in fact just one aspect of security, with the other cornerstones being
authentication and integrity. A secure solution is based on a key infrastructure which is deployed together
with a requirement of authentication.

The SSL support in the platform is documented in detail in SSL framework. This section covers the
specifics as they relate to securing a cluster.

Under SSL, an endpoint can authenticate itself using certificates managed by a Public Key Infrastructure
(PKI).

It should be noted that the deployment of a secure key management infrastructure is beyond the scope of
this manual, and should be entrusted to experienced security professionals. The example deployment
illustrated below is for reference purposes only.

8.5.2. Example deployment

The following steps create an example deployment, and each step is expanded in further detail below.

• Generate and install cryptographic objects

• Configure the cluster with the SSL policy

• Validate the secure operation of the cluster

Generate and install cryptographic objects

The generation of cryptographic objects is for the most part outside the scope of this manual. It generally
requires having a PKI with a Certificate Authority (CA) within the organization and they should be able to
advise here. Please note that the information in this manual relating to the PKI is mainly for illustrative
purposes.

When the certificates and private keys have been obtained they can be installed on each of the servers.
Each server has a certificate of its own, signed by a CA, and the corresponding private key. The certificate
of the CA is installed into the trusted directory, and any certificate signed by the CA is thus trusted. This
means that the server now has the capability of establishing trust with other servers.

Please exercise caution when using CA certificates in the trusted directory, as any
certificates signed by that CA is then trusted to join the cluster. For this reason, never
use a public CA to sign certificates for your cluster. Instead, use an intermediate
certificate or a CA certificate which originates from and is controlled by your
organization.

In this example we deploy a mutual authentication setup, which means that both ends of a channel have to
authenticate. To enable mutual authentication the SSL policy must have client_auth set to REQUIRE (which
is the default). Servers are by default required to authenticate themselves, so there is no corresponding
server setting.

207

If the certificate for a particular server is compromised it is possible to revoke it by installing a Certificate
Revocation List (CRL) in the revoked directory. It is also possible to redeploy using a new CA. For
contingency purposes, it is advised that you have a separate intermediate CA specifically for the cluster
which can be substituted in its entirety should it ever become necessary. This approach would be much
easier than having to handle revocations and ensuring their propagation.

Example 45. Generate and install cryptographic objects

In this example we assume that the private key and certificate file are named private.key and
public.crt, respectively. If you want to use different names you may override the policy configuration
for the key and certificate names/locations. We want to use the default configuration for this server
so we create the appropriate directory structure and install the certificate:

$neo4j-home> mkdir certificates/cluster
$neo4j-home> mkdir certificates/cluster/trusted
$neo4j-home> mkdir certificates/cluster/revoked

$neo4j-home> cp $some-dir/private.key certificates/cluster
$neo4j-home> cp $some-dir/public.crt certificates/cluster

Configure the cluster SSL policy

By default, cluster communication is unencrypted. To configure a cluster to encrypt its intra-cluster
communication, set dbms.ssl.policy.cluster.enabled to true.

An SSL policy utilizes the installed cryptographic objects and additionally allows parameters to be
configured. We use the following parameters in our configuration:

Table 36. Example settings

Setting suffix Value Comment

client_auth REQUIRE Setting this to REQUIRE effectively
enables mutual authentication for
servers.

ciphers TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA38
4

We can enforce a particular single
strong cipher and remove any doubt
about which cipher gets negotiated and
chosen. The cipher chosen above offers
Perfect Forward Secrecy (PFS) which is
generally desirable. It also uses
Advanced Encryption Standard (AES)
for symmetric encryption which has
great support for acceleration in
hardware and thus allows performance
to generally be negligibly affected.

208

Setting suffix Value Comment

tls_versions TLSv1.2 Since we control the entire cluster we
can enforce the latest TLS standard
without any concern for backwards
compatibility. It has no known security
vulnerabilities and uses the most
modern algorithms for key exchanges,
etc.

In the following example we create and configure an SSL policy that we use in our cluster.

Example 46. Configure the cluster SSL policy

In this example we assume that the directory structure has been created, and certificate files have
been installed, as per the previous example.

We add the following content to our neo4j.conf file:

dbms.ssl.policy.cluster.enabled=true
dbms.ssl.policy.cluster.tls_versions=TLSv1.2
dbms.ssl.policy.cluster.ciphers=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
dbms.ssl.policy.cluster.client_auth=REQUIRE

Any user data communicated between instances is now secured. Please note that an incorrectly set
up instance is not able to communicate with the others.

Note that the policy must be configured on every server with the same settings. The actual cryptographic
objects installed are mostly different since they do not share the same private keys and corresponding
certificates. The trusted CA certificate is shared, however.

Validate the secure operation of the cluster

To make sure that everything is secured as intended it makes sense to validate using external tooling such
as, for example, the open source assessment tools nmap or OpenSSL.

Example 47. Validate the secure operation of the cluster

In this example we use the nmap tool to validate the secure operation of our cluster. A simple test to
perform is a cipher enumeration using the following command:

nmap --script ssl-enum-ciphers -p <port> <hostname>

The hostname and port have to be adjusted according to our configuration. This can prove that TLS is
in fact enabled and that the only the intended cipher suites are enabled. All servers and all applicable
ports should be tested.

For testing purposes we could also attempt to utilize a separate testing instance of Neo4j which, for
example, has an untrusted certificate in place. The expected result of this test is that the test server is not

209

able to participate in replication of user data. The debug logs generally indicate an issue by printing an SSL
or certificate-related exception.

8.6. Internals of clustering

8.6.1. Elections and leadership

The Core instances used as Primary servers in a cluster use the Raft protocol to ensure consistency and
safety. See Advanced Causal Clustering for more information on the Raft protocol. An implementation
detail of Raft is that it uses a Leader role to impose an ordering on an underlying log with other instances
acting as Followers which replicate the leader’s state. Specifically in Neo4j, this means that writes to the
database are ordered by the Core instance currently playing the Leader role for the respective database. If
a Neo4j DBMS cluster contains multiple databases, each one of those databases operates within a logically
separate Raft group, and therefore each has an individual leader. This means that a Core instance may act
both as Leader for some databases, and as Follower for other databases.

If a follower has not heard from the leader for a while, then it can initiate an election and attempt to
become the new leader. The follower makes itself a Candidate and asks other Cores to vote for it. If it can
get a majority of the votes, then it assumes the leader role. Cores will not vote for a candidate which is less
up-to-date than itself. There can only be one leader at any time per database, and that leader is
guaranteed to have the most up-to-date log.

Elections are expected to occur during the normal running of a cluster and they do not pose an issue in and
of itself. If you are experiencing frequent re-elections and they are disturbing the operation of the cluster
then you should try to figure out what is causing them. Some common causes are environmental issues
(e.g. a flaky networking) and work overload conditions (e.g. more concurrent queries and transactions than
the hardware can handle).

8.6.2. Leadership balancing

Write transactions will always be routed to the leader for the respective database. As a result, unevenly
distributed leaderships may cause write queries to be disproportionately directed to a subset of instances.
By default, Neo4j avoids this by automatically transferring database leaderships so that they are evenly
distributed throughout the cluster. Additionally, Neo4j will automatically transfer database leaderships
away from instances where those databases are configured to be read-only using
dbms.databases.read_only or similar.

8.6.3. Multi-database and the reconciler

Databases operate as independent entities in a Neo4j DBMS, both in standalone and in a cluster. Since a
cluster can consist of multiple independent server instances, the effects of administrative operations like
creating a new database happen asynchronously and independently for each server. However, the
immediate effect of an administrative operation is to safely commit the desired state in the system
database.

The desired state committed in the system database gets replicated and is picked up by an internal
component called the reconciler. It runs on every instance and takes the appropriate actions required

210

locally on that instance for reaching the desired state; creating, starting, stopping, and dropping databases.

Every database runs in an independent Raft group and since there are two databases in a fresh cluster,
system and neo4j, this means that it also has two Raft groups. Every Raft group also has an independent
leader and thus a particular Core instance could be the leader for one database and a follower for another.

This does not apply to clusters where a Single instance is the Primary server. In such
clusters, the Single instance is the leader of all databases and there is no Raft at all.

8.6.4. Server-side routing

Server-side routing is a complement to the client-side routing, performed by a Neo4j Driver.

In a cluster deployment of Neo4j, Cypher queries may be directed to a cluster member that is unable to run
the given query. With server-side routing enabled, such queries will be rerouted internally to a cluster
member that is expected to be able to run it. This situation can occur for write-transaction queries when
they address a database for which the receiving cluster member is not the leader.

The cluster role for core cluster members is per database. Thus, if a write-transaction query is sent to a
cluster member that is not the leader for the specified database (specified either via the Bolt Protocol or by
the Cypher syntax: USE clause), server-side routing will be performed if properly configured.

Server-side routing is enabled by the DBMS, by setting dbms.routing.enabled=true for each cluster
member. The listen address (dbms.routing.listen_address) and advertised address
(dbms.routing.advertised_address) also need to be configured for server-side routing communication.

Client connections need to state that server-side routing should be used and this is available for Neo4j
Drivers and HTTP API.

211

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#use
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#use

Neo4j Drivers can only use server-side routing when the neo4j:// URI scheme is used.
The Drivers will not perform any routing when the bolt:// URI scheme is used, instead
connecting directly to the specified host.

On the cluster-side you must fulfil the following pre-requisites to make server-side
routing available:

• Set dbms.routing.enabled=true on each member of the cluster.

• Configure dbms.routing.listen_address, and provide the advertised address using
dbms.routing.advertised_address on each member.

• Optionally, you can set dbms.routing.default_router=SERVER on each member of
the cluster.

The final pre-requisite enforces server-side routing on the clients by sending out a
routing table with exactly one entry to the client. Therefore,
dbms.routing.default_router=SERVER configures a cluster member to make its routing
table behave like a standalone instance. The implication is that if a Neo4j Driver connects
to this cluster member, then the Neo4j Driver sends all requests to that cluster member.
Please note that the default configuration for dbms.routing.default_router is
dbms.routing.default_router=CLIENT. See dbms.routing.default_router for more
information.

The HTTP-API of each member will benefit from these settings automatically.

The table below shows the criteria by which server-side routing is performed:

Table 37. Server-side routing criteria

CLIENT - Neo4j Driver (Bolt Protocol) SERVER - Neo4j Cluster member

URI scheme Client-side
routing

Request
server-

side
routing

Transactio
n type

Server - Instance > Role (per
database)

Server-
side

routing
enabled

Routes the
query

neo4j:// write Primary - Single

neo4j:// read Primary - Single

neo4j:// write Primary - Core > leader

neo4j:// read Primary - Core > leader

neo4j:// write Primary - Core > follower

neo4j:// read Primary - Core > follower

neo4j:// write Secondary - Read Replica

neo4j:// read Secondary - Read Replica

bolt:// write Primary - Single

bolt:// read Primary - Single

212

CLIENT - Neo4j Driver (Bolt Protocol) SERVER - Neo4j Cluster member

bolt:// write Primary - Core > leader

bolt:// read Primary - Core > leader

bolt:// write Primary - Core > follower

bolt:// read Primary - Core > follower

bolt:// write Secondary - Read Replica

bolt:// read Secondary - Read Replica

Server-side routing connector configuration

Rerouted queries are communicated over the Bolt Protocol using a designated communication channel.
The receiving end of the communication is configured using the following settings:

• dbms.routing.enabled

• dbms.routing.listen_address

• dbms.routing.advertised_address

Server-side routing driver configuration

Server-side routing uses the Neo4j Java driver to connect to other cluster members. This driver is
configured with settings of the format:

• dbms.routing.driver.*

The configuration options described in Configuration in the Neo4j Driver manuals
have an equivalent in the server-side routing configuration.

Server-side routing encryption

Encryption of server-side routing communication is configured by the cluster SSL policy. For more
information, see Cluster Encryption.

8.6.5. Store copy

Store copies are initiated when an instance does not have an up-to-date copy of the database. For
example, this is the case when a new instance is joining a cluster (without a seed). It can also happen as a
consequence of falling behind the rest of the cluster, for reasons such as connectivity issues or having
been shut down. Upon re-establishing connection with the cluster, an instance recognizes that it is too far
behind and fetches a new copy from the rest of the cluster.

A store copy is a major operation, which may disrupt the availability of instances in the cluster. Store
copies should not be a frequent occurrence in a well-functioning cluster, but rather be an exceptional
operation that happens due to specific causes, e.g. network outages or planned maintenance outages. If
store copies happen during regular operation, then the configuration of the cluster, or the workload
directed at it, might have to be reviewed so that all instances can keep up, and that there is enough of a
buffer of Raft logs and transaction logs to handle smaller transient issues.

213

https://7687.org
https://neo4j.com/docs

The protocol used for store copies is robust and configurable. The network requests are directed at an
upstream member according to configuration and they are retried despite transient failures. The maximum
amount of time to retry every request can be configured with
causal_clustering.store_copy_max_retry_time_per_request. If a request fails and the maximum retry
time has elapsed then it stops retrying and the store copy fails.

Use causal_clustering.catch_up_client_inactivity_timeout to configure the inactivity timeout for any
particular request.

The causal_clustering.catch_up_client_inactivity_timeout configuration is for all
requests from the catchup client, including the pulling of transactions.

The default upstream strategy is not applicable to Single instances and it differs for Core and Read Replica
instances. Core instances always send the initial request to the leader to get the most up-to-date
information about the store. The strategy for the file and index requests for Core instances is to vary every
other request to a random Read Replica instance and every other to a random Core instance.

Read Replica instances use the same strategy for store copies as it uses for pulling transactions. The
default is to pull from a random Core instance.

If you are running a multi-datacenter cluster, then upstream strategies for both Core and Read Replica
instances can be configured. Remember that for Read Replica instances, this also affects from where
transactions are pulled. See more in Configure for multi-data center operations.

Using the Replica instance in case of failure

In case of failure (e.g. a partial failure of a cluster due to the loss of an instance, but not of the majority),
you may transform a Read Replica instance into a Core instance as a way to restore the cluster’s core
availability. However, keep in mind that this is not advised as it could cause data loss and complications in
the Raft group.

To avoid that, the read_replica instance must not be initialized as a single instance, nor be introduced in a
different or new cluster. This action would cause an override of the raft state, thus preventing the replica
from successfully joining the targeted cluster.

After performing that change, follow these instructions to unbind the Replica instance and update the
discovery configurations amongst cluster members:

1. Ensure that the converted read_replica currently belongs to the same cluster that it will be re-
introduced back to, as a core. This can be done by performing CALL dbms.cluster.overview() and
verifying the instance’s address and cluster mode.

2. Stop and unbind the read_replica instance.

3. Update the cluster mode configuration in neo4j.conf, from dbms.mode=READ_REPLICA to dbms.mode=CORE.

4. Stop Neo4j on the removed core instances that are not intended to serve as core members.

5. Unbind those instances from the cluster by performing neo4j-admin unbind while they are stopped.
This action will prevent such instances from subsequently attempting to rejoin the running cluster.

At this point, the previous read_replica (now core) instance may be introduced into the running cluster. To

214

persist this change in the cluster’s architecture, the following configuration updates are advised:

• On the previous read_replica (now core) instance, set
causal_clustering.discovery_advertised_address and
causal_clustering.discovery_listen_address as appropriate.

• Update the causal_clustering.initial_discovery_members configuration with the currently valid list
of discovery addresses for each member of the cluster. This should replace the addresses of any
removed core(s) with the discovery addresses of the previous read_replica (now core) instance.

In cases where causal_clustering.discovery_type is other than LIST, make sure to
update the corresponding address resolution addresses records. For example, DNS
A records for discovery types DNS and SRV, and any Kubernetes service address
alternate to reflect the inclusion of the read_replica discovery address.

8.6.6. On-disk state

The on-disk state of cluster instances is different from that of standalone instances. The biggest difference
is the existence of an additional cluster state. Most of the files there are relatively small, but the Raft logs
can become quite large depending on the configuration and workload.

It is important to understand that once a database has been extracted from a cluster and used in a
standalone deployment, it must not be put back into an operational cluster. This is because the cluster and
the standalone deployment now have separate databases, with different and irreconcilable writes applied
to them.

If you try to reinsert a modified database back into the cluster, then the logs and stores
will mismatch. Operators should not try to merge standalone databases into the cluster
in the optimistic hope that their data will become replicated. That does not happen and
instead, it likely leads to unpredictable cluster behavior.

8.7. Settings reference

8.7.1. Common server settings

In the current version of Neo4j, the clustering-related parameters use the
causal_clustering namespace. This will be replaced with a more suitable namespace in
an upcoming release.

Parameter Instance type Explanation

dbms.clustering.enable Single This setting allows a SINGLE instance to form a
cluster with one or more READ_REPLICA instances.
Must be set to TRUE on the SINGLE instance only, as
the setting is ignored on CORE and READ_REPLICA
instances.

215

Parameter Instance type Explanation

dbms.mode All This setting configures the operating mode of the
database. In version 4.3, there are three possible
modes:

1. SINGLE and READ_REPLICA instances

2. CORE only instances

3. CORE and READ_REPLICA instances

Example: dbms.mode=READ_REPLICA defines a Read
Replica instance

dbms.read_only - This setting is not supported.

causal_clustering.minimum_core_clust
er_size_at_formation

Core Minimum number of Core instances as Primary
servers required to form a Core cluster.

Example:
causal_clustering.minimum_core_cluster_size_at
_formation=3 specifies that the cluster will form
when at least three Core instances have discovered
each other.

causal_clustering.minimum_core_clust
er_size_at_runtime

Core The minimum size of the dynamically adjusted
voting set (which only Core members may be a part
of).

Adjustments to the voting set happen automatically
as the availability of Core instances changes, due to
explicit operations such as starting or stopping a
member, or unintended issues such as network
partitions. Please note that this dynamic scaling of
the voting set is generally desirable, as under some
circumstances it can increase the number of
instance failures which may be tolerated.

A majority of the voting set must be available
before members are voted in or out.

Example:
causal_clustering.minimum_core_cluster_size_at
_runtime=3 specifies that the cluster should not try
to dynamically adjust below three Core instances in
the voting set.

216

Parameter Instance type Explanation

causal_clustering.discovery_type Core and Read
Replica

This setting specifies the strategy that the instance
uses to determine the addresses for other instances
in the cluster to contact for bootstrapping. Possible
values are: LIST, DNS, SRV, and K8S.

LIST

Treat
causal_clustering.initial_discovery_members
as a list of addresses of Core instances to
contact for discovery.

DNS

Treat
causal_clustering.initial_discovery_members
as a domain name to resolve via DNS. Expect
DNS resolution to provide A records with
hostnames or IP addresses of Core instances to
contact for discovery, on the port specified by
causal_clustering.initial_discovery_members.

SRV

Treat
causal_clustering.initial_discovery_members
as a domain name to resolve via DNS. Expect
DNS resolution to provide SRV records with
hostnames or IP addresses and ports, of Core
instances to contact for discovery.

K8S

Access the Kubernetes list service API to derive
addresses of Core instances to contact for
discovery. Requires
causal_clustering.kubernetes.label_selector
to be a Kubernetes label selector for Kubernetes
services running a Core each and
causal_clustering.kubernetes.service_port_n
ame to be a service port name identifying the
discovery port of Core services. The value of
causal_clustering.initial_discovery_members
is ignored for this option.

The value of this setting determines how
causal_clustering.initial_discovery_members is
interpreted. Detailed information about discovery
and discovery configuration options is given in
Discovery using DNS with multiple records.

Example: causal_clustering.discovery_type=DNS
combined with
causal_clustering.initial_discovery_members=cl
uster01.example.com:5000 fetch all DNS A records217

for cluster01.example.com and attempt to reach
Neo4j instances listening on port 5000 for each A
record’s IP address.

Parameter Instance type Explanation

causal_clustering.initial_discovery_
members

Core and Read
Replica

The network addresses of an initial set of Core
instance members that are available to bootstrap
this Core or Read Replica instance. In the default
case, the initial discovery members are given as a
comma-separated list of address/port pairs, and the
default port for the discovery service is :5000.

It is good practice to set this parameter to the same
value on all Core instances.

The behavior of this setting can be modified by
configuring the setting
causal_clustering.discovery_type. This is
described in detail in Discovery using DNS with
multiple records.

Example: causal_clustering.discovery_type=LIST
combined with
core01.example.com:5000,core02.example.com:500
0,core03.example.com:5000 will attempt to reach
Neo4j instances listening on core01.example.com,
core01.example.com and core01.example.com; all
on port 5000.

causal_clustering.discovery_advertis
ed_address

All The address/port setting that specifies where the
instance advertises that it listens for discovery
protocol messages from other members of the
cluster. If this instance is included in the
initial_discovery_members of other cluster
members, the value there must exactly match this
advertised address.

Example:
causal_clustering.discovery_advertised_address
=192.168.33.21:5001 indicates that other cluster
members can communicate with this instance using
the discovery protocol at host 192.168.33.20 and
port 5001.

218

Parameter Instance type Explanation

causal_clustering.raft_advertised_ad
dress

Core The address/port setting that specifies where the
Neo4j instance advertises to other members of the
cluster that it listens for Raft messages within the
Core cluster.

Example:
causal_clustering.raft_advertised_address=192.
168.33.20:7000 listens for cluster communication in
the network interface bound to 192.168.33.20 on
port 7000.

causal_clustering.transaction_advert
ised_address

All The address/port setting that specifies where the
instance advertises where it listens for requests for
transactions in the transaction-shipping catchup
protocol.

Example:
causal_clustering.transaction_advertised_addre
ss=192.168.33.20:6001 listens for transactions from
cluster members on the network interface bound to
192.168.33.20 on port 6001.

causal_clustering.discovery_listen_a
ddress

All The address/port setting that specifies which
network interface and port the Neo4j instance binds
to for the cluster discovery protocol.

Example:
causal_clustering.discovery_listen_address=0.0
.0.0:5001 will listen for cluster membership
communication on any network interface at port
5001.

causal_clustering.raft_listen_addres
s

Core The address/port setting that specifies which
network interface and port the Neo4j instance binds
to for cluster communication. This setting must be
set in coordination with the address this instance
advertises it listens at in the setting
causal_clustering.raft_advertised_address.

Example:
causal_clustering.raft_listen_address=0.0.0.0:
7000 listens for cluster communication on any
network interface at port 7000.

219

Parameter Instance type Explanation

causal_clustering.transaction_listen
_address

All The address/port setting that specifies which
network interface and port the Neo4j instance binds
to for cluster communication. This setting must be
set in coordination with the address this instance
advertises it listens at in the setting
causal_clustering.transaction_advertised_addre
ss.

Example:
causal_clustering.transaction_listen_address=0
.0.0.0:6001 listens for cluster communication on
any network interface at port 6001.

causal_clustering.store_copy_max_ret
ry_time_per_request

Core and Read
Replica

Condition for when store copy should eventually
fail. A request is allowed to retry for any amount of
attempts as long as the configured time has not
been met. For very large stores or other reason that
might make transferring of files slow this could be
increased.

Example:
causal_clustering.store_copy_max_retry_time_pe
r_request=60min

8.7.2. Multi-data center settings

Parameter Explanation

causal_clustering.multi_dc
_license

Enables multi-data center features. Requires appropriate licensing.

Example: causal_clustering.multi_dc_license=true will enable the multi-data center
features.

causal_clustering.server_g
roups

A list of group names for the server used when configuring load balancing and replication
policies.

Example: causal_clustering.server_groups=us,us-east will add the current instance to the
groups us and us-east.

220

Parameter Explanation

causal_clustering.leadersh
ip_priority_group.<databas
e>

The group of servers which should be preferred when selecting leaders for the specified
database. If the instance currently acting as leader for this database is not a member of the
configured server group, then the cluster will attempt to transfer leadership to an instance
which is a member. It is not guaranteed that leadership will always be held by a server in the
desired group. For example, if no member of the desired group is available or has up-to-date
store contents. The cluster will seek to preserve availability, over respecting the
leadership_priority_group setting.

To set a default leadership_priority_group for all databases that do not have an explicitly
set leadership_priority_group, the <database> can be omitted. See
causal_clustering.leadership_priority_group.

Example: causal_cluster.leadership_priority_group.foo=us will ensure that if the leader
for foo is not held by a server configured with causal_clustering.server_groups=us, the
cluster will attempt to transfer leadership to a server which is.

causal_clustering.upstream
_selection_strategy

An ordered list in descending preference of the strategy which Read Replicas use to choose
upstream database server from which to pull transactional updates.

Example: causal_clustering.upstream_selection_strategy=connect-randomly-within-
server-group,typically-connect-to-random-read-replica will configure the behavior so
that the Read Replica will first try to connect to any other instance in the group(s) specified
in causal_clustering.server_groups. Should we fail to find any live instances in those
groups, then we will connect to a random Read Replica. A value of user-defined will enable
custom strategy definitions using the setting
causal_clustering.user_defined_upstream_strategy.

causal_clustering.user_def
ined_upstream_strategy

Defines the configuration of upstream dependencies. Can only be used if
causal_clustering.upstream_selection_strategy is set to user-defined.

Example: causal_clustering.user_defined_upstream_strategy=groups(north2);
groups(north); halt() will look for servers in the north2. If none are available it will look in
the north server group. Finally, if we cannot resolve any servers in any of the previous
groups, then rule chain will be stopped via halt().

causal_clustering.load_bal
ancing.plugin

The load balancing plugin to use. One pre-defined plugin named server_policies is
available by default.

Example: causal_clustering.load_balancing.plugin=server_policies will enable custom
policy definitions.

causal_clustering.load_bal
ancing.config.server_polic
ies.<policy-name>

Defines a custom policy under the name <policy-name>. Note that load balancing policies are
cluster-global configurations and should be defined the exact same way on all core
machines.

Example:
causal_clustering.load_balancing.config.server_policies.north1_only=groups(north1)
→min(2); halt(); defines a load balancing policy named north1_only.
Queries are sent only to servers in the north1 server group, provided there are two of them
available. If there are less than two servers in north1, the chain is halted.

By default, the load balancer sends read requests only to replicas/followers, which means
these two servers must be of that kind. To allow reads on the leader, set to
causal_clustering.cluster_allow_reads_on_leader to true.

221

8.8. Clustering glossary
Term Description

Asynchronous replication Enables efficient scale-out of secondary database copies but
offers no guarantees under fault conditions. The data present
in the secondary copy is not guaranteed to be up-to-date
with a majority of the database’s primary copies.

Availability The ability to access data in a database. A database can be
available for read-write, read-only, or altogether unavailable.
A clustered database is fault-tolerant, i.e. it can maintain both
read and write availability if some primaries fail (see Fault
tolerance for more information). If the number of failed
primaries exceeds the fault tolerance limit, the database
becomes read-only. Should all copies fail, the database
becomes unavailable.

Bookmark A marker the client can request from the cluster to ensure
that it is able to read its own writes so that the application’s
state is consistent and only databases that have a copy of the
bookmark are permitted to respond.

Causal consistency When a client (driver) creates a session and executes a
query, the responding server issues the client a bookmark.
This reflects the state of the database copy on that server at
the time the query was executed. The bookmark is passed
along and updated by all subsequent queries in the session,
regardless of which server executes what query. A bookmark
can only be updated monotonically increasing. If a server is
behind the state in the bookmark, it waits until it has caught
up, or time out the query. Thus, clients executing queries
within a session are guaranteed to read their own writes, and
only see successively later states of the database. This is
sometimes also referred to as session consistency.

Causal cluster A collection of servers running Neo4j that are configured to
communicate with each other. The servers can be either
Primary or Secondary, where the Primary servers allow read
and write operations and the Secondary servers allow only
read operations. As long as it uses bookmarks, the cluster
guarantees that a client application can read at least its own
writes. See also Primary server, Secondary server, and
Causal consistency.

222

Term Description

Database The data store for the nodes, relationships, and properties
that make up the graph. Multiple databases can be hosted on
a Database Management Server (DBMS).

Database Management System (DBMS) The Neo4j services and system database running on an
instance of a single server or cluster to provide one or more
databases.

Disaster recovery A manual intervention to restore availability of a cluster, or
databases within a cluster.

Election In the event that a leader becomes unresponsive, followers
automatically trigger an election and vote for a new leader. A
majority is required for the vote to be successful.

Fault tolerance A guarantee that a database can maintain persistence and
availability in the event of one or more failures. The number
of failures f that can be tolerated is dependent on the
number of primaries n for the database and follows the
formula f = (n-1)/2. In the event that more than f primaries
fail, the database can no longer process write transactions
and becomes read-only.

Follower A primary copy of a database acting as a follower, receives
and acknowledges synchronous writes from the leader.

Leader Each database has a designated leader within the cluster and
it can only be located on a primary server. The leader receives
all write transactions from clients and replicates writes
synchronously to followers and asynchronously to secondary
copies of the database. Each database can have a different
leader within the cluster.

Primary server A primary server can be either a single instance or a core
instance, both of which allow read and write operations. A
single instance as primary is beneficial for read scalability but
is not fault tolerant. A Core instance safeguards data and a
cluster of at least three Core instances is fault tolerant. It
participates in fault tolerant writes as it is part of the majority
required to acknowledge and commit write transactions.

223

Term Description

Read scaling Adding Secondary servers to the cluster can offload read
queries from the Primary servers and thus reduce the load
and aid write performance of the cluster.

Secondary server An asynchronously replicated instance that provides read
scaling within the cluster. Secondary servers are made up of
Read Replica instances.

Seed A file used to create a database on a single instance or on a
member of a cluster. This can be a database dump or a
database backup. Seed can also be used as a verb to
describe the act seeding a cluster from a backup.

Server A physical machine, a virtual machine, or a container running
Neo4j DBMS. The server can be standalone or part of a
cluster.

Session consistency An alternative name for Neo4j’s causal consistency.

Standalone server A single server, or container, running Neo4j DBMS and not
part of a cluster.

Synchronous replication When attempting to commit a transaction, the leader primary
replicates the transaction and block, requiring the follower
primaries to acknowledge the replication before allowing the
commit to proceed. This blocking replication is known as
synchronous, and ensures data durability and consistency
within the cluster. See also asynchronous replication.

224

Chapter 9. Fabric
This chapter describes the following:

• Introduction

• Configuration

• Queries

• Further Considerations

• Sharding data with the copy command

9.1. Introduction

9.1.1. Overview

Composite databases are introduced in Neo4j 5 as an implementation of the Fabric
technology. As such, in Neo4j 5, Composite databases replace what is known as Fabric
in Neo4j 4.x. For more information, see Composite databases in version 5 of the Neo4j
Operations Manual.

Fabric, introduced in Neo4j 4.0, is a way to store and retrieve data in multiple databases, whether they are
on the same Neo4j DBMS or in multiple DBMSs, using a single Cypher query. Fabric achieves a number of
desirable objectives:

• a unified view of local and distributed data, accessible via a single client connection and user session

• increased scalability for read/write operations, data volume and concurrency

• predictable response time for queries executed during normal operations, a failover or other
infrastructure changes

• High Availability and No Single Point of Failure for large data volume.

In practical terms, Fabric provides the infrastructure and tooling for:

• Data Federation: the ability to access data available in distributed sources in the form of disjointed
graphs.

• Data Sharding: the ability to access data available in distributed sources in the form of a common
graph partitioned on multiple databases.

With Fabric, a Cypher query can store and retrieve data in multiple federated and sharded graphs.

9.1.2. Fabric concepts

The fabric database

A Fabric setup includes a Fabric virtual database, which acts as the entry point to a federated or sharded
graph infrastructure. This database is the execution context in which multi-graph queries can be executed.

225

/docs/operations-manual/5/composite-databases/

Drivers and client applications access and use the Fabric execution context by naming it as the selected
database for a session. For more information, see Databases and execution context in the Neo4j Driver
manuals.

The Fabric virtual database (execution context) differs from normal databases in that it cannot store any
data, and only relays data stored elsewhere. The Fabric virtual database can be configured on a standalone
Neo4j DBMS only, i.e. on a Neo4j DBMS where the configuration setting dbms.mode must be set to SINGLE.

The Neo4j Admin commands cannot be applied to the Fabric virtual database. They
must be run directly on the databases that are part of the Fabric setup.

Fabric graphs

In a Fabric virtual database, data is organized in the form of graphs. Graphs are seen by client applications
as local logical structures, where physically data is stored in one or more databases. Databases accessed
as Fabric graphs can be local, i.e in the same Neo4j DBMS, or they can be located in external Neo4j
DBMSes. The databases are also accessible by client applications from regular local connections in their
respective Neo4j DBMSs.

9.1.3. Deployment examples

Fabric constitutes an extremely versatile environment that provides scalability and availability with no
single point of failure in various topologies. Users and developers may use applications that can work on a
standalone DBMS as well on a very complex and largely distributed infrastructure without the need to
apply any change to the queries accessing the Fabric graphs.

Development deployment

In its simplest deployment, Fabric can be used on a single instance, where Fabric graphs are associated to
local databases. This approach is commonly used by software developers to create applications that will
be deployed on multiple Neo4j DBMSs, or by power users who intend to execute Cypher queries against
local disjoint graphs.

226

https://neo4j.com/docs
https://neo4j.com/docs

Figure 6. Fabric deployment in a single instance

Cluster deployment with no single point of failure

In this deployment Fabric guarantees access to disjoint graphs in high availability with no single point of
failure. Availability if reached by creating redundant entry points for the Fabric Database (i.e. two
standalone Neo4j DBMSs with the same Fabric configuration) and a minimum Causal Cluster of three
members for data storage and retrieval. This approach is suitable for production environments and it can
be used by power users who intend to execute Cypher queries against disjoint graphs.

227

Figure 7. Fabric deployment with no single point of failure

Multi-cluster deployment

In this deployment Fabric provides high scalability and availability with no single point of failure. Disjoint
clusters can be sized according to the expected workload and Databases may be colocated in the same
cluster or they can be hosted in their own cluster to provide higher throughput. This approach is suitable
for production environments where database can be sharded, federated or a combination of the two.

228

Figure 8. Fabric deployment for scalability with no single point of failure

9.2. Configuration

9.2.1. Fabric database setup

Fabric must be set on a standalone Neo4j DBMS: the settings in neo4j.conf are identified by the fabric
namespace. The minimal requirements to setup Fabric are:

• A virtual database name: this is the entry point used by the client applications to access the Fabric
environment.

• One or more Fabric graph URI and database: this a reference of a URI and a database for each graph
set in the Fabric environment.

Local development setup example

Consider a standalone Neo4j DBMS, which has two databases, db1 and db2. Note that all databases
except for the default and system must be created using the CREATE DATABASE command.

Fabric is enabled by configuring:

fabric.database.name=example

This configuration enables Fabric and exposes the feature under the virtual database with the name
example, which is accessible using the default URI, neo4j://localhost:7687. After connecting to the DBMS
with the example database selected, you can run queries like the following:

229

USE db1
MATCH (n) RETURN n
 UNION
USE db2
MATCH (n) RETURN n

Figure 9. Minimal local Fabric setting in a development setup

Remote development setup example

This example consists of a setup with three standalone Neo4j DBMSs. One instance acts as the Fabric
proxy, configured to enable Fabric. The other two instances contain the databases db1 and db2.

The following configuration enables Fabric on the proxy instance and allows it to access the databases in
the other two instances.

fabric.database.name=example
fabric.graph.0.uri=neo4j://hostname-of-instance1:7687
fabric.graph.0.database=db1

fabric.graph.1.uri=neo4j://hostname-of-instance2:7687
fabric.graph.1.database=db2

This configuration enables Fabric and exposes the feature under the virtual database named example,
which is accessible using the default URI, neo4j://localhost:7687. The Fabric graphs are uniquely identified
by their IDs, 0 and 1.

After connecting to the DBMS with the selected database set to "example", you can run queries like the

230

following:

USE example.graph(0)
MATCH (n) RETURN n
 UNION
USE example.graph(1)
MATCH (n) RETURN n

Figure 10. Minimal remote Fabric setting in a development setup

Naming graphs

Graphs can be identified by their ID or by a name. A graph can be named by adding an extra configuration
setting, fabric.graph.<ID>.name.

For example, if the given names are graphA (associated to db1) and graphB (associated to db2), the two
additional settings will be:

fabric.graph.0.name=graphA
fabric.graph.1.name=graphB

Giving names to graphs means you can refer to them by name in queries:

231

USE example.graphA
MATCH (n) RETURN n
 UNION
USE example.graphB
MATCH (n) RETURN n

Cluster setup with no single point of failure example

In this example, all components are redundant and data is stored in a Causal Cluster. In addition to the
settings described in the previous example, a setting with no single point of failure requires the use of the
routing servers parameter, which specifies a list of standalone Neo4j DBMSs that expose the same Fabric
database and configuration. This parameter is required in order to simulate the same connectivity that
client applications use with Causal Cluster, which means, in case of fault of one instance, the client
application may revert to another existing instance.

Assume that in this example, the data is stored in three databases: db1, db2 and db3. The configuration of
Fabric would be:

dbms.mode=SINGLE

fabric.database.name=example
fabric.routing.servers=server1:7687,server2:7687

fabric.graph.0.name=graphA
fabric.graph.0.uri=neo4j://core1:7687,neo4j://core2:7687,neo4j://core3:7687
fabric.graph.0.database=db1

fabric.graph.1.name=graphB
fabric.graph.1.uri=neo4j://core1:7687,neo4j://core2:7687,neo4j://core3:7687
fabric.graph.1.database=db2

fabric.graph.2.name=graphC
fabric.graph.2.uri=neo4j://core1:7687,neo4j://core2:7687,neo4j://core3:7687
fabric.graph.2.database=db3

The configuration above must be added to the neo4j.conf file of the Neo4j DBMSs server1 and server2.
The parameter fabric.routing.servers contains the list of available standalone Neo4j DBMSs hosting the
Fabric database. The parameter fabric.graph.<ID>.uri can contain a list of URIs, so in case the first
server does not respond to the request, the connection can be established to another server that is part of
the cluster. The URIs refer to the neo4j:// schema so that Fabric can retrieve a routing table and can use
one of the members of the cluster to connect.

232

Figure 11. Fabric setting with Causal Cluster and no single point of failure

Cluster routing context

The URIs in the graph settings may include routing contexts, which are described in the Neo4j Driver
manuals. This can be used to associate a Fabric graph with a filtered subset of Causal Cluster members, by
selecting a routing policy.

As an example, assuming you have a server policy called read_replicas defined in the configuration of the
cluster you are targeting, you might set up a Fabric graph that accesses only the read replicas of the
cluster.

fabric.graph.0.name=graphA
fabric.graph.0.uri=neo4j://core1:7687?policy=read_replicas
fabric.graph.0.database=db1

This enables scenarios where queries executed through Fabric are explicitly offloaded to specific instances
in clusters.

9.2.2. Authentication and authorization

Credentials

Connections between the Fabric database and the Neo4j DBMSs hosting the data are created using the
same credentials that are supplied in the client connection to the Fabric database. It is recommended to
maintain a set of user credentials on all the Neo4j DBMSs; if required, a subset of credentials may be set
for local access on the remote DBMSs.

233

https://neo4j.com/docs
https://neo4j.com/docs

User and role administration

User and role administration actions are not automatically propagated to the Fabric environment, therefore
security settings must be executed on any DBMS that is part of Fabric.

Privileges on the Fabric database

In order to use all Fabric features, users of Fabric databases need ACCESS and READ privileges.

9.2.3. Important settings

This section provides general information about Fabric settings and describes the ones important for
creating a fabric set-up. For the full list of Fabric configuration options, see Configuration settings.

Fabric settings are divided in the following categories:

• System Settings: DBMS-level settings.

• Graph Settings: definition and configuration of Fabric graphs.

• Drivers Settings: configuration of drivers used to access Neo4j DBMSs and databases associated to
Fabric graphs.

System settings

Table 38. Fabric system settings

Parameter Description

fabric.database.name Name of the Fabric database. Neo4j Fabric currently supports
one Fabric database in a standalone Neo4j DBMS.

fabric.routing.servers A comma-separated list of Neo4j DBMSs that share the
same Fabric configuration. These DBMSs form a routing
group. A client application will route transactions through a
Neo4j driver or connector to one of the members of the
routing group. A Neo4j DBMS is represented by its Bolt
connector address. Example:
fabric.routing.servers=server1:7687,server2:7687.

Graph settings

 The <ID> in the following settings is the integer associated to each Fabric graph.

Table 39. Fabric graph settings

Parameter Description

fabric.graph.<ID>.uri URI of the Neo4j DBMS hosting the database associated to
the Fabric graph. Example: neo4j://somewhere:7687

fabric.graph.<ID>.database Name of the database associated to the Fabric graph.

234

Parameter Description

fabric.graph.<ID>.name Name assigned to the Fabric graph. The name can be used in
Fabric queries.

fabric.graph.<ID>.driver.* Any specific driver setting, that means, any setting related to
a connection to a specific Neo4j DBMS and database. This
setting overrides a global driver setting.

When configuring access to a remote DBMS, make sure that the remote is configured to
advertise its address correctly, using either dbms.default_advertised_address or
dbms.connector.bolt.advertised_address. Fabric reads the routing table from the
remote DBMS and then connects back using an appropriate entry in that table.

Drivers settings

Fabric uses the Neo4j Java driver to connect to and access the data stored in Neo4j databases associated
to Fabric graphs. This section presents the most important parameters available to configure the driver.

Drivers settings are configured with parameters with names of the format:

fabric.driver.<suffix>

A setting can be global, i.e. be valid for all the drivers used in Fabric, or it can be specific for a given
connection to a Neo4j database associated to a graph. The graph-specific setting overrides the global
configuration for that graph.

Example 48. Global drivers setting versus graph-specific drivers setting

A drivers setting for Fabric as the following is valid for all the connections established with the Neo4j
DBMSs set in Fabric:

fabric.driver.api=RX

A graph-specific connection for the database with ID=6 will override the fabric.driver.api setting
for that database:

fabric.graph.6.driver.api=ASYNC

Table 40. Fabric drivers setting suffixes

235

Parameter suffix Explanation

ssl_enabled SSL for Fabric drivers is configured using the fabric SSL policy. This
setting can be used to instruct the driver not to use SSL even though
the fabric SSL policy is configured. The driver will use SSL if the
fabric SSL policy is configured, and this setting is set to true. This
parameter can only be used in fabric.graph.<graph
ID>.driver.ssl_enabled and not fabric.driver.ssl_enabled.

api Determine which driver API to be used. Supported values are RX and
ASYNC.

Most driver options described in Configuration in the Neo4j Driver manuals have an
equivalent in Fabric configuration.

9.3. Queries
In this section we will look at a few example queries that show how to perform a range of different tasks.

The examples in this section make use of the two Cypher clauses: USE and CALL {}. The syntax is
explained in detail in the Cypher Manual:

• See Cypher Manual → CALL {} for details about the CALL {} clause.

• See Cypher Manual → USE for details about the USE clause.

9.3.1. Query a single graph

Example 49. Reading and returning data from a single graph.

USE example.graphA
MATCH (movie:Movie)
RETURN movie.title AS title

The USE clause at the beginning of the query causes the rest of the query to execute against the
example.graphA graph.

9.3.2. Query multiple graphs

236

https://neo4j.com/docs
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#call_subquery
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#call_subquery
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#call_subquery
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#use
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#use
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#use

Example 50. Reading and returning data from two named graphs

USE example.graphA
MATCH (movie:Movie)
RETURN movie.title AS title
 UNION
USE example.graphB
MATCH (movie:Movie)
RETURN movie.title AS title

The first part of the UNION query executes against the example.graphA graph and the second part executes
against the example.graphB graph.

9.3.3. Query all graphs

Example 51. Reading and returning data from all graphs

UNWIND example.graphIds() AS graphId
CALL {
 USE example.graph(graphId)
 MATCH (movie:Movie)
 RETURN movie.title AS title
}
RETURN title

We call the built-in function example.graphIds() to get the graph IDs for all remote graphs in our Fabric
setup. We UNWIND the result of that function to get one record per graph ID. The CALL {} subquery is
executed once per incoming record. We use a USE clause in the subquery with a dynamic graph lookup,
causing the subquery to execute once against each remote graph. At the end of the main query we simply
RETURN the title variable.

9.3.4. Query result aggregation

Example 52. Getting the earliest release year of all movies in all graphs

UNWIND example.graphIds() AS graphId
CALL {
 USE example.graph(graphId)
 MATCH (movie:Movie)
 RETURN movie.released AS released
}
RETURN min(released) AS earliest

From each remote graph we return the released property of each movie. At the end of the main query we
aggregate across the full result to calculate the global minimum.

9.3.5. Correlated subquery

237

Example 53. Correlated subquery

Assume that graphA contains American movies and graphB contains European movies. Find all
European movies released in the same year as the latest released American movie:

CALL {
 USE example.graphA
 MATCH (movie:Movie)
 RETURN max(movie.released) AS usLatest
}
CALL {
 USE example.graphB
 WITH usLatest
 MATCH (movie:Movie)
 WHERE movie.released = usLatest
 RETURN movie
}
RETURN movie

We query the example.graphA and return the release year of the latest release. We then query the
example.graphB. WITH usLatest is an import clause which lets us refer to the usLatest variable inside the
subquery. We find all the movies in this graph that fulfill our condition and return them.

It is not possible to switch the current graph in a nested query. For example, the following query is illegal:

Example 54. Illegal correlated subquery

USE example.graphA
MATCH (movie:Movie)
WITH movie.title AS title
CALL {
 USE example.graphB // Cannot swicth from example.graphA
 WITH title
 MATCH (otherMovie:Movie)
 WHERE otherMovie.title STARTS WITH title
 RETURN otherMovie.title AS otherTitle
}
RETURN title, otherTitle

This limitation can be circumvented by having subqueries after one another, but without nesting them.

9.3.6. Updating query

Example 55. Create a new movie node

USE example.graphB
CREATE (m:Movie)
SET m.title = ‘Léon: The Professional’
SET m.tagline = ‘If you want the job done right, hire a professional.’
SET m.released = 1994

9.3.7. Mapping functions

Mapping functions are a common Fabric usage pattern. In the previous examples, graphs were identified

238

by providing static graph names in the query. Fabric may be used in scenarios where graphs are identified
by a mapping mechanism that can, for example, identify a key of an object contained in a graph. This can
be achieved by using user-defined functions or other functions that may be already available. These
functions ultimately return the ID of a graph in Fabric.

Mapping functions are commonly used in sharding scenarios. In Fabric, shards are associated to graphs,
hence mapping functions are used to identify a graph, i.e. a shard.

Refer to Java Reference → User-defined functions for details on how to create user-
defined functions.

Let’s assume that Fabric is setup in order to store and retrieve data associated to nodes with the label
user. User nodes are partitioned in several graphs (shards) in Fabric. Each user has a numerical userId,
which is unique in all Fabric. We decide on a simple scheme where each user is located on a graph
determined by taking the userId modulo the number of graphs. We create a user-defined function which
implements the following pseudo code:

sharding.userIdToGraphId(userId) = userId % NUM_SHARDS

Assuming we have supplied a query parameter $userId with the specific userId that we are interested in,
we use our function in this way:

USE example.graph(sharding.userIdToGraphId($userId))
MATCH (u:User) WHERE u.userId = $userId
RETURN u

9.3.8. Fabric built-in functions

Fabric functions are located in a namespace corresponding to a Fabric database in which they are used.
The following table provides a description of Fabric built-in functions:

Table 41. Fabric built-in functions

Function Explanation

<fabric database name>.graphIds() Provides a list of IDs of all remote graph configured for the
given Fabric database.

<fabric database name>.graph(graphId) Maps a graph ID to a Graph. It accepts a graph ID as a
parameter and returns a graph representation accepted by
USE clause. This function is supported only in USE clauses

9.4. Further considerations
DBMS mode

The DBMS hosting the Fabric virtual database cannot be part of a Causal Cluster: it can only be a
DBMS with dbms.mode=SINGLE.

Sharding an existing database

An existing database can be sharded with the help of the neo4j-admin copy command. See Sharding

239

https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions

data with the copy command for an example.

Database compatibility

Fabric is part of Neo4j DBMS and does not require any special installation or plugin. Fabric databases
can be associated to databases available on Neo4j DBMS version 4.1 or 4.2.

Fabric configuration

The Neo4j DBMSs that host the same Fabric virtual database must have the same configuration
settings. The configuration must be kept in-sync and applied by the Database Administrator.

Security credentials

The Neo4j DBMSs that host the same Fabric virtual database must have the same user credentials. Any
change of password on a machine that is part of Fabric, must be kept in-sync and applied to all the
Neo4j DBMSs that are part of Fabric.

Administration commands

Fabric does not support running Cypher administration commands on or through the Fabric virtual
database. Any database management commands, index and constraint management commands, or
user and security management commands must be issued directly to the DBMSs and databases that
are part of the Fabric setup.

Neo4j embedded

Fabric is not available when Neo4j is used as an embedded database in Java applications. Fabric can be
used only in a typical client/server mode, when users connect to a Neo4j DBMS from their client
application or tool, via Bolt or HTTP protocol.

9.5. Sharding data with the copy command
The copy command can be used to filter out data for a Fabric installation. In the following example, a
sample database is separated into 3 shards.

240

Example 56. Use the copy command to filter out data for a Fabric installation.

The sample database contains the following data:

(p1 :Person :S2 {id:123, name: "Ava"})
(p2 :Person :S2 {id:124, name: "Bob"})
(p3 :Person :S3 {id:125, name: "Cat", age: 54})
(p4 :Person :S3 {id:126, name: "Dan"})
(t1 :Team :S1 :SAll {id:1, name: "Foo", mascot: "Pink Panther"})
(t2 :Team :S1 :SAll {id:2, name: "Bar", mascot: "Cookie Monster"})
(d1 :Division :SAll {name: "Marketing"})
(p1)-[:MEMBER]->(t1)
(p2)-[:MEMBER]->(t2)
(p3)-[:MEMBER]->(t1)
(p4)-[:MEMBER]->(t2)

The data has been prepared using queries to add the labels :S1,:S2, :S3, and :SAll, which denotes
the target shard. Shard 1 contains the team data. Shard 2 and Shard 3 contain person data.

1. Create Shard 1 with:

$neo4j-home> bin/neo4j-admin copy --from-database=neo4j \
 --to-database=shard1 \
 --keep-only-nodes-with-labels=S1,SAll \ ①
 --skip-labels=S1,S2,S3,SAll ②

① The --keep-only-node-with-labels property is used to filter out everything that does not
have the label :S1 or :SAll.

② The --skip-labels property is used to exclude the temporary labels you created for the
sharding process.

The resulting shard contains the following:

(t1 :Team {id:1, name: "Foo", mascot: "Pink Panther"})
(t2 :Team {id:2, name: "Bar", mascot: "Cookie Monster"})
(d1 :Division {name: "Marketing"})

2. Create Shard 2:

$neo4j-home> bin/neo4j-admin copy --from-database=neo4j \
 --to-database=shard2 \
 --keep-only-nodes-with-labels=S2,SAll \
 --skip-labels=S1,S2,S3,SAll \
 --keep-only-node-properties=Team.id

In Shard 2, you want to keep the :Team nodes as proxy nodes, to be able to link together
information from the separate shards. The nodes will be included since they have the label :SAll,
but you specify --keep-only-node-properties so as to not duplicate the team information from
Shard 1.

241

(p1 :Person {id:123, name: "Ava"})
(p2 :Person {id:124, name: "Bob"})
(t1 :Team {id:1})
(t2 :Team {id:2})
(d1 :Division {name: "Marketing"})
(p1)-[:MEMBER]->(t1)
(p2)-[:MEMBER]->(t2)

Observe that --keep-only-node-properties did not filter out Person.name since the :Person label
was not mentioned in the filter.

3. Create Shard 3, but with the filter --skip-node-properties, instead of --keep-only-node
-properties.

$neo4j-home> bin/neo4j-admin copy --from-database=neo4j \
 --to-database=shard3 \
 --keep-only-nodes-with-labels=S3,SAll \
 --skip-labels=S1,S2,S3,SAll \
 --skip-node-properties=Team.name,Team.mascot

The result is:

(p3 :Person {id:125, name: "Cat", age: 54})
(p4 :Person {id:126, name: "Dan"})
(t1 :Team {id:1})
(t2 :Team {id:2})
(d1 :Division {name: "Marketing"})
(p3)-[:MEMBER]->(t1)
(p4)-[:MEMBER]->(t2)

As demonstrated, you can achieve the same result with both --skip-node-properties and --keep
-only-node-properties. In this example, it is easier to use --keep-only-node-properties because
only one property should be kept. The relationship property filters works in the same way.

242

Chapter 10. Backup and restore
This chapter describes the following:

• Backup and restore planning — What to consider when designing your backup and restore strategy.

• Backup modes — The supported backup modes.

• Back up an online database — How to back up an online database.

• Prepare for restore - How to prepare your backup for restore by applying the latest transactions.

• Restore a database backup — How to restore a database backup in a live Neo4j deployment.

• Back up an offline database — How to back up an offline database.

• Restore a database dump — How to restore a database dump in a live Neo4j deployment.

• Copy a database store — How to copy data store from an existing database to a new database.

10.1. Backup and restore planning
There are two main reasons for backing up your Neo4j databases and storing them in a safe, off-site
location:

• to be able to quickly recover your data in case of failure, for example related to hardware, human error,
or natural disaster.

• to be able to perform routine administrative operations, such as moving a database from one instance
to another, upgrading, or reclaiming space.

10.1.1. Backup and restore strategy

Depending on your particular deployment and environment, it is important to design an appropriate
backup and restore strategy.

There are various factors to consider when deciding on your strategy, such as:

• Type of environment – development, test, or production.

• Data volumes.

• Number of databases.

• Available system resources.

• Downtime tolerance during backup and restore.

• Demands on Neo4j performance during backup and restore. This factor might lead your decision
towards performing these operations during an off-peak period.

• Tolerance for data loss in case of failure.

• Tolerance for downtime in case of failure. If you have zero tolerance for downtime and data loss, you
might want to consider performing an online or even a scheduled backup.

• Frequency of updates to the database.

243

• Type of backup and restore method (online or offline), which may depend on whether you want to:

◦ perform full backups (online or offline).

◦ automatically check the consistency of a database backup (online only).

◦ perform incremental backups (online only).

◦ use SSL/TLS for the backup network communication (online only).

◦ keep your databases as archive files (offline only).

• How many backups you want to keep.

• Where the backups will be stored — drive or remote server, cloud storage, different data center,
different location, etc.

It is recommended to store your database backups on a separate off-site server
(drive or remote) from the database files. This ensures that if for some reason your
Neo4j DBMS crashes, you will be able to access the backups and perform a restore.

• How you will test recovery routines, and how often.

10.1.2. Backup and restore options

Neo4j supports backing up and restoring both online and offline databases. It uses Neo4j Admin tool
commands, which can be run from a live, as well as from an offline Neo4j DBMS. All neo4j-admin
commands must be invoked as the neo4j user to ensure the appropriate file permissions.

• neo4j-admin backup/restore (Enterprise only) -– used for performing online backup (full and
incremental) and restore operations. The database to be backed up must be in online mode. This
command is suitable for production environments, where you cannot afford downtime. However, it is
more memory intensive and is not supported in Neo4j Aura.

When using neo4j-admin backup in Causal Cluster, it is recommended to back up
from an external instance as opposed to reuse instances that form part of the cluster.

• neo4j-admin dump/load –- used for performing offline dump and load operations. The database to be
dumped must be in offline mode. This dump command is suitable for environments, where downtime
is not a factor. It is faster than the backup command, and produces an archive file, which occupies less
space than a normal database structure.

• neo4j-admin copy –- used for copying an offline database or backup. This command can be used for
cleaning up database inconsistencies, reclaiming unused space, and migrating Neo4j 3.5.any directly to
any 4.x version of Neo4j, including the latest version, skipping the intermediate steps. For a detailed
example, see Upgrade and Migration Guide → Tutorial: Back up and copy a database in a standalone
instance.

 File system copy-and-paste of databases is not supported.

244

https://neo4j.com/cloud/aura/
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#online_backup_copy_database
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#online_backup_copy_database
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#online_backup_copy_database
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#online_backup_copy_database

In Fabric deployments, the Neo4j Admin commands backup, restore, dump, load, copy,
and check-consistency are not supported for use on the Fabric virtual database. They
must be run directly on the databases that are part of the Fabric setup.

Table 42. The following table describes the commands capabilities and usage.

Capability/ Usage neo4j-admin
backup

neo4j-admin dump neo4j-admin
restore

neo4j-admin load neo4j-admin copy

Neo4j Edition Enterprise all Enterprise all Enterprise

Live Neo4j DBMS

Offline Neo4j
DBMS

Run against a user
database

Run against the
system database

Run against the
fabric database

Perform full
backups

 n/a n/a n/a

Perform
incremental
backups

 n/a n/a n/a

Applied to an
online database

Applied to an
offline database

Can be run
remotely (support
SSL)

Command input database database database backup archive (.dump) database or
database backup

Command output database archive (.dump) database database database; no
schema store

Run consistency
check after
completion

Clean up database
inconsistencies

Compact data
store

245

10.1.3. Databases to backup

A Neo4j DBMS can host multiple databases. Both Neo4j Community and Enterprise Editions have a
default user database, called neo4j, and a system database, which contains configurations, e.g., operational
states of databases, security configuration, schema definitions, login credentials, and roles. In the
Enterprise Edition, you can also create additional user databases. Each of these databases are backed up
independently of one another.

It is very important to back up each of your databases, including the system database, in
a safe location.

10.1.4. Additional files to back up

The following files must be backed up separately from the databases:

• The neo4j.conf file. If you have a cluster deployment, you should back up the configuration file for each
cluster member.

• All the files used for encryption, i.e., private key, public certificate, and the contents of the trusted and
revoked directories. The locations of these are described in SSL framework. If you have a cluster, you
should back up these files for each cluster member.

• If using custom plugins, make sure that you have the plugins in a safe location.

10.1.5. Storage considerations

For any backup, it is important that you store your data separately from the production system, where
there are no common dependencies, and preferably off-site. If you are running Neo4j in the cloud, you may
use a different availability zone or even a separate cloud provider. Since backups are kept for a long time,
the longevity of archival storage should be considered as part of backup planning.

10.2. Backup modes
The backup client can operate in two different modes – a full backup and an incremental backup.

10.2.1. Full backup

A full backup is always required initially for the very first backup into a target location.

The full backup can be run against both an online (using neo4j-admin backup) and an
offline (using neo4j-admin dump) database.

246

Example 57. Full backup against an online database

$neo4j-home> export HEAP_SIZE=2G
$neo4j-home> mkdir /mnt/backups
$neo4j-home> bin/neo4j-admin backup --from=192.168.1.34 --backup-dir=/mnt/backups/neo4j --database
=neo4j --pagecache=4G
Doing full backup...
2017-02-01 14:09:09.510+0000 INFO [o.n.c.s.StoreCopyClient] Copying neostore.nodestore.db.labels
2017-02-01 14:09:09.537+0000 INFO [o.n.c.s.StoreCopyClient] Copied neostore.nodestore.db.labels 8.00
kB
2017-02-01 14:09:09.538+0000 INFO [o.n.c.s.StoreCopyClient] Copying neostore.nodestore.db
2017-02-01 14:09:09.540+0000 INFO [o.n.c.s.StoreCopyClient] Copied neostore.nodestore.db 16.00 kB
...
...
...

For more information about online backup options and how to control memory usage, see Back up an
online database.

For more information about performing a full backup against an offline database, see
Back up an offline database.

10.2.2. Incremental backup

After the initial full backup, the subsequent backups attempt to use the incremental mode, where just the
delta of the transaction logs since the last backup are transferred and applied onto the target location. If
the required transaction logs are not available on the backup server, then the backup client falls back on
performing a full backup instead, unless --fallback-to-full is disabled.

 The incremental backup can be run only against an online database.

Example 58. Incremental backup against an online database

$neo4j-home> export HEAP_SIZE=2G
$neo4j-home> bin/neo4j-admin backup --from=192.168.1.34 --backup-dir=/mnt/backups/neo4j --database
=neo4j --pagecache=4G
Destination is not empty, doing incremental backup...
Backup complete.

For more information about online backup options and how to control memory usage, see Back up an
online database.

10.3. Back up an online database

Remember to plan your backup carefully and to back up each of your databases,
including the system database.

247

10.3.1. Command

A Neo4j database can be backed up in online mode using the backup command of neo4j-admin. The
command must be invoked as the neo4j user to ensure the appropriate file permissions.

Usage

The neo4j-admin backup command can be used for performing both full and incremental backups of an
online database. The command can be run both locally and remotely. By default, neo4j-admin backup also
checks the database consistency at the end of every backup operation. However, it uses a significant
amount of resources, such as memory and CPU. Therefore, it is recommended to perform the backup on a
separate dedicated machine. The neo4j-admin backup command also supports SSL/TLS. For more
information, see Online backup configurations.

neo4j-admin backup is not supported in Neo4j Aura.

neo4j-admin backup is not supported for use on the Fabric virtual database. It must be
run directly on the databases that are part of the Fabric setup.

Syntax

neo4j-admin backup --backup-dir=<path>
 [--verbose]
 [--expand-commands]
 [--from=<host:port>]
 [--database=<database>]
 [--fallback-to-full=<true/false>]
 [--pagecache=<size>]
 [--check-consistency=<true/false>]
 [--report-dir=<path>]
 [--check-graph=<true/false>]
 [--check-indexes=<true/false>]
 [--check-index-structure=<true/false>]
 [--check-label-scan-store=<true/false>]
 [--check-property-owners=<true/false>]
 [--additional-config=<path>]
 [--include-metadata=<all/users/roles>]
 [--prepare-restore=<true/false>]
 [--parallel-recovery]

The following options have been deprecated:

[--check-label-scan-store=<true/false>]
[--check-property-owners=<true/false>]

Values for these settings will be ignored.

Options

Option Default Description

--backup-dir Target directory.

248

https://neo4j.com/cloud/aura/

Option Default Description

--verbose Enable verbose output.

--expand-commands Allow command expansion in
config value evaluation.

--from localhost:6362 Host and port of Neo4j.

--database neo4j Name of the remote database to
back up.
The value can contain * and ? for
globbing, in which cases, all
matching databases will be
backed up.

With a single *
as a value, you
can back up all
the databases
of the DBMS.

--fallback-to-full true If an incremental backup fails,
backup will move the old backup
to <name>.err.<N> and fallback on
a full backup instead.

--pagecache 8m The size of the page cache to use
for the backup process.

--check-consistency true Run a consistency check against
the database backup.

--report-dir . Directory where consistency
report will be written.

--check-graph true Perform consistency checks
between nodes, relationships,
properties, types, and tokens.

--check-indexes true Perform consistency checks on
indexes.

249

Option Default Description

--check-index-structure true Perform structure checks on
indexes.

--check-label-scan-store true This option is deprecated, and its
value is ignored.

--check-property-owners false This option is deprecated, and its
value is ignored.

--additional-config Configuration file to provide
additional or override the existing
configuration settings in the
neo4j.conf file.

--include-metadata Include metadata in the backup.
Metadata contains security
settings related to the database.
Cannot be used for backing up
the system database.

• roles - commands to create
the roles and privileges (for
both database and graph)
that affect the use of the
database.

• users - commands to create
the users that can use the
database and their role
assignments.

• all - include roles and users.

250

Option Default Description

--prepare-restore true Perform the recovery of the
backup store by applying the
latest pulled transactions. If
disabled, the backup will be
faster, but a recovery of the
backup store will be required at a
later time before restoring the
data.
For more information on how to
do that, see Prepare a database
for restoring.

If --prepare
-restore is set
to false,
--check
-consistency is
implicitly set to
false, because
the consistency
of a non-
recovered store
cannot be
checked.

--parallel-recovery Allow multiple threads to apply
transactions to a backup in
parallel. For some databases and
workloads, this may reduce
execution times significantly.

parallel-
recovery is an
experimental
option. Consult
Neo4j support
before use.

Exit codes

Depending on whether the backup was successful or not, neo4j-admin backup exits with different codes.
The error codes include details of what error was encountered.

Table 43. Neo4j Admin backup exit codes when backing up one database

251

Code Description

0 Success.

1 Backup failed.

2 Backup succeeded but consistency check failed.

3 Backup succeeded but consistency check found inconsistencies.

Table 44. Neo4j Admin backup exit codes when backing multiple databases

Code Description

0 All databases are backed up successfully.

1 One or several backup failed.

10.3.2. Online backup configurations

Server configuration

The table below lists the basic server parameters relevant to backups. Note that, by default, the backup
service is enabled but only listens on localhost (127.0.0.1). This needs to be changed if backups are to be
taken from another machine.

Make this change only if you need the remote backup. If your network is not adequately
isolated, this change might expose your system to threats.

Table 45. Server parameters for backups

Parameter name Default value Description

dbms.backup.enabled true Enable support for running online
backups.

dbms.backup.listen_address 127.0.0.1:6362 Listening server for online backups.

It is not recommended to use an NFS mount for backup purposes as this is likely to
corrupt and slow down the backup.

Make sure to follow the Security Configurations in order to prevent unauthorized users
from accessing the DBMS by having access to the backup server.

Memory configuration

The following options are available for configuring the memory allocated to the backup client:

Configure heap size for the backup

HEAP_SIZE configures the maximum heap size allocated for the backup process. This is done by setting

252

https://neo4j.com/docs/operations-manual/current/backup-restore/online-backup/#online-backup-ssl

the environment variable HEAP_SIZE before starting the operation. If not specified, the Java Virtual
Machine chooses a value based on the server resources.

Configure page cache for the backup

The page cache size can be configured by using the --pagecache option of the neo4j-admin backup
command. If not explicitly defined, the page cache defaults to 8MB.

You should give the Neo4J page cache as much memory as possible, as long as it
satisfies the following constraint:

Neo4J page cache + OS page cache < available RAM, where 2 to 4GB should be
dedicated to the operating system’s page cache.

For example, if your current database has a Total mapped size of 128GB as per the
debug.log, and you have enough free space (meaning you have left aside 2 to 4 GB
for the OS), then you can set --pagecache to 128GB.

Computational resources configurations

Consistency checking

Checking the consistency of the backup is a major operation which may consume significant
computational resources, such as, memory, CPU, I/O. When backing up an online database, the
consistency checker is invoked at the end of the process by default. Therefore, it is highly
recommended to perform the backup and consistency check on a dedicated machine, which has
sufficient free resources, to avoid adversely affecting the running server.

Alternatively, you can decouple the backup operation from the consistency check (using the neo4j-
admin backup option --check-consistency=false) and schedule that part of the workflow to happen at
a later point in time, on a dedicated machine. Consistency checking a backup is vital for safeguarding
and ensuring the quality of the data, and should not be underestimated. For more information, see
Consistency checker.

To avoid running out of resources on the running server, it is recommended to
perform the backup on a separate dedicated machine.

Transaction log files

The transaction log files, which keep track of recent changes, are rotated and pruned based on a
provided configuration. For example, setting dbms.tx_log.rotation.retention_policy=3 files keeps 3
transaction log files in the backup. Because recovered servers do not need all of the transaction log files
that have already been applied, it is possible to further reduce storage size by reducing the size of the
files to the bare minimum. This can be done by setting dbms.tx_log.rotation.size=1M and
dbms.tx_log.rotation.retention_policy=3 files. You can use the --additional-config parameter to
override the configurations in the neo4j.conf file.

 Removing transaction logs manually can result in a broken backup.

253

Security configurations

Securing your backup network communication with an SSL policy and a firewall protects your data from
unwanted intrusion and leakage. When using the neo4j-admin backup command, you can configure the
backup server to require SSL/TLS, and the backup client to use a compatible policy. For more information
on how to configure SSL in Neo4j, see SSL framework.

For a detailed list of recommendations regarding security in Neo4j, see Security
checklist.

The following table provides details on how the configured SSL policies map to the configured ports.

Table 46. Mapping backup configurations to SSL policies

Topology Backup target address
on database server

SSL policy setting
on database server

SSL policy setting
on backup client

Default port

Standalone
instance

dbms.backup.listen_add
ress

dbms.ssl.policy.b
ackup

dbms.ssl.policy.b
ackup

6362

Causal cluster dbms.ssl.policy.cluste
r
causal_clustering.tran
saction_listen_address

dbms.ssl.policy.c
luster

dbms.ssl.policy.b
ackup

6000

It is very important to ensure that there is no external access to the port specified by the
setting dbms.backup.listen_address. Failing to protect this port may leave a security
hole open by which an unauthorized user can make a copy of the database onto a
different machine. In production environments, external access to the backup port should
be blocked by a firewall.

Cluster configurations

In a cluster topology, it is possible to take a backup from any server, and each server has two configurable
ports capable of serving a backup. These ports are configured by dbms.backup.listen.address and
causal_clustering.transaction_listen_address respectively. Functionally, they are equivalent for
backups, but separating them can allow some operational flexibility, while using just a single port can
simplify the configuration. It is generally recommended to select Read Replicas to act as backup servers,
since they are more numerous than Core members in typical cluster deployments. Furthermore, the
possibility of performance issues on a Read Replica, caused by a large backup, will not affect the
performance or redundancy of the Core members. If a Read Replica is not available, then a Core can be
selected based on factors, such as its physical proximity, bandwidth, performance, and liveness.

To avoid taking a backup from a cluster member that is lagging behind, you can look at
the transaction IDs by exposing Neo4j metrics or via Neo4j Browser. To view the latest
processed transaction IDs (and other metrics) in Neo4j Browser, type :sysinfo at the
prompt.

254

10.3.3. Examples

The following are examples of how to back up a single database, e.g., the default database neo4j, and
multiple databases, using the neo4j-admin backup command. The target directory /mnt/backups/neo4j
must exist before calling the command and the database(s) must be online.

Example 59. Use neo4j-admin backup to back up a single database.

bin/neo4j-admin backup --backup-dir=/mnt/backups/neo4j --database=neo4j

To backup several databases that match database pattern you can use name globbing. For example, to
backup all databases that start with n you should run:

Example 60. Use neo4j-admin backup to back up multiple databases.

neo4j-admin backup --from=192.168.1.34 --backup-dir=/mnt/backups/neo4j --database=n* --pagecache=4G

For a detailed example on how to back up and restore a database in a Causal cluster, see
Back up and restore a database in Causal Cluster.

10.4. Prepare a database for restoring

10.4.1. Command

If the --prepare-restore option is disabled when you back up your database, your store may not contain
the latest transactions pulled at backup time. In this case, you have to run the --neo4j-admin prepare-
restore command to apply those transactions to the store, before you can restore your data.

Syntax

neo4j-admin prepare-restore --target=<path>[,<path>...]...
 [--verbose]
 [--expand-commands]
 [--parallel-recovery]

Options

255

Option Default Description

--target A path to the backup that is going
to be prepared for restoring. A
path can contain asterisks or
question marks in the last
subpath but must not contain
commas. Multiple paths are
separated by a comma.

--verbose Enable verbose output.

--expand-commands Allow command expansion in
config value evaluation.

--parallel-recovery Allow multiple threads to apply
transactions to a backup in
parallel. For some databases and
workloads, this may reduce
execution times significantly.

parallel-
recovery is an
experimental
option. Consult
Neo4j support
before use.

10.4.2. Example

The following is an example of preparing your database backup, created in the section Back up an online
database, for restoring, using the neo4j-admin prepare-restore command.

bin/neo4j-admin prepare-restore --target=/mnt/backups/neo4j

10.5. Restore a database backup

10.5.1. Command

A database backup or an offline database can be restored using the restore command of neo4j-admin.
You must create the database (using CREATE DATABASE against the system database) after the restore
operation finishes, unless you are replacing an existing database. neo4j-admin restore must be invoked as
the neo4j user to ensure the appropriate file permissions. For more information, see Administrative
commands.

256

If the --prepare-restore option is disabled when backing up your database, you must
first perform the neo4j-admin prepare-restore command before you can restore your
database. This is to apply the latest transactions pulled at the backup time but not yet
applied to the store. For more information, see Prepare a database for restoring.

Syntax

neo4j-admin restore --from=<path>[,<path>...]
 [--verbose]
 [--expand-commands]
 [--database=<database>]
 [--force]
 [--move]
 [--to-data-directory=<path>]
 [--to-data-tx-directory=<path>]

Options

Option Default Description

--from A path or multiple paths to the database
backup(s) for restore.
A path can contain asterisks or question
marks in the last subpath but must not
contain commas. Commas are used to
separate multiple paths.

--verbose Enables verbose output.

--expand-commands Allows command expansion in config
value evaluation.

--database neo4j Name for the restored database.

--force Replaces an existing database.

--move Moves the backup files to the
destination, rather than copying. This
makes the restoring process faster and
with no need for extra disk space.
However, for this procedure to work
properly, backup and database files
must be on the same filesystem. In case
they are not, the command will only
copy the files and delete the backup,
resulting in no performance benefits.

--to-data-directory Base directory for databases. Usage of
this option is only allowed if the --from
parameter points to one directory.

--to-data-tx-directory Base directory for transaction logs.
Usage of this option is only allowed if
the --from parameter points to one
directory.

257

10.5.2. Example

The following is an example of how to perform an online restore of the database backup created in the
section Back up an online database, using the neo4j-admin restore command.

bin/neo4j-admin restore --from=/mnt/backups/neo4j --database=neo4j --force

Unless you are replacing an existing database, you must create the database (using
CREATE DATABASE against the system database) after the restore operation finishes.

If you have backed up a database with the option --include-metadata, you can manually restore the users
and roles metadata.

From the <neo4j-home> directory, you run the Cypher script
data/scripts/databasename/restore_metadata.cypher, which the neo4j-admin restore command outputs,
using Cypher Shell:

Using cat (UNIX)

cat data/scripts/databasename/restore_metadata.cypher | bin/cypher-shell -u user -p password -a
ip_address:port -d system --param "database => 'databasename'"

Using type (Windows)

type data\scripts\databasename\restore_metadata.cypher | bin\cypher-shell.bat -u user -p password -a
ip_address:port -d system --param "database => 'databasename'"

For a detailed example on how to back up and restore a database in a Causal cluster, see
Back up and restore a database in Causal Cluster.

neo4j-admin restore cannot be applied to the Fabric virtual database. It must be run
directly on the databases that are part of the Fabric setup.

10.6. Back up an offline database

Remember to plan your backup carefully and to back up each of your databases,
including the system database.

10.6.1. Command

A Neo4j database can be backed up in offline mode using the dump command of neo4j-admin.

Usage

The neo4j-admin dump command can be used for performing a full backup of an offline database. It dumps
a database into a single-file archive, called <database>.dump. The command can be run only locally from

258

an online or an offline Neo4j DBMS. It does not support SSL/TLS.

Syntax

neo4j-admin dump --to=<destination-path>
 [--verbose]
 [--expand-commands]
 [--database=<database>]

Options

Option Default Description

--to Destination (file or folder) of database
dump.

--verbose Enable verbose output.

--expand-commands Allow command expansion in config
value evaluation.

--database neo4j Name of the database to dump.

10.6.2. Example

The following is an example of how to create a dump of the default database neo4j, called neo4j-
<timestamp>.dump, using the neo4j-admin dump command. The target directory /dumps/neo4j must exist
before running the command and the database must be offline.

bin/neo4j-admin dump --database=neo4j --to=/dumps/neo4j/neo4j-<timestamp>.dump

neo4j-admin dump cannot be applied to the Fabric virtual database. It must be run
directly on the databases that are part of the Fabric setup.

10.7. Restore a database dump
A database dump can be loaded to a Neo4j instance using the load command of neo4j-admin.

10.7.1. Command

The neo4j-admin load command loads a database from an archive created with the neo4j-admin dump
command. The command can be run from an online or an offline Neo4j DBMS. If you are replacing an
existing database, you have to shut it down before running the command. If you are not replacing an
existing database, you must create the database (using CREATE DATABASE against the system database)
after the load operation finishes. neo4j-admin load must be invoked as the neo4j user to ensure the
appropriate file permissions.

259

Syntax

neo4j-admin load --from=<archive-path>
 [--verbose]
 [--expand-commands]
 [--database=<database>]
 [--force]
 [--info]

Options

Option Default Description

--from A path to an archive created with the
neo4j-admin dump command.

--verbose Enable verbose output.

--expand-commands Allow command expansion in config
value evaluation.

--database neo4j Name for the loaded database.

--force Replace an existing database.

--info Print meta-data information about the
archive file, such as file count, byte
count, and format of the load file.

10.7.2. Example

The following is an example of how to load the dump of the neo4j database created in the section Back up
an offline database, using the neo4j-admin load command. When replacing an existing database, you
have to shut it down before running the command.

bin/neo4j-admin load --from=/dumps/neo4j/neo4j-<timestamp>.dump --database=neo4j --force

Unless you are replacing an existing database, you must create the database (using
CREATE DATABASE against the system database) after the load operation finishes.

When using the load command to seed a Causal Cluster, and a previous version of the
database exists, you must delete it (using DROP DATABASE) first. Alternatively, you can
stop the Neo4j instance and unbind it from the cluster using neo4j-admin unbind to
remove its cluster state data. If you fail to DROP or unbind before loading the dump, that
database’s store files will be out of sync with its cluster state, potentially leading to
logical corruptions. For more information, see Seed a cluster from a database backup
(online).

neo4j-admin load cannot be applied to the Fabric virtual database. It must be run
directly on the databases that are part of the Fabric setup.

260

10.8. Copy a database store
A user database or backup can be copied to a Neo4j instance using the copy command of neo4j-admin.

neo4j-admin copy is not supported for use on the system database.

In Fabric deployments, neo4j-admin copy cannot be applied to the Fabric virtual
database. It must be run directly on the databases that are part of the Fabric setup.

It is important to note that neo4j-admin copy is an IOPS-intensive process. Using this
process for upgrading or migration purposes can have significant performance
implications, depending on your disc specification. It is therefore not appropriate for all
use cases.

Estimating the processing time

Estimations for how long the neo4j-admin copy command will take can be made
based upon the following:

• Neo4j, like many other databases, do IO in 8K pages.

• Your disc manufacturer will have a value for the maximum IOPS it can process.

For example, if your disc manufacturer has provided a maximum of 5000 IOPS, you
can reasonably expect up to 5000 such page operations a second. Therefore, the
maximal theoretical throughput you can expect is 40MB/s (or 144 GB/hour) on that
disc. You may then assume that the best-case scenario for running neo4j-admin copy
on that 5000 IOPS disc is that it will take at least 1 hour to process a 144 GB
database. [13]

However, it is important to remember that the process must read 144 GB from the
source database, and must also write to the target store (assuming the target store is
of comparable size). Additionally, there are internal processes during the copy that
will read/modify/write the store multiple times. Therefore, with an additional 144 GB
of both read and write, the best-case scenario for running neo4j-admin copy on a
5000 IOPS disc is that it will take at least 3 hours to process a 144 GB database.

Finally, it is also important to consider that in almost all Cloud environments, the
published IOPS value may not be the same as the actual value, or be able to
continuously maintain the maximum possible IOPS. The real processing time for this
example could be well above that estimation of 3 hours.

For detailed information about supported methods of upgrade and migration, see the
Neo4j Upgrade and Migration Guide.

10.8.1. Command

neo4j-admin copy copies the data store of an existing offline database to a new database.

261

https://neo4j.com/docs/upgrade-migration-guide/current/

Usage

The neo4j-admin copy command can be used to clean up database inconsistencies, compact stores, and
do a direct migration from Neo4j 3.5 to any 4.x version. It can process an optional set of filters, which you
can use to remove any unwanted data before copying the database. The command also reclaims the
unused space of a database and creates a defragmented copy of that database or backup in the
destination Neo4j instance.

neo4j-admin copy copies the data store without the schema (indexes and constraints).
However, if the database has a schema defined, the command will output Cypher
statements, which you can run to recreate the indexes and constraints.

For a detailed example of how to reclaim unused space, see Reclaim unused space.
For a detailed example of how to back up a 3.5 database and use the neo4j-admin copy
command to compact its store and migrate it to a 4.x Neo4j standalone instance, see
Upgrade and Migration Guide → Tutorial: Back up and copy a database in a standalone
instance.

 neo4j-admin copy preserves the node IDs; however, the relationships get new IDs.

Syntax

neo4j-admin copy [--verbose]
 [--from-database=<database>]
 [--from-path=<path>]
 [--from-path-tx=<path>]
 --to-database=<database>
 [--neo4j-home-directory=<path>]
 [--force]
 [--compact-node-store]
 [--to-format=<format>]
 [--delete-nodes-with-labels=<label>[,<label>...]]
 [--keep-only-node-properties=<label.property>[,<label.property>...]]
 [--keep-only-nodes-with-labels=<label>[,<label>...]]
 [--keep-only-relationship-
properties=<relationship.property>[,<relationship.property>...]]
 [--skip-labels=<label>[,<label>...]]
 [--skip-node-properties=<label.property>[,<label.property>...]]
 [--skip-properties=<property>[,<property>...]]
 [--skip-relationship-properties=<relationship.property>[,<relationship.property>...]]
 [--skip-relationships=<relationship>[,<relationship>...]]
 [--from-pagecache=<size>]
 [--to-pagecache=<size>]

Options

Option Description

--verbose Enable verbose output.

--from-database The database name to copy from.

262

https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#online_backup_copy_database
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#online_backup_copy_database
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#online_backup_copy_database
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#online_backup_copy_database

Option Description

--from-path The path to the database to copy from.

It can be used to target databases outside of the installation,
e.g., backups.

--from-path-tx The path to the transaction log files. Use if the command
cannot determine where they are located.

--to-database The destination database name.

--neo4j-home-directory=<path> Path to the home directory for the copied database.

Default: The same as the database copied from.

--force Force the command to proceed even if the integrity of the
database can not be verified.

--compact-node-store Enforce node store compaction.

By default, the node store is not compacted on copy since it
changes the node IDs.

When using Neo4j 4.3, this option is only
available in minor releases ≥4.3.3.

--to-format Set the format for the new database.

Valid values are same, standard, high_limit, and aligned. The
high_limit format is only available in Enterprise Edition. If you
go from high_limit to standard, there is no validation that the
data will fit.

Default: The format of the source database.

--delete-nodes-with-labels A comma-separated list of labels.

All nodes that have ANY of the specified labels will be deleted.
Any node matching any of the labels will be ignored during
copy.

263

Option Description

--keep-only-node-properties A list of property keys to keep for nodes with the specified
label.

Any labels not explicitly mentioned will keep their properties.
Cannot be combined with --skip-properties or --skip-node
-properties.

--keep-only-nodes-with-labels A list of labels.

All nodes that have any of the specified labels will be kept.
Cannot be combined with --delete-nodes-with-labels.

--keep-only-relationship-properties A list of property keys to keep for relationships with the
specified type.

Any relationship types not explicitly mentioned will keep their
properties.

Cannot be combined with --skip-properties or --skip
-relationship-properties.

--skip-labels A comma-separated list of labels to ignore during the copy.

--skip-node-properties A list of property keys to ignore for nodes with the specified
label.

Cannot be combined with --skip-properties or --keep-only
-node-properties.

--skip-properties A comma-separated list of property keys to ignore during the
copy.

Cannot be combined with --skip-node-properties, --keep
-only-node-properties, --skip-relationship-properties,
and --keep-only-relationship-properties.

--skip-relationships A comma-separated list of relationship types to ignore during
the copy.

--skip-relationship-properties A list of property keys to ignore for relationships with the
specified type.

Cannot be combined with --skip-properties or --keep-only
-relationship-properties.

264

Option Description

--from-pagecache The size of the page cache to use for reading.

--to-pagecache The size of the page cache to use for writing.

You can use the --from-pagecache and --to-pagecache options to speed up the copy
operation by specifying how much cache to allocate when reading the source and
writing the destination. As a rule of thumb, --to-pagecache should be around 1-2GB
since it mostly does sequential writes. The --from-pagecache should then be assigned
whatever memory you can spare since Neo4j does random reads from the source.

10.8.2. Examples

Example 61. Use neo4j-admin copy to copy the data store of the database neo4j.

1. Stop the database named neo4j:

STOP DATABASE neo4j

2. Copy the data store from neo4j to a new database called copy:

bin/neo4j-admin copy --from-database=neo4j --to-database=copy

3. Run the following command to verify that database has been successfully copied.

ls -al ../data/databases

Copying a database does not automatically create it. Therefore, it will not be
visible if you do SHOW DATABASES at this point.

4. Create the copied database.

CREATE DATABASE copy

5. Verify that the copy database is online.

SHOW DATABASES

6. If your original database has a schema defined, change your active database to copy and recreate
the schema using the neo4j-admin copy output.

 The console output is saved to logs/neo4j-admin-copy-<timestamp>.log.

265

Example 62. Use neo4j-admin copy to filter the data you want to copy.

The command can perform some basic forms of processing. You can filter the data that you want to
copy by removing nodes, labels, properties, and relationships.

bin/neo4j-admin copy --from-database=neo4j --to-database=copy --delete-nodes-with-labels="Cat,Dog"

The command creates a copy of the database neo4j but without the nodes with the labels :Cat and
:Dog.

Labels are processed independently, i.e., the filter deletes any node with a label
:Cat, :Dog, or both.

For a detailed example of how to use neo4j-admin copy to filter out data for a Fabric
installation, see Sharding data with the copy command.

[13] The calculations are based on MB/s = (IOPS * B) ÷ 10^6, where B is the block size in bytes; in the case of Neo4j, this is
8000. GB/hour can then be calculated from (MB/s * 3600) ÷ 1000.

266

Chapter 11. Authentication and authorization
Ensure that your Neo4j deployment adheres to your company’s information security guidelines by setting
up the appropriate authentication and authorization rules.

Ths section describes the following:

• Introduction

• Built-in roles

• Fine-grained access control

• Integration with LDAP directory services

• Manage procedure and user-defined function permissions

• Terminology

The functionality described in this section is applicable to Enterprise Edition. A limited
set of user management functions are also available in Community Edition. Native roles
overview gives a quick overview of these.

11.1. Introduction
Authentication is the process of ensuring that a user is who the user claims to be, while authorization
pertains to checking whether the authenticated user is allowed to perform a certain action. Authorization is
managed using role-based access control (RBAC). Permissions that define access control are assigned to
roles, which are in turn assigned to users.

Neo4j has the following auth providers, that can perform user authentication and authorization:

Native auth provider

Neo4j provides a native auth provider that stores user and role information in the system database. The
following parameters control this provider:

267

• dbms.security.auth_enabled (Default: true) — Enable auth requirement to access Neo4j.

If you need to disable authentication, for example, to recover an admin user
password or assign a user to the admin role, make sure you block all network
connections during the recovery phase so users can connect to Neo4j only
via localhost. For more information, see Password and user recovery.

• dbms.security.auth_lock_time (Default: 5s) — The amount of time a user account is locked
after a configured number of unsuccessful authentication attempts.

• dbms.security.auth_max_failed_attempts (Default: 3) — The maximum number of
unsuccessful authentication attempts before imposing a user lock for a configured amount of
time.
When triggered, Neo4j logs an error containing a timestamp and the message failed to log
in: too many failed attempts in the security.log.

The Cypher commands to manage users, roles, and permissions are described in detail in Cypher
Manual → Administration. Various scenarios that illustrate the use of the native auth provider are
available in Fine-grained access control.

LDAP auth provider

Another way of controlling authentication and authorization is through external security software such
as Active Directory or OpenLDAP, which is accessed via the built-in LDAP connector. A description of
the LDAP plugin using Active Directory is available in Integration with LDAP directory services.

Custom-built plugin auth providers

For clients with specific requirements not satisfied with either native or LDAP, Neo4j provides a plugin
option for building custom integrations. It is recommended that this option is used as part of a custom
delivery as negotiated with Neo4j Professional Services. The plugin is described in Java Reference →
Authentication and authorization plugins.

Kerberos authentication and single sign-on

In addition to LDAP, Native and custom providers, Neo4j supports Kerberos for authentication and
single sign-on. Kerberos support is provided via the Neo4j Kerberos Add-On.

11.2. Built-in roles
Neo4j provides built-in roles with default privileges. The built-in roles and the default privileges are:

PUBLIC

• Access to the home database.

• Allows executing procedures with the users own privileges.

• Allows executing user-defined functions with the users own privileges.

reader

• Access to all databases.

268

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-security-plugins
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-security-plugins
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-security-plugins
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-security-plugins
https://neo4j.com/docs/pdf/neo4j-kerberos-add-on-current.pdf

• Traverse and read on the data graph (all nodes, relationships, properties).

editor

• Access to all databases.

• Traverse, read, and write on the data graph.

• Write access limited to creating and changing existing property keys, node labels, and relationship
types of the graph. In other words, the editor role cannot add to the schema but can only make
changes to already existing objects.

publisher

• Access to all databases.

• Traverse, read, and write on the data graph.

architect

• Access to all databases.

• Traverse, read, and write on the data graph.

• Create/drop/show indexes and constraints along with any other future schema constructs.

admin

• Access to all databases.

• Traverse, read, and write on the data graph.

• Create/drop/show indexes and constraints along with any other future schema constructs.

• Allows executing procedures with the users own privileges or boosted privileges.

• Allows executing admin procedures.

• Allows executing user-defined functions with the users own privileges or boosted privileges.

• View/terminate queries.

• Manage databases, users, roles, and privileges.

All users will be assigned the PUBLIC role, which by default does not give any rights or capabilities
regarding the data, not even read privileges. A user may have more than one assigned role, and the union
of these determine what action(s) on the data may be undertaken by the user. For instance, a user
assigned to the reader role will be able to execute procedures because all users are also assigned to the
PUBLIC role, which enables that capability.

When an administrator suspends or deletes another user, the following rules apply:

• Administrators can suspend or delete any other user (including other administrators), but not
themselves.

• The user will no longer be able to log back in (until re-activated by an administrator if suspended).

• There is no need to remove assigned roles from a user prior to deleting the user.

Deleting a user will not automatically terminate associated connections, sessions,
transactions, or queries.

269

The set of actions on the data and database prescribed by each role are described below. The subset of
the functionality which is available with Community Edition is also included:

Table 47. Native roles overview

Action reader editor publisher architect admin PUBLIC Available in
Community

Edition

Change own
password

View own details

Read data

Execute
procedures

Execute functions

Execute admin
procedures

View own queries

Terminate own
queries

Write/update/dele
te existing data

Create new types
of properties key

Create new types
of nodes labels

Create new types
of relationship
types

Create/drop/show
index/constraint

Create/delete user

Change another
user’s name

Change another
user’s password

Change another
user’s home
database

270

Action reader editor publisher architect admin PUBLIC Available in
Community

Edition

Suspend/activate
user

Create/drop roles

Change role
names

Assign/remove
role to/from user

Create/drop
databases

Start/stop
databases

Manage database
access

Access home
database

Access all
databases

View all users

View all roles

View all roles for a
user

View all users for
a role

View all queries

View all
databases

View own
privileges

View another
user’s privileges

Grant/deny/revoke
privileges

Terminate all
queries

271

Action reader editor publisher architect admin PUBLIC Available in
Community

Edition

Dynamically
change
configuration (see
Dynamic settings)

More information about the built-in roles and their privileges can be found in Cypher Manual → Built-in
roles and privileges.

11.3. Recover admin user and password
This page describes how to reset a password to recover a user’s access when their password is lost. It
specifically focuses on how to recover an admin user if all the admin users have been unassigned the
admin role, and how to recreate the built-in admin role if it has been dropped.

11.3.1. Disable authentication

272

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#built_in_roles
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#built_in_roles
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#built_in_roles
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#built_in_roles

1. Stop Neo4j:

$ bin/neo4j stop

2. Open the neo4j.conf file and set dbms.security.auth_enabled parameter to false to disable
the authentication:

dbms.security.auth_enabled=false

It is recommended to block network connections during the recovery
phase, so users can connect to Neo4j only via localhost. This can be
achieved by either:

◦ Temporarily commenting out the dbms.default_listen_address
parameter:

#dbms.default_listen_address=<your_configuration>

or

◦ Providing the specific localhost value:

dbms.default_listen_address=127.0.0.1

3. Start Neo4j:

$ bin/neo4j start

273

1. Stop the cluster (all Core servers and Read Replicas).

$ bin/neo4j stop

2. On each Core server, open the neo4j.conf file and modify the following settings:

a. Set dbms.security.auth_enabled parameter to false to disable the authentication:

dbms.security.auth_enabled=false

b. Disable the HTTP and HTTPS network connections and restrict the bolt connector to
use only localhost. This ensures that no one from outside can access the cluster during
the recovery period.

#dbms.connector.http.enabled=true
#dbms.connector.https.enabled=true
dbms.connector.bolt.listen_address:127.0.0.1

3. Start all Core servers:

$ bin/neo4j start

11.3.2. Recover a lost password

You can use a client such as Cypher Shell or the Neo4j Browser to connect to the system database and set
a new password for the admin user.

 In a cluster deployment, you should complete the steps only on one of the Core servers.

1. Complete the steps in Disable authentication as per your deployment.

2. Connect to the system database using Cypher shell. Alternatively, log into Neo4j Browser.

$ bin/cypher-shell -d system

Cluster If you have specified a non-default port for your bolt connector, add -a
neo4j://<your-core>:<non-default-bolt-port> to the cypher-shell command to
be able to connect to your Core server.

3. Set a new password for the admin user. In this example, the admin user is named neo4j.

ALTER USER neo4j SET PASSWORD 'mynewpass'

4. Exit the cypher-shell console:

274

:exit;

5. Proceed with the post-recovery steps as per your deployment.

11.3.3. Recover an unassigned admin role

You can use a client such as Cypher Shell or the Neo4j Browser to connect to the system database and
grant the admin user role to an existing user.

 In a cluster deployment, you should complete the steps only on one of the Core servers.

1. Complete the steps in Disable authentication as per your deployment.

2. Connect to the system database using Cypher shell. Alternatively, log into Neo4j Browser.

$ bin/cypher-shell -d system

Cluster If you have specified a non-default port for your bolt connector, add -a
neo4j://<your-core>:<non-default-bolt-port> to the cypher-shell command to
be able to connect to your Core server.

3. Grant the admin user role to an existing user. In this example, the user is named neo4j.

GRANT ROLE admin TO neo4j

4. Exit the cypher-shell console:

:exit;

5. Proceed with the post-recovery steps as per your deployment.

11.3.4. Recover the admin role

If you have removed the admin role from your system entirely, you can use a client such as Cypher Shell or
the Neo4j Browser to connect to the system database and recreate the role with its original capabilities.

 In a cluster deployment, you should complete the steps only on one of the Core servers.

1. Complete the steps in Disable authentication as per your deployment.

2. Connect to the system database using Cypher shell. Alternatively, log into Neo4j Browser.

$ bin/cypher-shell -d system

275

Cluster If you have specified a non-default port for your bolt connector, add -a
neo4j://<your-core>:<non-default-bolt-port> to the cypher-shell command to
be able to connect to your Core server.

3. Recreate the admin role with its original capabilities.

CREATE ROLE admin;
GRANT ALL DBMS PRIVILEGES ON DBMS TO admin;
GRANT TRANSACTION MANAGEMENT ON DATABASE * TO admin;
GRANT START ON DATABASE * TO admin;
GRANT STOP ON DATABASE * TO admin;
GRANT MATCH {*} ON GRAPH * TO admin;
GRANT WRITE ON GRAPH * TO admin;
GRANT ALL ON DATABASE * TO admin;

4. Grant the admin user role to an existing user.

Before running the :exit command, we suggest granting the newly created role to a
user. Although this is optional, without this step you will have only collected all
admin privileges in a role that no one is assigned to.

To grant the role to a user (assuming your existing user is named neo4j), you can run
GRANT ROLE admin TO neo4j;

5. Exit the cypher-shell console:

:exit;

6. Proceed with the post-recovery steps as per your deployment.

11.3.5. Post-recovery steps

276

1. Stop Neo4j:

$ bin/neo4j stop

2. Enable the authentication and restore your Neo4j to its original configuration (See Disable
authentication).

3. Start Neo4j:

$ bin/neo4j start

1. Stop the Core servers.

$ bin/neo4j stop

2. Enable the authentication and restore each Core server to its original configuration (See
Disable authentication).

3. Start the cluster (all Core servers and Read Replicas):

$ bin/neo4j start

11.4. Fine-grained access control

11.4.1. The data model

Consider a healthcare database, as could be relevant in a medical clinic or hospital. A simple version of this
might contain only three labels, representing three entity types:

(:Patient)

Nodes of this type represent patients that visit the clinic because they have some symptoms.
Information specific to the patient can be captured in properties:

• name

• ssn

• address

• dateOfBirth

(:Symptom)

A medical database contains a catalog of known illnesses and associated symptoms, which can be
described using properties:

277

• name

• description

(:Disease)

A medical database contains a catalog of known illnesses and associated symptoms, which can be
described using properties:

• name

• description

These entities will be modelled as nodes, and connected using relationships of the following types:

(:Patient)-[:HAS]→(:Symptom)

When a patient reports to the clinic, they will describe their symptoms to the nurse or the doctor. The
nurse or doctor will then enter this information into the database in the form of connections between
the patient node and a graph of known symptoms. Possible properties of interest on this relationship
could be:

• date - date when symptom was reported

(:Symptom)-[:OF]→(:Disease)

The graph of known symptoms is part of a graph of diseases and their symptoms. The relationship
between a symptom and a disease can include a probability factor for how likely or common it is for
people with that disease to express that symptom. This will make it easier for the doctor to make a
diagnosis using statistical queries.

• probability - probability of symptom matching disease

(:Patient)-[:DIAGNOSIS]→(:Disease)

The doctor can use the graph of diseases and their symptoms to perform an initial investigation into the
most likely diseases to match the patient. Based on this, and their own assessment of the patient, they
may make a diagnosis which they would persist to the graph through the addition of this relationship
with appropriate properties:

• by: doctor’s name

• date: date of diagnosis

• description: additional doctors' notes

278

Figure 12. Healthcare use case

The database would be used by a number of different user types, with different needs for access.

• Doctors who need to perform diagnosis on patients.

• Nurses who need to treat patients.

• Receptionists who need to identify and record patient information.

• Researchers who need to perform statistical analysis of medical data.

• IT administrators who need to administer the database, creating and assigning users.

11.4.2. Security

When building an application for a specific domain, it is common to model the different users within the
application itself. However, when working with a database that provides rich user management with roles
and privileges, it is possible to model these entirely within the database security model (for more
information, see Cypher Manual → Access control). This results in separation of concerns for the access
control to the data and the data itself. We will show two approaches to using Neo4j security features to
support the healthcare database application. First, a simple approach using built-in roles, and then a more
advanced approach using fine-grained privileges for sub-graph access control.

Our healthcare example involves five users of the database:

• Alice the doctor

• Daniel the nurse

• Bob the receptionist

• Charlie the researcher

• Tina the IT administrator

279

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control

These users can be created using the CREATE USER command (from the system database):

Example 63. Creating users

CREATE USER charlie SET PASSWORD $secret1 CHANGE NOT REQUIRED;
CREATE USER alice SET PASSWORD $secret2 CHANGE NOT REQUIRED;
CREATE USER daniel SET PASSWORD $secret3 CHANGE NOT REQUIRED;
CREATE USER bob SET PASSWORD $secret4 CHANGE NOT REQUIRED;
CREATE USER tina SET PASSWORD $secret5 CHANGE NOT REQUIRED;

At this point the users have no ability to interact with the database, so we need to grant those capabilities
using roles. There are two different ways of doing this, either by using the built-in roles, or through more
fine-grained access control using privileges and custom roles.

11.4.3. Access control using built-in roles

Neo4j comes with a number of built-in roles that cover a number of common needs:

• PUBLIC - All users have this role, can by default access the home database and run all procedures and
user-defined functions.

• reader - Can read data from all databases.

• editor - Can read and update all databases, but not expand the schema with new labels, relationship
types or property names.

• publisher - Can read and edit, as well as add new labels, relationship types and property names.

• architect - Has all the capabilities of the publisher as well as the ability to manage indexes and
constraints.

• admin - Can perform architect actions as well as manage databases, users, roles and privileges.

Charlie is a researcher and will not need write access to the database, and so he is assigned the reader
role. Alice the doctor, Daniel the nurse and Bob the receptionist all need to update the database with new
patient information, but do not need to expand the schema with new labels, relationship types, property
names or indexes. We assign them all the editor role. Tina is the IT administrator that installs and
manages the database. In order to create all other users, Tina is assigned the admin role.

Example 64. Granting roles

GRANT ROLE reader TO charlie;
GRANT ROLE editor TO alice;
GRANT ROLE editor TO daniel;
GRANT ROLE editor TO bob;
GRANT ROLE admin TO tina;

A limitation of this approach is that it does allow all users to see all data in the database, and in many real-
world scenarios it would be preferable to restrict the users’ access. In this example, we would want to
restrict the researcher from being able to read any of the patients' personal information, and the
receptionist should only be able to see the patient records and nothing more.

280

These, and more restrictions, could be coded into the application layer. However, it is possible and more
secure to enforce these kinds of fine-grained restrictions directly within the Neo4j security model, by
creating custom roles and assigning specific privileges to those roles.

Since we will be creating new custom roles, the first thing to do is revoke the current roles from the users:

Example 65. Revoking roles

REVOKE ROLE reader FROM charlie;
REVOKE ROLE editor FROM alice;
REVOKE ROLE editor FROM daniel;
REVOKE ROLE editor FROM bob;
REVOKE ROLE admin FROM tina;

Now the users are once again unable to do anything, and so we need to start over by building the set of
new privileges based on a complete understanding of what we want each user to be able to do.

11.4.4. Sub-graph access control using privileges

With the concept of privileges, we can take much more control over what each user is capable of doing.
We start by identifying each type of user:

Doctor

Should be able to read and write most of the graph. We would, however, like to prevent the doctor
from reading the patient’s address. We would also like to make sure the doctor can save diagnoses to
the database, but not expand the schema of the database with new concepts.

Receptionist

Should be able to read and write all patient data, but not be able to see the symptoms, diseases or
diagnoses.

Researcher

Should be able to perform statistical analysis on all data, except patients’ personal information, and as
such should not be able to read most patient properties. To illustrate two different ways of setting up
the same effective privileges, we will create two roles and compare them.

Nurse

The nurse should be able to perform all tasks that both the doctor and the receptionist can do. At first
one might be tempted to simply grant both those roles, but this does not work as expected. We will
demonstrate why below, and instead create a dedicated nurse role.

Junior nurse

The senior nurse above is able to save diagnoses just as a doctor can. However, we might wish to have
nurses that are not allowed to make that update to the graph. While we could build another role from
scratch, this could more easily be achieved by combining the nurse role with a new disableDiagnoses
role that specifically restricts that activity.

281

IT administrator

This role is very similar to the built-in admin role, except that we wish to restrict access to the patients
SSN, as well as prevent the administrator from performing the very critical action of saving a diagnosis,
something specific to medical professionals. To achieve this, we can create this role by copying the
built-in admin role and modifying the privileges of that copy.

User manager

It is possible that we would like the IT administrator to be less powerful than described above. We can
create a new role from scratch, granting only the specific administrative capabilities we actually desire.

Before we create the new roles and assign them to Alice, Bob, Daniel, Charlie and Tina, we should define
the privileges of each role. Since all users need ACCESS privilege to the healthcare database, we can add
this to the PUBLIC role instead of all the individual roles:

GRANT ACCESS ON DATABASE healthcare TO PUBLIC;

Privileges of itadmin

This role can be created as a copy of the built-in admin role:

CREATE ROLE itadmin AS COPY OF admin;

Then all we need to do is deny the two specific actions this role is not supposed to do:

• Should not be able to read any patients social security number.

• Should not be able to perform medical diagnosis.

DENY READ {ssn} ON GRAPH healthcare NODES Patient TO itadmin;
DENY CREATE ON GRAPH healthcare RELATIONSHIPS DIAGNOSIS TO itadmin;

The complete set of privileges available to users assigned the itadmin role can be viewed using the
following command:

282

SHOW ROLE itadmin PRIVILEGES AS COMMANDS;

+---+
| command |
+---+
| "GRANT ACCESS ON DATABASE * TO `itadmin`" |
| "GRANT MATCH {*} ON GRAPH * NODE * TO `itadmin`" |
| "GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `itadmin`" |
| "GRANT WRITE ON GRAPH * TO `itadmin`" |
| "GRANT INDEX MANAGEMENT ON DATABASE * TO `itadmin`" |
| "GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `itadmin`" |
| "GRANT NAME MANAGEMENT ON DATABASE * TO `itadmin`" |
| "GRANT START ON DATABASE * TO `itadmin`" |
| "GRANT STOP ON DATABASE * TO `itadmin`" |
| "GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO `itadmin`" |
| "GRANT ALL DBMS PRIVILEGES ON DBMS TO `itadmin`" |
| "DENY READ {ssn} ON GRAPH `healthcare` NODE Patient TO `itadmin`" |
| "DENY CREATE ON GRAPH `healthcare` RELATIONSHIP DIAGNOSIS TO `itadmin`" |
+---+

Privileges that were granted or denied earlier can be revoked using the REVOKE
command. See the Cypher Manual → The REVOKE command.

In order for the IT administrator tina to be provided these privileges, she must be assigned the new role
itadmin.

neo4j@system> GRANT ROLE itadmin TO tina;

To demonstrate that Tina is not able to see the patients SSN, we can login to healthcare as tina and run
the query:

MATCH (n:Patient)
 WHERE n.dateOfBirth < date('1972-06-12')
RETURN n.name, n.ssn, n.address, n.dateOfBirth;

+--+
| n.name | n.ssn | n.address | n.dateOfBirth |
+--+
"Mary Stone"	NULL	"1 secret way, downtown"	1970-01-15
"Ally Anderson"	NULL	"1 secret way, downtown"	1970-08-20
"Sally Stone"	NULL	"1 secret way, downtown"	1970-03-12
"Jane Stone"	NULL	"1 secret way, downtown"	1970-07-21
"Ally Svensson"	NULL	"1 secret way, downtown"	1971-08-15
"Jane Svensson"	NULL	"1 secret way, downtown"	1972-05-12
"Ally Svensson"	NULL	"1 secret way, downtown"	1971-07-30
+--+

The results make it seem as if these nodes do not even have an ssn field. This is a key feature of the
security model, that users cannot tell the difference between data that is not there, and data that is hidden
using fine-grained read privileges.

Now remember that we also denied the administrator from saving diagnoses, because that is a critical
medical function reserved for only doctors and senior medical staff. We can test this by trying to create

283

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges

DIAGNOSIS relationships:

MATCH (n:Patient), (d:Disease)
CREATE (n)-[:DIAGNOSIS]->(d);

Create relationship with type 'DIAGNOSIS' is not allowed for user 'tina' with roles [PUBLIC, itadmin].

While restrictions on reading data do not result in errors and only make it appear as if
the data is not there, restrictions on updating, i.e. writing to the graph will produce an
appropriate error when the user attempts to perform an update they are not permitted to
do.

Privileges of researcher

Charlie the researcher was previously our only read-only user. We could do something similar to what we
did with the itadmin role, by copying and modifying the reader role. However, we would like to explicitly
illustrate how to build a role from scratch. There are various possibilities for building this role using the
concepts of either granting or denying a list of privileges:

• Denying privileges:

We could grant the role the ability to find all nodes and read all properties (much like the reader role)
and then deny read access to the Patient properties we want to restrict the researcher from seeing,
such as name, SSN and address. This approach is simple but suffers from one problem. If Patient nodes
are assigned additional properties, after we have restricted access, these new properties will
automatically be visible to the researcher, which may not be desirable.

Example 66. Denying specific privileges

// First create the role
CREATE ROLE researcherB;
// Then grant access to everything
GRANT MATCH {*}
 ON GRAPH healthcare
 TO researcherB;
// And deny read on specific node properties
DENY READ {name, address, ssn}
 ON GRAPH healthcare
 NODES Patient
 TO researcherB;
// And finally deny traversal of the doctors diagnosis
DENY TRAVERSE
 ON GRAPH healthcare
 RELATIONSHIPS DIAGNOSIS
 TO researcherB;

• Granting privileges:

An alternative is to only provide specific access to the properties we wish the researcher to see. Then,
the addition of new properties will not automatically make them visible to the researcher. In this case,
adding new properties to a Patient will not mean that the researcher can see them by default. If we
wish to have them visible, we need to explicitly grant read access.

284

Example 67. Granting specific privileges

// Create the role first
CREATE ROLE researcherW
// We allow the researcher to find all nodes
GRANT TRAVERSE
 ON GRAPH healthcare
 NODES *
 TO researcherW;
// Now only allow the researcher to traverse specific relationships
GRANT TRAVERSE
 ON GRAPH healthcare
 RELATIONSHIPS HAS, OF
 TO researcherW;
// Allow reading of all properties of medical metadata
GRANT READ {*}
 ON GRAPH healthcare
 NODES Symptom, Disease
 TO researcherW;
// Allow reading of all properties of the disease-symptom relationship
GRANT READ {*}
 ON GRAPH healthcare
 RELATIONSHIPS OF
 TO researcherW;
// Only allow reading dateOfBirth for research purposes
GRANT READ {dateOfBirth}
 ON GRAPH healthcare
 NODES Patient
 TO researcherW;

In order to test that Charlie now has the privileges we have specified, we assign him to the researcherB
role (with specifically denied privileges):

GRANT ROLE researcherB TO charlie;

We can use a version of the SHOW PRIVILEGES command to see Charlies access rights, combining those
from researcherB and PUBLIC:

neo4j@system> SHOW USER charlie PRIVILEGES AS COMMANDS;

+---+
| command |
+---+
| "GRANT ACCESS ON HOME DATABASE TO $role" |
| "GRANT ACCESS ON DATABASE `healthcare` TO $role" |
| "GRANT EXECUTE PROCEDURE * ON DBMS TO $role" |
| "GRANT EXECUTE FUNCTION * ON DBMS TO $role" |
| "GRANT MATCH {*} ON GRAPH `healthcare` NODE * TO $role" |
| "GRANT MATCH {*} ON GRAPH `healthcare` RELATIONSHIP * TO $role" |
| "DENY TRAVERSE ON GRAPH `healthcare` RELATIONSHIP DIAGNOSIS TO $role" |
| "DENY READ {address} ON GRAPH `healthcare` NODE Patient TO $role" |
| "DENY READ {name} ON GRAPH `healthcare` NODE Patient TO $role" |
| "DENY READ {ssn} ON GRAPH `healthcare` NODE Patient TO $role" |
+---+

Now when Charlie logs into the healthcare database and tries to run a command similar to the one used
by the itadmin above, we will see different results:

285

MATCH (n:Patient)
 WHERE n.dateOfBirth < date('1972-06-12')
RETURN n.name, n.ssn, n.address, n.dateOfBirth;

+--+
| n.name | n.ssn | n.address | n.dateOfBirth |
+--+
NULL	NULL	NULL	1971-05-31
NULL	NULL	NULL	1971-04-17
NULL	NULL	NULL	1971-12-27
NULL	NULL	NULL	1970-02-13
NULL	NULL	NULL	1971-02-04
NULL	NULL	NULL	1971-05-10
NULL	NULL	NULL	1971-02-21
+--+

Only the date of birth is available, so Charlie the researcher may perform statistical analysis, for example.
Another query Charlie could try is to find the ten diseases a patient younger than 25 is most likely to be
diagnosed with, listed by probability:

WITH datetime() - duration({years:25}) AS timeLimit
MATCH (n:Patient)
WHERE n.dateOfBirth > date(timeLimit)
MATCH (n)-[h:HAS]->(s:Symptom)-[o:OF]->(d:Disease)
WITH d.name AS disease, o.probability AS prob
RETURN disease, sum(prob) AS score ORDER BY score DESC LIMIT 10;

+---+
| disease | score |
+---+
"Acute Argitis"	95.05395287286318
"Chronic Someitis"	88.7220337139605
"Chronic Placeboitis"	88.43609533058974
"Acute Whatitis"	83.23493746472457
"Acute Otheritis"	82.46129768949129
"Chronic Otheritis"	82.03650063794025
"Acute Placeboitis"	77.34207326583929
"Acute Yellowitis"	76.34519967465832
"Chronic Whatitis"	73.73968070128234
"Chronic Yellowitis"	71.58791287376775
+---+

Now if we revoke the researcherB and instead grant the researcherW role to Charlie, and re-run these
queries, we will see the same results.

Privileges that were granted or denied earlier can be revoked using the REVOKE
command. See the Cypher Manual → The REVOKE command.

Privileges of doctor

Doctors should be given the ability to read and write almost everything. We would, however, like to
remove the ability to read the patients' address property. This role can be built from scratch by assigning
full read and write access, and then specifically denying access to the address property:

286

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges

CREATE ROLE doctor;
GRANT TRAVERSE ON GRAPH healthcare TO doctor;
GRANT READ {*} ON GRAPH healthcare TO doctor;
GRANT WRITE ON GRAPH healthcare TO doctor;
DENY READ {address} ON GRAPH healthcare NODES Patient TO doctor;
DENY SET PROPERTY {address} ON GRAPH healthcare NODES Patient TO doctor;

To allow Alice to have these privileges, we grant her this new role:

neo4j@system> GRANT ROLE doctor TO alice;

To demonstrate that Alice is not able to see patient addresses, we log in as alice to healthcare and run
the query:

MATCH (n:Patient)
 WHERE n.dateOfBirth < date('1972-06-12')
RETURN n.name, n.ssn, n.address, n.dateOfBirth;

+---+
| n.name | n.ssn | n.address | n.dateOfBirth |
+---+
"Jack Anderson"	1234647	NULL	1970-07-23
"Joe Svensson"	1234659	NULL	1972-06-07
"Mary Jackson"	1234568	NULL	1971-10-19
"Jack Jackson"	1234583	NULL	1971-05-04
"Ally Smith"	1234590	NULL	1971-12-07
"Ally Stone"	1234606	NULL	1970-03-29
"Mark Smith"	1234610	NULL	1971-03-30
+---+

As we can see, the doctor has the expected privileges, including being able to see the SSN, but not the
address of each patient.

The doctor is also able to see all other node types:

MATCH (n) WITH labels(n) AS labels
RETURN labels, count(*);

+------------------------+
| labels | count(*) |
+------------------------+
["Patient"]	101
["Symptom"]	10
["Disease"]	12
+------------------------+

In addition, the doctor can traverse the graph, finding symptoms and diseases connected to patients:

MATCH (n:Patient)-[:HAS]->(s:Symptom)-[:OF]->(d:Disease)
 WHERE n.ssn = 1234657
RETURN n.name, d.name, count(s) AS score ORDER BY score DESC;

287

The resulting table shows which are the most likely diagnoses based on symptoms. The doctor can use
this table to facilitate further questioning and testing of the patient in order to decide on the final
diagnosis.

+--+
| n.name | d.name | score |
+--+
"Sally Anderson"	"Chronic Otheritis"	4
"Sally Anderson"	"Chronic Yellowitis"	3
"Sally Anderson"	"Chronic Placeboitis"	3
"Sally Anderson"	"Acute Whatitis"	2
"Sally Anderson"	"Acute Yellowitis"	2
"Sally Anderson"	"Chronic Someitis"	2
"Sally Anderson"	"Chronic Argitis"	2
"Sally Anderson"	"Chronic Whatitis"	2
"Sally Anderson"	"Acute Someitis"	1
"Sally Anderson"	"Acute Argitis"	1
"Sally Anderson"	"Acute Otheritis"	1
+--+

Once the doctor has investigated further, they would be able to decide on the diagnosis and save that
result to the database:

WITH datetime({epochmillis:timestamp()}) AS now
WITH now, date(now) as today
MATCH (p:Patient)
 WHERE p.ssn = 1234657
MATCH (d:Disease)
 WHERE d.name = "Chronic Placeboitis"
MERGE (p)-[i:DIAGNOSIS {by: 'Alice'}]->(d)
 ON CREATE SET i.created_at = now, i.updated_at = now, i.date = today
 ON MATCH SET i.updated_at = now
RETURN p.name, d.name, i.by, i.date, duration.between(i.created_at, i.updated_at) AS updated;

This allows this doctor to record their diagnosis as well as take note of previous diagnoses:

+--+
| p.name | d.name | i.by | i.date | updated |
+--+
| "Sally Anderson" | "Chronic Placeboitis" | "Alice" | 2020-05-29 | P0M0DT213.076000000S |
+--+

In order to create the DIAGNOSIS relationship for the first time, it is required to have the
privilege to create new types. This is also true of the property names doctor, created_at
and updated_at. This can be fixed by either granting the doctor NAME MANAGEMENT
privileges or by pre-creating the missing types. The latter would be more precise and
can be achieved by running, as an administrator, the procedures
db.createRelationshipType and db.createProperty with appropriate arguments.

Privileges of receptionist

Receptionists should only be able to manage patient information. They are not allowed to find or read any
other parts of the graph. In addition, they should be able to create and delete patients, but not any other
nodes:

288

CREATE ROLE receptionist;
GRANT MATCH {*} ON GRAPH healthcare NODES Patient TO receptionist;
GRANT CREATE ON GRAPH healthcare NODES Patient TO receptionist;
GRANT DELETE ON GRAPH healthcare NODES Patient TO receptionist;
GRANT SET PROPERTY {*} ON GRAPH healthcare NODES Patient TO receptionist;

It would have been simpler to grant global WRITE privileges. However, this would have
the unfortunate side effect of allowing the receptionist the ability to create other nodes,
like new Symptom nodes, even though they would subsequently be unable to find or read
those same nodes. While there are use cases for being able to create data you cannot
read, that is not desired for this model.

neo4j@system> GRANT ROLE receptionist TO bob;

With these privileges, if Bob tries to read the entire database, he will still only see the patients:

MATCH (n) WITH labels(n) AS labels
RETURN labels, count(*);

+------------------------+
| labels | count(*) |
+------------------------+
| ["Patient"] | 101 |
+------------------------+

However, Bob is able to see all fields of the Patient records:

MATCH (n:Patient)
 WHERE n.dateOfBirth < date('1972-06-12')
RETURN n.name, n.ssn, n.address, n.dateOfBirth;

+--+
| n.name | n.ssn | n.address | n.dateOfBirth |
+--+
"Mark Stone"	1234666	"1 secret way, downtown"	1970-08-04
"Sally Jackson"	1234633	"1 secret way, downtown"	1970-10-21
"Bob Stone"	1234581	"1 secret way, downtown"	1972-02-16
"Ally Anderson"	1234582	"1 secret way, downtown"	1970-05-13
"Mark Svensson"	1234594	"1 secret way, downtown"	1970-01-16
"Bob Anderson"	1234597	"1 secret way, downtown"	1970-09-23
"Jack Svensson"	1234599	"1 secret way, downtown"	1971-02-13
"Mark Jackson"	1234618	"1 secret way, downtown"	1970-03-28
"Jack Jackson"	1234623	"1 secret way, downtown"	1971-04-02
+--+

We have granted Bob the receptionist the ability to delete patient nodes. This will allow him to delete any
new patients he has just created, but will not allow him the ability to delete patients that have already
received diagnoses, because those are connected to parts of the graph the receptionist cannot see. Let’s
demonstrate both these scenarios:

289

CREATE (n:Patient {
 ssn:87654321,
 name: 'Another Patient',
 email: 'another@example.com',
 address: '1 secret way, downtown',
 dateOfBirth: date('2001-01-20')
})
RETURN n.name, n.dateOfBirth;

+-----------------------------------+
| n.name | n.dateOfBirth |
+-----------------------------------+
| "Another Patient" | 2001-01-20 |
+-----------------------------------+

The receptionist is able to modify any patient record:

MATCH (n:Patient)
WHERE n.ssn = 87654321
SET n.address = '2 streets down, uptown'
RETURN n.name, n.dateOfBirth, n.address;

+--+
| n.name | n.dateOfBirth | n.address |
+--+
| "Another Patient" | 2001-01-20 | "2 streets down, uptown" |
+--+

The receptionist is also able to delete this recently created patient because it is not connected to any other
records:

MATCH (n:Patient)
 WHERE n.ssn = 87654321
DETACH DELETE n;

However, if the receptionist attempts to delete a patient that has existing diagnoses, this will fail:

MATCH (n:Patient)
 WHERE n.ssn = 1234610
DETACH DELETE n;

org.neo4j.graphdb.ConstraintViolationException: Cannot delete node<42>, because it still has
relationships. To delete this node, you must first delete its relationships.

The reason this fails is that Bob can find the (:Patient) node, but does not have sufficient traverse rights
to find nor delete the outgoing relationships from it. Either he needs to ask Tina the itadmin for help for
this task, or we can add more privileges to the receptionist role:

GRANT TRAVERSE ON GRAPH healthcare NODES Symptom, Disease TO receptionist;
GRANT TRAVERSE ON GRAPH healthcare RELATIONSHIPS HAS, DIAGNOSIS TO receptionist;
GRANT DELETE ON GRAPH healthcare RELATIONSHIPS HAS, DIAGNOSIS TO receptionist;

290

Privileges that were granted or denied earlier can be revoked using the REVOKE
command. See the Cypher Manual → The REVOKE command.

Privileges of nurses

As previously described, nurses have the capabilities of both doctors and receptionists. As such it would
be tempting to assign them both the doctor and the receptionist roles. However, this might not have the
effect you would expect. If those two roles were created with GRANT privileges only, combining them would
be simply cumulative. But it turns out the doctor contains some DENY privileges, and these always overrule
GRANT. This means that the nurse will still have the same restrictions as a doctor, which is not what we
wanted.

To demonstrate this, let’s give it a try:

neo4j@system> GRANT ROLE doctor, receptionist TO daniel;

Now we can see that the user 'Daniel' has a combined set of privileges:

SHOW USER daniel PRIVILEGES AS COMMANDS;

+---+
| command |
+---+
| "GRANT ACCESS ON HOME DATABASE TO $role" |
| "GRANT ACCESS ON DATABASE `healthcare` TO $role" |
| "GRANT EXECUTE PROCEDURE * ON DBMS TO $role" |
| "GRANT EXECUTE FUNCTION * ON DBMS TO $role" |
| "GRANT TRAVERSE ON GRAPH `healthcare` NODE * TO $role" |
| "GRANT TRAVERSE ON GRAPH `healthcare` RELATIONSHIP * TO $role" |
| "GRANT READ {*} ON GRAPH `healthcare` NODE * TO $role" |
| "GRANT READ {*} ON GRAPH `healthcare` RELATIONSHIP * TO $role" |
| "GRANT MATCH {*} ON GRAPH `healthcare` NODE Patient TO $role" |
| "GRANT WRITE ON GRAPH `healthcare` TO $role" |
| "GRANT SET PROPERTY {*} ON GRAPH `healthcare` NODE Patient TO $role" |
| "GRANT CREATE ON GRAPH `healthcare` NODE Patient TO $role" |
| "GRANT DELETE ON GRAPH `healthcare` NODE Patient TO $role" |
| "DENY READ {address} ON GRAPH `healthcare` NODE Patient TO $role" |
| "DENY SET PROPERTY {address} ON GRAPH `healthcare` NODE Patient TO $role" |
+---+

Privileges that were granted or denied earlier can be revoked using the REVOKE
command. See the Cypher Manual → The REVOKE command.

Now the intention is that a nurse can perform the actions of a receptionist. This would mean they should
be able to read and write the address field of the Patient nodes.

MATCH (n:Patient)
 WHERE n.dateOfBirth < date('1972-06-12')
RETURN n.name, n.ssn, n.address, n.dateOfBirth;

291

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-revoke-privileges

+---+
| n.name | n.ssn | n.address | n.dateOfBirth |
+---+
"Jane Anderson"	1234572	NULL	1971-05-26
"Mark Stone"	1234586	NULL	1972-06-07
"Joe Smith"	1234595	NULL	1970-12-28
"Joe Jackson"	1234603	NULL	1970-08-31
"Jane Jackson"	1234628	NULL	1972-01-31
"Mary Anderson"	1234632	NULL	1971-01-07
"Jack Svensson"	1234639	NULL	1970-01-06
+---+

Clearly the address field is invisible. This is due to the DENIED privileges we could see in the table earlier. If
we tried to write to the address field we would receive an error. This is not the intended behavior. We
have two choices to correct otherwise:

• We could redefine the doctor role with only grants, requiring that we define each Patient property we
wish the doctor to be able to read.

• We can redefine the nurse role with the actual intended behavior.

It turns out that the latter choice is by far the simplest. The nurse is essentially the doctor without the
address restrictions:

CREATE ROLE nurse
GRANT TRAVERSE ON GRAPH healthcare TO nurse;
GRANT READ {*} ON GRAPH healthcare TO nurse;
GRANT WRITE ON GRAPH healthcare TO nurse;

Now let’s assign this role to Daniel and test the new behavior:

REVOKE ROLE doctor FROM daniel;
REVOKE ROLE receptionist FROM daniel;
GRANT ROLE nurse TO daniel;

When the improved nurse Daniel takes another look at the patient records, he will see the address fields:

MATCH (n:Patient)
 WHERE n.dateOfBirth < date('1972-06-12')
RETURN n.name, n.ssn, n.address, n.dateOfBirth;

+--+
| n.name | n.ssn | n.address | n.dateOfBirth |
+--+
"Jane Anderson"	1234572	"1 secret way, downtown"	1971-05-26
"Mark Stone"	1234586	"1 secret way, downtown"	1972-06-07
"Joe Smith"	1234595	"1 secret way, downtown"	1970-12-28
"Joe Jackson"	1234603	"1 secret way, downtown"	1970-08-31
"Jane Jackson"	1234628	"1 secret way, downtown"	1972-01-31
"Mary Anderson"	1234632	"1 secret way, downtown"	1971-01-07
"Jack Svensson"	1234639	"1 secret way, downtown"	1970-01-06
+--+

Now Daniel can see the previously hidden address field. The other main action we want the nurse to be

292

able to perform, is the primary doctor action of saving a diagnosis to the database:

WITH date(datetime({epochmillis:timestamp()})) AS today
MATCH (p:Patient)
 WHERE p.ssn = 1234657
MATCH (d:Disease)
 WHERE d.name = "Chronic Placeboitis"
MERGE (p)-[i:DIAGNOSIS {by: 'Daniel'}]->(d)
 ON CREATE SET i.date = today
RETURN p.name, d.name, i.by, i.date;

+--+
| p.name | d.name | i.by | i.date |
+--+
| "Sally Anderson" | "Chronic Placeboitis" | "Daniel" | 2020-05-29 |
+--+

Performing an action otherwise reserved for the doctor role involves more responsibility for the nurse.
Perhaps it is not desirable to entrust all nurses with this option, which is why we can divide the nurses into
senior and junior nurses. Daniel is currently a senior nurse.

Privileges of junior nurses

When we tried to create the senior nurse by combining the doctor and receptionist roles, that did not
work out. As previously mentioned, it would work to combine two roles if the intention is to increase
capabilities and the roles were created with GRANT privileges only. It is also possible to combine two roles if
the intention is to reduce capabilities and the combination brings in DENY privileges.

Consider this case, we would like a junior nurse to be able to perform the same actions as a senior nurse,
but not be able to save diagnoses. We could create a special role that contains specifically only the
additional restrictions:

CREATE ROLE disableDiagnoses;
DENY CREATE ON GRAPH healthcare RELATIONSHIPS DIAGNOSIS TO disableDiagnoses;

Now let’s assign this role to Daniel and test the new behaviour:

GRANT ROLE disableDiagnoses TO daniel;

If we look at what privileges Daniel now has, it will be the combination of the two roles nurse and
disableDiagnoses:

293

neo4j@system> SHOW USER daniel PRIVILEGES AS COMMANDS;

+---+
| command |
+---+
| "GRANT ACCESS ON HOME DATABASE TO $role" |
| "GRANT ACCESS ON DATABASE `healthcare` TO $role" |
| "GRANT EXECUTE PROCEDURE * ON DBMS TO $role" |
| "GRANT EXECUTE FUNCTION * ON DBMS TO $role" |
| "GRANT TRAVERSE ON GRAPH `healthcare` NODE * TO $role" |
| "GRANT TRAVERSE ON GRAPH `healthcare` RELATIONSHIP * TO $role" |
| "GRANT READ {*} ON GRAPH `healthcare` NODE * TO $role" |
| "GRANT READ {*} ON GRAPH `healthcare` RELATIONSHIP * TO $role" |
| "GRANT WRITE ON GRAPH `healthcare` TO $role" |
| "DENY CREATE ON GRAPH `healthcare` RELATIONSHIP DIAGNOSIS TO $role" |
+---+

Daniel can still see address fields, and can even perform the diagnosis investigation that the doctor can
perform:

MATCH (n:Patient)-[:HAS]->(s:Symptom)-[:OF]->(d:Disease)
WHERE n.ssn = 1234650
RETURN n.ssn, n.name, d.name, count(s) AS score ORDER BY score DESC;

+--+
| n.ssn | n.name | d.name | score |
+--+
1234650	"Mark Smith"	"Chronic Whatitis"	3
1234650	"Mark Smith"	"Chronic Someitis"	3
1234650	"Mark Smith"	"Acute Someitis"	2
1234650	"Mark Smith"	"Chronic Otheritis"	2
1234650	"Mark Smith"	"Chronic Yellowitis"	2
1234650	"Mark Smith"	"Chronic Placeboitis"	2
1234650	"Mark Smith"	"Acute Otheritis"	2
1234650	"Mark Smith"	"Chronic Argitis"	2
1234650	"Mark Smith"	"Acute Placeboitis"	2
1234650	"Mark Smith"	"Acute Yellowitis"	1
1234650	"Mark Smith"	"Acute Argitis"	1
1234650	"Mark Smith"	"Acute Whatitis"	1
+--+

But when he tries to save a diagnosis to the database, he will be denied:

WITH date(datetime({epochmillis:timestamp()})) AS today
MATCH (p:Patient)
 WHERE p.ssn = 1234650
MATCH (d:Disease)
 WHERE d.name = "Chronic Placeboitis"
MERGE (p)-[i:DIAGNOSIS {by: 'Daniel'}]->(d)
 ON CREATE SET i.date = today
RETURN p.name, d.name, i.by, i.date;

Create relationship with type 'DIAGNOSIS' is not allowed for user 'daniel' with roles [PUBLIC,
disableDiagnoses, nurse].

Promoting Daniel back to senior nurse will be as simple as revoking the role that introduced the restriction:

294

REVOKE ROLE disableDiagnoses FROM daniel;

Building a custom administrator role

Originally we created the itadmin role by copying the built-in admin role and adding restrictions. However,
we have also shown cases where having denys can be less convenient than only having grants. So can we
instead build the administrator role from the ground up?

Let’s review the purpose of this role. The intention is that Tina, the administrator, can create new users and
assign them to the product roles. We can create a new role called userManager and grant it the appropriate
privileges:

CREATE ROLE userManager;
GRANT USER MANAGEMENT ON DBMS TO userManager;
GRANT ROLE MANAGEMENT ON DBMS TO userManager;
GRANT SHOW PRIVILEGE ON DBMS TO userManager;

We need to revoke the itadmin role from Tina and grant her the userManager role instead:

REVOKE ROLE itadmin FROM tina
GRANT ROLE userManager TO tina

The three privileges we’ve granted will allow:

• USER MANAGEMENT allows creating, updating and dropping users

• ROLE MANAGEMENT allows creating, updating, and dropping roles as well as assigning roles to users

• SHOW PRIVILEGE allows listing the users privileges

Listing Tina’s new privileges should show a much shorter list than when she was a more powerful
administrator:

neo4j@system> SHOW USER tina PRIVILEGES AS COMMANDS;

+--+
| command |
+--+
| "GRANT ACCESS ON HOME DATABASE TO $role" |
| "GRANT ACCESS ON DATABASE `healthcare` TO $role" |
| "GRANT EXECUTE PROCEDURE * ON DBMS TO $role" |
| "GRANT EXECUTE FUNCTION * ON DBMS TO $role" |
| "GRANT ROLE MANAGEMENT ON DBMS TO $role" |
| "GRANT USER MANAGEMENT ON DBMS TO $role" |
| "GRANT SHOW PRIVILEGE ON DBMS TO $role" |
+--+

295

We have not granted any other privilege management privileges. How much power this
role should have would depend on the requirements of the system. Refer to the section
Cypher Manual → The admin role for a complete list of privileges to consider.

Now Tina should be able to create new users and assign them to roles:

CREATE USER sally SET PASSWORD 'secret' CHANGE REQUIRED;
GRANT ROLE receptionist TO sally;
SHOW USER sally PRIVILEGES AS COMMANDS;

+--+
| command |
+--+
| "GRANT ACCESS ON HOME DATABASE TO $role" |
| "GRANT ACCESS ON DATABASE `healthcare` TO $role" |
| "GRANT EXECUTE PROCEDURE * ON DBMS TO $role" |
| "GRANT EXECUTE FUNCTION * ON DBMS TO $role" |
| "GRANT MATCH {*} ON GRAPH `healthcare` NODE Patient TO $role" |
| "GRANT SET PROPERTY {*} ON GRAPH `healthcare` NODE Patient TO $role" |
| "GRANT CREATE ON GRAPH `healthcare` NODE Patient TO $role" |
| "GRANT DELETE ON GRAPH `healthcare` NODE Patient TO $role" |
+--+

11.5. Integration with LDAP directory services
• Introduction

• LDAP configuration parameters

• Set Neo4j to use LDAP

• Map the LDAP groups to the Neo4j roles

• Configure Neo4j to use Active Directory

◦ Configure Neo4j to support LDAP user ID authentication

◦ Configure Neo4j to support attribute authentication

◦ Configure Neo4j to support sAMAccountName authentication by setting user_dn_template

• Configure Neo4j to use OpenLDAP

• Verify the LDAP configuration

• The auth cache

• Available methods of encryption

◦ Use LDAP with encryption via StartTLS

◦ Use LDAP with encrypted LDAPS

• Use a self-signed certificate (SSL) in a test environment

296

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-built-in-roles-admin
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-built-in-roles-admin
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-built-in-roles-admin
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-built-in-roles-admin
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-built-in-roles-admin

11.5.1. Introduction

Neo4j supports LDAP, which allows for integration with Active Directory (AD), OpenLDAP, or other
LDAP-compatible authentication services. This means that you use the LDAP service for managing
federated users, while the native Neo4j user and role administration are completely turned off.

The following configuration settings are important to consider when configuring LDAP. For a more
detailed overview of the LDAP configuration options, see Configuration settings.

11.5.2. LDAP dynamic configuration settings

The following configuration settings can be updated while the database is running, see Dynamic settings.
Altering any of these settings clears the authentication and authorization cache.

Parameter name Default value Description

dbms.security.ldap.authentication.user_
dn_template

uid={0},ou=users,dc=example,dc=com Convert usernames into LDAP-specific
fully qualified names required for
logging in.

dbms.security.ldap.authorization.user_s
earch_base

ou=users,dc=example,dc=com Set the base object or named context to
search for user objects.

dbms.security.ldap.authorization.user_s
earch_filter

(&(objectClass=*)(uid={0})) Set an LDAP search filter for a user
principal.

dbms.security.ldap.authorization.group_
membership_attributes

memberOf List attribute names on a user object
that contains groups to be used for
mapping to roles. Common values:
memberOf and gidNumber.

dbms.security.ldap.authorization.group_
to_role_mapping

List an authorization mapping from
groups to the pre-defined built-in roles
admin, architect, publisher, editor,
and reader, or to any other custom-
defined roles.

dbms.security.ldap.authentication.attrib
ute

samaccountname Set the attribute to search for users with
a system account.

dbms.security.ldap.authorization.access
_permitted_group

Set an LDAP group of users with access
rights. Users passing authentication are
mapped to at least the PUBLIC role in
addition to any roles assigned by the
group to role mapping and have access
to the database that those roles provide.
If this attribute is set, users not part of
this LDAP group will fail authentication,
even if their credentials are correct.

All settings are defined at server startup time in the default configuration file neo4j.conf or can be modified
at runtime using dbms.setConfigValue().

297

11.5.3. Set Neo4j to use LDAP

First, you configure Neo4j to use LDAP as an authentication and authorization provider.

1. Uncomment the setting dbms.security.auth_enabled=false and change its value to true to turn on
the security feature.

2. Uncomment the settings dbms.security.authentication_providers and
dbms.security.authorization_providers and change their value to ldap. This way, the LDAP
connector is used as a security provider for both authentication and authorization.

11.5.4. Map the LDAP groups to the Neo4j roles

To access the user and role management procedures, you have to map the LDAP groups to the Neo4j
built-in and custom-defined roles. To do that, you need to know what privileges the Neo4j roles have, and
based on these privileges, to create the mapping to the groups defined in the LDAP server. The map must
be formatted as a semicolon separated list of key-value pairs, where the key is a comma-separated list of
the LDAP group names and the value is a comma-separated list of the corresponding role names. For
example, group1=role1;group2=role2;group3=role3,role4,role5;group4,group5=role6.

Example 68. Example of LDAP groups to Neo4j roles mapping

dbms.security.ldap.authorization.group_to_role_mapping=\
 "cn=Neo4j Read Only,cn=users,dc=example,dc=com" = reader; \ ①
 "cn=Neo4j Read-Write,cn=users,dc=example,dc=com" = editor,publisher; \ ②
 "cn=Neo4j Read-Write,cn=users,dc=example,dc=com","cn=Neo4j Create
Data,cn=users,dc=example,dc=com" = publisher; \ ③
 "cn=Neo4j Create Data,cn=users,dc=example,dc=com","cn=Neo4j Schema
Manager,cn=users,dc=example,dc=com" = architect; \
 "cn=Neo4j Administrator,cn=users,dc=example,dc=com" = admin; \
 "cn=Neo4j Procedures,cn=users,dc=neo4j,dc=com" = rolename ④

① Mapping of an LDAP group to a Neo4j built-in role.

② Mapping of an LDAP group to two Neo4j built-in roles.

③ Mapping of two LDAP groups to a Neo4j built-in role.

④ Mapping of an LDAP group to a custom-defined role. Custom-defined roles, such as rolename,
must be explicitly created using the CREATE ROLE rolename command before they can be used to
grant privileges. See the Cypher Manual → Creating roles.

11.5.5. Configure Neo4j to use Active Directory

You configure Neo4j to use the LDAP security provider to access and manage your Active Directory. There
are three alternative ways to do that depending on your specific use case.

Configure Neo4j to support LDAP user ID authentication

This option allows users to log in with their LDAP user ID.

In the neo4j.conf file, uncomment and configure the following settings:

298

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#manage_users
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#manage_users
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#manage_users

1. Configure LDAP to point to the AD server:

dbms.security.ldap.host=ldap://myactivedirectory.example.com

2. Provide details on the user structure of the LDAP directory:

dbms.security.ldap.authentication.user_dn_template=cn={0},cn=Users,dc=example,dc=com
dbms.security.ldap.authorization.user_search_base=cn=Users,dc=example,dc=com
dbms.security.ldap.authorization.user_search_filter=(&(objectClass=*)(cn={0}))
dbms.security.ldap.authorization.group_membership_attributes=memberOf

3. Map the groups in the LDAP system to the Neo4j built-in and custom roles. See Map the LDAP groups
to the Neo4j roles.

Configure Neo4j to support attribute authentication

This is an alternative configuration for Active Directory that allows users to log in by providing an attribute
to search for, by default sAMAccountName. The attribute has to be unique to be used as a lookup. You create
a system account that has read-only access to the parts of the LDAP directory that you want. However, it
does not need to have access rights to Neo4j or any other systems.

In the neo4j.conf file, uncomment and configure the following settings:

1. Configure LDAP to point to the AD server:

dbms.security.ldap.host=ldap://myactivedirectory.example.com

2. Provide details on the user structure of the LDAP directory (replacing myattribute with the actual
attribute name):

dbms.security.ldap.authorization.user_search_base=cn=Users,dc=example,dc=com
dbms.security.ldap.authorization.user_search_filter=(&(objectClass=*)(myattribute={0}))
dbms.security.ldap.authorization.group_membership_attributes=memberOf

3. Map the groups in the LDAP system to the Neo4j built-in and custom roles. See Map the LDAP groups
to the Neo4j roles.

4. Configure Neo4j to use a system account with read access to all users and groups in the LDAP server.

a. Set dbms.security.ldap.authorization.use_system_account value to true.

b. Set dbms.security.ldap.authorization.system_username value to the full Distinguished Name
(DN) as the dbms.security.ldap.authentication.user_dn_template will not be applied to this
username. For example,

dbms.security.ldap.authorization.system_username=cn=search-account,cn=Users,dc=example,dc=com

c. Configure the LDAP system account password.

dbms.security.ldap.authorization.system_password=mypassword

299

d. Configure which attribute to search for by adding the following lines to the neo4j.conf file
(replacing myattribute with the actual attribute name):

dbms.security.ldap.authentication.search_for_attribute=true
dbms.security.ldap.authentication.attribute=myattribute

e. (Optional) Create an LDAP group to restrict authentication against the database to a subset of
LDAP users:

dbms.security.ldap.authorization.access_permitted_group=cn=Neo4j Access,cn=users,dc=example,dc=com

Earlier Neo4j versions only supported samaccountname as a search attribute. This could
be configured with dbms.security.ldap.authentication.use_samaccountname. That
setting has been deprecated and replaced by
dbms.security.ldap.authentication.search_for_attribute.

Configure Neo4j to support sAMAccountName authentication by setting
user_dn_template

This is an alternative configuration for Active Directory that allows all users from the specified domain to
log in using sAMAccountName. With this option, you do not have to create a system account and store a
system username/password in the config file. Instead, you set {0}@example.com as a value of the
user_dn_template to enable the authentication to start at the root domain. This way, the whole tree is
checked to find the user, regardless of where it is located within the LDAP directory tree.

In the neo4j.conf file, uncomment and configure the following settings:

1. Configure LDAP to point to the AD server:

dbms.security.ldap.host=ldap://myactivedirectory.example.com

2. Provide details on the user structure of the LDAP directory:

dbms.security.ldap.authentication.user_dn_template={0}@example.com
dbms.security.ldap.authorization.user_search_base=dc=example,dc=com
dbms.security.ldap.authorization.user_search_filter=(&(objectClass=user)(sAMAccountName={0}))
dbms.security.ldap.authorization.group_membership_attributes=memberOf

3. Map the groups in the LDAP system to the Neo4j built-in and custom roles. For more information, see
Map the LDAP groups to the Neo4j roles.

The setting dbms.security.ldap.authentication.search_for_attribute should be set
to the default value of false.

11.5.6. Configure Neo4j to use OpenLDAP

You configure the LDAP security provider to access and manage your OpenLDAP directory service.

300

In the neo4j.conf file, uncomment and configure the following settings:

1. Configure LDAP to point to the OpenLDAP server:

dbms.security.ldap.host=myopenldap.example.com

2. Provide details on the user structure of the LDAP directory:

dbms.security.ldap.authentication.user_dn_template=cn={0},ou=users,dc=example,dc=com
dbms.security.ldap.authorization.user_search_base=ou=users,dc=example,dc=com
dbms.security.ldap.authorization.user_search_filter=(&(objectClass=*)(uid={0}))
dbms.security.ldap.authorization.group_membership_attributes=gidNumber

3. (Optional) Create an LDAP group to restrict authentication against the database to a subset of LDAP
users:

dbms.security.ldap.authorization.access_permitted_group=501

4. Map the groups in the LDAP system to the Neo4j built-in and custom roles. For more information, see
Map the LDAP groups to the Neo4j roles.

11.5.7. Verify the LDAP configuration

You can verify that your LDAP configuration is correct, and that the LDAP server responds, by using the
LDAP command-line tool ldapsearch.

The ldapsearch command accepts the LDAP configuration setting values as input and verifies both the
authentication (using the simple mechanism) and authorization of a user. See the ldapsearch official
documentation for more advanced usage and how to use SASL authentication mechanisms.

1. Verify the authentication and authorization of a user. For example, john.

◦ With dbms.security.ldap.authorization.use_system_account=false (default):

ldapsearch -v -H ldap://<dbms.security.ldap.host> -x -D
<dbms.security.ldap.authentication.user_dn_template : replace {0}> -W -b
<dbms.security.ldap.authorization.user_search_base>
"<dbms.security.ldap.authorization.user_search_filter : replace {0}>"
<dbms.security.ldap.authorization.group_membership_attributes>

ldapsearch -v -H ldap://myactivedirectory.example.com:389 -x -D cn=john,cn=Users,dc=example,dc=com
-W -b cn=Users,dc=example,dc=com "(&(objectClass=*)(cn=john))" memberOf

◦ With dbms.security.ldap.authorization.use_system_account=true:

ldapsearch -v -H ldap://<dbms.security.ldap.host> -x -D
<dbms.security.ldap.authorization.system_username> -w
<dbms.security.ldap.authorization.system_password> -b
<dbms.security.ldap.authorization.user_search_base>
"<dbms.security.ldap.authorization.user_search_filter>"
<dbms.security.ldap.authorization.group_membership_attributes>

ldapsearch -v -H ldap://myactivedirectory.example.com:389 -x -D cn=search-account,cn=Users,dc
=example,dc=com -w mypassword -b cn=Users,dc=example,dc=com "(&(objectClass=*)(cn=john))" memberOf

301

https://docs.ldap.com/ldap-sdk/docs/tool-usages/ldapsearch.html
https://docs.ldap.com/ldap-sdk/docs/tool-usages/ldapsearch.html

2. Verify that the value of the returned membership attribute is a group that is mapped to a role in
dbms.security.ldap.authorization.group_to_role_mapping.

extended LDIF
#
LDAPv3
base <cn=Users,dc=example,dc=com> with scope subtree
filter: (cn=john)
requesting: memberOf
#

john, Users, example.com
dn: CN=john,CN=Users,DC=example,DC=com
memberOf: CN=Neo4j Read Only,CN=Users,DC=example,DC=com

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1

11.5.8. The auth cache

The auth cache is the mechanism by which Neo4j caches the result of authentication via the LDAP server
in order to aid performance. It is configured with the parameters
dbms.security.ldap.authentication.cache_enabled, and dbms.security.auth_cache_ttl.

Turn on authentication caching to ensure performance.

dbms.security.ldap.authentication.cache_enabled=true
dbms.security.auth_cache_ttl=10m

Table 48. Auth cache parameters

Parameter name Default value Description

dbms.security.ldap.authentication.cache
_enabled

true Determines whether or not to cache the
result of authentication via the LDAP
server.

Whether authentication caching should
be enabled or not must be considered in
view of your company’s security
guidelines.

302

Parameter name Default value Description

dbms.security.auth_cache_ttl 600 seconds Is the time to live (TTL) for cached
authentication and authorization info.

Setting the TTL to 0 disables all auth
caching.

A short TTL requires more frequent re-
authentication and re-authorization,
which can impact performance.

A very long TTL means that changes to
the users settings on an LDAP server
may not be reflected in the Neo4j
authorization behaviour in a timely
manner.

Valid units are ms, s, m; default unit is s.

An administrator can clear the auth cache to force the re-querying of authentication and authorization
information from the federated auth provider system. Use Neo4j Browser or Neo4j Cypher Shell to execute
this statement:

CALL dbms.security.clearAuthCache()

11.5.9. Available methods of encryption

Specifying the dbms.security.ldap.host parameter configures using LDAP without encryption. Not
specifying the protocol or port results in ldap being used over the default port 389.

dbms.security.ldap.host=myactivedirectory.example.com
dbms.security.ldap.host=myactivedirectory.example.com:389
dbms.security.ldap.host=ldap://myactivedirectory.example.com
dbms.security.ldap.host=ldap://myactivedirectory.example.com:389

Use LDAP with encryption via StartTLS

To configure Active Directory with encryption via StartTLS, set the following parameters:

dbms.security.ldap.use_starttls=true
dbms.security.ldap.host=ldap://myactivedirectory.example.com

Use LDAP with encrypted LDAPS

To configure Active Directory with encrypted LDAPS, set dbms.security.ldap.host to one of the
following. If you do not specify the port, the default one 636 is used.

dbms.security.ldap.host=ldaps://myactivedirectory.example.com
dbms.security.ldap.host=ldaps://myactivedirectory.example.com:636

303

11.5.10. Use a self-signed certificate (SSL) in a test environment

Production environments should always use an SSL certificate issued by a Certificate Authority for secure
access to the LDAP server. However, there are scenarios, for example in test environments, where you
may want to use an SSL certificate on the LDAP server.

To configure an SSL certificate on LDAP server, enter the details of the certificate using
dbms.jvm.additional in neo4j.conf. The path to the certificate file MyCert.jks is an absolute path to the
Neo4j server.

dbms.jvm.additional=-Djavax.net.ssl.keyStore=/path/to/MyCert.jks
dbms.jvm.additional=-Djavax.net.ssl.keyStorePassword=mypasword
dbms.jvm.additional=-Djavax.net.ssl.trustStore=/path/to/MyCert.jks
dbms.jvm.additional=-Djavax.net.ssl.trustStorePassword=mypasword

11.6. Manage procedure and user-defined function
permissions

11.6.1. Introduction

To be able to run a procedure or user-defined function, the user needs to have the corresponding execute
privilege. Procedures and user-defined functions are executed according to the same security rules as
regular Cypher statements, e.g. a procedure performing writes will fail if called by a user that only has read
privileges.

Procedures and user-defined functions can also be run with privileges exceeding the users own privileges.
This is called execution boosting. The elevated privileges only apply within the procedure or user-defined
function; any operation performed outside will still use the users original privileges.

The steps below assume that the procedure or user-defined function is already
developed and installed.

Please refer to Java Reference → Extending Neo4j for a description on creating and using
user-defined procedures and functions.

11.6.2. Manage procedure permissions

Procedure permissions can be managed using the native execute privileges. These control whether the
user is allowed to both execute a procedure, and which set of privileges apply during the execution.

A procedure may be run using the EXECUTE PROCEDURE privilege.

This allows the user to execute procedures that match the globbed procedures.

304

https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-dbms-administration-execute
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-execute-procedure
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-execute-procedure
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-name-globbing

Example 69. Grant privilege to execute procedure

GRANT EXECUTE PROCEDURE db.schema.visualization ON DBMS TO visualizer

This will allow any user with the visualizer role to execute the db.schema.visualization. E.g. a user
that also have the following privileges:

GRANT TRAVERSE ON GRAPH * NODES A, B TO role
GRANT TRAVERSE ON GRAPH * RELATIONSHIP R1 TO role

When calling the db.schema.visualization procedure that user will only see the A and B nodes and
R1 relationships, even though there might exist other nodes and relationships.

A procedure may also be executed with elevated privileges using the EXECUTE BOOSTED PROCEDURE
privilege.

This allows the user to successfully execute procedures that would otherwise fail during execution with
their assigned roles. The user is given full privileges for the procedure, during the execution of the
procedure only.

Example 70. Grant privilege to execute procedure with elevated privileges

GRANT EXECUTE BOOSTED PROCEDURE db.schema.visualization ON DBMS TO visualizer

This will allow any user with the visualizer role to execute the db.schema.visualization with
elevated privileges. When calling the db.schema.visualization procedure that user will see all nodes
and relationships that exist in the graph, even though they have no traversal privileges.

11.6.3. Manage user-defined function permissions

User-defined function permissions can be managed using the native execute privileges. These control if
the user is both allowed to execute a user-defined function, and which set of privileges apply during the
execution.

A user-defined function may be executed using the EXECUTE USER DEFINED FUNCTION privilege.

This allows the user to execute user-defined functions that match the globbed user-defined function.

305

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-execute-boosted-procedure
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-execute-boosted-procedure
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-execute-boosted-procedure
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-dbms-administration-execute
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-execute-user-defined-function
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-execute-user-defined-function
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-name-globbing

Example 71. Grant privilege to execute user-defined function

GRANT EXECUTE USER DEFINED FUNCTION apoc.any.properties ON DBMS TO custom

This will allow any user with the custom role to execute the apoc.any.properties. E.g. a user that also
have the following privilege:

GRANT MATCH {visibleProp} ON GRAPH * NODES A TO role

When calling the user-defined function MATCH (a:A) RETURN apoc.any.properties(a) AS
properties, they will only see the visibleProp even though there might exist other properties.

A user-defined function may also be executed with elevated privileges using the EXECUTE BOOSTED USER
DEFINED FUNCTION privilege.

This allows the user to successfully execute user-defined functions that would otherwise fail during
execution with their assigned roles. The user is given full privileges for the user-defined function, during
the execution of the function only.

Example 72. Grant privilege to execute user-defined function with elevated privileges

GRANT EXECUTE BOOSTED USER DEFINED FUNCTION apoc.any.properties ON DBMS TO custom

This will allow any user with the custom role to execute the apoc.any.properties with elevated
privileges. E.g. a user that also have the following privileges:

GRANT TRAVERSE ON GRAPH * NODES A TO role

When calling the user-defined function MATCH (a:A) RETURN apoc.any.properties(a) AS
properties, they will see all properties that exist on the matched nodes even though they have no
read privileges.

11.6.4. Manage procedure and user-defined function permissions from
config setting Deprecated

It is possible to grant boosting for procedures and user-defined functions through config settings. These
settings will be translated to temporary execute boosted procedure and execute boosted function
privileges that cannot be revoked.

dbms.security.procedures.default_allowed

The setting dbms.security.procedures.default_allowed defines a single role that is allowed to execute
any procedure or user-defined function that is not matched by the dbms.security.procedures.roles
configuration.

306

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-execute-boosted-user-defined-function
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-execute-boosted-user-defined-function
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-execute-boosted-user-defined-function

Example 73. Configure a default role that can execute procedures and user-defined functions

Assume that we have the following configuration:

dbms.security.procedures.default_allowed=superAdmin

This will create the following temporary privileges:

• GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO superAdmin

• GRANT EXECUTE BOOSTED USER DEFINED FUNCTION * ON DBMS TO superAdmin

• If the setting dbms.security.procedures.roles has some roles to name defined, then for any
procedure/function not also granted to the superAdmin role, create temporary privileges:

◦ DENY EXECUTE BOOSTED PROCEDURE name ON DBMS TO superAdmin

◦ DENY EXECUTE BOOSTED USER DEFINED FUNCTION name ON DBMS TO superAdmin

dbms.security.procedures.roles

The dbms.security.procedures.roles setting provides fine-grained control over procedures and user-
defined functions.

Example 74. Configure roles for the execution of specific procedures and user-defined functions

Assume that we have the following configuration:

dbms.security.procedures.default_allowed=superAdmin
dbms.security.procedures.roles=apoc.coll.*:Collector;apoc.trigger.add:TriggerHappy,superAdmin

This will have create the following temporary privileges:

• GRANT EXECUTE BOOSTED PROCEDURE apoc.coll.* ON DBMS TO Collector

• GRANT EXECUTE BOOSTED USER DEFINED FUNCTION apoc.coll.* ON DBMS TO Collector

• GRANT EXECUTE BOOSTED PROCEDURE apoc.trigger.add ON DBMS TO TriggerHappy, superAdmin

• GRANT EXECUTE BOOSTED USER DEFINED FUNCTION apoc.trigger.add ON DBMS TO
TriggerHappy, superAdmin

• GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO superAdmin

• GRANT EXECUTE BOOSTED USER DEFINED FUNCTION * ON DBMS TO superAdmin

• DENY EXECUTE BOOSTED PROCEDURE apoc.coll.* ON DBMS TO superAdmin

• DENY EXECUTE BOOSTED USER DEFINED FUNCTION apoc.coll.* ON DBMS TO superAdmin

11.7. Terminology
The following terms are relevant to role-based access control within Neo4j:

307

active user

A user who is active within the system and can perform actions prescribed by any assigned roles on
the data. This is in contrast to a suspended user.

administrator

This is a user who has been assigned the admin role.

current user

This is the currently logged-in user invoking the commands described in this chapter.

password policy

The password policy is a set of rules of what makes up a valid password. For Neo4j, the following rules
apply:

• The password cannot be the empty string.

• When changing passwords, the new password cannot be the same as the previous password.

role

This is a collection of actions — such as read and write — permitted on the data.

suspended user

A user who has been suspended is not able to access the database in any capacity, regardless of any
assigned roles.

user

• A user is composed of a username and credentials, where the latter is a unit of information, such as
a password, verifying the identity of a user.

• A user may represent a human, an application etc.

308

Chapter 12. Security
Ensure your physical data security by following industry best practices with regard to server and network
security.

This chapter includes the following:

• Securing extensions

• SSL framework

• Credentials handling in Neo4j Browser

• Security checklist

Additionally, logs can be useful for continuous analysis, or for specific investigations. Facilities are available
for producing security event logs as well as query logs as described in Monitoring.

Refer to Authentication and authorization for information on how to manage users and
their authentication and authorization.

12.1. Securing extensions
Neo4j can be extended by writing custom code which can be invoked directly from Cypher, as described in
Java Reference → User-defined functions. This section describes how to ensure the security of these
additions.

12.1.1. Allow listing

Allow listing can be used to allow the loading of only a few extensions from a larger library.

The configuration setting dbms.security.procedures.allowlist is used to name certain procedures that
should be available from a library. It defines a comma-separated list of procedures that are to be loaded.
The list may contain both fully qualified procedure names, and partial names with the wildcard *.

Example 75. Allow listing

In this example we wish to allow the use of the method apoc.load.json as well as all the methods
under apoc.coll. We do not want to make available any additional extensions from the apoc library,
other than the ones matching these criteria.

Example allow listing
dbms.security.procedures.allowlist=apoc.coll.*,apoc.load.*

There are a few things that should be noted about dbms.security.procedures.allowlist:

• If using this setting, no extensions other than those listed will be loaded. In particular, if it is set to the
empty string, no extensions will be loaded.

309

https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions

• The default of the setting is *. This means that if you do not explicitly give it a value (or no value), all
libraries in the plugins directory will be loaded.

12.2. SSL framework
The SSL framework provides support for securing the following Neo4j communication channels using
standard SSL/TLS technology:

• bolt (port - 7687)

• https (port - 7473)

• cluster (ports - 5000, 6000, 7000, and 7688)

• backups (port - 6362)

12.2.1. SSL providers

The secure networking in Neo4j is provided through the Netty library, which supports both the native JDK
SSL provider as well as Netty-supported OpenSSL derivatives.

Follow these steps to use OpenSSL:

• Install a suitable dependency into the plugins/ folder of Neo4j.

Dependencies can be downloaded from https://netty.io/wiki/forked-tomcat-native.html.
Which dependencies you need depends upon the Neo4j version. Each version of Neo4j
ships with a version of Netty and Netty requires specific tcnative versions. Make sure to
install the version that matches your OS processor. For more details, see the Netty
support per Neo4j version.

• Using non static versions of tcnative will require installation of platform-specific OpenSSL
dependencies as described in https://netty.io/wiki/forked-tomcat-native.html.

• Set dbms.netty.ssl.provider=OPENSSL.

• Restart Neo4j.

Most supported versions of Neo4j use Netty 4.1.77.Final, which requires tcnative 2.0.52. Only Neo4j 3.5
still uses older versions of Netty. See the table below for detailed information:

Table 49. Netty support per Neo4j version

Neo4j version Netty version tcnative version Direct link

5.0 4.1.77.Final 2.0.52.Final. Both netty-tcnative-
boringssl-static and netty-
tcnative-classes are required

https://search.maven.org/artifact/io.netty/netty-
tcnative-boringssl-static/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-
tcnative-classes/2.0.52.Final/jar

4.4.9 4.1.77.Final 2.0.52.Final https://search.maven.org/artifact/io.netty/netty-
tcnative-boringssl-static/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-
tcnative-classes/2.0.52.Final/jar

310

https://netty.io/wiki/forked-tomcat-native.html
https://netty.io/wiki/forked-tomcat-native.html
https://search.maven.org/artifact/io.netty/netty-tcnative-boringssl-static/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-tcnative-boringssl-static/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-tcnative-classes/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-tcnative-classes/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-tcnative-boringssl-static/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-tcnative-boringssl-static/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-tcnative-classes/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-tcnative-classes/2.0.52.Final/jar

Neo4j version Netty version tcnative version Direct link

4.3.15 4.1.77.Final 2.0.52.Final https://search.maven.org/artifact/io.netty/netty-
tcnative-boringssl-static/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-
tcnative-classes/2.0.52.Final/jar

3.5.34 3.9.9.Final +
4.1.68.Final

2.0.42.Final https://search.maven.org/artifact/io.netty/netty-
tcnative/2.0.42.Final/jar

Using OpenSSL can significantly improve performance, especially for AES-GCM-cryptos,
e.g. TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256.

12.2.2. Certificates

The SSL configuration requires SSL certificates to be issued by Certificate Authority (CA). All Certificates
and the private key must be in PEM format.

If the same certificates are used across all instances of the cluster, make sure that when
generating the certificates to include the DNS names of all the cluster instances in the
certificates. Multi-host and wildcard certificates are also supported.

Valid trusted certificates can be generated for free using non-profit CAs such as Let’s
Encrypt.

The instructions on this page assume that you have already obtained the required certificates from the CA.

Validate the key and the certificate

If you need, you can validate the key file and the certificate as follows:

Validate the key

openssl rsa -in private.key -check

Validate certificate in the PEM format

PEM - $openssl x509 -in public.crt –text –noout
DER - $openssl x509 -in certificate.der -inform der -text -noout

Transform the certificates

Neo4j requires all SSL certificates to be in the PEM format. If your certificate is in the DER format, you must
transform it into PEM format.

Transform DER format certificate to PEM format

openssl x509 -in cert.crt -inform der -outform pem -out cert.pem

311

https://search.maven.org/artifact/io.netty/netty-tcnative-boringssl-static/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-tcnative-boringssl-static/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-tcnative-classes/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-tcnative-classes/2.0.52.Final/jar
https://search.maven.org/artifact/io.netty/netty-tcnative/2.0.42.Final/jar
https://search.maven.org/artifact/io.netty/netty-tcnative/2.0.42.Final/jar

Transform PEM format certificate to DER format

openssl x509 -in cert.crt -outform der -out cert.der

12.2.3. Connectors

Before enabling SSL support, you must ensure the following connector configurations to avoid errors:

• Set dbms.connector.https.enabled to true when using HTTPS.

• Set dbms.connector.bolt.tls_level to REQUIRED or OPTIONAL when using Bolt.

For more information on configuring connectors, see Configure connectors.

12.2.4. Configuration

The SSL policies are configured by assigning values to parameters of the following format:

dbms.ssl.policy.<scope>.<setting-suffix>

• scope is the name of the communication channel, such as bolt, https, cluster, backup, and fabric.

• setting-suffix can be any of the following:

Setting suffix Description Default value

Basic

enabled Setting this to true enables this policy. false

base_directory The base directory under which
<term-ssl-cryptographic-objects,
cryptographic objects>> are searched
for by default.

certificates/<scope>

private_key The private key used for authenticating
and securing this instance.

private.key

private_key_password The passphrase to decode the private
key. Only applicable for encrypted
private keys.

public_certificate A public certificate matching the
private key signed by a CA.

public.crt

trusted_dir A directory populated with certificates
of trusted parties.

trusted/

revoked_dir A directory populated with certificate
revocation lists (CRLs).

revoked/

Advanced

312

Setting suffix Description Default value

verify_hostname Enabling this setting turns on client-
side hostname verification. After
receiving the server’s public certificate,
the client compares the address it uses
against the certificate Common Name
(CN) and Subject Alternative Names
(SAN) fields. If the address does not
match those fields, the client
disconnects.

false

ciphers A comma-separated list of ciphers
suits allowed during cipher
negotiation. Valid values depend on
the current JRE and SSL provider. For
Ciphers supported by the Oracle JRE,
see the Oracle official documentation.

Java platform default allowed cipher
suites.

tls_versions A comma-separated list of allowed
TLS versions.

TLSv1.2

client_auth Whether or not clients must be
authenticated. Setting this to REQUIRE
enables mutual authentication for
servers. Other possible values are NONE
and OPTIONAL.

OPTIONAL for bolt and https;
REQUIRE for cluster and backup.

trust_all Setting this to true results in all clients
and servers to be trusted and the
content of the trusted_dir directory to
be ignored. Use this only as a mean of
debugging, since it does not offer
security.

false

For security reasons, Neo4j does not automatically create any of these directories.
Therefore, the creation of an SSL policy requires the appropriate file system structure to
be set up manually. Note that the existence of the directories, the certificate file, and the
private key are mandatory. Ensure that only the Neo4j user can read the private key.

Each policy needs to be explicitly enabled by setting:

dbms.ssl.policy.<scope>.enabled=true

Configure SSL over Bolt

Bolt protocol is based on the PackStream serialization and supports the Cypher type system, protocol
versioning, authentication, and TLS via certificates. For Neo4j clusters, Bolt provides smart client routing
with load balancing and failover. When server side routing is enabled, an additional Bolt port is open on
7688. It can be used only within the cluster and with all the same settings as the external Bolt port.

Bolt connector is used by Cypher Shell, Neo4j Browser, and by the officially supported language drivers.
Bolt connector is enabled by default but its encryption is disabled. To enable the encryption over Bolt,
create the folder structure and place the key file and the certificates under those. Then, you need to

313

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#jsse-cipher-suite-names
https://neo4j.com/docs/bolt/current/packstream/

configure the SSL Bolt policies in the neo4j.conf file.

1. Enable the Bolt connector to enable SSL over Bolt:

dbms.connector.bolt.enabled=true (default is true)

2. Set up the bolt folder under certificates.

a. Create a directory bolt under <neo4j-home>/certificates folder:

mkdir certificates/bolt

b. Create a directory trusted and revoked under <neo4j-home>/certificates/bolt folder:

mkdir certificates/bolt/trusted
mkdir certificates/bolt/revoked

3. Place the certificates private.key and the public.crt files under <neo4j-home>/certificates/bolt folder:

cp /path/to/certs/private.key certificates/bolt
cp /path/to/certs/public.crt certificates/bolt

4. Place the public.crt file under the <neo4j-home>/certificates/bolt/trusted folder.

cp /path/to/certs/public.crt certificates/bolt/trusted

5. (Optional) If a particular certificate is revoked, then place it under <neo4j-
home>/certificates/bolt/revoked folder.

cp /path/to/certs/public.crt certificates/bolt/revoked

The folder structure should look like this with the right file permissions and the groups and
ownerships:

Path Directory/File Owner Group Permission Unix/Linux
View

/data/neo4j/certificates/bolt Directory neo4j neo4j 0755 drwxr-xr-x

/data/neo4j/certificates/bolt/public.crt File neo4j neo4j 0644 -rw-r—r--

/data/neo4j/certificates/bolt/private.key File neo4j neo4j 0400 -r--------

/data/neo4j/certificates/bolt/trusted Directory neo4j neo4j 0755 drwxr-xr-x

/data/neo4j/certificates/bolt/trusted/public.cr
t

File neo4j neo4j 0644 -rw-r—r--

/data/neo4j/certificates/bolt/revoked Directory neo4j neo4j 0755 drwxr-xr-x

314

The owner/group should be configured to the user/group that will be running the
neo4j service. Default user/group is neo4j/neo4j.

6. Set the Bolt SSL configuration in neo4j.conf.

a. Set the SSL Bolt policy to true:

dbms.ssl.policy.bolt.enabled=true

b. Set the appropriate certificates path and the right key and cert files:

dbms.ssl.policy.bolt.base_directory=certificates/bolt
dbms.ssl.policy.bolt.private_key=private.key
dbms.ssl.policy.bolt.public_certificate=public.crt

If the certificate is a different path outside of NEO4J_HOME, then set the
absolute path for the certificates directory.

c. Set the Bolt client authentication to NONE to disable the mutual authentication:

dbms.ssl.policy.bolt.client_auth=NONE

d. Set the Bolt TLS level to allow the connector to accept encrypted and/or unencrypted connections:

dbms.connector.bolt.tls_level=REQUIRED (default is DISABLED)

In Neo4j version 3.5, the default value is OPTIONAL. In the Neo4j 4.x versions, the
default value is DISABLED, where only unencrypted client connections are to be
accepted by this connector, and all encrypted connections will be rejected. Use
REQUIRED when only encrypted client connections are to be accepted by this
connector, and all unencrypted connections will be rejected. Use OPTIONAL where
either encrypted or unencrypted client connections are accepted by this
connector.

7. Test the SSL connection to the specified host and Bolt port and view the certificate:

openssl s_client -connect my_domain.com:7687

Connect with SSL over Bolt

Each of the neo4j and bolt URI schemes permit variants that contain extra encryption and trust
information. The +s variants enable encryption with a full certificate check. The +ssc variants enable
encryption with no certificate check. This latter variant is designed specifically for use with self-signed
certificates.

315

URI Scheme Routing Description

neo4j Yes Unsecured

neo4j+s Yes Secured with full certificate

neo4j+ssc Yes Secured with self-signed certificate

bolt No Unsecured

bolt+s No Secured with full certificate

bolt+ssc No Secured with self-signed certificate

Once SSL is enabled over Bolt, you can connect to the Neo4j DBMS using neo4j+s or bolt+s:

Cypher Shell

cypher-shell -a neo4j+s://<Server DNS or IP>:<Bolt port>

or

cypher-shell -a bolt+s://<Server DNS or IP>:<Bolt port>

Neo4j Browser

From the Connect URL dropdown menu, select the URI scheme you want to use (neo4j+s or bolt+s).

URI schemes ending +ssc are not supported by Neo4j Browser since the browser’s
OS handles certificate trust. If it is necessary to connect to a Neo4j instance using a
self-signed certificate from Neo4j Browser, first visit a web page that uses the self-
signed certificate in order to prompt the browser to request that certificate trust be
granted. Once that trust has been granted, you can connect with URI schemes
ending +s.

Configure SSL over HTTPS

HTTP(s) is used by the Neo4j Browser and the HTTP API. HTTPS (secure HTTP) is set to encrypt network
communications. To enable the encryption over HTTPS, create the folder structure and place the key file
and the certificates under those. Then, you need to configure the SSL HTTPS policies in the neo4j.conf file
and disable the HTTP connector.

1. Enable the HTTPS connector to enable SSL over HTTPS:

dbms.connector.https.enabled=true (default is false)

2. Set up the https folder under certificates.

a. Create a directory https under <neo4j-home>/certificates folder:

mkdir certificates/https

b. Create a directory trusted and revoked under <neo4j-home>/certificates/https folder:

316

mkdir certificates/https/trusted
mkdir certificates/https/revoked

3. Place the certificates private.key and the public.crt files under <neo4j-home>/certificates/https folder:

cp /path/to/certs/private.key certificates/https
cp /path/to/certs/public.crt certificates/https

4. Place the public.crt file under the <neo4j-home>/certificates/https/trusted folder.

cp /path/to/certs/public.crt certificates/https/trusted

5. (Optional) If a particular certificate is revoked, then place it under <neo4j-
home>/certificates/https/revoked folder.

cp /path/to/certs/public.crt certificates/https/revoked

The folder structure should look like this with the right file permissions and the groups and
ownerships:

Path Directory/File Owner Group Permission Unix/Linux
View

/data/neo4j/certificates/https Directory neo4j neo4j 0755 drwxr-xr-x

/data/neo4j/certificates/https/public.crt File neo4j neo4j 0644 -rw-r—r--

/data/neo4j/certificates/https/private.key File neo4j neo4j 0400 -r--------

/data/neo4j/certificates/https/trusted Directory neo4j neo4j 0755 drwxr-xr-x

/data/neo4j/certificates/https/trusted/public.
crt

File neo4j neo4j 0644 -rw-r—r--

/data/neo4j/certificates/https/revoked Directory neo4j neo4j 0755 drwxr-xr-x

The owner/group should be configured to the user/group that will be running the
neo4j service. Default user/group is neo4j/neo4j.

6. Set the HTTPS SSL configuration in neo4j.conf.

a. Set the SSL HTTPS policy to true:

dbms.ssl.policy.https.enabled=true

b. Set the appropriate certificates path and the right key and cert files:

dbms.ssl.policy.https.base_directory=certificates/https
dbms.ssl.policy.https.private_key=private.key
dbms.ssl.policy.https.public_certificate=public.crt

317

If the certificate is a different path outside of NEO4J_HOME, then set the
absolute path for the certificates directory.

c. Set the HTTPS client authentication to NONE to disable the mutual authentication:

dbms.ssl.policy.https.client_auth=NONE

d. Disable HTTP connector:

dbms.connector.http.enabled=false

7. Test the SSL connection to the specified host and HTTPS port and view the certificate:

openssl s_client -connect my_domain.com:7473

Configure SSL for intra-cluster communications

Intra-cluster encryption is the security solution for the cluster communication. The Neo4j cluster
communicates on 4 ports:

• 5000 - Discovery management

• 6000 - Transactions

• 7000 - Raft communications

• 7688 - Server side routing

To set up intra-cluster encryption, on each server create the folder structure and place the key file and the
certificates under those. Then, you need to configure the SSL cluster policies in the neo4j.conf file and test
that the intra-cluster communication is encrypted.

1. Set up the cluster folder under certificates.

a. Create a directory cluster under_<neo4j-home>/certificates_ folder:

mkdir certificates/cluster

b. Create a directory trusted and revoked under <neo4j-home>/certificates/cluster folder:

mkdir certificates/cluster/trusted
mkdir certificates/cluster/revoked

2. Place the certificates private.key and the public.crt files under <neo4j-home>/certificates/cluster folder:

cp /path/to/certs/private.key certificates/cluster
cp /path/to/certs/public.crt certificates/cluster

3. Place the public.crt file under the <neo4j-home>/certificates/cluster/trusted folder.

318

cp /path/to/certs/public.crt certificates/cluster/trusted

If each server has a certificate of its own, signed by a CA, then each server’s public
certificate has to be put in the trusted folder on each instance of the cluster. Thus,
the servers are able to establish trust relationships with each other.

4. (Optional) If a particular certificate is revoked, then place it under <neo4j-
home>/certificates/cluster/revoked folder.

cp /path/to/certs/public.crt certificates/cluster/revoked

The folder structure should look like this with the right file permissions and the groups and
ownerships:

Path Directory/File Owner Group Permission Unix/Linux
View

/data/neo4j/certificates/cluster Directory neo4j neo4j 0755 drwxr-xr-x

/data/neo4j/certificates/cluster/public.crt File neo4j neo4j 0644 -rw-r—r--

/data/neo4j/certificates/cluster/private.key File neo4j neo4j 0400 -r--------

/data/neo4j/certificates/cluster/trusted Directory neo4j neo4j 0755 drwxr-xr-x

/data/neo4j/certificates/cluster/trusted/publi
c.crt

File neo4j neo4j 0644 -rw-r—r--

/data/neo4j/certificates/cluster/revoked Directory neo4j neo4j 0755 drwxr-xr-x

The owner/group should be configured to the user/group that will be running the
neo4j service. Default user/group is neo4j/neo4j.

5. Set the cluster SSL configuration in neo4j.conf.

a. Set the cluster SSL policy to true:

dbms.ssl.policy.cluster.enabled=true

b. Set the appropriate certificates path and the right key and cert files:

dbms.ssl.policy.cluster.base_directory=certificates/cluster
dbms.ssl.policy.cluster.private_key=private.key
dbms.ssl.policy.cluster.public_certificate=public.crt

If the certificate is a different path outside of NEO4J_HOME, then set the
absolute path for the certificates directory.

c. Set the cluster client authentication to REQUIRE to enable the mutual authentication, which means
that both ends of a channel have to authenticate:

319

dbms.ssl.policy.cluster.client_auth=REQUIRE

The policy must be configured on every server with the same settings. The actual
cryptographic objects installed will be mostly different since they do not share
the same private keys and corresponding certificates. The trusted CA certificate
will be shared however.

d. Verify that the intra-cluster communication is encrypted. You may use an external tooling, such as
Nmap (https://nmap.org/download.html):

nmap --script ssl-enum-ciphers -p <port> <hostname>

The hostname and port have to be adjusted according to your configuration. This
can prove that TLS is in fact enabled and that only the intended cipher suites are
enabled. All servers and all applicable ports should be tested. If the intra-cluster
encryption is enabled, the output should indicate the port is open and it is using
TLS with the ciphers used.

For more details on securing the comunication between the cluster servers, see [causal-
clustering-intra-cluster-encryption].

Configure SSL for backup communication

In a single instance, by default the backup communication happens on port 6362. In a cluster topology, it is
possible to take a backup from any server, and each server has two configurable ports capable of serving a
backup. These ports are configured by dbms.backup.listen.address (port 6362) and
causal_clustering.transaction_listen_address (port 6000) respectively. If the intra-cluster encryption is
enabled and the backup communication is using port 6000, then your communication channels are already
encrypted. The following steps assumes that your backup is set up on a different port.

To set up SSL for backup communication, create the folder structure and place the key file and the
certificates under those. Then, you need to configure the SSL backup policies in the neo4j.conf file.

1. Set up the backup folder under certificates.

a. Create a directory backup under <neo4j-home>/certificates folder:

mkdir certificates/backup

b. Create a directory trusted and revoked under <neo4j-home>/certificates/backup folder:

mkdir certificates/backup/trusted
mkdir certificates/backup/revoked

2. Place the certificates private.key and the public.crt files under <neo4j-home>/certificates/backup folder:

320

https://nmap.org/download.html

cp /path/to/certs/private.key certificates/backup
cp /path/to/certs/public.crt certificates/backup

3. Place the public.crt file under the <neo4j-home>/certificates/backup/trusted folder.

cp /path/to/certs/public.crt certificates/backup/trusted

4. (Optional) If a particular certificate is revoked, then place it under <neo4j-
home>/certificates/backup/revoked folder.

cp /path/to/certs/public.crt certificates/backup/revoked

The folder structure should look like this with the right file permissions and the groups and
ownerships:

Path Directory/File Owner Group Permission Unix/Linux
View

/data/neo4j/certificates/backup Directory neo4j neo4j 0755 drwxr-xr-x

/data/neo4j/certificates/backup/public.crt File neo4j neo4j 0644 -rw-r—r--

/data/neo4j/certificates/backup/private.key File neo4j neo4j 0400 -r--------

/data/neo4j/certificates/backup/trusted Directory neo4j neo4j 0755 drwxr-xr-x

/data/neo4j/certificates/backup/trusted/publi
c.crt

File neo4j neo4j 0644 -rw-r—r--

/data/neo4j/certificates/backup/revoked Directory neo4j neo4j 0755 drwxr-xr-x

The owner/group should be configured to the user/group that will be running the
neo4j service. Default user/group is neo4j/neo4j.

5. Set the backup SSL configuration in neo4j.conf.

a. Set the backup SSL policy to true:

dbms.ssl.policy.backup.enabled=true

b. Set the appropriate certificates path and the right key and cert files:

dbms.ssl.policy.backup.base_directory=certificates/backup
dbms.ssl.policy.backup.private_key=private.key
dbms.ssl.policy.backup.public_certificate=public.crt

If the certificate is a different path outside of NEO4J_HOME, then set the
absolute path for the certificates directory.

c. Set the backup client authentication to REQUIRE to enable the mutual authentication, which means
that both ends of a channel have to authenticate:

321

dbms.ssl.policy.backup.client_auth=REQUIRE

Other configurations for SSL

Using encrypted private key

To use an encrypted private key, configure the following settings. The private key password must be clear
text format without any quotes.

Bolt

dbms.ssl.policy.bolt.private_key_password=<clear text password>

HTTPS

dbms.ssl.policy.https.private_key_password=<password>

Intra-cluster encryption

dbms.ssl.policy.cluster.private_key_password=<password>

Backup

dbms.ssl.policy.backup.private_key_password=<password>

If hardcoding of clear text private key password is not feasible due to security constraints, it can be set up
to use dynamic password pickup by following these steps:

1. Create a file containing the cleartext password for the private key password and encrypt it with the
certificate (assuming private key for cert has password set and certificate is in pwd):

echo "password123" > passwordfile

openssl aes-256-cbc -a -salt -in passwordfile -out password.enc -pass file:certificate.crt

Delete the password file and set file permissions for password.enc to 400 (e.g. chmod
400 password.enc).

2. Verify that encrypted password can be read from password.enc:

openssl aes-256-cbc -a -d -in password.enc -pass file:certificate.crt

3. Set the neo4j.conf dbms.ssl.policy.<type>.private_key_password to be able to read out encrypted
password. To adjust paths to cert and encrypted password file, use full paths:

dbms.ssl.policy.bolt.private_key_password=$(openssl aes-256-cbc -a -d -in password.enc -pass
file:certificate.crt)

322

Using a dynamic command requires Neo4j to be started with the --expand-commands
option. For more information, see Command expansion.

Using specific cipher

There are cases where Neo4j Enterprise requires the use of specific ciphers for encryptions. One can set
up a Neo4j configuration by specifying the list of cipher suits that will be allowed during cipher negotiation.
Valid values depend on the current JRE and SSL provider. For Oracle JRE here is the list of supported ones
- https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#jsse-cipher-suite-
names.

Bolt

dbms.ssl.policy.bolt.ciphers=TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
,TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

HTTPS

dbms.ssl.policy.https.ciphers=TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA38
4,TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

Intra-cluster encryption

dbms.ssl.policy.cluster.ciphers=TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA
384,TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

Backup

dbms.ssl.policy.backup.ciphers=TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA3
84,TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

Using OCSP stapling

From version 4.2, Neo4j supports OCSP stapling, which is implemented on the server side, and can be
configured in the neo4j.config file. OCSP stapling is also available for Java Bolt driver and HTTP API.

On the server side in the neo4j.conf file, configure the following settings:

1. Set the SSL Bolt policy to true:

dbms.ssl.policy.bolt.enabled=true

2. Enable the OCSP stapling for Bolt:

dbms.connector.bolt.ocsp_stapling_enabled=true (default = false)

323

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#jsse-cipher-suite-names
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#jsse-cipher-suite-names

12.2.5. SSL logs

All information related to SSL can be found in the debug.log file. You can also enable additional debug
logging for SSL by adding the following configuration to the neo4j.conf file and restarting Neo4j.

dbms.jvm.additional=-Djavax.net.debug=ssl:handshake

This will log additional information in the neo4j.log file. In some installations done using rpm based installs,
neo4j.log is not created. To get the contents of this, since neo4j.log just contains STDOUT content, look for
the neo4j service log contents using journalctl:

neo4j@ubuntu:/var/log/neo4j$ journalctl -u neo4j -b > neo4j.log
neo4j@ubuntu:/var/log/neo4j$ vi neo4j.log

Beware that the SSL debug option logs a new statement every time a client connects
over SSL, which can make neo4j.log grow large reasonably quickly. To avoid that
scenario, make sure this setting is only enabled for a short term duration.

12.2.6. Terminology

The following terms are relevant to SSL support within Neo4j:

Certificate Authority (CA)

A trusted entity that issues electronic documents that can verify the identity of a digital entity. The term
commonly refers to globally recognized CAs, but can also include internal CAs that are trusted inside of
an organization. The electronic documents are digital certificates. They are an essential part of secure
communication, and play an important part in the Public Key Infrastructure.

Certificate Revocation List (CRL)

In the event of a certificate being compromised, that certificate can be revoked. This is done by means
of a list (located in one or several files) spelling out which certificates are revoked. The CRL is always
issued by the CA which issues the corresponding certificates.

cipher

An algorithm for performing encryption or decryption. In the most general implementation of encryption
of Neo4j communications, we make implicit use of ciphers that are included as part of the Java platform.
The configuration of the SSL framework also allows for the explicit declaration of allowed ciphers.

communication channel

A means for communicating with the Neo4j database. Available channels are:

• Bolt client traffic

• HTTPS client traffic

• intra-cluster communication

• backup traffic

324

cryptographic objects

A term denoting the artifacts private keys, certificates and CRLs.

configuration parameters

These are the parameters defined for a certain ssl policy in neo4j.conf.

certificate

SSL certificates are issued by a trusted certificate authority (CA). The public key can be obtained and
used by anyone to encrypt messages intended for a particular recipient. The certificate is commonly
stored in a file named <file name>.crt. This is also referred to as the public key.

SAN

SAN is an acronym for Subject Alternative Names. It is an extension to certificates that one can include
optionally. When presented with a certificate that includes SAN entries, it is recommended that the
address of the host is checked against this field. Verifying that the hostname matches the certificate
SAN helps prevent attacks where a rogue machine has access to a valid key pair.

SSL

SSL is an acronym for Secure Sockets Layer, and is the predecessor of TLS. It is common to refer to
SSL/TLS as just SSL. However, the modern and secure version is TLS, and this is also the default in
Neo4j.

SSL policy

An SSL policy in Neo4j consists of a a digital certificate and a set of configuration parameters defined in
neo4j.conf.

private key

The private key ensures that encrypted messages can be deciphered only by the intended recipient.
The private key is commonly stored in a file named <file name>.key. It is important to protect the private
key to ensure the integrity of encrypted communication.

Public Key Infrastructure (PKI)

A set of roles, policies, and procedures needed to create, manage, distribute, use, store, and revoke
digital certificates and manage public-key encryption.

public key

The public key can be obtained and used by anyone to encrypt messages intended for a particular
recipient. This is also referred to as the certificate.

TLS protocol

The cryptographic protocol that provides communications security over a computer network. The
Transport Layer Security (TLS) protocol and its predecessor, the Secure Sockets Layer (SSL) protocol
are both frequently referred to as "SSL".

TLS version

A version of the TLS protocol.

325

12.3. Browser credentials handling
Neo4j Browser has two mechanisms for avoiding users having to repeatedly enter their Neo4j credentials.

First, while the Browser is open in a web browser tab, it ensures that the existing database session is kept
alive. This is subject to a timeout. The timeout is configured in the setting browser.credential_timeout.
The timeout is reset whenever there is user interaction with the Browser.

Second, the Browser can also cache the user’s Neo4j credentials locally. When credentials are cached,
they are stored unencrypted in the web browser’s local storage. If the web browser tab is closed and then
re-opened, the session is automatically re-established using the cached credentials. This local storage is
also subject to the timeout configured in the setting browser.credential_timeout. In addition, caching
credentials in browser local storage can be disabled altogether. To disable credentials caching, set
browser.retain_connection_credentials=false in the server configuration.

If the user issues a :server disconnect command then any existing session is terminated and the
credentials are cleared from local storage.

For more information on how to administer and use Neo4j Browser, see the Neo4j
Browser manual → Browser operations.

12.4. Security checklist
The following checklist highlights the specific areas within Neo4j that may need extra attention to ensure
the appropriate level of security for your application after Neo4j is deployed.

1. Deploy Neo4j on safe servers in secure networks:

a. Use subnets and firewalls to segment the network.

326

https://neo4j.com/docs/browser-manual/current/operations/
https://neo4j.com/docs/browser-manual/current/operations/
https://neo4j.com/docs/browser-manual/current/operations/
https://neo4j.com/docs/browser-manual/current/operations/

b. Open only the ports that you need. For a list of relevant ports, see Ports.

In particular, ensure that there is no external access to the port specified by the setting
dbms.backup.listen_address. Failing to protect this port may open a security hole by which an
unauthorized user can make a copy of the database onto a different machine.

2. Protect data-at-rest:

a. Use volume encryption (e.g., Bitlocker).

b. Manage access to database dumps and backups. Refer to Back up an offline database and
backups Back up an online database for more information.

c. Manage access to configuration files, data files, and transaction logs by ensuring the correct file
permissions on the Neo4j files. Refer to File permissions for instructions on permission levels.

3. Protect data-in-transit:

a. For remote access to the Neo4j database, only use encrypted Bolt or HTTPS.

b. Use SSL certificates issued from a trusted Certificate Authority.

c. For configuring your Neo4j installation to use encrypted communication, refer to SSL framework.

d. If using Causal Clustering, configure and use encryption for intra-cluster communication. For
details, see [causal-clustering-intra-cluster-encryption].

e. If using Causal Clustering, configure and use encryption for backups. This ensures that only servers
with the specified SSL policy and SSL certificates can access the server and perform the backup.

f. For configuring your Bolt and HTTPS connectors, refer to Configure connectors.

g. If using LDAP, configure your LDAP system with encryption via StartTLS. For more information,
see Use LDAP with encryption via StartTLS.

4. Be on top of the security for custom extensions:

327

a. Validate any custom code you deploy (procedures and unmanaged extensions) and ensure that
they do not unintentionally expose any parts of the product or data.

b. Survey the settings dbms.security.procedures.unrestricted and
dbms.security.procedures.allowlist to ensure that they exclusively contain intentionally exposed
extensions.

5. Make sure you have the correct file permissions on the Neo4j files.

6. Protect against the execution of unauthorized extensions by restricting access to the bin, lib, and
plugins directories. Only the operating system user that Neo4j runs as should have permissions to
those files. Refer to File permissions for instructions on permission levels.

7. With LOAD CSV enabled, ensure that it does not allow unauthorized users to import data. How to
configure LOAD CSV is described in Cypher Manual → LOAD CSV.

8. Use Neo4j authentication. The setting dbms.security.auth_enabled controls native authentication. The
default value is true.

9. Survey your JVM-specific configuration settings in the neo4j.conf file for ports relating to deprecated
functions, such as remote JMX (controlled by the parameter setting dbms.jvm.additional=-
Dcom.sun.management.jmxremote.port=3637).

10. Review Browser credentials handling to determine whether the default credentials handling in Neo4j
Browser complies with your security regulations. Follow the instructions to configure it if necessary.

11. Use the latest patch version of Neo4j and set up a process to update it when security advisories are
published.

328

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#load_csv

Chapter 13. Monitoring
Neo4j provides mechanisms for continuous analysis through the output of metrics as well as the
inspection and management of currently-executing queries.

Logs can be harvested for continuous analysis, or for specific investigations. Facilities are available for
producing security event logs as well as query logs. The query management functionality is provided for
specific investigations into query performance. Monitoring features are also provided for ad-hoc analysis of
a Causal Cluster.

This chapter describes the following:

• Metrics

◦ Expose metrics

◦ Metrics reference

• Logging

• Query management

◦ List all running queries

◦ List all active locks for a query

◦ Terminate multiple queries

◦ Terminate a single query

• Transaction management

◦ Configure transaction timeout

◦ Configure lock acquisition timeout

◦ List all running transactions

• Connection management

◦ List all network connections

◦ Terminate multiple network connections

◦ Terminate a single network connection

• Background job management

◦ Listing active background jobs

◦ Listing failed job executions

• Monitoring a Causal Cluster

◦ Procedures for monitoring a Causal Cluster

◦ Endpoints for status information

• Monitoring the state of individual databases

329

13.1. Metrics
This section describes the following:

• Types of metrics

◦ Global metrics

◦ Database metrics

• Expose metrics

◦ Enable metrics logging

◦ Graphite

◦ Prometheus

◦ CSV files

◦ JMX MBeans

• Metrics reference

◦ General-purpose metrics

◦ Metrics specific to Causal Clustering

◦ Java Virtual Machine metrics

13.2. Types of metrics
Neo4j provides a built-in metrics subsystem. Reported metrics can be queried via JMX, retrieved from CSV
files, or consumed by third-party monitoring tools.

Neo4j has the following types of metrics:

• Global - covers the whole Neo4j DBMS.

• Per database - covers an individual database.

The metrics fall into one of the following categories:

• Gauge — shows an instantaneous reading of a particular value.

• Counter — shows an accumulated value.

• Histogram — shows the distribution of values.

13.2.1. Global metrics

Global metrics cover the whole database management system, and represents the status of the system as
a whole.

Global metrics have the following name format: <user-configured-prefix>.<metric-name> if
metrics.namespaces.enabled is false, or <user-configured-prefix>.dbms.<metric-name> if the setting is
true. The <user-configured-prefix> can be configured with the metrics.prefix configuration setting.

330

Metrics of this type are reported as soon as the database management system is available. For example, all
JVM related metrics are global. In particular, the neo4j.vm.thread.count metric has a default user-
configured-prefix neo4j and the metric name is vm.thread.count.

By default, global metrics include:

• Page cache metrics

• GC metrics

• Thread metrics

• Memory pool metrics

• Memory buffers metrics

• File descriptor metrics

• Database operation metrics

• Bolt metrics

• Web Server metrics

13.2.2. Database metrics

Each database metric is reported for a particular database only. Database metrics are only available during
the lifetime of the database. When a database becomes unavailable, all of its metrics become unavailable
also.

Database metrics have the following name format: <user-configured-prefix>.<database-name>.<metric-
name> if metrics.namespaces.enabled is false, or <user-configured-prefix>.database.<database-
name>.<metric-name> if the setting is true. The <user-configured-prefix> can be configured with the
metrics.prefix configuration setting.

For example, any transaction metric is a database metric. In particular, the
neo4j.mydb.transaction.started metric has a default user-configured-prefix neo4j and it is a metric for
the mydb database.

By default, database metrics include:

• Transaction metrics

• Checkpoint metrics

• Log rotation metrics

• Database data metrics

• Cypher metrics

• Causal clustering metrics

13.2.3. Expose metrics

331

Enable metrics logging

The metrics that are enabled by default have been changed in the 4.2 release.

Any specific metrics that you want to be enabled must be specified in the
metrics.filter.

By default, metrics logging into CSV files is enabled. A subset of metrics are enabled once
metrics.enabled=true is set, and you can use the metrics.filter setting to select the specific metrics you
want to enable.

The metrics.filter should be specified as a comma separated list of globbing patterns. For example,
check_point,neo4j.dbms.page_cache.evictions will enable all checkpoint metrics and the pagecache
eviction metric. When specifying a complete metric name, you should take into account whether
metrics.namespaces.enabled is set:

Setting for enabling all supported metrics.
metrics.enabled=true

Setting for enabling clear separation between global and database metrics.
metrics.namespaces.enabled=true

Setting for exposing metrics. Should be specified as a comma separated list of globbing patterns.
metrics.filter=*causal_clustering*,*check_point*,neo4j.dbms.page_cache.evictions

Graphite

Send metrics to Graphite or any monitoring tool based on the Graphite protocol.

Add the following settings to neo4j.conf in order to enable integration with Graphite:

Enable the Graphite integration. Default is 'false'.
metrics.graphite.enabled=true
The IP and port of the Graphite server on the format <hostname or IP address>:<port number>.
The default port number for Graphite is 2003.
metrics.graphite.server=localhost:2003
How often to send data. Default is 30 seconds.
metrics.graphite.interval=30s
Prefix for Neo4j metrics on Graphite server.
metrics.prefix=Neo4j_1

Start Neo4j and connect to Graphite via a web browser in order to monitor your Neo4j metrics.

If you configure the Graphite server to be a hostname or DNS entry you should be aware
that the JVM resolves hostnames to IP addresses and by default caches the result
indefinitely for security reasons. This is controlled by the value of
networkaddress.cache.ttl in the JVM Security properties. See https://docs.oracle.com/
javase/8/docs/technotes/guides/net/properties.html for more information.

Prometheus

Publish metrics for polling as Prometheus endpoint.

332

https://graphiteapp.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/net/properties.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/properties.html
https://prometheus.io/

Add the following settings to neo4j.conf in order to enable the Prometheus endpoint.

Enable the Prometheus endpoint. Default is 'false'.
metrics.prometheus.enabled=true
The IP and port the endpoint will bind to in the format <hostname or IP address>:<port number>.
The default is localhost:2004.
metrics.prometheus.endpoint=localhost:2004

When Neo4j is fully started, a Prometheus endpoint will be available at the configured address.

You should never expose the Prometheus endpoint directly to the Internet. If security is
of paramount importance, you should set metrics.prometheus.endpoint=localhost:2004
and configure a reverse HTTP proxy on the same machine that handles the
authentication, SSL, caching, etc.

If you can afford to send unencrypted metrics within the internal network, such as
metrics.prometheus.endpoint=10.0.0.123:2004, all servers within the same netmask will be able to
access it.

If you specify anything more permissible, such as metrics.prometheus.endpoint=0.0.0.0:2004, you should
have a firewall rule to prevent any unauthorized access. Data in transit will still not be encrypted, so it
should never go other any insecure networks.

CSV files

Export metrics to CSV files.

Add the following settings to neo4j.conf in order to enable export of metrics into local .CSV files:

Enable the CSV exporter. Default is 'true'.
metrics.csv.enabled=true
Directory path for output files.
Default is a "metrics" directory under NEO4J_HOME.
#dbms.directories.metrics='/local/file/system/path'
How often to store data. Default is 30 seconds.
metrics.csv.interval=30s
The maximum number of CSV files that will be saved. Default is 7.
metrics.csv.rotation.keep_number=7
The file size at which the csv files will auto-rotate. Default is 10M.
metrics.csv.rotation.size=10M
Compresses the metric archive files.
metrics.csv.rotation.compression=zip

metrics.csv.rotation.compression selects the compression scheme to use on the files after rotation. Since
CSV files are highly compressible, it is recommended to enable compression of the files to save disk space.

JMX MBeans

Expose metrics over JMX MBeans.

In version 4.2.2 and later, metrics via JMX are exposed by default. In version 4.2.0 and 4.2.1, you can
enable them by adding the following setting to neo4j.conf:

333

Enable settings export via JMX.
metrics.jmx.enabled=true

For more information about accessing and adjusting the metrics, see The Java Reference Guide → JMX
metrics.

13.2.4. Metrics reference

General-purpose metrics

Table 50. Bolt metrics

Name Description

<prefix>.bolt.session
s_started

The total number of Bolt sessions started since this instance started. This includes both succeeded
and failed sessions (deprecated, use connections_opened instead). (counter)

<prefix>.bolt.connect
ions_opened

The total number of Bolt connections opened since this instance started. This includes both
succeeded and failed connections. (counter)

<prefix>.bolt.connect
ions_closed

The total number of Bolt connections closed since this instance started. This includes both properly
and abnormally ended connections. (counter)

<prefix>.bolt.connect
ions_running

The total number of Bolt connections currently being executed. (gauge)

<prefix>.bolt.connect
ions_idle

The total number of Bolt connections sitting idle. (gauge)

<prefix>.bolt.message
s_received

The total number of messages received via Bolt since this instance started. (counter)

<prefix>.bolt.message
s_started

The total number of messages that began processing since this instance started. This is different
from messages received in that this counter tracks how many of the received messages havebeen
taken on by a worker thread. (counter)

<prefix>.bolt.message
s_done

The total number of messages that completed processing since this instance started. This includes
successful, failed and ignored Bolt messages. (counter)

<prefix>.bolt.message
s_failed

The total number of messages that failed processing since this instance started. (counter)

<prefix>.bolt.accumul
ated_queue_time

The accumulated time messages have spent waiting for a worker thread. (counter)

<prefix>.bolt.accumul
ated_processing_time

The accumulated time worker threads have spent processing messages. (counter)

Table 51. Database checkpointing metrics

Name Description

<prefix>.check_point.
events

The total number of check point events executed so far. (counter)

<prefix>.check_point.
total_time

The total time, in milliseconds, spent in check pointing so far. (counter)

<prefix>.check_point.
duration

The duration, in milliseconds, of the last check point event. (gauge)

Table 52. Cypher metrics

334

https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#jmx_metrics
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#jmx_metrics
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#jmx_metrics
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#jmx_metrics

Name Description

<prefix>.cypher.repla
n_events

The total number of times Cypher has decided to re-plan a query. (counter)

<prefix>.cypher.repla
n_wait_time

The total number of seconds waited between query replans. (counter)

Table 53. Database data count metrics

Name Description

<prefix>.neo4j.count.
relationship

The total number of relationships in the database. (gauge)

<prefix>.neo4j.count.
node

The total number of nodes in the database. (gauge)

Table 54. Database neo4j pools metrics

Name Description

<prefix>.pool.<pool>.
<database>.used_heap

Used or reserved heap memory in bytes. (gauge)

<prefix>.pool.<pool>.
<database>.used_nativ
e

Used or reserved native memory in bytes. (gauge)

<prefix>.pool.<pool>.
<database>.total_used

Sum total used heap and native memory in bytes. (gauge)

<prefix>.pool.<pool>.
<database>.total_size

Sum total size of capacity of the heap and/or native memory pool. (gauge)

<prefix>.pool.<pool>.
<database>.free

Available unused memory in the pool, in bytes. (gauge)

Table 55. Database operation count metrics

Name Description

<prefix>.db.operation
.count.create

Count of successful database create operations. (counter)

<prefix>.db.operation
.count.start

Count of successful database start operations. (counter)

<prefix>.db.operation
.count.stop

Count of successful database stop operations. (counter)

<prefix>.db.operation
.count.drop

Count of successful database drop operations. (counter)

<prefix>.db.operation
.count.failed

Count of failed database operations. (counter)

<prefix>.db.operation
.count.recovered

Count of database operations which failed previously but have recovered. (counter)

Table 56. Database data metrics

Name Description

<prefix>.ids_in_use.r
elationship_type

The total number of different relationship types stored in the database. (gauge)

335

Name Description

<prefix>.ids_in_use.p
roperty

The total number of different property names used in the database. (gauge)

<prefix>.ids_in_use.r
elationship

The total number of relationships stored in the database. (gauge)

<prefix>.ids_in_use.n
ode

The total number of nodes stored in the database. (gauge)

Table 57. Global neo4j pools metrics

Name Description

<prefix>.dbms.pool.<p
ool>.used_heap

Used or reserved heap memory in bytes. (gauge)

<prefix>.dbms.pool.<p
ool>.used_native

Used or reserved native memory in bytes. (gauge)

<prefix>.dbms.pool.<p
ool>.total_used

Sum total used heap and native memory in bytes. (gauge)

<prefix>.dbms.pool.<p
ool>.total_size

Sum total size of capacity of the heap and/or native memory pool. (gauge)

<prefix>.dbms.pool.<p
ool>.free

Available unused memory in the pool, in bytes. (gauge)

Table 58. Database page cache metrics

Name Description

<prefix>.page_cache.e
viction_exceptions

The total number of exceptions seen during the eviction process in the page cache. (counter)

<prefix>.page_cache.f
lushes

The total number of page flushes executed by the page cache. (counter)

<prefix>.page_cache.m
erges

The total number of page merges executed by the page cache. (counter)

<prefix>.page_cache.u
npins

The total number of page unpins executed by the page cache. (counter)

<prefix>.page_cache.p
ins

The total number of page pins executed by the page cache. (counter)

<prefix>.page_cache.e
victions

The total number of page evictions executed by the page cache. (counter)

<prefix>.page_cache.p
age_faults

The total number of page faults happened in the page cache. (counter)

<prefix>.page_cache.h
its

The total number of page hits happened in the page cache. (counter)

<prefix>.page_cache.h
it_ratio

The ratio of hits to the total number of lookups in the page cache. (gauge)

<prefix>.page_cache.u
sage_ratio

The ratio of number of used pages to total number of available pages. (gauge)

<prefix>.page_cache.b
ytes_read

The total number of bytes read by the page cache. (counter)

<prefix>.page_cache.b
ytes_written

The total number of bytes written by the page cache. (counter)

336

Name Description

<prefix>.page_cache.i
ops

The total number of IO operations performed by page cache.

<prefix>.page_cache.t
hrottled.times

The total number of times page cache flush IO limiter was throttled during ongoing IO operations.

<prefix>.page_cache.t
hrottled.millis

The total number of millis page cache flush IO limiter was throttled during ongoing IO operations.

Table 59. Database store size metrics

Name Description

<prefix>.store.size.t
otal

The total size of the database and transaction logs, in bytes. (gauge)

<prefix>.store.size.d
atabase

The size of the database, in bytes. (gauge)

Table 60. Database transaction log metrics

Name Description

<prefix>.log.rotation
_events

The total number of transaction log rotations executed so far. (counter)

<prefix>.log.rotation
_total_time

The total time, in milliseconds, spent in rotating transaction logs so far. (counter)

<prefix>.log.rotation
_duration

The duration, in milliseconds, of the last log rotation event. (gauge)

<prefix>.log.appended
_bytes

The total number of bytes appended to transaction log. (counter)

Table 61. Database transaction metrics

Name Description

<prefix>.transaction.
started

The total number of started transactions. (counter)

<prefix>.transaction.
peak_concurrent

The highest peak of concurrent transactions. (counter)

<prefix>.transaction.
active

The number of currently active transactions. (gauge)

<prefix>.transaction.
active_read

The number of currently active read transactions. (gauge)

<prefix>.transaction.
active_write

The number of currently active write transactions. (gauge)

<prefix>.transaction.
committed

The total number of committed transactions. (counter)

<prefix>.transaction.
committed_read

The total number of committed read transactions. (counter)

<prefix>.transaction.
committed_write

The total number of committed write transactions. (counter)

<prefix>.transaction.
rollbacks

The total number of rolled back transactions. (counter)

337

Name Description

<prefix>.transaction.
rollbacks_read

The total number of rolled back read transactions. (counter)

<prefix>.transaction.
rollbacks_write

The total number of rolled back write transactions. (counter)

<prefix>.transaction.
terminated

The total number of terminated transactions. (counter)

<prefix>.transaction.
terminated_read

The total number of terminated read transactions. (counter)

<prefix>.transaction.
terminated_write

The total number of terminated write transactions. (counter)

<prefix>.transaction.
last_committed_tx_id

The ID of the last committed transaction. (counter)

<prefix>.transaction.
last_closed_tx_id

The ID of the last closed transaction. (counter)

<prefix>.transaction.
tx_size_heap

The transactions' size on heap in bytes. (histogram)

<prefix>.transaction.
tx_size_native

The transactions' size in native memory in bytes. (histogram)

Table 62. Server metrics

Name Description

<prefix>.server.threa
ds.jetty.idle

The total number of idle threads in the jetty pool. (gauge)

<prefix>.server.threa
ds.jetty.all

The total number of threads (both idle and busy) in the jetty pool. (gauge)

338

Chapter 14. Metrics specific to Causal
Clustering
Table 63. CatchUp Metrics

Name Description

<prefix>.causal_clust
ering.catchup.tx_pull
_requests_received

TX pull requests received from read replicas. (counter)

Table 64. Discovery core metrics

Name Description

<prefix>.causal_clust
ering.core.discovery.
replicated_data

Size of replicated data structures. (gauge)

<prefix>.causal_clust
ering.core.discovery.
cluster.members

Discovery cluster member size. (gauge)

<prefix>.causal_clust
ering.core.discovery.
cluster.unreachable

Discovery cluster unreachable size. (gauge)

<prefix>.causal_clust
ering.core.discovery.
cluster.converged

Discovery cluster convergence. (gauge)

Table 65. Raft core metrics

Name Description

<prefix>.causal_clust
ering.core.append_ind
ex

Append index of the RAFT log. (gauge)

<prefix>.causal_clust
ering.core.commit_ind
ex

Commit index of the RAFT log. (gauge)

<prefix>.causal_clust
ering.core.applied_in
dex

Applied index of the RAFT log. (gauge)

<prefix>.causal_clust
ering.core.term

RAFT Term of this server. (gauge)

<prefix>.causal_clust
ering.core.tx_retries

Transaction retries. (counter)

<prefix>.causal_clust
ering.core.is_leader

Is this server the leader? (gauge)

<prefix>.causal_clust
ering.core.in_flight_
cache.total_bytes

In-flight cache total bytes. (gauge)

<prefix>.causal_clust
ering.core.in_flight_
cache.max_bytes

In-flight cache max bytes. (gauge)

339

Name Description

<prefix>.causal_clust
ering.core.in_flight_
cache.element_count

In-flight cache element count. (gauge)

<prefix>.causal_clust
ering.core.in_flight_
cache.max_elements

In-flight cache maximum elements. (gauge)

<prefix>.causal_clust
ering.core.in_flight_
cache.hits

In-flight cache hits. (counter)

<prefix>.causal_clust
ering.core.in_flight_
cache.misses

In-flight cache misses. (counter)

<prefix>.causal_clust
ering.core.message_pr
ocessing_delay

Delay between RAFT message receive and process. (gauge)

<prefix>.causal_clust
ering.core.message_pr
ocessing_timer

Timer for RAFT message processing. (counter, histogram)

<prefix>.causal_clust
ering.core.replicatio
n_new

Raft replication new request count. (counter)

<prefix>.causal_clust
ering.core.replicatio
n_attempt

Raft replication attempt count. (counter)

<prefix>.causal_clust
ering.core.replicatio
n_fail

Raft Replication fail count. (counter)

<prefix>.causal_clust
ering.core.replicatio
n_maybe

Raft Replication maybe count. (counter)

<prefix>.causal_clust
ering.core.replicatio
n_success

Raft Replication success count. (counter)

<prefix>.causal_clust
ering.core.last_leade
r_message

Time elapsed since last message from leader in milliseconds. (gauge)

Table 66. Read Replica Metrics

Name Description

<prefix>.causal_clust
ering.read_replica.pu
ll_updates

The total number of pull requests made by this instance. (counter)

<prefix>.causal_clust
ering.read_replica.pu
ll_update_highest_tx_
id_requested

The highest transaction id requested in a pull update by this instance. (counter)

<prefix>.causal_clust
ering.read_replica.pu
ll_update_highest_tx_
id_received

The highest transaction id that has been pulled in the last pull updates by this instance. (counter)

340

Chapter 15. Java Virtual Machine Metrics
These metrics are environment dependent and they may vary on different hardware and with JVM
configurations. Typically these metrics will show information about garbage collections (for example the
number of events and time spent collecting), memory pools and buffers, and finally the number of active
threads running.

Table 67. JVM file descriptor metrics.

Name Description

<prefix>.vm.file.desc
riptors.count

The current number of open file descriptors. (gauge)

<prefix>.vm.file.desc
riptors.maximum

The maximum number of open file descriptors. (gauge)

Table 68. GC metrics.

Name Description

<prefix>.vm.gc.time.<
gc>

Accumulated garbage collection time in milliseconds. (counter)

<prefix>.vm.gc.count.
<gc>

Total number of garbage collections. (counter)

Table 69. JVM Heap metrics.

Name Description

<prefix>.vm.heap.comm
itted

Amount of memory (in bytes) guaranteed to be available for use by the JVM. (gauge)

<prefix>.vm.heap.used Amount of memory (in bytes) currently used. (gauge)

<prefix>.vm.heap.max Maximum amount of heap memory (in bytes) that can be used. (gauge)

Table 70. JVM memory buffers metrics.

Name Description

<prefix>.vm.memory.bu
ffer.<bufferpool>.cou
nt

Estimated number of buffers in the pool. (gauge)

<prefix>.vm.memory.bu
ffer.<bufferpool>.use
d

Estimated amount of memory used by the pool. (gauge)

<prefix>.vm.memory.bu
ffer.<bufferpool>.cap
acity

Estimated total capacity of buffers in the pool. (gauge)

Table 71. JVM memory pools metrics.

Name Description

<prefix>.vm.memory.po
ol.<pool>

Estimated number of buffers in the pool. (gauge)

Table 72. JVM pause time metrics.

341

Name Description

<prefix>.vm.pause_tim
e

Accumulated detected VM pause time. (gauge)

Table 73. JVM threads metrics.

Name Description

<prefix>.vm.thread.co
unt

Estimated number of active threads in the current thread group. (gauge)

<prefix>.vm.thread.to
tal

The total number of live threads including daemon and non-daemon threads. (gauge)

15.1. Logging

15.1.1. Log files Enterprise edition

Neo4j provides logs for monitoring purposes. The root directory where the general log files are located is
configured by dbms.directories.logs. The default format of the log files is configured by
dbms.logs.default_format. For more information on where files are located, see File locations.

The following table describes the Neo4j general log files and the information they contain.

Table 74. Neo4j logs for monitoring

Filename Description

neo4j.log The user log, where general information about
Neo4j is written. Not written for Debian and RPM
packages.

debug.log The debug log, log information useful when debugging
problems with Neo4j.

http.log The HTTP log, log for the HTTP API.

gc.log The garbage collection log, logging provided by the JVM.

query.log The query log, log of executed queries that takes longer than
a specified threshold. Enterprise

security.log The security log, log of security events. Enterprise

service-error.log The windows service log, log of errors encountered when
installing or running the Windows service. Windows

Table 75. Log paths

Configuration setting Default value Description

dbms.directories.logs logs Path of the logs directory.

dbms.logs.user.path neo4j.log Path to the user log file.

dbms.logs.debug.path debug.log Path to the debug log file.

342

Configuration setting Default value Description

dbms.logs.http.path http.log Path to HTTP log file.

dbms.logs.query.path query.log Path to the query log file.

dbms.logs.security.path security.log Path to the security log file.

15.1.2. Log format

Table 76. Log formats

Configuration setting Default value Description

dbms.logs.default_format PLAIN The default log format for all logs.
Valid options PLAIN or JSON.

dbms.logs.user.format Inherits from dbms.logs.default_format The log format for the user log.
Valid options PLAIN or JSON.

dbms.logs.query.format Inherits from dbms.logs.default_format The log format for the query log.
Valid options PLAIN or JSON.

dbms.logs.debug.format Inherits from dbms.logs.default_format The log format for the debug log.
Valid options PLAIN or JSON.

dbms.logs.security.format Inherits from dbms.logs.default_format The log format for the security
log. Valid options PLAIN or JSON.

15.1.3. User log

Table 77. User log configurations

The user log configuration Default value Description

dbms.logs.user.format Inherits from dbms.logs.default_format The log format for the user log.

dbms.logs.user.rotation.delay 5m The minimum time interval after last
rotation of the user log, before it may be
rotated again.

dbms.logs.user.rotation.keep_number 7 The maximum number of history files for
the user log.

dbms.logs.user.rotation.size 0B The threshold size for rotation of the
user log. If set to 0 log rotation is
disabled.

dbms.logs.user.stdout_enabled true Send user logs to the process stdout. If
this is disabled then logs will instead be
sent to the user log (neo4j.log).

343

The following information is available in the JSON format:

Table 78. JSON format log entries

Name Description

time The timestamp of the log message.

level The log level.

message The log message.

stacktrace Included if there is a stacktrace associated with the log
message.

15.1.4. Debug log

Table 79. Debug log configurations

The debug log configuration Default value Description

dbms.logs.debug.level INFO Log level threshold for the debug log.

dbms.logs.debug.format Inherits from dbms.logs.default_format The log format for the debug log.

dbms.logs.debug.rotation.delay 5m The minimum time interval after last
rotation of the debug log, before it may
be rotated again.

dbms.logs.debug.rotation.keep_number 7 The maximum number of history files for
the debug log.

dbms.logs.debug.rotation.size 20M The threshold size for rotation of the
debug log.

The following table lists all message types raised by Neo4j and their severity level:

Table 80. Message types

Message type Severity level Description

DEBUG Low severity Report details on the raised errors and
possible solutions.

INFO Low severity Report status information and errors
that are not severe.

WARN Low severity Report errors that need attention but
are not severe.

ERROR High severity Report errors that prevent the Neo4j
server from running and must be
addressed immediately.

FATAL High severity An event occurs that brings the
application to a halt. No work continues.

To set the log level threshold for the debug log use the configuration setting dbms.logs.debug.level.

344

The following information is available in the JSON format:

Table 81. JSON format log entries

Name Description

time The timestamp of the log message.

level The log level.

category The class the message was logged from.

message The log message.

stacktrace Included if there is a stacktrace associated with the log
message.

15.1.5. Garbage collection log

Table 82. Garbage collection log configurations

The garbage collection log configuration Default value Description

dbms.logs.gc.enabled false Enable garbage collection logging.

dbms.logs.gc.options Garbage collection logging options.

dbms.logs.gc.rotation.keep_number 0 The maximum number of history files for
the garbage collection log.

dbms.logs.gc.rotation.size The threshold size for rotation of the
garbage collection log.

15.1.6. HTTP log

Table 83. HTTP log configurations

The HTTP log configuration Default value Description

dbms.logs.http.enabled false Enable HTTP logging.

dbms.logs.http.rotation.keep_number 5 The maximum number of history files for
the HTTP log.

dbms.logs.http.rotation.size 20M The threshold size for rotation of the
HTTP log.

15.1.7. Security log Enterprise edition

Neo4j provides security event logging that records all security events.

For native user management, the following actions are recorded:

• Login attempts - per default both successful and unsuccessful logins are recorded.

• All administration commands run towards the system database.

• All security procedures run towards the system database.

345

• Authorization failures from role based access control.

Security log configuration

Rotation of the security events log can be configured in the neo4j.conf configuration file.

The following configuration settings are available for the security log:

Table 84. Security log configurations

The security log configuration Default value Description

dbms.logs.security.level INFO Security log level threshold.

dbms.logs.security.format Inherits from dbms.logs.default_format The log format for the security log.

dbms.logs.security.path security.log The name of the security log file.

dbms.logs.security.rotation.size 20M Sets the file size at which the security
event log will auto-rotate.

dbms.logs.security.rotation.delay 300s The minimum time interval after the last
security log rotation occurred, before the
security log may be rotated again.

dbms.logs.security.rotation.keep_num
ber

7 The number of historical log files kept.

If using LDAP as the authentication method, some cases of LDAP misconfiguration will also be logged, as
well as LDAP server communication events and failures.

If many programmatic interactions are expected, it is advised to disable the logging of successful logins.
Logging of successful logins is disabled by setting the dbms.security.log_successful_authentication
parameter in the neo4j.conf file:

dbms.security.log_successful_authentication=false

The following information is available in the JSON format:

Table 85. JSON format log entries

Name Description

time The timestamp of the log message.

level The log level.

type Will always be 'security'.

source Connection details.

database The database name the command is executed on.

username The user connected to the security event.

message The log message.

346

Name Description

stacktrace Included if there is a stacktrace associated with the log
message.

Example of the security log in plain format:

2019-12-09 13:45:00.796+0000 INFO [AsyncLog @ 2019-12-09 ...] [johnsmith]: logged in
2019-12-09 13:47:53.443+0000 ERROR [AsyncLog @ 2019-12-09 ...] [johndoe]: failed to log in: invalid
principal or credentials
2019-12-09 13:48:28.566+0000 INFO [AsyncLog @ 2019-12-09 ...] [johnsmith]: CREATE USER janedoe SET
PASSWORD '******' CHANGE REQUIRED
2019-12-09 13:48:32.753+0000 INFO [AsyncLog @ 2019-12-09 ...] [johnsmith]: CREATE ROLE custom
2019-12-09 13:49:11.880+0000 INFO [AsyncLog @ 2019-12-09 ...] [johnsmith]: GRANT ROLE custom TO janedoe
2019-12-09 13:49:34.979+0000 INFO [AsyncLog @ 2019-12-09 ...] [johnsmith]: GRANT TRAVERSE ON GRAPH *
NODES A, B (*) TO custom
2019-12-09 13:49:37.053+0000 INFO [AsyncLog @ 2019-12-09 ...] [johnsmith]: DROP USER janedoe

15.1.8. Query log Enterprise edition

Neo4j can be configured to log queries executed in the database.

Query logging is enabled by default and is controlled by the setting dbms.logs.query.enabled.

Configuration options are:

Table 86. Query log enabled setting

Option Description

OFF Will completely disable logging.

INFO Will log at the end of queries that have either
succeeded or failed. The
dbms.logs.query.threshold parameter is used to
determine the threshold for logging a query. If the
execution of a query takes a longer time than this
threshold, it will be logged. Setting the threshold to
0s will result in all queries being logged.

VERBOSE Will log all queries at both start and finish,
regardless of dbms.logs.query.threshold. Default

Query log configuration

The name of the query log file is query.log by default, (see dbms.logs.query.path).

Rotation of the query log can be configured in the neo4j.conf configuration file.

The following configuration settings are available for the query log file:

Table 87. Query log configurations

347

The query log configuration Default value Description

dbms.logs.query.allocation_logging_e
nabled

true Log allocated bytes for the
executed queries being logged.
The logged number is cumulative
over the duration of the query, i.e.
for memory intense or long-
running queries the value may be
larger than the current memory
allocation. Requires
dbms.track_query_allocation=tr
ue.

dbms.logs.query.early_raw_logging_en
abled

false Log query text and parameters
without obfuscating passwords.
This allows queries to be logged
earlier before parsing starts.

dbms.logs.query.enabled VERBOSE Log executed queries.

dbms.logs.query.format Inherits from dbms.logs.default_format The log format for the query log.
For logging detailed time
information requires
dbms.track_query_cpu_time=true.

dbms.logs.query.max_parameter_length 2147483647 This configuration option allows
the administrator to set a
maximum length of parameter to
include in the log. Any parameter
longer than this will be truncated
to the defined length and
appended with This applies
to each parameter in the query.

348

The query log configuration Default value Description

dbms.logs.query.obfuscate_literals false If true, obfuscates all literals of
the query before writing to the
log. This is useful when Cypher
queries may expose sensitive
information.

Node labels,
relationship
types and map
property keys
are still shown.
Changing the
setting will not
affect queries
that are cached.
So, if you want
the switch to
have immediate
effect, you must
also clear the
query cache;
CALL
db.clearQueryC
aches().

This does not
obfuscate
literals in
parameters; if
parameter
values are not
required in the
log, set
dbms.logs.quer
y.parameter_lo
gging_enabled=
false.

dbms.logs.query.page_logging_enabled false Log page hits and page faults for the
executed queries being logged.

349

The query log configuration Default value Description

dbms.logs.query.parameter_full_entit
ies

false Log complete parameter entities
including ID, labels or relationship
type, and properties. If false, only
the entity ID will be logged. This
only takes effect if
dbms.logs.query.parameter_logg
ing_enabled=true.

dbms.logs.query.parameter_logging_en
abled

true Log parameters for the executed queries
being logged.

dbms.logs.query.plan_description_ena
bled

false This configuration option allows
the administrator to log the query
plan each query. The query plan
shows up as a description table,
useful for debugging purposes.
Every time a Cypher query is run,
it generates and uses a plan for
the execution of the code. The
plan generated can be affected by
changes in the database (such as
a new index being added). Where
this happens, it is not possible to
see historically what plan was
used for the original query
execution.

Enabling this
option will have
a performance
impact on the
database, due
to the cost of
preparing and
including the
plan in the
query log. It is
not
recommended
for normal use.

dbms.logs.query.rotation.keep_number 7 The maximum number of history files for
the query log.

dbms.logs.query.rotation.size 20M The file size in bytes at which the query
log will auto-rotate.

350

The query log configuration Default value Description

dbms.logs.query.runtime_logging_enab
led

true Logs which runtime that was used to
run the query.

dbms.logs.query.threshold 0s If the execution of query takes a
longer time than this threshold,
the query is logged once
completed (provided query
logging is set to INFO). A
threshold of 0 seconds, will log all
queries.

dbms.logs.query.time_logging_enabled false Log detailed time information for
the executed queries being
logged. Requires
dbms.track_query_cpu_time=true.

dbms.logs.query.transaction.enabled OFF For administrators who wish to
be able to track the start and end
of a transaction within the query
log. Log entries are written to the
query log. As well as being able to
identify the transaction ID for a
specific query in the log file, there
is a new capability to be able to
include entries in the query log for
the start and end of a transaction.
Similar to query logging, there are
two new configuration options
which allow the administrator to
choose a level of logging (OFF,
INFO, VERBOSE) and if INFO is
selected, a time which must be
exceeded before the log is written
(dbms.logs.query.transaction.t
hreshold).

351

The query log configuration Default value Description

dbms.logs.query.transaction.threshol
d

0s If the transaction is open for more
time than this threshold (a
duration of time), the transaction
is logged once completed
provided transaction logging is
set to INFO. Defaults to 0
seconds, that is all transactions
are logged. This can be useful
identifying where there is a
significant time lapse after query
execution and transaction
commits, especially in
performance analysis around
locking.

dbms.logs.query.transaction_id.enabl
ed

false This configuration option allows
the administrator to request the
transaction ID is included with the
query ID in all query log entries.
Queries are executed as part of a
transaction. For simple queries,
there is usually a 1:1 correlation.
However, in application usage, a
transaction could encompass
many queries, especially if retries
are required in the event of
connection instability.

352

Example 76. Configure for simple query logging

In this example we set query logging to INFO, but leave all other query log parameters at their
defaults.

dbms.logs.query.enabled=INFO

Below is an example of the query log with this basic configuration:

2017-11-22 14:31 ... INFO 9 ms: bolt-session bolt johndoe neo4j-javascript/1.4.1
client/127.0.0.1:59167 ...
2017-11-22 14:31 ... INFO 0 ms: bolt-session bolt johndoe neo4j-javascript/1.4.1
client/127.0.0.1:59167 ...
2017-11-22 14:32 ... INFO 3 ms: server-session http 127.0.0.1 /db/data/cypher neo4j - CALL
dbms.procedures() - {}
2017-11-22 14:32 ... INFO 1 ms: server-session http 127.0.0.1 /db/data/cypher neo4j - CALL
dbms.showCurrentUs...
2017-11-22 14:32 ... INFO 0 ms: bolt-session bolt johndoe neo4j-javascript/1.4.1
client/127.0.0.1:59167 ...
2017-11-22 14:32 ... INFO 0 ms: bolt-session bolt johndoe neo4j-javascript/1.4.1
client/127.0.0.1:59167 ...
2017-11-22 14:32 ... INFO 2 ms: bolt-session bolt johndoe neo4j-javascript/1.4.1
client/127.0.0.1:59261 ...

Example 77. Configure for query logging with more details

In this example we turn query logging on, and also enable some additional logging.

dbms.logs.query.parameter_logging_enabled=true
dbms.logs.query.time_logging_enabled=true
dbms.logs.query.allocation_logging_enabled=true
dbms.logs.query.page_logging_enabled=true

Below is an example of the query log with these configuration parameters enabled:

2017-11-22 12:38 ... INFO 3 ms: bolt-session bolt johndoe neo4j-javascript/1.4.1
...
2017-11-22 22:38 ... INFO 61 ms: (planning: 0, cpu: 58, waiting: 0) - 6164496 B - 0 page hits, 1
page faults ...
2017-11-22 12:38 ... INFO 78 ms: (planning: 40, cpu: 74, waiting: 0) - 6347592 B - 0 page hits, 0
page faults ...
2017-11-22 12:38 ... INFO 44 ms: (planning: 9, cpu: 25, waiting: 0) - 1311384 B - 0 page hits, 0
page faults ...
2017-11-22 12:38 ... INFO 6 ms: (planning: 2, cpu: 6, waiting: 0) - 420872 B - 0 page hits, 0 page
faults - ...

Attach metadata to a transaction

You can attach metadata to a transaction and have it printed in the query log, using the built-in procedure
tx.setMetaData.

Neo4j Drivers also support attaching metadata to a transaction. For more information,
see the respective Driver’s manual.

353

Every graph-app should follow a convention for passing metadata with the queries that it sends to Neo4j:

{
 app: "neo4j-browser_v4.3.0", ①
 type: "system" ②
}

① app could be a user-agent styled name plus version.

② type could be one of:

• system — a query automatically run by the app.

• user-direct — a query the user directly submitted to/through the app.

• user-action — a query resulting from an action the user performed.

• user-transpiled — a query that has been derived from the user input.

This is typically done programmatically but can also be used with the Neo4j dev tools.
In general, you start a transaction on a user database and attach a list of metadata to it by calling
tx.setMetaData. You can also use the procedure CALL tx.getMetaData() to show the metadata of the
current transaction. These examples use the MovieGraph dataset from the Neo4j Browser guide.

Example 78. Using cypher-shell, attach metadata to a transaction

neo4j@neo4j> :begin
neo4j@neo4j# CALL tx.setMetaData({app: 'neo4j-cypher-shell_v.4.3.0', type: 'user-direct', user:
'jsmith'});
0 rows
ready to start consuming query after 2 ms, results consumed after another 0 ms
neo4j@neo4j# CALL tx.getMetaData();
+--+
| metadata |
+--+
| {app: "neo4j-cypher-shell_v.4.3.0", type: "user-direct", user: "jsmith"} |
+--+

1 row
ready to start consuming query after 37 ms, results consumed after another 2 ms
neo4j@neo4j# MATCH (n:Person) RETURN n LIMIT 5;
+--+
| n |
+--+
| (:Person {name: "Keanu Reeves", born: 1964}) |
| (:Person {name: "Carrie-Anne Moss", born: 1967}) |
| (:Person {name: "Laurence Fishburne", born: 1961}) |
| (:Person {name: "Hugo Weaving", born: 1960}) |
| (:Person {name: "Lilly Wachowski", born: 1967}) |
+--+

5 rows
ready to start consuming query after 2 ms, results consumed after another 1 ms
neo4j@neo4j# :commit

Example result in the query.log file

2021-07-30 14:43:17.176+0000 INFO id:225 - 2 ms: 136 B - bolt-session bolt neo4j-cypher-
shell/v4.3.0 client/127.0.0.1:54026 server/127.0.0.1:7687> neo4j - neo4j -
MATCH (n:Person) RETURN n LIMIT 5; - {} - runtime=pipelined - {app: 'neo4j-cypher-shell_v.4.3.0',
type: 'user-direct', user: 'jsmith'}

354

https://neo4j.com/docs/browser-manual/current/visual-tour/#guides

Example 79. Using Neo4j Browser, attach metadata to a transaction

CALL tx.setMetaData({app: 'neo4j-browser_v.4.3.0', type: 'user-direct', user: 'jsmith'});
MATCH (n:Person) RETURN n LIMIT 5

Example result in the query.log file

2021-07-30 14:51:39.457+0000 INFO Query started: id:328 - 0 ms: 0 B - bolt-session bolt neo4j-
browser/v4.3.0 client/127.0.0.1:53666 server/127.0.0.1:7687> neo4j - neo4j - MATCH
(n:Person) RETURN n LIMIT 5 - {} - runtime=null - {type: 'system', app: 'neo4j-browser_v4.3.0'}

Example 80. Using Neo4j Bloom, attach metadata to a transaction

CALL tx.setMetaData({app: 'neo4j-browser_v.1.7.0', type: 'user-direct', user: 'jsmith'})
MATCH (n:Person) RETURN n LIMIT 5

Example result in the query.log file

2021-07-30 15:09:54.048+0000 INFO id:95 - 1 ms: 72 B - bolt-session bolt neo4j-bloom/v1.7.0
client/127.0.0.1:54693 server/127.0.0.1:11003> neo4j - neo4j - RETURN TRUE - {} - runtime=pipelined
- {app: 'neo4j-bloom_v1.7.0', type: 'system'}

In Neo4j Browser and Bloom, the user-provided metadata is always replaced by the
system metadata.

JSON format

The following information is available in the JSON format:

Table 88. JSON format log entries

Name Description

time The timestamp of the log message.

level The log level.

type 'query' or 'transaction'.

stacktrace Included if there is a stacktrace associated with the log
message.

If the type of the log entry is 'query', these additional fields are available:

Table 89. JSON format log entries

Name Description

event 'start', 'fail' or 'success'.

id The query id - included if dbms.logs.query.enabled is
VERBOSE.

355

Name Description

elapsedTimeMs The elapsed time in milliseconds.

planning Milliseconds spent on planning - included if
dbms.logs.query.time_logging_enabled is enabled.

cpu Milliseconds spent actively executing on the CPU - included if
dbms.logs.query.time_logging_enabled and
dbms.track_query_cpu_time=true are enabled.

waiting Milliseconds spent waiting on locks or other queries, as
opposed to actively executing this query - included if
dbms.logs.query.time_logging_enabled is enabled.

allocatedBytes Number of bytes allocated by the query - included if
dbms.logs.query.allocation_logging_enabled is enabled.

pageHits Number of page hits - included if
dbms.logs.query.page_logging_enabled is enabled.

pageFaults Number of page faults - included if
dbms.logs.query.page_logging_enabled is enabled.

source Connection details.

database The database name the query is executed on.

username The user executing the query.

query The query text.

queryParameters The query parameters - included if
dbms.logs.query.parameter_logging_enabled is enabled.

runtime The runtime used to execute the query - included if
dbms.logs.query.runtime_logging_enabled is enabled.

annotationData Metadata attached to the transaction.

failureReason Reason for failure - included when applicable.

transactionId Id of the transaction executing the query - included if
dbms.logs.query.transaction_id.enabled is enabled.

queryPlan The query plan - included if
dbms.logs.query.plan_description_enabled is enabled.

If the type of the log entry is 'transaction', these additional fields are available:

Table 90. JSON format log entries

Name Description

event 'start', 'rollback' or 'commit'.

database The database name the transaction is executed on.

username The user connected to the transaction.

transactionId Id of the transaction.

356

15.2. Query management

15.2.1. List all running queries

An administrator is able to view all queries that are currently executing within the instance. Alternatively,
the current user may view all of their own currently-executing queries.

Syntax:

CALL dbms.listQueries()

Returns:

Name Type Description

queryId String This is the ID of the query.

username String This is the username of the user who is
executing the query.

metaData Map This is any metadata associated with
the transaction.

query String This is the query itself.

parameters Map This is a map containing all the
parameters used by the query.

planner String Planner used by the query. [14]

runtime String Runtime used by the query. [15]

indexes List Indexes used by the query.

startTime String This is the time at which the query was
started.

elapsedTime String Deprecated: Use elapsedTimeMillis
instead. This is the time that has
elapsed since the query was started.

connectionDetails String Deprecated: Use requestScheme,
clientAddress,requestUri These are the
connection details pertaining to the
query.

protocol String The protocol used by connection issuing
the query.

connectionId String The ID of the connection issuing the
query. This field will be null if the query
was issued using embedded API.

clientAddress String The client address of the connection
issuing the query.

requestUri String The request URI used by the client
connection issuing the query.

357

Name Type Description

status String Status of the executing query. Possible
values: Parsing, Planning, Planned,
Running, and Waiting.

resourceInformation Map Status of the executing query.

activeLockCount Integer Count of active locks held by transaction
executing the query.

elapsedTimeMillis Integer This is the time in milliseconds that has
elapsed since the query was started.

cpuTimeMillis Integer CPU time in milliseconds that has been
actively spent executing the query. This
field will be null unless the config
parameter dbms.track_query_cpu_time
is set to true.

waitTimeMillis Integer Wait time in milliseconds that has been
spent waiting to acquire locks.

idleTimeMillis Integer Idle time in milliseconds. This field will
be null unless the config parameter
dbms.track_query_cpu_time is set to
true.

allocatedBytes Integer Estimated bytes allocated for the
executing query. For memory-intense or
long-running queries the value may be
larger than the current memory usage.
This field will be null unless the config
parameter
dbms.track_query_allocation is set to
true.

pageHits Integer Page hits occurred during the execution.

pageFaults Integer Page faults occurred during the
execution.

database String This is the name of the database the
query is executing against.

358

Example 81. Viewing queries that are currently executing

The following example shows that the user alwood is currently running dbms.listQueries() yielding
specific variables, namely queryId, username, query, elapsedTimeMillis, requestUri, status, and
database.

CALL dbms.listQueries() YIELD queryId, username, query, elapsedTimeMillis, requestUri, status,
database

╒═══════════╤═══════════╤══════════════════════════════╤════════════════════╤════════════════╤═══════
═══╤═══════════╕
│"queryId" │"username" │"query" │"elapsedTimeMillis" │"requestUri"
│"status" │"database" │
╞═══════════╪═══════════╪══════════════════════════════╪════════════════════╪════════════════╪═══════
═══╪═══════════╡
│"query-33" │"alwood" │"CALL dbms.listQueries() YIELD│1
│"127.0.0.1:7687"│"running" │"myDb" │
│ │ │ queryId, username, query, ela│ │ │
│ │
│ │ │psedTime, requestUri, status, │ │ │
│ │
│ │ │database" │ │ │
│ │
└───────────┴───────────┴──────────────────────────────┴────────────────────┴────────────────┴───────
───┴───────────┘
1 row

15.2.2. List all active locks for a query

An administrator is able to view all active locks held by the transaction executing the query with the
queryId.

Syntax:

CALL dbms.listActiveLocks(queryId)

Returns:

Name Type Description

mode String Lock mode corresponding to the
transaction.

resourceType String Resource type of the locked resource

resourceId Integer Resource id of the locked resource .

359

Example 82. Viewing active locks for a query

The following example shows the active locks held by transaction executing query with id query-614

CALL dbms.listActiveLocks("query-614")

╒════════╤══════════════╤════════════╕
│"mode" │"resourceType"│"resourceId"│
╞════════╪══════════════╪════════════╡
│"SHARED"│"SCHEMA" │0 │
└────────┴──────────────┴────────────┘
1 row

The following example shows the active locks for all currently executing queries by yielding the
queryId from dbms.listQueries procedure

CALL dbms.listQueries() YIELD queryId, query, database
CALL dbms.listActiveLocks(queryId) YIELD resourceType, resourceId, mode
RETURN queryId, query, resourceType, resourceId, mode, database

╒════════════╤══════════════════════════════╤══════════════╤════════════╤════════╤════════════╕
│"queryId" │"query" │"resourceType"│"resourceId"│"mode" │"database" │
╞════════════╪══════════════════════════════╪══════════════╪════════════╪════════╪════════════╡
│"query-614" │"match (n), (m), (o), (p), (q)│"SCHEMA" │0 │"SHARED"│"myDb" │
│ │ return count(*)" │ │ │ │ │
├────────────┼──────────────────────────────┼──────────────┼────────────┼────────┼────────────┤
│"query-684" │"CALL dbms.listQueries() YIELD│"SCHEMA" │0 │"SHARED"│"myOtherDb" │
│ │ .." │ │ │ │ │
└────────────┴──────────────────────────────┴──────────────┴────────────┴────────┴────────────┘
2 rows

15.2.3. Terminate multiple queries

An administrator is able to terminate within the instance all transactions executing a query with any of the
given query IDs. Alternatively, the current user may terminate all of their own transactions executing a
query with any of the given query IDs.

Syntax:

CALL dbms.killQueries(queryIds)

Arguments:

Name Type Description

ids List<String> This is a list of the IDs of all the queries
to be terminated.

Returns:

Name Type Description

queryId String This is the ID of the terminated query.

360

Name Type Description

username String This is the username of the user who
was executing the (now terminated)
query.

message String A message stating whether the query
was successfully found.

Example 83. Terminating multiple queries

The following example shows that the administrator has terminated the queries with IDs query-378
and query-765, started by the users joesmith and annebrown, respectively.

This command can target queries from multiple databases at the same time. In this example,
joesmith ran his query against joeDb and annebrown ran hers against anneDb.

CALL dbms.killQueries(['query-378','query-765'])

+---+
| queryId | username | message |
+---+
| "query-378" | "joesmith" | "Query found" |
| "query-765" | "annebrown" | "Query found" |
+---+
2 rows

15.2.4. Terminate a single query

An administrator is able to terminate within the instance any transaction executing the query whose ID is
provided. Alternatively, the current user may terminate their own transaction executing the query whose
ID is provided.

Syntax:

CALL dbms.killQuery(queryId)

Arguments:

Name Type Description

id String This is the ID of the query to be
terminated.

Returns:

Name Type Description

queryId String This is the ID of the terminated query.

username String This is the username of the user who
was executing the (now terminated)
query.

361

Name Type Description

message String A message stating whether the query
was successfully found.

Example 84. Terminating a single query

The following example shows that the user joesmith has terminated his query with the ID query-502.

CALL dbms.killQuery('query-502')

+---+
| queryId | username | message |
+---+
| "query-502" | "joesmith" | "Query found" |
+---+
1 row

The following example shows the output when trying to kill a query with an ID that does not exist.

CALL dbms.killQuery('query-502')

+---+
| queryId | username | message |
+---+
| "query-502" | "n/a" | "No Query found with this id" |
+---+
1 row

15.3. Transaction management

15.3.1. Configure transaction timeout

It is possible to configure Neo4j to terminate transactions whose execution time has exceeded the
configured timeout. To enable this feature, set dbms.transaction.timeout to some positive time interval
value denoting the default transaction timeout. Setting dbms.transaction.timeout to 0 — which is the
default value — disables the feature.

Example 85. Configure transaction timeout

Set the timeout to ten seconds.

dbms.transaction.timeout=10s

Configuring transaction timeout will have no effect on transactions executed with custom timeouts (e.g.
via the Java API or Neo4j Drivers), as a custom timeout will override the value set for
dbms.transaction.timeout. Please note that the timeout value can only be overridden to a value that is
smaller than that configured by dbms.transaction.timeout.

362

The transaction timeout feature is also known as the transaction guard.

15.3.2. Configure lock acquisition timeout

An executing transaction may get stuck while waiting for some lock to be released by another transaction.
A transaction in such state is not desirable, and in some cases it is better for the transaction to instead give
up and fail.

To enable this feature, set dbms.lock.acquisition.timeout to some positive time interval value denoting
the maximum time interval within which any particular lock should be acquired, before failing the
transaction. Setting dbms.lock.acquisition.timeout to 0 — which is the default value — disables the lock
acquisition timeout.

Example 86. Configure lock acquisition timeout

Set the timeout to ten seconds.

dbms.lock.acquisition.timeout=10s

15.3.3. List all running transactions

An administrator is able to view all transactions that are currently executing within the instance.
Alternatively, the current user may view all of their own currently-executing transactions.

Syntax:

CALL dbms.listTransactions()

Returns:

Name Type Description

transactionId String This is the ID of the transaction.

username String This is the username of the user who is
executing the transaction.

metaData Map This is any metadata associated with
the transaction.

startTime String This is the time at which the transaction
was started.

protocol String The protocol used by connection issuing
the transaction.

connectionId String The ID of the connection issuing the
transaction. This field will be null if the
transaction was issued using embedded
API.

363

Name Type Description

clientAddress String The client address of the connection
issuing the transaction.

requestUri String The request URI used by the client
connection issuing the transaction.

currentQueryId String This is the ID of the current query
executed by transaction.

currentQuery String This is the current query executed by
transaction.

activeLockCount Integer Count of active locks held by
transaction.

status String Status of the executing transaction.
Possible values: Running, Closing,
Blocked by: <additional info>, and
Terminated with reason: <additional
info>.

resourceInformation Map Information about what transaction is
waiting for when it is blocked.

elapsedTimeMillis Integer This is the time in milliseconds that has
elapsed since the transaction was
started.

cpuTimeMillis Integer CPU time in milliseconds that has been
actively spent executing the transaction.

waitTimeMillis Integer Wait time in milliseconds that has been
spent waiting to acquire locks.

idleTimeMillis Integer Idle time in milliseconds.

allocatedBytes Integer Number of bytes allocated so far by the
transaction. This column is deprecated
in favor of estimatedUsedHeapMemory.

allocatedDirectBytes Integer Direct bytes used by the executing
transaction.

pageHits Integer Page hits occurred during the execution.

pageFaults Integer Page faults occurred during the
execution.

database String This is the name of the database the
transaction is executing against.

estimatedUsedHeapMemory Integer This is the current estimated heap usage
of the transaction, in bytes.

364

Example 87. Viewing transactions that are currently executing

The following example shows that the user 'alwood' is currently running dbms.listTransactions().
The procedure call yields specific information about the running transaction, namely transactionId,
username, currentQuery, elapsedTimeMillis, requestUri, and status.

CALL dbms.listTransactions() YIELD transactionId, username, currentQuery, elapsedTimeMillis,
requestUri, status

╒═════════════════════╤═══════════╤══════════════════════════════════════╤════════════════════╤══════
══════════╤═══════════════════╕
│"transactionId" │"username" │"currentQuery" │"elapsedTimeMillis"
│"requestUri" │"status" │
╞═════════════════════╪═══════════╪══════════════════════════════════════╪════════════════════╪══════
══════════╪═══════════════════╡
│"myDb-transaction-22"│"alwood" │"CALL dbms.listTransactions() YIELD │"1"
│"127.0.0.1:7687"│"Running" │
│ │ │ transactionId, username, currentQuery│ │
│ │
│ │ │elapsedTime, requestUri, status" │ │
│ │
└─────────────────────┴───────────┴──────────────────────────────────────┴────────────────────┴──────
──────────┴───────────────────┘
1 row

15.4. Connection management

15.4.1. List all network connections

An administrator is able to view all network connections within the database instance. Alternatively, the
current user may view all of their own network connections.

The procedure dbms.listConnections lists all accepted network connections for all configured connectors,
including Bolt, HTTP, and HTTPS. Some listed connections might never perform authentication. For
example, HTTP GET requests to the Neo4j Browser endpoint fetches static resources and does not need
to authenticate. However, connections made using Neo4j Browser require the user to provide credentials
and perform authentication. For more information on Neo4j Browser connections, see the Neo4j Browser
documentation.

Syntax:

CALL dbms.listConnections()

Table 91. Data retrieved from a database

Name Type Description

connectionId String This is the ID of the network connection.

connectTime String This is the time at which the connection
was started.

connector String Name of the connector that accepted
the connection.

365

https://neo4j.com/docs/browser-manual/current/operations/#dbms-connection
https://neo4j.com/docs/browser-manual/current/operations/#dbms-connection

Name Type Description

username String This is the username of the user who
initiated the connection. This field will
be null if the transaction was issued
using embedded API. It can also be null
if connection did not perform
authentication.

userAgent String Name of the software that is connected.
For HTTP and HTTPS connections, this
information is extracted from the User-
Agent request header. For Bolt
connections, the user agent is available
natively and is supplied in an
initialization message.

serverAddress String The server address this connection is
connected to.

clientAddress String The client address of the connection.

Table 92. Default userAgent string formats

Neo4j client agent userAgent default string format Example

Cypher Shell "neo4j-cypher-shell/v${version}" "neo4j-cypher-shell/v4.3.0"

Neo4j Browser "neo4j-browser/v${version}" "neo4j-browser/v4.3.0"

Neo4j Bloom "neo4j-bloom/v${version}" "neo4j-bloom/v1.7.0"

Neo4j Java Driver "neo4j-java/x.y.z" "neo4j-java/1.6.3"

Neo4j .Net Driver "neo4j-dotnet/x.y" "neo4j-dotnet/4.3"

Neo4j Go Driver "Go Driver/x.y" "Go Driver/4.3"

Neo4j Python Driver "neo4j-python/x.y Python/x.y.z-a-b
(<operating-system>)"

"neo4j-python/4.3 Python/3.7.6
(Linux)"

Neo4j JavaScript Driver "neo4j-javascript/x.y.z" "neo4j-javascript/4.3.0"

366

Example 88. List all network connections

The following example shows that the user 'alwood' is connected using Java driver and a Firefox web
browser. The procedure call yields specific information about the connection, namely connectionId,
connectTime, connector, username, userAgent, and clientAddress.

CALL dbms.listConnections() YIELD connectionId, connectTime, connector, username, userAgent,
clientAddress

╒══════════════╤══════════════════════════╤═══════════╤══════════╤═══════════════════════════════════
═══╤═════════════════╤═════════╕
│"connectionId"│"connectTime" │"connector"│"username"│"userAgent"
│"clientAddress" │"status" │
╞══════════════╪══════════════════════════╪═══════════╪══════════╪═══════════════════════════════════
═══╪═════════════════╪═════════╡
│"bolt-21" │"2018-10-10T12:11:42.276Z"│"bolt" │"alwood" │"neo4j-java/1.6.3"
│"127.0.0.1:53929"│"Running"│
├──────────────┼──────────────────────────┼───────────┼──────────┼───────────────────────────────────
───┼─────────────────┼─────────┤
│"http-11" │"2018-10-10T12:37:19.014Z"│"http" │null │"Mozilla/5.0 (Macintosh; Intel
macOS 10.13; rv:62.0) Gecko/20100101 Firefox/62.0"│"127.0.0.1:54118"│"Running"│
└──────────────┴──────────────────────────┴───────────┴──────────┴───────────────────────────────────
───┴─────────────────┴─────────┘
2 rows

15.4.2. Terminate multiple network connections

An administrator is able to terminate within the instance all network connections with any of the given IDs.
Alternatively, the current user may terminate all of their own network connections with any of the given
IDs.

Syntax:

CALL dbms.killConnections(connectionIds)

Arguments:

Name Type Description

ids List<String> This is a list of the IDs of all the
connections to be terminated.

Returns:

Name Type Description

connectionId String This is the ID of the terminated
connection.

username String This is the username of the user who
initiated the (now terminated)
connection.

message String A message stating whether the
connection was successfully found.

367

Considerations:

Bolt connections are stateful. Termination of a Bolt connection results in termination of the ongoing query/transaction.

Termination of an HTTP/HTTPS connection can terminate the ongoing HTTP/HTTPS request.

Example 89. Terminate multiple network connections

The following example shows that the administrator has terminated the connections with IDs 'bolt-
37' and 'https-11', started by the users 'joesmith' and 'annebrown', respectively. The administrator
also attempted to terminate the connection with ID 'http-42' which did not exist.

CALL dbms.killConnections(['bolt-37', 'https-11', 'http-42'])

╒══════════════╤═══════════╤══════════════════════════════════╕
│"connectionId"│"username" │"message" │
╞══════════════╪═══════════╪══════════════════════════════════╡
│"bolt-37" │"joesmith" │"Connection found" │
├──────────────┼───────────┼──────────────────────────────────┤
│"https-11" │"annebrown"│"Connection found" │
├──────────────┼───────────┼──────────────────────────────────┤
│"http-42" │"n/a" │"No connection found with this id"│
└──────────────┴───────────┴──────────────────────────────────┘
3 rows

15.4.3. Terminate a single network connection

An administrator is able to terminate within the instance any network connection with the given ID.
Alternatively, the current user may terminate their own network connection with the given ID.

Syntax:

CALL dbms.killConnection(connectionId)

Arguments:

Name Type Description

id String This is the ID of the connection to be
terminated.

Returns:

Name Type Description

connectionId String This is the ID of the terminated
connection.

username String This is the username of the user who
initiated the (now terminated)
connection.

message String A message stating whether the
connection was successfully found.

368

Considerations:

Bolt connections are stateful. Termination of a Bolt connection results in termination of the ongoing query/transaction.

Termination of an HTTP/HTTPS connection can terminate the ongoing HTTP/HTTPS request.

Example 90. Terminate a single network connection

The following example shows that the user 'joesmith' has terminated his connection with the ID 'bolt-
4321'.

CALL dbms.killConnection('bolt-4321')

╒══════════════╤═══════════╤══════════════════╕
│"connectionId"│"username" │"message" │
╞══════════════╪═══════════╪══════════════════╡
│"bolt-4321" │"joesmith" │"Connection found"│
└──────────────┴───────────┴──────────────────┘
1 row

The following example shows the output when trying to kill a connection with an ID that does not
exist.

CALL dbms.killConnection('bolt-987')

╒══════════════╤═══════════╤══════════════════════════════════╕
│"connectionId"│"username" │"message" │
╞══════════════╪═══════════╪══════════════════════════════════╡
│"bolt-987" │"n/a" │"No connection found with this id"│
└──────────────┴───────────┴──────────────────────────────────┘
1 row

15.5. Background job management
There are many types of background jobs performed in the DBMS, many of which are triggered as system
jobs by the DBMS itself without any user action. For example, important background jobs include
checkpoint or index population. The former is triggered by the DBMS, and the latter can be a result of a
user creating or modifying an index definition.

Background jobs are of the following types:

• IMMEDIATE - a one-time action, triggered and run in the background.

• DELAYED - a one-time action, run in the background at a given point in the future.

• PERIODIC - a recurring action, run in the background at a given time interval.

The DBMS provides a way to show active and failed background jobs. Active jobs are those that are
currently running, or are scheduled to be delayed or periodic jobs. If a background job fails, or fails to start,
the details of the failure are stored in the failed jobs list. Please note that only the last 100 jobs are stored
in the failed jobs list, and that this list is not persistent, so it is cleared with a DBMS restart.

369

Additionally, it should be noted that a single periodic job can contribute multiple times to the failed jobs list.

15.5.1. Listing active background jobs

An administrator can list background jobs active on an instance:

Syntax:

CALL dbms.scheduler.jobs()

Returns:

Name Type

jobId

ID of the job. Can be used to keep track of an active job, and to link a
job to a failed job run.

String

group

A job is a member of a job group. For example, INDEX_POPULATION,
LOG_ROTATION or RAFT_SERVER.

String

submitted

A timestamp for when the job was submitted, in ISO-8601 format.

String

database

Jobs can have either a database or a DBMS scope:

• For database, this column will display the name of the database.

• For DBMS, this column will be blank.

String

submitter

Jobs are either triggered as a result of user action, or as a system job
by the DBMS itself. This column will contain a username for jobs
triggered by users, or is otherwise blank.

String

description

A short description of a job that, unlike currentStateDescription,
does not change during the running of the job.

String

type

Type of the job. The values can be IMMEDIATE, DELAYED or PERIODIC.

String

370

Name Type

scheduledAt

A timestamp for when a DELAYED or PERIODIC job will be run, in ISO-
8601 format. This column is not applicable to IMMEDIATE jobs, and will
be blank for that job type.

String

period

A period of a PERIODIC job, in format hh:mm:ss.sss.

String

state

A state of the job. Since this procedure lists only active jobs, they can
be either in SCHEDULED or EXECUTING state. SCHEDULED state is
applicable only to DELAYED or PERIODIC jobs, and means that the job is
scheduled for a given time in the future.

String

currentStateDescription

If a job supports reposting its progress, the progress will be reported
in this column in a free-form format, specific for each job.

String

15.5.2. Listing failed job executions

An administrator can list job executions failed on an instance:

Syntax:

CALL dbms.scheduler.failedJobs()

Returns:

Name Type

jobId

ID of the failed job.

String

group

A job is a member of a job group. For example, INDEX_POPULATION,
LOG_ROTATION or RAFT_SERVER.

String

371

Name Type

database

Jobs can have either a database or a DBMS scope:

• For database, this column will display the name of the database.

• For DBMS, this column will be blank.

String

submitter

Jobs are either triggered as a result of user action, or as a system job
by the DBMS itself. This column will contain a username for jobs
triggered by users, or is otherwise blank.

String

description

A short description of a job that, unlike currentStateDescription,
does not change during the running of the job.

String

type

Type of the job. The values can be IMMEDIATE, DELAYED or PERIODIC.

String

submitted

A timestamp for when the job was submitted, in ISO-8601 format.

String

executionStart

A timestamp for when the failed execution started, in ISO-8601
format.

String

failureTime

A timestamp for when the execution failed, in ISO-8601 format.

String

failureDescription

A short description of the failure. If the failure description is
insufficient, more information can be found in logs.

String

15.6. Monitoring a Neo4j cluster
In addition to specific metrics as described in previous sections, Neo4j Causal Clusters provide an
infrastructure that operators will wish to monitor. The procedures can be used to inspect the cluster state
and to understand its current condition and topology. Additionally, there are HTTP endpoints for checking
health and status.

372

This section describes the following:

• Procedures for monitoring a Causal Cluster

◦ Find out the role of a cluster member

◦ Gain an overview over the instances in the cluster

◦ Get routing recommendations

• Endpoints for status information

◦ Adjusting security settings for Causal Clustering endpoints

◦ Unified endpoints

15.6.1. Procedures for monitoring a Causal Cluster

A number of procedures are available that provide information about a cluster.

Find out the role of a cluster member

The procedure dbms.cluster.role(databaseName) can be called on every instance in a Causal Cluster to
return the role of the instance. Each instance holds multiple databases and participates in multiple
independent Raft groups. The role returned by the procedure is for the database denoted by the
databaseName parameter.

Syntax:

CALL dbms.cluster.role(databaseName)

Arguments:

Name Type Description

databaseName String The name of the database to get the
cluster role for.

Returns:

Name Type Description

role String This is the role of the current instance,
which can be LEADER, FOLLOWER, or
READ_REPLICA.

Considerations:

• While this procedure is useful in and of itself, it serves as basis for more powerful monitoring
procedures.

373

Example 91. Check the role of this instance

The following example shows how to find out the role of the current instance for database neo4j,
which in this case is FOLLOWER.

CALL dbms.cluster.role("neo4j")

role

FOLLOWER

Gain an overview over the instances in the cluster

The procedure dbms.cluster.overview() provides an overview of cluster topology by returning details on
all the instances in the cluster.

Syntax:

CALL dbms.cluster.overview()

Returns:

Name Type Description

id String This is id of the instance.

addresses List This is a list of all the addresses for the
instance.

groups List This is a list of all the server groups
which an instance is part of.

databases Map This is a map of all databases with
corresponding roles which the instance
is hosting. The keys in the map are
database names. The values are roles of
this instance in the corresponding Raft
groups, which can be LEADER, FOLLOWER,
or READ_REPLICA.

374

Example 92. Get an overview of the cluster

The following example shows how to explore the cluster topology.

CALL dbms.cluster.overview()

id addresses groups databases

08eb9305-53b9-4394-
9237-0f0d63bb05d5

[bolt://neo20:7687,
http://neo20:7474,
https://neo20:7473]

[] {system: LEADER, neo4j:
FOLLOWER}

cb0c729d-233c-452f-
8f06-f2553e08f149

[bolt://neo21:7687,
http://neo21:7474,
https://neo21:7473]

[] {system: FOLLOWER,
neo4j: FOLLOWER}

ded9eed2-dd3a-4574-
bc08-6a569f91ec5c

[bolt://neo22:7687,
http://neo22:7474,
https://neo22:7473]

[] {system: FOLLOWER,
neo4j: LEADER}

00000000-0000-0000-
0000-000000000000

[bolt://neo34:7687,
http://neo34:7474,
https://neo34:7473]

[] {system: READ_REPLICA,
neo4j: READ_REPLICA}

00000000-0000-0000-
0000-000000000000

[bolt://neo28:7687,
http://neo28:7474,
https://neo28:7473]

[] {system: READ_REPLICA,
neo4j: READ_REPLICA}

00000000-0000-0000-
0000-000000000000

[bolt://neo31:7687,
http://neo31:7474,
https://neo31:7473]

[] {system: READ_REPLICA,
neo4j: READ_REPLICA}

Get routing recommendations

From the application point of view it is not interesting to know about the role a member plays in the
cluster. Instead, the application needs to know which instance can provide the wanted service. The
procedure dbms.routing.getRoutingTable(routingContext, databaseName) provides this information.

Syntax:

CALL dbms.routing.getRoutingTable(routingContext, databaseName)

Arguments:

Name Type Description

routingContext Map The routing context used for multi-data
center deployments. It should be used in
combination with multi-data center load
balancing.

databaseName String The name of the database to get the
routing table for.

375

Example 93. Get routing recommendations

The following example shows how discover which instances in the cluster can provide which services
for database neo4j.

CALL dbms.routing.getRoutingTable({}, "neo4j")

The procedure returns a map between a particular service, READ, WRITE and ROUTE, and the addresses
of instances that provide this service. It also returns a Time To Live (TTL) in seconds as a suggestion
on how long the client could cache the response.

The result is not primarily intended for human consumption. Expanding it this is what it looks like.

{
 "ttl": 300,
 "servers": [
 {
 "addresses": ["neo20:7687"],
 "role": "WRITE"
 },
 {
 "addresses": ["neo21:7687", "neo22:7687", "neo34:7687", "neo28:7687", "neo31:7687"],
 "role": "READ"
 },
 {
 "addresses": ["neo20:7687", "neo21:7687", "neo22:7687"],
 "role": "ROUTE"
 }
]
}

15.6.2. Endpoints for status information

A Causal Cluster exposes some HTTP endpoints which can be used to monitor the health of the cluster. In
this section we will describe these endpoints and explain their semantics.

Adjusting security settings for Causal Clustering endpoints

If authentication and authorization is enabled in Neo4j, the Causal Clustering status endpoints will also
require authentication credentials. The setting dbms.security.auth_enabled controls whether the native
auth provider is enabled. For some load balancers and proxy servers, providing authentication credentials
with the request is not an option. For those situations, consider disabling authentication of the Causal
Clustering status endpoints by setting dbms.security.causal_clustering_status_auth_enabled=false in
neo4j.conf.

Unified endpoints

A unified set of endpoints exist, both on Core Servers and on Read Replicas, with the following behavior:

• /db/<databasename>/cluster/writable — Used to direct write traffic to specific instances.

• /db/<databasename>/cluster/read-only — Used to direct read traffic to specific instances.

• /db/<databasename>/cluster/available — Available for the general case of directing arbitrary request

376

types to instances that are available for processing read transactions.

• /db/<databasename>/cluster/status — Gives a detailed description of this instance’s view of its status
within the cluster, for the given database.

• /dbms/cluster/status — Gives a detailed description of this instance’s view of its status within the
cluster, for all databases. See Status endpoints for further details.

Every /db/<databasename>/* endpoint targets a specific database. The databaseName path parameter
represents the name of the database. By default, a fresh Neo4j installation with two databases system and
neo4j will have the following cluster endpoints:

http://localhost:7474/dbms/cluster/status

http://localhost:7474/db/system/cluster/writable
http://localhost:7474/db/system/cluster/read-only
http://localhost:7474/db/system/cluster/available
http://localhost:7474/db/system/cluster/status

http://localhost:7474/db/neo4j/cluster/writable
http://localhost:7474/db/neo4j/cluster/read-only
http://localhost:7474/db/neo4j/cluster/available
http://localhost:7474/db/neo4j/cluster/status

Table 93. Unified HTTP endpoint responses

Endpoint Instance state Returned code Body text

/db/<databasename>/cluster/writabl
e

Leader 200 OK true

Follower 404 Not Found false

Read
Replica

404 Not Found false

/db/<databasename>/cluster/read-
only

Leader 404 Not Found false

Follower 200 OK true

Read
Replica

200 OK true

/db/<databasename>/cluster/availab
le

Leader 200 OK true

Follower 200 OK true

Read
Replica

200 OK true

377

Endpoint Instance state Returned code Body text

/db/<databasename>/cluster/status

Leader 200 OK JSON - See Status
endpoint for details.

Follower 200 OK JSON - See Status
endpoint for details.

Read
Replica

200 OK JSON - See Status
endpoint for details.

/dbms/cluster/status

Leader 200 OK JSON - See Status
endpoint for details.

Follower 200 OK JSON - See Status
endpoint for details.

Read
Replica

200 OK JSON - See Status
endpoint for details.

Example 94. Use a Causal Clustering monitoring endpoint

From the command line, a common way to ask those endpoints is to use curl. With no arguments,
curl will do an HTTP GET on the URI provided and will output the body text, if any. If you also want to
get the response code, just add the -v flag for verbose output. Here are some examples:

• Requesting writable endpoint on a Core Server that is currently elected leader with verbose
output:

#> curl -v localhost:7474/db/neo4j/cluster/writable
* About to connect() to localhost port 7474 (#0)
* Trying ::1...
* connected
* Connected to localhost (::1) port 7474 (#0)
> GET /db/neo4j/cluster/writable HTTP/1.1
> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
> Host: localhost:7474
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
< Access-Control-Allow-Origin: *
< Transfer-Encoding: chunked
< Server: Jetty(9.4.17)
<
* Connection #0 to host localhost left intact
true* Closing connection #0

378

Status endpoints

The status endpoint, available at /db/<databasename>/cluster/status, is to be used to assist with rolling
upgrades. For more information, see Upgrade and Migration Guide → Upgrade a Causal Cluster.

Typically, you will want to have some guarantee that a Core is safe to shutdown for each database before
removing it from a cluster. Counter intuitively, a core being safe to shutdown means that a majority of the
other cores are healthy, caught up, and have recently heard from that database’s leader. The status
endpoints provide the following information in order to help resolve such issues.

Several of the fields in status endpoint responses refer to details of Raft, the algorithm
used in Neo4j Causal Clusters to provide highly available transactions. When using
multiple databases, each database implements Raft independently. Therefore, details
such as leader and raftCommandsPerSecond are database specific.

Example 95. Example status response

{
 "lastAppliedRaftIndex":0,
 "votingMembers":["30edc1c4-519c-4030-8348-7cb7af44f591","80a7fb7b-c966-4ee7-88a9-35db8b4d68fe"
,"f9301218-1fd4-4938-b9bb-a03453e1f779"],
 "memberId":"80a7fb7b-c966-4ee7-88a9-35db8b4d68fe",
 "leader":"30edc1c4-519c-4030-8348-7cb7af44f591",
 "millisSinceLastLeaderMessage":84545,
 "participatingInRaftGroup":true,
 "core":true,
 "isHealthy":true,
 "raftCommandsPerSecond":124
}

Table 94. Status endpoint descriptions

Field Type Optional Example Description

core boolean no true Used to distinguish between Core Servers and
Read Replicas.

lastAppliedRaftIndex number no 4321 Every transaction in a cluster is associated with a
raft index.

Gives an indication of what the latest applied
raft log index is.

participatingInRaftGr
oup

boolean no false A participating member is able to vote. A Core is
considered participating when it is part of the
voter membership and has kept track of the
leader.

votingMembers string[] no [] A member is considered a voting member when
the leader has been receiving communication
with it.

List of member’s memberId that are considered
part of the voting set by this Core.

379

https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#causal_cluster
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#causal_cluster
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#causal_cluster

Field Type Optional Example Description

isHealthy boolean no true Reflects that the local database of this member
has not encountered a critical error preventing it
from writing locally.

memberId string no 30edc1c4-519c-4030-
8348-7cb7af44f591

Every member in a cluster has it’s own unique
member id to identify it. Use memberId to
distinguish between Core and Read Replica.

leader string yes 80a7fb7b-c966-4ee7-
88a9-35db8b4d68fe

Follows the same format as memberId, but if it is
null or missing, then the leader is unknown.

millisSinceLastLeader
Message

number yes 1234 The number of milliseconds since the last
heartbeat-like leader message. Not relevant to
Read Replicas, and hence is not included.

raftCommandsPerSecond number yes 124 An estimate of the average Raft state machine
throughput over a sampling windown
configurable via
causal_clustering.status_throughput_window
setting.

After an instance has been switched on, you can access the status endpoint in order to make sure all the
guarantees listed in the table below are met.

To get the most accurate view of a cluster it is strongly recommended to access the status endpoint on all
core members and compare the result. The following table explains how results can be compared.

Table 95. Measured values, accessed via the status endpoint

Name of check Method of calculation Description

allServersAreHealthy Every Core’s status endpoint indicates
isHealthy==true.

We want to make sure the data across the entire
cluster is healthy. Whenever any Cores are false
that indicates a larger problem.

allVotingSetsAreEqual For any 2 Cores (A and B), status endpoint A’s
votingMembers== status endpoint B’s
votingMembers.

When the voting begins, all the Cores are equal
to each other, and you know all members agree
on membership.

allVotingSetsContainA
tLeastTargetCluster

For all Cores (S), excluding Core Z (to be
switched off), every member in S contains S in
their voting set. Membership is determined by
using the memberId and votingMembers from the
status endpoint.

Sometimes network conditions will not be
perfect and it may make sense to switch off a
different Core to the one we originally wanted to
switch off. If you run this check for all Cores, the
ones that match this condition can be switched
off (providing other conditions are also met).

hasOneLeader For any 2 Cores (A and B), A.leader ==
B.leader && leader!=null.

If the leader is different then there may be a
partition (alternatively, this could also occur due
to bad timing). If the leader is unknown, that
means the leader messages have actually timed
out.

380

Name of check Method of calculation Description

noMembersLagging For Core A with lastAppliedRaftIndex = min,
and Core B with lastAppliedRaftIndex = max,
B.lastAppliedRaftIndex-
A.lastAppliedRaftIndex<raftIndexLagThreshol
d.

If there is a large difference in the applied
indexes between Cores, then it could be
dangerous to switch off a Core.

Combined status endpoints

When using the status endpoints to support a rolling upgrade, you need to assess whether a Core is safe
to shutdown for all databases. To avoid having to issue a separate request to each
/db/<databasename>/cluster/status endpoint, you can use the /dbms/cluster/status instead.

This endpoint returns a json array, the elements of which contain the same fields as the single database
version, along with fields for for databaseName and databaseUuid.

Example 96. Example combined status response

[
 {
 "databaseName": "neo4j",
 "databaseUuid": "f4dacc01-f88a-4512-b3bf-68f7539c941e",
 "databaseStatus": {
 "lastAppliedRaftIndex": -1,
 "votingMembers": [
 "0cff51ad-7cee-44cc-9102-538fc4544b95",
 "90ff5df1-f5f8-4b4c-8289-a0e3deb2235c",
 "99ca7cd0-6072-4387-bd41-7566a98c6afc"
],
 "memberId": "90ff5df1-f5f8-4b4c-8289-a0e3deb2235c",
 "leader": "90ff5df1-f5f8-4b4c-8289-a0e3deb2235c",
 "millisSinceLastLeaderMessage": 0,
 "raftCommandsPerSecond": 0.0,
 "core": true,
 "participatingInRaftGroup": true,
 "healthy": true
 }
 },
 {
 "databaseName": "system",
 "databaseUuid": "00000000-0000-0000-0000-000000000001",
 "databaseStatus": {
 "lastAppliedRaftIndex": 7,
 "votingMembers": [
 "0cff51ad-7cee-44cc-9102-538fc4544b95",
 "90ff5df1-f5f8-4b4c-8289-a0e3deb2235c",
 "99ca7cd0-6072-4387-bd41-7566a98c6afc"
],
 "memberId": "90ff5df1-f5f8-4b4c-8289-a0e3deb2235c",
 "leader": "90ff5df1-f5f8-4b4c-8289-a0e3deb2235c",
 "millisSinceLastLeaderMessage": 0,
 "raftCommandsPerSecond": 0.0,
 "core": true,
 "participatingInRaftGroup": true,
 "healthy": true
 }
 }
]

381

15.7. Monitoring individual database states
In addition to the system-wide metrics and logs described in previous sections, operators may wish to
monitor the state of individual databases being hosted within a Neo4j instance. The SHOW DATABASES
command may be used for this purpose.

15.7.1. Listing Databases

First ensure that you are executing queries against the system database, either by running the command
:use system (if using the Cypher shell or Neo4j Browser) or by creating a session against the system
database using a Neo4j driver. Subsequently, run the SHOW DATABASES command.

Syntax:

SHOW DATABASES

Returns:

Name Type Description

name String The human-readable name of the
database.

address String The bolt address of the Neo4j
instance hosting the database.

role String The cluster role which the Neo4j
instance fulfils for this database.

requestedStatus String The state that an operator has
requested the database to be in.

currentStatus String The state the database is actually
in on this Neo4j instance.

error String Error encountered by the Neo4j
instance when transitioning the
database to requestedStatus, if
any.

default Boolean Whether this database is the
default for this DBMS.

382

Name Type Description

home Boolean Whether this database is the
home database for this user.

Example 97. Listing databases in standalone Neo4j

When executing SHOW DATABASES against a standalone instance of Neo4j, you should see output like
the following:

name address role requestedSta
tus

currentStatu
s

error default home

"neo4j" "localhost:76
87"

"standalone" "online" "online" "" true true

"system" "localhost:76
87"

"standalone" "online" "online" "" false false

Note that the role and address columns are primarily intended to distinguish between the states of a
given database, across multiple Neo4j instances deployed in a Neo4j cluster. In a standalone
deployment where you have a single Neo4j instance, your address field should be the same for every
database, and your role field should always be "standalone".

If an error occurred whilst creating (or stopping, dropping etc.) a database, you should see output like
the following:

name address role requestedSta
tus

currentStatu
s

error default home

"neo4j" "localhost:76
87"

"standalone" "online" "online" "" true true

"system" "localhost:76
87"

"standalone" "online" "online" "" false false

"foo" "localhost:76
87"

"standalone" "online" "offline" "An error
occurred!
Unable to
start
database …"

false false

Note that for failed databases, the currentStatus and requestedStatus are different. This can imply
an error. For example:

• a database may take a while to transition from "offline" to "online", due to performing recovery.

• during normal operation, the currentStatus of a database may be transiently different from its
requestedStatus, due to a necessary automatic process, such as one Neo4j instance copying
store files from another.

The possible statuses are "initial", "online", "offline", "store copying", and "unknown".

383

Example 98. Listing databases in a Neo4j cluster

When running SHOW DATABASES against a Neo4j cluster you might see output like the following:

name address role requestedSta
tus

currentStatu
s

error default home

"neo4j" "localhost:20
031"

"follower" "online" "online" "" true true

"neo4j" "localhost:20
010"

"follower" "online" "online" "" true true

"neo4j" "localhost:20
005"

"leader" "online" "online" "" true true

"neo4j" "localhost:20
034"

"read_replica
"

"online" "online" "" true true

"system" "localhost:20
031"

"follower" "online" "online" "" false false

"system" "localhost:20
010"

"follower" "online" "online" "" false false

"system" "localhost:20
005"

"leader" "online" "online" "" false false

"system" "localhost:20
034"

"read_replica
"

"online" "online" "" false false

"foo" "localhost:20
031"

"leader" "online" "online" "" false false

"foo" "localhost:20
010"

"follower" "online" "online" "" false false

"foo" "localhost:20
005"

"follower" "online" "online" "" false false

"foo" "localhost:20
034"

"read_replica
"

"online" "online" "" false false

Note that SHOW DATABASES does not return 1 row per database. Instead, it returns 1 row per database,
per Neo4j instance in the cluster. Therefore, if you have a 4-instance cluster, hosting 3 databases, you
will have 12 rows.

If an error occurred whilst creating (or stopping, dropping etc.) a database, you should see output like
the following:

name address role requestedSta
tus

currentStatu
s

error default home

"neo4j" "localhost:20
031"

"follower" "online" "online" "" true true

"neo4j" "localhost:20
010"

"follower" "online" "online" "" true true

384

name address role requestedSta
tus

currentStatu
s

error default home

"neo4j" "localhost:20
005"

"leader" "online" "online" "" true true

"neo4j" "localhost:20
034"

"read_replica
"

"online" "online" "" true true

"system" "localhost:20
031"

"follower" "online" "online" "" false false

"system" "localhost:20
010"

"follower" "online" "online" "" false false

"system" "localhost:20
005"

"leader" "online" "online" "" false false

"system" "localhost:20
034"

"read_replica
"

"online" "online" "" false false

"foo" "localhost:20
031"

"unknown" "online" "initial" "An error
occurred!
Unable to
start
database …"

false false

"foo" "localhost:20
010"

"leader" "online" "online" "" false false

"foo" "localhost:20
005"

"follower" "online" "online" "" false false

"foo" "localhost:20
034"

"unknown" "online" "initial" "An error
occurred!
Unable to
start
database …"

false false

Note that different instances may have different roles for each database.

If a database is offline on a particular Neo4j instance, either because it was stopped by an operator or
an error has occurred, its cluster role is "unknown". This is because the cluster role of a given
instance/database combination cannot be assumed in advance. This differs from standalone Neo4j
instances, where the role of that instance for each database can always be assumed to be
"standalone".

The possible roles are "standalone", "leader", "follower", "read_replica", and "unknown".

15.7.2. Listing a single database

The number of rows returned by SHOW DATABASES can be quite large, especially when run in a cluster. You
can filter the rows returned by database name (e.g. "foo") by using the command SHOW DATABASE foo.

Syntax:

385

SHOW DATABASE databaseName

Arguments:

Name Type Description

databaseName String The name of the database whose
status to report

Returns:

Name Type Description

name String The human-readable name of the
database.

address String The bolt address of the Neo4j
instance hosting the database.

role String The cluster role which the Neo4j
instance fulfils for this database.

requestedStatus String The state that an operator has
requested the database to be in.

currentStatus String The state the database is actually
in on this Neo4j instance.

error String Error encountered by Neo4j
instance when transitioning the
database to requestedStatus, if
any.

default Boolean Whether this database is the
default for this DBMS.

home Boolean Whether this database is the
home database for this user.

386

Example 99. Listing statuses for database foo

When running SHOW DATABASE foo in a Neo4j Causal Cluster, you should see output like the following:

name address role requestedSta
tus

currentStatu
s

error default home

"foo" "localhost:20
031"

"unknown" "online" "initial" "An error
occurred!
Unable to
start
database …"

false false

"foo" "localhost:20
010"

"leader" "online" "online" "" false false

"foo" "localhost:20
005"

"follower" "online" "online" "" false false

"foo" "localhost:20
034"

"unknown" "online" "initial" "An error
occurred!
Unable to
start
database …"

false false

[14] For details, see Cypher Manual → Cypher planner
[15] For details, see Cypher Manual → Cypher runtime

387

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-planner
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-planner
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-planner
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-runtime
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-runtime
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-runtime

Chapter 16. Performance
The topics described in this chapter are:

• Memory configuration — How to configure memory settings for efficient operations.

• Index configuration — How to configure indexes.

• Garbage collector — How to configure the Java Virtual Machine’s garbage collector.

• Bolt thread pool configuration — How to configure the Bolt thread pool.

• Linux file system tuning — How to configure the Linux file system.

• Disks, RAM and other tips — Disks, RAM and other tips.

• Statistics and execution plans — How schema statistics and execution plans affect Cypher query
performance.

• Space reuse — Data deletion and storage space reuse.

16.1. Memory configuration

16.1.1. Overview

The RAM of the Neo4j server has a number of usage areas, with some sub-areas:

Available RAM

JVM heap Native memory

Database

Database

…..

OS memory

OS reserve Neo4j memory

DBMS Transaction Page cache

JVM overhead

Network buffers

Other shared
buffers

Figure 13. Neo4j memory management

OS memory

Some memory must be reserved for running the processes of the operating system itself. It is not
possible to explicitly configure the amount of RAM that should be reserved for the operating system, as

388

this is what RAM remains available after configuring Neo4j. If you do not leave enough space for the
OS, it will start to swap memory to disk, which will heavily affect performance.

1GB is a good starting point for a server that is dedicated to running Neo4j. However, there are cases
where the amount reserved for the OS is significantly larger than 1GB, such as servers with
exceptionally large RAM.

JVM Heap

The JVM heap is a separate dynamic memory allocation that Neoj4 uses to store instantiated Java
objects. The memory for the Java objects are managed automatically by a garbage collector. Particularly
important is that a garbage collector automatically handles the deletion of unused objects. For more
information on how the garbage collector works and how to tune it, see Tuning of the garbage
collector.

The heap memory size is determined by the parameters dbms.memory.heap.initial_size and
dbms.memory.heap.max_size. It is recommended to set these two parameters to the same value to avoid
unwanted full garbage collection pauses.

Generally, to aid performance, you should configure a large enough heap to sustain concurrent
operations.

Native memory

Native memory, sometimes referred to as off-heap memory, is memory directly allocated by Neo4j from
the OS. This memory will grow dynamically as needed and is not subject to the garbage collector.

DBMS

The database management system, or DBMS, contains the global components of the Neo4j instance.
For example, the bolt server, logging service, monitoring service, etc.

Database

Each database in the system comes with an overhead. In deployments with multiple databases, this
overhead needs to be accounted for.

Transaction

When executing a transaction, Neo4j holds not yet committed data, the result, and intermediate states
of the queries in memory. The size needed for this is very dependent on the nature of the usage of
Neo4j. For example, long-running queries, or very complicated queries, are likely to require more
memory. Some parts of the transactions can optionally be placed off-heap, but for the best
performance, it is recommended to keep the default with everything on-heap.

This memory group can be limited with the setting dbms.memory.transaction.global_max_size.

Page cache

The page cache is used to cache the Neo4j data stored on disk. The caching of graph data and indexes
into memory helps avoid costly disk access and result in optimal performance.

The parameter for specifying how much memory Neo4j is allowed to use for the page cache is:
dbms.memory.pagecache.size.

389

Network buffers

Direct buffers are used by Neo4j to send and receive data. Direct byte buffers are important for
improving performance because they allow native code and Java code to share data without copying it.
However, they are expensive to create, which means byte buffers are usually reused once they are
created.

Other shared buffers

This includes unspecified shared direct buffers.

JVM overhead

The JVM will require some memory to function correctly. For example, this can be:

• Thread stacks – Each thread has its own call stack. The stack stores primitive local variables and
object references along with the call stack (list of method invocations) itself. The stack is cleaned up
as stack frames move out of context, so there is no GC performed here.

• Metaspace – Metaspace stores the java class definitions and some other metadata.

• Code cache – The JIT compiler stores the native code it generates in the code cache to improve
performance by reusing it.

For more details and means of limiting the memory used by the JVM please consult your JVM
documentation.

16.1.2. Considerations

Always use explicit configuration

To have good control of the system behavior, it is recommended to always define the page cache and
heap size parameters explicitly in neo4j.conf. Otherwise, Neo4j computes some heuristic values at
startup based on the available system resources.

Initial memory recommendation

Use the neo4j-admin memrec command to get an initial recommendation for how to distribute a certain
amount of memory. The values may need to be adjusted to cater for each specific use case.

Inspect the memory settings of all databases in a DBMS

The neo4j-admin memrec command is useful for inspecting the current distribution of data and indexes.

390

Example 100. Use neo4j-admin memrec to inspect the memory settings of all your databases

Estimate the total size of the database files.

$neo4j-home> bin/neo4j-admin memrec
...
...
...
Total size of lucene indexes in all databases: 6690m
Total size of data and native indexes in all databases: 17050m

You can see that the Lucene indexes take up approximately 6.7GB of data, and that the data
volume and native indexes combined take up approximately 17GB.

Using this information, you can do a sanity check of your memory configuration:

• Compare the value for data volume and native indexes to the value of
dbms.memory.pagecache.size.

• For cases when off-heap transaction state is used, estimate transactional workload and how
much memory is left to the value of dbms.tx_state.max_off_heap_memory.

• Compare the value for Lucene indexes to how much memory is left after assigning
dbms.memory.pagecache.size and dbms.memory.heap.initial_size.

In some production systems the access to memory is limited and must be
negotiated between different areas. Therefore, it is recommended to perform a
certain amount of testing and tuning of these settings to figure out the optimal
division of the available memory.

Limit transaction memory usage recommendation

The measured heap usage of all transactions is only an estimate and the actual heap utilization may be
slightly larger or slightly smaller than the estimated value. In some cases, limitations of the estimation
algorithm to detect shared objects at a deeper level of the memory graph could lead to overestimations.
This is because a conservative estimate is given based on aggregated estimations of memory usage,
where the identities of all contributing objects are not known, and cannot be assumed to be shared. For
example, when you use UNWIND on a very large list, or expand a variable length or shortest path pattern,
where many relationships are shared between the computed result paths.

In these cases, if you experience problems with a query that gets terminated, you can execute the same
query with the transaction memory limit disabled. If the actual heap usage is not too large, it might
succeed without triggering an out-of-memory error.

16.1.3. Capacity planning

In many use cases, it is advantageous to try to cache as much of the data and indexes as possible. The
following examples illustrate methods for estimating the page cache size, depending on whether you are
already running in production or planning for a future deployment:

391

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#unwind

Example 101. Estimate page cache for the existing Neo4j databases

First, estimate the total size of data and indexes, and then multiply with some factor, for example
20%, to allow for growth.

$neo4j-home> bin/neo4j-admin memrec
...
...
...
Total size of lucene indexes in all databases: 6690m
Total size of data and native indexes in all databases: 35050m

You can see that the data volume and native indexes combined take up approximately 35GB. In your
specific use case, you estimate that 20% will provide sufficient head room for growth.

dbms.memory.pagecache.size = 1.2 * (35GB) = 42GB

You configure the page cache by adding the following to neo4j.conf:

dbms.memory.pagecache.size=42GB

392

Example 102. Estimate page cache for a new Neo4j database

When planning for a future database, it is useful to run an import with a fraction of the data, and then
multiply the resulting store size delta by that fraction plus some percentage for growth.

1. Run the memrec command to see the total size of the data and indexes in all current databases.

$neo4j-home> bin/neo4j-admin memrec
...
...
...
Total size of lucene indexes in all databases: 6690m
Total size of data and native indexes in all databases: 35050m

2. Import 1/100th of the data and again measure the data volume and native indexes of all
databases.

$neo4j-home> bin/neo4j-admin memrec
...
...
...
Total size of lucene indexes in all databases: 6690m
Total size of data and native indexes in all databases: 35400m

You can see that the data volume and native indexes combined take up approximately 35.4GB.

3. Multiply the resulting store size delta by that fraction.

35.4GB - 35GB = 0.4GB * 100 = 40GB

4. Multiply that number by 1.2 to size up the result, and allow for 20% growth.

dbms.memory.pagecache.size = 1.2 * (40GB) = 48GB

5. Configure the page cache by adding the following to neo4j.conf:

dbms.memory.pagecache.size=48G

16.1.4. Limit transaction memory usage

By using the dbms.memory.transaction.global_max_size setting you can configure a global maximum
memory usage for all of the transactions running on the server. This setting must be configured low
enough so that you do not run out of memory. If you are experiencing OutOfMemory messages during high
transaction load, try to lower this limit.

Neo4j also offers the following settings to provide fairness, which can help improve stability in multi-
tenant deployments.

• The setting dbms.memory.transaction.database_max_size limits the transaction memory usage per
database.

• The setting dbms.memory.transaction.max_size constrains each transaction.

393

When any of the limits are reached, the transaction is terminated without affecting the overall health of the
database.

To help configure these settings you can use the following commands to list the current usage:

CALL dbms.listPools()
CALL dbms.listTransactions()
CALL dbms.listQueries()

Or alternatively, you can enable dbms.logs.query.allocation_logging_enabled and monitor the memory
usage of each query in the query.log.

By default, transaction sizes are unconstrained. However, in a Cluster deployment,
regardless of instance type, the maximum amount of memory each transaction is
permitted to use is 2GB. Additionally, if your configuration contains
dbms.clustering.enable=true, dbms.mode=CORE, or dbms.mode=READ_REPLICA, the largest
value permitted for the dbms.memory.transaction.max_size setting is also 2GB.

16.2. Index configuration

16.2.1. Introduction

In Neo4j there are three different index types: b-tree, full-text, and token lookup.

All three types of indexes can be created and dropped using Cypher and they can also all be used to index
both nodes and relationships. The token lookup index is the only index present by default in the database.

B-tree and full-text indexes provide mapping from a property value to an entity (node or relationship).
Token lookup indexes are different and provide mapping from labels to nodes or from relationship types to
relationships instead of between properties and entities.

Users are not required to know the difference between the various indexes in order to use them, since the
Cypher query planner decides which index should be used in which situation.

For more information on the different index types, refer to Cypher Manual → Indexes to support full-text
search.

Table 96. Supported index types

Index type Cypher command Core API

B-tree index SHOW INDEXES#BTREE org.neo4j.graphdb.schema.IndexType#B
TREE

Full-text index SHOW INDEXES#FULLTEXT org.neo4j.graphdb.schema.IndexType#F
ULLTEXT

Token lookup index SHOW INDEXES#LOOKUP org.neo4j.graphdb.schema.IndexType#L
OOKUP

394

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_full_text_search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_full_text_search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_full_text_search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_full_text_search

16.2.2. B-tree indexes

B-tree indexes are good for exact lookups on all types of values, range scans, full scans, and prefix
searches. They can be backed by two different index providers, native-btree-1.0 and lucene+native-3.0.
If not explicitly set, native-btree-1.0 is used.

Limitations

There are a few limitations for b-tree indexes, listed below together with suggested workarounds.

Limitations for queries using CONTAINS and ENDS WITH

The index provider native-btree-1.0 has limited support for ENDS WITH and CONTAINS queries. These
queries are not able to do an optimized search as per queries that use STARTS WITH, =, and <>. Instead, the
index result is a stream of an index scan with filtering.

In the future, ENDS WITH and CONTAINS queries will be supported with full-text indexes, but for now the
index provider lucene+native-3.0 can be used instead. Please note that lucene+native-3.0 only has
support for ENDS WITH and CONTAINS for single property strings.

• For details about execution plans, refer to Cypher Manual → Execution plans.

• For details about string operators, refer to Cypher Manual → Operators.

Limitations on key size

The index provider native-btree-1.0 has a key size limit of around 8kB.

If a transaction reaches the key size limit for one or more of its changes, that transaction fails before
committing any changes. If the limit is reached during index population, the resulting index is in a failed
state, and as such is not usable for any queries.

If this is an issue, you can use the index provider lucene+native-3.0 instead. This provider has a key size
limit for single property strings of around 32kB.

Workarounds to address limitations

To work around problems with key size, or performance issues related to ENDS WITH or CONTAINS, you can
use the index provider lucene+native-3.0. This only works for single-property string indexes.

This can be done using either of the following methods:

Option 1. Use the OPTIONS clause with the CREATE command (recommended)

The Cypher commands for index creation, unique property constraint creation, and node key creation
contain an optional OPTIONS clause. This clause can be used to specify an index provider.

For details on indexes, see Cypher Manual → Indexes for search performance. For details on constraints,

395

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#execution_plans
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#execution_plans
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#execution_plans
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#query-operators-comparison
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#query-operators-comparison
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#query-operators-comparison
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_search_performance
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_search_performance
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_search_performance

see Cypher manual → Constraints.

Option 2. Use a built-in procedure Deprecated

Please note that this option uses built-in procedures that have been deprecated, and will be removed in
a future release. These have been replaced with the Cypher commands in Option 1.

The built-in procedures db.createIndex, db.createUniquePropertyConstraint, and db.createNodeKey
can be used to specify index provider on index creation, unique property constraint creation, and node
key creation.

For details on constraints, see Procedures.

Option 3. Change the config Deprecated

Please note that this option uses the index setting dbms.index.default_schema_provider, which has
been deprecated and will be removed in a future release. It will be a fully internal concern which index
provider an index is using.

1. Configure the setting dbms.index.default_schema_provider to the one required.

2. Restart Neo4j.

3. Drop and recreate the relevant index.

4. Change dbms.index.default_schema_provider back to the original value.

5. Restart Neo4j.

The recommended way to set an index provider for an index is to use the OPTIONS clause for index
creation, unique property constraint creation, and node key creation.

For more information, see Cypher manual → Constraints.

Index migration

When upgrading a 3.5 store to 4.3.21, all indexes are upgraded to the latest index version, and rebuilt
automatically, except for the indexes that use Lucene for single-property strings. They are upgraded to a
fallback version, which uses Lucene for those properties. Note that they still need to be rebuilt.

For more information, see Upgrade and Migration Guide → Neo4j indexes.

Procedures to create index and index backed constraint

Deprecated

Indexes and constraints are best created through Cypher but can still be created through the deprecated
procedures described in the example below. Index provider and index settings can both be specified using
the optional OPTIONS clause for the Cypher commands.

396

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#procedures.adoc
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#constraints
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#index_upgrade
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#index_upgrade
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#index_upgrade
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_search_performance

Example 103. Example of procedures to create index and index backed constraint

The following procedures provide the option to specify both index provider and index settings
(optional). Note that settings keys need to be escaped with back-ticks if they contain dots.

Use db.createIndex procedure to create an index:

CALL db.createIndex("MyIndex", ["Person"], ["name"], "native-btree-1.0", {`spatial.cartesian.max`:
[100.0,100.0], `spatial.cartesian.min`: [-100.0,-100.0]})

If a settings map is not provided, the settings are picked up from the Neo4j config file, the same way
as when creating an index or constraint through Cypher.

CALL db.createIndex("MyIndex", ["Person"], ["name"], "native-btree-1.0")

Use db.createUniquePropertyConstraint to create a node property uniqueness constraint (the
example is without settings map, left out for abbreviation):

CALL db.createUniquePropertyConstraint("MyIndex", ["Person"], ["name"], "native-btree-1.0")

Use db.createNodeKey to create node key constraint (the example is without settings map, left out for
abbreviation):

CALL db.createNodeKey("MyIndex", ["Person"], ["name"], "native-btree-1.0")

16.2.3. Full-text indexes

Full-text indexes are optimized for indexing and searching text. They make it possible to write queries that
match within the contents of indexed string properties. In other words, they are used for queries that
demand an understanding of language and they only index string data. They must also be queried
explicitly via procedures, as Cypher does not make plans that rely on them.

An example of a use case for full-text indexes is parsing a book for a certain term and taking advantage of
the knowledge that the book is written in a certain language. The use of an analyzer for that language
enables the exclusion of words that are not relevant for the search (e.g. if and and), and include
conjugations of words that are.

Another use case example is indexing the various address fields and text data in a corpus of emails.
Indexing this data using the email analyzer makes it possible to find all emails that are sent from, or to, or
mentions, an email account.

In contrast to b-tree indexes, full-text indexes are queried using built-in procedures. They are however
created and dropped using Cypher. The use of full-text indexes does require familiarity with how the
indexes operate.

Full-text indexes are powered by the Apache Lucene indexing and search library. A full description on how
to create and use full-text indexes is provided in the Cypher Manual → Indexes to support full-text search.

397

http://lucene.apache.org/
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_full_text_search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_full_text_search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_full_text_search

Configuration

The following options are available for configuring full-text indexes. For a complete list of Neo4j
procedures, see Operations Manual → Procedures.

dbms.index.fulltext.default_analyzer

The name of the analyzer that the full-text indexes should use by default. This setting only has effect
when a full-text index is created and is remembered as an index-specific setting from then on.

The list of possible analyzers is available through the db.index.fulltext.listAvailableAnalyzers()
Cypher procedure.

Unless otherwise specified, the default analyzer is standard-no-stop-words, which is the same as the
StandardAnalyzer from Lucene, except no stop-words are filtered out.

dbms.index.fulltext.eventually_consistent

Used to declare whether full-text indexes should be eventually consistent, or not. This setting only has
an effect when a full-text index is created and is remembered as an index-specific setting from then on.

Indexes are normally fully consistent, and the committing of a transaction does not return until both the
store and the indexes have been updated. Eventually consistent full-text indexes, on the other hand, are
not updated as part of a commit but instead, have their updates queued up and applied in a
background thread. This means that there can be a short delay between committing a change and that
change becoming visible via any eventually consistent full-text indexes. This delay is just an artifact of
the queueing, and is usually quite small since eventually consistent indexes are updated "as soon as
possible".

By default, this is turned off, and full-text indexes are fully consistent.

dbms.index.fulltext.eventually_consistent_index_update_queue_max_length

Eventually consistent full-text indexes have their updates queued up and applied in a background
thread, and this setting determines the maximum size of that update queue. If the maximum queue size
is reached, then committing transactions block and wait until there is more room in the queue, before
adding more updates to it.

This setting applies to all eventually consistent full-text indexes, and they all use the same queue. The
maximum queue length must be at least 1 index update and no more than 50 million due to heap space
usage considerations.

The default maximum queue length is 10.000 index updates.

16.2.4. Token lookup indexes

Token lookup indexes, as the name suggests, are used to look up nodes with a specific label or
relationships of a specific type. A token lookup index sampling is run on all labels or relationship types,
respectively, and hence there can only be a maximum of two token lookup indexes in a database - one for
nodes and one for relationships.

Token lookup indexes are introduced in 4.3 and whereas relationship type lookup index is a new concept,

398

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#procedures

node label lookup index is not. The latter evolved from the label scan store, which has been present in
various forms for a long time. Node label lookup index provides the same functionality as the former label
scan store with some additional features, such as to be created and dropped using a non-blocking
population.

Use and significance

Token lookup indexes are the most important indexes that can be present in a database. They are essential
for both Cypher queries and Core API operations. More importantly, their presence speeds up the
population of other indexes significantly, node label lookup index for node b-tree and full-text indexes and
relationship type lookup index for the corresponding relationship indexes.

The node label lookup index is important for queries that match a node by one or more labels. It can also
be used for matching the labels and properties of a node when no suitable b-tree indexes are available.
This is essential, considering that b-tree indexes are not defined by default. In other words, a node label
lookup index is often the best way to approach a query that matches labels, unless the user has defined a
more appropriate b-tree index. Accordingly, the relationship type lookup index does the same for
relationships and their types.

Most queries are executed by matching nodes and expanding their relationships. Therefore, the node label
lookup index is slightly more significant than the relationship type lookup index.

Since these indexes are important for both query execution and index population, a lot of consideration
should be taken before dropping them.

Both node and relationship type lookup indexes are present by default in all databases created in 4.3 and
onwards.

Databases created before version 4.3

By default, databases created before version 4.3 get only a node label lookup index when used in a Neo4j
DBMS 4.3 or later. This is to preserve the backward compatibility and performance characteristics of such
databases.

If needed, such databases can also get a relationship type lookup index by creating it explicitly using
Cypher.

Creating a relationship type lookup index on a large database can take a significant
amount of time as all relationships need to be scanned when populating such an index.

When used in Neo4j DBMS 4.3 or later, all databases created before 4.3 automatically get a node label
lookup index by converting the former label scan store and naming it
__org_neo4j_schema_index_label_scan_store_converted_to_token_index. This index name is reserved
from 4.3 onwards, and if you attempt to create a user-defined index with it, Neo4j throws an error.
Similarly, in the unlikely situation that an index with such a name was created in previous versions, it must
be dropped and recreated with a different name before upgrading to 4.3.

The following table summarizes which token lookup indexes and label scan stores are present by default in
various versions. Note that the table represents only the default indexes and that the relationship type

399

lookup index can be created explicitly through Cypher if needed.

Token lookup index Databases created before
Neo4j 4.3

Databases upgraded to
Neo4j 4.3

Databases created in Neo4j
4.3 and onwards

Label scan store yes no no

Node label lookup index no yes (automatic conversion) yes

Relationship type lookup
index

no yes (using Cypher) yes

16.3. Tuning of the garbage collector
The heap is separated into an old generation and a young generation. New objects are allocated in the
young generation, and then later moved to the old generation, if they stay live (in use) for long enough.
When a generation fills up, the garbage collector performs a collection, during which all other threads in
the process are paused. The young generation is quick to collect since the pause time correlates with the
live set of objects. In the old generation, pause times roughly correlates with the size of the heap. For this
reason, the heap should ideally be sized and tuned such that transaction and query state never makes it to
the old generation.

The heap size is configured with the dbms.memory.heap.max_size (in MBs) setting in the neo4j.conf file.
The initial size of the heap is specified by the dbms.memory.heap.initial_size setting, or with the
-Xms???m flag, or chosen heuristically by the JVM itself if left unspecified. The JVM will automatically grow
the heap as needed, up to the maximum size. The growing of the heap requires a full garbage collection
cycle. It is recommended to set the initial heap size and the maximum heap size to the same value. This
way the pause that happens when the garbage collector grows the heap can be avoided.

If the new generation is too small, short-lived objects may be moved to the old generation too soon. This is
called premature promotion and will slow the database down by increasing the frequency of old
generation garbage collection cycles. If the new generation is too big, the garbage collector may decide
that the old generation does not have enough space to fit all the objects it expects to promote from the
new to the old generation. This turns new generation garbage collection cycles into old generation
garbage collection cycles, again slowing the database down. Running more concurrent threads means that
more allocations can take place in a given span of time, in turn increasing the pressure on the new
generation in particular.

The Compressed OOPs feature in the JVM allows object references to be compressed to
use only 32 bits. The feature saves a lot of memory but is only available for heaps up to
32 GB. The maximum applicable size varies from platform and JVM version. The
-XX:+UseCompressedOops option can be used to verify whether the system can use the
Compressed OOPs feature. If it cannot, this will will be logged in the default process
output stream.

How to tune the specific garbage collection algorithm depends on both the JVM version and the workload.
It is recommended to test the garbage collection settings under realistic load for days or weeks. Problems
like heap fragmentation can take a long time to surface.

To gain good performance, these are the things to look into first:

400

• Make sure the JVM is not spending too much time performing garbage collection. The goal is to have a
large enough heap to make sure that heavy/peak load will not result in so called GC-trashing.
Performance can drop as much as two orders of magnitude when GC-trashing happens. Having too
large heap may also hurt performance so you may have to try some different heap sizes.

• Neo4j needs enough heap memory for the transaction state and query processing, plus some head-
room for the garbage collector. As heap memory requirements are so workload-dependent, it is
common to see heap memory configurations from 1 GB, up to 32 GB.

Edit the following properties:

Table 97. neo4j.conf JVM tuning properties

Property Name Meaning

dbms.memory.heap.initial_size initial heap size (in MB)

dbms.memory.heap.max_size maximum heap size (in MB)

dbms.jvm.additional additional literal JVM parameter

16.4. Bolt thread pool configuration
The Bolt connector is backed by a thread pool on the server side. The thread pool is constructed as part of
the server startup process.

16.4.1. How thread pooling works

The Bolt thread pool has a minimum and a maximum capacity. It starts with a minimum number of threads
available, and grows up to the maximum count depending on the workload. Threads that sit idle for longer
than a specified time period are stopped and removed from the pool in order to free up resources.
However, the size of the pool will never go below the minimum.

Each connection being established is assigned to the connector’s thread pool. Idle connections do not
consume any resources on the server side, and they are monitored against messages arriving from the
client. Each message arriving on a connection triggers the scheduling of a connection on an available
thread in the thread pool. If all the available threads are busy, and there is still space to grow, a new thread
is created and the connection is handed over to it for processing. If the pool capacity is filled up, and no
threads are available to process, the job submission is rejected and a failure message is generated to notify
the client of the problem.

The default values assigned to the Bolt thread pool will fit most workloads, so it is generally not necessary
to configure the connection pool explicitly. If the maximum pool size is set too low, an exception will be
thrown with an error message indicating that there are no available threads to serve. The message will
also be written to neo4j.log.

401

Any connection with an active explicit, or implicit, transaction will stick to the thread that
starts the transaction, and will not return that thread to the pool until the transaction is
closed. Therefore, in applications that are making use of explicit transactions, it is
important to close the transactions appropriately. To learn more about transactions, refer
to the Neo4j Driver manuals.

16.4.2. Configuration options

The following configuration options are available for configuring the Bolt connector:

Table 98. Thread pool options

Option name Default Description

dbms.connector.bolt.thread_pool_min_
size

5 The minimum number of threads that
will always be up even if they are idle.

dbms.connector.bolt.thread_pool_max_
size

400 The maximum number of threads that
will be created by the thread pool.

dbms.connector.bolt.thread_pool_keep
_alive

5m The duration that the thread pool will
wait before killing an idle thread from
the pool. However, the number of
threads will never go below
dbms.connector.bolt.thread_pool_min_
size.

16.4.3. How to size your Bolt thread pool

Select values for thread pool sizing based on your workload. Since each active transaction will borrow a
thread from the pool until the transaction is closed, it is basically the minimum and maximum active
transaction at any given time that determine the values for pool configuration options. You can use the
monitoring capabilities (see Monitoring) of the database to discover more about your workload.

Configure dbms.connector.bolt.thread_pool_min_size based on your minimum or average workload.
Since there will always be this many amount of threads in the thread pool, sticking with lower values may
be more resource-friendly than having too many idle threads waiting for job submissions.

Configure dbms.connector.bolt.thread_pool_max_size based on your maximum workload. This should
basically be set after the maximum number of active transactions that is expected on the server. You
should also account for non-transaction operations that will take place on the thread pool, such as
connection and disconnection of clients.

402

https://neo4j.com/docs

Example 104. Configure the thread pool for a Bolt connector

In this example we configure the Bolt thread pool to be of minimum size 5, maximum size 100, and
have a keep-alive time of 10 minutes.

dbms.connector.bolt.thread_pool_min_size=10
dbms.connector.bolt.thread_pool_max_size=100
dbms.connector.bolt.thread_pool_keep_alive=10m

16.5. Linux file system tuning
It is recommended to disable file and directory access time updates by setting the noatime,nodiratime
mount options in fstab, or when issuing the disk mount command. This way, the file system will not have
to issue writes that update this meta-data, thus improving write performance.

Since databases can put a high and consistent load on a storage system for a long time, it is recommended
to use a file system that has good aging characteristics. The EXT4 and XFS file systems are both
supported.

A high read and write I/O load can also degrade SSD performance over time. The first line of defense
against SSD wear is to ensure that the working dataset fits in RAM. A database with a high write
workload will, however, still cause wear on SSDs. The simplest way to combat this is to over-provision;
use SSDs that are at least 20% larger than you strictly need them to be.

 Neo4j does not recommend and support the usage of NFS or NAS as database storage.

16.6. Disks, RAM and other tips
As with any persistence solution, performance depends a lot on the persistence media used. In general, the
faster storage you have, and the more of your data you can fit in RAM, the better performance you will get.

16.6.1. Storage

There are many performance characteristics to consider for your storage solutions. The performance can
vary hugely in orders of magnitude. Generally, having all your data in RAM achieves maximum
performance.

If you have multiple disks or persistence media available, it may be a good idea to divide the store files and
transaction logs across those disks. Keeping the store files on disks with low seek time can do wonders for
read operations.

Use tools like dstat or vmstat to gather information when your application is running. If the swap or
paging numbers are high, that is a sign that the database does not quite fit in memory. In this case,
database access can have high latencies.

To achieve maximum performance, it is recommended to provide Neo4j with as much
RAM as possible to avoid hitting the disk.

403

16.6.2. Page cache

When Neo4j starts up, its page cache is empty and needs to warm up. The pages, and their graph data
contents, are loaded into memory on demand as queries need them. This can take a while, especially for
large stores. It is not uncommon to see a long period with many blocks being read from the drive, and high
IO wait times. This will show up in the page cache metrics as an initial spike in page faults. The page fault
spike is then followed by a gradual decline of page fault activity, as the probability of queries needing a
page that is not yet in memory drops.

16.6.3. Active page cache warmup Enterprise edition

Neo4j Enterprise Edition has a feature called active page cache warmup, which is enabled by default via
the dbms.memory.pagecache.warmup.enable configuration setting.

How it works

It shortens the page fault spike and makes the page cache warm up faster. This is done by periodically
recording cache profiles of the store files while the database is running. These profiles contain information
about what data is and is not in memory and are stored in the data/databases/mydatabase/profiles
directory. When Neo4j is restarted next time, it looks for these cache profiles and loads the same data that
was in memory when the profile was created. The profiles are also copied as part of the online backup and
cluster store-copy operations and help warm up new databases that join a cluster.

The setting should remain enabled for most scenarios. However, when the workload changes after the
database restarts, the setting can be disabled to avoid spending time fetching data that will be directly
evicted.

Configuration options

Load the entire database into memory

It is also possible to configure dbms.memory.pagecache.warmup.preload to load the entire database data
into memory. This is useful when the size of the database store is smaller than the available memory for
the page cache. When enabled, it disables warmup by profile and prefetches data into the page cache
as part of the startup.

Load specified files into memory

The files that you want to prefetched can be filtered using the
dbms.memory.pagecache.warmup.preload.allowlist setting. It takes a regular expression as a value to
match the files.

404

Example 105. Load only the nodes and relationships

For example, if you want to load only the nodes and relationships, you can use the regex
.*(node|relationship).* to match the name of the store files. The active page cache warmup will
prefetch the content of the following files:

neostore.nodestore.db
neostore.nodestore.db.id
neostore.nodestore.db.labels
neostore.nodestore.db.labels.id
neostore.relationshipgroupstore.db
neostore.relationshipgroupstore.db.id
neostore.relationshipstore.db
neostore.relationshipstore.db.id
neostore.relationshiptypestore.db
neostore.relationshiptypestore.db.id
neostore.relationshiptypestore.db.names
Neostore.relationshiptypestore.db.names.id

And can be verified using unix grep:

ls neo4j/ | grep -E '.*(node|relationship).*'

Configure the profile frequency for the page cache

The profile frequency is the rate at which the profiles are re-generated. More frequent means more
accurate. A profile contains information about those parts of the files that are currently loaded into
memory. By default, it is set to dbms.memory.pagecache.warmup.profile.interval=1m. It takes some
time to generate these profiles, and therefore 1m is a good interval. If the workload is very stable, then
the profile will not change much. Accordingly, if the workload changes often, the profile will thus often
become outdated.

16.6.4. Checkpoint IOPS limit Enterprise edition

Neo4j flushes its page cache in the background as part of its checkpoint process. This will show up as a
period of elevated write IO activity. If the database is serving a write-heavy workload, the checkpoint can
slow the database down by reducing the IO bandwidth that is available to query processing. Running the
database on a fast SSD, which can service a lot of random IOs, significantly reduces this problem. If a fast
SSD is not available in your environment, or if it is insufficient, then an artificial IOPS limit can be placed on
the checkpoint process. The dbms.checkpoint.iops.limit restricts the IO bandwidth that the checkpoint
process is allowed to use. Each IO is, in the case of the checkpoint process, an 8 KiB write. An IOPS limit of
600, for instance, would thus only allow the checkpoint process to write at a rate of roughly 5 MiB per
second. This will, on the other hand, make checkpoints take longer to complete. A longer time between
checkpoints can cause more transaction log data to accumulate, and can lengthen recovery times. See the
transaction logs section for more details on the relationship between checkpoints and log pruning. The
IOPS limit can be changed at runtime, making it possible to tune it until you have the right balance
between IO usage and checkpoint time.

405

16.7. Statistics and execution plans
When a Cypher query is issued, it gets compiled to an execution plan that can run and answer the query.
The Cypher query engine uses the available information about the database, such as schema information
about which indexes and constraints exist in the database. Neo4j also uses statistical information about
the database to optimize the execution plan. For more information, see Cypher Manual → Execution plans.

16.7.1. Configure statistics collection

The Cypher query planner depends on accurate statistics to create efficient plans. Therefore, these
statistics are kept up-to-date as the database evolves.

For each database in the DBMS, Neo4j collects the following statistical information and keeps it up-to-
date:

For graph entities

• The number of nodes with a certain label.

• The number of relationships by type.

• The number of relationships by type between nodes with a specific label.

These numbers are updated whenever you set or remove a label from a node.

For database schema

• Selectivity per index.

To produce a selectivity number, Neo4j runs a full index scan in the background. Because this could
potentially be a very time-consuming operation, a full index scan is triggered only when the changed data
reaches a specified threshold.

Automatic statistics collection

You can control whether and how often statistics are collected automatically by configuring the following
settings:

Parameter name Default value Description

dbms.index_sampling.background_enabled true Enable the automatic (background) index sampling.

dbms.index_sampling.update_percentage 5 Percentage of index updates of total index size
required before sampling of a given index is
triggered.

Manual statistics collection

You can manually trigger index resampling by using the built-in procedures db.resampleIndex() and
db.resampleOutdatedIndexes().

db.resampleIndex()

Trigger resampling of a specified index.

406

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#execution_plans
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#execution_plans
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#execution_plans

CALL db.resampleIndex("indexName")

db.resampleOutdatedIndexes()

Trigger resampling of all outdated indexes.

CALL db.resampleOutdatedIndexes()

16.7.2. Configure the replanning of execution plans

Execution plans are cached and are not replanned until the statistical information used to produce the plan
changes.

Automatic replanning

You can control how sensitive the replanning should be to database updates by configuring the following
settings:

Parameter name Default value Description

cypher.statistics_divergence_threshold 0.75 The threshold for statistics above which a plan is
considered stale.
When the changes to the underlying statistics of an
execution plan meet the specified threshold, the
plan is considered stale and is replanned. Change is
calculated as abs(a-b)/max(a,b).
This means that a value of 0.75 requires the
database to approximately quadruple in size before
replanning occurs. A value of 0 means that the query
is replanned as soon as there is a change in the
statistics and the replan interval elapses.

cypher.min_replan_interval 10s The minimum amount of time between two query
replanning executions. After this time, the graph
statistics are evaluated, and if they have changed
more than the value set in
cypher.statistics_divergence_threshold, the
query is replanned. Each time the statistics are
evaluated, the divergence threshold is reduced until
it reaches 10% after about 7h. This ensures that
even moderately changing databases see query
replanning after a sufficiently long time interval.

Manual replanning

You can manually force the database to replan the execution plans that are already in the cache by using
the following built-in procedures:

db.clearQueryCaches()

Clear all query caches. Does not change the database statistics.

407

CALL db.clearQueryCaches()

db.prepareForReplanning()

Completely recalculates all database statistics to be used for any subsequent query planning.

The procedure triggers an index resampling, waits for it to complete, and clears all query caches.
Afterwards, queries are planned based on the latest database statistics.

CALL db.prepareForReplanning()

You can use Cypher replanning to specify whether you want to force a replan, even if the plan is valid
according to the planning rules, or skip replanning entirely should you wish to use a valid plan that already
exists.

For more information, see:

• Cypher manual → Cypher replanning

• Cypher manual → Execution plans

• Procedures

16.8. Space reuse
Neo4j uses logical deletes to remove data from the database to achieve maximum performance and
scalability. A logical delete means that all relevant records are marked as deleted, but the space they
occupy is not immediately returned to the operating system. Instead, it is subsequently reused by the
transactions creating data.

Marking a record as deleted requires writing a record update command to the transaction log, as when
something is created or updated. Therefore, when deleting large amounts of data, this leads to a storage
usage growth of that particular database, because Neo4j writes records for all deleted nodes, their
properties, and relationships to the transaction log.

Keep in mind that when doing DETACH DELETE on many nodes, those deletes can take up
more space in the in-memory transaction state and the transaction log than you might
expect.

Transactions are eventually pruned out of the transaction log, bringing the storage usage of the log back
down to the expected level. The store files, on the other hand, do not shrink when data is deleted. The
space that the deleted records take up is kept in the store files. Until the space is reused, the store files are
sparse and fragmented, but the performance impact of this is usually minimal.

16.8.1. ID files

Neo4j uses .id files for managing the space that can be reused. These files contain the set of IDs for all the
deleted records in their respective files. The ID of the record uniquely identifies it within the store file. For
instance, the neostore.nodestore.db.id contains the IDs of all deleted nodes.

408

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-replanning
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-replanning
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-replanning
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#execution_plans
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#execution_plans
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#execution_plans

These .id files are maintained as part of the write transactions that interact with them. When a write
transaction commits a deletion, the record’s ID is buffered in memory. The buffer keeps track of all
overlapping unfinished transactions. When they complete, the ID becomes available for reuse.

The buffered IDs are flushed to the .id files as part of the checkpointing. Concurrently, the .id file changes
(the ID additions and removals) are inferred from the transaction commands. This way, the recovery
process ensures that the .id files are always in-sync with their store files. The same process also ensures
that clustered databases have precise and transactional space reuse.

If you want to shrink the size of your database, do not delete the .id files. The store files
must only be modified by the Neo4j database and the neo4j-admin tools.

16.8.2. Reclaim unused space

You can use the neo4j-admin copy command to create a defragmented copy of your database. The copy
command creates and entirely new and independent database. If you want to run that database in a
cluster, you have to re-seed the existing cluster, or seed a new cluster from that copy.

409

Example 106. Example of database compaction using neo4j-admin copy

The following is a detailed example on how to check your database store usage and how to reclaim
space.

Let’s use the Cypher Shell command-line tool to add 100k nodes and then see how much store they
occupy.

1. In a running Neo4j standalone instance, log in to the Cypher Shell command-line tool with your
credentials.

$neo4j-home/bin$> ./cypher-shell -u neo4j -p <password>

Connected to Neo4j at neo4j://localhost:7687 as user neo4j.
Type :help for a list of available commands or :exit to exit the shell.
Note that Cypher queries must end with a semicolon.

2. Add 100k nodes to the neo4j database using the following command:

neo4j@neo4j> foreach (x in range (1,100000) | create (n:testnode1 {id:x}));

0 rows available after 1071 ms, consumed after another 0 ms
Added 100000 nodes, Set 100000 properties, Added 100000 labels

3. Check the allocated ID range:

neo4j@neo4j> MATCH (n:testnode1) RETURN ID(n) as ID order by ID limit 5;

+----+
| ID |
+----+
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
+----+

5 rows available after 171 ms, consumed after another 84 ms

4. Run call db.checkpoint() procedure to force a checkpoint.

neo4j@neo4j> call db.checkpoint();

+-----------------------------------+
| success | message |
+-----------------------------------+
| TRUE | "Checkpoint completed." |
+-----------------------------------+

1 row available after 18 ms, consumed after another 407 ms

410

5. In Neo4j Browser, run :sysinfo to check the total store size of neo4j.

The reported output for the store size is 791.92 KiB, ID Allocation: Node ID 100000, Property ID
100000.

6. Delete the above created nodes.

neo4j@neo4j> Match (n) detach delete n;

7. Run call db.checkpoint() procedure again.

neo4j@neo4j> call db.checkpoint();

+-----------------------------------+
| success | message |
+-----------------------------------+
| TRUE | "Checkpoint completed." |
+-----------------------------------+

1 row available after 18 ms, consumed after another 407 ms

8. In Neo4j Browser, run :sysinfo to check the total store size of neo4j.

The reported output for the store size is 31.01 MiB, ID Allocation: Node ID 100000, Property ID
100000.

By default, a checkpoint flushes any cached updates in pagecache to store files.
Thus, the allocated IDs remain unchanged, and the store size increases or does
not alter (if the instance restarts) despite the deletion. In a production database,
where numerous load/deletes are frequently performed, the result is a
significant unused space occupied by store files.

To reclaim that unused space, you can use the neo4j-admin copy command to create a defragmented
copy of your database. Use the system database and stop the neo4j database before running the
command.

1. Invoke the neo4j-admin copy command to create a copy of your neo4j database.

$neo4j-home/bin$> ./neo4j-admin copy --to-database=neo4jcopy1 --from-database=neo4j --force
--verbose

411

Starting to copy store, output will be saved to: $neo4j_home/logs/neo4j-admin-copy-2020-11-
04.11.30.57.log
2020-10-23 11:40:00.749+0000 INFO [StoreCopy] ### Copy Data ###
2020-10-23 11:40:00.750+0000 INFO [StoreCopy] Source: $neo4j_home/data/databases/neo4j (page
cache 8m) (page cache 8m)
2020-10-23 11:40:00.750+0000 INFO [StoreCopy] Target: $neo4j_home/data/databases/neo4jcopy1 (page
cache 8m)
2020-10-23 11:40:00.750+0000 INFO [StoreCopy] Empty database created, will start importing
readable data from the source.
2020-10-23 11:40:02.397+0000 INFO [o.n.i.b.ImportLogic] Import starting
Nodes, started 2020-11-04 11:31:00.088+0000
[*Nodes:?? 7.969MiB---]
100K ∆ 100K
Done in 632ms
Prepare node index, started 2020-11-04 11:31:00.735+0000
[*DETECT:7.969MiB---]
0 ∆ 0
Done in 79ms
Relationships, started 2020-11-04 11:31:00.819+0000
[*Relationships:?? 7.969MiB---]
0 ∆ 0
Done in 37ms
Node Degrees, started 2020-11-04 11:31:01.162+0000
[*>:??--]
0 ∆ 0
Done in 12ms
Relationship --> Relationship 1/1, started 2020-11-04 11:31:01.207+0000
[*>:??--]
0 ∆ 0
Done in 0ms
RelationshipGroup 1/1, started 2020-11-04 11:31:01.232+0000
[*>:??--]
0 ∆ 0
Done in 10ms
Node --> Relationship, started 2020-11-04 11:31:01.245+0000
[*>:??--]
0 ∆ 0
Done in 10ms
Relationship <-- Relationship 1/1, started 2020-11-04 11:31:01.287+0000
[*>:??--]
0 ∆ 0
Done in 0ms
Count groups, started 2020-11-04 11:31:01.549+0000
[*>:??--]
0 ∆ 0
Done in 0ms
Node --> Group, started 2020-11-04 11:31:01.579+0000
[*>:??--]
0 ∆ 0
Done in 1ms
Node counts and label index build, started 2020-11-04 11:31:01.986+0000
[*>:??--]
0 ∆ 0
Done in 11ms
Relationship counts, started 2020-11-04 11:31:02.034+0000
[*>:??--]
0 ∆ 0
Done in 0ms

IMPORT DONE in 3s 345ms.
Imported:
 0 nodes
 0 relationships
 0 properties
Peak memory usage: 7.969MiB
2020-11-04 11:31:02.835+0000 INFO [o.n.i.b.ImportLogic] Import completed successfully, took 3s
345ms. Imported:
 0 nodes
 0 relationships
 0 properties
2020-11-04 11:31:03.330+0000 INFO [StoreCopy] Import summary: Copying of 100704 records took 5
seconds (20140 rec/s). Unused Records 100704 (100%) Removed Records 0 (0%)
2020-11-04 11:31:03.330+0000 INFO [StoreCopy] ### Extracting schema ###
2020-11-04 11:31:03.330+0000 INFO [StoreCopy] Trying to extract schema...
2020-11-04 11:31:03.338+0000 INFO [StoreCopy] ... found 0 schema definitions.

412

The example resulted in a compact and consistent store (any inconsistent nodes, properties,
relationships are not copied over to the newly created store).

2. Use the system database and create the neo4jcopy1 database.

neo4j@system> create database neo4jcopy1;

0 rows available after 60 ms, consumed after another 0 ms

3. Verify that the neo4jcopy1 database is online.

neo4j@system> show databases;
+--
------------+
| name | address | role | requestedStatus | currentStatus | error |
default | home |
+--
------------+
| "neo4j" | "localhost:7687" | "standalone" | "offline" | "offline" | "" | TRUE
| TRUE |
| "neo4jcopy1" | "localhost:7687" | "standalone" | "online" | "online" | "" |
FALSE | FALSE |
| "system" | "localhost:7687" | "standalone" | "online" | "online" | "" |
FALSE | FALSE |
+--
------------+

3 rows available after 2 ms, consumed after another 1 ms

4. In Neo4j Browser, run :sysinfo to check the total store size of neo4jcopy1.

The reported output for the store size after the compaction is 800.68 KiB, ID Allocation: Node ID
0, Property ID 0.

413

Chapter 17. Tools
This chapter comprises the following topics:

• Neo4j CLI tool —  A description of the Neo4j database server CLI tool.

• Neo4j Admin tool — A description of the Neo4j Admin tool.

◦ Consistency checker — How to check the consistency of a Neo4j database using Neo4j Admin.

◦ Neo4j Admin report — How to collect the most common information needed for remote
assessments.

◦ Display store information — How to display information about a database store.

◦ Memory recommendations — How to get an initial recommendation for Neo4j memory settings.

◦ Import — How to import data into Neo4j using the command neo4j-admin import.

◦ Unbind a Core Server — How to remove cluster state data from a Neo4j server.

◦ Push to Neo4j AuraDB — How to push an existing Neo4j graph to Neo4j AuraDB.

• Cypher Shell — How to use the Cypher Shell.

17.1. Neo4j CLI tool
The Neo4j CLI tool is a tool for managing a Neo4j database server. It is a command-line tool that is
installed as part of the product and can be executed with a number of commands. Neo4j CLI tool is located
in the bin directory.

17.1.1. Syntax and commands

General synopsis

The neo4j tool has the following general synopsis:

neo4j <command>

Available commands

Command Description

console Start server in console.

start Start server as a daemon.

stop Stop the server daemon.

restart Restart the server daemon.

414

Command Description

status Get the status of the server.

version, --version Print version information and exit.

help, --help Display help information about the specified command.

For example, running ./bin/neo4j --help start outputs the
usage, description, and all available options of the start
command:

Usage: Neo4j start [--expand-commands] [--verbose]
Start server as a daemon.
 --expand-commands Allow command expansion in config
value evaluation.
 --verbose Prints additional information.

Command expansion can be enabled by adding a customised script to the neo4j.conf
file, and then including the --expand-commands argument to the Neo4j startup script.

For more information, see Command expansion.

17.1.2. Environment variables

Neo4j CLI tool can also use the following environment variables:

Environment variable Description

NEO4J_DEBUG Set to anything to enable debug output.

NEO4J_HOME Neo4j home directory.

NEO4J_CONF Path to the directory that contains neo4j.conf.

HEAP_SIZE Set JVM maximum heap size during command execution. Takes a number and
a unit, for example, 512m.

JAVA_OPTS Additional JVM arguments. Refer to JVM documentation about the exact
format. This variable is incompatible with HEAP_SIZE and takes precedence
over HEAP_SIZE.

By default, dbms.jvm.additional settings specified in the configuration file are used
when invoking neo4j CLI commands. If set, JAVA_OPTS overrides all relevant settings
specified in the configuration file.

415

17.2. Neo4j Admin

17.2.1. Introduction

Neo4j Admin is the primary tool for managing a Neo4j DBMS. It is a command-line tool that is installed as
part of the product and can be executed with a number of commands. Some of the commands are
described in more detail in separate sections.

The Neo4j Admin commands must be invoked with the same user as Neo4j runs as. This
guarantees that Neo4j will have full rights to start and work with the database files you
use.

17.2.2. Syntax and commands

Syntax

Neo4j Admin is located in the bin directory and is invoked as:

neo4j-admin [-hV] [COMMAND]

• -h, --help — Show the neo4j-admin help message and exit.

• -V, --version — Print the neo4j-admin version information and exit.

Commands

416

Functionality area Command Description

General help <command> Display help information about the specified
command.

check-consistency Check the consistency of a database.

For details, see Consistency checker.

report Produce a zip/tar of the most common information
needed for remote assessments.

For details, see Neo4j Admin report.

store-info Print information about a Neo4j database store.

For details, see Display store information.

memrec Print Neo4j heap and pagecache memory settings
recommendations.

For details, see Memory recommendations.

import Import from a collection of CSV files or a pre-3.0
database.

For details, see Import.

copy Copy data from an existing database to a new
database.

For details, see Copy a database store.

push-to-cloud Dump a local offline database, and imports it into a
specified Neo4j AuraDB instance. The target
location is your Neo4j Aura Bolt URI.

For details, see Push to cloud.

Authentication set-default-admin Set the default admin user when no roles are
present.

set-initial-password Set the initial password of the initial admin user
(neo4j).

For details, see Set an initial password.

417

Functionality area Command Description

Offline backup and restore

For details, see Back up an
offline database and Restore
a database dump.

dump Dump a database into a single-file archive.

load Load a database from an archive created with the
dump command.

Online backup and restore

For details, see Back up an
online database, Prepare a
database for restoring, and
Restore a database backup.

backup Perform an online backup from a running Neo4j
server.

prepare-restore Prepare a backup for restoring by applying the
latest transactions pulled at the time of backup but
not yet applied to the store.

restore Restore a backed-up database.

Clustering unbind Remove cluster state data from a stopped Neo4j
server.

For details, see Unbind a Core Server.

get-server-id Display the Server ID of a Neo4j instance.

If no Server ID is returned, either Neo4j has never
started or it has been unbound. Start Neo4j to
create a new Server ID and then re-run this
command.

In this Neo4j version, Read
Replicas do not have persistent
Server IDs.

The Server ID can be used in Cypher commands to
identify an instance.

17.2.3. Environment variables

17.2.4. Environment variables

The Neo4j Admin tool can also use the following environment variables:

Environment variable Description

NEO4J_DEBUG Set to anything to enable debug output.

418

Environment variable Description

NEO4J_HOME Neo4j home directory.

NEO4J_CONF Path to the directory that contains neo4j.conf.

HEAP_SIZE Set JVM maximum heap size during command execution. Takes a number and
a unit, for example, 512m.

JAVA_OPTS Additional JVM arguments.

17.2.5. Exit codes

When neo4j-admin finishes as expected, it returns an exit code of 0. A non-zero exit code means
something undesired happened during command execution. The non-zero exit code can contain further
information about the error, such as the backup command’s exit codes.

17.2.6. Consistency checker

The consistency of a database or a backup can be checked using the check-consistency argument to the
neo4j-admin tool. The neo4j-admin tool is located in the bin directory. If checking the consistency of a
database, note that it has to be stopped first or else the consistency check will result in an error.

It is not recommended to use an NFS to check the consistency of a database or a backup
as this slows the process down significantly.

Syntax

neo4j-admin check-consistency ([--database=<database>] | [--backup=<path>])
 [--verbose] [--additional-config=<path>]
 [--check-graph=<true/false>]
 [--check-indexes=<true/false>]
 [--check-index-structure=<true/false>]
 [--check-label-scan-store=<true/false>]
 [--check-property-owners=<true/false>]
 [--report-dir=<path>]`

Please note that the following options have been deprecated:

[--check-label-scan-store=<true/false>]
[--check-property-owners=<true/false>]

Values for these settings will be ignored.

Options

419

Option Default Description

--database neo4j Name of database.

--backup Path to backup to check
consistency of. Cannot be used
together with --database.

--additional-config Configuration file to supply
additional configuration in.

--verbose false Enable verbose output.

--report-dir . Directory to write report file in.

--check-graph true Perform checks between nodes,
relationships, properties, types
and tokens.

--check-indexes true Perform checks on indexes by
comparing content with the store.

--check-index-structure true Perform physical structure check
on indexes. No comparison with
the store takes place.

--check-label-scan-store true This option is deprecated and its
value will be ignored.

--check-property-owners false This option is deprecated and its
value will be ignored.

Output

If the consistency checker does not find errors, it will exit cleanly and not produce a report. If the
consistency checker finds errors, it will exit with an exit code of 1 and write a report file with a name on the
format inconsistencies-YYYY-MM-DD.HH24.MI.SS.report. The location of the report file is the current
working directory, or as specified by the parameter report-dir.

420

Example 107. Run the consistency checker

Run with the --database option to check the consistency of a database. Note that the database must
be stopped first.

$neo4j-home> bin/neo4j-admin check-consistency --database=neo4j

2019-11-13 12:42:14.479+0000 INFO [o.n.k.i.s.f.RecordFormatSelector] Selected
RecordFormat:StandardV4_0[SF4.0.b] record format from store /data/databases/neo4j
2019-11-13 12:42:14.481+0000 INFO [o.n.k.i.s.f.RecordFormatSelector] Format not configured for store
/data/databases/neo4j. Selected format from the store files: RecordFormat:StandardV4_0[SF4.0.b]
Index structure consistency check
.................... 10%
.................... 20%
.................... 30%
.................... 40%
.................... 50%
.................... 60%
.................... 70%
.................... 80%
.................... 90%
.................... 100%
Full Consistency Check
.................... 10%
.................... 20%
.................... 30%
.................... 40%
.................... 50%
.................... 60%
.................... 70%
.................... 80%
.................... 90%
.Checking node and relationship counts
.................... 10%
.................... 20%
.................... 30%
.................... 40%
.................... 50%
.................... 60%
.................... 70%
.................... 80%
.................... 90%
.................... 100%

Run with the --backup option to check the consistency of a backup.

bin/neo4j-admin check-consistency --backup backup/neo4j-backup

neo4j-admin check-consistency cannot be applied to the Fabric virtual database. It must
be run directly on the databases that are part of the Fabric setup.

17.2.7. Neo4j Admin report

Use the report command of neo4j-admin to gather information about a Neo4j installation and save it to an
archive.

neo4j-admin report [--force] [--list] [--verbose] [--pid=<pid>] [--to=<path>] [<classifier>…]

The intended usage of the report tool is to simplify the support process by collecting the relevant
information in a standard way. This tool does not send any information automatically. To share this

421

information with the Neo4j Support organization, you have to send it manually.

Table 99. Options

Option Default Description

--to reports/ Specify to target directory where the report should be written to.

--list List available classifiers.

--verbose Instruct the tool to print more verbose output.

--force Disable the available disk space check.

--pid Specify process id of a running Neo4j instance. Only applicable when
used together with the Online classifiers. See the Classifiers table.

By default, the tool tries to estimate the final size of the report and uses that to assert that there is enough
disk space available for it. If there is not enough available space, the tool aborts. However, this estimation
is pessimistic and does not consider the compression. Therefore, if you are confident that you do have
enough disk space, you can disable this check with the option --force.

Table 100. Classifiers

Classifier Online Description

all Include all of the available classifiers.

ccstate Include the current cluster state.

config Include the neo4j.conf file.

heap Include a heap dump.

logs Include log files, e.g., debug.log, neo4j.log, etc.

metrics Include the collected metrics.

plugins Include a text view of the plugin directory (no files are collected).

ps Include a list of running processes.

raft Include the raft log.

422

Classifier Online Description

sysprop Include a list of Java system properties.

threads Include a thread dump of the running instance.

tree Include a text view of the folder structure of the data directory (no
files are collected).

tx Include transaction logs.

The classifiers marked as Online work only when you have a running Neo4j instance that the tool can find.

If no classifiers are specified, the following classifiers are used: logs, config, plugins, tree, metrics,
threads, sysprop, and ps.

The reporting tool does not read any data from your database. However, the heap, the raft logs, and the
transaction logs may contain data. Additionally, even though the standard neo4j.conf file does not contain
password information, for specific configurations, it may have this type of information. Therefore, be aware
of your organization’s data security rules before using the classifiers heap, tx, raft, and config.

This tool uses the Java Attach API to gather data from a running Neo4j instance.
Therefore, it requires the Java JDK to run properly.

Example 108. Invoke neo4j-admin report against a running Neo4j instance using the default classifiers

The following command gathers information about a Neo4j instance using the default classifiers and
saves it to the default location:

$neo4j-home> bin/neo4j-admin report --pid=47369

Example 109. Invoke neo4j-admin report against a running Neo4j instance using all classifiers

The following command gathers information about a Neo4j instance using all classifiers and saves it
to a specified location:

$neo4j-home> bin/neo4j-admin report --pid=47369 --to=./report all

423

https://docs.oracle.com/javase/8/docs/technotes/guides/attach/index.html

Example 110. Invoke neo4j-admin report against running Neo4j to gather only logs and thread dumps

The following command gathers only logs and thread dumps from a running Neo4j instance and
saves it to a specified location:

$neo4j-home> bin/neo4j-admin report --pid=47369 --to=./report threads logs

17.2.8. Display store information

The neo4j-admin store-info command outputs information about the store format for a given database
store.

1. The store format version.

2. When the store format version was introduced.

3. Whether the store format needs to be migrated to a newer version.

The store format can be set with the dbms.record_format configuration setting.

The store formats are:

• aligned

• standard

• high_limit Enterprise edition

Syntax

The neo4j-admin store-info command is located in the bin directory. It is invoked against an offline
database store or a backup as follows:

neo4j-admin store-info [--all] [--structured] [--verbose] <path>

<path> — Path to database store, or databases directory if --all option is used.

Options

Table 101. Options

Name Description

--verbose Enable verbose output.

--structured Return result structured as JSON.

--all Return store format info for all databases at provided path.

424

Examples

Example 111. Invoke neo4j-admin store-info against a database store

bin/neo4j-admin store-info data/databases/mygraph.db

Output:

Store format version: SF4.0.0
Store format introduced in: 4.0.0

Example 112. Invoke neo4j-admin store-info against a database backup

You can run the store-info command to see if the store format of the backup that you want to
restore, is compatible with your running Neo4j instance. For example, if you want to restore the
database backup /tmp/3518/mygraph.db into a 4.x Neo4j instance:

bin/neo4j-admin store-info /tmp/3518/mygraph.db

Output:

Store format version: vE.H.4 ①
Store format introduced in: 3.4.0 ②
Store format superseded in: 4.0.0 ③

① The store format version reveals that the database is configured to use the high_limit, see
dbms.record_format.

② The store format version was introduced in Neo4j 3.4.0.

③ The store format of the current instance is 4.0.0, which means that a format migration must be
performed if you want to restore this backup into the current instance.

For more information on how to migrate a single database, see Upgrade and Migration
Guide → Tutorial: Back up and copy a database in a standalone instance.

425

https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#online_backup_copy_database
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#online_backup_copy_database
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#online_backup_copy_database
https://neo4j.com/docs/pdf/neo4j-upgrade-migration-guide.pdf#online_backup_copy_database

Example 113. Invoke neo4j-admin store-info against a root containing several databases

The command can also be invoked against a root directory containing several databases, as follows:

neo4j-admin store-info <path> --all

bin/neo4j-admin store-info data/databases --all

Output:

Database name: foo
Database in use: false
Store format version: SF4.0.0
Store format introduced in: 4.0.0
Last committed transaction id:2
Store needs recovery: true

Database name: bar
Database in use: true

When the command is invoked against several databases, if some are online they will
simply report as in use and exclude all other information.

Example 114. Invoke neo4j-admin store-info against a database and output JSON

If you are parsing the results of this command you may use the --structured option to receive the
output as JSON. All the same fields are included and all values are strings.

bin/neo4j-admin store-info data/databases/foo --structured

Output:

{"databaseName":"foo",
"inUse":"false",
"storeFormat”:"SF4.0.0",
"storeFormatIntroduced”:"4.0.0",
"lastCommittedTransaction":"2",
"recoveryRequired":"true"}

Store format — aligned

Table 102. Store versions — aligned

Store Format Name Store Format Version Neo4j Version

ALIGNED_V4_3 AF4.3.0 4.3.0

ALIGNED_V4_1 AF4.1.a 4.1.0

Table 103. Store limits — aligned

426

Name Limit

Property keys 2^24 (16 777 216)

Nodes 2^35 (34 359 738 368)

Relationships 2^35 (34 359 738 368)

Properties 2^36 (68 719 476 736)

Labels 2^32 (4 294 967 296)

Relationship types 2^16 (65 536)

Relationship groups 2^35 (34 359 738 368)

Store format — standard

Table 104. Store versions — standard

Store Format Name Store Format Version Neo4j Version

STANDARD_V4_3 SF4.3.0 4.3.0

STANDARD_V4_0 SF4.0.0 4.0.0

STANDARD_V3_4 v0.A.9 3.4.0

Table 105. Store limits — standard

Name Limit

Property keys 2^24 (16 777 216)

Nodes 2^35 (34 359 738 368)

Relationships 2^35 (34 359 738 368)

Properties 2^36 (68 719 476 736)

Labels 2^32 (4 294 967 296)

Relationship types 2^16 (65 536)

Relationship groups 2^35 (34 359 738 368)

Store format — high_limit Enterprise edition

Table 106. Store versions — high_limit

Store Format Name Store Format Version Neo4j Version

HIGH_LIMIT_V4_3_0 HL4.3.0 4.3.0

HIGH_LIMIT_V4_0_0 HL4.0.0 4.0.0

HIGH_LIMIT_V3_4_0 vE.H.4 3.4.0

HIGH_LIMIT_V3_2_0 vE.H.3 3.2.0

HIGH_LIMIT_V3_1_0 vE.H.2 3.1.0

HIGH_LIMIT_V3_0_6 vE.H.0b 3.0.6

427

Store Format Name Store Format Version Neo4j Version

HIGH_LIMIT_V3_0_0 vE.H.0 3.0.0

Table 107. Store limits — high_limit

Name Limit

Property keys 2^24 (16 777 216)

Nodes 2^50 (1 Quadrillion)

Relationships 2^50 (1 Quadrillion)

Properties 2^50 (1 Quadrillion)

Labels 2^32 (4 294 967 296)

Relationship types 2^24 (16 777 216)

Relationship groups 2^50 (1 Quadrillion)

17.2.9. Memory recommendations

Use the memrec command of neo4j-admin to get an initial recommendation on how to configure memory
parameters for Neo4j:

neo4j-admin memrec --memory=<memory dedicated to Neo4j>, --verbose, --docker

The command gives heuristic memory setting recommendations for the Neo4j JVM heap and pagecache.
The heuristic is based on the total memory of the system the command is running on, or on the amount of
memory specified with the --memory argument. The heuristic assumes that the system is dedicated to
running Neo4j. If this is not the case, then use the --memory argument to specify how much memory can be
expected to be dedicated to Neo4j. The default output is formatted as such that it can be copy-pasted into
neo4j.conf. The argument --docker outputs environmental variables that can be passed to a Neo4j docker
container. For a detailed example, see Use Neo4j Admin for memory recommendations.

Options

Option Default Description

--memory=<size> The memory capacity of the machine. The amount of memory to allocate to
Neo4j. Valid units are: k, K, m, M, g, G.

--verbose Enable verbose output.

--docker Enable output formatted as
environmental variables that can be
passed to a Neo4j docker container.

Considerations

The neo4j-admin memrec command calculates a valid starting point for Neo4j memory settings, based on
the provided memory. The specific conditions for your use case may warrant adjustment of these values.
See Memory configuration for a description of the memory settings in Neo4j.

428

Example 115. Use the memrec command of neo4j-admin

The following example illustrates how neo4j-admin memrec provides a recommendation on how to
use 16g of memory:

$neo4j-home> bin/neo4j-admin memrec --memory=16g

...

...

...
Based on the above, the following memory settings are recommended:
dbms.memory.heap.initial_size=5g
dbms.memory.heap.max_size=5g
dbms.memory.pagecache.size=7g

For an example on how to use the neo4j-admin memrec command, see Inspect the
memory settings of all databases in a DBMS.

17.2.10. Import

There are two ways to import data from CSV files into Neo4j: via neo4j-admin import or LOAD CSV.

With the neo4j-admin import command, you can do batch imports of large amounts of data into a
previously unused database database from CSV files. The command can be performed only once per
database. By default, this database is set to neo4j, but you can use the --database=<database> option to
import your data into a different database.

The user running neo4j-admin import must have WRITE capabilities into
dbms.directories.data and dbms.directories.log.

With LOAD CSV, you can import small to medium-sized CSV files into an existing database. LOAD CSV can be
run as many times as needed and does not require an empty database.

However, using the import command of neo4j-admin is generally faster since it is run against a stopped
and empty database. This section describes the neo4j-admin import option.

For information on LOAD CSV, see the Cypher Manual → LOAD CSV.
For in-depth examples of using the command neo4j-admin import, refer to the Tutorials
→ Neo4j Admin import.
To create a cluster based on imported data, see [causal-clustering-seed-import].

These are some things you need to keep in mind when creating your input files:

• Fields are comma-separated by default but a different delimiter can be specified.

• All files must use the same delimiter.

• Multiple data sources can be used for both nodes and relationships.

• A data source can optionally be provided using multiple files.

• A separate file with a header that provides information on the data fields, must be the first specified

429

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#load_csv

file of each data source.

• Fields without corresponding information in the header will not be read.

• UTF-8 encoding is used.

• By default, the importer trims extra whitespace at the beginning and end of strings. Quote your data to
preserve leading and trailing whitespaces.

Indexes and constraints

Indexes and constraints are not created during the import. Instead, you have to add
these afterwards (see Cypher Manual → Indexes).

Syntax

The syntax for importing a set of CSV files is:

neo4j-admin import [--expand-commands]
 [--verbose]
 [--cache-on-heap[=<true/false>]]
 [--force[=<true/false>]]
 [--high-io[=<true/false>]]
 [--ignore-empty-strings[=<true/false>]]
 [--ignore-extra-columns[=<true/false>]]
 [--legacy-style-quoting[=<true/false>]]
 [--multiline-fields[=<true/false>]]
 [--normalize-types[=<true/false>]]
 [--skip-bad-entries-logging[=<true/false>]]
 [--skip-bad-relationships[=<true/false>]]
 [--skip-duplicate-nodes[=<true/false>]]
 [--trim-strings[=<true/false>]]
 [--additional-config=<path>]
 [--array-delimiter=<char>]
 [--bad-tolerance=<num>]
 [--database=<database>]
 [--delimiter=<char>]
 [--id-type=<STRING|INTEGER|ACTUAL>]
 [--input-encoding=<character-set>]
 [--max-memory=<size>]
 [--processors=<num>]
 [--quote=<char>]
 [--read-buffer-size=<size>]
 [--report-file=<path>]
 --nodes=[<label>[:<label>]...=]<files>...
 [--nodes=[<label>[:<label>]...=]<files>...]...
 [--relationships=[<type>=]<files>...]...

430

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_full_text_search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_full_text_search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#indexes_for_full_text_search

Example 116. Import data from CSV files

Assume that you have formatted your data as per CSV header format so that you have it in six
different files:

1. movies_header.csv

2. movies.csv

3. actors_header.csv

4. actors.csv

5. roles_header.csv

6. roles.csv

The following command imports the three datasets:

neo4j_home$ bin/neo4j-admin import --nodes import/movies_header.csv,import/movies.csv \
--nodes import/actors_header.csv,import/actors.csv \
--relationships import/roles_header.csv,import/roles.csv

Example 117. Import data from CSV files using regular expression

Assume that you want to include a header and then multiple files that matches a pattern, e.g.
containing numbers. In this case a regular expression can be used. It is guaranteed that groups of
digits will be sorted in numerical order, as opposed to lexicograghic order.

For example:

neo4j_home$ bin/neo4j-admin import --nodes import/node_header.csv,import/node_data_\d+\.csv

Example 118. Import data from CSV files using a more complex regular expression

For regular expression patterns containing commas, which is also the delimiter between files in a
group, the pattern can be quoted to preserve the pattern.

For example:

neo4j_home$ bin/neo4j-admin import --nodes import/node_header.csv,'import/node_data_\d{1,5}.csv'

If importing to a database that has not explicitly been created prior to the import, it must
be created subsequently in order to be used.

Options

Table 108. neo4j-admin import options

431

name

--expand-commands

--verbose

--cache-on-heap

--force

--high-io

--ignore-empty-strings

--ignore-extra-columns

--legacy-style-quoting

--multiline-fields

--normalize-types

--skip-bad-entries-logging

--skip-bad-relationships

--skip-duplicate-nodes

--trim-strings

--additional-config

--array-delimiter

--bad-tolerance

--database

--delimiter

--id-type

--input-encoding

--max-memory

--processors

--quote

--read-buffer-size

--report-file

--nodes

--relationships

Some of the options below are marked as Advanced. These options should not be used
for experimentation.

For more information, please contact Neo4j Professional Services.

--expand-commands

Allow command expansion in config value evaluation.

--verbose

Enable verbose output.

432

--cache-on-heap[=<true/false>] Advanced

Determines whether or not to allow allocating memory for the cache on heap.

If false, then caches will still be allocated off-heap, but the additional free memory inside the JVM will
not be allocated for the caches.

Use this to have better control over the heap memory.

Default: false

--force[=<true/false>]

Force deletes any existing database files prior to the import.

Default: false

Use --force=true to delete all files of a specified database and then import new data. For example:

• When using Neo4j Community Edition.
Since the Community Edition only supports one database and does not support DROP DATABASE
name, the only way to re-import data using neo4j-admin import is to use --force=true.

• When you first want to see how the data would get imported and maybe do some tweaking before
you import your actual data. For example, you can first import a small batch of data (e.g., 1000
rows) and examine it. And then, tweak your actual data (e.g., 10 million rows) and use the option
--force=true to re-import it.

--high-io[=<true/false>]

Ignore environment-based heuristics, and specify whether the target storage subsystem can support
parallel IO with high throughput.

Typically this is true for SSDs, large raid arrays and network-attached storage.

Default: false

--ignore-empty-strings[=<true/false>]

Determines whether or not empty string fields, such as "", from input source are ignored (treated as
null).

Default: false

--ignore-extra-columns[=<true/false>]

If unspecified columns should be ignored during the import.

Default: false

--legacy-style-quoting[=<true/false>]

Determines whether or not backslash-escaped quote e.g. \" is interpreted as inner quote.

Default: false

433

--multiline-fields[=<true/false>]

Determines whether or not fields from input source can span multiple lines, i.e. contain newline
characters.

Setting --multiline-fields=true can severely degrade performance of the importer. Therefore, use it
with care, especially with large imports.

Default: false

--normalize-types[=<true/false>]

Determines whether or not to normalize property types to Cypher types, e.g. int becomes long and
float becomes double.

Default: true

--skip-bad-entries-logging[=<true/false>]

Determines whether or not to skip logging bad entries detected during import.

Default: false

--skip-bad-relationships[=<true/false>]

Determines whether or not to skip importing relationships that refer to missing node IDs, i.e. either start
or end node ID/group referring to node that was not specified by the node input data.

Skipped relationships will be logged, containing at most the number of entities specified by --bad
-tolerance, unless otherwise specified by the --skip-bad-entries-logging option.

Default: false

--skip-duplicate-nodes[=<true/false>]

Determines whether or not to skip importing nodes that have the same ID/group.

In the event of multiple nodes within the same group having the same ID, the first encountered will be
imported, whereas consecutive such nodes will be skipped.

Skipped nodes will be logged, containing at most the number of entities specified by --bad-tolerance,
unless otherwise specified by the --skip-bad-entries-logging option.

Default: false

--trim-strings[=<true/false>]

Determines whether or not strings should be trimmed for whitespaces.

Default: false

--additional-config=<config-file-path>

Path to a configuration file that contain additional configuration options.

--array-delimiter=<char>

Determines the array delimiter within a value in CSV data.

434

• ASCII character — e.g. --array-delimiter=";".

• \ID — unicode character with ID, e.g. --array-delimiter="\59".

• U+XXXX — unicode character specified with 4 HEX characters, e.g. --array
-delimiter="U+20AC".

• \t — horizontal tabulation (HT), e.g. --array-delimiter="\t".

For horizontal tabulation (HT), use \t or the unicode character ID \9.

Unicode character ID can be used if prepended by \.

Default: ;

--bad-tolerance=<num>

Number of bad entries before the import is considered failed.

This tolerance threshold is about relationships referring to missing nodes. Format errors in input data
are still treated as errors.

Default: 1000

--database=<name>

Name of the database to import.

Default: neo4j

--delimiter=<char>

Determines the delimiter between values in CSV data.

• ASCII character — e.g. --delimiter=",".

• \ID — unicode character with ID, e.g. --delimiter="\44".

• U+XXXX — unicode character specified with 4 HEX characters, e.g. --delimiter="U+20AC".

• \t — horizontal tabulation (HT), e.g. --delimiter="\t".

For horizontal tabulation (HT), use \t or the unicode character ID \9.

Unicode character ID can be used if prepended by \.

Default: ,

--id-type=<STRING|INTEGER|ACTUAL>

Each node must provide a unique ID in order to be used for creating relationships during the import.

Possible values are:

• STRING — arbitrary strings for identifying nodes.

435

• INTEGER — arbitrary integer values for identifying nodes.

• ACTUAL — actual node IDs. (Advanced)

Default: STRING

--input-encoding=<character-set>

Character set that input data is encoded in.

Default: UTF-8

--max-memory=<size>

Maximum memory that neo4j-admin can use for various data structures and caching to improve
performance.

Values can be plain numbers such as 10000000, or 20G for 20 gigabyte. It can also be specified as a
percentage of the available memory, for example 70%.

Default: 90%

--processors=<num> Advanced

Max number of processors used by the importer.

Defaults to the number of available processors reported by the JVM. There is a certain amount of
minimum threads needed, so for that reason there is no lower bound for this value.

For optimal performance, this value shouldn’t be greater than the number of available processors.

--quote=<char>

Character to treat as quotation character for values in CSV data.

Quotes can be escaped as per RFC 4180 by doubling them, for example "" would be interpreted as a
literal ".

You cannot escape using \.

Default: "

--read-buffer-size=<size>

Size of each buffer for reading input data.

It has to at least be large enough to hold the biggest single value in the input data. Value can be a plain
number or byte units string, e.g. 128k, 1m.

Default: 4m

--report-file=<filename>

File in which to store the report of the csv-import.

Default: import.report

The location of the import log file can be controlled using the --report-file option. If you run large

436

https://tools.ietf.org/html/rfc4180

imports of CSV files that have low data quality, the import log file can grow very large. For example,
CSV files that contain duplicate node IDs, or that attempt to create relationships between non-existent
nodes, could be classed as having low data quality. In these cases, you may wish to direct the output to
a location that can handle the large log file.

If you are running on a UNIX-like system and you are not interested in the output, you can get rid of it
altogether by directing the report file to /dev/null.

If you need to debug the import, it might be useful to collect the stack trace. This is done by using
--verbose option.

--nodes=[<label>[:<label>]…=]<files>…

Node CSV header and data.

• Multiple files will be logically seen as one big file from the perspective of the importer.

• The first line must contain the header.

• Multiple data sources like these can be specified in one import, where each data source has its own
header.

• Files can also be specified using regular expressions.

For an example, see Import data from CSV files using regular expression.

--relationships=[<type>=]<files>…

Relationship CSV header and data.

• Multiple files will be logically seen as one big file from the perspective of the importer.

• The first line must contain the header.

• Multiple data sources like these can be specified in one import, where each data source has its own
header.

• Files can also be specified using regular expressions.

For an example, see Import data from CSV files using regular expression.

@<arguments-file-path>

File containing all arguments, used as an alternative to supplying all arguments on the command line
directly.

Each argument can be on a separate line, or multiple arguments per line and separated by space.

Arguments containing spaces must be quoted.

437

Heap size for the import

You want to set the maximum heap size to a relevant value for the import. This is done
by defining the HEAP_SIZE environment parameter before starting the import. For
example, 2G is an appropriate value for smaller imports.

If doing imports in the order of magnitude of 100 billion entities, 20G will be an
appropriate value.

Record format

If your import data will result in a graph that is larger than 34 billion nodes, 34 billion
relationships, or 68 billion properties you will need to configure the importer to use the
high limit record format. This is achieved by setting the parameters
dbms.record_format=high_limit and dbms.allow_upgrade=true in a configuration file,
and supplying that file to the importer with --additional-config. The format is printed
in the debug.log file.

The high_limit format is available for Enterprise Edition only.

CSV header format

The header file of each data source specifies how the data fields should be interpreted. You must use the
same delimiter for the header file and for the data files.

The header contains information for each field, with the format <name>:<field_type>. The <name> is used
for properties and node IDs. In all other cases, the <name> part of the field is ignored.

Node files

Files containing node data can have an ID field, a LABEL field as well as properties.

ID

Each node must have a unique ID if it is to be connected by any relationships created in the import. The
IDs are used to find the correct nodes when creating relationships. Note that the ID has to be unique
across all nodes in the import; even for nodes with different labels. The unique ID can be persisted in a
property whose name is defined by the <name> part of the field definition <name>:ID. If no such property
name is defined, the unique ID will be used for the purpose of the import but not be available for
reference later. If no ID is specified, the node will be imported but it will not be able to be connected by
any relationships during the import.

LABEL

Read one or more labels from this field. Like array values, multiple labels are separated by ;, or by the
character specified with --array-delimiter.

438

Example 119. Define nodes files

You define the headers for movies in the movies_header.csv file. Movies have the properties movieId,
year and title. You also specify a field for labels.

movieId:ID,title,year:int,:LABEL

You define three movies in the movies.csv file. They contain all the properties defined in the header
file. All the movies are given the label Movie. Two of them are also given the label Sequel.

tt0133093,"The Matrix",1999,Movie
tt0234215,"The Matrix Reloaded",2003,Movie;Sequel
tt0242653,"The Matrix Revolutions",2003,Movie;Sequel

Similarly, you also define three actors in the actors_header.csv and actors.csv files. They all have the
properties personId and name, and the label Actor.

personId:ID,name,:LABEL

keanu,"Keanu Reeves",Actor
laurence,"Laurence Fishburne",Actor
carrieanne,"Carrie-Anne Moss",Actor

Relationship files

Files containing relationship data have three mandatory fields and can also have properties. The
mandatory fields are:

TYPE

The relationship type to use for this relationship.

START_ID

The ID of the start node for this relationship.

END_ID

The ID of the end node for this relationship.

The START_ID and END_ID refer to the unique node ID defined in one of the node data sources, as explained
in the previous section. None of these takes a name, e.g. if <name>:START_ID or <name>:END_ID is defined,
the <name> part will be ignored.

439

Example 120. Define relationships files

In this example you assume that the two nodes files from the previous example are used together
with the following relationships file.

You define relationships between actors and movies in the files roles_header.csv and roles.csv. Each
row connects a start node and an end node with a relationship of relationship type ACTED_IN. Notice
how you use the unique identifiers personId and movieId from the nodes files above. The name of
character that the actor is playing in this movie is stored as a role property on the relationship.

:START_ID,role,:END_ID,:TYPE

keanu,"Neo",tt0133093,ACTED_IN
keanu,"Neo",tt0234215,ACTED_IN
keanu,"Neo",tt0242653,ACTED_IN
laurence,"Morpheus",tt0133093,ACTED_IN
laurence,"Morpheus",tt0234215,ACTED_IN
laurence,"Morpheus",tt0242653,ACTED_IN
carrieanne,"Trinity",tt0133093,ACTED_IN
carrieanne,"Trinity",tt0234215,ACTED_IN
carrieanne,"Trinity",tt0242653,ACTED_IN

Properties

For properties, the <name> part of the field designates the property key, while the <field_type> part
assigns a data type (see below). You can have properties in both node data files and relationship data files.

Data types

Use one of int, long, float, double, boolean, byte, short, char, string, point, date, localtime, time,
localdatetime, datetime, and duration to designate the data type for properties. If no data type is
given, this defaults to string. To define an array type, append [] to the type. By default, array values
are separated by ;. A different delimiter can be specified with --array-delimiter. Boolean values are
true if they match exactly the text true. All other values are false. Values that contain the delimiter
character need to be escaped by enclosing in double quotation marks, or by using a different delimiter
character with the --delimiter option.

Example 121. Header format with data types

This example illustrates several different data types specified in the CSV header.

:ID,name,joined:date,active:boolean,points:int
user01,Joe Soap,2017-05-05,true,10
user02,Jane Doe,2017-08-21,true,15
user03,Moe Know,2018-02-17,false,7

Special considerations for the point data type

A point is specified using the Cypher syntax for maps. The map allows the same keys as the input to
the Cypher Manual → Point function. The point data type in the header can be amended with a map of
default values used for all values of that column, e.g. point{crs: 'WGS-84'}. Specifying the header this

440

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#spatial
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#spatial
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#spatial

way allows you to have an incomplete map in the value position in the data file. Optionally, a value in a
data file may override default values from the header.

Example 122. Property format for point data type

This example illustrates various ways of using the point data type in the import header and the
data files.

You are going to import the name and location coordinates for cities. First, you define the header
as:

:ID,name,location:point{crs:WGS-84}

You then define cities in the data file.

• The first city’s location is defined using latitude and longitude, as expected when using the
coordinate system defined in the header.

• The second city uses x and y instead. This would normally lead to a point using the coordinate
reference system cartesian. Since the header defines crs:WGS-84, that coordinate reference
system will be used.

• The third city overrides the coordinate reference system defined in the header, and sets it
explicitly to WGS-84-3D.

:ID,name,location:point{crs:WGS-84}
city01,"Malmö","{latitude:55.6121514, longitude:12.9950357}"
city02,"London","{y:51.507222, x:-0.1275}"
city03,"San Mateo","{latitude:37.554167, longitude:-122.313056, height: 100, crs:'WGS-84-3D'}"

Note that all point maps are within double quotation marks " in order to prevent the enclosed ,
character from being interpreted as a column separator. An alternative approach would be to use
--delimiter='\t' and reformat the file with tab separators, in which case the " characters are not
required.

:ID name location:point{crs:WGS-84}
city01 Malmö {latitude:55.6121514, longitude:12.9950357}
city02 London {y:51.507222, x:-0.1275}
city03 San Mateo {latitude:37.554167, longitude:-122.313056, height: 100, crs:'WGS-84-3D'}

Special considerations for temporal data types

The format for all temporal data types must be defined as described in Cypher Manual → Durations
syntax. Two of the temporal types, Time and DateTime, take a time zone parameter which might be
common between all or many of the values in the data file. It is therefor possible to specify a default
time zone for Time and DateTime values in the header, for example: time{timezone:+02:00} and:
datetime{timezone:Europe/Stockholm}. If no default time zone is specified, the default timezone is
determined by the db.temporal.timezone configuration setting. The default time zone can be explicitly
overridden in the values in the data file.

441

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-temporal-durations
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-temporal-durations
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-temporal-durations
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#cypher-temporal-durations

Example 123. Property format for temporal data types

This example illustrates various ways of using the datetime data type in the import header and the
data files.

First, you define the header with two DateTime columns. The first one defines a time zone, but the
second one does not:

:ID,date1:datetime{timezone:Europe/Stockholm},date2:datetime

You then define dates in the data file.

• The first row has two values that do not specify an explicit timezone. The value for date1 will
use the Europe/Stockholm time zone that was specified for that field in the header. The value
for date2 will use the configured default time zone of the database.

• In the second row, both date1 and date2 set the time zone explicitly to be Europe/Berlin. This
overrides the header definition for date1, as well as the configured default time zone of the
database.

1,2018-05-10T10:30,2018-05-10T12:30
2,2018-05-10T10:30[Europe/Berlin],2018-05-10T12:30[Europe/Berlin]

Using ID spaces

By default, the import tool assumes that node identifiers are unique across node files. In many cases the ID
is only unique across each entity file, for example when your CSV files contain data extracted from a
relational database and the ID field is pulled from the primary key column in the corresponding table. To
handle this situation you define ID spaces. ID spaces are defined in the ID field of node files using the
syntax ID(<ID space identifier>). To reference an ID of an ID space in a relationship file, you use the
syntax START_ID(<ID space identifier>) and END_ID(<ID space identifier>).

442

Example 124. Define and use ID spaces

Define a Movie-ID ID space in the movies_header.csv file.

movieId:ID(Movie-ID),title,year:int,:LABEL

1,"The Matrix",1999,Movie
2,"The Matrix Reloaded",2003,Movie;Sequel
3,"The Matrix Revolutions",2003,Movie;Sequel

Define an Actor-ID ID space in the header of the actors_header.csv file.

personId:ID(Actor-ID),name,:LABEL

1,"Keanu Reeves",Actor
2,"Laurence Fishburne",Actor
3,"Carrie-Anne Moss",Actor

Now use the previously defined ID spaces when connecting the actors to movies.

:START_ID(Actor-ID),role,:END_ID(Movie-ID),:TYPE

1,"Neo",1,ACTED_IN
1,"Neo",2,ACTED_IN
1,"Neo",3,ACTED_IN
2,"Morpheus",1,ACTED_IN
2,"Morpheus",2,ACTED_IN
2,"Morpheus",3,ACTED_IN
3,"Trinity",1,ACTED_IN
3,"Trinity",2,ACTED_IN
3,"Trinity",3,ACTED_IN

Skipping columns

IGNORE

If there are fields in the data that you wish to ignore completely, this can be done using the IGNORE
keyword in the header file. IGNORE must be prepended with a :.

Example 125. Skip a column

In this example, you are not interested in the data in the third column of the nodes file and wish to
skip over it. Note that the IGNORE keyword is prepended by a :.

personId:ID,name,:IGNORE,:LABEL

keanu,"Keanu Reeves","male",Actor
laurence,"Laurence Fishburne","male",Actor
carrieanne,"Carrie-Anne Moss","female",Actor

443

If all your superfluous data is placed in columns located to the right of all the columns that you wish to
import, you can instead use the command line option --ignore-extra-columns.

Import compressed files

The import tool can handle files compressed with zip or gzip. Each compressed file must contain a single
file.

Example 126. Perform an import using compressed files

neo4j_home$ ls import
actors-header.csv actors.csv.zip movies-header.csv movies.csv.gz roles-header.csv roles.csv.gz

neo4j_home$ bin/neo4j-admin import --nodes import/movies-header.csv,import/movies.csv.gz --nodes
import/actors-header.csv,import/actors.csv.zip --relationships import/roles-
header.csv,import/roles.csv.gz

Resuming a stopped or cancelled import Enterprise edition

An import that is stopped or fails before completing can be resumed from a point closer to where it was
stopped. An import can be resumed from the following points:

• Linking of relationships

• Post-processing

17.2.11. Unbind a Core Server

Command

The cluster state of a cluster member can be removed by using the following command:

Syntax

neo4j-admin unbind [--verbose]
 [--expand-commands]
 [--archive-cluster-state=<true/false>]
 [--archive-path=<path>]

Options

Option Default Description

--verbose Enable verbose output.

--expand-commands Allow command expansion in config value evaluation.

--archive-cluster-state false Enable or disable the cluster state archiving.

444

Option Default Description

--archive-path Destination (file or folder) of the cluster state archive.

Limitations

The Neo4j server process must be shut down before running the neo4j-admin unbind command.

Examples of usage

You can use the neo4j-admin unbind command to:

• Turn a cluster member into a standalone server:

To start the Neo4j server in single (standalone) mode after unbinding it from the cluster, first set
dbms.mode=SINGLE in neo4j.conf.

• Seed a Causal Cluster with existing store files:

To seed a new cluster using the store files of another cluster, you must first run neo4j-admin unbind on
each server. For more information about seeding Causal Clusters, see [causal-clustering-seed].

If a cluster holds a previous version of any of the databases being seeded, you must
DROP those databases before seeding. Alternatively, you can stop every instance,
unbind them from the cluster using neo4j-admin unbind and then forcefully restore
the correct seeds (backups) for the databases in question. If you do not DROP or
unbind before seeding, either with neo4j-admin restore or neo4j-admin load, the
database’s store files and cluster state will be out of sync, potentially leading to
logical corruptions.

• Recover a Causal Cluster:

In the event of serious failures you may need to recover an entire cluster from backups. Before
restoring those backups, you must first run neo4j-admin unbind on each server. For more information
about recovering databases from online backups, see Restore a database backup.

From Neo4j version 4.0.0 onwards, you must run the neo4j-admin unbind command
on both Read Replicas and Core members.

Archive cluster state

If something goes wrong and debugging is needed, you can archive the cluster state, from the <neo4j-
home> folder, run the neo4j-admin server unbind command with the arguments --archive-cluster
-state=true and --archive-path=<destination-folder>:

bin/neo4j-admin unbind --archive-path=/path/to/archive-folder --archive-cluster-state=true

445

The default resultant file is named:

unbound_cluster_state.<YYYYMMDDHH24MM>.zip

17.2.12. Push to cloud

The neo4j-admin push-to-cloud command uploads a database or a dump into a Neo4j Aura instance.
The following table shows the compatibility between the dump version that you want to upload and the
version of the Neo4j Aura instance.

Dump version Aura version

v4.3 v4 and v5

v4.2, v4.1, v4.0, and v3.5 v4

 This operation is secured and TLS encrypted end to end.

Syntax

neo4j-admin push-to-cloud [--overwrite] [--verbose] --bolt-uri=<boltURI>
 [--database=<database>] [--dump=<dump>]
 [--dump-to=<tmpDumpFile>] [--password=<password>]
 [--username=<username>]

Options

Option Default Description

--database neo4j Name of the database to push.

This argument cannot be used together with --dump.

--dump Path to an existing database dump for upload, in the format
/path/to/my-neo4j-database-dump-file.

This argument cannot be used together with --database.

--dump-to Optional.

Target path for temporary database dump file to be uploaded,
in the format /path/to/temp-file.

Used in combination with the --database argument.

--bolt-uri Bolt URI of the target database. For example,
neo4j://mydatabaseid.databases.neo4j.io.

446

Option Default Description

--username Optional.

Username of the target database to push this database to. If
you do not provide a username, you will be prompted to
provide one. Alternatively, the NEO4J_USERNAME environment
variable can be used.

--password Optional.

The password of the target database to push this database to.
If you do not provide a password, you will be prompted to
provide one. Alternatively, you can use the NEO4J_PASSWORD
environment variable.

--overwrite Optional.

Overwrite the data in the target database.

--verbose Optional.

Enable verbose output.

Limitations

• A Neo4j Aura database must already be provisioned and running.

• Your local database must be stopped before you run the push-to-cloud command with the --database
argument. The push-to-cloud function cannot be used with a source database that is currently in use.

Output

If the push-to-cloud function completes successfully, it exits with the following logline:

Your data was successfully pushed to Aura and is now running.

If the push-to-cloud function encounters an error at any point, you will be provided with instructions on
how to try again or to contact Neo4j Aura support.
Additionally, you can use the --verbose option to enable verbose output.

Examples

The following examples show how to use the push-to-cloud command to upload a database or a
database dump to a Neo4j Aura instance. You need your AuraDB instance URI (neo4j+s://your-
databaseid.databases.neo4j.io), as can be seen in the Aura console, and your AuraDB instance
password.

447

You should use the --overwrite option to overwrite the target database. Otherwise, the
command aborts and throws an error.

Upload a database dump to a Neo4j Aura instance

bin/neo4j-admin push-to-cloud --dump=/path/to/dumpfile/movies.dump --bolt-uri=neo4j+s://your-
databaseid.databases.neo4j.io --overwrite

An example output:

Selecting JVM - Version:11.0.6+8-LTS, Name:Java HotSpot(TM) 64-Bit Server VM, Vendor:Oracle Corporation
Neo4j aura username (default: neo4j):
Neo4j aura password for neo4j:
Upload
.................... 10%
.................... 20%
.................... 30%
.................... 40%
.................... 50%
.................... 60%
.................... 70%
.................... 80%
.................... 90%
.................... 100%
We have received your export and it is currently being loaded into your Aura instance.
You can wait here, or abort this command and head over to the console to be notified of when your database
is running.
Import progress (estimated)
.................... 10%
.................... 20%
.................... 30%
.................... 40%
.................... 50%
.................... 60%
.................... 70%
.................... 80%
.................... 90%
.................... 100%
Your data was successfully pushed to Aura and is now running.
It is safe to delete the dump file now: /path/to/dumpfile/movies.dump

448

Upload a database to a Neo4j Aura instance

Stop the `neo4j` database:

bin/cypher-shell -u neo4j -p <password>
neo4j@neo4j> :use system;
neo4j@system> stop database neo4j;

Run the push-to-cloud command to upload the `neo4j` database into your Aura instance

bin/neo4j-admin push-to-cloud --database=neo4j --bolt-uri=neo4j+s://your-databaseid.databases.neo4j.io
--overwrite

An example output:

Selecting JVM - Version:11.0.6+8-LTS, Name:Java HotSpot(TM) 64-Bit Server VM, Vendor:Oracle Corporation
Neo4j aura username (default: neo4j):
Neo4j aura password for neo4j:
Done: 70 files, 854.0KiB processed.
Dumped contents of database 'neo4j' into '/<neo4j-home>/dump-of-neo4j-1669732123683'
Upload
.................... 10%
.................... 20%
.................... 30%
.................... 40%
.................... 50%
.................... 60%
.................... 70%
.................... 80%
.................... 90%
.................... 100%
We have received your export and it is currently being loaded into your Aura instance.
You can wait here, or abort this command and head over to the console to be notified of when your database
is running.
Import progress (estimated)
.................... 10%
.................... 20%
.................... 30%
.................... 40%
.................... 50%
.................... 60%
.................... 70%
.................... 80%
.................... 90%
.................... 100%
Your data was successfully pushed to Aura and is now running.

17.3. Cypher Shell

17.3.1. About Cypher Shell CLI

Cypher Shell is a command-line tool that comes with the Neo4j distribution. It can also be downloaded
from Neo4j Download Center and installed separately.

Cypher Shell CLI is used to run queries and perform administrative tasks against a Neo4j instance. By
default, the shell is interactive, but you can also use it for scripting, by passing cypher directly on the
command line or by piping a file with cypher statements (requires PowerShell on Windows). It
communicates via the Bolt protocol.

17.3.2. Syntax

The Cypher Shell CLI is located in the bin directory if installed as part of the product.

The syntax is:

449

https://neo4j.com/download-center/#cyphershell

cypher-shell [-u USERNAME, --username USERNAME]
 [cypher]
 [-h, --help]
 [--fail-fast]
 [--fail-at-end]
 [--format]
 [--debug]
 [--non-interactive]
 [-v, --version]
 [-a ADDRESS, --address ADDRESS]
 [-p PASSWORD, --password PASSWORD]
 [--encryption]
 [-d DATABASE, --database DATABASE]
 [--P PARAM, --param PARAM]
 [--sample-rows SAMPLE-ROWS]
 [--wrap]
 [--driver-version]
 [-f FILE, --file FILE]

Arguments

Argument Type Description Default value

-u USERNAME, --username
USERNAME

Connection argument Username to connect as. It
can also be specified by the
environment variable
NEO4J_USERNAME.

cypher Positional argument An optional string of cypher
to execute and then exit.

-h, --help Optional argument Show help message and exit.

--fail-fast Optional argument Exit and report failure on first
error when reading from file.

This is the default behavior.

--fail-at-end Optional argument Exit and report failures at end
of input when reading from
file.

--format
{auto,verbose,plain}

Optional argument Desired output format. auto (default) displays results
in tabular format if you use
the shell interactively and
with minimal formatting if you
use it for scripting.

verbose displays results in
tabular format and prints
statistics.

plain displays data with
minimal formatting.

--debug Optional argument Print additional debug
information.

false

--non-interactive Optional argument Force non-interactive mode;
only useful if auto-detection
fails (e.g. Windows).

false

-v, --version Optional argument Print version of cypher-shell
and exit.

false

450

Argument Type Description Default value

-a ADDRESS, --address
ADDRESS

Connection argument Address and port to connect
to.

neo4j://localhost:7687

-p PASSWORD, --password
PASSWORD

Connection argument Password to connect with. It
can also be specified by the
environment variable
NEO4J_PASSWORD.

--encryption
{true,false,default}

Connection argument Whether the connection to
Neo4j should be encrypted;
must be consistent with
Neo4j’s configuration.

default - the encryption
setting is deduced from the
specified address. For
example, the neo4j+ssc
protocol would use
encryption.

-d DATABASE, --database
DATABASE

Connection argument Database to connect to. It can
also be specified by the
environment variable
NEO4J_DATABASE.

--P PARAM, --param PARAM Optional argument Add a parameter to this
session. For example, -P
"number ⇒ 3" or -P
"country ⇒ 'Spain'". This
argument can be specified
multiple times.

--sample-rows SAMPLE-ROWS Optional argument Number of rows sampled to
compute table widths (only
for format=VERBOSE).

1000

--wrap {true,false} Optional argument Wrap table column values if
column is too narrow (only for
format=VERBOSE).

true

--driver-version Optional argument Print version of the Neo4j
Driver used and exit.

false

-f FILE, --file FILE Optional argument Pass a file with cypher
statements to be executed.
After the statements have
been executed cypher-shell
shuts down.

17.3.3. Running Cypher Shell within the Neo4j distribution

You can connect to a live Neo4j DBMS by running cypher-shell and passing in a username and a
password argument:

bin/cypher-shell -u neo4j -p <password>

The output is the following:

451

Connected to Neo4j at neo4j://localhost:7687 as user neo4j.
Type :help for a list of available commands or :exit to exit the shell.
Note that Cypher queries must end with a semicolon.

17.3.4. Running Cypher Shell from a different server

You can also install the Cypher Shell tool on a different server (without Neo4j) and connect to a Neo4j
DBMS. Cypher Shell requires a JDK and Java 11.

DEB/RPM distributions both install OpenJDK if it is not already installed. The cypher-
shell files are available in the same DEB/RPM Linux repositories as Neo4j.

The TAR distribution contains only the cypher-shell files, so you must install the JDK
manually.

1. Download Cypher Shell from Neo4j Download Center.

2. Connect to a Neo4j DBMS by running the cypher-shell command providing the Neo4j address, a
username, and a password:

cypher-shell/cypher-shell -a neo4j://IP-address:7687 -u neo4j -p <password>

The output is the following:

Connected to Neo4j at neo4j://IP-address:7687 as user neo4j.
Type :help for a list of available commands or :exit to exit the shell.
Note that Cypher queries must end with a semicolon.

17.3.5. Available commands

Once in the interactive shell, run the following command to display all available commands:

452

https://neo4j.com/download-center/#cyphershell

Example 127. Running help

:help

The output is the following:

Available commands:
 :begin Open a transaction
 :commit Commit the currently open transaction
 :exit Exit the logger
 :help Show this help message
 :history Print a list of the last commands executed
 :param Set the value of a query parameter
 :params Prints all currently set query parameters and their values
 :rollback Rollback the currently open transaction
 :source Interactively executes Cypher statements from a file
 :use Set the active database

For help on a specific command type:
 :help command

17.3.6. Running Cypher statements

You can run Cypher statements in the following ways:

• Typing Cypher statements directly into the interactive shell.

• Running Cypher statements from a file with the interactive shell.

• Running Cypher statements from a file as a cypher-shell argument.

The examples in this section use the MATCH (n) RETURN n LIMIT 5 Cypher statement and will return 5
nodes from the database.

Example 128. Typing a Cypher statement directly into the interactive shell

MATCH (n) RETURN n LIMIT 5;

The following two examples assume a file exists in the same folder you run the cypher-
shell command from called example.cypher with the following contents:

MATCH (n) RETURN n LIMIT 5;

Example 129. Running Cypher statements from a file with the interactive shell

You can use the :source command followed by the file name to run the Cypher statements in that file
when in the Cypher interactive shell:

:source example.cypher

453

Example 130. Running Cypher statements from a file as a cypher-shell argument.

You can pass a file containing Cypher statements as an argument when running cypher-shell.

The examples here use the --format plain flag for a simple output.

Using cat (UNIX)

cat example.cypher | bin/cypher-shell -u neo4j -p <password> --format plain

Using type (Windows)

type example.cypher | bin/cypher-shell.bat -u neo4j -p <password> --format plain

17.3.7. Query parameters

Cypher Shell CLI supports querying based on parameters. This is often used while scripting.

454

Example 131. Use parameters within Cypher Shell

1. Set the parameter thisAlias to Robin using the :param keyword:

:param thisAlias => 'Robin'

2. Check the parameter using the :params keyword:

:params

:param thisAlias => 'Robin'

3. Now use the parameter thisAlias in a Cypher query:

CREATE (:Person {name : 'Dick Grayson', alias : $thisAlias });

Added 1 nodes, Set 2 properties, Added 1 labels

4. Verify the result:

MATCH (n) RETURN n;

+---+
| n |
+---+
| (:Person {name: "Bruce Wayne", alias: "Batman"}) |
| (:Person {name: "Selina Kyle", alias: ["Catwoman", "The Cat"]}) |
| (:Person {name: "Dick Grayson", alias: "Robin"}) |
+---+
3 rows available after 2 ms, consumed after another 2 ms

17.3.8. Transactions

Cypher Shell supports explicit transactions. Transaction states are controlled using the keywords :begin,
:commit, and :rollback.

455

Example 132. Use fine-grained transaction control

The example uses the dataset from the built-in Neo4j Browser guide, called MovieGraph. For more
information, see the Neo4j Browser documentation.

1. Run a query that shows there is only one person in the database, who is born in 1964.

MATCH (n:Person) WHERE n.born=1964 RETURN n.name AS name;

+----------------+
| name |
+----------------+
| "Keanu Reeves" |
+----------------+

1 row
ready to start consuming query after 9 ms, results consumed after another 0 ms

2. Start a transaction and create another person born in the same year:

:begin
neo4j# CREATE (:Person {name : 'Edward Mygma', born:1964});

0 rows
ready to start consuming query after 38 ms, results consumed after another 0 ms
Added 1 nodes, Set 2 properties, Added 1 labels

3. If you open a second Cypher Shell session and run the query from step 1, you will notice no
changes from the latest CREATE statement.

MATCH (n:Person) WHERE n.born=1964 RETURN n.name AS name;

+----------------+
| name |
+----------------+
| "Keanu Reeves" |
+----------------+

1 row
ready to start consuming query after 9 ms, results consumed after another 0 ms

4. Go back to the first session and commit the transaction.

neo4j# :commit

5. Now, if you run the query from step 1, you will see that Edward Mygma has been added to the
database.

MATCH (n:Person) WHERE n.born=1964 RETURN n.name AS name;

456

https://neo4j.com/docs/browser-manual/current/visual-tour/#guides

+----------------+
| name |
+----------------+
| "Keanu Reeves" |
| "Edward Mygma" |
+----------------+

2 rows
ready to start consuming query after 1 ms, results consumed after another 1 ms

17.3.9. Procedures

Cypher Shell supports running any procedures for which the current user is authorized.

Example 133. Call the dbms.showCurrentUser procedure

CALL dbms.showCurrentUser();

+------------------------------+
| username | roles | flags |
+------------------------------+
| "neo4j" | ["admin"] | [] |
+------------------------------+

1 row available after 66 ms, consumed after another 2 ms

17.3.10. Supported operating systems

You can use the Cypher Shell CLI via cmd on Windows systems, and bash on Unix systems.

Other shells may work as intended, but there is no test coverage to guarantee compatibility.

Appendix A: Reference
This appendix contains the following:

• Configuration settings

• Procedures

17.A.1. Configuration settings

Configuration settings can be set in neo4j.conf. Refer to The neo4j.conf file for details on how to use
configuration settings.

All settings

• browser.allow_outgoing_connections: Configure the policy for outgoing Neo4j Browser connections.

• browser.credential_timeout: Configure the Neo4j Browser to time out logged in users after this idle
period.

457

• browser.post_connect_cmd: Commands to be run when Neo4j Browser successfully connects to this
server.

• browser.remote_content_hostname_whitelist: Whitelist of hosts for the Neo4j Browser to be allowed
to fetch content from.

• browser.retain_connection_credentials: Configure the Neo4j Browser to store or not store user
credentials.

• browser.retain_editor_history: Configure the Neo4j Browser to store or not store user editor history.

• causal_clustering.catch_up_client_inactivity_timeout: The catch up protocol times out if the given
duration elapses with no network activity.

• causal_clustering.catchup_batch_size: The maximum batch size when catching up (in unit of entries).

• causal_clustering.cluster_allow_reads_on_followers: Configure if the dbms.routing.getRoutingTable()
procedure should include followers as read endpoints or return only read replicas.

• causal_clustering.cluster_allow_reads_on_leader: Configure if the dbms.routing.getRoutingTable()
procedure should include the leader as read endpoint or return only read replicas/followers.

• causal_clustering.cluster_binding_timeout: The time allowed for a database on a Neo4j server to either
join a cluster or form a new cluster with the other Neo4j Core Servers provided by
causal_clustering.initial_discovery_members.

• causal_clustering.cluster_topology_refresh: Time between scanning the cluster to refresh current
server’s view of topology.

• causal_clustering.command_applier_parallelism: Limits amount of global threads for applying
commands.

• causal_clustering.connect_randomly_to_server_group: Comma separated list of groups to be used by
the connect-randomly-to-server-group selection strategy.

• causal_clustering.delete_store_before_store_copy: Deletes the old store (on cores and replicas) before
performing a store copy (instead of deleting it after).

• causal_clustering.discovery_advertised_address: Advertised cluster member discovery management
communication.

• causal_clustering.discovery_listen_address: Host and port to bind the cluster member discovery
management communication.

• causal_clustering.discovery_type: Configure the discovery type used for cluster name resolution.

• causal_clustering.election_failure_detection_window: The rate at which leader elections happen.

• causal_clustering.enable_pre_voting: Enable pre-voting extension to the Raft protocol (this is breaking
and must match between the core cluster members).

• causal_clustering.global_session_tracker_state_size: The maximum file size before the global session
tracker state file is rotated (in unit of entries).

• causal_clustering.handshake_timeout: Time out for protocol negotiation handshake.

• causal_clustering.in_flight_cache.max_bytes: The maximum number of bytes in the in-flight cache.

• causal_clustering.in_flight_cache.max_entries: The maximum number of entries in the in-flight cache.

• causal_clustering.in_flight_cache.type: Type of in-flight cache.

458

• causal_clustering.initial_discovery_members: A comma-separated list of other members of the cluster
to join.

• causal_clustering.join_catch_up_max_lag: Maximum amount of lag accepted for a new follower to join
the Raft group.

• causal_clustering.join_catch_up_timeout: Time out for a new member to catch up.

• causal_clustering.kubernetes.address: Address for Kubernetes API.

• causal_clustering.kubernetes.ca_crt: File location of CA certificate for Kubernetes API.

• causal_clustering.kubernetes.cluster_domain: Kubernetes cluster domain.

• causal_clustering.kubernetes.label_selector: LabelSelector for Kubernetes API.

• causal_clustering.kubernetes.namespace: File location of namespace for Kubernetes API.

• causal_clustering.kubernetes.service_port_name: Service port name for discovery for Kubernetes API.

• causal_clustering.kubernetes.token: File location of token for Kubernetes API.

• causal_clustering.last_applied_state_size: The maximum file size before the storage file is rotated (in
unit of entries).

• causal_clustering.leader_election_timeout: This setting is moved and enhanced into
causal_clustering.leader_failure_detection_window and
causal_clustering.election_failure_detection_window.

• causal_clustering.leader_failure_detection_window: The time window within which the loss of the
leader is detected and the first re-election attempt is held.The window should be significantly larger
than typical communication delays to make conflicts unlikely.

• causal_clustering.leadership_balancing: Which strategy to use when transferring database leaderships
around a cluster.

• causal_clustering.leadership_priority_group: The name of a server_group whose members should be
prioritized as leaders.

• causal_clustering.load_balancing.plugin: The load balancing plugin to use.

• causal_clustering.load_balancing.shuffle: Enables shuffling of the returned load balancing result.

• causal_clustering.log_shipping_max_lag: The maximum lag allowed before log shipping pauses (in unit
of entries).

• causal_clustering.log_shipping_retry_timeout: Retry time for log shipping to followers after a stall.

• causal_clustering.max_raft_channels: The maximum number of TCP channels between two nodes to
operate the raft protocol.Each database gets allocated one channel, but a single channel can be used
by more than one database.

• causal_clustering.middleware.logging.level: The level of middleware logging.

• causal_clustering.minimum_core_cluster_size_at_formation: Minimum number of Core machines
initially required to form a cluster.

• causal_clustering.minimum_core_cluster_size_at_runtime: The minimum size of the dynamically
adjusted voting set (which only core members may be a part of).

• causal_clustering.multi_dc_license: Enable multi-data center features.

459

• causal_clustering.protocol_implementations.catchup: Catchup protocol implementation versions that
this instance will allow in negotiation as a comma-separated list.

• causal_clustering.protocol_implementations.compression: Network compression algorithms that this
instance will allow in negotiation as a comma-separated list.

• causal_clustering.protocol_implementations.raft: Raft protocol implementation versions that this
instance will allow in negotiation as a comma-separated list.

• causal_clustering.pull_interval: Interval of pulling updates from cores.

• causal_clustering.raft_advertised_address: Advertised hostname/IP address and port for the RAFT
server.

• causal_clustering.raft_handler_parallelism: Limits amount of global threads shared by raft groups for
handling bathing of messages and timeout events.

• causal_clustering.raft_in_queue_max_batch_bytes: Largest batch processed by RAFT in bytes.

• causal_clustering.raft_in_queue_max_bytes: Maximum number of bytes in the RAFT in-queue.

• causal_clustering.raft_listen_address: Network interface and port for the RAFT server to listen on.

• causal_clustering.raft_log_implementation: RAFT log implementation.

• causal_clustering.raft_log_prune_strategy: RAFT log pruning strategy.

• causal_clustering.raft_log_pruning_frequency: RAFT log pruning frequency.

• causal_clustering.raft_log_reader_pool_size: RAFT log reader pool size.

• causal_clustering.raft_log_rotation_size: RAFT log rotation size.

• causal_clustering.raft_membership_state_size: The maximum file size before the membership state file
is rotated (in unit of entries).

• causal_clustering.raft_term_state_size: The maximum file size before the term state file is rotated (in
unit of entries).

• causal_clustering.raft_vote_state_size: The maximum file size before the vote state file is rotated (in
unit of entries).

• causal_clustering.refuse_to_be_leader: Deprecated, use dbms.databases.default_to_read_only.

• causal_clustering.replicated_lease_state_size: The maximum file size before the replicated lease state
file is rotated (in unit of entries).

• causal_clustering.replication_leader_await_timeout: The duration for which the replicator will await a
new leader.

• causal_clustering.replication_retry_timeout_base: The initial timeout until replication is retried.

• causal_clustering.replication_retry_timeout_limit: The upper limit for the exponentially incremented
retry timeout.

• causal_clustering.server_groups: A list of group names for the server used when configuring load
balancing and replication policies.

• causal_clustering.state_machine_apply_max_batch_size: The maximum number of operations to be
batched during applications of operations in the state machines.

• causal_clustering.state_machine_flush_window_size: The number of operations to be processed

460

before the state machines flush to disk.

• causal_clustering.status_throughput_window: Sampling window for throughput estimate reported in
the status endpoint.

• causal_clustering.store_copy_chunk_size: Store copy chunk size.

• causal_clustering.store_copy_max_retry_time_per_request: Maximum retry time per request during
store copy.

• causal_clustering.store_copy_parallelism: Limits amount of global threads for store copy.

• causal_clustering.transaction_advertised_address: Advertised hostname/IP address and port for the
transaction shipping server.

• causal_clustering.transaction_listen_address: Network interface and port for the transaction shipping
server to listen on.

• causal_clustering.unknown_address_logging_throttle: Throttle limit for logging unknown cluster
member address.

• causal_clustering.upstream_selection_strategy: An ordered list in descending preference of the
strategy which read replicas use to choose the upstream server from which to pull transactional
updates.

• causal_clustering.user_defined_upstream_strategy: Configuration of a user-defined upstream selection
strategy.

• cypher.default_language_version: Set this to specify the default parser (language version).

• cypher.forbid_exhaustive_shortestpath: This setting is associated with performance optimization.

• cypher.forbid_shortestpath_common_nodes: This setting is associated with performance optimization.

• cypher.hints_error: Set this to specify the behavior when Cypher planner or runtime hints cannot be
fulfilled.

• cypher.lenient_create_relationship: Set this to change the behavior for Cypher create relationship when
the start or end node is missing.

• cypher.min_replan_interval: The minimum time between possible cypher query replanning events.

• cypher.planner: Set this to specify the default planner for the default language version.

• cypher.statistics_divergence_threshold: The threshold for statistics above which a plan is considered
stale.

If any of the underlying statistics used to create the plan have changed more than this value, the plan
will be considered stale and will be replanned.

• db.temporal.timezone: Database timezone for temporal functions.

• dbms.allow_single_automatic_upgrade: Whether to allow a system graph upgrade to happen
automatically in single instance mode (dbms.mode=SINGLE).

• dbms.allow_upgrade: Whether to allow a store upgrade in case the current version of the database
starts against an older version of the store.

• dbms.backup.enabled: Enable support for running online backups.

• dbms.backup.incremental.strategy: Strategy for incremental backup.

461

• dbms.backup.listen_address: Network interface and port for the backup server to listen on.

• dbms.checkpoint: Configures the general policy for when check-points should occur.

• dbms.checkpoint.interval.time: Configures the time interval between check-points.

• dbms.checkpoint.interval.tx: Configures the transaction interval between check-points.

• dbms.checkpoint.iops.limit: Limit the number of IOs the background checkpoint process will consume
per second.

• dbms.clustering.enable: Enable discovery service and a catchup server to be started on an Enterprise
Standalone Instance 'dbms.mode=SINGLE', and with that allow for Read Replicas to connect and pull
transaction from it.

• dbms.config.strict_validation: A strict configuration validation will prevent the database from starting
up if unknown configuration options are specified in the neo4j settings namespace (such as dbms.,
cypher., etc).

• dbms.connector.bolt.advertised_address: Advertised address for this connector.

• dbms.connector.bolt.enabled: Enable the bolt connector.

• dbms.connector.bolt.listen_address: Address the connector should bind to.

• dbms.connector.bolt.ocsp_stapling_enabled: Enable server OCSP stapling for bolt and http connectors.

• dbms.connector.bolt.thread_pool_keep_alive: The maximum time an idle thread in the thread pool
bound to this connector will wait for new tasks.

• dbms.connector.bolt.thread_pool_max_size: The maximum number of threads allowed in the thread
pool bound to this connector.

• dbms.connector.bolt.thread_pool_min_size: The number of threads to keep in the thread pool bound to
this connector, even if they are idle.

• dbms.connector.bolt.tls_level: Encryption level to require this connector to use.

• dbms.connector.bolt.unsupported_thread_pool_shutdown_wait_time: The maximum time to wait for
the thread pool to finish processing its pending jobs and shutdown.

• dbms.connector.http.advertised_address: Advertised address for this connector.

• dbms.connector.http.enabled: Enable the http connector.

• dbms.connector.http.listen_address: Address the connector should bind to.

• dbms.connector.https.advertised_address: Advertised address for this connector.

• dbms.connector.https.enabled: Enable the https connector.

• dbms.connector.https.listen_address: Address the connector should bind to.

• dbms.databases.default_to_read_only: Whether or not any database on this instance are read_only by
default.

• dbms.databases.read_only: List of databases for which to prevent write queries.

• dbms.databases.writable: List of databases for which to allow write queries.

• dbms.db.timezone: Database timezone.

• dbms.default_advertised_address: Default hostname or IP address the server uses to advertise itself.

462

• dbms.default_database: Name of the default database.

• dbms.default_listen_address: Default network interface to listen for incoming connections.

• dbms.directories.cluster_state: Directory to hold cluster state including Raft log.

• dbms.directories.data: Path of the data directory.

• dbms.directories.dumps.root: Root location where Neo4j will store database dumps optionally
produced when dropping said databases.

• dbms.directories.import: Sets the root directory for file URLs used with the Cypher LOAD CSV clause.

• dbms.directories.lib: Path of the lib directory.

• dbms.directories.licenses: Path of the licenses directory.

• dbms.directories.logs: Path of the logs directory.

• dbms.directories.metrics: The target location of the CSV files: a path to a directory wherein a CSV file
per reported field will be written.

• dbms.directories.neo4j_home: Root relative to which directory settings are resolved.

• dbms.directories.plugins: Location of the database plugin directory.

• dbms.directories.run: Path of the run directory.

• dbms.directories.script.root: Root location where Neo4j will store scripts for configured databases.

• dbms.directories.transaction.logs.root: Root location where Neo4j will store transaction logs for
configured databases.

• dbms.dynamic.setting.allowlist: A list of setting name patterns (comma separated) that are allowed to
be dynamically changed.

• dbms.dynamic.setting.whitelist: A list of setting name patterns (comma separated) that are allowed to
be dynamically changed.

• dbms.filewatcher.enabled: Allows the enabling or disabling of the file watcher service.

• dbms.http_enabled_modules: Defines the set of modules loaded into the Neo4j web server.

• dbms.import.csv.buffer_size: The size of the internal buffer in bytes used by LOAD CSV.

• dbms.import.csv.legacy_quote_escaping: Selects whether to conform to the standard
https://tools.ietf.org/html/rfc4180 for interpreting escaped quotation characters in CSV files loaded
using LOAD CSV.

• dbms.index.default_schema_provider: Index provider to use for newly created schema indexes.

• dbms.index.fulltext.default_analyzer: The name of the analyzer that the fulltext indexes should use by
default.

• dbms.index.fulltext.eventually_consistent: Whether or not fulltext indexes should be eventually
consistent by default or not.

• dbms.index.fulltext.eventually_consistent_index_update_queue_max_length: The
eventually_consistent mode of the fulltext indexes works by queueing up index updates to be applied
later in a background thread.

• dbms.index_sampling.background_enabled: Enable or disable background index sampling.

• dbms.index_sampling.sample_size_limit: Index sampling chunk size limit.

463

https://tools.ietf.org/html/rfc4180

• dbms.index_sampling.update_percentage: Percentage of index updates of total index size required
before sampling of a given index is triggered.

• dbms.index_searcher_cache_size: The maximum number of open Lucene index searchers.

• dbms.jvm.additional: Additional JVM arguments.

• dbms.lock.acquisition.timeout: The maximum time interval within which lock should be acquired.

• dbms.logs.debug.format: Log format to use for debug log.

• dbms.logs.debug.level: Debug log level threshold.

• dbms.logs.debug.path: Path to the debug log file.

• dbms.logs.debug.rotation.delay: Minimum time interval after last rotation of the debug log before it
may be rotated again.

• dbms.logs.debug.rotation.keep_number: Maximum number of history files for the debug log.

• dbms.logs.debug.rotation.size: Threshold for rotation of the debug log.

• dbms.logs.default_format: Default log format.

• dbms.logs.gc.enabled: Enable GC Logging.

• dbms.logs.gc.options: GC Logging Options.

• dbms.logs.gc.rotation.keep_number: Number of GC logs to keep.

• dbms.logs.gc.rotation.size: Size of each GC log that is kept.

• dbms.logs.http.enabled: Enable HTTP request logging.

• dbms.logs.http.format: Log format to use for http logs.

• dbms.logs.http.path: Path to HTTP request log.

• dbms.logs.http.rotation.keep_number: Number of HTTP logs to keep.

• dbms.logs.http.rotation.size: Size of each HTTP log that is kept.

• dbms.logs.query.allocation_logging_enabled: Log allocated bytes for the executed queries being
logged.

• dbms.logs.query.early_raw_logging_enabled: Log query text and parameters without obfuscating
passwords.

• dbms.logs.query.enabled: Log executed queries.

• dbms.logs.query.format: Log format to use for the query log.

• dbms.logs.query.max_parameter_length: Sets a maximum character length use for each parameter in
the log.

• dbms.logs.query.obfuscate_literals: Obfuscates all literals of the query before writing to the log.

• dbms.logs.query.page_logging_enabled: Log page hits and page faults for the executed queries being
logged.

• dbms.logs.query.parameter_full_entities: Log complete parameter entities including id, labels or
relationship type, and properties.

• dbms.logs.query.parameter_logging_enabled: Log parameters for the executed queries being logged.

464

• dbms.logs.query.path: Path to the query log file.

• dbms.logs.query.plan_description_enabled: Log query plan description table, useful for debugging
purposes.

• dbms.logs.query.rotation.keep_number: Maximum number of history files for the query log.

• dbms.logs.query.rotation.size: The file size in bytes at which the query log will auto-rotate.

• dbms.logs.query.runtime_logging_enabled: Logs which runtime that was used to run the query.

• dbms.logs.query.threshold: If the execution of query takes more time than this threshold, the query is
logged once completed - provided query logging is set to INFO.

• dbms.logs.query.time_logging_enabled: Log detailed time information for the executed queries being
logged, such as (planning: 92, waiting: 0).

• dbms.logs.query.transaction.enabled: Log the start and end of a transaction.

• dbms.logs.query.transaction.threshold: If the transaction is open for more time than this threshold, the
transaction is logged once completed - provided transaction logging
(dbms.logs.query.transaction.enabled) is set to INFO.

• dbms.logs.query.transaction_id.enabled: Log transaction ID for the executed queries.

• dbms.logs.security.format: Log format to use for security log.

• dbms.logs.security.level: Security log level threshold.

• dbms.logs.security.path: Path to the security log file.

• dbms.logs.security.rotation.delay: Minimum time interval after last rotation of the security log before it
may be rotated again.

• dbms.logs.security.rotation.keep_number: Maximum number of history files for the security log.

• dbms.logs.security.rotation.size: Threshold for rotation of the security log.

• dbms.logs.user.format: Log format to use for user log.

• dbms.logs.user.path: Path to the user log file.

• dbms.logs.user.rotation.delay: Minimum time interval after last rotation of the user log (neo4j.log)
before it may be rotated again.

• dbms.logs.user.rotation.keep_number: Maximum number of history files for the user log (neo4j.log).

• dbms.logs.user.rotation.size: Threshold for rotation of the user log (neo4j.log).

• dbms.logs.user.stdout_enabled: Send user logs to the process stdout.

• dbms.max_databases: The maximum number of databases.

• dbms.memory.heap.initial_size: Initial heap size.

• dbms.memory.heap.max_size: Maximum heap size.

• dbms.memory.off_heap.block_cache_size: Defines the size of the off-heap memory blocks cache.

• dbms.memory.off_heap.max_cacheable_block_size: Defines the maximum size of an off-heap memory
block that can be cached to speed up allocations.

• dbms.memory.off_heap.max_size: The maximum amount of off-heap memory that can be used to
store transaction state data; it’s a total amount of memory shared across all active transactions.

465

• dbms.memory.pagecache.directio: Use direct I/O for page cache.

• dbms.memory.pagecache.flush.buffer.enabled: Page cache can be configured to use a temporal buffer
for flushing purposes.

• dbms.memory.pagecache.flush.buffer.size_in_pages: Page cache can be configured to use a temporal
buffer for flushing purposes.

• dbms.memory.pagecache.scan.prefetchers: The maximum number of worker threads to use for pre-
fetching data when doing sequential scans.

• dbms.memory.pagecache.size: The amount of memory to use for mapping the store files, in bytes (or
kilobytes with the 'k' suffix, megabytes with 'm' and gigabytes with 'g').

• dbms.memory.pagecache.swapper: This setting is not used anymore.

• dbms.memory.pagecache.warmup.enable: Page cache can be configured to perform usage sampling of
loaded pages that can be used to construct active load profile.

• dbms.memory.pagecache.warmup.preload: Page cache warmup can be configured to prefetch files,
preferably when cache size is bigger than store size.

• dbms.memory.pagecache.warmup.preload.allowlist: Page cache warmup prefetch file allowlist regex.

• dbms.memory.pagecache.warmup.preload.whitelist: Page cache warmup prefetch file whitelist regex.

• dbms.memory.pagecache.warmup.profile.interval: The profiling frequency for the page cache.

• dbms.memory.tracking.enable: Enable off heap and on heap memory tracking.

• dbms.memory.transaction.database_max_size: Limit the amount of memory that all transactions in one
database can consume, in bytes (or kilobytes with the 'k' suffix, megabytes with 'm' and gigabytes with
'g').

• dbms.memory.transaction.global_max_size: Limit the amount of memory that all of the running
transactions can consume, in bytes (or kilobytes with the 'k' suffix, megabytes with 'm' and gigabytes
with 'g').

• dbms.memory.transaction.max_size: Limit the amount of memory that a single transaction can
consume, in bytes (or kilobytes with the 'k' suffix, megabytes with 'm' and gigabytes with 'g').

• dbms.mode: Configure the operating mode of the database — 'SINGLE' for stand-alone operation,
'CORE' for operating as a core member of a Causal Cluster, or 'READ_REPLICA' for operating as a read
replica member of a Causal Cluster.

• dbms.netty.ssl.provider: Netty SSL provider.

• dbms.panic.shutdown_on_panic: If there is a Database Management System Panic (an irrecoverable
error) should the neo4j process shut down or continue running.

• dbms.query_cache_size: The number of cached Cypher query execution plans per database.

• dbms.read_only: Only allow read operations from this Neo4j instance.

• dbms.reconciler.max_backoff: Defines the maximum amount of time to wait before retrying after the
dbms fails to reconcile a database to its desired state.

• dbms.reconciler.max_parallelism: Defines the level of parallelism employed by the reconciler.

• dbms.reconciler.may_retry: Defines whether the dbms may retry reconciling a database to its desired
state.

466

• dbms.reconciler.min_backoff: Defines the minimum amount of time to wait before retrying after the
dbms fails to reconcile a database to its desired state.

• dbms.record_format: Database record format.

• dbms.recovery.fail_on_missing_files: If true, Neo4j will abort recovery if transaction log files are
missing.

• dbms.relationship_grouping_threshold: Relationship count threshold for considering a node to be
dense.

• dbms.rest.transaction.idle_timeout: Timeout for idle transactions in the REST endpoint.

• dbms.routing.advertised_address: The advertised address for the intra-cluster routing connector.

• dbms.routing.client_side.enforce_for_domains: Always use client side routing (regardless of the default
router) for neo4j:// protocol connections to these domains.

• dbms.routing.default_router: Use server side routing by default for neo4j:// protocol connections.

• dbms.routing.driver.api: Determines which driver API will be used.

• dbms.routing.driver.connection.connect_timeout: Socket connection timeout. A timeout of zero is
treated as an infinite timeout and will be bound by the timeout configured on the operating system
level.

• dbms.routing.driver.connection.max_lifetime: Pooled connections older than this threshold will be
closed and removed from the pool. Setting this option to a low value will cause a high connection
churn and might result in a performance hit. It is recommended to set maximum lifetime to a slightly
smaller value than the one configured in network equipment (load balancer, proxy, firewall, etc.

• dbms.routing.driver.connection.pool.acquisition_timeout: Maximum amount of time spent attempting
to acquire a connection from the connection pool. This timeout only kicks in when all existing
connections are being used and no new connections can be created because maximum connection
pool size has been reached. Error is raised when connection can’t be acquired within configured time.
Negative values are allowed and result in unlimited acquisition timeout.

• dbms.routing.driver.connection.pool.idle_test: Pooled connections that have been idle in the pool for
longer than this timeout will be tested before they are used again, to ensure they are still alive. If this
option is set too low, an additional network call will be incurred when acquiring a connection, which
causes a performance hit. If this is set high, no longer live connections might be used which might lead
to errors. Hence, this parameter tunes a balance between the likelihood of experiencing connection
problems and performance Normally, this parameter should not need tuning. Value 0 means
connections will always be tested for validity.

• dbms.routing.driver.connection.pool.max_size: Maximum total number of connections to be managed
by a connection pool. The limit is enforced for a combination of a host and user.

• dbms.routing.driver.logging.level: Sets level for driver internal logging.

• dbms.routing.enabled: Enable intra-cluster routing using an additional bolt connector.

• dbms.routing.listen_address: The address the routing connector should bind to.

• dbms.routing_ttl: How long callers should cache the response of the routing procedure
dbms.routing.getRoutingTable().

• dbms.security.allow_csv_import_from_file_urls: Determines if Cypher will allow using file URLs when
loading data using LOAD CSV.

467

• dbms.security.auth_cache_max_capacity: The maximum capacity for authentication and authorization
caches (respectively).

• dbms.security.auth_cache_ttl: The time to live (TTL) for cached authentication and authorization info
when using external auth providers (LDAP or plugin).

• dbms.security.auth_cache_use_ttl: Enable time-based eviction of the authentication and authorization
info cache for external auth providers (LDAP or plugin).

• dbms.security.auth_enabled: Enable auth requirement to access Neo4j.

• dbms.security.auth_lock_time: The amount of time user account should be locked after a configured
number of unsuccessful authentication attempts.

• dbms.security.auth_max_failed_attempts: The maximum number of unsuccessful authentication
attempts before imposing a user lock for the configured amount of time, as defined by
dbms.security.auth_lock_time.The locked out user will not be able to log in until the lock period
expires, even if correct credentials are provided.

• dbms.security.authentication_providers: A list of security authentication providers containing the users
and roles.

• dbms.security.authorization_providers: A list of security authorization providers containing the users
and roles.

• dbms.security.causal_clustering_status_auth_enabled: Require authorization for access to the Causal
Clustering status endpoints.

• dbms.security.http_access_control_allow_origin: Value of the Access-Control-Allow-Origin header
sent over any HTTP or HTTPS connector.

• dbms.security.http_auth_allowlist: Defines an allowlist of http paths where Neo4j authentication is not
required.

• dbms.security.http_auth_whitelist: Defines a whitelist of http paths where Neo4j authentication is not
required.

• dbms.security.http_strict_transport_security: Value of the HTTP Strict-Transport-Security (HSTS)
response header.

• dbms.security.ldap.authentication.attribute: The attribute to use when looking up users. Using this
setting requires dbms.security.ldap.authentication.search_for_attribute to be true and thus
dbms.security.ldap.authorization.system_username and
dbms.security.ldap.authorization.system_password to be configured.

• dbms.security.ldap.authentication.cache_enabled: Determines if the result of authentication via the
LDAP server should be cached or not.

• dbms.security.ldap.authentication.mechanism: LDAP authentication mechanism.

• dbms.security.ldap.authentication.search_for_attribute: Perform authentication by searching for an
unique attribute of a user. Using this setting requires
dbms.security.ldap.authorization.system_username and
dbms.security.ldap.authorization.system_password to be configured.

• dbms.security.ldap.authentication.use_samaccountname: Perform authentication by searching for an
unique attribute of a user. This setting is deprecated and has been replaced with
dbms.security.ldap.authentication.search_for_attribute.

468

• dbms.security.ldap.authentication.user_dn_template: LDAP user DN template.

• dbms.security.ldap.authorization.access_permitted_group: The LDAP group to which a user must
belong to get any access to the system.Set this to restrict access to a subset of LDAP users belonging
to a particular group.

• dbms.security.ldap.authorization.group_membership_attributes: A list of attribute names on a user
object that contains groups to be used for mapping to roles when LDAP authorization is enabled.

• dbms.security.ldap.authorization.group_to_role_mapping: An authorization mapping from LDAP group
names to Neo4j role names.

• dbms.security.ldap.authorization.system_password: An LDAP system account password to use for
authorization searches when dbms.security.ldap.authorization.use_system_account is true.

• dbms.security.ldap.authorization.system_username: An LDAP system account username to use for
authorization searches when dbms.security.ldap.authorization.use_system_account is true.

• dbms.security.ldap.authorization.use_system_account: Perform LDAP search for authorization info
using a system account instead of the user’s own account. If this is set to false (default), the search for
group membership will be performed directly after authentication using the LDAP context bound with
the user’s own account.

• dbms.security.ldap.authorization.user_search_base: The name of the base object or named context to
search for user objects when LDAP authorization is enabled.

• dbms.security.ldap.authorization.user_search_filter: The LDAP search filter to search for a user
principal when LDAP authorization is enabled.

• dbms.security.ldap.connection_timeout: The timeout for establishing an LDAP connection.

• dbms.security.ldap.host: URL of LDAP server to use for authentication and authorization.

• dbms.security.ldap.read_timeout: The timeout for an LDAP read request (i.e.

• dbms.security.ldap.referral: The LDAP referral behavior when creating a connection.

• dbms.security.ldap.use_starttls: Use secure communication with the LDAP server using opportunistic
TLS.

• dbms.security.log_successful_authentication: Set to log successful authentication events to the
security log.

• dbms.security.procedures.allowlist: A list of procedures (comma separated) that are to be loaded.

• dbms.security.procedures.default_allowed: The default role that can execute all procedures and user-
defined functions that are not covered by the dbms.security.procedures.roles setting.

• dbms.security.procedures.roles: This provides a finer level of control over which roles can execute
procedures than the dbms.security.procedures.default_allowed setting.

• dbms.security.procedures.unrestricted: A list of procedures and user defined functions (comma
separated) that are allowed full access to the database.

• dbms.security.procedures.whitelist: A list of procedures (comma separated) that are to be loaded.

• dbms.shutdown_transaction_end_timeout: The maximum amount of time to wait for running
transactions to complete before allowing initiated database shutdown to continue.

• dbms.store.files.preallocate: Specify if Neo4j should try to preallocate store files as they grow.

469

• dbms.threads.worker_count: Number of Neo4j worker threads.

• dbms.track_query_allocation: Enables or disables tracking of how many bytes are allocated by the
execution of a query.

• dbms.track_query_cpu_time: Enables or disables tracking of how much time a query spends actively
executing on the CPU.

• dbms.transaction.bookmark_ready_timeout: The maximum amount of time to wait for the database
state represented by the bookmark.

• dbms.transaction.concurrent.maximum: The maximum number of concurrently running transactions.

• dbms.transaction.monitor.check.interval: Configures the time interval between transaction monitor
checks.

• dbms.transaction.sampling.percentage: Transaction sampling percentage.

• dbms.transaction.timeout: The maximum time interval of a transaction within which it should be
completed.

• dbms.transaction.tracing.level: Transaction creation tracing level.

• dbms.tx_log.preallocate: Specify if Neo4j should try to preallocate the logical log file in advance. It
optimizes the filesystem by ensuring there is room to accommodate newly generated files and avoid
file-level fragmentation.

• dbms.tx_log.rotation.retention_policy: Tell Neo4j how long logical transaction logs should be kept to
backup the database.For example, "10 days" will prune logical logs that only contain transactions older
than 10 days.Alternatively, "100k txs" will keep the 100k latest transactions from each database and
prune any older transactions.

• dbms.tx_log.rotation.size: Specifies at which file size the logical log will auto-rotate.

• dbms.tx_state.memory_allocation: Defines whether memory for transaction state should be allocated
on- or off-heap.

• dbms.unmanaged_extension_classes: Comma-separated list of <classname>=<mount point> for
unmanaged extensions.

• dbms.upgrade_max_processors: Max number of processors used when upgrading the store.

• dbms.windows_service_name: Name of the Windows Service.

• fabric.database.name: Name of the Fabric database.

• fabric.driver.api: Determines which driver API will be used.

• fabric.driver.connection.connect_timeout: Socket connection timeout. A timeout of zero is treated as an
infinite timeout and will be bound by the timeout configured on the operating system level.

• fabric.driver.connection.max_lifetime: Pooled connections older than this threshold will be closed and
removed from the pool. Setting this option to a low value will cause a high connection churn and might
result in a performance hit. It is recommended to set maximum lifetime to a slightly smaller value than
the one configured in network equipment (load balancer, proxy, firewall, etc.

• fabric.driver.connection.pool.acquisition_timeout: Maximum amount of time spent attempting to
acquire a connection from the connection pool. This timeout only kicks in when all existing connections
are being used and no new connections can be created because maximum connection pool size has
been reached. Error is raised when connection can’t be acquired within configured time. Negative

470

values are allowed and result in unlimited acquisition timeout.

• fabric.driver.connection.pool.idle_test: Pooled connections that have been idle in the pool for longer
than this timeout will be tested before they are used again, to ensure they are still alive. If this option is
set too low, an additional network call will be incurred when acquiring a connection, which causes a
performance hit. If this is set high, no longer live connections might be used which might lead to errors.
Hence, this parameter tunes a balance between the likelihood of experiencing connection problems
and performance Normally, this parameter should not need tuning. Value 0 means connections will
always be tested for validity.

• fabric.driver.connection.pool.max_size: Maximum total number of connections to be managed by a
connection pool. The limit is enforced for a combination of a host and user.

• fabric.driver.logging.level: Sets level for driver internal logging.

• fabric.routing.servers: A comma-separated list of Fabric instances that form a routing group.

• fabric.routing.ttl: The time to live (TTL) of a routing table for fabric routing group.

• fabric.stream.buffer.low_watermark: Number of records in prefetching buffer that will trigger
prefetching again.

• fabric.stream.buffer.size: Maximal size of a buffer used for pre-fetching result records of remote
queries. To compensate for latency to remote databases, the Fabric execution engine pre-fetches
records needed for local executions. This limit is enforced per fabric query.

• fabric.stream.concurrency: Maximal concurrency within Fabric queries. Limits the number of iterations
of each subquery that are executed concurrently.

• metrics.bolt.messages.enabled: Enable reporting metrics about Bolt Protocol message processing.

• metrics.csv.enabled: Set to true to enable exporting metrics to CSV files.

• metrics.csv.interval: The reporting interval for the CSV files.

• metrics.csv.rotation.compression: Decides what compression to use for the csv history files.

• metrics.csv.rotation.keep_number: Maximum number of history files for the csv files.

• metrics.csv.rotation.size: The file size in bytes at which the csv files will auto-rotate.

• metrics.cypher.replanning.enabled: Enable reporting metrics about number of occurred replanning
events.

• metrics.enabled: Enable metrics.

• metrics.filter: Specifies which metrics should be enabled by using a comma separated list of globbing
patterns.

• metrics.graphite.enabled: Set to true to enable exporting metrics to Graphite.

• metrics.graphite.interval: The reporting interval for Graphite.

• metrics.graphite.server: The hostname or IP address of the Graphite server.

• metrics.jmx.enabled: Set to true to enable the JMX metrics endpoint.

• metrics.jvm.buffers.enabled: Enable reporting metrics about the buffer pools.

• metrics.jvm.file.descriptors.enabled: Enable reporting metrics about the number of open file
descriptors.

471

• metrics.jvm.gc.enabled: Enable reporting metrics about the duration of garbage collections.

• metrics.jvm.heap.enabled: Enable reporting metrics about the heap memory usage.

• metrics.jvm.memory.enabled: Enable reporting metrics about the memory usage.

• metrics.jvm.pause_time.enabled: Enable reporting metrics about the VM pause time.

• metrics.jvm.threads.enabled: Enable reporting metrics about the current number of threads running.

• metrics.namespaces.enabled: Enable metrics namespaces that separates the global and database
specific metrics.

• metrics.neo4j.causal_clustering.enabled: Enable reporting metrics about Causal Clustering mode.

• metrics.neo4j.checkpointing.enabled: Enable reporting metrics about Neo4j check pointing; when it
occurs and how much time it takes to complete.

• metrics.neo4j.counts.enabled: Enable reporting metrics about approximately how many entities are in
the database; nodes, relationships, properties, etc.

• metrics.neo4j.data.counts.enabled: Enable reporting metrics about number of entities in the database.

• metrics.neo4j.database_operation_count.enabled: Enable reporting metrics for Neo4j dbms operations;
how many times databases have been created, started, stopped or dropped, and how many attempted
operations have failed and recovered later.

• metrics.neo4j.logs.enabled: Enable reporting metrics about the Neo4j transaction logs.

• metrics.neo4j.pagecache.enabled: Enable reporting metrics about the Neo4j page cache; page faults,
evictions, flushes, exceptions, etc.

• metrics.neo4j.pools.enabled: Enable reporting metrics about Neo4j memory pools.

• metrics.neo4j.server.enabled: Enable reporting metrics about Server threading info.

• metrics.neo4j.size.enabled: Enable reporting metrics about the store size of each database.

• metrics.neo4j.tx.enabled: Enable reporting metrics about transactions; number of transactions started,
committed, etc.

• metrics.prefix: A common prefix for the reported metrics field names.

• metrics.prometheus.enabled: Set to true to enable the Prometheus endpoint.

• metrics.prometheus.endpoint: The hostname and port to use as Prometheus endpoint.

Table 109. browser.allow_outgoing_connections

Description Configure the policy for outgoing Neo4j Browser connections.

Valid values browser.allow_outgoing_connections, a boolean

Default value true

Table 110. browser.credential_timeout

Description Configure the Neo4j Browser to time out logged in users after this idle period.
Setting this to 0 indicates no limit.

472

Valid values browser.credential_timeout, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h' and
'd'; default unit is 's')

Default value 0s

Table 111. browser.post_connect_cmd

Description Commands to be run when Neo4j Browser successfully connects to this server.
Separate multiple commands with semi-colon.

Valid values browser.post_connect_cmd, a string

Default value

Table 112. browser.remote_content_hostname_whitelist

Description Whitelist of hosts for the Neo4j Browser to be allowed to fetch content from.

Valid values browser.remote_content_hostname_whitelist, a string

Default value guides.neo4j.com,localhost

Table 113. browser.retain_connection_credentials

Description Configure the Neo4j Browser to store or not store user credentials.

Valid values browser.retain_connection_credentials, a boolean

Default value true

Table 114. browser.retain_editor_history

Description Configure the Neo4j Browser to store or not store user editor history.

Valid values browser.retain_editor_history, a boolean

Default value true

Table 115. causal_clustering.catch_up_client_inactivity_timeout

Description The catch up protocol times out if the given duration elapses with no network
activity. Every message received by the client from the server extends the time out
duration.

Valid values causal_clustering.catch_up_client_inactivity_timeout, a duration (Valid units are: 'ns',
'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

473

Default value 10m

Table 116. causal_clustering.catchup_batch_size

Description The maximum batch size when catching up (in unit of entries)

Valid values causal_clustering.catchup_batch_size, an integer

Default value 64

Table 117. causal_clustering.cluster_allow_reads_on_followers

Description Configure if the dbms.routing.getRoutingTable() procedure should include
followers as read endpoints or return only read replicas. Note: if there are no read
replicas in the cluster, followers are returned as read end points regardless the value
of this setting. Defaults to true so that followers are available for read-only queries
in a typical heterogeneous setup.

Valid values causal_clustering.cluster_allow_reads_on_followers, a boolean

Default value true

Table 118. causal_clustering.cluster_allow_reads_on_leader

Description Configure if the dbms.routing.getRoutingTable() procedure should include the
leader as read endpoint or return only read replicas/followers. Note: leader is
returned as read endpoint if no other member is present all.

Valid values causal_clustering.cluster_allow_reads_on_leader, a boolean

Dynamic true

Default value false

Table 119. causal_clustering.cluster_binding_timeout

Description The time allowed for a database on a Neo4j server to either join a cluster or form a
new cluster with the other Neo4j Core Servers provided by
causal_clustering.initial_discovery_members.

Valid values causal_clustering.cluster_binding_timeout, a duration (Valid units are: 'ns', 'μs', 'ms',
's', 'm', 'h' and 'd'; default unit is 's')

Default value 5m

Table 120. causal_clustering.cluster_topology_refresh

474

Description Time between scanning the cluster to refresh current server’s view of topology.

Valid values causal_clustering.cluster_topology_refresh, a duration (Valid units are: 'ns', 'μs', 'ms',
's', 'm', 'h' and 'd'; default unit is 's') which is minimum 1s

Default value 5s

Table 121. causal_clustering.command_applier_parallelism

Description Limits amount of global threads for applying commands.

Valid values causal_clustering.command_applier_parallelism, an integer which is minimum 1

Default value 8

Table 122. causal_clustering.connect_randomly_to_server_group

Description Comma separated list of groups to be used by the connect-randomly-to-server-
group selection strategy. The connect-randomly-to-server-group strategy is used if
the list of strategies (causal_clustering.upstream_selection_strategy) includes
the value connect-randomly-to-server-group.

Valid values causal_clustering.connect_randomly_to_server_group, a ',' separated list with
elements of type 'a string identifying a Server Group'.

Dynamic true

Default value

Table 123. causal_clustering.delete_store_before_store_copy

Description Deletes the old store (on cores and replicas) before performing a store copy (instead
of deleting it after).

Valid values causal_clustering.delete_store_before_store_copy, a boolean

Default value true

Table 124. causal_clustering.discovery_advertised_address

Description Advertised cluster member discovery management communication.

Valid values causal_clustering.discovery_advertised_address, a socket address. If missing port or
hostname it is acquired from dbms.default_advertised_address

Default value :5000

475

Table 125. causal_clustering.discovery_listen_address

Description Host and port to bind the cluster member discovery management communication.

Valid values causal_clustering.discovery_listen_address, a socket address. If missing port or
hostname it is acquired from dbms.default_listen_address

Default value :5000

Table 126. causal_clustering.discovery_type

Description Configure the discovery type used for cluster name resolution.

Valid values causal_clustering.discovery_type, one of [DNS, LIST, SRV, K8S] which depends on
dbms.mode. If dbms.mode is CORE or is READ_REPLICA then it may require different
settings depending on the discovery type: DNS requires
[causal_clustering.initial_discovery_members], LIST requires
[causal_clustering.initial_discovery_members], SRV requires
[causal_clustering.initial_discovery_members], K8S requires
[causal_clustering.kubernetes.label_selector,
causal_clustering.kubernetes.service_port_name] otherwise it depends on
dbms.clustering.enable. If dbms.clustering.enable is true then it may require
different settings depending on the discovery type: DNS requires
[causal_clustering.initial_discovery_members], LIST requires
[causal_clustering.initial_discovery_members], SRV requires
[causal_clustering.initial_discovery_members], K8S requires
[causal_clustering.kubernetes.label_selector,
causal_clustering.kubernetes.service_port_name] otherwise it is unconstrained..

Default value LIST

Table 127. causal_clustering.election_failure_detection_window

Description The rate at which leader elections happen. Note that due to election conflicts it
might take several attempts to find a leader. The window should be significantly
larger than typical communication delays to make conflicts unlikely.

Valid values causal_clustering.election_failure_detection_window, a duration-range <min-max>
(Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 3s-6s

Table 128. causal_clustering.enable_pre_voting

Description Enable pre-voting extension to the Raft protocol (this is breaking and must match
between the core cluster members)

Valid values causal_clustering.enable_pre_voting, a boolean

476

Default value true

Table 129. causal_clustering.global_session_tracker_state_size

Description The maximum file size before the global session tracker state file is rotated (in unit
of entries)

Valid values causal_clustering.global_session_tracker_state_size, an integer

Default value 1000

Table 130. causal_clustering.handshake_timeout

Description Time out for protocol negotiation handshake. This configuration is applicable to:
Raft (communication between CORE instances only), Catchup (communication
between any instances: CORE → CORE, RR → CORE, RR → RR, CORE → RR, including RR →
SINGLE in a replica-only cluster). Backup (communication between any instance and
a backup client that lives in the neo4j-admin command, such as BackupClient →
SINGLE, BackupClient → CORE, BackupClient → RR).

Valid values causal_clustering.handshake_timeout, a duration (Valid units are: 'ns', 'μs', 'ms', 's',
'm', 'h' and 'd'; default unit is 's')

Default value 20s

Table 131. causal_clustering.in_flight_cache.max_bytes

Description The maximum number of bytes in the in-flight cache.

Valid values causal_clustering.in_flight_cache.max_bytes, a byte size (valid multipliers are B, KiB,
KB, K, kB, kb, k, MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB)

Default value 2.00GiB

Table 132. causal_clustering.in_flight_cache.max_entries

Description The maximum number of entries in the in-flight cache.

Valid values causal_clustering.in_flight_cache.max_entries, an integer

Default value 1024

Table 133. causal_clustering.in_flight_cache.type

Description Type of in-flight cache.

477

Valid values causal_clustering.in_flight_cache.type, one of [NONE, CONSECUTIVE,
UNBOUNDED]

Default value CONSECUTIVE

Table 134. causal_clustering.initial_discovery_members

Description A comma-separated list of other members of the cluster to join.

Valid values causal_clustering.initial_discovery_members, a ',' separated list with elements of
type 'a socket address'.

Table 135. causal_clustering.join_catch_up_max_lag

Description Maximum amount of lag accepted for a new follower to join the Raft group.

Valid values causal_clustering.join_catch_up_max_lag, a duration (Valid units are: 'ns', 'μs', 'ms',
's', 'm', 'h' and 'd'; default unit is 's')

Default value 10s

Table 136. causal_clustering.join_catch_up_timeout

Description Time out for a new member to catch up.

Valid values causal_clustering.join_catch_up_timeout, a duration (Valid units are: 'ns', 'μs', 'ms',
's', 'm', 'h' and 'd'; default unit is 's')

Default value 10m

Table 137. causal_clustering.kubernetes.address

Description Address for Kubernetes API.

Valid values causal_clustering.kubernetes.address, a socket address

Default value kubernetes.default.svc:443

Table 138. causal_clustering.kubernetes.ca_crt

Description File location of CA certificate for Kubernetes API.

Valid values causal_clustering.kubernetes.ca_crt, a path

Default value /var/run/secrets/kubernetes.io/serviceaccount/ca.crt

478

Table 139. causal_clustering.kubernetes.cluster_domain

Description Kubernetes cluster domain.

Valid values causal_clustering.kubernetes.cluster_domain, a string

Default value cluster.local

Table 140. causal_clustering.kubernetes.label_selector

Description LabelSelector for Kubernetes API.

Valid values causal_clustering.kubernetes.label_selector, a string

Table 141. causal_clustering.kubernetes.namespace

Description File location of namespace for Kubernetes API.

Valid values causal_clustering.kubernetes.namespace, a path

Default value /var/run/secrets/kubernetes.io/serviceaccount/namespace

Table 142. causal_clustering.kubernetes.service_port_name

Description Service port name for discovery for Kubernetes API.

Valid values causal_clustering.kubernetes.service_port_name, a string

Table 143. causal_clustering.kubernetes.token

Description File location of token for Kubernetes API.

Valid values causal_clustering.kubernetes.token, a path

Default value /var/run/secrets/kubernetes.io/serviceaccount/token

Table 144. causal_clustering.last_applied_state_size

Description The maximum file size before the storage file is rotated (in unit of entries)

Valid values causal_clustering.last_applied_state_size, an integer

Default value 1000

Table 145. causal_clustering.leader_election_timeout

479

Description This setting is moved and enhanced into
causal_clustering.leader_failure_detection_window and
causal_clustering.election_failure_detection_window.

Valid values causal_clustering.leader_election_timeout, a duration (Valid units are: 'ns', 'μs', 'ms',
's', 'm', 'h' and 'd'; default unit is 's')

Default value 7s

Deprecated The causal_clustering.leader_election_timeout configuration setting has been
deprecated.

Table 146. causal_clustering.leader_failure_detection_window

Description The time window within which the loss of the leader is detected and the first re-
election attempt is held.The window should be significantly larger than typical
communication delays to make conflicts unlikely.

Valid values causal_clustering.leader_failure_detection_window, a duration-range <min-max>
(Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 20s-23s

Table 147. causal_clustering.leadership_balancing

Description Which strategy to use when transferring database leaderships around a cluster.
This can be one of equal_balancing or no_balancing. equal_balancing
automatically ensures that each Core server holds the leader role for an equal
number of databases.no_balancing prevents any automatic balancing of the leader
role.Note that if a leadership_priority_group is specified for a given database, the
value of this setting will be ignored for that database.

Valid values causal_clustering.leadership_balancing, one of [NO_BALANCING,
EQUAL_BALANCING]

Default value EQUAL_BALANCING

Table 148. causal_clustering.leadership_priority_group

480

Description The name of a server_group whose members should be prioritized as leaders. This
does not guarantee that members of this group will be leader at all times, but the
cluster will attempt to transfer leadership to such a member when possible. If a
database is specified using
causal_clustering.leadership_priority_group.<database> the specified priority
group will apply to that database only. If no database is specified that group will be
the default and apply to all databases which have no priority group explicitly set.
Using this setting will disable leadership balancing.

Valid values causal_clustering.leadership_priority_group, a string identifying a Server Group

Default value

Table 149. causal_clustering.load_balancing.plugin

Description The load balancing plugin to use.

Valid values causal_clustering.load_balancing.plugin, a string which depends on dbms.mode. If
dbms.mode is CORE then it specified load balancer plugin exist. otherwise it is
unconstrained.

Default value server_policies

Table 150. causal_clustering.load_balancing.shuffle

Description Enables shuffling of the returned load balancing result.

Valid values causal_clustering.load_balancing.shuffle, a boolean

Default value true

Table 151. causal_clustering.log_shipping_max_lag

Description The maximum lag allowed before log shipping pauses (in unit of entries)

Valid values causal_clustering.log_shipping_max_lag, an integer

Default value 256

Table 152. causal_clustering.log_shipping_retry_timeout

Description Retry time for log shipping to followers after a stall.

Valid values causal_clustering.log_shipping_retry_timeout, a duration (Valid units are: 'ns', 'μs',
'ms', 's', 'm', 'h' and 'd'; default unit is 's')

481

Default value 5s

Table 153. causal_clustering.max_raft_channels

Description The maximum number of TCP channels between two nodes to operate the raft
protocol.Each database gets allocated one channel, but a single channel can be
used by more than one database.

Valid values causal_clustering.max_raft_channels, an integer

Default value 8

Table 154. causal_clustering.middleware.logging.level

Description The level of middleware logging.

Valid values causal_clustering.middleware.logging.level, one of [DEBUG, INFO, WARN, ERROR,
NONE]

Default value WARN

Table 155. causal_clustering.minimum_core_cluster_size_at_formation

Description Minimum number of Core machines initially required to form a cluster. The cluster
will form when at least this many Core members have discovered each other.

Valid values causal_clustering.minimum_core_cluster_size_at_formation, an integer which is
minimum 2

Default value 3

Table 156. causal_clustering.minimum_core_cluster_size_at_runtime

Description The minimum size of the dynamically adjusted voting set (which only core members
may be a part of). Adjustments to the voting set happen automatically as the
availability of core members changes, due to explicit operations such as starting or
stopping a member, or unintended issues such as network partitions. Note that this
dynamic scaling of the voting set is generally desirable as under some
circumstances it can increase the number of instance failures which may be
tolerated. A majority of the voting set must be available before voting in or out
members.

482

Valid values causal_clustering.minimum_core_cluster_size_at_runtime, an integer which is
minimum 2 and depends on dbms.mode. If dbms.mode is CORE then it Must be set
less than or equal to value of
'causal_clustering.minimum_core_cluster_size_at_formation' otherwise it is
unconstrained.

Default value 3

Table 157. causal_clustering.multi_dc_license

Description Enable multi-data center features. Requires appropriate licensing.

Valid values causal_clustering.multi_dc_license, a boolean

Default value false

Table 158. causal_clustering.protocol_implementations.catchup

Description Catchup protocol implementation versions that this instance will allow in
negotiation as a comma-separated list. Order is not relevant: the greatest value will
be preferred. An empty list will allow all supported versions. Example value: "1.1,
1.2, 2.1, 2.2"

Valid values causal_clustering.protocol_implementations.catchup, a ',' separated list with
elements of type 'an application protocol version'.

Default value

Table 159. causal_clustering.protocol_implementations.compression

Description Network compression algorithms that this instance will allow in negotiation as a
comma-separated list. Listed in descending order of preference for incoming
connections. An empty list implies no compression. For outgoing connections this
merely specifies the allowed set of algorithms and the preference of the remote
peer will be used for making the decision. Allowable values: [Gzip, Snappy,
Snappy_validating, LZ4, LZ4_high_compression, LZ_validating,
LZ4_high_compression_validating]

Valid values causal_clustering.protocol_implementations.compression, a ',' separated list with
elements of type 'a string'.

Default value

Table 160. causal_clustering.protocol_implementations.raft

483

Description Raft protocol implementation versions that this instance will allow in negotiation as
a comma-separated list. Order is not relevant: the greatest value will be preferred.
An empty list will allow all supported versions. Example value: "1.0, 1.3, 2.0, 2.1"

Valid values causal_clustering.protocol_implementations.raft, a ',' separated list with elements of
type 'an application protocol version'.

Default value

Table 161. causal_clustering.pull_interval

Description Interval of pulling updates from cores.

Valid values causal_clustering.pull_interval, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h'
and 'd'; default unit is 's')

Default value 1s

Table 162. causal_clustering.raft_advertised_address

Description Advertised hostname/IP address and port for the RAFT server.

Valid values causal_clustering.raft_advertised_address, a socket address. If missing port or
hostname it is acquired from dbms.default_advertised_address

Default value :7000

Table 163. causal_clustering.raft_handler_parallelism

Description Limits amount of global threads shared by raft groups for handling bathing of
messages and timeout events.

Valid values causal_clustering.raft_handler_parallelism, an integer which is minimum 1

Default value 8

Table 164. causal_clustering.raft_in_queue_max_batch_bytes

Description Largest batch processed by RAFT in bytes.

Valid values causal_clustering.raft_in_queue_max_batch_bytes, a byte size (valid multipliers are
B, KiB, KB, K, kB, kb, k, MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB)

Default value 8.00MiB

Table 165. causal_clustering.raft_in_queue_max_bytes

484

Description Maximum number of bytes in the RAFT in-queue.

Valid values causal_clustering.raft_in_queue_max_bytes, a byte size (valid multipliers are B, KiB,
KB, K, kB, kb, k, MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB)

Default value 2.00GiB

Table 166. causal_clustering.raft_listen_address

Description Network interface and port for the RAFT server to listen on.

Valid values causal_clustering.raft_listen_address, a socket address. If missing port or hostname
it is acquired from dbms.default_listen_address

Default value :7000

Table 167. causal_clustering.raft_log_implementation

Description RAFT log implementation.

Valid values causal_clustering.raft_log_implementation, a string

Default value SEGMENTED

Table 168. causal_clustering.raft_log_prune_strategy

Description RAFT log pruning strategy.

Valid values causal_clustering.raft_log_prune_strategy, a string

Default value 1g size

Table 169. causal_clustering.raft_log_pruning_frequency

Description RAFT log pruning frequency.

Valid values causal_clustering.raft_log_pruning_frequency, a duration (Valid units are: 'ns', 'μs',
'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 10m

Table 170. causal_clustering.raft_log_reader_pool_size

Description RAFT log reader pool size.

485

Valid values causal_clustering.raft_log_reader_pool_size, an integer

Default value 8

Table 171. causal_clustering.raft_log_rotation_size

Description RAFT log rotation size.

Valid values causal_clustering.raft_log_rotation_size, a byte size (valid multipliers are B, KiB, KB,
K, kB, kb, k, MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB) which is
minimum 1.00KiB

Default value 250.00MiB

Table 172. causal_clustering.raft_membership_state_size

Description The maximum file size before the membership state file is rotated (in unit of entries)

Valid values causal_clustering.raft_membership_state_size, an integer

Default value 1000

Table 173. causal_clustering.raft_term_state_size

Description The maximum file size before the term state file is rotated (in unit of entries)

Valid values causal_clustering.raft_term_state_size, an integer

Default value 1000

Table 174. causal_clustering.raft_vote_state_size

Description The maximum file size before the vote state file is rotated (in unit of entries)

Valid values causal_clustering.raft_vote_state_size, an integer

Default value 1000

Table 175. causal_clustering.refuse_to_be_leader

Description Deprecated, use dbms.databases.default_to_read_only

Valid values causal_clustering.refuse_to_be_leader, a boolean

Default value false

486

Deprecated The causal_clustering.refuse_to_be_leader configuration setting has been
deprecated.

Table 176. causal_clustering.replicated_lease_state_size

Description The maximum file size before the replicated lease state file is rotated (in unit of
entries)

Valid values causal_clustering.replicated_lease_state_size, an integer

Default value 1000

Table 177. causal_clustering.replication_leader_await_timeout

Description The duration for which the replicator will await a new leader.

Valid values causal_clustering.replication_leader_await_timeout, a duration (Valid units are: 'ns',
'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 10s

Table 178. causal_clustering.replication_retry_timeout_base

Description The initial timeout until replication is retried. The timeout will increase exponentially.

Valid values causal_clustering.replication_retry_timeout_base, a duration (Valid units are: 'ns',
'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 10s

Table 179. causal_clustering.replication_retry_timeout_limit

Description The upper limit for the exponentially incremented retry timeout.

Valid values causal_clustering.replication_retry_timeout_limit, a duration (Valid units are: 'ns',
'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 1m

Table 180. causal_clustering.server_groups

Description A list of group names for the server used when configuring load balancing and
replication policies.

487

Valid values causal_clustering.server_groups, a ',' separated list with elements of type 'a string
identifying a Server Group'.

Dynamic true

Default value

Table 181. causal_clustering.state_machine_apply_max_batch_size

Description The maximum number of operations to be batched during applications of operations
in the state machines.

Valid values causal_clustering.state_machine_apply_max_batch_size, an integer

Default value 16

Table 182. causal_clustering.state_machine_flush_window_size

Description The number of operations to be processed before the state machines flush to disk.

Valid values causal_clustering.state_machine_flush_window_size, an integer

Default value 4096

Table 183. causal_clustering.status_throughput_window

Description Sampling window for throughput estimate reported in the status endpoint.

Valid values causal_clustering.status_throughput_window, a duration (Valid units are: 'ns', 'μs',
'ms', 's', 'm', 'h' and 'd'; default unit is 's') which is in the range 1s to 5m

Default value 5s

Table 184. causal_clustering.store_copy_chunk_size

Description Store copy chunk size.

Valid values causal_clustering.store_copy_chunk_size, an integer which is in the range 4096 to
1048576

Default value 32768

Table 185. causal_clustering.store_copy_max_retry_time_per_request

488

Description Maximum retry time per request during store copy. Regular store files and indexes
are downloaded in separate requests during store copy. This configures the
maximum time failed requests are allowed to resend.

Valid values causal_clustering.store_copy_max_retry_time_per_request, a duration (Valid units
are: 'ns', 'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 20m

Table 186. causal_clustering.store_copy_parallelism

Description Limits amount of global threads for store copy.

Valid values causal_clustering.store_copy_parallelism, an integer which is minimum 1

Default value 8

Table 187. causal_clustering.transaction_advertised_address

Description Advertised hostname/IP address and port for the transaction shipping server.

Valid values causal_clustering.transaction_advertised_address, a socket address. If missing port
or hostname it is acquired from dbms.default_advertised_address

Default value :6000

Table 188. causal_clustering.transaction_listen_address

Description Network interface and port for the transaction shipping server to listen on. Please
note that it is also possible to run the backup client against this port so always limit
access to it via the firewall and configure an ssl policy.

Valid values causal_clustering.transaction_listen_address, a socket address. If missing port or
hostname it is acquired from dbms.default_listen_address

Default value :6000

Table 189. causal_clustering.unknown_address_logging_throttle

Description Throttle limit for logging unknown cluster member address.

Valid values causal_clustering.unknown_address_logging_throttle, a duration (Valid units are:
'ns', 'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 10s

489

Table 190. causal_clustering.upstream_selection_strategy

Description An ordered list in descending preference of the strategy which read replicas use to
choose the upstream server from which to pull transactional updates.

Valid values causal_clustering.upstream_selection_strategy, a ',' separated list with elements of
type 'a string'.

Default value default

Table 191. causal_clustering.user_defined_upstream_strategy

Description Configuration of a user-defined upstream selection strategy. The user-defined
strategy is used if the list of strategies
(causal_clustering.upstream_selection_strategy) includes the value
user_defined.

Valid values causal_clustering.user_defined_upstream_strategy, a string

Default value

Table 192. cypher.default_language_version

Description Set this to specify the default parser (language version).

Valid values cypher.default_language_version, one of [default, 3.5, 4.2, 4.3]

Default value default

Table 193. cypher.forbid_exhaustive_shortestpath

490

Description This setting is associated with performance optimization. Set this to true in
situations where it is preferable to have any queries using the 'shortestPath'
function terminate as soon as possible with no answer, rather than potentially
running for a long time attempting to find an answer (even if there is no path to be
found). For most queries, the 'shortestPath' algorithm will return the correct answer
very quickly. However there are some cases where it is possible that the fast
bidirectional breadth-first search algorithm will find no results even if they exist.
This can happen when the predicates in the WHERE clause applied to 'shortestPath'
cannot be applied to each step of the traversal, and can only be applied to the entire
path. When the query planner detects these special cases, it will plan to perform an
exhaustive depth-first search if the fast algorithm finds no paths. However, the
exhaustive search may be orders of magnitude slower than the fast algorithm. If it is
critical that queries terminate as soon as possible, it is recommended that this
option be set to true, which means that Neo4j will never consider using the
exhaustive search for shortestPath queries. However, please note that if no paths
are found, an error will be thrown at run time, which will need to be handled by the
application.

Valid values cypher.forbid_exhaustive_shortestpath, a boolean

Default value false

Table 194. cypher.forbid_shortestpath_common_nodes

Description This setting is associated with performance optimization. The shortest path
algorithm does not work when the start and end nodes are the same. With this
setting set to false no path will be returned when that happens. The default value
of true will instead throw an exception. This can happen if you perform a
shortestPath search after a cartesian product that might have the same start and
end nodes for some of the rows passed to shortestPath. If it is preferable to not
experience this exception, and acceptable for results to be missing for those rows,
then set this to false. If you cannot accept missing results, and really want the
shortestPath between two common nodes, then re-write the query using a
standard Cypher variable length pattern expression followed by ordering by path
length and limiting to one result.

Valid values cypher.forbid_shortestpath_common_nodes, a boolean

Default value true

Table 195. cypher.hints_error

Description Set this to specify the behavior when Cypher planner or runtime hints cannot be
fulfilled. If true, then non-conformance will result in an error, otherwise only a
warning is generated.

491

Valid values cypher.hints_error, a boolean

Default value false

Table 196. cypher.lenient_create_relationship

Description Set this to change the behavior for Cypher create relationship when the start or end
node is missing. By default this fails the query and stops execution, but by setting
this flag the create operation is simply not performed and execution continues.

Valid values cypher.lenient_create_relationship, a boolean

Default value false

Table 197. cypher.min_replan_interval

Description The minimum time between possible cypher query replanning events. After this
time, the graph statistics will be evaluated, and if they have changed by more than
the value set by cypher.statistics_divergence_threshold, the query will be replanned.
If the statistics have not changed sufficiently, the same interval will need to pass
before the statistics will be evaluated again. Each time they are evaluated, the
divergence threshold will be reduced slightly until it reaches 10% after 7h, so that
even moderately changing databases will see query replanning after a sufficiently
long time interval.

Valid values cypher.min_replan_interval, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h' and
'd'; default unit is 's')

Default value 10s

Table 198. cypher.planner

Description Set this to specify the default planner for the default language version.

Valid values cypher.planner, one of [DEFAULT, COST]

Default value DEFAULT

Table 199. cypher.statistics_divergence_threshold

492

Description The threshold for statistics above which a plan is considered stale.

If any of the underlying statistics used to create the plan have changed more than
this value, the plan will be considered stale and will be replanned. Change is
calculated as abs(a-b)/max(a,b).

This means that a value of 0.75 requires the database to quadruple in size before
query replanning. A value of 0 means that the query will be replanned as soon as
there is any change in statistics and the replan interval has elapsed.

This interval is defined by cypher.min_replan_interval and defaults to 10s. After
this interval, the divergence threshold will slowly start to decline, reaching 10%
after about 7h. This will ensure that long running databases will still get query
replanning on even modest changes, while not replanning frequently unless the
changes are very large.

Valid values cypher.statistics_divergence_threshold, a double which is in the range 0.0 to 1.0

Default value 0.75

Table 200. db.temporal.timezone

Description Database timezone for temporal functions. All Time and DateTime values that are
created without an explicit timezone will use this configured default timezone.

Valid values db.temporal.timezone, a string describing a timezone, either described by offset
(e.g. '+02:00') or by name (e.g. 'Europe/Stockholm')

Default value Z

Table 201. dbms.allow_single_automatic_upgrade

Description Whether to allow a system graph upgrade to happen automatically in single
instance mode (dbms.mode=SINGLE). Default is true. In clustering environments no
automatic upgrade will happen (dbms.mode=CORE or
dbms.mode=READ_REPLICA). If set to false, or when in a clustering environment, it
is necessary to call the procedure dbms.upgrade() to complete the upgrade.

Valid values dbms.allow_single_automatic_upgrade, a boolean

Dynamic true

Default value true

Table 202. dbms.allow_upgrade

493

Description Whether to allow a store upgrade in case the current version of the database starts
against an older version of the store.

Valid values dbms.allow_upgrade, a boolean

Dynamic true

Default value false

Table 203. dbms.backup.enabled

Description Enable support for running online backups.

Valid values dbms.backup.enabled, a boolean

Default value true

Table 204. dbms.backup.incremental.strategy

Description Strategy for incremental backup. START_TIME means that this server will send
transactions until the time of when the backup started has been reached.
UNBOUNDED will keep sending until all committed transactions have been sent,
even if they where committed after the backup job started.

Valid values dbms.backup.incremental.strategy, one of [UNBOUNDED, START_TIME]

Dynamic true

Default value UNBOUNDED

Table 205. dbms.backup.listen_address

Description Network interface and port for the backup server to listen on.

Valid values dbms.backup.listen_address, a socket address

Default value 127.0.0.1:6362

Table 206. dbms.checkpoint

494

Description Configures the general policy for when check-points should occur. The default
policy is the 'periodic' check-point policy, as specified by the
'dbms.checkpoint.interval.tx' and 'dbms.checkpoint.interval.time' settings. The Neo4j
Enterprise Edition provides two alternative policies: The first is the 'continuous'
check-point policy, which will ignore those settings and run the check-point process
all the time. The second is the 'volumetric' check-point policy, which makes a best-
effort at check-pointing often enough so that the database doesn’t get too far
behind on deleting old transaction logs in accordance with the
'dbms.tx_log.rotation.retention_policy' setting.

Valid values dbms.checkpoint, one of [PERIODIC, CONTINUOUS, VOLUMETRIC]

Default value PERIODIC

Table 207. dbms.checkpoint.interval.time

Description Configures the time interval between check-points. The database will not check-
point more often than this (unless check pointing is triggered by a different event),
but might check-point less often than this interval, if performing a check-point takes
longer time than the configured interval. A check-point is a point in the transaction
logs, from which recovery would start from. Longer check-point intervals typically
means that recovery will take longer to complete in case of a crash. On the other
hand, a longer check-point interval can also reduce the I/O load that the database
places on the system, as each check-point implies a flushing and forcing of all the
store files.

Valid values dbms.checkpoint.interval.time, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h'
and 'd'; default unit is 's')

Default value 15m

Table 208. dbms.checkpoint.interval.tx

Description Configures the transaction interval between check-points. The database will not
check-point more often than this (unless check pointing is triggered by a different
event), but might check-point less often than this interval, if performing a check-
point takes longer time than the configured interval. A check-point is a point in the
transaction logs, from which recovery would start from. Longer check-point
intervals typically means that recovery will take longer to complete in case of a
crash. On the other hand, a longer check-point interval can also reduce the I/O load
that the database places on the system, as each check-point implies a flushing and
forcing of all the store files. The default is '100000' for a check-point every 100000
transactions.

Valid values dbms.checkpoint.interval.tx, an integer which is minimum 1

495

Default value 100000

Table 209. dbms.checkpoint.iops.limit

Description Limit the number of IOs the background checkpoint process will consume per
second. This setting is advisory, is ignored in Neo4j Community Edition, and is
followed to best effort in Enterprise Edition. An IO is in this case a 8 KiB (mostly
sequential) write. Limiting the write IO in this way will leave more bandwidth in the
IO subsystem to service random-read IOs, which is important for the response time
of queries when the database cannot fit entirely in memory. The only drawback of
this setting is that longer checkpoint times may lead to slightly longer recovery
times in case of a database or system crash. A lower number means lower IO
pressure, and consequently longer checkpoint times. Set this to -1 to disable the
IOPS limit and remove the limitation entirely; this will let the checkpointer flush data
as fast as the hardware will go. Removing the setting, or commenting it out, will set
the default value of 600.

Valid values dbms.checkpoint.iops.limit, an integer

Dynamic true

Default value 600

Table 210. dbms.clustering.enable

Description Enable discovery service and a catchup server to be started on an Enterprise
Standalone Instance 'dbms.mode=SINGLE', and with that allow for Read Replicas to
connect and pull transaction from it. When 'dbms.mode' is clustered (CORE,
READ_REPLICA) this setting is not recognized.

Valid values dbms.clustering.enable, a boolean

Default value false

Deprecated The dbms.clustering.enable configuration setting has been deprecated.

Table 211. dbms.config.strict_validation

Description A strict configuration validation will prevent the database from starting up if
unknown configuration options are specified in the neo4j settings namespace (such
as dbms., cypher., etc).

Valid values dbms.config.strict_validation, a boolean

Default value false

496

Table 212. dbms.connector.bolt.advertised_address

Description Advertised address for this connector.

Valid values dbms.connector.bolt.advertised_address, a socket address. If missing port or
hostname it is acquired from dbms.default_advertised_address

Default value :7687

Table 213. dbms.connector.bolt.enabled

Description Enable the bolt connector.

Valid values dbms.connector.bolt.enabled, a boolean

Default value true

Table 214. dbms.connector.bolt.listen_address

Description Address the connector should bind to.

Valid values dbms.connector.bolt.listen_address, a socket address. If missing port or hostname it
is acquired from dbms.default_listen_address

Default value :7687

Table 215. dbms.connector.bolt.ocsp_stapling_enabled

Description Enable server OCSP stapling for bolt and http connectors.

Valid values dbms.connector.bolt.ocsp_stapling_enabled, a boolean

Default value false

Table 216. dbms.connector.bolt.thread_pool_keep_alive

Description The maximum time an idle thread in the thread pool bound to this connector will
wait for new tasks.

Valid values dbms.connector.bolt.thread_pool_keep_alive, a duration (Valid units are: 'ns', 'μs',
'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 5m

Table 217. dbms.connector.bolt.thread_pool_max_size

497

Description The maximum number of threads allowed in the thread pool bound to this
connector.

Valid values dbms.connector.bolt.thread_pool_max_size, an integer

Default value 400

Table 218. dbms.connector.bolt.thread_pool_min_size

Description The number of threads to keep in the thread pool bound to this connector, even if
they are idle.

Valid values dbms.connector.bolt.thread_pool_min_size, an integer

Default value 5

Table 219. dbms.connector.bolt.tls_level

Description Encryption level to require this connector to use.

Valid values dbms.connector.bolt.tls_level, one of [REQUIRED, OPTIONAL, DISABLED]

Default value DISABLED

Table 220. dbms.connector.bolt.unsupported_thread_pool_shutdown_wait_time

Description The maximum time to wait for the thread pool to finish processing its pending jobs
and shutdown.

Valid values dbms.connector.bolt.unsupported_thread_pool_shutdown_wait_time, a duration
(Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 5s

Table 221. dbms.connector.http.advertised_address

Description Advertised address for this connector.

Valid values dbms.connector.http.advertised_address, a socket address. If missing port or
hostname it is acquired from dbms.default_advertised_address

Default value :7474

Table 222. dbms.connector.http.enabled

Description Enable the http connector.

498

Valid values dbms.connector.http.enabled, a boolean

Default value true

Table 223. dbms.connector.http.listen_address

Description Address the connector should bind to.

Valid values dbms.connector.http.listen_address, a socket address. If missing port or hostname it
is acquired from dbms.default_listen_address

Default value :7474

Table 224. dbms.connector.https.advertised_address

Description Advertised address for this connector.

Valid values dbms.connector.https.advertised_address, a socket address. If missing port or
hostname it is acquired from dbms.default_advertised_address

Default value :7473

Table 225. dbms.connector.https.enabled

Description Enable the https connector.

Valid values dbms.connector.https.enabled, a boolean

Default value false

Table 226. dbms.connector.https.listen_address

Description Address the connector should bind to.

Valid values dbms.connector.https.listen_address, a socket address. If missing port or hostname
it is acquired from dbms.default_listen_address

Default value :7473

Table 227. dbms.databases.default_to_read_only

Description Whether or not any database on this instance are read_only by default. If false,
individual databases may be marked as read_only using dbms.database.read_only.
If true, individual databases may be marked as writable using
dbms.databases.writable.

499

Valid values dbms.databases.default_to_read_only, a boolean

Dynamic true

Default value false

Table 228. dbms.databases.read_only

Description List of databases for which to prevent write queries. Databases not included in this
list maybe read_only anyway depending upon the value of
dbms.databases.default_to_read_only.

Valid values dbms.databases.read_only, a ',' separated set with elements of type 'A valid
database name containing only alphabetic characters, numbers, dots and dashes
with a length between 3 and 63 characters, starting with an alphabetic character
but not with the name 'system''. which Value 'system' can’t be included in read only
databases collection!

Dynamic true

Default value

Table 229. dbms.databases.writable

Description List of databases for which to allow write queries. Databases not included in this list
will allow write queries anyway, unless dbms.databases.default_to_read_only is set
to true.

Valid values dbms.databases.writable, a ',' separated set with elements of type 'A valid database
name containing only alphabetic characters, numbers, dots and dashes with a
length between 3 and 63 characters, starting with an alphabetic character but not
with the name 'system''.

Dynamic true

Default value

Table 230. dbms.db.timezone

Description Database timezone. Among other things, this setting influences which timezone the
logs and monitoring procedures use.

Valid values dbms.db.timezone, one of [UTC, SYSTEM]

Default value UTC

500

Table 231. dbms.default_advertised_address

Description Default hostname or IP address the server uses to advertise itself.

Valid values dbms.default_advertised_address, a socket address which has no specified port

Default value localhost

Table 232. dbms.default_database

Description Name of the default database.

Valid values dbms.default_database, A valid database name containing only alphabetic
characters, numbers, dots and dashes with a length between 3 and 63 characters,
starting with an alphabetic character but not with the name 'system'

Default value neo4j

Table 233. dbms.default_listen_address

Description Default network interface to listen for incoming connections. To listen for
connections on all interfaces, use "0.0.0.0".

Valid values dbms.default_listen_address, a socket address which has no specified port

Default value localhost

Table 234. dbms.directories.cluster_state

Description Directory to hold cluster state including Raft log.

Valid values dbms.directories.cluster_state, a path. If relative it is resolved from
dbms.directories.data

Default value cluster-state

Table 235. dbms.directories.data

Description Path of the data directory. You must not configure more than one Neo4j installation
to use the same data directory.

Valid values dbms.directories.data, a path. If relative it is resolved from
dbms.directories.neo4j_home

Default value data

Table 236. dbms.directories.dumps.root

501

Description Root location where Neo4j will store database dumps optionally produced when
dropping said databases.

Valid values dbms.directories.dumps.root, a path. If relative it is resolved from
dbms.directories.data

Default value dumps

Table 237. dbms.directories.import

Description Sets the root directory for file URLs used with the Cypher LOAD CSV clause. This
should be set to a directory relative to the Neo4j installation path, restricting access
to only those files within that directory and its subdirectories. For example the value
"import" will only enable access to files within the 'import' folder. Removing this
setting will disable the security feature, allowing all files in the local system to be
imported. Setting this to an empty field will allow access to all files within the Neo4j
installation folder.

Valid values dbms.directories.import, a path. If relative it is resolved from
dbms.directories.neo4j_home

Table 238. dbms.directories.lib

Description Path of the lib directory.

Valid values dbms.directories.lib, a path. If relative it is resolved from
dbms.directories.neo4j_home

Default value lib

Table 239. dbms.directories.licenses

Description Path of the licenses directory.

Valid values dbms.directories.licenses, a path. If relative it is resolved from
dbms.directories.neo4j_home

Default value licenses

Table 240. dbms.directories.logs

Description Path of the logs directory.

Valid values dbms.directories.logs, a path. If relative it is resolved from
dbms.directories.neo4j_home

502

Default value logs

Table 241. dbms.directories.metrics

Description The target location of the CSV files: a path to a directory wherein a CSV file per
reported field will be written.

Valid values dbms.directories.metrics, a path. If relative it is resolved from
dbms.directories.neo4j_home

Default value metrics

Table 242. dbms.directories.neo4j_home

Description Root relative to which directory settings are resolved.

Valid values dbms.directories.neo4j_home, a path which is absolute

Default value Defaults to current working directory

Table 243. dbms.directories.plugins

Description Location of the database plugin directory. Compiled Java JAR files that contain
database procedures will be loaded if they are placed in this directory.

Valid values dbms.directories.plugins, a path. If relative it is resolved from
dbms.directories.neo4j_home

Default value plugins

Table 244. dbms.directories.run

Description Path of the run directory. This directory holds Neo4j’s runtime state, such as a
pidfile when it is running in the background. The pidfile is created when starting
neo4j and removed when stopping it. It may be placed on an in-memory filesystem
such as tmpfs.

Valid values dbms.directories.run, a path. If relative it is resolved from
dbms.directories.neo4j_home

Default value run

Table 245. dbms.directories.script.root

Description Root location where Neo4j will store scripts for configured databases.

503

Valid values dbms.directories.script.root, a path. If relative it is resolved from
dbms.directories.data

Default value scripts

Table 246. dbms.directories.transaction.logs.root

Description Root location where Neo4j will store transaction logs for configured databases.

Valid values dbms.directories.transaction.logs.root, a path. If relative it is resolved from
dbms.directories.data

Default value transactions

Table 247. dbms.dynamic.setting.allowlist

Description A list of setting name patterns (comma separated) that are allowed to be
dynamically changed. The list may contain both full setting names, and partial
names with the wildcard '*'. If this setting is left empty all dynamic settings updates
will be blocked.

Valid values dbms.dynamic.setting.allowlist, a ',' separated list with elements of type 'a string'.

Default value *

Table 248. dbms.dynamic.setting.whitelist

Description A list of setting name patterns (comma separated) that are allowed to be
dynamically changed. The list may contain both full setting names, and partial
names with the wildcard '*'. If this setting is left empty all dynamic settings updates
will be blocked. Deprecated, use dbms.dynamic.setting.allowlist

Valid values dbms.dynamic.setting.whitelist, a ',' separated list with elements of type 'a string'.

Default value *

Deprecated The dbms.dynamic.setting.whitelist configuration setting has been deprecated.

Table 249. dbms.filewatcher.enabled

Description Allows the enabling or disabling of the file watcher service. This is an auxiliary
service but should be left enabled in almost all cases.

Valid values dbms.filewatcher.enabled, a boolean

Default value true

504

Table 250. dbms.http_enabled_modules

Description Defines the set of modules loaded into the Neo4j web server. Options include
TRANSACTIONAL_ENDPOINTS, BROWSER, UNMANAGED_EXTENSIONS and
ENTERPRISE_MANAGEMENT_ENDPOINTS (if applicable).

Valid values dbms.http_enabled_modules, a ',' separated set with elements of type 'one of
[TRANSACTIONAL_ENDPOINTS, UNMANAGED_EXTENSIONS, BROWSER,
ENTERPRISE_MANAGEMENT_ENDPOINTS]'.

Default value TRANSACTIONAL_ENDPOINTS,UNMANAGED_EXTENSIONS,BROWSER,ENTERPRISE_MANAGEMENT_ENDPOINTS

Table 251. dbms.import.csv.buffer_size

Description The size of the internal buffer in bytes used by LOAD CSV. If the csv file contains
huge fields this value may have to be increased.

Valid values dbms.import.csv.buffer_size, a long which is minimum 1

Default value 2097152

Table 252. dbms.import.csv.legacy_quote_escaping

Description Selects whether to conform to the standard https://tools.ietf.org/html/rfc4180 for
interpreting escaped quotation characters in CSV files loaded using LOAD CSV.
Setting this to false will use the standard, interpreting repeated quotes '""' as a
single in-lined quote, while true will use the legacy convention originally supported
in Neo4j 3.0 and 3.1, allowing a backslash to include quotes in-lined in fields.

Valid values dbms.import.csv.legacy_quote_escaping, a boolean

Default value true

Table 253. dbms.index.default_schema_provider

Description Index provider to use for newly created schema indexes. An index provider may
store different value types in separate physical indexes. native-btree-1.0: All value
types and arrays of all value types, even composite keys, are stored in one native
index. lucene+native-3.0: Like native-btree-1.0 but single property strings are
stored in Lucene. A native index has faster updates, less heap and CPU usage
compared to a Lucene index. A native index has some limitations around key size
and slower execution of CONTAINS and ENDS WITH string index queries,
compared to a Lucene index. Deprecated: Which index provider to use will be a fully
internal concern.

Valid values dbms.index.default_schema_provider, a string

505

https://tools.ietf.org/html/rfc4180

Default value native-btree-1.0

Deprecated The dbms.index.default_schema_provider configuration setting has been
deprecated.

Table 254. dbms.index.fulltext.default_analyzer

Description The name of the analyzer that the fulltext indexes should use by default.

Valid values dbms.index.fulltext.default_analyzer, a string

Default value standard-no-stop-words

Table 255. dbms.index.fulltext.eventually_consistent

Description Whether or not fulltext indexes should be eventually consistent by default or not.

Valid values dbms.index.fulltext.eventually_consistent, a boolean

Default value false

Table 256. dbms.index.fulltext.eventually_consistent_index_update_queue_max_length

Description The eventually_consistent mode of the fulltext indexes works by queueing up index
updates to be applied later in a background thread. This newBuilder sets an upper
bound on how many index updates are allowed to be in this queue at any one point
in time. When it is reached, the commit process will slow down and wait for the
index update applier thread to make some more room in the queue.

Valid values dbms.index.fulltext.eventually_consistent_index_update_queue_max_length, an
integer which is in the range 1 to 50000000

Default value 10000

Table 257. dbms.index_sampling.background_enabled

Description Enable or disable background index sampling.

Valid values dbms.index_sampling.background_enabled, a boolean

Default value true

Table 258. dbms.index_sampling.sample_size_limit

Description Index sampling chunk size limit.

506

Valid values dbms.index_sampling.sample_size_limit, an integer which is in the range 1048576 to
2147483647

Default value 8388608

Table 259. dbms.index_sampling.update_percentage

Description Percentage of index updates of total index size required before sampling of a given
index is triggered.

Valid values dbms.index_sampling.update_percentage, an integer which is minimum 0

Default value 5

Table 260. dbms.index_searcher_cache_size

Description The maximum number of open Lucene index searchers.

Valid values dbms.index_searcher_cache_size, an integer which is minimum 1

Default value 2147483647

Deprecated The dbms.index_searcher_cache_size configuration setting has been deprecated.

Table 261. dbms.jvm.additional

Description Additional JVM arguments. Argument order can be significant. To use a Java
commercial feature, the argument to unlock commercial features must precede the
argument to enable the specific feature in the config value string.

Valid values dbms.jvm.additional, one or more jvm arguments

Table 262. dbms.lock.acquisition.timeout

Description The maximum time interval within which lock should be acquired. Zero (default)
means timeout is disabled.

Valid values dbms.lock.acquisition.timeout, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h'
and 'd'; default unit is 's')

Dynamic true

Default value 0s

Table 263. dbms.logs.debug.format

507

Description Log format to use for debug log.

Valid values dbms.logs.debug.format, one of [PLAIN, JSON]. If unset the value is inherited from
dbms.logs.default_format

Table 264. dbms.logs.debug.level

Description Debug log level threshold.

Valid values dbms.logs.debug.level, one of [DEBUG, INFO, WARN, ERROR, NONE]

Dynamic true

Default value INFO

Table 265. dbms.logs.debug.path

Description Path to the debug log file.

Valid values dbms.logs.debug.path, a path. If relative it is resolved from dbms.directories.logs

Default value debug.log

Table 266. dbms.logs.debug.rotation.delay

Description Minimum time interval after last rotation of the debug log before it may be rotated
again.

Valid values dbms.logs.debug.rotation.delay, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h'
and 'd'; default unit is 's')

Default value 5m

Deprecated The dbms.logs.debug.rotation.delay configuration setting has been deprecated.

Table 267. dbms.logs.debug.rotation.keep_number

Description Maximum number of history files for the debug log.

Valid values dbms.logs.debug.rotation.keep_number, an integer which is minimum 1

Default value 7

Table 268. dbms.logs.debug.rotation.size

508

Description Threshold for rotation of the debug log.

Valid values dbms.logs.debug.rotation.size, a byte size (valid multipliers are B, KiB, KB, K, kB, kb, k,
MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB) which is in the range
0B to 8388608.00TiB

Default value 20.00MiB

Table 269. dbms.logs.default_format

Description Default log format. Will apply to all logs unless overridden.

Valid values dbms.logs.default_format, one of [PLAIN, JSON]

Default value PLAIN

Table 270. dbms.logs.gc.enabled

Description Enable GC Logging.

Valid values dbms.logs.gc.enabled, a boolean

Default value false

Table 271. dbms.logs.gc.options

Description GC Logging Options.

Valid values dbms.logs.gc.options, a string

Default value -Xlog:gc*,safepoint,age*=trace

Table 272. dbms.logs.gc.rotation.keep_number

Description Number of GC logs to keep.

Valid values dbms.logs.gc.rotation.keep_number, an integer

Default value 5

Table 273. dbms.logs.gc.rotation.size

Description Size of each GC log that is kept.

509

Valid values dbms.logs.gc.rotation.size, a byte size (valid multipliers are B, KiB, KB, K, kB, kb, k, MiB,
MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB)

Default value 20.00MiB

Table 274. dbms.logs.http.enabled

Description Enable HTTP request logging.

Valid values dbms.logs.http.enabled, a boolean

Default value false

Table 275. dbms.logs.http.format

Description Log format to use for http logs.

Valid values dbms.logs.http.format, one of [PLAIN, JSON]. If unset the value is inherited from
dbms.logs.default_format

Table 276. dbms.logs.http.path

Description Path to HTTP request log.

Valid values dbms.logs.http.path, a path. If relative it is resolved from dbms.directories.logs

Default value http.log

Table 277. dbms.logs.http.rotation.keep_number

Description Number of HTTP logs to keep.

Valid values dbms.logs.http.rotation.keep_number, an integer

Default value 5

Table 278. dbms.logs.http.rotation.size

Description Size of each HTTP log that is kept.

Valid values dbms.logs.http.rotation.size, a byte size (valid multipliers are B, KiB, KB, K, kB, kb, k,
MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB) which is in the range
0B to 8388608.00TiB

Default value 20.00MiB

510

Table 279. dbms.logs.query.allocation_logging_enabled

Description Log allocated bytes for the executed queries being logged. The logged number is
cumulative over the duration of the query, i.e. for memory intense or long-running
queries the value may be larger than the current memory allocation. Requires
dbms.track_query_allocation=true

Valid values dbms.logs.query.allocation_logging_enabled, a boolean

Dynamic true

Default value true

Table 280. dbms.logs.query.early_raw_logging_enabled

Description Log query text and parameters without obfuscating passwords. This allows queries
to be logged earlier before parsing starts.

Valid values dbms.logs.query.early_raw_logging_enabled, a boolean

Dynamic true

Default value false

Table 281. dbms.logs.query.enabled

Description Log executed queries. Valid values are OFF, INFO, or VERBOSE.

OFF

no logging.

INFO

log queries at the end of execution, that take longer than the configured
threshold, dbms.logs.query.threshold.

VERBOSE

log queries at the start and end of execution, regardless of
dbms.logs.query.threshold.

Log entries are written to the query log (dbms.logs.query.path).

This feature is available in the Neo4j Enterprise Edition.

Valid values dbms.logs.query.enabled, one of [OFF, INFO, VERBOSE]

Dynamic true

511

Default value VERBOSE

Table 282. dbms.logs.query.format

Description Log format to use for the query log.

Valid values dbms.logs.query.format, one of [PLAIN, JSON]. If unset the value is inherited from
dbms.logs.default_format

Table 283. dbms.logs.query.max_parameter_length

Description Sets a maximum character length use for each parameter in the log. This only takes
effect if dbms.logs.query.parameter_logging_enabled = true.

Valid values dbms.logs.query.max_parameter_length, an integer

Dynamic true

Default value 2147483647

Table 284. dbms.logs.query.obfuscate_literals

Description Obfuscates all literals of the query before writing to the log. Note that node labels,
relationship types and map property keys are still shown. Changing the setting will
not affect queries that are cached. So, if you want the switch to have immediate
effect, you must also call CALL db.clearQueryCaches().

Valid values dbms.logs.query.obfuscate_literals, a boolean

Dynamic true

Default value false

Table 285. dbms.logs.query.page_logging_enabled

Description Log page hits and page faults for the executed queries being logged.

Valid values dbms.logs.query.page_logging_enabled, a boolean

Dynamic true

Default value false

Table 286. dbms.logs.query.parameter_full_entities

512

Description Log complete parameter entities including id, labels or relationship type, and
properties. If false, only the entity id will be logged. This only takes effect if
dbms.logs.query.parameter_logging_enabled = true.

Valid values dbms.logs.query.parameter_full_entities, a boolean

Dynamic true

Default value false

Table 287. dbms.logs.query.parameter_logging_enabled

Description Log parameters for the executed queries being logged.

Valid values dbms.logs.query.parameter_logging_enabled, a boolean

Dynamic true

Default value true

Table 288. dbms.logs.query.path

Description Path to the query log file.

Valid values dbms.logs.query.path, a path. If relative it is resolved from dbms.directories.logs

Default value query.log

Table 289. dbms.logs.query.plan_description_enabled

Description Log query plan description table, useful for debugging purposes.

Valid values dbms.logs.query.plan_description_enabled, a boolean

Dynamic true

Default value false

Table 290. dbms.logs.query.rotation.keep_number

Description Maximum number of history files for the query log.

Valid values dbms.logs.query.rotation.keep_number, an integer which is minimum 1

513

Dynamic true

Default value 7

Table 291. dbms.logs.query.rotation.size

Description The file size in bytes at which the query log will auto-rotate. If set to zero then no
rotation will occur. Accepts a binary suffix k, m or g.

Valid values dbms.logs.query.rotation.size, a byte size (valid multipliers are B, KiB, KB, K, kB, kb, k,
MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB) which is in the range
0B to 8388608.00TiB

Dynamic true

Default value 20.00MiB

Table 292. dbms.logs.query.runtime_logging_enabled

Description Logs which runtime that was used to run the query.

Valid values dbms.logs.query.runtime_logging_enabled, a boolean

Dynamic true

Default value true

Table 293. dbms.logs.query.threshold

Description If the execution of query takes more time than this threshold, the query is logged
once completed - provided query logging is set to INFO. Defaults to 0 seconds, that
is all queries are logged.

Valid values dbms.logs.query.threshold, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h' and
'd'; default unit is 's')

Dynamic true

Default value 0s

Table 294. dbms.logs.query.time_logging_enabled

Description Log detailed time information for the executed queries being logged, such as
(planning: 92, waiting: 0).

514

Valid values dbms.logs.query.time_logging_enabled, a boolean

Dynamic true

Default value false

Table 295. dbms.logs.query.transaction.enabled

Description Log the start and end of a transaction. Valid values are 'OFF', 'INFO', or 'VERBOSE'.
OFF: no logging. INFO: log start and end of transactions that take longer than the
configured threshold, dbms.logs.query.transaction.threshold. VERBOSE: log start
and end of all transactions. Log entries are written to the query log
(dbms.logs.query.path). This feature is available in the Neo4j Enterprise Edition.

Valid values dbms.logs.query.transaction.enabled, one of [OFF, INFO, VERBOSE]

Dynamic true

Default value OFF

Table 296. dbms.logs.query.transaction.threshold

Description If the transaction is open for more time than this threshold, the transaction is logged
once completed - provided transaction logging
(dbms.logs.query.transaction.enabled) is set to INFO. Defaults to 0 seconds (all
transactions are logged).

Valid values dbms.logs.query.transaction.threshold, a duration (Valid units are: 'ns', 'μs', 'ms', 's',
'm', 'h' and 'd'; default unit is 's')

Dynamic true

Default value 0s

Table 297. dbms.logs.query.transaction_id.enabled

Description Log transaction ID for the executed queries.

Valid values dbms.logs.query.transaction_id.enabled, a boolean

Dynamic true

Default value false

Table 298. dbms.logs.security.format

515

Description Log format to use for security log.

Valid values dbms.logs.security.format, one of [PLAIN, JSON]. If unset the value is inherited from
dbms.logs.default_format

Table 299. dbms.logs.security.level

Description Security log level threshold.

Valid values dbms.logs.security.level, one of [DEBUG, INFO, WARN, ERROR, NONE]

Default value INFO

Table 300. dbms.logs.security.path

Description Path to the security log file.

Valid values dbms.logs.security.path, a path. If relative it is resolved from dbms.directories.logs

Default value security.log

Table 301. dbms.logs.security.rotation.delay

Description Minimum time interval after last rotation of the security log before it may be rotated
again.

Valid values dbms.logs.security.rotation.delay, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm',
'h' and 'd'; default unit is 's')

Default value 5m

Deprecated The dbms.logs.security.rotation.delay configuration setting has been
deprecated.

Table 302. dbms.logs.security.rotation.keep_number

Description Maximum number of history files for the security log.

Valid values dbms.logs.security.rotation.keep_number, an integer which is minimum 1

Default value 7

Table 303. dbms.logs.security.rotation.size

Description Threshold for rotation of the security log.

516

Valid values dbms.logs.security.rotation.size, a byte size (valid multipliers are B, KiB, KB, K, kB, kb,
k, MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB) which is in the
range 0B to 8388608.00TiB

Default value 20.00MiB

Table 304. dbms.logs.user.format

Description Log format to use for user log.

Valid values dbms.logs.user.format, one of [PLAIN, JSON]. If unset the value is inherited from
dbms.logs.default_format

Table 305. dbms.logs.user.path

Description Path to the user log file. Note that if dbms.logs.user.stdout_enabled is enabled this
setting will be ignored.

Valid values dbms.logs.user.path, a path. If relative it is resolved from dbms.directories.logs

Default value neo4j.log

Table 306. dbms.logs.user.rotation.delay

Description Minimum time interval after last rotation of the user log (neo4j.log) before it may be
rotated again. Note that if dbms.logs.user.stdout_enabled is enabled this setting will
be ignored.

Valid values dbms.logs.user.rotation.delay, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h'
and 'd'; default unit is 's')

Default value 5m

Deprecated The dbms.logs.user.rotation.delay configuration setting has been deprecated.

Table 307. dbms.logs.user.rotation.keep_number

Description Maximum number of history files for the user log (neo4j.log). Note that if
dbms.logs.user.stdout_enabled is enabled this setting will be ignored.

Valid values dbms.logs.user.rotation.keep_number, an integer which is minimum 1

Default value 7

Table 308. dbms.logs.user.rotation.size

517

Description Threshold for rotation of the user log (neo4j.log). If set to 0, log rotation is disabled.
Note that if dbms.logs.user.stdout_enabled is enabled this setting will be ignored.

Valid values dbms.logs.user.rotation.size, a byte size (valid multipliers are B, KiB, KB, K, kB, kb, k,
MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB) which is in the range
0B to 8388608.00TiB

Default value 0B

Table 309. dbms.logs.user.stdout_enabled

Description Send user logs to the process stdout. If this is disabled then logs will instead be sent
to the file neo4j.log located in the logs directory.

Valid values dbms.logs.user.stdout_enabled, a boolean

Default value true

Table 310. dbms.max_databases

Description The maximum number of databases.

Valid values dbms.max_databases, a long which is minimum 2

Default value 100

Table 311. dbms.memory.heap.initial_size

Description Initial heap size. By default it is calculated based on available system resources.

Valid values dbms.memory.heap.initial_size, a byte size (valid multipliers are B, KiB, KB, K, kB, kb,
k, MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB)

Table 312. dbms.memory.heap.max_size

Description Maximum heap size. By default it is calculated based on available system resources.

Valid values dbms.memory.heap.max_size, a byte size (valid multipliers are B, KiB, KB, K, kB, kb, k,
MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB)

Table 313. dbms.memory.off_heap.block_cache_size

518

Description Defines the size of the off-heap memory blocks cache. The cache will contain this
number of blocks for each block size that is power of two. Thus, maximum amount
of memory used by blocks cache can be calculated as 2 *
dbms.memory.off_heap.max_cacheable_block_size *
dbms.memory.off_heap.block_cache_size

Valid values dbms.memory.off_heap.block_cache_size, an integer which is minimum 16

Default value 128

Table 314. dbms.memory.off_heap.max_cacheable_block_size

Description Defines the maximum size of an off-heap memory block that can be cached to
speed up allocations. The value must be a power of 2.

Valid values dbms.memory.off_heap.max_cacheable_block_size, a byte size (valid multipliers are
B, KiB, KB, K, kB, kb, k, MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB)
which is minimum 4.00KiB and is power of 2

Default value 512.00KiB

Table 315. dbms.memory.off_heap.max_size

Description The maximum amount of off-heap memory that can be used to store transaction
state data; it’s a total amount of memory shared across all active transactions. Zero
means 'unlimited'. Used when dbms.tx_state.memory_allocation is set to
'OFF_HEAP'.

Valid values dbms.memory.off_heap.max_size, a byte size (valid multipliers are B, KiB, KB, K, kB,
kb, k, MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB) which is
minimum 0B

Default value 2.00GiB

Table 316. dbms.memory.pagecache.directio

Description Use direct I/O for page cache. Setting is supported only on Linux and only for a
subset of record formats that use platform aligned page size.

Valid values dbms.memory.pagecache.directio, a boolean

Default value false

Table 317. dbms.memory.pagecache.flush.buffer.enabled

519

Description Page cache can be configured to use a temporal buffer for flushing purposes. It is
used to combine, if possible, sequence of several cache pages into one bigger buffer
to minimize the number of individual IOPS performed and better utilization of
available I/O resources, especially when those are restricted.

Valid values dbms.memory.pagecache.flush.buffer.enabled, a boolean

Dynamic true

Default value false

Table 318. dbms.memory.pagecache.flush.buffer.size_in_pages

Description Page cache can be configured to use a temporal buffer for flushing purposes. It is
used to combine, if possible, sequence of several cache pages into one bigger buffer
to minimize the number of individual IOPS performed and better utilization of
available I/O resources, especially when those are restricted. Use this setting to
configure individual file flush buffer size in pages (8KiB). To be able to utilize this
buffer during page cache flushing, buffered flush should be enabled.

Valid values dbms.memory.pagecache.flush.buffer.size_in_pages, an integer which is in the
range 1 to 512

Dynamic true

Default value 128

Table 319. dbms.memory.pagecache.scan.prefetchers

Description The maximum number of worker threads to use for pre-fetching data when doing
sequential scans. Set to '0' to disable pre-fetching for scans.

Valid values dbms.memory.pagecache.scan.prefetchers, an integer which is in the range 0 to 255

Default value 4

Table 320. dbms.memory.pagecache.size

Description The amount of memory to use for mapping the store files, in bytes (or kilobytes with
the 'k' suffix, megabytes with 'm' and gigabytes with 'g'). If Neo4j is running on a
dedicated server, then it is generally recommended to leave about 2-4 gigabytes for
the operating system, give the JVM enough heap to hold all your transaction state
and query context, and then leave the rest for the page cache. If no page cache
memory is configured, then a heuristic setting is computed based on available
system resources.

520

Valid values dbms.memory.pagecache.size, a string

Table 321. dbms.memory.pagecache.swapper

Description This setting is not used anymore.

Valid values dbms.memory.pagecache.swapper, a string

Deprecated The dbms.memory.pagecache.swapper configuration setting has been deprecated.

Table 322. dbms.memory.pagecache.warmup.enable

Description Page cache can be configured to perform usage sampling of loaded pages that can
be used to construct active load profile. According to that profile pages can be
reloaded on the restart, replication, etc. This setting allows disabling that behavior.
This feature is available in Neo4j Enterprise Edition.

Valid values dbms.memory.pagecache.warmup.enable, a boolean

Default value true

Table 323. dbms.memory.pagecache.warmup.preload

Description Page cache warmup can be configured to prefetch files, preferably when cache size
is bigger than store size. Files to be prefetched can be filtered by
'dbms.memory.pagecache.warmup.preload.allowlist'. Enabling this disables warmup
by profile.

Valid values dbms.memory.pagecache.warmup.preload, a boolean

Default value false

Table 324. dbms.memory.pagecache.warmup.preload.allowlist

Description Page cache warmup prefetch file allowlist regex. By default matches all files.

Valid values dbms.memory.pagecache.warmup.preload.allowlist, a string

Default value .*

Table 325. dbms.memory.pagecache.warmup.preload.whitelist

Description Page cache warmup prefetch file whitelist regex. By default matches all files.
Deprecated, use 'dbms.memory.pagecache.warmup.preload.allowlist'.

521

Valid values dbms.memory.pagecache.warmup.preload.whitelist, a string

Default value .*

Deprecated The dbms.memory.pagecache.warmup.preload.whitelist configuration setting has
been deprecated.

Table 326. dbms.memory.pagecache.warmup.profile.interval

Description The profiling frequency for the page cache. Accurate profiles allow the page cache
to do active warmup after a restart, reducing the mean time to performance. This
feature is available in Neo4j Enterprise Edition.

Valid values dbms.memory.pagecache.warmup.profile.interval, a duration (Valid units are: 'ns',
'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 1m

Table 327. dbms.memory.tracking.enable

Description Enable off heap and on heap memory tracking. Should not be set to false for
clusters.

Valid values dbms.memory.tracking.enable, a boolean

Default value true

Table 328. dbms.memory.transaction.database_max_size

Description Limit the amount of memory that all transactions in one database can consume, in
bytes (or kilobytes with the 'k' suffix, megabytes with 'm' and gigabytes with 'g').
Zero means 'unlimited'.

Valid values dbms.memory.transaction.database_max_size, a byte size (valid multipliers are B,
KiB, KB, K, kB, kb, k, MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB)
which is minimum 10.00MiB or is 0B

Dynamic true

Default value 0B

Table 329. dbms.memory.transaction.global_max_size

522

Description Limit the amount of memory that all of the running transactions can consume, in
bytes (or kilobytes with the 'k' suffix, megabytes with 'm' and gigabytes with 'g').
Zero means 'unlimited'.

Valid values dbms.memory.transaction.global_max_size, a byte size (valid multipliers are B, KiB,
KB, K, kB, kb, k, MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB) which
is minimum 10.00MiB or is 0B

Dynamic true

Default value 0B

Table 330. dbms.memory.transaction.max_size

Description Limit the amount of memory that a single transaction can consume, in bytes (or
kilobytes with the 'k' suffix, megabytes with 'm' and gigabytes with 'g'). Zero means
'largest possible value'. When dbms.mode=CORE or dbms.mode=READ_REPLICA or
dbms.clustering.enable=true this is '2G', in other cases this is 'unlimited'.

Valid values dbms.memory.transaction.max_size, a byte size (valid multipliers are B, KiB, KB, K, kB,
kb, k, MiB, MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB) which is
minimum 1.00MiB or is 0B and depends on dbms.mode. If dbms.mode is CORE or is
READ_REPLICA then it is maximum 2.00GiB otherwise it depends on
dbms.clustering.enable. If dbms.clustering.enable is true then it is maximum
2.00GiB otherwise it is unconstrained..

Dynamic true

Default value 0B

Table 331. dbms.mode

Description Configure the operating mode of the database — 'SINGLE' for stand-alone
operation, 'CORE' for operating as a core member of a Causal Cluster, or
'READ_REPLICA' for operating as a read replica member of a Causal Cluster. Only
SINGLE mode is allowed in Community.

Valid values dbms.mode, one of [SINGLE, CORE, READ_REPLICA]

Default value SINGLE

Table 332. dbms.netty.ssl.provider

Description Netty SSL provider.

523

Valid values dbms.netty.ssl.provider, one of [JDK, OPENSSL, OPENSSL_REFCNT]

Default value JDK

Table 333. dbms.panic.shutdown_on_panic

Description If there is a Database Management System Panic (an irrecoverable error) should the
neo4j process shut down or continue running. Following a DbMS panic it is likely
that a significant amount of functionality will be lost. Recovering full functionality
will require a Neo4j restart. This feature is available in Neo4j Enterprise Edition.

Valid values dbms.panic.shutdown_on_panic, a boolean

Default value false

Table 334. dbms.query_cache_size

Description The number of cached Cypher query execution plans per database. The max
number of query plans that can be kept in cache is the number of databases *
dbms.query_cache_size. With 10 databases and dbms.query_cache_size=1000, the
caches can keep 10000 plans in total on the instance, assuming that each DB
receives queries that fill up its cache.

Valid values dbms.query_cache_size, an integer which is minimum 0

Default value 1000

Table 335. dbms.read_only

Description Only allow read operations from this Neo4j instance. This mode still requires write
access to the directory for lock purposes. Replaced by:
dbms.databases.default_to_read_only, dbms.databases.read_only,
dbms.databases.writable.

Valid values dbms.read_only, a boolean

Default value false

Deprecated The dbms.read_only configuration setting has been deprecated.

Table 336. dbms.reconciler.max_backoff

Description Defines the maximum amount of time to wait before retrying after the dbms fails to
reconcile a database to its desired state.

524

Valid values dbms.reconciler.max_backoff, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h'
and 'd'; default unit is 's') which is minimum 1m

Default value 1h

Table 337. dbms.reconciler.max_parallelism

Description Defines the level of parallelism employed by the reconciler. By default the
parallelism equals the number of available processors or 8 (whichever is smaller). If
configured as 0, the parallelism of the reconciler will be unbounded.

Valid values dbms.reconciler.max_parallelism, an integer which is minimum 0

Default value 8

Table 338. dbms.reconciler.may_retry

Description Defines whether the dbms may retry reconciling a database to its desired state.

Valid values dbms.reconciler.may_retry, a boolean

Default value false

Table 339. dbms.reconciler.min_backoff

Description Defines the minimum amount of time to wait before retrying after the dbms fails to
reconcile a database to its desired state.

Valid values dbms.reconciler.min_backoff, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h'
and 'd'; default unit is 's') which is minimum 1s

Default value 2s

Table 340. dbms.record_format

Description Database record format. Valid values are standard, aligned, or high_limit. The
aligned format is essentially the standard format with some minimal padding at the
end of pages such that a single record will never cross a page boundary. The
high_limit format is available for Enterprise Edition only. It is required if you have a
graph that is larger than 34 billion nodes, 34 billion relationships, or 68 billion
properties. A change of the record format is irreversible. Certain operations may
suffer from a performance penalty of up to 10%, which is why this format is not
switched on by default. However, if you want to change the configured record
format value, you must also set dbms.allow_upgrade=true, because the setting
implies a one-way store format migration.

525

Valid values dbms.record_format, a string

Default value aligned for new databases, latest version of current format for existing databases

Table 341. dbms.recovery.fail_on_missing_files

Description If true, Neo4j will abort recovery if transaction log files are missing. Setting this to
false will allow Neo4j to create new empty missing files for the already existing
database, but the integrity of the database might be compromised.

Valid values dbms.recovery.fail_on_missing_files, a boolean

Default value true

Table 342. dbms.relationship_grouping_threshold

Description Relationship count threshold for considering a node to be dense.

Valid values dbms.relationship_grouping_threshold, an integer which is minimum 1

Default value 50

Table 343. dbms.rest.transaction.idle_timeout

Description Timeout for idle transactions in the REST endpoint.

Valid values dbms.rest.transaction.idle_timeout, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm',
'h' and 'd'; default unit is 's')

Default value 1m

Table 344. dbms.routing.advertised_address

Description The advertised address for the intra-cluster routing connector.

Valid values dbms.routing.advertised_address, a socket address. If missing port or hostname it is
acquired from dbms.default_advertised_address

Default value :7688

Table 345. dbms.routing.client_side.enforce_for_domains

Description Always use client side routing (regardless of the default router) for neo4j:// protocol
connections to these domains. A comma separated list of domains. Wildcards (*)
are supported.

526

Valid values dbms.routing.client_side.enforce_for_domains, a ',' separated set with elements of
type 'a string'.

Dynamic true

Default value

Table 346. dbms.routing.default_router

Description Use server side routing by default for neo4j:// protocol connections.

Valid values dbms.routing.default_router, one of [SERVER, CLIENT]

Default value CLIENT

Table 347. dbms.routing.driver.api

Description Determines which driver API will be used. ASYNC must be used when the remote
instance is 3.5.

Valid values dbms.routing.driver.api, one of [RX, ASYNC]

Default value RX

Table 348. dbms.routing.driver.connection.connect_timeout

Description Socket connection timeout. A timeout of zero is treated as an infinite timeout and
will be bound by the timeout configured on the operating system level.

Valid values dbms.routing.driver.connection.connect_timeout, a duration (Valid units are: 'ns',
'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 5s

Table 349. dbms.routing.driver.connection.max_lifetime

Description Pooled connections older than this threshold will be closed and removed from the
pool. Setting this option to a low value will cause a high connection churn and might
result in a performance hit. It is recommended to set maximum lifetime to a slightly
smaller value than the one configured in network equipment (load balancer, proxy,
firewall, etc. can also limit maximum connection lifetime). Zero and negative values
result in lifetime not being checked.

Valid values dbms.routing.driver.connection.max_lifetime, a duration (Valid units are: 'ns', 'μs',
'ms', 's', 'm', 'h' and 'd'; default unit is 's')

527

Default value 1h

Table 350. dbms.routing.driver.connection.pool.acquisition_timeout

Description Maximum amount of time spent attempting to acquire a connection from the
connection pool. This timeout only kicks in when all existing connections are being
used and no new connections can be created because maximum connection pool
size has been reached. Error is raised when connection can’t be acquired within
configured time. Negative values are allowed and result in unlimited acquisition
timeout. Value of 0 is allowed and results in no timeout and immediate failure when
connection is unavailable.

Valid values dbms.routing.driver.connection.pool.acquisition_timeout, a duration (Valid units are:
'ns', 'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 1m

Table 351. dbms.routing.driver.connection.pool.idle_test

Description Pooled connections that have been idle in the pool for longer than this timeout will
be tested before they are used again, to ensure they are still alive. If this option is
set too low, an additional network call will be incurred when acquiring a connection,
which causes a performance hit. If this is set high, no longer live connections might
be used which might lead to errors. Hence, this parameter tunes a balance between
the likelihood of experiencing connection problems and performance Normally, this
parameter should not need tuning. Value 0 means connections will always be
tested for validity.

Valid values dbms.routing.driver.connection.pool.idle_test, a duration (Valid units are: 'ns', 'μs',
'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value No connection liveliness check is done by default.

Table 352. dbms.routing.driver.connection.pool.max_size

Description Maximum total number of connections to be managed by a connection pool. The
limit is enforced for a combination of a host and user. Negative values are allowed
and result in unlimited pool. Value of 0is not allowed.

Valid values dbms.routing.driver.connection.pool.max_size, an integer

Default value Unlimited

Table 353. dbms.routing.driver.logging.level

Description Sets level for driver internal logging.

528

Valid values dbms.routing.driver.logging.level, one of [DEBUG, INFO, WARN, ERROR, NONE]

Default value Value of dbms.logs.debug.level

Table 354. dbms.routing.enabled

Description Enable intra-cluster routing using an additional bolt connector.

Valid values dbms.routing.enabled, a boolean

Default value false

Table 355. dbms.routing.listen_address

Description The address the routing connector should bind to.

Valid values dbms.routing.listen_address, a socket address. If missing port or hostname it is
acquired from dbms.default_listen_address

Default value :7688

Table 356. dbms.routing_ttl

Description How long callers should cache the response of the routing procedure
dbms.routing.getRoutingTable()

Valid values dbms.routing_ttl, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h' and 'd'; default
unit is 's') which is minimum 1s

Default value 5m

Table 357. dbms.security.allow_csv_import_from_file_urls

Description Determines if Cypher will allow using file URLs when loading data using LOAD CSV.
Setting this value to false will cause Neo4j to fail LOAD CSV clauses that load data
from the file system.

Valid values dbms.security.allow_csv_import_from_file_urls, a boolean

Default value true

Table 358. dbms.security.auth_cache_max_capacity

Description The maximum capacity for authentication and authorization caches (respectively).

Valid values dbms.security.auth_cache_max_capacity, an integer

529

Default value 10000

Table 359. dbms.security.auth_cache_ttl

Description The time to live (TTL) for cached authentication and authorization info when using
external auth providers (LDAP or plugin). Setting the TTL to 0 will disable auth
caching. Disabling caching while using the LDAP auth provider requires the use of
an LDAP system account for resolving authorization information.

Valid values dbms.security.auth_cache_ttl, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h'
and 'd'; default unit is 's')

Default value 10m

Table 360. dbms.security.auth_cache_use_ttl

Description Enable time-based eviction of the authentication and authorization info cache for
external auth providers (LDAP or plugin). Disabling this setting will make the cache
live forever and only be evicted when dbms.security.auth_cache_max_capacity is
exceeded.

Valid values dbms.security.auth_cache_use_ttl, a boolean

Default value true

Table 361. dbms.security.auth_enabled

Description Enable auth requirement to access Neo4j.

Valid values dbms.security.auth_enabled, a boolean

Default value true

Table 362. dbms.security.auth_lock_time

Description The amount of time user account should be locked after a configured number of
unsuccessful authentication attempts. The locked out user will not be able to log in
until the lock period expires, even if correct credentials are provided. Setting this
configuration option to a low value is not recommended because it might make it
easier for an attacker to brute force the password.

Valid values dbms.security.auth_lock_time, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h'
and 'd'; default unit is 's') which is minimum 0s

Default value 5s

Table 363. dbms.security.auth_max_failed_attempts

530

Description The maximum number of unsuccessful authentication attempts before imposing a
user lock for the configured amount of time, as defined by
dbms.security.auth_lock_time.The locked out user will not be able to log in until
the lock period expires, even if correct credentials are provided. Setting this
configuration option to values less than 3 is not recommended because it might
make it easier for an attacker to brute force the password.

Valid values dbms.security.auth_max_failed_attempts, an integer which is minimum 0

Default value 3

Table 364. dbms.security.authentication_providers

Description A list of security authentication providers containing the users and roles. This can be
any of the built-in native or ldap providers, or it can be an externally provided
plugin, with a custom name prefixed by plugin-, i.e. plugin-<AUTH_PROVIDER_NAME>.
They will be queried in the given order when login is attempted.

Valid values dbms.security.authentication_providers, a ',' separated list with elements of type 'a
string'.

Default value native

Table 365. dbms.security.authorization_providers

Description A list of security authorization providers containing the users and roles. This can be
any of the built-in native or ldap providers, or it can be an externally provided
plugin, with a custom name prefixed by plugin-, i.e. plugin-<AUTH_PROVIDER_NAME>.
They will be queried in the given order when login is attempted.

Valid values dbms.security.authorization_providers, a ',' separated list with elements of type 'a
string'.

Default value native

Table 366. dbms.security.causal_clustering_status_auth_enabled

Description Require authorization for access to the Causal Clustering status endpoints.

Valid values dbms.security.causal_clustering_status_auth_enabled, a boolean

Default value true

Table 367. dbms.security.http_access_control_allow_origin

531

Description Value of the Access-Control-Allow-Origin header sent over any HTTP or HTTPS
connector. This defaults to '*', which allows broadest compatibility. Note that any
URI provided here limits HTTP/HTTPS access to that URI only.

Valid values dbms.security.http_access_control_allow_origin, a string

Default value *

Table 368. dbms.security.http_auth_allowlist

Description Defines an allowlist of http paths where Neo4j authentication is not required.

Valid values dbms.security.http_auth_allowlist, a ',' separated list with elements of type 'a string'.

Default value /,/browser.*

Table 369. dbms.security.http_auth_whitelist

Description Defines a whitelist of http paths where Neo4j authentication is not required.
Deprecated, use dbms.security.http_auth_allowlist

Valid values dbms.security.http_auth_whitelist, a ',' separated list with elements of type 'a
string'.

Default value /,/browser.*

Deprecated The dbms.security.http_auth_whitelist configuration setting has been
deprecated.

Table 370. dbms.security.http_strict_transport_security

Description Value of the HTTP Strict-Transport-Security (HSTS) response header. This header
tells browsers that a webpage should only be accessed using HTTPS instead of
HTTP. It is attached to every HTTPS response. Setting is not set by default so
'Strict-Transport-Security' header is not sent. Value is expected to contain directives
like 'max-age', 'includeSubDomains' and 'preload'.

Valid values dbms.security.http_strict_transport_security, a string

Table 371. dbms.security.ldap.authentication.attribute

Description The attribute to use when looking up users. Using this setting requires
dbms.security.ldap.authentication.search_for_attribute to be true and thus
dbms.security.ldap.authorization.system_username and
dbms.security.ldap.authorization.system_password to be configured.

532

Valid values dbms.security.ldap.authentication.attribute, a string which matches the pattern [A-
Za-z0-9-]* (has to be a valid LDAP attribute name, only containing letters [A-Za-z],
digits [0-9] and hyphens [-].)

Dynamic true

Default value samaccountname

Table 372. dbms.security.ldap.authentication.cache_enabled

Description Determines if the result of authentication via the LDAP server should be cached or
not. Caching is used to limit the number of LDAP requests that have to be made
over the network for users that have already been authenticated successfully. A
user can be authenticated against an existing cache entry (instead of via an LDAP
server) as long as it is alive (see dbms.security.auth_cache_ttl). An important
consequence of setting this to true is that Neo4j then needs to cache a hashed
version of the credentials in order to perform credentials matching. This hashing is
done using a cryptographic hash function together with a random salt. Preferably a
conscious decision should be made if this method is considered acceptable by the
security standards of the organization in which this Neo4j instance is deployed.

Valid values dbms.security.ldap.authentication.cache_enabled, a boolean

Default value true

Table 373. dbms.security.ldap.authentication.mechanism

Description LDAP authentication mechanism. This is one of simple or a SASL mechanism
supported by JNDI, for example DIGEST-MD5. simple is basic username and
password authentication and SASL is used for more advanced mechanisms. See
RFC 2251 LDAPv3 documentation for more details.

Valid values dbms.security.ldap.authentication.mechanism, a string

Default value simple

Table 374. dbms.security.ldap.authentication.search_for_attribute

Description Perform authentication by searching for an unique attribute of a user. Using this
setting requires dbms.security.ldap.authorization.system_username and
dbms.security.ldap.authorization.system_password to be configured.

Valid values dbms.security.ldap.authentication.search_for_attribute, a boolean

Default value false

533

Table 375. dbms.security.ldap.authentication.use_samaccountname

Description Perform authentication by searching for an unique attribute of a user. This setting is
deprecated and has been replaced with
dbms.security.ldap.authentication.search_for_attribute.

Valid values dbms.security.ldap.authentication.use_samaccountname, a boolean

Default value false

Deprecated The dbms.security.ldap.authentication.use_samaccountname configuration setting
has been deprecated.

Table 376. dbms.security.ldap.authentication.user_dn_template

Description LDAP user DN template. An LDAP object is referenced by its distinguished name
(DN), and a user DN is an LDAP fully-qualified unique user identifier. This setting is
used to generate an LDAP DN that conforms with the LDAP directory’s schema
from the user principal that is submitted with the authentication token when
logging in. The special token \{0} is a placeholder where the user principal will be
substituted into the DN string.

Valid values dbms.security.ldap.authentication.user_dn_template, a string which Must be a string
containing '\{0}' to understand where to insert the runtime authentication principal.

Dynamic true

Default value uid={0},ou=users,dc=example,dc=com

Table 377. dbms.security.ldap.authorization.access_permitted_group

Description The LDAP group to which a user must belong to get any access to the system.Set
this to restrict access to a subset of LDAP users belonging to a particular group. If
this is not set, any user to successfully authenticate via LDAP will have access to
the PUBLIC role and any other roles assigned to them via
dbms.security.ldap.authorization.group_to_role_mapping.

Valid values dbms.security.ldap.authorization.access_permitted_group, a string

Dynamic true

Default value

Table 378. dbms.security.ldap.authorization.group_membership_attributes

534

Description A list of attribute names on a user object that contains groups to be used for
mapping to roles when LDAP authorization is enabled.

Valid values dbms.security.ldap.authorization.group_membership_attributes, a ',' separated list
with elements of type 'a string'. which Can not be empty

Dynamic true

Default value memberOf

Table 379. dbms.security.ldap.authorization.group_to_role_mapping

Description An authorization mapping from LDAP group names to Neo4j role names. The map
should be formatted as a semicolon separated list of key-value pairs, where the key
is the LDAP group name and the value is a comma separated list of corresponding
role names. For example: group1=role1;group2=role2;group3=role3,role4,role5 You
could also use whitespaces and quotes around group names to make this mapping
more readable, for example:

dbms.security.ldap.authorization.group_to_role_mapping=\
 "cn=Neo4j Read Only,cn=users,dc=example,dc=com" = reader; \
 "cn=Neo4j Read-Write,cn=users,dc=example,dc=com" = publisher; \
 "cn=Neo4j Schema Manager,cn=users,dc=example,dc=com" = architect; \
 "cn=Neo4j Administrator,cn=users,dc=example,dc=com" = admin

Valid values dbms.security.ldap.authorization.group_to_role_mapping, a string which must be
semicolon separated list of key-value pairs or empty

Dynamic true

Default value

Table 380. dbms.security.ldap.authorization.system_password

Description An LDAP system account password to use for authorization searches when
dbms.security.ldap.authorization.use_system_account is true.

Valid values dbms.security.ldap.authorization.system_password, a secure string

Table 381. dbms.security.ldap.authorization.system_username

Description An LDAP system account username to use for authorization searches when
dbms.security.ldap.authorization.use_system_account is true. Note that the
dbms.security.ldap.authentication.user_dn_template will not be applied to this
username, so you may have to specify a full DN.

535

Valid values dbms.security.ldap.authorization.system_username, a string

Table 382. dbms.security.ldap.authorization.use_system_account

Description Perform LDAP search for authorization info using a system account instead of the
user’s own account. If this is set to false (default), the search for group membership
will be performed directly after authentication using the LDAP context bound with
the user’s own account. The mapped roles will be cached for the duration of
dbms.security.auth_cache_ttl, and then expire, requiring re-authentication. To
avoid frequently having to re-authenticate sessions you may want to set a relatively
long auth cache expiration time together with this option. NOTE: This option will
only work if the users are permitted to search for their own group membership
attributes in the directory. If this is set to true, the search will be performed using a
special system account user with read access to all the users in the directory. You
need to specify the username and password using the settings
dbms.security.ldap.authorization.system_username and
dbms.security.ldap.authorization.system_password with this option. Note that
this account only needs read access to the relevant parts of the LDAP directory and
does not need to have access rights to Neo4j, or any other systems.

Valid values dbms.security.ldap.authorization.use_system_account, a boolean

Default value false

Table 383. dbms.security.ldap.authorization.user_search_base

Description The name of the base object or named context to search for user objects when
LDAP authorization is enabled. A common case is that this matches the last part of
dbms.security.ldap.authentication.user_dn_template.

Valid values dbms.security.ldap.authorization.user_search_base, a string which Can not be
empty

Dynamic true

Default value ou=users,dc=example,dc=com

Table 384. dbms.security.ldap.authorization.user_search_filter

Description The LDAP search filter to search for a user principal when LDAP authorization is
enabled. The filter should contain the placeholder token \{0} which will be
substituted for the user principal.

Valid values dbms.security.ldap.authorization.user_search_filter, a string

536

Dynamic true

Default value (&(objectClass=*)(uid={0}))

Table 385. dbms.security.ldap.connection_timeout

Description The timeout for establishing an LDAP connection. If a connection with the LDAP
server cannot be established within the given time the attempt is aborted. A value
of 0 means to use the network protocol’s (i.e., TCP’s) timeout value.

Valid values dbms.security.ldap.connection_timeout, a duration (Valid units are: 'ns', 'μs', 'ms', 's',
'm', 'h' and 'd'; default unit is 's')

Default value 30s

Table 386. dbms.security.ldap.host

Description URL of LDAP server to use for authentication and authorization. The format of the
setting is <protocol>://<hostname>:<port>, where hostname is the only required
field. The supported values for protocol are ldap (default) and ldaps. The default
port for ldap is 389 and for ldaps 636. For example:
ldaps://ldap.example.com:10389. You may want to consider using STARTTLS
(dbms.security.ldap.use_starttls) instead of LDAPS for secure connections, in
which case the correct protocol is ldap.

Valid values dbms.security.ldap.host, a string

Default value localhost

Table 387. dbms.security.ldap.read_timeout

Description The timeout for an LDAP read request (i.e. search). If the LDAP server does not
respond within the given time the request will be aborted. A value of 0 means wait
for a response indefinitely.

Valid values dbms.security.ldap.read_timeout, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h'
and 'd'; default unit is 's')

Default value 30s

Table 388. dbms.security.ldap.referral

Description The LDAP referral behavior when creating a connection. This is one of follow,
ignore or throw. * follow automatically follows any referrals * ignore ignores any
referrals * throw throws an exception, which will lead to authentication failure.

537

Valid values dbms.security.ldap.referral, a string

Default value follow

Table 389. dbms.security.ldap.use_starttls

Description Use secure communication with the LDAP server using opportunistic TLS. First an
initial insecure connection will be made with the LDAP server, and a STARTTLS
command will be issued to negotiate an upgrade of the connection to TLS before
initiating authentication.

Valid values dbms.security.ldap.use_starttls, a boolean

Default value false

Table 390. dbms.security.log_successful_authentication

Description Set to log successful authentication events to the security log. If this is set to false
only failed authentication events will be logged, which could be useful if you find
that the successful events spam the logs too much, and you do not require full
auditing capability.

Valid values dbms.security.log_successful_authentication, a boolean

Default value true

Table 391. dbms.security.procedures.allowlist

Description A list of procedures (comma separated) that are to be loaded. The list may contain
both fully-qualified procedure names, and partial names with the wildcard '*'. If this
setting is left empty no procedures will be loaded.

Valid values dbms.security.procedures.allowlist, a ',' separated list with elements of type 'a
string'.

Default value *

Table 392. dbms.security.procedures.default_allowed

538

Description The default role that can execute all procedures and user-defined functions that are
not covered by the dbms.security.procedures.roles setting. This setting (if not
empty string) will be translated to 'GRANT EXECUTE BOOSTED PROCEDURE *'
and 'GRANT EXECUTE BOOSTED FUNCTION *' for that role. If
`dbms.security.procedures.roles`is not empty, any procedure or function that this
role is not mapped to will result in a 'DENY EXECUTE BOOSTED PROCEDURE
name' and 'DENY EXECUTE BOOSTED FUNCTION name' for this role. Any privilege
mapped in this way cannot be revoked, instead the config must be changed and will
take effect after a restart.Deprecated: Replaced by EXECUTE PROCEDURE,
EXECUTE BOOSTED PROCEDURE, EXECUTE FUNCTION and EXECUTE
BOOSTED FUNCTION privileges.

Valid values dbms.security.procedures.default_allowed, a string

Default value

Deprecated The dbms.security.procedures.default_allowed configuration setting has been
deprecated.

Table 393. dbms.security.procedures.roles

Description This provides a finer level of control over which roles can execute procedures than
the dbms.security.procedures.default_allowed setting. For example:
dbms.security.procedures.roles=apoc.convert.*:reader;apoc.load.json*:write
r;apoc.trigger.add:TriggerHappy will allow the role reader to execute all
procedures in the apoc.convert namespace, the role writer to execute all
procedures in the apoc.load namespace that starts with json and the role
TriggerHappy to execute the specific procedure apoc.trigger.add. Procedures not
matching any of these patterns will be subject to the
dbms.security.procedures.default_allowed setting. This setting (if not empty
string) will be translated to 'GRANT EXECUTE BOOSTED PROCEDURE name' and
'GRANT EXECUTE BOOSTED FUNCTION name' privileges for the mapped roles.
Any privilege mapped in this way cannot be revoked, instead the config must be
changed and will take effect after a restart.Deprecated: Replaced by EXECUTE
PROCEDURE, EXECUTE BOOSTED PROCEDURE, EXECUTE FUNCTION and
EXECUTE BOOSTED FUNCTION privileges.

Valid values dbms.security.procedures.roles, a string

Default value

Deprecated The dbms.security.procedures.roles configuration setting has been deprecated.

Table 394. dbms.security.procedures.unrestricted

539

Description A list of procedures and user defined functions (comma separated) that are allowed
full access to the database. The list may contain both fully-qualified procedure
names, and partial names with the wildcard '*'. Note that this enables these
procedures to bypass security. Use with caution.

Valid values dbms.security.procedures.unrestricted, a ',' separated list with elements of type 'a
string'.

Default value

Table 395. dbms.security.procedures.whitelist

Description A list of procedures (comma separated) that are to be loaded. The list may contain
both fully-qualified procedure names, and partial names with the wildcard '*'. If this
setting is left empty no procedures will be loaded. Deprecated, use
dbms.security.procedures.allowlist

Valid values dbms.security.procedures.whitelist, a ',' separated list with elements of type 'a
string'.

Default value *

Deprecated The dbms.security.procedures.whitelist configuration setting has been
deprecated.

Table 396. dbms.shutdown_transaction_end_timeout

Description The maximum amount of time to wait for running transactions to complete before
allowing initiated database shutdown to continue.

Valid values dbms.shutdown_transaction_end_timeout, a duration (Valid units are: 'ns', 'μs', 'ms',
's', 'm', 'h' and 'd'; default unit is 's')

Default value 10s

Table 397. dbms.store.files.preallocate

Description Specify if Neo4j should try to preallocate store files as they grow.

Valid values dbms.store.files.preallocate, a boolean

Default value true

Table 398. dbms.threads.worker_count

540

Description Number of Neo4j worker threads. This setting is only valid for REST, and does not
influence bolt-server. It sets the amount of worker threads for the Jetty server used
by neo4j-server. This option can be tuned when you plan to execute multiple,
concurrent REST requests, with the aim of getting more throughput from the
database. Your OS might enforce a lower limit than the maximum value specified
here.

Valid values dbms.threads.worker_count, an integer which is in the range 1 to 44738

Default value Number of available processors, or 500 for machines which have more than 500 processors.

Table 399. dbms.track_query_allocation

Description Enables or disables tracking of how many bytes are allocated by the execution of a
query. If enabled, calling dbms.listQueries will display the allocated bytes. This can
also be logged in the query log by using
dbms.logs.query.allocation_logging_enabled.

Valid values dbms.track_query_allocation, a boolean

Dynamic true

Default value true

Table 400. dbms.track_query_cpu_time

Description Enables or disables tracking of how much time a query spends actively executing on
the CPU. Calling SHOW TRANSACTIONS will display the time, but not in the query.log.
If you want the CPU time to be logged in the query.log, set
db.track_query_cpu_time=true and db.logs.query.time_logging_enabled=true
Enterprise .

Valid values dbms.track_query_cpu_time, a boolean

Dynamic true

Default value false

Table 401. dbms.transaction.bookmark_ready_timeout

Description The maximum amount of time to wait for the database state represented by the
bookmark.

Valid values dbms.transaction.bookmark_ready_timeout, a duration (Valid units are: 'ns', 'μs',
'ms', 's', 'm', 'h' and 'd'; default unit is 's') which is minimum 1s

541

Dynamic true

Default value 30s

Table 402. dbms.transaction.concurrent.maximum

Description The maximum number of concurrently running transactions. If set to 0, limit is
disabled.

Valid values dbms.transaction.concurrent.maximum, an integer

Dynamic true

Default value 1000

Table 403. dbms.transaction.monitor.check.interval

Description Configures the time interval between transaction monitor checks. Determines how
often monitor thread will check transaction for timeout.

Valid values dbms.transaction.monitor.check.interval, a duration (Valid units are: 'ns', 'μs', 'ms',
's', 'm', 'h' and 'd'; default unit is 's')

Default value 2s

Table 404. dbms.transaction.sampling.percentage

Description Transaction sampling percentage.

Valid values dbms.transaction.sampling.percentage, an integer which is in the range 1 to 100

Dynamic true

Default value 5

Table 405. dbms.transaction.timeout

Description The maximum time interval of a transaction within which it should be completed.

Valid values dbms.transaction.timeout, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h' and
'd'; default unit is 's')

Dynamic true

Default value 0s

542

Table 406. dbms.transaction.tracing.level

Description Transaction creation tracing level.

Valid values dbms.transaction.tracing.level, one of [DISABLED, SAMPLE, ALL]

Dynamic true

Default value DISABLED

Table 407. dbms.tx_log.preallocate

Description Specify if Neo4j should try to preallocate the logical log file in advance. It optimizes
the filesystem by ensuring there is room to accommodate newly generated files and
avoid file-level fragmentation.

Valid values dbms.tx_log.preallocate, a boolean

Dynamic true

Default value true

Table 408. dbms.tx_log.rotation.retention_policy

Description Tell Neo4j how long logical transaction logs should be kept to backup the
database.For example, "10 days" will prune logical logs that only contain
transactions older than 10 days.Alternatively, "100k txs" will keep the 100k latest
transactions from each database and prune any older transactions.

Valid values dbms.tx_log.rotation.retention_policy, a string which matches the pattern
^(true|keep_all|false|keep_none|(\d+[KkMmGg]?(
(files|size|txs|entries|hours|days))))$ (Must be true or keep_all, false or
keep_none, or of format <number><optional unit> <type>. Valid units are K, M and G.
Valid types are files, size, txs, entries, hours and days. For example, 100M size
will limit logical log space on disk to 100MB per database,and 200K txs will limit the
number of transactions kept to 200 000 per database.)

Dynamic true

Default value 7 days

Table 409. dbms.tx_log.rotation.size

Description Specifies at which file size the logical log will auto-rotate. Minimum accepted value
is 128 KiB.

543

Valid values dbms.tx_log.rotation.size, a byte size (valid multipliers are B, KiB, KB, K, kB, kb, k, MiB,
MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB) which is minimum
128.00KiB

Dynamic true

Default value 250.00MiB

Table 410. dbms.tx_state.memory_allocation

Description Defines whether memory for transaction state should be allocated on- or off-heap.
Note that for small transactions you can gain up to 25% write speed by setting it to
ON_HEAP.

Valid values dbms.tx_state.memory_allocation, one of [ON_HEAP, OFF_HEAP]

Default value OFF_HEAP

Table 411. dbms.unmanaged_extension_classes

Description Comma-separated list of <classname>=<mount point> for unmanaged extensions.

Valid values dbms.unmanaged_extension_classes, a ',' separated list with elements of type
'<classname>=<mount point> string'.

Default value

Table 412. dbms.upgrade_max_processors

Description Max number of processors used when upgrading the store. Defaults to the number
of processors available to the JVM. There is a certain amount of minimum threads
needed so for that reason there is no lower bound for this value. For optimal
performance this value shouldn’t be greater than the number of available
processors.

Valid values dbms.upgrade_max_processors, an integer which is minimum 0

Dynamic true

Default value 0

Table 413. dbms.windows_service_name

Description Name of the Windows Service.

544

Valid values dbms.windows_service_name, a string

Default value neo4j

Table 414. fabric.database.name

Description Name of the Fabric database. Only one Fabric database is currently supported per
Neo4j instance.

Valid values fabric.database.name, A valid database name containing only alphabetic characters,
numbers, dots and dashes with a length between 3 and 63 characters, starting with
an alphabetic character but not with the name 'system'

Table 415. fabric.driver.api

Description Determines which driver API will be used. ASYNC must be used when the remote
instance is 3.5.

Valid values fabric.driver.api, one of [RX, ASYNC]

Default value RX

Table 416. fabric.driver.connection.connect_timeout

Description Socket connection timeout. A timeout of zero is treated as an infinite timeout and
will be bound by the timeout configured on the operating system level.

Valid values fabric.driver.connection.connect_timeout, a duration (Valid units are: 'ns', 'μs', 'ms',
's', 'm', 'h' and 'd'; default unit is 's')

Default value 5s

Table 417. fabric.driver.connection.max_lifetime

Description Pooled connections older than this threshold will be closed and removed from the
pool. Setting this option to a low value will cause a high connection churn and might
result in a performance hit. It is recommended to set maximum lifetime to a slightly
smaller value than the one configured in network equipment (load balancer, proxy,
firewall, etc. can also limit maximum connection lifetime). Zero and negative values
result in lifetime not being checked.

Valid values fabric.driver.connection.max_lifetime, a duration (Valid units are: 'ns', 'μs', 'ms', 's',
'm', 'h' and 'd'; default unit is 's')

Default value 1h

545

Table 418. fabric.driver.connection.pool.acquisition_timeout

Description Maximum amount of time spent attempting to acquire a connection from the
connection pool. This timeout only kicks in when all existing connections are being
used and no new connections can be created because maximum connection pool
size has been reached. Error is raised when connection can’t be acquired within
configured time. Negative values are allowed and result in unlimited acquisition
timeout. Value of 0 is allowed and results in no timeout and immediate failure when
connection is unavailable.

Valid values fabric.driver.connection.pool.acquisition_timeout, a duration (Valid units are: 'ns',
'μs', 'ms', 's', 'm', 'h' and 'd'; default unit is 's')

Default value 1m

Table 419. fabric.driver.connection.pool.idle_test

Description Pooled connections that have been idle in the pool for longer than this timeout will
be tested before they are used again, to ensure they are still alive. If this option is
set too low, an additional network call will be incurred when acquiring a connection,
which causes a performance hit. If this is set high, no longer live connections might
be used which might lead to errors. Hence, this parameter tunes a balance between
the likelihood of experiencing connection problems and performance Normally, this
parameter should not need tuning. Value 0 means connections will always be
tested for validity.

Valid values fabric.driver.connection.pool.idle_test, a duration (Valid units are: 'ns', 'μs', 'ms', 's',
'm', 'h' and 'd'; default unit is 's')

Default value No connection liveliness check is done by default.

Table 420. fabric.driver.connection.pool.max_size

Description Maximum total number of connections to be managed by a connection pool. The
limit is enforced for a combination of a host and user. Negative values are allowed
and result in unlimited pool. Value of 0is not allowed.

Valid values fabric.driver.connection.pool.max_size, an integer

Default value Unlimited

Table 421. fabric.driver.logging.level

Description Sets level for driver internal logging.

Valid values fabric.driver.logging.level, one of [DEBUG, INFO, WARN, ERROR, NONE]

546

Default value Value of dbms.logs.debug.level

Table 422. fabric.routing.servers

Description A comma-separated list of Fabric instances that form a routing group. A driver will
route transactions to available routing group members. A Fabric instance is
represented by its Bolt connector address.

Valid values fabric.routing.servers, a ',' separated list with elements of type 'a socket address'.

Dynamic true

Table 423. fabric.routing.ttl

Description The time to live (TTL) of a routing table for fabric routing group.

Valid values fabric.routing.ttl, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h' and 'd'; default
unit is 's')

Default value 1m

Table 424. fabric.stream.buffer.low_watermark

Description Number of records in prefetching buffer that will trigger prefetching again. This is
strongly related to fabric.stream.buffer.size

Valid values fabric.stream.buffer.low_watermark, an integer which is minimum 0

Default value 300

Table 425. fabric.stream.buffer.size

Description Maximal size of a buffer used for pre-fetching result records of remote queries. To
compensate for latency to remote databases, the Fabric execution engine pre-
fetches records needed for local executions. This limit is enforced per fabric query. If
a fabric query uses multiple remote stream at the same time, this setting represents
the maximal number of pre-fetched records counted together for all such remote
streams.

Valid values fabric.stream.buffer.size, an integer which is minimum 1

Default value 1000

Table 426. fabric.stream.concurrency

547

Description Maximal concurrency within Fabric queries. Limits the number of iterations of each
subquery that are executed concurrently. Higher concurrency may consume more
memory and network resources simultaneously, while lower concurrency may force
sequential execution, requiring more time.

Valid values fabric.stream.concurrency, an integer which is minimum 1

Default value The number of remote graphs

Table 427. metrics.bolt.messages.enabled

Description Enable reporting metrics about Bolt Protocol message processing. Deprecated - use
metrics.filter instead.

Valid values metrics.bolt.messages.enabled, a boolean

Default value false

Deprecated The metrics.bolt.messages.enabled configuration setting has been deprecated.

Table 428. metrics.csv.enabled

Description Set to true to enable exporting metrics to CSV files.

Valid values metrics.csv.enabled, a boolean

Default value true

Table 429. metrics.csv.interval

Description The reporting interval for the CSV files. That is, how often new rows with numbers
are appended to the CSV files.

Valid values metrics.csv.interval, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h' and 'd';
default unit is 's')

Default value 30s

Table 430. metrics.csv.rotation.compression

Description Decides what compression to use for the csv history files.

Valid values metrics.csv.rotation.compression, one of [NONE, ZIP, GZ]

Default value NONE

548

Table 431. metrics.csv.rotation.keep_number

Description Maximum number of history files for the csv files.

Valid values metrics.csv.rotation.keep_number, an integer which is minimum 1

Default value 7

Table 432. metrics.csv.rotation.size

Description The file size in bytes at which the csv files will auto-rotate. If set to zero then no
rotation will occur. Accepts a binary suffix k, m or g.

Valid values metrics.csv.rotation.size, a byte size (valid multipliers are B, KiB, KB, K, kB, kb, k, MiB,
MB, M, mB, mb, m, GiB, GB, G, gB, gb, g, TiB, TB, PiB, PB, EiB, EB) which is in the range 0B to
8388608.00TiB

Default value 10.00MiB

Table 433. metrics.cypher.replanning.enabled

Description Enable reporting metrics about number of occurred replanning events. Deprecated -
use metrics.filter instead.

Valid values metrics.cypher.replanning.enabled, a boolean

Default value false

Deprecated The metrics.cypher.replanning.enabled configuration setting has been
deprecated.

Table 434. metrics.enabled

Description Enable metrics. Setting this to false will to turn off all metrics.

Valid values metrics.enabled, a boolean

Default value true

Table 435. metrics.filter

Description Specifies which metrics should be enabled by using a comma separated list of
globbing patterns. Only the metrics matching the filter will be enabled. For example
'check_point,neo4j.page_cache.evictions' will enable any checkpoint metrics and the
pagecache eviction metric.

549

Valid values metrics.filter, a ',' separated list with elements of type 'A simple globbing pattern
that can use '*' and '?'.'.

Default value *bolt.connections*,*bolt.messages_received*,*bolt.messages_started*,*dbms.pool.bolt.free
,*dbms.pool.bolt.total_size,*dbms.pool.bolt.total_used,*dbms.pool.bolt.used_heap,*causal
_clustering.core.is_leader,*causal_clustering.core.last_leader_message,*causal_clusterin
g.core.replication_attempt,*causal_clustering.core.replication_fail,*check_point.duratio
n,*check_point.total_time,*cypher.replan_events,*ids_in_use*,*pool.transaction.*.total_u
sed,*pool.transaction.*.used_heap,*pool.transaction.*.used_native,*store.size*,*transact
ion.active_read,*transaction.active_write,*transaction.committed*,*transaction.last_comm
itted_tx_id,*transaction.peak_concurrent,*transaction.rollbacks*,*page_cache.hit*,*page_
cache.page_faults,*page_cache.usage_ratio,*vm.file.descriptors.count,*vm.gc.time.*,*vm.h
eap.used,*vm.memory.buffer.direct.used,*vm.memory.pool.g1_eden_space,*vm.memory.pool.g1_
old_gen,*vm.pause_time,*vm.thread*,*db.query.execution*

Table 436. metrics.graphite.enabled

Description Set to true to enable exporting metrics to Graphite.

Valid values metrics.graphite.enabled, a boolean

Default value false

Table 437. metrics.graphite.interval

Description The reporting interval for Graphite. That is, how often to send updated metrics to
Graphite.

Valid values metrics.graphite.interval, a duration (Valid units are: 'ns', 'μs', 'ms', 's', 'm', 'h' and 'd';
default unit is 's')

Default value 30s

Table 438. metrics.graphite.server

Description The hostname or IP address of the Graphite server.

Valid values metrics.graphite.server, a socket address. If missing port or hostname it is acquired
from dbms.default_listen_address

Default value :2003

Table 439. metrics.jmx.enabled

Description Set to true to enable the JMX metrics endpoint.

Valid values metrics.jmx.enabled, a boolean

Default value true

550

Table 440. metrics.jvm.buffers.enabled

Description Enable reporting metrics about the buffer pools. Deprecated - use metrics.filter
instead.

Valid values metrics.jvm.buffers.enabled, a boolean

Default value false

Deprecated The metrics.jvm.buffers.enabled configuration setting has been deprecated.

Table 441. metrics.jvm.file.descriptors.enabled

Description Enable reporting metrics about the number of open file descriptors. Deprecated -
use metrics.filter instead.

Valid values metrics.jvm.file.descriptors.enabled, a boolean

Default value false

Deprecated The metrics.jvm.file.descriptors.enabled configuration setting has been
deprecated.

Table 442. metrics.jvm.gc.enabled

Description Enable reporting metrics about the duration of garbage collections. Deprecated -
use metrics.filter instead.

Valid values metrics.jvm.gc.enabled, a boolean

Default value false

Deprecated The metrics.jvm.gc.enabled configuration setting has been deprecated.

Table 443. metrics.jvm.heap.enabled

Description Enable reporting metrics about the heap memory usage. Deprecated - use
metrics.filter instead.

Valid values metrics.jvm.heap.enabled, a boolean

Default value false

Deprecated The metrics.jvm.heap.enabled configuration setting has been deprecated.

Table 444. metrics.jvm.memory.enabled

551

Description Enable reporting metrics about the memory usage. Deprecated - use metrics.filter
instead.

Valid values metrics.jvm.memory.enabled, a boolean

Default value false

Deprecated The metrics.jvm.memory.enabled configuration setting has been deprecated.

Table 445. metrics.jvm.pause_time.enabled

Description Enable reporting metrics about the VM pause time. Deprecated - use metrics.filter
instead.

Valid values metrics.jvm.pause_time.enabled, a boolean

Default value false

Deprecated The metrics.jvm.pause_time.enabled configuration setting has been deprecated.

Table 446. metrics.jvm.threads.enabled

Description Enable reporting metrics about the current number of threads running. Deprecated -
use metrics.filter instead.

Valid values metrics.jvm.threads.enabled, a boolean

Default value false

Deprecated The metrics.jvm.threads.enabled configuration setting has been deprecated.

Table 447. metrics.namespaces.enabled

Description Enable metrics namespaces that separates the global and database specific metrics.
If enabled all database specific metrics will have field names starting with
<metrics_prefix>.database.<database_name> and all global metrics will start with
<metrics_prefix>.dbms. For example neo4j.page_cache.hits will become
neo4j.dbms.page_cache.hits and neo4j.system.log.rotation_events will become
neo4j.database.system.log.rotation_events.

Valid values metrics.namespaces.enabled, a boolean

Default value false

Table 448. metrics.neo4j.causal_clustering.enabled

552

Description Enable reporting metrics about Causal Clustering mode. Deprecated - use
metrics.filter instead.

Valid values metrics.neo4j.causal_clustering.enabled, a boolean

Default value false

Deprecated The metrics.neo4j.causal_clustering.enabled configuration setting has been
deprecated.

Table 449. metrics.neo4j.checkpointing.enabled

Description Enable reporting metrics about Neo4j check pointing; when it occurs and how much
time it takes to complete. Deprecated - use metrics.filter instead.

Valid values metrics.neo4j.checkpointing.enabled, a boolean

Default value false

Deprecated The metrics.neo4j.checkpointing.enabled configuration setting has been
deprecated.

Table 450. metrics.neo4j.counts.enabled

Description Enable reporting metrics about approximately how many entities are in the
database; nodes, relationships, properties, etc. Deprecated - use metrics.filter
instead.

Valid values metrics.neo4j.counts.enabled, a boolean

Default value false

Deprecated The metrics.neo4j.counts.enabled configuration setting has been deprecated.

Table 451. metrics.neo4j.data.counts.enabled

Description Enable reporting metrics about number of entities in the database. Deprecated - use
metrics.filter instead.

Valid values metrics.neo4j.data.counts.enabled, a boolean

Default value false

Deprecated The metrics.neo4j.data.counts.enabled configuration setting has been
deprecated.

553

Table 452. metrics.neo4j.database_operation_count.enabled

Description Enable reporting metrics for Neo4j dbms operations; how many times databases
have been created, started, stopped or dropped, and how many attempted
operations have failed and recovered later. Deprecated - use metrics.filter instead.

Valid values metrics.neo4j.database_operation_count.enabled, a boolean

Default value false

Deprecated The metrics.neo4j.database_operation_count.enabled configuration setting has
been deprecated.

Table 453. metrics.neo4j.logs.enabled

Description Enable reporting metrics about the Neo4j transaction logs. Deprecated - use
metrics.filter instead.

Valid values metrics.neo4j.logs.enabled, a boolean

Default value false

Deprecated The metrics.neo4j.logs.enabled configuration setting has been deprecated.

Table 454. metrics.neo4j.pagecache.enabled

Description Enable reporting metrics about the Neo4j page cache; page faults, evictions, flushes,
exceptions, etc. Deprecated - use metrics.filter instead.

Valid values metrics.neo4j.pagecache.enabled, a boolean

Default value false

Deprecated The metrics.neo4j.pagecache.enabled configuration setting has been deprecated.

Table 455. metrics.neo4j.pools.enabled

Description Enable reporting metrics about Neo4j memory pools. Deprecated - use metrics.filter
instead.

Valid values metrics.neo4j.pools.enabled, a boolean

Default value false

Deprecated The metrics.neo4j.pools.enabled configuration setting has been deprecated.

554

Table 456. metrics.neo4j.server.enabled

Description Enable reporting metrics about Server threading info. Deprecated - use metrics.filter
instead.

Valid values metrics.neo4j.server.enabled, a boolean

Default value false

Deprecated The metrics.neo4j.server.enabled configuration setting has been deprecated.

Table 457. metrics.neo4j.size.enabled

Description Enable reporting metrics about the store size of each database. Deprecated - use
metrics.filter instead.

Valid values metrics.neo4j.size.enabled, a boolean

Default value false

Deprecated The metrics.neo4j.size.enabled configuration setting has been deprecated.

Table 458. metrics.neo4j.tx.enabled

Description Enable reporting metrics about transactions; number of transactions started,
committed, etc. Deprecated - use metrics.filter instead.

Valid values metrics.neo4j.tx.enabled, a boolean

Default value false

Deprecated The metrics.neo4j.tx.enabled configuration setting has been deprecated.

Table 459. metrics.prefix

Description A common prefix for the reported metrics field names.

Valid values metrics.prefix, a string

Default value neo4j

Table 460. metrics.prometheus.enabled

Description Set to true to enable the Prometheus endpoint.

555

Valid values metrics.prometheus.enabled, a boolean

Default value false

Table 461. metrics.prometheus.endpoint

Description The hostname and port to use as Prometheus endpoint.

Valid values metrics.prometheus.endpoint, a socket address in the format hostname:port,
hostname, or :port. If missing, port and hostname are acquired from
dbms.default_listen_address.

Default value localhost:2004

17.A.2. Procedures

Procedures, editions, and modes

Available procedures depend on the type of installation you have:

• Neo4j Enterprise Edition provides a larger set of procedures than Neo4j Community Edition.

• Cluster members have procedures that are not available in standalone mode.

To check which procedures are available in your Neo4j DBMS, use the Cypher command SHOW PROCEDURES:

Example 134. List available procedures

SHOW PROCEDURES

List of procedures

Table 462. Neo4j procedures

Name Community
Edition

Enterprise
Edition

Comment

db.awaitIndex() Yes Yes

db.awaitIndexes() Yes Yes

db.checkpoint() No Yes

db.clearQueryCaches() Yes Yes

db.constraints() Yes Yes In 4.1, signature changed to
db.constraints() :: (name :: STRING?,
description :: STRING?, details ::
STRING?).
Deprecated Replaced by: SHOW CONSTRAINTS.

556

Name Community
Edition

Enterprise
Edition

Comment

db.createIndex() Yes Yes Deprecated Replaced by: CREATE INDEX.

db.createLabel() Yes Yes

db.createNodeKey() No Yes Deprecated Replaced by: CREATE CONSTRAINT
… IS NODE KEY.

db.createProperty() Yes Yes

db.createRelationshipType() Yes Yes

db.createUniquePropertyConstraint() Yes Yes Deprecated Replaced by: CREATE CONSTRAINT
… IS UNIQUE.

db.index.fulltext.awaitEventuallyConsist
entIndexRefresh()

Yes Yes

db.index.fulltext.createNodeIndex() Yes Yes Deprecated Replaced by: CREATE FULLTEXT
INDEX ….

db.index.fulltext.createRelationshipInde
x()

Yes Yes Deprecated Replaced by: CREATE FULLTEXT
INDEX ….

db.index.fulltext.drop() Yes Yes Deprecated Replaced by: DROP INDEX ….

db.index.fulltext.listAvailableAnalyzers
()

Yes Yes

db.index.fulltext.queryNodes() Yes Yes In 4.1, signature changed to
db.index.fulltext.queryNodes(indexName
:: STRING?, queryString :: STRING?,
options = {} :: MAP?) :: (node :: NODE?,
score :: FLOAT?).

db.index.fulltext.queryRelationships() Yes Yes In 4.1, signature changed to
db.index.fulltext.queryRelationships(ind
exName :: STRING?, queryString ::
STRING?, options = {} :: MAP?) ::
(relationship :: RELATIONSHIP?, score ::
FLOAT?).

db.indexDetails() Yes Yes Deprecated Replaced by: SHOW INDEXES
YIELD *.

db.indexes() Yes Yes Deprecated Replaced by: SHOW INDEXES.

db.info() Yes Yes

db.labels() Yes Yes

db.listLocks() No Yes In 4.2, signature changed to db.listLocks()
:: (mode :: STRING?, resourceType ::
STRING?, resourceId :: INTEGER?,
transactionId :: STRING?).

db.ping() Yes Yes

db.prepareForReplanning() Yes Yes

db.propertyKeys() Yes Yes

db.relationshipTypes() Yes Yes

557

Name Community
Edition

Enterprise
Edition

Comment

db.resampleIndex() Yes Yes

db.resampleOutdatedIndexes() Yes Yes

db.schema.nodeTypeProperties() Yes Yes

db.schema.relTypeProperties() Yes Yes

db.schema.visualization() Yes Yes

db.schemaStatements() Yes Yes Deprecated Replaced by: SHOW INDEXES
YIELD * and SHOW CONSTRAINTS YIELD *.

db.stats.clear() Yes Yes

db.stats.collect() Yes Yes

db.stats.retrieve() Yes Yes

db.stats.retrieveAllAnonymized() Yes Yes

db.stats.status() Yes Yes

db.stats.stop() Yes Yes

dbms.cluster.routing.getRoutingTable() No Yes

dbms.cluster.overview() No Yes

dbms.cluster.protocols() No Yes

dbms.cluster.quarantineDatabase() No Yes Deprecated Replaced by:
dbms.quarantineDatabase().

dbms.cluster.readReplicaToggle() No Yes

dbms.cluster.role() No Yes

dbms.cluster.setDefaultDatabase() No Yes

dbms.components() Yes Yes

dbms.database.state() Yes Yes

dbms.functions() Yes Yes In 4.2, signature changed to
dbms.functions() :: (name :: STRING?,
signature :: STRING?, category ::
STRING?, description :: STRING?,
aggregating :: BOOLEAN?,
defaultBuiltInRoles :: LIST? OF STRING?).
Deprecated Replaced by: SHOW FUNCTIONS.

dbms.info() Yes Yes

dbms.killConnection() Yes Yes

dbms.killConnections() Yes Yes

dbms.killQueries() Yes Yes

dbms.killQuery() Yes Yes

558

Name Community
Edition

Enterprise
Edition

Comment

dbms.killTransaction() Yes Yes

dbms.killTransactions() Yes Yes

dbms.listActiveLocks() Yes Yes

dbms.listConfig() Yes Yes

dbms.listConnections() Yes Yes

dbms.listPools() No Yes

dbms.listQueries() Yes Yes In 4.1, the queryId procedure format changed
to no longer include the database name. For
example, mydb-query-123 became query-123.

dbms.listTransactions() Yes Yes In 4.1, signature changed to
dbms.listTransactions() ::
(transactionId :: STRING?, username ::
STRING?, metaData :: MAP?, startTime ::
STRING?, protocol :: STRING?,
clientAddress :: STRING?, requestUri ::
STRING?, currentQueryId :: STRING?,
currentQuery :: STRING?, activeLockCount
:: INTEGER?, status :: STRING?,
resourceInformation :: MAP?,
elapsedTimeMillis :: INTEGER?,
cpuTimeMillis :: INTEGER?,
waitTimeMillis :: INTEGER?,
idleTimeMillis :: INTEGER?,
allocatedBytes :: INTEGER?,
allocatedDirectBytes :: INTEGER?,
pageHits :: INTEGER?, pageFaults ::
INTEGER?, connectionId :: STRING?,
initializationStackTrace :: STRING?,
database :: STRING?,
estimatedUsedHeapMemory :: INTEGER?).

dbms.procedures() Yes Yes Deprecated Replaced by: SHOW PROCEDURES.

dbms.quarantineDatabase() No Yes

dbms.queryJmx() Yes Yes

dbms.routing.getRoutingTable() Yes Yes

dbms.scheduler.failedJobs() No Yes

dbms.scheduler.groups() No Yes

dbms.scheduler.jobs() No Yes

dbms.scheduler.profile() No Yes

dbms.security.activateUser() No Yes In 4.1, mode changed to write. Deprecated
Replaced by: ALTER USER.

dbms.security.addRoleToUser() No Yes In 4.1, mode changed to write. Deprecated
Replaced by: GRANT ROLE TO USER.

559

Name Community
Edition

Enterprise
Edition

Comment

dbms.security.changePassword() Yes Yes In 4.1, mode changed to write. Deprecated
Replaced by: ALTER CURRENT USER SET
PASSWORD.

dbms.security.changeUserPassword() No Yes In 4.1, mode changed to write. Deprecated
Replaced by: ALTER USER.

dbms.security.clearAuthCache() No Yes

dbms.security.createRole() No Yes In 4.1, mode changed to write. Deprecated
Replaced by: CREATE ROLE.

dbms.security.createUser() Yes Yes In 4.1, mode changed to write. Deprecated
Replaced by: CREATE USER.

dbms.security.deleteRole() No Yes In 4.1, mode changed to write. Deprecated
Replaced by: DROP ROLE.

dbms.security.deleteUser() Yes Yes In 4.1, mode changed to write. Deprecated
Replaced by: DROP USER.

dbms.security.listRoles() Yes Yes In 4.1, mode changed to read. Deprecated
Replaced by: SHOW ROLES.

dbms.security.listRolesForUser() No Yes In 4.1, mode changed to read. Deprecated
Replaced by: SHOW USERS.

dbms.security.listUsers() Yes Yes In 4.1, mode changed to read. Deprecated
Replaced by: SHOW USERS.

dbms.security.listUsersForRole() No Yes In 4.1, mode changed to read. Deprecated
Replaced by: SHOW ROLES WITH USERS.

dbms.security.removeRoleFromUser() No Yes In 4.1, mode changed to write. Deprecated
Replaced by: REVOKE ROLE FROM USER.

dbms.security.suspendUser() No Yes In 4.1, mode changed to write. Deprecated
Replaced by: ALTER USER.

dbms.setConfigValue() No Yes

dbms.showCurrentUser() Yes Yes

dbms.upgrade() Yes Yes

dbms.upgradeStatus() Yes Yes

tx.getMetaData() Yes Yes

tx.setMetaData() Yes Yes

Procedure descriptions

Table 463. db.awaitIndex()

560

Description Wait for an index to come online.

Example: CALL db.awaitIndex("MyIndex", 300)

Signature db.awaitIndex(indexName :: STRING?, timeOutSeconds = 300 :: INTEGER?) :: VOID

Mode READ

Table 464. db.awaitIndexes()

Description Wait for all indexes to come online.

Example: CALL db.awaitIndexes(300)

Signature db.awaitIndexes(timeOutSeconds = 300 :: INTEGER?) :: VOID

Mode READ

Table 465. db.checkpoint() Enterprise edition

Description Initiate and wait for a new check point, or wait any already on-going check point to
complete.

Note that this temporarily disables the dbms.checkpoint.iops.limit setting in order to
make the check point complete faster. This might cause transaction throughput to
degrade slightly, due to increased IO load.

Signature db.checkpoint() :: (success :: BOOLEAN?, message :: STRING?)

Mode DBMS

Table 466. db.clearQueryCaches()

Description Clears all query caches.

Signature db.clearQueryCaches() :: (value :: STRING?)

Mode DBMS

Table 467. db.constraints() Deprecated

Description List all constraints in the database.

Signature db.constraints() :: (name :: STRING?, description :: STRING?, details :: STRING?)

Mode READ

Replaced by SHOW CONSTRAINTS. For more information, see Database administration.

Table 468. db.createIndex() Deprecated

561

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#database_administration

Description Create a named schema index with specified index provider and configuration (optional).

Yield: name, labels, properties, providerName, status

Signature db.createIndex(indexName :: STRING?, labels :: LIST? OF STRING?, properties :: LIST? OF
STRING?, providerName :: STRING?, config = {} :: MAP?) :: (name :: STRING?, labels :: LIST?
OF STRING?, properties :: LIST? OF STRING?, providerName :: STRING?, status :: STRING?)

Mode SCHEMA

Replaced by CREATE INDEX. For more information, see Database administration.

Table 469. db.createLabel()

Description Create a label

Signature db.createLabel(newLabel :: STRING?) :: VOID

Mode WRITE

Table 470. db.createNodeKey() Enterprise edition Deprecated

Description Create a named node key constraint. Backing index will use specified index provider and
configuration (optional).

Yield: name, labels, properties, providerName, status

Signature db.createNodeKey(constraintName :: STRING?, labels :: LIST? OF STRING?, properties :: LIST?
OF STRING?, providerName :: STRING?, config = {} :: MAP?) :: (name :: STRING?, labels ::
LIST? OF STRING?, properties :: LIST? OF STRING?, providerName :: STRING?, status :: STRING?)

Mode SCHEMA

Replaced by CREATE CONSTRAINT … IS NODE KEY. For more information, see Database administration.

Table 471. db.createProperty()

Description Create a Property

Signature db.createProperty(newProperty :: STRING?) :: VOID

Mode WRITE

Table 472. db.createRelationshipType()

Description Create a RelationshipType

Signature db.createRelationshipType(newRelationshipType :: STRING?) :: VOID

Mode WRITE

Table 473. db.createUniquePropertyConstraint() Deprecated

562

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#database_administration
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#database_administration

Description Create a named unique property constraint.

Backing index will use specified index provider and configuration (optional).

Yield: name, labels, properties, providerName, status

Signature db.createUniquePropertyConstraint(constraintName :: STRING?, labels :: LIST? OF STRING?,
properties :: LIST? OF STRING?, providerName :: STRING?, config = {} :: MAP?) :: (name ::
STRING?, labels :: LIST? OF STRING?, properties :: LIST? OF STRING?, providerName :: STRING?,
status :: STRING?)

Mode SCHEMA

Replaced by CREATE CONSTRAINT … IS UNIQUE. For more information, see Database administration.

Table 474. db.index.fulltext.awaitEventuallyConsistentIndexRefresh()

Description Wait for the updates from recently committed transactions to be applied to any
eventually-consistent full-text indexes.

Signature db.index.fulltext.awaitEventuallyConsistentIndexRefresh() :: VOID

Mode READ

Table 475. db.index.fulltext.createNodeIndex() Deprecated

Description Create a node full-text index for the given labels and properties.

The optional 'config' map parameter can be used to supply settings to the index.
Supported settings are 'analyzer', for specifying what analyzer to use when indexing and
querying. Use the db.index.fulltext.listAvailableAnalyzers procedure to see what
options are available. And 'eventually_consistent' which can be set to 'true' to make this
index eventually consistent, such that updates from committing transactions are applied
in a background thread.

Signature db.index.fulltext.createNodeIndex(indexName :: STRING?, labels :: LIST? OF STRING?,
properties :: LIST? OF STRING?, config = {} :: MAP?) :: VOID

Mode SCHEMA

Replaced by CREATE FULLTEXT INDEX

Table 476. db.index.fulltext.createRelationshipIndex() Deprecated

563

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#database_administration
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#administration-indexes-fulltext-search-create-and-configure

Description Create a relationship full-text index for the given relationship types and properties.

The optional 'config' map parameter can be used to supply settings to the index.
Supported settings are 'analyzer', for specifying what analyzer to use when indexing and
querying. Use the db.index.fulltext.listAvailableAnalyzers procedure to see what
options are available. And 'eventually_consistent' which can be set to 'true' to make this
index eventually consistent, such that updates from committing transactions are applied
in a background thread.

Signature db.index.fulltext.createRelationshipIndex(indexName :: STRING?, relationshipTypes :: LIST? OF
STRING?, properties :: LIST? OF STRING?, config = {} :: MAP?) :: VOID

Mode SCHEMA

Replaced by CREATE FULLTEXT INDEX …

Table 477. db.index.fulltext.drop() Deprecated

Description Drop the specified index.

Signature db.index.fulltext.drop(indexName :: STRING?) :: VOID

Mode SCHEMA

Replaced by DROP INDEX …

Table 478. db.index.fulltext.listAvailableAnalyzers()

Description List the available analyzers that the full-text indexes can be configured with.

Signature db.index.fulltext.listAvailableAnalyzers() :: (analyzer :: STRING?, description :: STRING?,
stopwords :: LIST? OF STRING?)

Mode READ

Table 479. db.index.fulltext.queryNodes()

Description Query the given full-text index.

Returns the matching nodes, and their Lucene query score, ordered by score.

Valid keys for the options map are: 'skip' to skip the top N results; 'limit' to limit the
number of results returned.

Signature db.index.fulltext.queryNodes(indexName :: STRING?, queryString :: STRING?, options = {} ::
MAP?) :: (node :: NODE?, score :: FLOAT?)

Mode READ

Table 480. db.index.fulltext.queryRelationships()

564

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#administration-indexes-fulltext-search-create-and-configure
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#administration-indexes-fulltext-search-drop

Description Query the given full-text index.

Returns the matching relationships, and their Lucene query score, ordered by score.

Valid keys for the options map are: 'skip' to skip the top N results; 'limit' to limit the
number of results returned.

Signature db.index.fulltext.queryRelationships(indexName :: STRING?, queryString :: STRING?, options =
{} :: MAP?) :: (relationship :: RELATIONSHIP?, score :: FLOAT?)

Mode READ

Table 481. db.indexDetails() Deprecated

Description Detailed description of specific index.

Signature db.indexDetails(indexName :: STRING?) :: (id :: INTEGER?, name :: STRING?, state :: STRING?,
populationPercent :: FLOAT?, uniqueness :: STRING?, type :: STRING?, entityType :: STRING?,
labelsOrTypes :: LIST? OF STRING?, properties :: LIST? OF STRING?, provider :: STRING?,
indexConfig :: MAP?, failureMessage :: STRING?)

Mode READ

Replaced by SHOW INDEXES YIELD *

Table 482. db.indexes() Deprecated

Description List all indexes in the database.

Signature db.indexes() :: (id :: INTEGER?, name :: STRING?, state :: STRING?, populationPercent ::
FLOAT?, uniqueness :: STRING?, type :: STRING?, entityType :: STRING?, labelsOrTypes :: LIST?
OF STRING?, properties :: LIST? OF STRING?, provider :: STRING?)

Mode READ

Replaced by SHOW INDEXES

Table 483. db.info()

Description Provides information regarding the database.

Signature db.info() :: (id :: STRING?, name :: STRING?, creationDate :: STRING?)

Mode READ

Table 484. db.labels()

Description List all available labels in the database.

Signature db.labels() :: (label :: STRING?)

Mode READ

Table 485. db.listLocks() Enterprise edition

565

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#_listing_indexes_examples
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#administration-indexes-list-indexes

Description List all locks at this database.

Signature db.listLocks() :: (mode :: STRING?, resourceType :: STRING?, resourceId :: INTEGER?,
transactionId :: STRING?)

Mode DBMS

Table 486. db.ping()

Description This procedure can be used by client side tooling to test whether they are correctly
connected to a database. The procedure is available in all databases and always returns
true. A faulty connection can be detected by not being able to call this procedure.

Signature db.ping() :: (success :: BOOLEAN?)

Mode READ

Table 487. db.prepareForReplanning()

Description Triggers an index resample and waits for it to complete, and after that clears query
caches. After this procedure has finished queries will be planned using the latest
database statistics.

Signature db.prepareForReplanning(timeOutSeconds = 300 :: INTEGER?) :: VOID

Mode READ

Table 488. db.propertyKeys()

Description List all property keys in the database.

Signature db.propertyKeys() :: (propertyKey :: STRING?)

Mode READ

Table 489. db.relationshipTypes()

Description List all available relationship types in the database.

Signature db.relationshipTypes() :: (relationshipType :: STRING?)

Mode READ

Table 490. db.resampleIndex()

Description Schedule resampling of an index.

Example: CALL db.resampleIndex("MyIndex")

Signature db.resampleIndex(indexName :: STRING?) :: VOID

Mode READ

566

Table 491. db.resampleOutdatedIndexes()

Description Schedule resampling of all outdated indexes.

Signature db.resampleOutdatedIndexes() :: VOID

Mode READ

Table 492. db.schema.nodeTypeProperties()

Description Show the derived property schema of the nodes in tabular form.

Signature db.schema.nodeTypeProperties() :: (nodeType :: STRING?, nodeLabels :: LIST? OF STRING?,
propertyName :: STRING?, propertyTypes :: LIST? OF STRING?, mandatory :: BOOLEAN?)

Mode READ

Table 493. db.schema.relTypeProperties()

Description Show the derived property schema of the relationships in tabular form.

Signature db.schema.relTypeProperties() :: (relType :: STRING?, propertyName :: STRING?, propertyTypes
:: LIST? OF STRING?, mandatory :: BOOLEAN?)

Mode READ

Table 494. db.schema.visualization()

Description Visualize the schema of the data.

Signature db.schema.visualization() :: (nodes :: LIST? OF NODE?, relationships :: LIST? OF
RELATIONSHIP?)

Mode READ

Table 495. db.schemaStatements() Deprecated

Description List all statements for creating and dropping existing indexes and constraints. Note that
only index types introduced before Neo4j 4.3 are included.

Signature db.schemaStatements() :: (name :: STRING?, type :: STRING?, createStatement :: STRING?,
dropStatement :: STRING?)

Mode READ

Replaced by SHOW INDEXES YIELD * and SHOW CONSTRAINTS YIELD *. For more information, see
Database administration.

Table 496. db.stats.clear()

Description Clear collected data of a given data section.

Valid sections are 'QUERIES'

567

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#_listing_indexes_examples
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#database_administration

Signature db.stats.clear(section :: STRING?) :: (section :: STRING?, success :: BOOLEAN?, message ::
STRING?)

Mode READ

Table 497. db.stats.collect()

Description Start data collection of a given data section.

Valid sections are 'QUERIES'

Signature db.stats.collect(section :: STRING?, config = {} :: MAP?) :: (section :: STRING?, success ::
BOOLEAN?, message :: STRING?)

Mode READ

Table 498. db.stats.retrieve()

Description Retrieve statistical data about the current database.

Valid sections are 'GRAPH COUNTS', 'TOKENS', 'QUERIES', 'META'

Signature db.stats.retrieve(section :: STRING?, config = {} :: MAP?) :: (section :: STRING?, data ::
MAP?)

Mode READ

Table 499. db.stats.retrieveAllAnonymized()

Description Retrieve all available statistical data about the current database, in an anonymized form.

Signature db.stats.retrieveAllAnonymized(graphToken :: STRING?, config = {} :: MAP?) :: (section ::
STRING?, data :: MAP?)

Mode READ

Table 500. db.stats.status()

Description Retrieve the status of all available collector daemons, for this database.

Signature db.stats.status() :: (section :: STRING?, status :: STRING?, data :: MAP?)

Mode READ

Table 501. db.stats.stop()

Description Stop data collection of a given data section.

Valid sections are 'QUERIES'

Signature db.stats.stop(section :: STRING?) :: (section :: STRING?, success :: BOOLEAN?, message ::
STRING?)

Mode READ

568

Table 502. dbms.cluster.routing.getRoutingTable()

Description Returns endpoints of this instance.

Signature dbms.cluster.routing.getRoutingTable(context :: MAP?, database = null :: STRING?) :: (ttl ::
INTEGER?, servers :: LIST? OF MAP?)

Mode DBMS

Table 503. dbms.cluster.overview() Enterprise edition

Description Overview of all currently accessible cluster members, their databases and roles.

Signature dbms.cluster.overview() :: (id :: STRING?, addresses :: LIST? OF STRING?, databases :: MAP?,
groups :: LIST? OF STRING?)

Mode READ

Table 504. dbms.cluster.protocols() Enterprise edition

Description Overview of installed protocols.

Note that this can only be executed on a cluster core member.

Signature dbms.cluster.protocols() :: (orientation :: STRING?, remoteAddress :: STRING?,
applicationProtocol :: STRING?, applicationProtocolVersion :: INTEGER?, modifierProtocols ::
STRING?)

Mode READ

Table 505. dbms.cluster.quarantineDatabase() Enterprise edition Deprecated

Description Place a database in quarantine or remove thereof.

Signature dbms.cluster.quarantineDatabase(databaseName :: STRING?, setStatus :: BOOLEAN?, reason = No
reason given :: STRING?) :: (databaseName :: STRING?, quarantined :: BOOLEAN?, result ::
STRING?)

Mode DBMS

Replaced by dbms.quarantineDatabase()

Table 506. dbms.cluster.readReplicaToggle() Enterprise edition

569

Description The toggle can pause or resume the pulling of new transactions for a specific database. If
paused, the Read Replica does not pull new transactions from the other cluster members
for the specific database. The Read Replica is still available for reads, you can perform a
backup, etc.

What is it for?

You can perform a point in time backup, as the backup will contain only
the transactions up to the point where the transaction pulling was
paused.

1. Connect directly to the Read Replica cluster member. (Neo4j Driver
use bolt:// or use the HTTP API).

2. Pause transaction pulling for the specified database.

3. Create a point in time backup, see Back up an online database.

If connected directly to a Read Replica, Data Scientists can execute
analysis on a specific database that is paused, the data will not
unexpectedly change while performing the analysis.

This procedure can only be executed on a Read Replica cluster
member.

Pause transaction pulling for database neo4j

CALL dbms.cluster.readReplicaToggle("neo4j", true)

Resume transaction pulling for database neo4j

CALL dbms.cluster.readReplicaToggle("neo4j", false)

Signature dbms.cluster.readReplicaToggle(databaseName :: STRING?, pause :: BOOLEAN?) :: (state ::
STRING?)

Mode READ

Table 507. dbms.cluster.role() Enterprise edition

Description The role of this instance in the cluster for the specified database.

Signature dbms.cluster.role(database :: STRING?) :: (role :: STRING?)

Mode READ

Table 508. dbms.cluster.setDefaultDatabase() Enterprise edition

570

Description Change the default database to the provided value.

The database must exist and the old default database must be stopped.

For more information see Change the default database.

Note that this can only be executed on a cluster core member.

Signature dbms.cluster.setDefaultDatabase(databaseName :: STRING?) :: (result :: STRING?)

Mode WRITE

Table 509. dbms.components()

Description List DBMS components and their versions.

Signature dbms.components() :: (name :: STRING?, versions :: LIST? OF STRING?, edition :: STRING?)

Mode DBMS

Table 510. dbms.database.state()

Description The actual status of the database with the provided name on this neo4j instance.

Signature dbms.database.state(databaseName :: STRING?) :: (role :: STRING?, address :: STRING?, status
:: STRING?, error :: STRING?)

Mode READ

Table 511. dbms.functions() Deprecated

Description List all functions in the DBMS.

Signature dbms.functions() :: (name :: STRING?, signature :: STRING?, category :: STRING?, description
:: STRING?, aggregating :: BOOLEAN?, defaultBuiltInRoles :: LIST? OF STRING?)

Mode DBMS

Replaced by SHOW FUNCTIONS

Table 512. dbms.info()

Description Provides information regarding the DBMS.

Signature dbms.info() :: (id :: STRING?, name :: STRING?, creationDate :: STRING?)

Mode DBMS

Table 513. dbms.killConnection()

Description Kill network connection with the given connection id.

571

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#listing_functions

Signature dbms.killConnection(id :: STRING?) :: (connectionId :: STRING?, username :: STRING?, message
:: STRING?)

Mode DBMS

Table 514. dbms.killConnections()

Description Kill all network connections with the given connection ids.

Signature dbms.killConnections(ids :: LIST? OF STRING?) :: (connectionId :: STRING?, username ::
STRING?, message :: STRING?)

Mode DBMS

Table 515. dbms.killQueries()

Description Kill all transactions executing a query with any of the given query ids.

Signature dbms.killQueries(ids :: LIST? OF STRING?) :: (queryId :: STRING?, username :: STRING?,
message :: STRING?)

Mode DBMS

Replaced by TERMINATE TRANSACTIONS

Table 516. dbms.killQuery()

Description Kill all transactions executing the query with the given query id.

Signature dbms.killQuery(id :: STRING?) :: (queryId :: STRING?, username :: STRING?, message ::
STRING?)

Mode DBMS

Replaced by TERMINATE TRANSACTIONS

Table 517. dbms.killTransaction()

Description Kill transaction with provided id.

Signature dbms.killTransaction(id :: STRING?) :: (transactionId :: STRING?, username :: STRING?,
message :: STRING?)

Mode DBMS

Replaced by TERMINATE TRANSACTIONS

Table 518. dbms.killTransactions()

Description Kill transactions with provided ids.

Signature dbms.killTransactions(ids :: LIST? OF STRING?) :: (transactionId :: STRING?, username ::
STRING?, message :: STRING?)

572

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#query-terminate-transactions
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#query-terminate-transactions
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#query-terminate-transactions

Mode DBMS

Replaced by TERMINATE TRANSACTIONS

Table 519. dbms.listActiveLocks() Enterprise edition

Description List the active lock requests granted for the transaction executing the query with the
given query id.

Signature dbms.listActiveLocks(queryId :: STRING?) :: (mode :: STRING?, resourceType :: STRING?,
resourceId :: INTEGER?)

Mode DBMS

Table 520. dbms.listConfig()

Description List the currently active config of Neo4j.

Signature dbms.listConfig(searchString = :: STRING?) :: (name :: STRING?, description :: STRING?, value
:: STRING?, dynamic :: BOOLEAN?)

Mode DBMS

Table 521. dbms.listConnections()

Description List all accepted network connections at this instance that are visible to the user.

Signature dbms.listConnections() :: (connectionId :: STRING?, connectTime :: STRING?, connector ::
STRING?, username :: STRING?, userAgent :: STRING?, serverAddress :: STRING?, clientAddress
:: STRING?)

Mode DBMS

Table 522. dbms.listPools() Enterprise edition

Description List all memory pools, including sub pools, currently registered at this instance that are
visible to the user.

Signature dbms.listPools() :: (pool :: STRING?, databaseName :: STRING?, heapMemoryUsed :: STRING?,
heapMemoryUsedBytes :: STRING?, nativeMemoryUsed :: STRING?, nativeMemoryUsedBytes ::
STRING?, freeMemory :: STRING?, freeMemoryBytes :: STRING?, totalPoolMemory :: STRING?,
totalPoolMemoryBytes :: STRING?)

Mode DBMS

Table 523. dbms.listQueries()

Description List all queries currently executing at this instance that are visible to the user.

Signature dbms.listQueries() :: (queryId :: STRING?, username :: STRING?, metaData :: MAP?, query ::
STRING?, parameters :: MAP?, planner :: STRING?, runtime :: STRING?, indexes :: LIST? OF
MAP?, startTime :: STRING?, protocol :: STRING?, clientAddress :: STRING?, requestUri ::
STRING?, status :: STRING?, resourceInformation :: MAP?, activeLockCount :: INTEGER?,
elapsedTimeMillis :: INTEGER?, cpuTimeMillis :: INTEGER?, waitTimeMillis :: INTEGER?,
idleTimeMillis :: INTEGER?, allocatedBytes :: INTEGER?, pageHits :: INTEGER?, pageFaults ::
INTEGER?, connectionId :: STRING?, database :: STRING?)

573

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#query-terminate-transactions

Mode DBMS

Replaced by SHOW TRANSACTIONS

Table 524. dbms.listTransactions()

Description List all transactions currently executing at this instance that are visible to the user.

Signature dbms.listTransactions() :: (transactionId :: STRING?, username :: STRING?, metaData :: MAP?,
startTime :: STRING?, protocol :: STRING?, clientAddress :: STRING?, requestUri :: STRING?,
currentQueryId :: STRING?, currentQuery :: STRING?, activeLockCount :: INTEGER?, status ::
STRING?, resourceInformation :: MAP?, elapsedTimeMillis :: INTEGER?, cpuTimeMillis ::
INTEGER?, waitTimeMillis :: INTEGER?, idleTimeMillis :: INTEGER?, allocatedBytes :: INTEGER?,
allocatedDirectBytes :: INTEGER?, pageHits :: INTEGER?, pageFaults :: INTEGER?, connectionId
:: STRING?, initializationStackTrace :: STRING?, database :: STRING?, estimatedUsedHeapMemory
:: INTEGER?)

Mode DBMS

Replaced by SHOW TRANSACTIONS

Table 525. dbms.procedures() Deprecated

Description List all procedures in the DBMS.

Signature dbms.procedures() :: (name :: STRING?, signature :: STRING?, description :: STRING?, mode ::
STRING?, defaultBuiltInRoles :: LIST? OF STRING?, worksOnSystem :: BOOLEAN?)

Mode DBMS

Replaced by SHOW PROCEDURES

Table 526. dbms.quarantineDatabase

Description Place a database in quarantine or remove thereof.

Signature dbms.quarantineDatabase(databaseName :: STRING?, setStatus :: BOOLEAN?, reason = No reason
given :: STRING?) :: (databaseName :: STRING?, quarantined :: BOOLEAN?, result :: STRING?)

Mode DBMS

Table 527. dbms.queryJmx()

Description Query JMX management data by domain and name.

Valid queries should use the syntax outlined in the javax.management.ObjectName API
documentation.
For instance, use "*:*" to find all JMX beans.

Signature dbms.queryJmx(query :: STRING?) :: (name :: STRING?, description :: STRING?, attributes ::
MAP?)

Mode DBMS

574

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#query-listing-transactions
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#query-listing-transactions
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#listing_procedures
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/ObjectName.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/ObjectName.html

Table 528. dbms.routing.getRoutingTable()

Description Returns endpoints of this instance.

Signature dbms.routing.getRoutingTable(context :: MAP?, database = null :: STRING?) :: (ttl ::
INTEGER?, servers :: LIST? OF MAP?)

Mode DBMS

Table 529. dbms.scheduler.failedJobs() Enterprise edition

Description List failed job runs. There is a limit for amount of historical data.

Signature dbms.scheduler.failedJobs() :: (jobId :: STRING?, group :: STRING?, database :: STRING?,
submitter :: STRING?, description :: STRING?, type :: STRING?, submitted :: STRING?,
executionStart :: STRING?, failureTime :: STRING?, failureDescription :: STRING?)

Mode DBMS

Table 530. dbms.scheduler.groups() Enterprise edition

Description List the job groups that are active in the database internal job scheduler.

Signature dbms.scheduler.groups() :: (group :: STRING?, threads :: INTEGER?)

Mode DBMS

Table 531. dbms.scheduler.jobs() Enterprise edition

Description List all jobs that are active in the database internal job scheduler.

Signature dbms.scheduler.jobs() :: (jobId :: STRING?, group :: STRING?, submitted :: STRING?, database
:: STRING?, submitter :: STRING?, description :: STRING?, type :: STRING?, scheduledAt ::
STRING?, period :: STRING?, state :: STRING?, currentStateDescription :: STRING?)

Mode DBMS

Table 532. dbms.scheduler.profile() Enterprise edition

Description Begin profiling all threads within the given job group, for the specified duration.

Note that profiling incurs overhead to a system, and will slow it down.

Signature dbms.scheduler.profile(method :: STRING?, group :: STRING?, duration :: STRING?) :: (profile
:: STRING?)

Mode DBMS

Table 533. dbms.security.activateUser() Enterprise edition Deprecated

Description Activate a suspended user.

Signature dbms.security.activateUser(username :: STRING?, requirePasswordChange = true :: BOOLEAN?) ::
VOID

Mode WRITE

575

Table 534. dbms.security.addRoleToUser() Enterprise edition Deprecated

Description Assign a role to the user.

Signature dbms.security.addRoleToUser(roleName :: STRING?, username :: STRING?) :: VOID

Mode WRITE

Table 535. dbms.security.changePassword() Deprecated

Description Change the current user’s password.

Signature dbms.security.changePassword(password :: STRING?, requirePasswordChange = false :: BOOLEAN?)
:: VOID

Mode WRITE

Table 536. dbms.security.changeUserPassword() Enterprise edition Deprecated

Description Change the given user’s password.

Signature dbms.security.changeUserPassword(username :: STRING?, newPassword :: STRING?,
requirePasswordChange = true :: BOOLEAN?) :: VOID

Mode WRITE

Table 537. dbms.security.clearAuthCache() Enterprise edition

Description Clears authentication and authorization cache.

Signature dbms.security.clearAuthCache() :: VOID

Mode DBMS

Table 538. dbms.security.createRole() Enterprise edition Deprecated

Description Create a new role.

Signature dbms.security.createRole(roleName :: STRING?) :: VOID

Mode WRITE

Table 539. dbms.security.createUser() Deprecated

Description Create a new user.

Signature dbms.security.createUser(username :: STRING?, password :: STRING?, requirePasswordChange =
true :: BOOLEAN?) :: VOID

Mode WRITE

Table 540. dbms.security.deleteRole() Enterprise edition Deprecated

576

Description Delete the specified role. Any role assignments will be removed.

Signature dbms.security.deleteRole(roleName :: STRING?) :: VOID

Mode WRITE

Table 541. dbms.security.deleteUser() Deprecated

Description Delete the specified user.

Signature dbms.security.deleteUser(username :: STRING?) :: VOID

Mode WRITE

Table 542. dbms.security.listRoles() Enterprise edition Deprecated

Description List all available roles.

Signature dbms.security.listRoles() :: (role :: STRING?, users :: LIST? OF STRING?)

Mode READ

Table 543. dbms.security.listRolesForUser() Enterprise edition Deprecated

Description List all roles assigned to the specified user.

Signature dbms.security.listRolesForUser(username :: STRING?) :: (value :: STRING?)

Mode READ

Table 544. dbms.security.listUsers() Deprecated

Description List all native users.

Signature dbms.security.listUsers() :: (username :: STRING?, roles :: LIST? OF STRING?, flags :: LIST?
OF STRING?)

Mode READ

Table 545. dbms.security.listUsersForRole() Enterprise edition Deprecated

Description List all users currently assigned the specified role.

Signature dbms.security.listUsersForRole(roleName :: STRING?) :: (value :: STRING?)

Mode READ

Table 546. dbms.security.removeRoleFromUser() Enterprise edition Deprecated

Description Unassign a role from the user.

Signature dbms.security.removeRoleFromUser(roleName :: STRING?, username :: STRING?) :: VOID

577

Mode WRITE

Table 547. dbms.security.suspendUser() Enterprise edition Deprecated

Description Suspend the specified user.

Signature dbms.security.suspendUser(username :: STRING?) :: VOID

Mode WRITE

Table 548. dbms.setConfigValue() Enterprise edition

Description Update a given setting value. Passing an empty value results in removing the configured
value and falling back to the default value. Changes do not persist and are lost if the
server is restarted. In a clustered environment, dbms.setConfigValue affects only the
cluster member it is run against.

Signature dbms.setConfigValue(setting :: STRING?, value :: STRING?) :: VOID

Mode DBMS

Table 549. dbms.showCurrentUser()

Description Show the current user.

Signature dbms.showCurrentUser() :: (username :: STRING?, roles :: LIST? OF STRING?, flags :: LIST? OF
STRING?)

Mode DBMS

Table 550. dbms.upgrade()

Description Upgrade the system database schema if it is not the current schema.

Signature dbms.upgrade() :: (status :: STRING?, upgradeResult :: STRING?)

Mode WRITE

Table 551. dbms.upgradeStatus()

Description Report the current status of the system database sub-graph schema.

Signature dbms.upgradeStatus() :: (status :: STRING?, description :: STRING?, resolution :: STRING?)

Mode READ

Table 552. tx.getMetaData()

Description Provides attached transaction metadata.

Signature tx.getMetaData() :: (metadata :: MAP?)

578

Mode DBMS

Table 553. tx.setMetaData()

Description Attaches a map of data to the transaction. The data will be printed when listing queries,
and inserted into the query log.

Signature tx.setMetaData(data :: MAP?) :: VOID

Mode DBMS

Appendix B: Tutorials
The following step-by-step tutorials cover common operational tasks or otherwise exemplify working with
Neo4j.

• Set up a local Causal Cluster — This tutorial walks through the basics of setting up a Neo4j Causal
Cluster.

• Back up and restore a database in Causal Cluster — This tutorial provides a detailed example of how to
back up and restore a database in a running Causal Cluster.

• Neo4j Admin import — This tutorial provides detailed examples to illustrate the capabilities of
importing data from CSV files with the command neo4j-admin import.

• Set up and use Fabric — This tutorial walks through the basics of setting up and using Neo4j Fabric.

17.B.1. Set up a local Causal Cluster

Introduction

In this tutorial, you will learn how to deploy a Causal Cluster locally on a single machine.

Keep in mind that a cluster on a single machine has no fault tolerance and is therefore
not suitable for production use.

A typical Causal Cluster consists of three Core instances and three Read Replicas. The Core instances are
responsible for keeping the data safe, and the Read Replicas are responsible for scaling the capacity of the
cluster. For details on the number of servers required for a Causal Cluster, see Primary servers.

The Core of the Causal Cluster is intended to remain stable over time. The roles within the Core may
change as needed, but the Core itself is long-lived and stable.
Read Replicas live at the edge of the cluster and can be brought up and taken down without affecting the
Core. They can be added as needed to increase the operational capacity of the cluster as a whole.

For more information about Causal Clustering architecture, configuration, and operation, see Clustering.

Download Neo4j

You download Neo4j and prepare your local environment.

579

1. Create a local working directory.

2. Download a copy of the Neo4j Enterprise Edition from the Neo4j download site.

3. Unpack Neo4j in the working directory.

Set up the Core servers

You create and configure three Core instances.

Configure and start the first Core instance

You create and configure the first Core instance.

1. Make a copy of the neo4j-enterprise-4.3.21 directory and name it core-01.
You have to keep the original directory for setting up the other Core instances and Read Replicas. The
core-01 directory will contain the first Core instance.

2. Open the Neo4j configuration file, conf/neo4j.conf, and configure the following settings:

 If you cannot find the configuration file, see File locations.

a. Locate and uncomment the setting dbms.mode=CORE.

b. Locate and uncomment the setting
causal_clustering.minimum_core_cluster_size_at_formation=3.

c. Locate and uncomment the setting causal_clustering.minimum_core_cluster_size_at_runtime=3.

d. Locate and uncomment the setting
causal_clustering.initial_discovery_members=localhost:5000,localhost:5001,localhost:5002
.

e. Locate and uncomment the setting causal_clustering.discovery_listen_address=:5000.

f. Locate and uncomment the setting causal_clustering.transaction_listen_address=:6000.

g. Locate and uncomment the setting causal_clustering.raft_listen_address=:7000.

h. Locate and uncomment the setting dbms.connector.bolt.listen_address=:7687.

i. Locate and uncomment the setting dbms.connector.http.listen_address=:7474.

j. Locate and uncomment the setting dbms.connector.https.listen_address, and change the value
to :6474.

k. Locate and uncomment the setting dbms.backup.listen_address=0.0.0.0:6362.

3. Save the file.

4. Open a command-line tool and navigate to core-01 directory.

5. Run the following command to start core-01:

core-01$./bin/neo4j start

580

https://neo4j.com/download/other-releases/#releases

Create and configure the second Core instance

You create and configure the second Core instance.

1. Make a new copy of the neo4j-enterprise-4.3.21 directory and name it core-02.

2. Overwrite core-02/conf/neo4j.conf with the just modified core-01/conf/neo4j.conf. Then in the new
core-02 directory, open the conf/neo4j.conf file and configure the following settings:

a. Locate the setting causal_clustering.discovery_listen_address and change the value to :5001.

b. Locate the setting causal_clustering.transaction_listen_address and change the value to
:6001.

c. Locate the setting causal_clustering.raft_listen_address and change the value to :7001.

d. Locate the setting dbms.connector.bolt.listen_address and change the value to :7688.

e. Locate the setting dbms.connector.http.listen_address and change the value to :7475.

f. Locate the setting dbms.connector.https.listen_address and change the value to :6475.

g. Locate the setting dbms.backup.listen_address and change the value to 0.0.0.0:6363.

3. Save the file.

4. Open a command-line tool and navigate to core-02 directory.

5. Run the following command to start core-02:

core-02$./bin/neo4j start

Create and configure the third Core instance

You create and configure the third Core instance.

1. Make a new copy of the neo4j-enterprise-4.3.21 directory and name it core-03.

2. Overwrite core-03/conf/neo4j.conf with the just modified core-02/conf/neo4j.conf. Then in the new
core-03 directory, open the conf/neo4j.conf file and configure the following settings:

a. Locate the setting causal_clustering.discovery_listen_address and change the value to :5002.

b. Locate the setting causal_clustering.transaction_listen_address and change the value to
:6002.

c. Locate the setting causal_clustering.raft_listen_address and change the value to :7002.

d. Locate the setting dbms.connector.bolt.listen_address and change the value to :7689.

e. Locate the setting dbms.connector.http.listen_address and change the value to :7476.

f. Locate the setting dbms.connector.https.listen_address and change the value to :6476.

g. Locate the setting dbms.backup.listen_address and change the value to 0.0.0.0:6364.

3. Save the file.

4. Open a command-line tool and navigate to core-03 directory.

581

5. Run the following command to start core-03:

core-03$./bin/neo4j start

Startup Time

To follow along with the startup of a server, check the messages in <instance-
home>/logs/neo4j.log:

• On a Unix system, run the command tail -n100 logs/neo4j.log.

• On Windows Server, run Get-Content .\logs\neo4j.log -Tail 10 -Wait.

While an instance is joining the cluster, the server may appear unavailable. In the case
where an instance is joining a cluster with lots of data, it may take a number of minutes
for the new instance to download the data from the cluster and become available.

Check the status of the cluster

The minimal cluster of three Core servers is operational and is ready to serve requests.

Connect to any of the three Core instances to check the cluster status.

1. Open core-01 at http://localhost:7474.

2. Authenticate with the default neo4j/neo4j credentials, and set a new password when prompted.

3. Check the status of the cluster by running the following in Neo4j Browser:

:sysinfo

Example 135. A cluster of three Core instances.

Name Address Role Status Default Error

neo4j localhost:7689 follower online true -

neo4j localhost:7688 follower online true -

neo4j localhost:7687 leader online true -

system localhost:7689 follower online - -

system localhost:7688 follower online - -

system localhost:7687 leader` online - -

4. Run the following query to create nodes and relationships.

UNWIND range(0, 100) AS value
MERGE (person1:Person {id: value})
MERGE (person2:Person {id: toInteger(100.0 * rand())})
MERGE (person1)-[:FRIENDS]->(person2)

582

http://localhost:7474

5. Open a new tab and point your web browser to a follower, for example, core-02 at
http://localhost:7475.

6. Authenticate with the credentials you have set up for core-01.

7. Run the following query to verify that the data has been replicated:

MATCH path = (person:Person)-[:FRIENDS]-(friend)
RETURN path
LIMIT 10

Set up the Read Replicas

Because the Read Replicas do not participate in quorum decisions, their configuration is simpler than the
configuration of the Core servers.

You configure a Read Replica by setting the address of a Core instance that it can bind to in order to
discover the cluster. For details, see Discovery protocol.
After the initial discovery, the Read Replicas can choose a Core instance from which to catch up. For
details, see Catchup protocol.

Configure and start the first Read Replica

You create and configure the first Read Replica.

1. Make a copy of the neo4j-enterprise-4.3.21 directory and name it replica-01.

2. In the new replica-01 directory, open the conf/neo4j.conf file and configure the following settings:

a. Locate and uncomment the setting dbms.mode, and change the value to READ_REPLICA.

b. Locate and uncomment the setting
causal_clustering.initial_discovery_members=localhost:5000,localhost:5001,localhost:5002
.

c. Locate and uncomment the setting causal_clustering.discovery_listen_address, and change
the value to :5003.

d. Locate and uncomment the setting causal_clustering.transaction_listen_address, and change
the value to :6003.

e. Locate and uncomment the setting dbms.connector.bolt.listen_address, and change the value to
:7690.

f. Locate and uncomment the setting dbms.connector.http.listen_address, and change the value to
:7477.

g. Locate and uncomment the setting dbms.connector.https.listen_address, and change the value
to :6477.

h. Locate and uncomment the setting dbms.backup.listen_address, and change the values to
0.0.0.0:6365.

3. Save the file.

583

http://localhost:7475

4. Open a command-line tool and navigate to replica-01 directory.

5. Run the following command to start replica-01:

replica-01$./bin/neo4j start

Configure and start the second Read Replica

You create and configure the second Read Replica.

1. Make a new copy of the neo4j-enterprise-4.3.21 directory and name it replica-02.

2. Overwrite replica-02/conf/neo4j.conf with the just modified replica-01/conf/neo4j.conf. Then in the
new replica-02 directory, open the conf/neo4j.conf file and configure the following settings:

a. Locate the setting causal_clustering.discovery_listen_address and change the value to :5004.

b. Locate the setting causal_clustering.transaction_listen_address and change the value to
:6004.

c. Locate the setting dbms.connector.bolt.listen_address and change the value to :7691.

d. Locate the setting dbms.connector.http.listen_address and change the value to :7478.

e. Locate the setting dbms.connector.https.listen_address and change the value to :6478.

f. Locate the setting dbms.backup.listen_address and change the value to 0.0.0.0:6366.

3. Save the file.

4. Open a command-line tool and navigate to replica-02 directory.

5. Run the following command to start replica-02:

replica-02$./bin/neo4j start

Configure and start the third Read Replica

You create and configure the third Read Replica.

1. Make a new copy of the neo4j-enterprise-4.3.21 directory and name it replica-03.

2. Overwrite replica-03/conf/neo4j.conf with the just modified replica-02/conf/neo4j.conf. Then in the
new replica-03 directory, open the conf/neo4j.conf file and configure the following settings:

a. Locate the setting causal_clustering.discovery_listen_address and change the value to :5005.

b. Locate the setting causal_clustering.transaction_listen_address and change the value to
:6005.

c. Locate the setting dbms.connector.bolt.listen_address and change the value to :7692.

d. Locate the setting dbms.connector.http.listen_address and change the value to :7479.

e. Locate the setting dbms.connector.https.listen_address and change the value to :6479.

584

f. Locate the setting dbms.backup.listen_address and change the value to 0.0.0.0:6367.

3. Save the file.

4. Open a command-line tool and navigate to replica-03 directory.

5. Run the following command to start replica-03:

replica-03$./bin/neo4j start

Check the status of the cluster

Your cluster of three Core servers and three Read Replicas is operational and is ready to serve requests.

In your core-01 browser, check the cluster status by running the following in Neo4j Browser:

:sysinfo

Example 136. A cluster of three Core instances and three Read Replicas.

Name Address Role Status Default Error

neo4j localhost:7689 follower online true -

neo4j localhost:7688 follower online true -

neo4j localhost:7687 leader online true -

neo4j localhost:7692 read_replica online true -

neo4j localhost:7691 read_replica online true -

neo4j localhost:76890 read_replica online true -

system localhost:7689 follower online - -

system localhost:7688 follower online - -

system localhost:7687 leader online - -

system localhost:7692 read_replica online - -

system localhost:7691 read_replica online - -

system localhost:7690 read_replica online - -

1. Open a new tab and point your web browser to a Read Replica, for example, replica-01 at
http://localhost:7477.

2. Login with neo4j and the previously set password and use the bolt:// schema.

3. Run the following query to verify that the data has been replicated:

MATCH path = (person:Person)-[:FRIENDS]-(friend)
RETURN path
LIMIT 10

585

http://localhost:7477

17.B.2. Back up and restore a database in Causal Cluster

The following example assumes that you want to restore a database backup, which has users and roles
associated with it, in a running Causal Cluster with three core servers. For more information on how to set
up a Causal Cluster with three cores, see Set up a local Causal Cluster.

In a Neo4j DBMS, every database is backed up individually. Therefore, it is very
important to plan your backup strategy for each of them. For more detailed information
on how to design an appropriate backup strategy for your setup, see Backup and
restore.

Prepare to back up your database

Before you perform the backup, it is good to take a note of the data and metadata of the database that you
want to restore. You can use this information to later verify that the restore is successful and to recreate
the database users and roles. In this example, the database is called movies1 and uses the Movie Graph
dataset from the Neo4j Browser → Favorites → Example Graphs.

This tutorial uses the Linux or macOS tarball installation. It assumes that your current
work directory is the <neo4j-home> directory of the tarball installation.

1. In the Neo4j instance, where the database is running, log in to the Cypher Shell command-line console
with your credentials. For more information about the Cypher Shell command-line interface (CLI) and
how to use it, see Cypher Shell.

bin/cypher-shell -u neo4j -p <password>

Connected to Neo4j at neo4j://localhost:7687 as user neo4j.
Type :help for a list of available commands or :exit to exit the shell.
Note that Cypher queries must end with a semicolon.

2. Change the active database to movies1.

:use movies1

3. Run a query to count the number of nodes in the database.

MATCH (n) RETURN count(n) AS countNode;

+-----------+
| countNode |
+-----------+
| 171 |
+-----------+

1 row available after 22 ms, consumed after another 1 ms

4. Run a query to count the number of relationships.

586

MATCH (n)-[r]->() RETURN count(r) AS countRelationships;

+--------------------+
| countRelationships |
+--------------------+
| 253 |
+--------------------+

1 row available after 29 ms, consumed after another 0 ms

5. Change the active database to system, and run a query to see if there are any custom roles, associated
with this database, and their privileges.

SHOW ALL PRIVILEGES AS COMMANDS;

+---+
| command |
+---+
| "GRANT ACCESS ON HOME DATABASE TO `PUBLIC`" |
| "GRANT EXECUTE FUNCTION * ON DBMS TO `PUBLIC`" |
| "GRANT EXECUTE PROCEDURE * ON DBMS TO `PUBLIC`" |
| "GRANT ACCESS ON DATABASE * TO `admin`" |
| "GRANT MATCH {*} ON GRAPH * NODE * TO `admin`" |
| "GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `admin`" |
| "GRANT WRITE ON GRAPH * TO `admin`" |
| "GRANT NAME MANAGEMENT ON DATABASE * TO `admin`" |
| "GRANT INDEX MANAGEMENT ON DATABASE * TO `admin`" |
| "GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `admin`" |
| "GRANT START ON DATABASE * TO `admin`" |
| "GRANT STOP ON DATABASE * TO `admin`" |
| "GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO `admin`" |
| "GRANT ALL DBMS PRIVILEGES ON DBMS TO `admin`" |
| "GRANT ACCESS ON DATABASE * TO `architect`" |
| "GRANT MATCH {*} ON GRAPH * NODE * TO `architect`" |
| "GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `architect`" |
| "GRANT WRITE ON GRAPH * TO `architect`" |
| "GRANT NAME MANAGEMENT ON DATABASE * TO `architect`" |
| "GRANT INDEX MANAGEMENT ON DATABASE * TO `architect`" |
| "GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `architect`" |
| "GRANT ACCESS ON DATABASE * TO `publisher`" |
| "GRANT MATCH {*} ON GRAPH * NODE * TO `publisher`" |
| "GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `publisher`" |
| "GRANT WRITE ON GRAPH * TO `publisher`" |
| "GRANT NAME MANAGEMENT ON DATABASE * TO `publisher`" |
| "GRANT ACCESS ON DATABASE * TO `editor`" |
| "GRANT MATCH {*} ON GRAPH * NODE * TO `editor`" |
| "GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `editor`" |
| "GRANT WRITE ON GRAPH * TO `editor`" |
| "GRANT ACCESS ON DATABASE * TO `reader`" |
| "GRANT MATCH {*} ON GRAPH * NODE * TO `reader`" |
| "GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `reader`" |
| "GRANT ACCESS ON DATABASE * TO `myrole`" |
| "GRANT MATCH {*} ON GRAPH * NODE * TO `myrole`" |
| "GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `myrole`" |
| "GRANT WRITE ON GRAPH movies1 TO `myrole`" |
+---+

39 rows available after 868 ms, consumed after another 80 ms

The result shows that there is one custom role myrole.

6. Run a query to see all users associated with this role.

SHOW USERS;

587

+---+
| user | roles | passwordChangeRequired | suspended |
+---+
| "neo4j" | ["admin", "PUBLIC"] | FALSE | FALSE |
| "user1" | ["myrole", "PUBLIC"] | TRUE | FALSE |
+---+

2 rows available after 36 ms, consumed after another 2 ms

7. Exit the Cypher Shell command-line console.

:exit

Back up your database

Now you are ready to back up the database.

Run the following command to back up the database in your targeted folder. If the folder where you want
to place your backup does not exist, you have to create it. In this example, it is called /tmp/4.3.21.

To perform the backup, run the following command:

bin/neo4j-admin backup --backup-dir=/tmp/4.3.21 --database=movies1 --include-metadata=all

The option --include-metadata=all creates a cypher script, which you can later use to restore the
database’s users, roles, and privileges.

For details on performing a backup and the different command options, see Back up an online database.

Delete the database that you want to replace

Before you restore the database backup, you have to delete the database that you want to replace with
that backup. If you want to restore the backup as an additional database in your DBMS, then you can
proceed to Restore the database backup on all cluster members directly.

On one of the cluster members, run the Cypher command DROP DATABASE to delete the database that you
want to replace. The command is automatically routed to the leader and from there to the other cluster
members.

 Dropping a database also deletes the users and roles associated with it.

1. In the Cypher Shell command-line console on one of the cluster members, change the active database
to system, and run the command DROP DATABASE to delete the database that you want to replace. In this
example, the database is called movies.

DROP DATABASE movies;

0 rows available after 82 ms, consumed after another 0 ms

588

If you are unable to delete the database (e.g., because Neo4j is not running), you
must run neo4j-admin unbind first instead. If you fail to do this, the store files you
have (post restore) will be out of sync with the cluster state you have for that
database, leading to logical corruption.

2. You can run SHOW DATABASES to verify that the database movies does not exist.

SHOW DATABASES;

+---
-+
| name | address | role | requestedStatus | currentStatus | error | default | home
|
+---
-+
| "neo4j" | "localhost:7687" | "follower" | "online" | "online" | "" | TRUE | TRUE
|
| "neo4j" | "localhost:7688" | "leader" | "online" | "online" | "" | TRUE | TRUE
|
| "neo4j" | "localhost:7689" | "follower" | "online" | "online" | "" | TRUE | TRUE
|
| "system" | "localhost:7687" | "follower" | "online" | "online" | "" | FALSE | FALSE
|
| "system" | "localhost:7688" | "follower" | "online" | "online" | "" | FALSE | FALSE
|
| "system" | "localhost:7689" | "leader" | "online" | "online" | "" | FALSE | FALSE
|
+---
-+

6 rows available after 7 ms, consumed after another 3 ms

3. Exit the Cypher Shell command-line console.

:exit

Restore the database backup on all cluster members

On each cluster member, run the following command to restore the database backup. For details on
performing a restore and the different command options, see Restore a database backup.

bin/neo4j-admin restore --from=/tmp/4.3.21/movies1 --database=movies1

You need to execute $HOME/path/to/core-member/data/scripts/movies1/restore_metadata.cypher. To execute the
file use cypher-shell command with parameter `movies1`
restorePath=/tmp/{neo4j-version-exact}/movies1, restoreStatus=successful, reason=

Then, on each cluster member, run the following command to verify that the database movies1 exists:

ls -al data/databases

589

total 0
drwxr-xr-x@ 7 username staff 224 17 Nov 15:50 .
drwxr-xr-x@ 8 username staff 256 17 Nov 15:50 ..
drwxr-xr-x 40 username staff 1280 17 Nov 15:50 movies1
drwxr-xr-x 37 username staff 1184 16 Nov 15:00 neo4j
-rw-r--r-- 1 username staff 0 16 Nov 15:00 store_lock
drwxr-xr-x 38 username staff 1216 16 Nov 15:00 system

However, restoring a database does not automatically create it. Therefore, it will not be visible if you do
SHOW DATABASES in Cypher Shell or Neo4j Browser.

Create the database backup on the cluster leader

You create the database backup only on one of your cluster members using the command CREATE
DATABASE. The command is automatically routed to the leader and from there to the other cluster members.

1. In the Cypher Shell command-line console on one of the cluster members, use the system database
and create the database movies1.

CREATE DATABASE movies1;

0 rows available after 132 ms, consumed after another 0 ms

2. Verify that the movies1 database is online on all members.

SHOW DATABASES;

+---
--+
| name | address | role | requestedStatus | currentStatus | error | default | home
|
+---
--+
| "movies1" | "localhost:7688" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "movies1" | "localhost:7687" | "leader" | "online" | "online" | "" | FALSE |
FALSE |
| "movies1" | "localhost:7689" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "neo4j" | "localhost:7688" | "leader" | "online" | "online" | "" | TRUE | TRUE
|
| "neo4j" | "localhost:7687" | "follower" | "online" | "online" | "" | TRUE | TRUE
|
| "neo4j" | "localhost:7689" | "follower" | "online" | "online" | "" | TRUE | TRUE
|
| "system" | "localhost:7688" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
| "system" | "localhost:7687" | "leader" | "online" | "online" | "" | FALSE |
FALSE |
| "system" | "localhost:7689" | "follower" | "online" | "online" | "" | FALSE |
FALSE |
+---
--+

9 rows available after 3 ms, consumed after another 1 ms

3. Exit the Cypher Shell command-line console.

590

:exit

Recreate the database users and roles

On one of the cluster members, run the restore cypher script restore_metadata.cypher to create the
database and recreate all users and roles of the database backup. The command is automatically routed to
the leader and from there to the other cluster members.

Using cat (UNIX)

cat data/scripts/movies1/restore_metadata.cypher | bin/cypher-shell -u neo4j -p password -a localhost:7688
-d system --param "database => 'movies1'"

Using type (Windows)

type data\scripts\movies1\restore_metadata.cypher | bin\cypher-shell.bat -u neo4j -p password -a
localhost:7688 -d system --param "database => 'movies1'"

Follow the steps from 1 to 6 of section Prepare to back up your database to verify that all data and
metadata of the database backup have been successfully restored on all cluster members.

17.B.3. Neo4j Admin import

The neo4j-admin import is a command for loading large amounts of data from CSV files into an unused
non-existing database. Importing data from CSV files with neo4j-admin import can only be done once into
an unused database, it is used for initial graph population only. The neo4j-admin import command can be
used on the local Neo4j instance even if the instance is running or not.

The neo4j-admin import command does not create a database, the command only
imports data and make it available for the database. The database must not exist before
the neo4j-admin import command has been executed, and the database should be
created afterwards. The command will exit with an error message if the database
already exists.

Relationships are created by connecting node IDs, each node should have a unique ID to be able to be
referenced when creating relationships between nodes. In the following examples, the node IDs are stored
as properties on the nodes. If you do not want the IDs to persist as properties after the import completes,
then do not specify a property name in the :ID field.

The examples show how to import data in a standalone Neo4j DBMS. They use:

• The Neo4j tarball (Unix console application).

• $NEO4J_HOME as the current working directory.

• The default database neo4j.

• The import directory of the Neo4j installation to store all the CSV files. However, the CSV files can be
located in any directory of your file system.

591

• UNIX styled paths.

• The neo4j-admin import command.

To create a cluster based on imported data, see [causal-clustering-seed-import].

Handy tips:

• The details of CSV file header format can be found at CSV header format.

• To show available databases, use the Cypher query SHOW DATABASES against the
system database.

• To remove a database, use the Cypher query DROP DATABASE database_name against
the system database.

• To create a database, use the Cypher query CREATE DATABASE database_name against
the system database.

Import a small data set

In this example, you will import a small data set containing nodes and relationships. The data set is split
into three CSV files, where each file has a header row describing the data.

The data

The data set contains information about movies, actors, and roles. Data for movies and actors are stored as
nodes and the roles are stored as relationships.

The files you want to import data from are:

• movies.csv

• actors.csv

• roles.csv

Each movie in movies.csv has an ID, a title and a year, stored as properties in the node. All the nodes in
movies.csv also have the label Movie. A node can have several labels, as you can see in movies.csv there
are nodes that also have the label Sequel. The node labels are optional, they are very useful for grouping
nodes into sets where all nodes that have a certain label belongs to the same set.

movies.csv

movieId:ID,title,year:int,:LABEL
tt0133093,"The Matrix",1999,Movie
tt0234215,"The Matrix Reloaded",2003,Movie;Sequel
tt0242653,"The Matrix Revolutions",2003,Movie;Sequel

The actors data in actors.csv consist of an ID and a name, stored as properties in the node. The ID in this
case a shorthand of the actors name. All the nodes in actors.csv have the label Actor.

592

actors.csv

personId:ID,name,:LABEL
keanu,"Keanu Reeves",Actor
laurence,"Laurence Fishburne",Actor
carrieanne,"Carrie-Anne Moss",Actor

The roles data in roles.csv have only one property, role. Roles are represented by relationship data that
connects actor nodes with movie nodes.

There are three mandatory fields for relationship data:

1. :START_ID — ID refering to a node.

2. :END_ID — ID refering to a node.

3. :TYPE — The relationship type.

In order to create a relationship between two nodes, the IDs defined in actors.csv and movies.csv are
used for the :START_ID and :END_ID fields. You also need to provide a relationship type (in this case
ACTED_IN) for the :TYPE field.

roles.csv

:START_ID,role,:END_ID,:TYPE
keanu,"Neo",tt0133093,ACTED_IN
keanu,"Neo",tt0234215,ACTED_IN
keanu,"Neo",tt0242653,ACTED_IN
laurence,"Morpheus",tt0133093,ACTED_IN
laurence,"Morpheus",tt0234215,ACTED_IN
laurence,"Morpheus",tt0242653,ACTED_IN
carrieanne,"Trinity",tt0133093,ACTED_IN
carrieanne,"Trinity",tt0234215,ACTED_IN
carrieanne,"Trinity",tt0242653,ACTED_IN

Importing the data

• Paths to node data is defined with the --nodes option.

• Paths to relationship data is defined with the --relationships option.

The call to neo4j-admin import would look like this:

shell

bin/neo4j-admin import --database=neo4j --nodes=import/movies.csv --nodes=import/actors.csv
--relationships=import/roles.csv

Query the data

To query the data. Start Neo4j.

 The default username and password is neo4j and neo4j.

593

shell

bin/neo4j start

To query the imported data in the graph, try a simple Cypher query.

shell

bin/cypher-shell --database=neo4j "MATCH (n) RETURN count(n) as nodes"

Stop Neo4j.

shell

bin/neo4j stop

CSV file delimiters

You can customize the configuration options that the import tool uses (see Options) if your data does not
fit the default format.

The details of CSV file header format can be found at CSV header format.

The data

The following CSV files have:

• --delimiter=";"

• --array-delimiter="|"

• --quote="'"

movies2.csv

movieId:ID;title;year:int;:LABEL
tt0133093;'The Matrix';1999;Movie
tt0234215;'The Matrix Reloaded';2003;Movie|Sequel
tt0242653;'The Matrix Revolutions';2003;Movie|Sequel

actors2.csv

personId:ID;name;:LABEL
keanu;'Keanu Reeves';Actor
laurence;'Laurence Fishburne';Actor
carrieanne;'Carrie-Anne Moss';Actor

594

roles2.csv

:START_ID;role;:END_ID;:TYPE
keanu;'Neo';tt0133093;ACTED_IN
keanu;'Neo';tt0234215;ACTED_IN
keanu;'Neo';tt0242653;ACTED_IN
laurence;'Morpheus';tt0133093;ACTED_IN
laurence;'Morpheus';tt0234215;ACTED_IN
laurence;'Morpheus';tt0242653;ACTED_IN
carrieanne;'Trinity';tt0133093;ACTED_IN
carrieanne;'Trinity';tt0234215;ACTED_IN
carrieanne;'Trinity';tt0242653;ACTED_IN

Importing the data

The call to neo4j-admin import would look like this:

shell

bin/neo4j-admin import --database=neo4j --delimiter=";" --array-delimiter="|" --quote="'"
--nodes=import/movies2.csv --nodes=import/actors2.csv --relationships=import/roles2.csv

Using separate header files

When dealing with very large CSV files, it is more convenient to have the header in a separate file. This
makes it easier to edit the header as you avoid having to open a huge data file just to change it. The header
file must be specified before the rest of the files in each file group.

The import tool can also process single file compressed archives, for example:

• --nodes=import/nodes.csv.gz

• --relationships=import/relationships.zip

The data

You will use the same data set as in the previous example but with the headers in separate files.

movies3-header.csv

movieId:ID,title,year:int,:LABEL

movies3.csv

tt0133093,"The Matrix",1999,Movie
tt0234215,"The Matrix Reloaded",2003,Movie;Sequel
tt0242653,"The Matrix Revolutions",2003,Movie;Sequel

actors3-header.csv

personId:ID,name,:LABEL

595

actors3.csv

keanu,"Keanu Reeves",Actor
laurence,"Laurence Fishburne",Actor
carrieanne,"Carrie-Anne Moss",Actor

roles3-header.csv

:START_ID,role,:END_ID,:TYPE

roles3.csv

keanu,"Neo",tt0133093,ACTED_IN
keanu,"Neo",tt0234215,ACTED_IN
keanu,"Neo",tt0242653,ACTED_IN
laurence,"Morpheus",tt0133093,ACTED_IN
laurence,"Morpheus",tt0234215,ACTED_IN
laurence,"Morpheus",tt0242653,ACTED_IN
carrieanne,"Trinity",tt0133093,ACTED_IN
carrieanne,"Trinity",tt0234215,ACTED_IN
carrieanne,"Trinity",tt0242653,ACTED_IN

Importing the data

The call to neo4j-admin import would look as follows:

The header line for a file group, whether it is the first line of a file in the group or a
dedicated header file, must be the first line in the file group.

shell

bin/neo4j-admin import --database=neo4j --nodes=import/movies3-header.csv,import/movies3.csv
--nodes=import/actors3-header.csv,import/actors3.csv --relationships=import/roles3
-header.csv,import/roles3.csv

Multiple input files

In addition to using a separate header file you can also provide multiple nodes or relationships files. Files
within such an input group can be specified with multiple match strings, delimited by ,, where each match
string can be either the exact file name or a regular expression matching one or more files. Multiple
matching files will be sorted according to their characters and their natural number sort order for file
names containing numbers.

The data

movies4-header.csv

movieId:ID,title,year:int,:LABEL

596

movies4-part1.csv

tt0133093,"The Matrix",1999,Movie
tt0234215,"The Matrix Reloaded",2003,Movie;Sequel

movies4-part2.csv

tt0242653,"The Matrix Revolutions",2003,Movie;Sequel

actors4-header.csv

personId:ID,name,:LABEL

actors4-part1.csv

keanu,"Keanu Reeves",Actor
laurence,"Laurence Fishburne",Actor

actors4-part2.csv

carrieanne,"Carrie-Anne Moss",Actor

roles4-header.csv

:START_ID,role,:END_ID,:TYPE

roles4-part1.csv

keanu,"Neo",tt0133093,ACTED_IN
keanu,"Neo",tt0234215,ACTED_IN
keanu,"Neo",tt0242653,ACTED_IN
laurence,"Morpheus",tt0133093,ACTED_IN
laurence,"Morpheus",tt0234215,ACTED_IN

roles4-part2.csv

laurence,"Morpheus",tt0242653,ACTED_IN
carrieanne,"Trinity",tt0133093,ACTED_IN
carrieanne,"Trinity",tt0234215,ACTED_IN
carrieanne,"Trinity",tt0242653,ACTED_IN

Importing the data

The call to neo4j-admin import would look like this:

shell

bin/neo4j-admin import --database=neo4j --nodes=import/movies4-header.csv,import/movies4
-part1.csv,import/movies4-part2.csv --nodes=import/actors4-header.csv,import/actors4
-part1.csv,import/actors4-part2.csv --relationships=import/roles4-header.csv,import/roles4
-part1.csv,import/roles4-part2.csv

597

Regular expressions

File names can be specified using regular expressions in order to simplify using the command line when
there are many data source files. Each file name that matches the regular expression will be included.

If using separate header files, for the import to work correctly, the header file must be the first in the file
group. When using regular expressions to specify the input files, the list of files will be sorted according to
the names of the files that match the expression. The matching is aware of numbers inside the file names
and will sort them accordingly, without the need for padding with zeros.

Example 137. Match order

For example, let’s assume that you have the following files:

• movies4-header.csv

• movies4-data1.csv

• movies4-data2.csv

• movies4-data12.csv

If you use the regular expression movies4.*, the sorting will place the header file last and the import
will fail. A better alternative would be to name the header file explicitly and use a regular expression
that only matches the names of the data files. For example: --nodes "import/movies4-
header.csv,movies-data.*" will accomplish this.

Importing the data using regular expressions, the call to neo4j-admin import can be simplified to:

shell

bin/neo4j-admin import --database=neo4j --nodes="import/movies4-header.csv,import/movies4-part.*"
--nodes="import/actors4-header.csv,import/actors4-part.*" --relationships="import/roles4
-header.csv,import/roles4-part.*"

The use of regular expressions should not be confused with file globbing.

The expression .* means: "zero or more occurrences of any character except line break".
Therefore, the regular expression movies4.* will list all files starting with movies4.
Conversely, with file globbing, ls movies4.* will list all files starting with movies4..

Another important difference to pay attention to is the sorting order. The result of a
regular expression matching will place the file movies4-part2.csv before the file
movies4-part12.csv. If doing ls movies4-part* in a directory containing the above listed
files, the file movies4-part12.csv will be listed before the file movies4-part2.csv.

Using the same label for every node

If you want to use the same node label(s) for every node in your nodes file you can do this by specifying
the appropriate value as an option to neo4j-admin import. There is then no need to specify the :LABEL
column in the header file and each row (node) will apply the specified labels from the command line option.

598

https://en.wikipedia.org/wiki/Glob_(programming)

Example 138. Specify node labels option

--nodes=LabelOne:LabelTwo=import/example-header.csv,import/example-data1.csv

It is possible to apply both the label provided in the file and the one provided on the
command line to the node.

The data

In this example you want to have the label Movie on every node specified in movies5a.csv, and you put the
labels Movie and Sequel on the nodes specified in sequels5a.csv.

movies5a.csv

movieId:ID,title,year:int
tt0133093,"The Matrix",1999

sequels5a.csv

movieId:ID,title,year:int
tt0234215,"The Matrix Reloaded",2003
tt0242653,"The Matrix Revolutions",2003

actors5a.csv

personId:ID,name
keanu,"Keanu Reeves"
laurence,"Laurence Fishburne"
carrieanne,"Carrie-Anne Moss"

roles5a.csv

:START_ID,role,:END_ID,:TYPE
keanu,"Neo",tt0133093,ACTED_IN
keanu,"Neo",tt0234215,ACTED_IN
keanu,"Neo",tt0242653,ACTED_IN
laurence,"Morpheus",tt0133093,ACTED_IN
laurence,"Morpheus",tt0234215,ACTED_IN
laurence,"Morpheus",tt0242653,ACTED_IN
carrieanne,"Trinity",tt0133093,ACTED_IN
carrieanne,"Trinity",tt0234215,ACTED_IN
carrieanne,"Trinity",tt0242653,ACTED_IN

Importing the data

The call to neo4j-admin import would look like this:

shell

bin/neo4j-admin import --database=neo4j --nodes=Movie=import/movies5a.csv
--nodes=Movie:Sequel=import/sequels5a.csv --nodes=Actor=import/actors5a.csv
--relationships=import/roles5a.csv

599

Using the same relationship type for every relationship

If you want to use the same relationship type for every relationship in your relationships file this can be
done by specifying the appropriate value as an option to neo4j-admin import.

Example 139. Specify relationship type option

--relationships=TYPE=import/example-header.csv,import/example-data1.csv

If you provide a relationship type both on the command line and in the relationships file,
the one in the file will be applied.

The data

In this example you want the relationship type ACTED_IN to be applied on every relationship specified in
roles5b.csv.

movies5b.csv

movieId:ID,title,year:int,:LABEL
tt0133093,"The Matrix",1999,Movie
tt0234215,"The Matrix Reloaded",2003,Movie;Sequel
tt0242653,"The Matrix Revolutions",2003,Movie;Sequel

actors5b.csv

personId:ID,name,:LABEL
keanu,"Keanu Reeves",Actor
laurence,"Laurence Fishburne",Actor
carrieanne,"Carrie-Anne Moss",Actor

roles5b.csv

:START_ID,role,:END_ID
keanu,"Neo",tt0133093
keanu,"Neo",tt0234215
keanu,"Neo",tt0242653
laurence,"Morpheus",tt0133093
laurence,"Morpheus",tt0234215
laurence,"Morpheus",tt0242653
carrieanne,"Trinity",tt0133093
carrieanne,"Trinity",tt0234215
carrieanne,"Trinity",tt0242653

Importing the data

The call to neo4j-admin import would look like this:

shell

bin/neo4j-admin import --database=neo4j --nodes=import/movies5b.csv --nodes=import/actors5b.csv
--relationships=ACTED_IN=import/roles5b.csv

600

Properties

Nodes and relationships can have properties. The property type are specified in the CSV header row, see
CSV header format.

The data

The following example creates a small graph containing one actor and one movie connected by one
relationship.

There is a roles property on the relationship which contains an array of the characters played by the actor
in a movie:

movies6.csv

movieId:ID,title,year:int,:LABEL
tt0099892,"Joe Versus the Volcano",1990,Movie

actors6.csv

personId:ID,name,:LABEL
meg,"Meg Ryan",Actor

roles6.csv

:START_ID,roles:string[],:END_ID,:TYPE
meg,"DeDe;Angelica Graynamore;Patricia Graynamore",tt0099892,ACTED_IN

Importing the data

The call to neo4j-admin import would look like this:

shell

bin/neo4j-admin import --database=neo4j --nodes=import/movies6.csv --nodes=import/actors6.csv
--relationships=import/roles6.csv

ID space

The import tool makes the assumption that identifiers are unique across node files. This may not be the
case for data sets which use sequential, auto incremented or otherwise colliding identifiers. Those data
sets can define ID spaces where identifiers are unique within their respective ID space.

In cases where the node ID is only unique within files, using ID spaces is a way to ensure uniqueness
across all nodes files. See Using ID spaces.

Each node processed by neo4j-admin import must provide an ID if it is to be connected in any
relationships. The node ID is used to find the start node and end node when creating a relationship.

601

Example 140. ID space

To define a ID space Movie-ID for movieId:ID the syntax will be movieId:ID(Movie-ID).

The data

For example, if movies and people both use sequential identifiers, then you would define Movie and Actor
ID spaces.

movies7.csv

movieId:ID(Movie-ID),title,year:int,:LABEL
1,"The Matrix",1999,Movie
2,"The Matrix Reloaded",2003,Movie;Sequel
3,"The Matrix Revolutions",2003,Movie;Sequel

actors7.csv

personId:ID(Actor-ID),name,:LABEL
1,"Keanu Reeves",Actor
2,"Laurence Fishburne",Actor
3,"Carrie-Anne Moss",Actor

You also need to reference the appropriate ID space in your relationships file so it knows which nodes to
connect together.

roles7.csv

:START_ID(Actor-ID),role,:END_ID(Movie-ID)
1,"Neo",1
1,"Neo",2
1,"Neo",3
2,"Morpheus",1
2,"Morpheus",2
2,"Morpheus",3
3,"Trinity",1
3,"Trinity",2
3,"Trinity",3

Importing the data

The call to neo4j-admin import would look like this:

shell

bin/neo4j-admin import --database=neo4j --nodes=import/movies7.csv --nodes=import/actors7.csv
--relationships=ACTED_IN=import/roles7.csv

Skip relationships referring to missing nodes

The import tool has no tolerance for bad entities (relationships or nodes) and will fail the import on the first
bad entity. You can specify explicitly that you want it to ignore rows that contain bad entities.

602

There are two different types of bad input:

1. Bad relationships.

2. Bad nodes.

Relationships that refer to missing node IDs, either for :START_ID or :END_ID are considered bad
relationships. Whether or not such relationships are skipped is controlled with --skip-bad-relationships
flag, which can have the values true or false or no value, which means true. The default is false, which
means that any bad relationship is considered an error and will fail the import. For more information, see
the --skip-bad-relationships option.

The data

In the following example there is a missing emil node referenced in the roles file.

movies8a.csv

movieId:ID,title,year:int,:LABEL
tt0133093,"The Matrix",1999,Movie
tt0234215,"The Matrix Reloaded",2003,Movie;Sequel
tt0242653,"The Matrix Revolutions",2003,Movie;Sequel

actors8a.csv

personId:ID,name,:LABEL
keanu,"Keanu Reeves",Actor
laurence,"Laurence Fishburne",Actor
carrieanne,"Carrie-Anne Moss",Actor

roles8a.csv

:START_ID,role,:END_ID,:TYPE
keanu,"Neo",tt0133093,ACTED_IN
keanu,"Neo",tt0234215,ACTED_IN
keanu,"Neo",tt0242653,ACTED_IN
laurence,"Morpheus",tt0133093,ACTED_IN
laurence,"Morpheus",tt0234215,ACTED_IN
laurence,"Morpheus",tt0242653,ACTED_IN
carrieanne,"Trinity",tt0133093,ACTED_IN
carrieanne,"Trinity",tt0234215,ACTED_IN
carrieanne,"Trinity",tt0242653,ACTED_IN
emil,"Emil",tt0133093,ACTED_IN

Importing the data

The call to neo4j-admin import would look like this:

shell

bin/neo4j-admin import --database=neo4j --nodes=import/movies8a.csv --nodes=import/actors8a.csv
--relationships=import/roles8a.csv

Since there was a bad relationship in the input data, the import process will fail completely.

603

Let’s see what happens if you append the --skip-bad-relationships flag:

shell

bin/neo4j-admin import --database=neo4j --skip-bad-relationships --nodes=import/movies8a.csv
--nodes=import/actors8a.csv --relationships=import/roles8a.csv

The data files are successfully imported and the bad relationship is ignored. An entry is written to the
import.report file.

ignore bad relationships

InputRelationship:
 source: roles8a.csv:11
 properties: [role, Emil]
 startNode: emil (global id space)
 endNode: tt0133093 (global id space)
 type: ACTED_IN
 referring to missing node emil

Skip nodes with same ID

Nodes that specify :ID which has already been specified within the ID space are considered bad nodes.
Whether or not such nodes are skipped is controlled with --skip-duplicate-nodes flag which can have
the values true or false or no value, which means true. The default is false, which means that any
duplicate node is considered an error and will fail the import. For more information, see the --skip
-duplicate-nodes option.

The data

In the following example there is a node ID, laurence, that is specified twice within the same ID space.

actors8b.csv

personId:ID,name,:LABEL
keanu,"Keanu Reeves",Actor
laurence,"Laurence Fishburne",Actor
carrieanne,"Carrie-Anne Moss",Actor
laurence,"Laurence Harvey",Actor

Importing the data

The call to neo4j-admin import would look like this:

shell

bin/neo4j-admin import --database=neo4j --nodes=import/actors8b.csv

Since there was a bad node in the input data, the import process will fail completely.

Let’s see what happens if you append the --skip-duplicate-nodes flag:

604

shell

bin/neo4j-admin import --database=neo4j --skip-duplicate-nodes --nodes=import/actors8b.csv

The data files are successfully imported and the bad node is ignored. An entry is written to the
import.report file.

ignore bad nodes

ID 'laurence' is defined more than once in global ID space, at least at actors8b.csv:3 and actors8b.csv:5

17.B.4. Set up and use Fabric

Neo4j Fabric is a tool for storing and retrieving data in multiple databases, located in one or many Neo4j
DBMS(s), with a single Cypher query.

In this tutorial, you will learn how to:

• Model your data for Fabric

• Configure Fabric with three databases

• Import data in your databases

• Retrieve data with a single Cypher query

For more information on how to manage multiple active databases in Neo4j, see Manage
databases.
For more details on Fabric, see Fabric.

Model your data for Fabric

Northwind data

 The example data in this tutorial is based on the Northwind dataset, created by Microsoft.

It contains the sales data of a fictitious small company called “Northwind Traders”. The data includes
customers, products, customer orders, warehouse stock, shipping, suppliers, employees, and sales
territories.

For more information on how Northwind (a relational dataset) is modeled into a graph,
run :guide northwind-graph in Neo4j Browser to play the built-in guide Northwind
Graph. See the Neo4j Browser documentation.

605

https://neo4j.com/docs/browser-manual/current/visual-tour/#guides

The model

The Northwind graph model consists of the following data:

• Node labels

◦ :Product

◦ :Category

◦ :Supplier

◦ :Order

◦ :Customer

• Relationship types

◦ :SUPPLIES

◦ :PART_OF

◦ :ORDERS

◦ :PURCHASED

Figure 14. The Northwind data model

606

Remodeling the Northwind dataset

In this scenario, you imagine that data privacy constraints require customers’ data to be stored in their
original region. For simplicity, there are two regions: the Americas (AME) and Europe (EU). The first step is
to remodel the Northwind dataset, so that customer data can be separated from the Product catalog,
which has no privacy constraints. You create two graphs: one for the Product catalog, which includes
:Product, :Category, :Supplier, :PART_OF, :SUPPLIES, and one partitioned graph in two databases for the
Customer orders in EU and AME, with :Product, :Order, :Customer, :PURCHASED, and :ORDERS.

Figure 15. The new data model

Data Federation

This way, the Product and Customer data are in two disjointed graphs, with different labels and
relationship types. This is called Data Federation. To query across them, you have to federate the graphs,
because relationships cannot span across them. This is done by using a proxy node modeling pattern:
nodes with the :Product label must be present in both federated domains. In the Product catalog graph,
nodes with the :Product label contain all the data related to a product, while in the Customer graphs, the
same label is associated to a proxy node, which only contains productID. The productID property allows
you to link data across the graphs in this federation.

Figure 16. Data Federation

Data Sharding

Since the Customer data is for two regions (EU and AME), you have to partition it into two databases. The

607

resulting two graphs have the same model (same labels, same relationship types), but different data. This
is called Data Sharding.

Figure 17. Data Sharding

In general, there are a couple of main use cases that require sharding. The most common is scalability, i.e.,
different shards can be deployed on different servers, splitting the load on different resources. Another
reason could be data regulations: different shards can be deployed on servers, residing in different
locations, and managed independently.

Configure Fabric with three databases

Now that you have a new multi-database model defined, you can start to configure the Fabric
infrastructure.

This tutorial uses the Linux or macOS tarball installation. It assumes that your current
work directory is the <neo4j-home> directory of the tarball installation.

Create three databases

You need three databases: db0 for the Product catalog, db1 for the EU customer data, and db2 for the AME
customers.

1. Start the Neo4j DBMS.

bin/neo4j start

2. Check all available databases.

ls -al /data/databases/

total 0
drwxr-xr-x@ 5 username staff 160 9 Jun 12:53 .
drwxr-xr-x@ 5 username staff 160 9 Jun 12:53 ..
drwxr-xr-x 37 username staff 1184 9 Jun 12:53 neo4j
-rw-r--r-- 1 username staff 0 9 Jun 12:53 store_lock
drwxr-xr-x 38 username staff 1216 9 Jun 12:53 system

3. Connect to the Neo4j DBMS using cypher-shell with the default credentials and change the password

608

when prompted. For more information about the Cypher Shell command-line interface (CLI) and how
to use it, see Cypher Shell.

bin/cypher-shell -u neo4j -p neo4j

Password change required
new password: *****
Connected to Neo4j 4.1.x at neo4j://localhost:7687 as user neo4j.
Type :help for a list of available commands or :exit to exit the shell.
Note that Cypher queries must end with a semicolon.

4. Run the command SHOW DATABASES to list all available databases.

SHOW DATABASES;

+---
---+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+---
---+
| "neo4j" | "localhost:7687" | "standalone" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
+---
---+

2 rows available after 102 ms, consumed after another 11 ms

5. Run the command CREATE DATABASE <database-name> to create the databases.

CREATE DATABASE db0;

0 rows available after 137 ms, consumed after another 0 ms

CREATE DATABASE db1;

0 rows available after 14 ms, consumed after another 0 ms

CREATE DATABASE db2;

0 rows available after 10 ms, consumed after another 0 ms

6. Again run the command SHOW DATABASES to verify that the new databases have been created.

SHOW DATABASES;

609

+---
---+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+---
---+
| "db0" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
| "db1" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
| "db2" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
| "neo4j" | "localhost:7687" | "standalone" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
+---
---+

5 rows available after 8 ms, consumed after another 7 ms

7. Exit the Cypher Shell command-line tool.

:exit

Configure Fabric

You set up Fabric by configuring the fabric database and the graph names and IDs in the neo4j.conf file. In
this example, the Fabric database is called fabricnw.

1. Navigate to the <neo4j-home>/conf/ folder and open the neo4j.conf file.

2. Add the following lines and save it.

#**
Fabric tutorial
#**

fabric.database.name=fabricnw

fabric.graph.0.uri=neo4j://localhost:7687
fabric.graph.0.name=product
fabric.graph.0.database=db0

fabric.graph.1.uri=neo4j://localhost:7687
fabric.graph.1.name=customerEU
fabric.graph.1.database=db1

fabric.graph.2.uri=neo4j://localhost:7687
fabric.graph.2.name=customerAME
fabric.graph.2.database=db2

3. Navigate back to the <neo4j-home> folder and restart the Neo4j DBMS.

bin/neo4j restart

4. Connect to the Neo4j DBMS using cypher-shell and your credentials.

bin/cypher-shell -u neo4j -p your-password

610

5. Run the command SHOW DATABASES to verify that the Fabric database has been configured and is
online.

SHOW DATABASES;

+---
-----+
| name | address | role | requestedStatus | currentStatus | error | default |
home |
+---
-----+
| "db0" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
| "db1" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
| "db2" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
| "fabricnw" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
| "neo4j" | "localhost:7687" | "standalone" | "online" | "online" | "" | TRUE |
TRUE |
| "system" | "localhost:7687" | "standalone" | "online" | "online" | "" | FALSE |
FALSE |
+---
-----+

6 rows available after 242 ms, consumed after another 18 ms

Import data in your databases

You can use the command LOAD CSV WITH HEADERS FROM to import data in the databases.

Load the Product catalog in db0

1. Run the following Cypher query to change the active database to db0, and add the product data.

611

:use db0;

LOAD CSV WITH HEADERS FROM "http://data.neo4j.com/northwind/products.csv" AS row
CREATE (n:Product)
SET n = row,
n.unitPrice = toFloat(row.unitPrice),
n.unitsInStock = toInteger(row.unitsInStock), n.unitsOnOrder = toInteger(row.unitsOnOrder),
n.reorderLevel = toInteger(row.reorderLevel), n.discontinued = (row.discontinued <> "0");

LOAD CSV WITH HEADERS FROM "http://data.neo4j.com/northwind/categories.csv" AS row
CREATE (n:Category)
SET n = row;

LOAD CSV WITH HEADERS FROM "http://data.neo4j.com/northwind/suppliers.csv" AS row
CREATE (n:Supplier)
SET n = row;

CREATE INDEX FOR (p:Product) ON (p.productID);
CREATE INDEX FOR (c:Category) ON (c.categoryID);
CREATE INDEX FOR (s:Supplier) ON (s.supplierID);

MATCH (p:Product),(c:Category)
WHERE p.categoryID = c.categoryID
CREATE (p)-[:PART_OF]->(c);

MATCH (p:Product),(s:Supplier)
WHERE p.supplierID = s.supplierID
CREATE (s)-[:SUPPLIES]->(p);

2. Press Enter.

3. Verify that the product data is loaded in db0.

MATCH (s:Supplier)-[:SUPPLIES]->(p:Product)-[:PART_OF]->(c:Category)
RETURN s.companyName AS Supplier, p.productName AS Product, c.categoryName AS Category
LIMIT 5;

+--+
| Supplier | Product | Category |
+--+
"Bigfoot Breweries"	"Sasquatch Ale"	"Beverages"
"Pavlova"	"Outback Lager"	"Beverages"
"Bigfoot Breweries"	"Laughing Lumberjack Lager"	"Beverages"
"Bigfoot Breweries"	"Steeleye Stout"	"Beverages"
"Aux joyeux ecclésiastiques"	"Côte de Blaye"	"Beverages"
+--+

5 rows available after 202 ms, consumed after another 5 ms

Load EU customers and related orders in db1

1. Run the following Cypher query to change the active database to db1, and add the EU customers and
orders.

612

:use db1;

:param europe => ['Germany', 'UK', 'Sweden', 'France', 'Spain', 'Switzerland', 'Austria', 'Italy',
'Portugal', 'Ireland', 'Belgium', 'Norway', 'Denmark', 'Finland'];

LOAD CSV WITH HEADERS FROM "http://data.neo4j.com/northwind/customers.csv" AS row
WITH row
WHERE row.country IN $europe
CREATE (n:Customer)
SET n = row;

CREATE INDEX FOR (c:Customer) ON (c.customerID);

LOAD CSV WITH HEADERS FROM "http://data.neo4j.com/northwind/orders.csv" AS row
WITH row
MATCH (c:Customer)
WHERE row.customerID = c.customerID
CREATE (o:Order)
SET o = row;

CREATE INDEX FOR (o:Order) ON (o.orderID);

MATCH (c:Customer),(o:Order)
WHERE c.customerID = o.customerID
CREATE (c)-[:PURCHASED]->(o);

LOAD CSV WITH HEADERS FROM "http://data.neo4j.com/northwind/products.csv" AS row
CREATE (n:Product)
SET n.productID = row.productID;

CREATE INDEX FOR (p:Product) ON (p.productID);

LOAD CSV WITH HEADERS FROM "http://data.neo4j.com/northwind/order-details.csv" AS row
MATCH (p:Product), (o:Order)
WHERE p.productID = row.productID AND o.orderID = row.orderID
CREATE (o)-[details:ORDERS]->(p)
SET details = row, details.quantity = toInteger(row.quantity);

2. Press Enter.

3. Verify that the EU Customer orders data is loaded in db1.

MATCH (c:Customer)-[:PURCHASED]->(o:Order)-[:ORDERS]->(p:Product)
RETURN c.companyName AS Customer, c.country AS CustomerCountry, o.orderID AS Order, p.productID AS
Product
LIMIT 5;

+---+
| Customer | CustomerCountry | Order | Product |
+---+
"Alfreds Futterkiste"	"Germany"	"10692"	"63"
"Alfreds Futterkiste"	"Germany"	"10835"	"77"
"Alfreds Futterkiste"	"Germany"	"10835"	"59"
"Alfreds Futterkiste"	"Germany"	"10702"	"76"
"Alfreds Futterkiste"	"Germany"	"10702"	"3"
+---+

5 rows available after 47 ms, consumed after another 2 ms

Load AME customers and related orders in db2

1. Run the following Cypher query to change the active database to db2 and add the AME customers and
orders.

613

:use db2;

:param americas => ['Mexico', 'Canada', 'Argentina', 'Brazil', 'USA', 'Venezuela'];

LOAD CSV WITH HEADERS FROM "http://data.neo4j.com/northwind/customers.csv" AS row
WITH row
WHERE row.country IN $americas
CREATE (n:Customer)
SET n = row;

CREATE INDEX FOR (c:Customer) ON (c.customerID);

LOAD CSV WITH HEADERS FROM "http://data.neo4j.com/northwind/orders.csv" AS row
WITH row
MATCH (c:Customer)
WHERE row.customerID = c.customerID
CREATE (o:Order)
SET o = row;

CREATE INDEX FOR (o:Order) ON (o.orderID);

MATCH (c:Customer),(o:Order)
WHERE c.customerID = o.customerID
CREATE (c)-[:PURCHASED]->(o);

LOAD CSV WITH HEADERS FROM "http://data.neo4j.com/northwind/products.csv" AS row
CREATE (n:Product)
SET n.productID = row.productID;

CREATE INDEX FOR (p:Product) ON (p.productID);

LOAD CSV WITH HEADERS FROM "http://data.neo4j.com/northwind/order-details.csv" AS row
MATCH (p:Product), (o:Order)
WHERE p.productID = row.productID AND o.orderID = row.orderID
CREATE (o)-[details:ORDERS]->(p)
SET details = row,
details.quantity = toInteger(row.quantity);

2. Press Enter.

3. Verify that the AME Customer orders data is loaded in db2.

MATCH (c:Customer)-[:PURCHASED]->(o:Order)-[:ORDERS]->(p:Product)
RETURN c.companyName AS Customer, c.country AS CustomerCountry, o.orderID AS Order, p.productID AS
Product
LIMIT 5;

+--+
| Customer | CustomerCountry | Order | Product |
+--+
"Ana Trujillo Emparedados y helados"	"Mexico"	"10759"	"32"
"Ana Trujillo Emparedados y helados"	"Mexico"	"10926"	"72"
"Ana Trujillo Emparedados y helados"	"Mexico"	"10926"	"13"
"Ana Trujillo Emparedados y helados"	"Mexico"	"10926"	"19"
"Ana Trujillo Emparedados y helados"	"Mexico"	"10926"	"11"
+--+

5 rows available after 42 ms, consumed after another 1 ms

Retrieve data with a single Cypher query

Fabric allows you to retrieve data from all your databases with a single Cypher query.

As the databases db0, db1, db2 in this tutorial are part of the same Neo4j DBMS, you can also access them
directly, using their database names. This is especially useful when you want to set up Fabric locally for

614

development or testing purposes. In this case, you only have to add fabric.database.name=fabricnw to the
neo4j.conf file, and use queries as the following one.

:use fabricnw

USE db1
MATCH (c:Customer)
WHERE c.customerID STARTS WITH 'A'
RETURN c.customerID AS name, c.country AS country
 UNION
USE db2
MATCH (c:Customer)
WHERE c.customerID STARTS WITH 'A'
RETURN c.customerID AS name, c.country AS country
LIMIT 5;

+---------------------+
| name | country |
+---------------------+
"ALFKI"	"Germany"
"AROUT"	"UK"
"ANATR"	"Mexico"
"ANTON"	"Mexico"
+---------------------+

4 rows available after 404 ms, consumed after another 1 ms

However, if your databases db0, db1, db2 are located in other Neo4j DBMSs, on completely different
servers for example, then you must update the URI settings to connect to them.

In this tutorial, you will try the Fabric capabilities as if the data is deployed on different servers.

Query a single database

You can retrieve data from a single database by using the cypher clause USE and the name of the Fabric
graph. When querying a single database, you do not have to change the active database to Fabric.

USE fabricnw.product
MATCH (p:Product)
RETURN p.productName AS product
LIMIT 5;

+--------------------------------+
| product |
+--------------------------------+
| "Chai" |
| "Chang" |
| "Aniseed Syrup" |
| "Chef Anton's Cajun Seasoning" |
| "Chef Anton's Gumbo Mix" |
+--------------------------------+

5 rows available after 6 ms, consumed after another 21 ms

Query across multiple shards

615

Use Fabric to query both shards and get customers whose name starts with A.

When you want to retrieve data from multiple databases, you have to change the active database to
fabricnw.

:use fabricnw

USE fabricnw.customerAME
MATCH (c:Customer)
WHERE c.customerID STARTS WITH 'A'
RETURN c.customerID AS name, c.country AS country
 UNION
USE fabricnw.customerEU
MATCH (c:Customer)
WHERE c.customerID STARTS WITH 'A'
RETURN c.customerID AS name, c.country AS country
LIMIT 5;

+---------------------+
| name | country |
+---------------------+
"ANATR"	"Mexico"
"ANTON"	"Mexico"
"ALFKI"	"Germany"
"AROUT"	"UK"
+---------------------+

4 rows available after 25 ms, consumed after another 56 ms

Or, using a more common Fabric idiom:

UNWIND [1,2]AS gid
CALL {
 USE fabricnw.graph(gid)
 MATCH (c:Customer)
 WHERE c.customerID STARTS WITH 'A'
 RETURN c.customerID AS name, c.country AS country
}
RETURN name, country
LIMIT 5;

+---------------------+
| name | country |
+---------------------+
"ANATR"	"Mexico"
"ANTON"	"Mexico"
"ALFKI"	"Germany"
"AROUT"	"UK"
+---------------------+

4 rows available after 61 ms, consumed after another 8 ms

Query across federation and shards

Finally, a more complex query that uses all 3 databases to find all customers who have bought
discontinued products in the Meat/Poultry category.

616

CALL {
USE fabricnw.product
MATCH (p:Product{discontinued:true})-[:PART_OF]->(c:Category{categoryName:'Meat/Poultry'})
 RETURN COLLECT(p.productID) AS pids
}
WITH *, [g IN fabricnw.graphIds() WHERE g<>0] AS gids
UNWIND gids AS gid
CALL {
 USE fabricnw.graph(gid)
 WITH pids
 UNWIND pids as pid
 MATCH (p:Product{productID:pid})<-[:ORDERS]-(:Order)<-[:PURCHASED]-(c:Customer)
 RETURN DISTINCT c.customerID AS customer, c.country AS country
}
RETURN customer, country
LIMIT 20;

+--------------------------+
| customer | country |
+--------------------------+
"RICSU"	"Switzerland"
"PERIC"	"Mexico"
"WARTH"	"Finland"
"WELLI"	"Brazil"
"DRACD"	"Germany"
"RATTC"	"USA"
"HUNGO"	"Ireland"
"QUEDE"	"Brazil"
"SEVES"	"UK"
"ANTON"	"Mexico"
"BERGS"	"Sweden"
"SAVEA"	"USA"
"AROUT"	"UK"
"FAMIA"	"Brazil"
"WANDK"	"Germany"
"WHITC"	"USA"
"ISLAT"	"UK"
"LONEP"	"USA"
"QUICK"	"Germany"
"HILAA"	"Venezuela"
+--------------------------+

20 rows available after 51 ms, consumed after another 2 ms

First, fabricnw calls database db0 to retrieve all discontinued products in the
Meat/Poultry category. Then, using the returned product IDs, it queries both db1 and db2
in parallel and gets the customers who have purchased these products and their
country.

The end

You have just learned how to store and retrieve data from multiple databases using a single Cypher query.
For more details on the Neo4j Fabric, see Fabric.

Appendix C: Advanced Causal Clustering
This section includes information about advanced deployments and configuration options for multi-data
center operations.

• Causal Clustering lifecycle — A walk-through of the lifecycle of a cluster.

• Multi-data center — Overview of the multi-data center section.

617

◦ Licensing for multi-data center operations — Information about licensing for multi-data center
operations.

◦ Multi-data center design — Patterns for multi-data center deployments.

◦ Multi-data center operations — Configuration options for multi-data center deployments.

◦ Multi-data center load balancing — Configuration options for making client applications aware of
multi-data center topologies.

◦ Data center disaster recovery — How to recover a cluster to full working capability after data
center loss.

• Embedded usage — How to embed a Neo4j Causal Cluster in your application.

For details on the configuration and operation of a Neo4j Causal Cluster, see Clustering.

For descriptions of settings related to running a Neo4j Causal Cluster, see Settings reference.

17.C.1. Causal Clustering lifecycle

This section includes:

• Introduction

• Discovery protocol

• Core membership

• Read Replica membership

• Transacting via the Raft protocol

• Catchup protocol

• Read Replica shutdown

• Core shutdown

Introduction

In this section we will develop some deeper knowledge of how the cluster operates. By developing our
understanding of how the cluster works we will be better equipped to design, deploy, and troubleshoot
our production systems.

Our in-depth tour will follow the lifecycle of a cluster. We will boot a Core cluster and pick up key
architectural foundations as the cluster forms and transacts. We will then add in Read Replicas and show
how they bootstrap join the cluster and then catchup and remain caught up with the Core Servers. We will
then see how backup is used in live cluster environments before shutting down Read Replicas and Core
Servers.

Discovery protocol

The discovery protocol is the first step in forming a Causal Cluster. It takes in some information about
existing Core cluster servers, and uses this to initiate a network join protocol.

618

Read Replicas

Core

Core cluster topology

Discover New Core, or Read Replica server

Figure 18. Causal Cluster discovery protocol: Core-to-Core or Read Replica-to-Core only.

Using this information, the server will either join an existing cluster or form one of its own.

The discovery protocol targets Core Servers only regardless of whether it is a Core
Server or Read Replica performing discovery. It is because we expect Read Replicas to
be both numerous and, relatively speaking, transient whereas Core Servers will likely be
fewer in number and relatively stable over time.

The discovery protocol takes information from causal_clustering.initial_discovery_members in
neo4j.conf, which lists which IP addresses and ports that form the cluster on startup. Detailed information
about discovery and discovery configuration options is given in the Initial discovery of cluster members
section. When consuming this information, the server will try to handshake with the other listed servers.
On successful handshake with another server (or servers), the current server will discover the whole
current topology.

The discovery protocol continues to run throughout the lifetime of the Causal Cluster and is used to
maintain the current state of available servers and to help clients route queries to an appropriate server via
the client-side drivers.

Core membership

If it is a Core Server that is performing discovery, once it has made a connection to the one of the existing
Core Servers, it then joins the Raft protocol. Each database is replicated by a logically separate Raft group,

619

so the process below is repeated for every one.

Raft is a distributed algorithm for maintaining a consistent log across multiple shared-
nothing servers designed by Diego Ongaro for his 2014 Ph.D. thesis. See the Raft thesis
for details.

Raft handles cluster membership by making it a normal part of keeping a distributed log in sync. Joining a
cluster involves the insertion of a cluster membership entry into the Raft log which is then reliably
replicated around the existing cluster. Once that entry is applied to enough members of the Raft
consensus group (those machines running the specific instance of the algorithm), they update their view of
the cluster to include the new server. Thus membership changes benefit from the same safety properties
as other data transacted via Raft (see Transacting via the Raft protocol for more information).

The new Core Server must also catch up its own Raft logs with respect to the other Core Servers as it
initializes its internal Raft instance. This is the normal case when a cluster is first booted and has
performed few operations. There will be a delay before the new Core Server becomes available if it also
needs to catch up (as per Catchup protocol) graph data from other servers. This is the normal case for a
long lived cluster where the servers holds a great deal of graph data.

Where a joining Neo4j instance has databases whose names match databases which already exist in the
cluster, the database stores on the joining instance must be the same as their counterparts on cluster
members (although they are allowed to be in previous states). For example, if a cluster contains a database
named products, a new instance may join with a backup of products, but not a database named products
with different contents. A new instance may also join a cluster if it does not contain any matching
databases.

The described catchup process is repeated for each database which exists in the cluster.

Read Replica membership

When a Read Replica performs discovery, once it has made a connection to any of the available Core
clusters it proceeds to add itself into a shared whiteboard.

620

https://raft.github.io/slides/linkedin2014.pdf

Core

Whiteboard

Core cluster topology

Discover New Read Replica server

Figure 19. All Read Replicas registered with shared whiteboard.

This whiteboard provides a view of all live Read Replicas and is used both for routing requests from
database drivers that support end-user applications and for monitoring the state of the cluster.

The Read Replicas are not involved in the Raft protocol, nor are they able to influence cluster topology.
Hence a shared whiteboard outside of Raft comfortably scales to very large numbers of Read Replicas.

The whiteboard is kept up to date as Read Replicas join and leave the cluster, even if they fail abruptly
rather than leaving gracefully.

Transacting via the Raft protocol

Once bootstrapped, each Core Server spends its time processing database transactions. Updates are
reliably replicated around Core Servers via the Raft protocol. Updates appear in the form of a (committed)
Raft log entry containing transaction commands which is subsequently applied to update the database.

One of Raft’s primary design goals is to be easily understandable so that there are fewer
places for tricky bugs to hide in implementations. As a side-effect, it is also possible for
database operators to reason about their Core Servers in their Causal Clusters.

The Raft Leader for the current term (a logical clock) appends the transaction (an 'entry' in Raft
terminology) to the head of its local log and asks the other instances to do the same. When the Leader can
see that a majority instances have appended the entry, it can be considered committed into the Raft log.
The client application can now be informed that the transaction has safely committed since there is
sufficient redundancy in the system to tolerate any (non-pathological) faults.

621

The Raft protocol describes three roles that an instance can be playing: Leader, Follower,
and Candidate. These are transient roles and any Core Server can expect to play them
throughout the lifetime of a cluster. While it is interesting from a computing science
point of view to understand those states, operators should not be overly concerned: they
are an implementation detail.

As each database operates within a logically separate Raft group, a core server can have
multiple roles: one for each database. For example, it may be the Leader for database
system and at the same time be a Follower for database neo4j.

For safety, within any Raft protocol instance there is only one Leader able to make forward progress in any
given term. The Leader bears the responsibility for imposing order on Raft log entries and driving the log
forward with respect to the Followers.

Followers maintain their logs with respect to the current Leader’s log. Should any participant in the cluster
suspect that the Leader has failed (not receiving new entries or heartbeats), then they can instigate a
leadership election by entering the Candidate state. In Neo4j Core Servers this failure detection window is
set by default above 20s to enable more stable leaders.

Whichever instance is in the best state (including the existing Leader, if it remains available) can emerge
from the election as Leader. The "best state" for a Leader is decided by highest term, then by longest log,
then by highest committed entry.

The ability to fail over roles without losing data allows forward progress even in the event of faults. Even
where Raft instances fail, the protocol can rapidly piece together which of the remaining instances is best
placed to take over from the failed instance (or instances) without data loss. This is the essence of a non-
blocking consensus protocol which allows Neo4j Causal Clustering to provide continuous availability to
applications.

Catchup protocol

Read Replicas spend their time concurrently processing graph queries and applying a stream of
transactions from the Core Servers to update their local graph store.

Core

Poll at txld 101

New Read Replica servertx102 to tx113

Figure 20. Transactions shipped from Core to Read Replica.

Updates from Core Servers to Read Replicas are propagated by transaction shipping. Transaction shipping
is instigated by Read Replicas frequently polling any of the Core Servers specifying the ID of the last

622

transaction they received and processed. The frequency of polling is an operational choice.

Neo4j transaction IDs are strictly monotonic integer values (they always increase). This
makes it possible to determine whether or not a transaction has been applied to a Read
Replica by comparing its last processed transaction ID with that of a Core Server.

If there is a large difference between an Read Replica’s transaction history and that of a Core Server,
polling may not result in any transactions being shipped. This is quite expected, for example when a new
Read Replica is introduced to a long-running cluster or where a Read Replica has been down for some
significant period of time. In such cases the catchup protocol will realize the gap between the Core Servers
and Read Replica is too large to fill via transaction shipping and will fall back to copying the database store
directly from Core Server to Read Replica. Since we are working with a live system, at the end of the
database store copy the Core Server’s database is likely to have changed. The Read Replica completes the
catchup by asking for any transactions missed during the copy operation before becoming available.

A very slow database store copy could conceivably leave the Read Replica too far
behind to catch up via transaction log shipping as the Core Server has substantially
moved on. In such cases the Read Replica server repeats the catchup protocol. In
pathological cases the operator can intervene to snapshot, restore, or file copy recent
store files from a fast backup.

Read Replica shutdown

On clean shutdown, a Read Replica will invoke the discovery protocol to remove itself from the shared
whiteboard overview of the cluster. It will also ensure that the database is cleanly shutdown and
consistent, immediately ready for future use.

On an unclean shutdown such as a power outage, the Core Servers maintaining the overview of the
cluster will notice that the Read Replica’s connection has been abruptly been cut. The discovery machinery
will initially hide the Read Replica’s whiteboard entry, and if the Read Replica does not reappear quickly its
modest memory use in the shared whiteboard will be reclaimed.

On unclean shutdown it is possible the Read Replica will not have entirely consistent store files or
transaction logs. On subsequent reboot the Read Replica will rollback any partially applied transactions
such that the database is in a consistent state.

Core shutdown

A shutdown of a Core Server, like Core Server booting, is handled via the Raft protocol. When a member is
shutdown, either cleanly or by force, it will eventually be voted out from the Raft group. All remaining
instances accept that the cluster has grown smaller, and is therefore less fault tolerant. For any databases
where the leaver was playing the Leader role, each of those leaderships will be transferred to other Core
Servers. Once the new Leader is established, the Core cluster continues albeit with less redundancy.

If more members than the current fault tolerance leaves the cluster within a very short time period, the
cluster cannot proceed and will lose quorum. However, if members are gradually lost, the cluster may have
time to reduce the size of the cluster. A Core cluster of 5 members reduced to 3 can still continue operate
normally with a fault tolerance reduced from 2 to 0. After the Raft protocol votes out the lost members

623

which reduces the cluster size to 3, our fault tolerance has been increased from 0 to 1, and can lose yet
another member and keep operating. This is because the Raft protocol has had time to vote out the lost
members, and changed the cluster size of 5 (fault tolerance of 2) to 3 (fault tolerance of 1).

Raft may only reduce a cluster size to the configured
causal_clustering.minimum_core_cluster_size_at_runtime. Once the cluster has reached
this size, it will stop voting out members.

17.C.2. Multi-data center

Some use cases present high needs for availability, redundancy, locality of client applications, or simply
scale. In these cases it is important that the cluster is aware of its physical topology so that it can optimize
for workload. This makes configuring a single cluster to span multiple data centers a necessary
proposition.

The following sections are dedicated to describing the different aspects of multi-data center operations of
a Causal Cluster.

• Licensing for multi-data center operations

• Multi-data center design

◦ Introduction

◦ Core Server deployment scenarios

◦ Allowing Read Replicas to catch up from other Read Replicas

• Multi-data center operations

◦ Enable multi-data center operations

◦ Server groups

◦ Strategy plugins

• Multi-data center load balancing

◦ Introduction

◦ Prerequisite configuration

◦ The load balancing framework

◦ Load balancing examples

• Data center disaster recovery

◦ Data center loss scenario

◦ Procedure for recovering from data center loss

Licensing for multi-data center operations

Multi-data center functionality is intended for very demanding users of Neo4j who typically operate under
a commercial database license. As a result, multi-data center functionality is licensed separately from the
single-data center Causal Clustering features.

624

In order to confirm that you are operating under a suitable license, you must explicitly set the following in
neo4j.conf:

causal_clustering.multi_dc_license=true

Without this configuration, all of the multi-data center features will remain disabled.

17.C.3. Multi-data center design

This section describes the following:

• Introduction

• Core Server deployment scenarios

• Allowing Read Replicas to catch up from other Read Replicas

◦ Hierarchical Read Replica deployment

◦ Catch up (mostly) from peer Read Replicas

◦ Maintaining causal consistency in scale-out topologies

Introduction

This section is based on a series of examples to illustrate the different considerations we should take into
account when designing our Causal Cluster for a multi-data center environment. We’ll come to understand
the weaknesses and benefits of common multi-data center deployment scenarios. Each scenario is
presented at a high architectural level for clarity. In subsequent sections we will go into more detail on how
such deployments are configured.

Core Server deployment scenarios

We will start with the conceptually simplest multi-data center scenario where we deploy the same number
and kind of instances into each DC. This is a homogeneous deployment because each data center is
identical to the other.

625

Example 141. Homogeneous three data center deployment

Read Replica

Read Replica

Core Server

Data center 1

Read Replica

Read Replica

Core Server

Data center 2

Read Replica

Read Replica

Core Server

Data center 3

Figure 21. Homogeneous deployment across three data centers with one Core instance in each

In diagram above we have three data centers, each identically equipped with a single Core Server and
a small number of Read Replicas.

Since Raft only requires a majority of the instances to acknowledge a write before it is safely
committed, the latency of the commit path for this pattern involves only the two fastest data centers.
As such the cost of committing to this setup is two WAN messages: one to send the transaction and
one ACK message. In a non-failure case the other data center will not be far behind and will apply the
transaction as well.

Within each of the data centers we can increase machine-level redundancy by adding more Core
instances. For example we could add two more machines in each data center so that we can tolerate
the spontaneous loss of up to four machines anywhere in the cluster or a single data center as a
whole.

Read Replica

Read Replica

Data center 1

Read Replica

Read Replica

Data center 2

Read Replica

Read Replica

Core Servers

Data center 3

Core Servers Core Servers

Figure 22. Homogeneous deployment across three data centers with three Core instances in each

To recap the strengths and weaknesses of this deployment pattern:

• We can lose an entire data center without losing availability and, depending on the number of

626

machines in each data center, we may still be able to tolerate the loss of individual servers
regardless of which data center they are in.

• The commit path for transactions is short, just two WAN messages exchanged.

• While the loss of majority data centers will need to be recovered, the operational procedure is
identical irrespective of which of the data centers are lost.

As will be shown in the section on multi-data center configuration the Read Replicas can be biased to
catchup from their data center-local Core Servers to minimize catchup latency. Data center-local client
applications would also likely be routed to those same Read Replicas both for topological locality and
scaling. More details are available in the section on multi-data center load balancing.

In the two data center case, our first instinct is to balance the available servers for operational consistency.
An example of a homogeneous deployment across two data centers with two Core instances in each is
illustrated in the diagram below:

Example 142. Homogeneous two data center deployment

Data center 1 Data center 2

Core Servers Core Servers

Figure 23. Homogeneous deployment across two data centers

The problem with this configuration is that while architecturally simple, it does not play to the
strengths of the Raft protocol which is based on majority consensus. In the non-failure case, we incur
two WAN messages to commit any transaction because a majority commit implies at least one
response from the non-local data center instances. Worse, if we lose either data center the cluster
will become read-only because it is impossible to achieve a majority.

As seen in the example above, the homogeneous deployment over two data centers does not take full
advantage of the strengths of Causal Clustering. However it guarantees that the full Raft log will be
present in either data center in the case of total data center loss.

The opposite of spreading Core Servers around our data centers, is to have them all hosted in a single one.
This may be for technical or governance reasons, but either way has the advantage of LAN commit
latencies for writes.

While our Core Servers are colocated, we spread out our Read Replicas close to the client applications to
enable fan-out scaling.

627

Example 143. Core Servers and Read Replicas segregated by data center

The diagram below shows an example of a heterogeneous deployment directing writes to one data
center, and reads to all. This pattern provides high survivability for data because of geo-replication. It
also provides locality for client applications. However, if the Core Server data center is lost, we must
immediately instigate recovery and turn one of the remaining Read Replica data centers into a new
Core cluster.

It is possible that none of the Read Replicas have received all of the confirmed transactions prior to
losing Data Center 1. While this is a convenient pattern for geo-replication, its semantics are best-
effort. Cluster designers must take this aspect under consideration when deciding on recovery
strategy.

Data center 1 Data center 2

Read Replicas

Data center 3

Core Servers Read Replicas

Figure 24. Heterogeneous deployment separating Read Replicas from the Core cluster

An operational tweak to this approach would be to host a Core Server in Data Center 2 and 3 as the
starting point for recovery. During normal operations, these extra Core Servers should be configured
with causal_clustering.refuse_to_be_leader=true. Should we lose Data Center 1, then we can use
one of these Core Servers to quickly bootstrap a new Core cluster and return to full service rapidly.

To recap the strengths of this deployment pattern:

• Core Servers commit at LAN latencies if using the setup with Core Servers exclusively in one data
center.

• Read Replicas provide scale and locality for client applications.

• Geo-replication provides high survivability for data.

Allowing Read Replicas to catch up from other Read Replicas

With an understanding of the basic multi-data center patterns at our disposal, we can refine our
deployment models to embrace local catchup within data centers. This means that any server, including
Read Replicas, can act as a source of transactions for Read Replica server. When catching up from data
center-local instances we aim to amortize the cost of WAN traffic catchup across many local replications.

Allowing Read Replicas to choose a data center-local Core Server or even another Read Replica gives us a
great deal of design freedom, and importantly allows us to scale to truly huge numbers of Read Replicas.
Using this feature we might choose to fan-out Read Replicas so that the catchup load on the Core Servers
grows (approximately) logarithmically rather than linearly.

628

Hierarchical Read Replica deployment

The primary motivation for Read Replicas catching up from other Read Replicas is to allow for fan-out
scale. To achieve a fan-out we arrange the Read Replicas in a hierarchy, with each layer of the hierarchy
being broader than the one above.

Data center 1

Read Replica Read Replica

Core Servers

Read Replica

Read Replica

Read Replica

Read Replica

Data center 3

Read Replica Read Replica

Core Servers

Read Replica

Read Replica

Read Replica

Read Replica

Data center 2

Read Replica Read Replica

Core Servers

Read Replica

Read Replica

Read Replica

Read Replica

Figure 25. Fan out from Core Servers for scale at log cost

An illustrative hierarchy is presented in the diagram above. The Core Servers supply transactions to a
relatively small number of Read Replicas at the first tier. This results in a relatively modest load on the Core
Servers, freeing up resources to focus on the commit path. Those Read Replicas in the first tier in turn feed
a larger number of Read Replicas in the second tier. This pattern can be reasonably extended to several
tiers to provide enormous fan-out.

629

At each tier we expand the scalability of the Read Replicas, but we add another level of catchup latency.
By careful measurement we can ascertain the appropriate depth and breadth of the hierarchy to match the
application requirements.

We should also take care that each tier in the hierarchy has sufficient redundancy so that failures do not
compromise transmission of data from the Core Servers. A strategy for keeping Read Replicas current in
the presence of failures is to occasionally have them subvert the hierarchy. That is, if a given Read Replica
occasionally goes to its grandparents or even directly to the Core Servers then we can avoid pathologically
high replication latencies under fault conditions.

Catch up (mostly) from peer Read Replicas

Another strategy for Read Replica catchup is to treat them all as peers and have peer-to-peer catchup.
This avoids the need to manage tiers of replicas to maintain availability since the Read Replicas catch up
from one another in a mesh.

Read Replica

Read Replica

Data center 1

Read Replica

Read Replica

Data center 2

Read Replica

Read Replica

Core Servers

Data center 3

Core Servers Core Servers

Figure 26. Peer-to-peer Read Replica catchup

Having a reduced load on the Core Servers allows us to scale out. For example if only one in ten catchup
requests goes to the Core Servers, we could expand the number of Read Replicas by approximately a
factor of 10.

To avoid groups of orphans in the mesh, Read Replicas will occasionally catch up directly from Core
Servers. Having Read Replicas catch up with Core Servers ensures that no Read Replica is left behind
indefinitely, placing an upper bound on replication latency. While this places some load on the Core
Servers, it is far less than if all catch up attempts from Read Replicas were directed to a Core Server.

The upper bound on replication latency for this mode of operation is the number of catchup attempts
served by Read Replicas before trying core. The average replication latency will be half the number of
attempts to replicate. This is because on average half the Read Replicas will be ahead and half behind any
given Read Replica.

630

Connecting to a random Core Server on failure to retrieve updates from other sources is
the default behavior of Read Replicas.

Maintaining causal consistency in scale-out topologies

Causal consistency is always maintained, even in extreme situations with chains of Read Replicas catching
up from other upstream Read Replicas. The key trade-off to understand, as so often in distributed
systems, is that of latency for scale.

In Fan out from Core Servers for scale at log cost", role="middle we see that number of hops required for a
transaction to propagate to the lowest tier is 2: the highest latency in this topology. Equally we see how
the bottommost tier has far more members than any other tier giving it scale advantages.

Correspondingly, in the middle tier we have better latency (one hop) but less scale. At the top most tier
(Core Servers) we have very little latency (just the Raft commit path) but the fewest available servers. This
means we should target queries at the most appropriate tier based on latency, scale, and locality.

Summary on latency versus scalability:

• Issuing read queries to a Core Server generally has the lowest latency in principle but may have the
highest contention.

• Issuing read queries to a Read Replica topologically closest to Core Servers typically has higher latency
but also higher scalability.

• Issuing read queries to a Read Replica topologically further from Core Servers typically has the highest
latency but also the highest scalability.

In large systems like the scale-out hierarchy above, we are conventionally used to having relaxed or
eventual consistency semantics. With Neo4j multi-data center setups, that is also possible. Where we
don’t care about causality we can read from any Read Replica and accept that we might see older values.
However the causal consistency semantics are maintained.

631

Data center 1

Read Replica Read Replica

Core Servers

Read Replica

Read Replica

Read Replica

Read Replica

Data center 3

Read Replica Read Replica

Core Servers

Read Replica

Read Replica

Read Replica

Read Replica

Data center 2

Read Replica Read Replica

Core Servers

Read Replica

Read Replica

Read Replica

Read Replica

Read later at
bookmark X

Write at
bookmark X

Figure 27. Each tier in the Read Replicas is further behind the source of truth, but offers greater scale-out

As we can see in diagram above, even if the client binds to a Read Replica that is multiple hops/data
centers away from the source of truth, causal consistency is maintained. While the query may be
suspended while the necessary transaction propagates to the Read Replica, the benefit is that there will be
more Read Replicas available and so overall client throughput is higher than with a single-tier
configuration.

17.C.4. Multi-data center operations

This section describes the following:

• Enable multi-data center operations

632

• Server groups

• Strategy plugins

◦ Configuring upstream selection strategy using pre-defined strategies

◦ Configuring user-defined strategies

◦ Building upstream strategy plugins using Java

◦ Favoring data centers

Enable multi-data center operations

Before doing anything else, we must enable the multi-data center functionality. This is described in
Licensing for multi-data center operations.

Licensing for multi-data center

The multi-data center functionality is separately licensed and must be specifically
enabled.

Server groups

In order to optimize the use of our Causal Cluster servers according to our specific requirements, we sort
them into Server Groups. Server Group membership can map to data centers, availability zones, or any
other significant topological elements from the operator’s domain. Server Groups can also overlap.

Server Groups are defined as a key that maps onto a set of servers in a Causal Cluster. Server Group
membership is defined on each server using the causal_clustering.server_groups parameter in
neo4j.conf. Each server in a Causal Cluster can belong to zero or more server groups.

Example 144. Definition of Server Group membership

The membership of a server group or groups can be set in neo4j.conf as in the following examples:

Add the current instance to the groups `us` and `us-east`
causal_clustering.server_groups=us,us-east

Add the current instance into the group `london`
causal_clustering.server_groups=london

Add the current instance into the group `eu`
causal_clustering.server_groups=eu

We must be aware that membership of each server group is explicit. For example, a server in the gb-
london group is not automatically part of some gb or eu group unless that server is explicitly added to
those groups. That is, any (implied) relationship between groups is reified only when those groups
are used as the basis for requesting data from upstream systems.

Server Groups are not mandatory, but unless they are present, we cannot set up specific upstream

633

transaction dependencies for servers. In the absence of any specified server groups, the cluster defaults to
its most pessimistic fall-back behavior: each Read Replica will catch up from a random Core Server.

Strategy plugins

Strategy plugins are sets of rules that define how Read Replicas contact servers in the cluster in order to
synchronize transaction logs. Neo4j comes with a set of pre-defined strategies, and also provides a
Domain Specific Language, DSL, to flexibly create user-defined strategies. Finally, Neo4j supports an API
which advanced users may use to enhance upstream recommendations.

Once a strategy plugin resolves a satisfactory upstream server, it is used for pulling transactions to update
the local Read Replica for a single synchronization. For subsequent updates, the procedure is repeated so
that the most preferred available upstream server is always resolved.

Configuring upstream selection strategy using pre-defined strategies

Neo4j ships with the following pre-defined strategy plugins. These provide coarse-grained algorithms for
choosing an upstream instance:

Plugin name Resulting behavior

connect-to-random-core-server Connect to any Core Server selecting at random from those
currently available.

typically-connect-to-random-read-replica Connect to any available Read Replica, but around 10% of
the time connect to any random Core Server.

connect-randomly-to-server-group Connect at random to any available Read Replica in any of
the server groups specified in the comma-separated list
causal_clustering.connect-randomly-to-server-group.

leader-only Connect only to the current Raft leader of the Core Servers.

connect-randomly-within-server-group Connect at random to any available Read Replica in any of
the server groups to which this server belongs. Deprecated,
please use connect-randomly-to-server-group.

Pre-defined strategies are used by configuring the causal_clustering.upstream_selection_strategy
option. Doing so allows us to specify an ordered preference of strategies to resolve an upstream provider
of transaction data. We provide a comma-separated list of strategy plugin names with preferred strategies
earlier in that list. The upstream strategy is chosen by asking each of the strategies in list-order whether
they can provide an upstream server from which transactions can be pulled.

634

Example 145. Define an upstream selection strategy

Consider the following configuration example:

causal_clustering.upstream_selection_strategy=connect-randomly-to-server-group,typically-connect-to-
random-read-replica

With this configuration the instance will first try to connect to any other instance in the group(s)
specified in causal_clustering.connect-randomly-to-server-group. Should we fail to find any live
instances in those groups, then we will connect to a random Read Replica.

connect-randomly-to-
server-group

typically-connect-to-random-
read-replica

connect-to-random-core-server

Order of evaluation

Most preferred strategy Next preferred strategy Least preferred strategy

Figure 28. The first satisfactory response from a strategy will be used.

To ensure that downstream servers can still access live data in the event of upstream failures, the last
resort of any instance is always to contact a random Core Server. This is equivalent to ending the
causal_clustering.upstream_selection_strategy configuration with connect-to-random-core-
server.

Configuring user-defined strategies

Neo4j Causal Clusters support a small DSL for the configuration of client-cluster load balancing. This is
described in detail in Policy definitions and Filters. The same DSL is used to describe preferences for how
an instance binds to another instance to request transaction updates.

The DSL is made available by selecting the user-defined strategy as follows:

causal_clustering.upstream_selection_strategy=user-defined

Once the user-defined strategy has been specified, we can add configuration to the
causal_clustering.user_defined_upstream_strategy setting based on the server groups that have been
set for the cluster.

We will describe this functionality with two examples:

635

Example 146. Defining a user-defined strategy

For illustrative purposes we propose four regions: north, south, east, and west and within each region
we have a number of data centers such as north1 or west2. We configure our server groups so that
each data center maps to its own server group. Additionally we will assume that each data center
fails independently from the others and that a region can act as a supergroup of its constituent data
centers. So an instance in the north region might have configuration like
causal_clustering.server_groups=north2,north which puts it in two groups that match to our
physical topology as shown in the diagram below.

north south

east west

north1 north2 south1 south2north3

east1 east2 west1 west2east3 east4

Figure 29. Mapping regions and data centers onto server groups

Once we have our server groups, our next task is to define some upstream selection rules based on
them. For our design purposes, let’s say that any instance in one of the north region data centers
prefers to catchup within the data center if it can, but will resort to any northern instance otherwise.
To configure that behavior we add:

causal_clustering.user_defined_upstream_strategy=groups(north2); groups(north); halt()

The configuration is in precedence order from left to right. The groups() operator yields a server
group from which to catch up. In this case only if there are no servers in the north2 server group will
we proceed to the groups(north) rule which yields any server in the north server group. Finally, if we
cannot resolve any servers in any of the previous groups, then we will stop the rule chain via halt().

Note that the use of halt() will end the rule chain explicitly. If we don’t use halt() at the end of the
rule chain, then the all() rule is implicitly added. all() is expansive: it offers up all servers and so
increases the likelihood of finding an available upstream server. However all() is indiscriminate and
the servers it offers are not guaranteed to be topologically or geographically local, potentially
increasing the latency of synchronization.

The example above shows a simple hierarchy of preferences. But we can be more sophisticated if we so
choose. For example we can place conditions on the server groups from which we catch up.

636

Example 147. User-defined strategy with conditions

In this example we wish to roughly qualify cluster health before choosing from where to catch up. For
this we use the min() filter as follows:

causal_clustering.user_defined_upstream_strategy=groups(north2)->min(3), groups(north)->min(3);
all();

groups(north2)->min(3) states that we want to catch up from the north2 server group if it has three
available machines, which we here take as an indicator of good health. If north2 can’t meet that
requirement (is not healthy enough) then we try to catch up from any server across the north region
provided there are at least three of them available as per groups(north)->min(3). Finally, if we cannot
catch up from a sufficiently healthy north region, then we’ll (explicitly) fall back to the whole cluster
with all().

The min() filter is a simple but reasonable indicator of server group health.

Building upstream strategy plugins using Java

Neo4j supports an API which advanced users may use to enhance upstream recommendations in arbitrary
ways: load, subnet, machine size, or anything else accessible from the JVM. In such cases we are invited to
build our own implementations of
org.neo4j.causalclustering.readreplica.UpstreamDatabaseSelectionStrategy to suit our own needs,
and register them with the strategy selection pipeline just like the pre-packaged plugins.

We have to override the
org.neo4j.causalclustering.readreplica.UpstreamDatabaseSelectionStrategy#upstreamDatabase()
method in our code. Overriding that class gives us access to the following items:

Resource Description

org.neo4j.causalclustering.discovery.TopologyService This is a directory service which provides access to the
addresses of all servers and server groups in the cluster.

org.neo4j.kernel.configuration.Config This provides the configuration from neo4j.conf for the local
instance. Configuration for our own plugin can reside here.

org.neo4j.causalclustering.identity.MemberId This provides the unique cluster MemberId of the current
instance.

Once our code is written and tested, we have to prepare it for deployment.
UpstreamDatabaseSelectionStrategy plugins are loaded via the Java Service Loader. This means when we
package our code into a jar file, we’ll have to create a file META-
INF.services/org.neo4j.causalclustering.readreplica.UpstreamDatabaseSelectionStrategy in which we write
the fully qualified class name(s) of the plugins, e.g. org.example.myplugins.PreferServersWithHighIOPS.

To deploy this jar into the Neo4j server we copy it into the plugins directory and restart the instance.

637

Favoring data centers

In a multi-DC scenario, while it remains a rare occurrence, it is possible to bias where writes for the
specified database should be directed. We can apply causal_clustering.leadership_priority_group to
specify a group of servers which should have priority when selecting the leader for a given database. The
priority group can be set on one or multiple databases and it means that the cluster will attempt to keep
the leadership for the configured database on an instance tagged with the configured server group.

A database for which leadership_priority_group has been configured will be excluded from the
automatic balancing of leaderships across a cluster. It is therefore recommended to not use this
configuration unless it is necessary.

17.C.5. Multi-data center load balancing

This section describes the following:

• Introduction

• Prerequisite configuration

◦ Enable multi-data center operations

◦ Server groups

◦ Cores for reading

• The load balancing framework

◦ Policy definitions

◦ Policy names

◦ Filters

• Load balancing examples

Enabling load balancing

The load balancing functionality is part of the separately licensed multi-data center
package and must be specifically enabled. See Licensing for multi-data center operations
for details.

Introduction

When deploying a multi-data center cluster we often wish to take advantage of locality to reduce latency
and improve performance. For example, we would like our graph-intensive workloads to be executed in
the local data center at LAN latencies rather than in a faraway data center at WAN latencies. Neo4j’s
enhanced load balancing for multi-data center scenarios facilitates precisely this and can also be used to
define fall-back behaviors. This means that failures can be planned for upfront and persistent overload
conditions be avoided.

The load balancing system is a cooperative system where the driver asks the cluster on a recurring basis
where it should direct the different classes of its workload (e.g. writes and reads). This allows the driver to
work independently for long stretches of time, yet check back from time to time to adapt to changes like

638

for example a new server having been added for increased capacity. There are also failure situations where
the driver will ask again immediately, for example when it cannot use any of its allocated servers.

This is mostly transparent from the perspective of a client. On the server side we configure the load
balancing behaviors and expose them under a named load balancing policy which the driver can bind to.
All server-side configuration is performed on the Core Servers.

Use load balancing from Neo4j drivers

This chapter describes how to configure a Causal Cluster to use custom load balancing
policies Once enabled and configured, the custom load balancing feature is used by
drivers to route traffic as intended. See the Neo4j Driver manuals for instructions on how
to configure drivers to use custom load balancing.

Prerequisite configuration

Enable multi-data center operations

In order to configure a cluster for load balancing we must enable the multi-data center functionality. This is
described in Licensing for multi-data center operations.

Server groups

In common with server-to-server catchup, load balancing across multiple data centers is predicated on the
server group concept. Servers can belong to one or more potentially overlapping server groups, and
decisions about where to route requests from client to cluster member are parameterized based on that
configuration. For details on server group configuration, refer to Server groups.

Cores for reading

Depending on the deployment and the available number of servers in the cluster different strategies make
sense for whether or not the reading workload should be routed to the Core Servers. The following
configuration will allow the routing of read workload to Core Servers. Valid values are true and false.

causal_clustering.cluster_allow_reads_on_followers=true

The load balancing framework

The load balancing system is based on a plugin architecture for future extensibility and for allowing user
customizations. The current version ships with exactly one such canned plugin called the server policies
plugin.

The server policies plugin is selected by setting the following property:

causal_clustering.load_balancing.plugin=server_policies

639

https://neo4j.com/docs

Under the server policies plugin, a number of load balancing policies can be configured server-side and be
exposed to drivers under unique names. The drivers, in turn, must on instantiation select an appropriate
policy by specifying its name. Common patterns for naming policies are after geographical regions or
intended application groups.

It is of crucial importance to define the exact same policies on all core machines since this is to be regarded
as cluster-wide configuration and failure to do so will lead to surprising behavior. Similarly, policies which
are in active use should not be removed or renamed since it will break applications trying to use these
policies. It is perfectly acceptable and expected however that policies be modified under the same name.

If a driver asks for a policy name which is not available, then it will not be able to use the cluster. A driver
which does not specify any name at all will get the behavior of the default policy as configured. The default
policy, if left unchanged, distributes the load across all servers. It is possible to change the default policy to
any behavior that a named policy can have.

A misconfigured driver or load balancing policy will result in suboptimal routing choices or even prevent
successful interactions with the cluster entirely.

The details of how to write a custom plugin is not documented here. Please get in
contact with Neo4j Professional Services if you think that you need a custom plugin.

Policy definitions

The configuration of load balancing policies is transparent to client applications and expressed via a simple
DSL. The syntax consists of a set of rules which are considered in order. The first rule to produce a non-
empty result will be the final result.

rule1; rule2; rule3

Each rule in turn consists of a set of filters which limit the considered servers, starting with the complete
set. Note that the evaluation of each rule starts fresh with the complete set of available servers.

There is a fixed set of filters which compose a rule and they are chained together using arrows

filter1 -> filter2 -> filter3

If there are any servers still left after the last filter then the rule evaluation has produced a result and this
will be returned to the driver. However, if there are no servers left then the next rule will be considered. If
no rule is able to produce a usable result then the driver will be signalled a failure.

Policy names

The policies are configured under the namespace of the server policies plugin and named as desired. Policy
names can contain alphanumeric characters and underscores, and they are case sensitive. Below is the
property key for a policy with the name mypolicy.

640

causal_clustering.load_balancing.config.server_policies.mypolicy=

The actual policy is defined in the value part using the DSL.

The default policy name is reserved for the default policy. It is possible to configure this policy like any
other and it will be used by driver clients which do not specify a policy.

Additionally, any number of policies can be created using unique policy names. The policy name can
suggest a particular region or an application for which it is intended to be used.

Filters

There are four filters available for specifying rules, detailed below. The syntax is similar to a method call
with parameters.

• groups(name1, name2, …)

◦ Only servers which are part of any of the specified groups will pass the filter.

◦ The defined names must match those of the server groups.

• min(count)

◦ Only the minimum amount of servers will be allowed to pass (or none).

◦ Allows overload conditions to be managed.

• all()

◦ No need to specify since it is implicit at the beginning of each rule.

◦ Implicitly the last rule (override this behavior using halt).

• halt()

◦ Only makes sense as the last filter in the last rule.

◦ Will stop the processing of any more rules.

The groups filter is essentially an OR-filter, e.g. groups(A,B) which will pass any server in either A, B or
both (the union of the server groups). An AND-filter can also be created by chaining two filters as in
groups(A) -> groups(B), which will only pass servers in both groups (the intersect of the server groups).

Load balancing examples

In our discussion on multi-data center clusters we introduced a four region, multi-data center setup. We
used the cardinal compass points for regions and numbered data centers within those regions. We’ll use
the same hypothetical setup here too.

641

north south

east west

north1 north2 south1 south2north3

east1 east2 west1 west2east3 east4

Figure 30. Mapping regions and data centers onto server groups

We configure the behavior of the load balancer in the property
causal_clustering.load_balancing.config.server_policies.<policy-name>. The rules we specify will
allow us to fine tune how the cluster routes requests under load.

In the examples we will make use of the line continuation character \ for better readability. It is valid syntax
in neo4j.conf as well and it is recommended to break up complicated rule definitions using this and a new
rule on every line.

The most restrictive strategy would be to insist on a particular data center to the exclusion of all others:

Example 148. Specific data center only

causal_clustering.load_balancing.config.server_policies.north1_only=\
groups(north1)->min(2); halt();

In this case we’re stating that we are only interested in sending queries to servers in the north1
server group, which maps onto a specific physical data center, provided there are two of them
available. If we cannot provide at least two servers in north1 then we should halt(), i.e. not try any
other data center.

While the previous example demonstrates the basic form of our load balancing rules, we can be a little
more expansive:

642

Example 149. Specific data center preferably

causal_clustering.load_balancing.config.server_policies.north1=\
groups(north1)->min(2);

In this case if at least two servers are available in the north1 data center then we will load balance
across them. Otherwise we will use any server in the whole cluster, falling back to the implicit, final
all() rule.

The previous example considered only a single data center before resorting to the whole cluster. If we
have a hierarchy or region concept exposed through our server groups we can make the fall back more
graceful:

Example 150. Gracefully falling back to neighbors

causal_clustering.load_balancing.config.server_policies.north_app1=\
groups(north1,north2)->min(2);\
groups(north);\
all();

In this case we’re saying that the cluster should load balance across the north1 and north2 data
centers provided there are at least two machines available across them. Failing that, we’ll resort to
any instance in the north region, and if the whole of the north is offline we’ll resort to any instances in
the cluster.

17.C.6. Data center disaster recovery

This section describes the following:

• Data center loss scenario

• Procedure for recovering from data center loss

Data center loss scenario

This section describes how to recover a multi-data center deployment which owing to external
circumstances has reduced the cluster below half of its members. It is most easily typified by a 2x2
deployment with 2 data centers each containing two instances. This deployment topology can either arise
because of other data center failures, or be a deliberate choice to ensure the geographic survival of data for
catastrophe planning. However, by distributing an instance over three data centers instead, you could
avoid having the cluster lose quorum through a single data center failure. For example, in a 1x1x1
deployment.

Under normal operation this provides a stable majority quorum where the fastest three out of four
machines will execute users' transactions, as we see highlighted in Two Data Center Deployment with
Four Core Instances", role="middle.

643

Data center 1 Data center 2

Possible quorum

Figure 31. Two Data Center Deployment with Four Core Instances

However if an entire data center becomes offline because of some disaster, then a majority quorum cannot
be formed in this case.

Neo4j Core clusters are based on the Raft consensus protocol for processing
transactions. The Raft protocol requires a majority of cluster members to agree in order
to ensure the safety of the cluster and data. As such, the loss of a majority quorum
results in a read-only situation for the remaining cluster members.

When data center is lost abruptly in a disaster rather than having the instances cleanly shut down, the
surviving members still believe that they are part of a larger cluster. This is different from even the case of
rapid failures of individual instances in a live data center which can often be detected by the underlying
cluster middleware, allowing the cluster to automatically reconfigure.

Conversely if we lose a data center, there is no opportunity for the cluster to automatically reconfigure. The
loss appears instantaneous to other cluster members. However, because each remaining machine has only
a partial view of the state of the cluster (its own), it is not safe to allow any individual machine to make an
arbitrary decision to reform the cluster.

In this case we are left with two surviving machines which cannot form a quorum and thus make progress.

Data center 1 Data center 2
No possible

quorum

Figure 32. Data Center Loss Requires Guided Recovery

But, from a birds’s eye view, it’s clear we have surviving machines which are sufficient to allow a non-fault
tolerant cluster to form under operator supervision.

644

Groups of individual cluster members (e.g. those in a single data center) may become
isolated from the cluster during network partition for example. If they arbitrarily reformed
a new, smaller cluster there is a risk of split-brain. That is from the clients' point of view
there may be two or more smaller clusters that are available for reads and writes
depending on the nature of the partition. Such situations lead to divergence that is tricky
and laborious to reconcile and so best avoided.

To be safe, an operator or other out-of-band agent (e.g. scripts triggered by well-understood, trustworthy
alerts) that has a trusted view on the whole of the system estate must make that decision. In the surviving
data center, the cluster can be rebooted into a smaller configuration whilst retaining all data committed to
that point. While end users may experience unavailability during the switch over, no committed data will
be lost.

Procedure for recovering from data center loss

The following procedure for performing recovery of a data center should not be done lightly. It assumes
that we are completely confident that a disaster has occurred and our previously data center-spanning
cluster has been reduced to a read-only cluster in a single data center, where there is no possible way to
repair a connection to the lost instances. Further it assumes that the remaining cluster members are fit to
provide a seed from which a new cluster can be created from a data quality point of view.

Having acknowledged the above, the procedure for returning the cluster to full availability following
catastrophic loss of all but one data centers can be done using one of the following options, depending on
your infrastructure.

Please note that the main difference between the options is that Option 2 will allow read-availability
during recovery.

Option 1.

If you are unable to add instances to the current data-center, and can only use the current read-only
cluster, the following steps are recommended:

1. Verify that a catastrophe has occurred, and that access to the surviving members of the cluster in the
surviving data center is possible. Then for each instance:

a. Stop the instance with bin/neo4j stop or shut down the service.

b. Change the configuration in neo4j.conf such that the
causal_clustering.initial_discovery_members property contains the DNS names or IP addresses
of the other surviving instances.

c. Optional: you may need to update causal_clustering.minimum_core_cluster_size_at_formation,
depending on the current size of the cluster (in the current example, two cores).

d. Unbind the instance using neo4j-admin unbind.

e. Start the instance with bin/neo4j start or start the neo4j service.

Option 2.

If it is possible to create a new cluster while the previous read-only cluster is still running, then the
following steps will enable you to keep read-availability during recovery:

645

1. Verify that a catastrophe has occurred, and that access to the surviving members of the cluster in the
surviving data center is possible.

2. Perform an online backup of the currently running, read-only, cluster.

3. Seed a new cluster (in the current example, two new cores) using the backup from the read-only
cluster, as described in Seed a cluster.

4. When the new cluster is up, load balance your workload over to the new cluster.

5. Shutdown the old, read-only, cluster.

Once your chosen recovery procedure is completed for each instance, they will form a cluster that is
available for reads and writes. It recommended at this point that other cluster members are incorporated
into the cluster to improve its load handling and fault tolerance. See Deploy a cluster for details of how to
configure instances to join the cluster from scratch.

17.4. Embedded usage
For users coming to Causal Clustering from Neo4j HA embedded, there are a small number of changes
required. The Neo4j routing driver is used for routing and load balancing queries in server deployments
(other setups are possible with 3rd party load balancers).

The driver also handles bookmarks, which are essential for causal consistency, and as such is a
fundamental part of the Causal Clustering architecture. In an embedded deployment the driver can be used
either for routing queries externally from another application into the embedded cluster, or using an
embedded driver internally within the cluster.

The workload must be comprised, in its entirety, of Cypher statements. If your workload depends on the
Java Core API for writing, then you have to package those pieces as procedures which are (remotely)
invoked using Cypher, via the driver. Read-only queries can still access the Core API directly.

For a detailed tutorial on how to embed Neo4j in your Java application, see Neo4j Java
Reference → Including Neo4j in your project.

Appendix D: Deprecated security procedures
This appendix describes deprecated procedures for security management:

• Enterprise Edition

• Community Edition

The procedures described in this appendix have been deprecated and will be removed in
a future release.

It is strongly recommended to migrate to the security features as described in Cypher
Manual → Access control.

See also a worked example in Fine-grained access control.

646

https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#java-embedded-setup
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#java-embedded-setup
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#java-embedded-setup
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#java-embedded-setup
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access_control

17.D.1. Enterprise Edition

A subset of this functionality is also available in Community Edition. The table below includes an indication
of which functions this is valid for. Refer to Community Edition for a complete description.

In Neo4j, native user and role management are managed by using built-in procedures through Cypher.
This section gives a list of all the security procedures for user management along with some simple
examples. Use Neo4j Browser or Neo4j Cypher Shell to run the examples provided.

The following table lists the available procedures:

Procedure name Description Executable by role(s) Available in
Community

Edition

dbms.security.activateUser Activate a suspended user admin

dbms.security.addRoleToUser Assign a role to the user admin

dbms.security.changePassword Change the current user’s
password

reader,editor,publishe
r,architect,admin

dbms.security.changeUserPassword Change the given user’s
password

admin

dbms.security.createRole Create a new role admin

dbms.security.createUser Create a new user admin

dbms.security.deleteRole Delete the specified role.
Any role assignments will be
removed

admin

dbms.security.deleteUser Delete the specified user admin

dbms.security.listRoles List all available roles admin

dbms.security.listRolesForUser List all roles assigned to the
specified user

admin

dbms.security.listUsers List all local users admin

dbms.security.listUsersForRole List all users currently
assigned the specified role

admin

647

Procedure name Description Executable by role(s) Available in
Community

Edition

dbms.security.removeRoleFromUser Unassign a role from the
user

admin

dbms.security.suspendUser Suspend the specified user admin

Activate a suspended user

An administrator is able to activate a suspended user so that the user is once again able to access the data
in their original capacity.

Syntax:

CALL dbms.security.activateUser(username, requirePasswordChange)

Arguments:

Name Type Description

username String This is the username of the user to be
activated.

requirePasswordChange Boolean This is optional, with a default of true. If
this is true, (i) the user will be forced to
change their password when they next
log in, and (ii) until the user has changed
their password, they will be forbidden
from performing any other operation.

Exceptions:

The current user is not an administrator.

The username does not exist in the system.

The username matches that of the current user (i.e. activating the current user is not permitted).

Considerations:

This is an idempotent procedure.

Example 151. Activate a suspended user

The following example activates a user with the username 'jackgreen'. When the user 'jackgreen'
next logs in, he will be required to change his password.

CALL dbms.security.activateUser('jackgreen')

648

Assign a role to the user

An administrator is able to assign a role to any user in the system, thus allowing the user to perform a
series of actions upon the data.

Syntax:

CALL dbms.security.addRoleToUser(roleName, username)

Arguments:

Name Type Description

roleName String This is the name of the role to be
assigned to the user.

username String This is the username of the user who is
to be assigned the role.

Exceptions:

The current user is not an administrator.

The username does not exist in the system.

The username contains characters other than alphanumeric characters and the ‘_’ character.

The role name does not exist in the system.

The role name contains characters other than alphanumeric characters and the ‘_’ character.

Considerations:

This is an idempotent procedure.

Example 152. Assign a role to the user

The following example assigns the role publisher to the user with username 'johnsmith'.

CALL dbms.security.addRoleToUser('publisher', 'johnsmith')

Change the current user’s password

The procedure dbms.security.changePassword(newPassword, requirePasswordChange)
has been entirely removed since the corresponding Cypher administration command
also requires the old password, and thus is more secure. Please use ALTER CURRENT USER
SET PASSWORD FROM 'oldPassword' TO 'newPassword', documented in the Cypher
Manual, instead.

649

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-alter-password
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-alter-password

Change the given user’s password

An administrator is able to change the password of any user within the system. Alternatively, the current
user may change their own password.

Syntax:

CALL dbms.security.changeUserPassword(username, newPassword, requirePasswordChange)

Arguments:

Name Type Description

username String This is the username of the user whose
password is to be changed.

newPassword String This is the new password for the user.

requirePasswordChange Boolean This is optional, with a default of true. If
this is true, (i) the user will be forced to
change their password when they next
log in, and (ii) until the user has changed
their password, they will be forbidden
from performing any other operation.

Exceptions:

The current user is not an administrator and the username does not match that of the current user.

The username does not exist in the system.

The password is the empty string.

The password is the same as the user’s previous password.

Considerations:

This procedure may be invoked by the current user to change their own password, irrespective of whether or not the current
user is an administrator.

This procedure may be invoked by an administrator to change another user’s password.

In addition to changing the user’s password, this will terminate with immediate effect all of the user’s sessions and roll back
any running transactions.

Example 153. Change a given user’s password

The following example changes the password of the user with the username 'joebloggs' to '
h6u4%kr'. When the user 'joebloggs' next logs in, he will be required to change his password.

CALL dbms.security.changeUserPassword('joebloggs', 'h6u4%kr')

650

Create a new role

An administrator is able to create custom roles in the system.

Syntax:

CALL dbms.security.createRole(roleName)

Arguments:

Name Type Description

roleName String This is the name of the role to be
created.

Exceptions:

The current user is not an administrator.

The role name already exists in the system.

The role name is empty.

The role name contains characters other than alphanumeric characters and the ‘_’ character.

The role name matches one of the native roles: reader, publisher, architect, and admin.

Example 154. Create a new role

The following example creates a new custom role.

CALL dbms.security.createRole('operator')

Create a new user

An administrator is able to create a new user. This action ought to be followed by assigning a role to the
user, which is described here.

Syntax:

CALL dbms.security.createUser(username, password, requirePasswordChange)

Arguments:

Name Type Description

username String This is the user’s username.

password String This is the user’s password.

651

Name Type Description

requirePasswordChange Boolean This is optional, with a default of true. If
this is true, (i) the user will be forced to
change their password when they log in
for the first time, and (ii) until the user
has changed their password, they will
be forbidden from performing any other
operation.

Exceptions:

The current user is not an administrator.

The username either contains characters other than the ASCII characters between ! and ~, or contains : and ,.

The username is already in use within the system.

The password is the empty string.

Example 155. Create a new user

The following example creates a user with the username 'johnsmith' and password 'h6u4%kr'. When
the user 'johnsmith' logs in for the first time, he will be required to change his password.

CALL dbms.security.createUser('johnsmith', 'h6u4%kr')

Delete the specified role

An administrator is able to delete roles from the system.

Syntax:

CALL dbms.security.deleteRole(roleName)

Arguments:

Name Type Description

roleName String This is the name of the role to be
deleted.

Exceptions:

The current user is not an administrator.

The role name does not exist in the system.

The role name matches one of the native roles: reader, publisher, architect, and admin.

Considerations:

652

Any role assignments will be removed.

Example 156. Delete the specified role

The following example deletes the custom role 'operator' from the system.

CALL dbms.security.deleteRole('operator')

Delete the specified user

An administrator is able to delete permanently a user from the system. It is not possible to undo this action,
so, if in any doubt, consider suspending the user instead.

Syntax:

CALL dbms.security.deleteUser(username)

Arguments:

Name Type Description

username String This is the username of the user to be
deleted.

Exceptions:

The current user is not an administrator.

The username does not exist in the system.

The username matches that of the current user (i.e. deleting the current user is not permitted).

Considerations:

It is not necessary to remove any assigned roles from the user prior to deleting the user.

Deleting a user will terminate with immediate effect all of the user’s sessions and roll back any running transactions.

As it is not possible for the current user to delete themselves, there will always be at least one administrator in the system.

Example 157. Delete the specified user

The following example deletes a user with the username 'janebrown'.

CALL dbms.security.deleteUser('janebrown')

List all available roles

An administrator is able to view all assigned users for each role in the system.

653

Syntax:

CALL dbms.security.listRoles()

Returns:

Name Type Description

role String This is the name of the role.

users List<String> This is a list of the usernames of all
users who have been assigned the role.

Exceptions:

The current user is not an administrator.

Example 158. List all available roles

The following example shows, for each role in the system, the name of the role and the usernames of
all assigned users.

CALL dbms.security.listRoles()

+------------------------------+
| role | users |
+------------------------------+
"reader"	["bill"]
"architect"	[]
"admin"	["neo4j"]
"publisher"	["john","bob"]
+------------------------------+
4 rows

List all roles assigned to the specified user

Any active user is able to view all of their assigned roles. An administrator is able to view all assigned roles
for any user in the system.

Syntax:

CALL dbms.security.listRolesForUser(username)

Arguments:

Name Type Description

username String This is the username of the user.

Returns:

654

Name Type Description

value String This returns all roles assigned to the
requested user.

Exceptions:

The current user is not an administrator and the username does not match that of the current user.

The username does not exist in the system.

Considerations:

This procedure may be invoked by the current user to view their roles, irrespective of whether or not the current user is an
administrator.

This procedure may be invoked by an administrator to view the roles for another user.

Example 159. List all roles assigned to the specified user

The following example lists all the roles for the user with username 'johnsmith', who has the roles
reader and publisher.

CALL dbms.security.listRolesForUser('johnsmith')

+-------------+
| value |
+-------------+
| "reader" |
| "publisher" |
+-------------+
2 rows

List all local users

An administrator is able to view the details of every user in the system.

Syntax:

CALL dbms.security.listUsers()

Returns:

Name Type Description

username String This is the user’s username.

roles List<String> This is a list of roles assigned to the
user.

flags List<String> This is a series of flags indicating
whether the user is suspended or needs
to change their password.

655

Exceptions:

The current user is not an administrator.

Example 160. List all local users

The following example shows, for each user in the system, the username, the roles assigned to the
user, and whether the user is suspended or needs to change their password.

CALL dbms.security.listUsers()

+---+
| username | roles | flags |
+---+
"neo4j"	["admin"]	[]
"anne"	[]	["password_change_required"]
"bill"	["reader"]	["is_suspended"]
"john"	["architect","publisher"]	[]
+---+
4 rows

List all users currently assigned the specified role

An administrator is able to view all assigned users for a role.

Syntax:

CALL dbms.security.listUsersForRole(roleName)

Arguments:

Name Type Description

roleName String This is the name of the role.

Returns:

Name Type Description

value String This returns all assigned users for the
requested role.

Exceptions:

The current user is not an administrator.

The role name does not exist in the system.

656

Example 161. List all users currently assigned the specified role

The following example lists all the assigned users - 'bill' and 'anne' - for the role publisher.

CALL dbms.security.listUsersForRole('publisher')

+--------+
| value |
+--------+
| "bill" |
| "anne" |
+--------+
2 rows

Unassign a role from the user

An administrator is able to remove a role from any user in the system, thus preventing the user from
performing upon the data any actions prescribed by the role.

Syntax:

CALL dbms.security.removeRoleFromUser(roleName, username)

Arguments:

Name Type Description

roleName String This is the name of the role which is to
be removed from the user.

username String This is the username of the user from
which the role is to be removed.

Exceptions:

The current user is not an administrator.

The username does not exist in the system.

The role name does not exist in the system.

The username is that of the current user and the role is admin.

Considerations:

If the username is that of the current user and the role name provided is admin, an error will be thrown; i.e. the current user
may not be demoted from being an administrator.

As it is not possible for the current user to remove the admin role from themselves, there will always be at least one
administrator in the system.

This is an idempotent procedure.

657

Example 162. Unassign a role from the user

The following example removes the role publisher from the user with username 'johnsmith'.

CALL dbms.security.removeRoleFromUser('publisher', 'johnsmith')

Suspend the specified user

An administrator is able to suspend a user from the system. The suspended user may be activated at a
later stage.

Syntax:

CALL dbms.security.suspendUser(username)

Arguments:

Name Type Description

username String This is the username of the user to be
suspended.

Exceptions:

The current user is not an administrator.

The username does not exist in the system.

The username matches that of the current user (i.e. suspending the current user is not permitted).

Considerations:

Suspending a user will terminate with immediate effect all of the user’s sessions and roll back any running transactions.

All of the suspended user’s attributes — assigned roles and password — will remain intact.

A suspended user will not be able to log on to the system.

As it is not possible for the current user to suspend themselves, there will always be at least one active administrator in the
system.

This is an idempotent procedure.

Example 163. Suspend the specified user

The following example suspends a user with the username 'billjones'.

CALL dbms.security.suspendUser('billjones')

658

17.D.2. Community Edition

User and password management for Community Edition is a subset of the functionality available in
Enterprise Edition. The following is true for user management in Community Edition:

• It is possible to create multiple users.

• All users assume the privileges of an admin for the available functionality.

Users are managed by using built-in procedures through Cypher. This section gives a list of all the security
procedures for user management along with some simple examples. Use Neo4j Browser or Neo4j Cypher
Shell to run the examples provided. Unless stated otherwise, all arguments to the procedures described in
this section must be supplied.

Name Description

dbms.security.changePassword Change the current user’s password

dbms.security.createUser Add a user

dbms.security.deleteUser Delete a user

dbms.security.listUsers List all users

Change the current user’s password

The procedure dbms.security.changePassword(newPassword, requirePasswordChange)
has been entirely removed since the corresponding Cypher administration command
also requires the old password, and thus is more secure. Please use ALTER CURRENT USER
SET PASSWORD FROM 'oldPassword' TO 'newPassword', documented in the Cypher
Manual, instead.

Add a user

The current user is able to add a user to the system.

Syntax:

CALL dbms.security.createUser(username, password, requirePasswordChange)

Arguments:

Name Type Description

username String This is the user’s username.

password String This is the user’s password.

659

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-alter-password
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf#access-control-alter-password

Name Type Description

requirePasswordChange Boolean This is optional, with a default of true. If
this is true, (i) the user will be forced to
change their password when they log in
for the first time, and (ii) until the user
has changed their password, they will
be forbidden from performing any other
operation.

Exceptions:

The username either contains characters other than the ASCII characters between ! and ~, or contains : and ,.

The username is already in use within the system.

The password is the empty string.

Example 164. Add a user

The following example creates a user with the username 'johnsmith' and password 'h6u4%kr'. When
the user 'johnsmith' logs in for the first time, he will be required to change his password.

CALL dbms.security.createUser('johnsmith', 'h6u4%kr', true)

Delete a user

The current user is able to delete permanently a user from the system.

Syntax:

CALL dbms.security.deleteUser(username)

Arguments:

Name Type Description

username String This is the username of the user to be
deleted.

Exceptions:

The username does not exist in the system.

The username matches that of the current user (i.e. deleting the current user is not permitted).

Considerations:

Deleting a user will terminate with immediate effect all of the user’s sessions and roll back any running transactions.

As it is not possible for the current user to delete themselves, there will always be at least one user in the system.

660

Example 165. Delete a user

The following example deletes a user with the username 'janebrown'.

CALL dbms.security.deleteUser('janebrown')

List all native users

The current user is able to view the details of every user in the system.

Syntax:

CALL dbms.security.listUsers()

Returns:

Name Type Description

username String This is the user’s username.

flags List<String> This is a flag indicating whether the user
needs to change their password.

Example 166. List all users

The following example shows the username for each user in the system, and whether the user needs
to change their password.

CALL dbms.security.listUsers()

+---+
| username | flags |
+---+
"neo4j"	[]
"anne"	["password_change_required"]
"bill"	[]
+---+
3 rows

661

License
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

You are free to

Share

copy and redistribute the material in any medium or format

Adapt

remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial

You may not use the material for commercial purposes.

ShareAlike

If you remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

Notices

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for further details. The full license text is available
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

662

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

	The Neo4j Operations Manual v4.3
	Table of Contents
	Chapter 1. Introduction
	1.1. Neo4j editions
	1.1.1. Performance and scalability

	1.2. Versioning

	Chapter 2. Installation
	2.1. System requirements
	2.1.1. Supported platforms
	2.1.2. Hardware requirements
	2.1.3. Software requirements
	2.1.4. Filesystem
	2.1.5. Java

	2.2. Neo4j Browser
	2.3. Neo4j Desktop
	2.4. Linux installation
	2.4.1. Debian-based distributions (.deb)
	Installation
	File locations
	Operation
	Starting the service automatically on system start

	2.4.2. Red Hat, CentOS, Fedora, and Amazon Linux distributions (.rpm)
	Install on Red Hat, CentOS, Fedora, or Amazon Linux
	Install on SUSE
	Offline installation
	Starting the service automatically on system start

	2.4.3. Linux executable (.tar)
	Install Neo4j from a tarball
	Configure Neo4j to start automatically on system boot
	Setting the number of open files

	2.4.4. Neo4j system service
	Configuration
	Controlling the service
	Log

	2.5. macOS installation
	2.5.1. Unix console application
	2.5.2. macOS service
	2.5.3. macOS file descriptor limits

	2.6. Windows installation
	2.6.1. Windows console application
	2.6.2. Windows service
	Java options

	2.6.3. Windows PowerShell module
	System requirements
	Managing Neo4j on Windows
	How do I import the module?
	How do I get help about the module?
	Example usage
	Common PowerShell parameters

	Chapter 3. Cloud deployments
	3.1. Neo4j cloud VMs
	3.1.1. Basics and file Locations
	3.1.2. VM configuration
	3.1.3. Configuration via VM tags
	3.1.4. Interacting with the Neo4j Service

	3.2. Neo4j on Amazon EC2
	3.2.1. Neo4j deployment automation on AWS
	Prerequisites
	CloudFormation
	Creating a CloudFormation stack
	Deploying Neo4j Enterprise Standalone
	Deploying Neo4j Enterprise Causal Cluster
	Deploying Neo4j Community Standalone
	Checking to see if your instance is up
	Cleaning up and removing your stack

	3.3. Neo4j on Google Cloud Platform
	3.3.1. Single instances (VM-based)
	Prerequisites
	Create a firewall rule to access your instance
	Create a Google compute instance from the Neo4j public image
	Access your new instance
	Access your instance via SSH
	Delete your instance

	3.3.2. Causal Clusters (VM-based)
	Prerequisites
	Deploy Neo4j via the GCP Marketplace
	Start using Neo4j Browser
	Access your instance via SSH
	Your cluster default configuration
	What’s next
	Terminating the deployment

	3.3.3. Neo4j deployments automation on Google Cloud Platform (GCP)
	Prerequisites
	Google Cloud Deployment Manager
	Creating a Deployment Manager stack
	Deploying Neo4j Enterprise Edition with a Causal Cluster
	Deploying Neo4j Enterprise (or Community) Edition in standalone mode

	3.4. Neo4j on Microsoft Azure
	3.4.1. Single instances (VM-based)
	Prerequisites
	Deploy Neo4j via the Azure Marketplace
	Access your new instance
	Access your instance via SSH
	Deleting the instance

	3.4.2. Causal Clusters (VM-based)
	Prerequisites
	Deploy Neo4j from the Azure Marketplace
	Start using Neo4j Browser
	Access your instance via SSH
	Your cluster default configuration
	What’s next
	Terminating the deployment

	3.4.3. Neo4j deployments automation on Azure
	Prerequisites
	Azure Resource Manager
	Creating an ARM deployment job
	Deploying Neo4j Enterprise Causal Cluster
	Deploying Neo4j Enterprise Standalone
	Cleaning up and removing your deployment

	Chapter 4. Docker
	4.1. Introduction
	4.1.1. Neo4j editions
	4.1.2. Using the Neo4j Docker image
	4.1.3. Using NEO4J_AUTH to set an initial password
	4.1.4. Persisting data using Volumes
	4.1.5. Running Neo4j as a non-root user
	4.1.6. More useful Docker Run options
	4.1.7. Offline installation of Neo4j Docker image

	4.2. Configuration
	4.2.1. Environment variables
	4.2.2. Mounting the /conf volume
	4.2.3. Customize а Neo4j Docker image

	4.3. Clustering
	4.3.1. Deploy a cluster with Docker Compose
	4.3.2. Deploy a cluster using environment variables
	Cluster environment variables Enterprise edition
	Set up a cluster on a single Docker host
	Set up a cluster on multiple Docker hosts

	4.4. Docker specific operations
	4.4.1. Use Neo4j Admin
	4.4.2. Use Neo4j Import
	4.4.3. Use Neo4j Admin for memory recommendations
	4.4.4. Use Cypher Shell
	Retrieve data from a database in a Neo4j Docker container
	Pass a Cypher script file to a Neo4j Docker container

	4.4.5. Install user-defined procedures
	4.4.6. Configure Neo4j Labs plugins

	4.5. Security
	4.5.1. SSL Encryption
	Set up your certificate folders
	Configure SSL via neo4j.conf
	Configure SSL via Docker environment variables

	4.6. Docker maintenance operations
	4.6.1. Dump and load a Neo4j database (offline)
	4.6.2. Back up and restore a Neo4j database (online) Enterprise edition
	Back up a database Enterprise edition
	Restore a database Enterprise edition

	4.6.3. Upgrade Neo4j on Docker
	4.6.4. Monitor Neo4j

	4.7. Docker specific configuration settings

	Chapter 5. Kubernetes
	5.1. Introduction
	5.2. Configure a Neo4j Helm chart and create a Neo4j Helm release
	5.2.1. Prerequisites
	5.2.2. Configure a Neo4j Helm chart
	5.2.3. Create a release name for your Neo4j instance
	5.2.4. Install Neo4j from the public Helm chart repository

	5.3. Quickstart: Deploy a Neo4j instance to a Google Kubernetes Engine (GKE) cluster
	5.3.1. Prerequisites
	5.3.2. Create a GCP persistent disk
	5.3.3. Create a Helm deployment values file
	5.3.4. Install Neo4j
	5.3.5. Verify the installation
	5.3.6. Uninstall Neo4j and clean up the created resources
	Uninstall Neo4j Helm deployment
	Fully remove all the data and resources

	5.4. Quickstart: Deploy a Neo4j instance to an AWS Elastic Kubernetes Service (EKS) cluster
	5.4.1. Prerequisites
	5.4.2. Create an AWS EBS disk
	5.4.3. Create a Helm deployment values file
	5.4.4. Install Neo4j
	5.4.5. Verify the installation
	5.4.6. Uninstall Neo4j and clean up the created resources
	Uninstall Neo4j Helm deployment
	Fully remove all the data and resources

	5.5. Quickstart: Deploy a Neo4j instance to an Azure Kubernetes Service (AKS) cluster
	5.5.1. Prerequisites
	5.5.2. Create an Azure managed disk
	5.5.3. Create a Helm deployment values file
	5.5.4. Install Neo4j
	5.5.5. Verify the installation
	5.5.6. Uninstall Neo4j and clean up the created resources
	Uninstall Neo4j Helm deployment
	Fully remove all the data and resources

	5.6. Quickstart: Deploy a Neo4j instance to a local Kubernetes installation via Docker Desktop for Mac
	5.6.1. Prerequisites
	5.6.2. Create a Helm deployment values file
	5.6.3. Create a Neo4j instance using dynamically provisioned storage
	5.6.4. Verify the installation
	5.6.5. Uninstall Neo4j and clean up your Docker Desktop
	Uninstall Neo4j Helm deployment
	Fully remove all the data and resources

	5.7. Configure and install Neo4j using Helm
	5.7.1. Create a custom values.yaml file
	5.7.2. Set Neo4j configuration
	5.7.3. Set an initial password
	5.7.4. Configure SSL
	5.7.5. Configure resource allocation
	5.7.6. Configure a service account
	5.7.7. Configure a custom container image

	5.8. Volume mounts and persistent volumes with the Neo4j Helm charts
	5.8.1. Volume mounts
	5.8.2. Persistent volumes
	5.8.3. Mapping volume mounts to persistent volumes
	mode: share
	mode: defaultStorageClass
	mode: dynamic
	mode: volume
	mode: selector
	mode: volumeClaimTemplate

	5.8.4. Provision persistent volumes with Neo4j Helm chart
	Provision persistent volumes manually
	Provision persistent volumes dynamically

	5.9. Access a Neo4j Helm release
	5.9.1. Supported Kubernetes services
	5.9.2. Applications accessing Neo4j from inside Kubernetes
	Access Neo4j using DNS
	Access Neo4j using K8s label selector
	Ad-hoc external access using kubectl port-forward

	5.9.3. Applications accessing Neo4j from outside Kubernetes
	5.9.4. Customizing Kubernetes resources
	5.9.5. Accessing Neo4j for DBMS administration and monitoring
	Access Neo4j using DNS
	Access Neo4j using kubectl for troubleshooting

	5.10. Import Data
	5.10.1. Importing data into Neo4j on Kubernetes
	5.10.2. Configure the import volume mount
	5.10.3. Copy files to the import volume using kubectl cp
	5.10.4. Use neo4j-admin import

	5.11. Operations
	5.11.1. Using APOC core only
	5.11.2. Install plugins
	Add plugins using a custom container image
	Add plugins using a plugins volume

	5.12. Monitoring
	5.12.1. Logging
	5.12.2. Log collection
	5.12.3. Metrics

	5.13. Kubernetes maintenance operations
	5.13.1. Online maintenance
	5.13.2. Offline maintenance
	Put the Neo4j instance in offline mode
	Run task in offline mode
	Put the Neo4j instance in online mode

	5.13.3. Reset the neo4j user password
	5.13.4. Dump and load databases (offline)
	Dump the neo4j and system databases
	Load the neo4j and system databases

	5.13.5. Back up and restore a Neo4j database (online) Enterprise edition
	Back up the neo4j database
	Restore neo4j database

	5.13.6. Upgrade Neo4j on Kubernetes
	5.13.7. Scale a Neo4j deployment

	5.14. Troubleshooting
	5.14.1. Locate and investigate problems with the Neo4j Helm chart
	5.14.2. Neo4j crashes or restarts unexpectedly
	Describe the Neo4j Pod
	Check Neo4j logs and metrics
	Check container logs

	Chapter 6. Configuration
	6.1. The neo4j.conf file
	6.1.1. Introduction
	6.1.2. Syntax
	6.1.3. JVM-specific configuration settings
	6.1.4. List currently active settings

	6.2. Command expansion
	6.2.1. How it works
	6.2.2. Enabling
	6.2.3. Logging
	6.2.4. Error Handling

	6.3. File locations
	6.3.1. Default file locations
	6.3.2. Customize your file locations
	6.3.3. File permissions

	6.4. Ports
	6.4.1. Backup Enterprise edition
	6.4.2. HTTP
	6.4.3. HTTPS
	6.4.4. Bolt
	6.4.5. Causal Cluster Enterprise edition
	6.4.6. Graphite monitoring
	6.4.7. Prometheus monitoring
	6.4.8. JMX monitoring
	6.4.9. Remote debugging

	6.5. Configure connectors
	6.5.1. Available connectors
	6.5.2. Configuration options
	6.5.3. Options for Bolt thread pooling
	6.5.4. Defaults for addresses

	6.6. Set an initial password
	6.7. Configure plugins
	6.7.1. Install and configure plugins

	6.8. Dynamic settings
	6.8.1. Introduction
	6.8.2. Discover dynamic settings
	6.8.3. Update dynamic settings
	6.8.4. Dynamic settings reference

	6.9. Transaction log
	6.9.1. Transaction logging
	6.9.2. Log location
	6.9.3. Log rotation
	6.9.4. Log retention
	6.9.5. Log pruning

	Chapter 7. Manage databases
	7.1. Introduction
	7.1.1. Concepts
	7.1.2. The system database
	7.1.3. The default and home database
	7.1.4. Per-user home databases Enterprise edition

	7.2. Administration and configuration
	7.2.1. Administrative commands
	7.2.2. Configuration parameters

	7.3. Queries
	7.3.1. Show the status of a specific database
	7.3.2. Show the status of all databases
	7.3.3. Show the status of the default database
	7.3.4. Create a database Enterprise edition
	7.3.5. Switch a database Enterprise edition
	7.3.6. Create or replace a database
	7.3.7. Stop a database
	7.3.8. Start a database
	7.3.9. Drop or remove a database Enterprise edition

	7.4. Error handling
	7.4.1. Observing errors
	7.4.2. Database states
	7.4.3. Retrying failed operations
	7.4.4. Quarantined databases

	7.5. Databases in a cluster
	7.5.1. Change the default database
	7.5.2. Run Cypher administrative commands from Cypher Shell on a cluster

	Chapter 8. Clustering
	8.1. Introduction
	8.1.1. Overview
	8.1.2. Operational view
	8.1.3. Primary servers
	8.1.4. Secondary servers
	8.1.5. Causal consistency

	8.2. Deploy a cluster
	8.2.1. Introduction
	8.2.2. Configure a cluster with Single and Read Replica instances
	8.2.3. Configure a cluster with Core instances
	8.2.4. Add a Core Server to an existing cluster
	8.2.5. Add a Secondary server to an existing cluster
	8.2.6. Detach a Secondary server from an existing cluster

	8.3. Seed a cluster
	8.3.1. Introduction
	8.3.2. Seed a cluster from a database dump (offline)
	8.3.3. Seed a cluster from a database backup (online)
	Restore a database on each Core instance
	Restore a database using a designated seeder

	8.3.4. Seed a cluster using the import tool

	8.4. Discovery
	8.4.1. Overview
	Discovery using a list of server addresses
	Discovery using DNS with multiple records
	Discovery in Kubernetes

	8.5. Intra-cluster encryption
	8.5.1. Introduction
	8.5.2. Example deployment
	Generate and install cryptographic objects
	Configure the cluster SSL policy
	Validate the secure operation of the cluster

	8.6. Internals of clustering
	8.6.1. Elections and leadership
	8.6.2. Leadership balancing
	8.6.3. Multi-database and the reconciler
	8.6.4. Server-side routing
	8.6.5. Store copy
	Using the Replica instance in case of failure

	8.6.6. On-disk state

	8.7. Settings reference
	8.7.1. Common server settings
	8.7.2. Multi-data center settings

	8.8. Clustering glossary

	Chapter 9. Fabric
	9.1. Introduction
	9.1.1. Overview
	9.1.2. Fabric concepts
	The fabric database
	Fabric graphs

	9.1.3. Deployment examples
	Development deployment
	Cluster deployment with no single point of failure
	Multi-cluster deployment

	9.2. Configuration
	9.2.1. Fabric database setup
	Local development setup example
	Remote development setup example
	Naming graphs
	Cluster setup with no single point of failure example
	Cluster routing context

	9.2.2. Authentication and authorization
	Credentials
	User and role administration
	Privileges on the Fabric database

	9.2.3. Important settings
	System settings
	Graph settings
	Drivers settings

	9.3. Queries
	9.3.1. Query a single graph
	9.3.2. Query multiple graphs
	9.3.3. Query all graphs
	9.3.4. Query result aggregation
	9.3.5. Correlated subquery
	9.3.6. Updating query
	9.3.7. Mapping functions
	9.3.8. Fabric built-in functions

	9.4. Further considerations
	9.5. Sharding data with the copy command

	Chapter 10. Backup and restore
	10.1. Backup and restore planning
	10.1.1. Backup and restore strategy
	10.1.2. Backup and restore options
	10.1.3. Databases to backup
	10.1.4. Additional files to back up
	10.1.5. Storage considerations

	10.2. Backup modes
	10.2.1. Full backup
	10.2.2. Incremental backup

	10.3. Back up an online database
	10.3.1. Command
	Usage
	Syntax
	Options
	Exit codes

	10.3.2. Online backup configurations
	Server configuration
	Memory configuration
	Computational resources configurations
	Security configurations
	Cluster configurations

	10.3.3. Examples

	10.4. Prepare a database for restoring
	10.4.1. Command
	Syntax
	Options

	10.4.2. Example

	10.5. Restore a database backup
	10.5.1. Command
	Syntax
	Options

	10.5.2. Example

	10.6. Back up an offline database
	10.6.1. Command
	Usage
	Syntax
	Options

	10.6.2. Example

	10.7. Restore a database dump
	10.7.1. Command
	Syntax
	Options

	10.7.2. Example

	10.8. Copy a database store
	10.8.1. Command
	Usage
	Syntax
	Options

	10.8.2. Examples

	Chapter 11. Authentication and authorization
	11.1. Introduction
	11.2. Built-in roles
	11.3. Recover admin user and password
	11.3.1. Disable authentication
	11.3.2. Recover a lost password
	11.3.3. Recover an unassigned admin role
	11.3.4. Recover the admin role
	11.3.5. Post-recovery steps

	11.4. Fine-grained access control
	11.4.1. The data model
	11.4.2. Security
	11.4.3. Access control using built-in roles
	11.4.4. Sub-graph access control using privileges
	Privileges of itadmin
	Privileges of researcher
	Privileges of doctor
	Privileges of receptionist
	Privileges of nurses
	Privileges of junior nurses
	Building a custom administrator role

	11.5. Integration with LDAP directory services
	11.5.1. Introduction
	11.5.2. LDAP dynamic configuration settings
	11.5.3. Set Neo4j to use LDAP
	11.5.4. Map the LDAP groups to the Neo4j roles
	11.5.5. Configure Neo4j to use Active Directory
	Configure Neo4j to support LDAP user ID authentication
	Configure Neo4j to support attribute authentication
	Configure Neo4j to support sAMAccountName authentication by setting user_dn_template

	11.5.6. Configure Neo4j to use OpenLDAP
	11.5.7. Verify the LDAP configuration
	11.5.8. The auth cache
	11.5.9. Available methods of encryption
	Use LDAP with encryption via StartTLS
	Use LDAP with encrypted LDAPS

	11.5.10. Use a self-signed certificate (SSL) in a test environment

	11.6. Manage procedure and user-defined function permissions
	11.6.1. Introduction
	11.6.2. Manage procedure permissions
	11.6.3. Manage user-defined function permissions
	11.6.4. Manage procedure and user-defined function permissions from config setting Deprecated

	11.7. Terminology

	Chapter 12. Security
	12.1. Securing extensions
	12.1.1. Allow listing

	12.2. SSL framework
	12.2.1. SSL providers
	12.2.2. Certificates
	Validate the key and the certificate
	Transform the certificates

	12.2.3. Connectors
	12.2.4. Configuration
	Configure SSL over Bolt
	Connect with SSL over Bolt
	Configure SSL over HTTPS
	Configure SSL for intra-cluster communications
	Configure SSL for backup communication
	Other configurations for SSL
	Using OCSP stapling

	12.2.5. SSL logs
	12.2.6. Terminology

	12.3. Browser credentials handling
	12.4. Security checklist

	Chapter 13. Monitoring
	13.1. Metrics
	13.2. Types of metrics
	13.2.1. Global metrics
	13.2.2. Database metrics
	13.2.3. Expose metrics
	Enable metrics logging
	Graphite
	Prometheus
	CSV files
	JMX MBeans

	13.2.4. Metrics reference
	General-purpose metrics

	Chapter 14. Metrics specific to Causal Clustering
	Chapter 15. Java Virtual Machine Metrics
	15.1. Logging
	15.1.1. Log files Enterprise edition
	15.1.2. Log format
	15.1.3. User log
	15.1.4. Debug log
	15.1.5. Garbage collection log
	15.1.6. HTTP log
	15.1.7. Security log Enterprise edition
	Security log configuration

	15.1.8. Query log Enterprise edition
	Query log configuration
	Attach metadata to a transaction
	JSON format

	15.2. Query management
	15.2.1. List all running queries
	15.2.2. List all active locks for a query
	15.2.3. Terminate multiple queries
	15.2.4. Terminate a single query

	15.3. Transaction management
	15.3.1. Configure transaction timeout
	15.3.2. Configure lock acquisition timeout
	15.3.3. List all running transactions

	15.4. Connection management
	15.4.1. List all network connections
	15.4.2. Terminate multiple network connections
	15.4.3. Terminate a single network connection

	15.5. Background job management
	15.5.1. Listing active background jobs
	15.5.2. Listing failed job executions

	15.6. Monitoring a Neo4j cluster
	15.6.1. Procedures for monitoring a Causal Cluster
	Find out the role of a cluster member
	Gain an overview over the instances in the cluster
	Get routing recommendations

	15.6.2. Endpoints for status information
	Adjusting security settings for Causal Clustering endpoints
	Unified endpoints

	15.7. Monitoring individual database states
	15.7.1. Listing Databases
	15.7.2. Listing a single database

	Chapter 16. Performance
	16.1. Memory configuration
	16.1.1. Overview
	16.1.2. Considerations
	16.1.3. Capacity planning
	16.1.4. Limit transaction memory usage

	16.2. Index configuration
	16.2.1. Introduction
	16.2.2. B-tree indexes
	Limitations
	Index migration
	Procedures to create index and index backed constraint

	16.2.3. Full-text indexes
	Configuration

	16.2.4. Token lookup indexes
	Use and significance
	Databases created before version 4.3

	16.3. Tuning of the garbage collector
	16.4. Bolt thread pool configuration
	16.4.1. How thread pooling works
	16.4.2. Configuration options
	16.4.3. How to size your Bolt thread pool

	16.5. Linux file system tuning
	16.6. Disks, RAM and other tips
	16.6.1. Storage
	16.6.2. Page cache
	16.6.3. Active page cache warmup Enterprise edition
	16.6.4. Checkpoint IOPS limit Enterprise edition

	16.7. Statistics and execution plans
	16.7.1. Configure statistics collection
	Automatic statistics collection
	Manual statistics collection

	16.7.2. Configure the replanning of execution plans
	Automatic replanning
	Manual replanning

	16.8. Space reuse
	16.8.1. ID files
	16.8.2. Reclaim unused space

	Chapter 17. Tools
	17.1. Neo4j CLI tool
	17.1.1. Syntax and commands
	17.1.2. Environment variables

	17.2. Neo4j Admin
	17.2.1. Introduction
	17.2.2. Syntax and commands
	17.2.3. Environment variables
	17.2.4. Environment variables
	17.2.5. Exit codes
	17.2.6. Consistency checker
	17.2.7. Neo4j Admin report
	17.2.8. Display store information
	Syntax
	Options
	Examples
	Store format — aligned
	Store format — standard
	Store format — high_limit Enterprise edition

	17.2.9. Memory recommendations
	17.2.10. Import
	Syntax
	Options
	CSV header format
	Node files
	Relationship files
	Properties
	Using ID spaces
	Skipping columns
	Import compressed files
	Resuming a stopped or cancelled import Enterprise edition

	17.2.11. Unbind a Core Server
	Command
	Examples of usage
	Archive cluster state

	17.2.12. Push to cloud
	Syntax
	Options
	Limitations
	Output
	Examples

	17.3. Cypher Shell
	17.3.1. About Cypher Shell CLI
	17.3.2. Syntax
	17.3.3. Running Cypher Shell within the Neo4j distribution
	17.3.4. Running Cypher Shell from a different server
	17.3.5. Available commands
	17.3.6. Running Cypher statements
	17.3.7. Query parameters
	17.3.8. Transactions
	17.3.9. Procedures
	17.3.10. Supported operating systems

	Appendix A: Reference
	17.A.1. Configuration settings
	17.A.2. Procedures
	Procedures, editions, and modes
	List of procedures
	Procedure descriptions

	Appendix B: Tutorials
	17.B.1. Set up a local Causal Cluster
	Introduction
	Download Neo4j
	Set up the Core servers
	Check the status of the cluster
	Set up the Read Replicas
	Check the status of the cluster

	17.B.2. Back up and restore a database in Causal Cluster
	Prepare to back up your database
	Back up your database
	Delete the database that you want to replace
	Restore the database backup on all cluster members
	Create the database backup on the cluster leader
	Recreate the database users and roles

	17.B.3. Neo4j Admin import
	Import a small data set
	CSV file delimiters
	Using separate header files
	Multiple input files
	Using the same label for every node
	Using the same relationship type for every relationship
	Properties
	ID space
	Skip relationships referring to missing nodes
	Skip nodes with same ID

	17.B.4. Set up and use Fabric
	Model your data for Fabric
	Configure Fabric with three databases
	Import data in your databases
	Retrieve data with a single Cypher query

	Appendix C: Advanced Causal Clustering
	17.C.1. Causal Clustering lifecycle
	Introduction
	Discovery protocol
	Core membership
	Read Replica membership
	Transacting via the Raft protocol
	Catchup protocol
	Read Replica shutdown
	Core shutdown

	17.C.2. Multi-data center
	Licensing for multi-data center operations

	17.C.3. Multi-data center design
	Introduction
	Core Server deployment scenarios
	Allowing Read Replicas to catch up from other Read Replicas

	17.C.4. Multi-data center operations
	Enable multi-data center operations
	Server groups
	Strategy plugins

	17.C.5. Multi-data center load balancing
	Introduction
	Prerequisite configuration
	The load balancing framework
	Load balancing examples

	17.C.6. Data center disaster recovery
	Data center loss scenario
	Procedure for recovering from data center loss

	17.4. Embedded usage
	Appendix D: Deprecated security procedures
	17.D.1. Enterprise Edition
	Activate a suspended user
	Assign a role to the user
	Change the current user’s password
	Change the given user’s password
	Create a new role
	Create a new user
	Delete the specified role
	Delete the specified user
	List all available roles
	List all roles assigned to the specified user
	List all local users
	List all users currently assigned the specified role
	Unassign a role from the user
	Suspend the specified user

	17.D.2. Community Edition
	Change the current user’s password
	Add a user
	Delete a user
	List all native users

