-Ne04j

HTTP AP

Table of Contents

Nt OdUC I ON. . . oo e e 2
DISCOVEIY APl . . 3
ROOt iSCOVEIY. . o e e e e e 3
Cyphertransaction AP e e e e 4
Transaction floW e 4
QUENY oMMt . oo e 5
RESUI fOrmMats e 6
Begin atransaction e 12
Run queries inside a transaction e 13
Keeping transactions alive with an empty statement. 14
Commit @ transaction. e 14
Rollback an open transaction.o i 15
Begin and commit a transaction inonerequest. i i e 16
Execute multiple statements e e 17
Include query statistics e e 18
Returnresults in graph format. e e 19
EXpired transactions o 21
Handling @rrorso e 21
Handling errors in an open transaction ittt e e 22
Authentication and authorization e 23
Missing authorization. e e e 23
Incorrect authentication 23

Authentication failure on open transactions. e 24

Neo4d) v4.3

License: Creative Commons 4.0
Transactional Cypher HTTP endpoint.
This manual covers the following areas:

¢ Introduction
e Discovery API
e Cypher transaction API

e Authentication and authorization

Who should read this?

This manual is written for the developer of a client application which accesses Neo4j through the HTTP
API.

Introduction

The Neo4j transactional HTTP endpoint allows you to execute a series of Cypher statements within the
scope of a transaction. The transaction may be kept open across multiple HTTP requests, until the client
chooses to commit or roll back. Each HTTP request can include a list of statements, and for convenience
you can include statements along with a request to begin or commit a transaction.

The server guards against orphaned transactions by using a timeout. If there are no requests for a given
transaction within the timeout period, the server will roll it back. You can configure the timeout in the
server configuration, by setting Operations Manual » Configuration settings
dbms.rest.transaction.idle_timeout to the number of seconds before timeout. The default timeout is 60
seconds.

Responses from the HTTP API can be transmitted as JSON streams, resulting in better performance and
lower memory overhead on the server side. To use streaming, supply the header X-Stream: true with
each request.

e Literal line breaks are not allowed inside Cypher statements.

e Cypher queries with USING PERIODIC COMMIT (see Begin and commit a transaction in
o one request for how to do that).

¢ When a request fails the transaction will be rolled back. By checking the result for
the presence/absence of the transaction key you can figure out if the transaction is

still open.
In order to speed up queries in repeated scenarios, try not to use literals but replace
(r) them with parameters wherever possible. This will let the server cache query plans. See

Cypher Manual » Parameters for more information.

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.3.pdf

Discovery API

The HTTP APl uses the port 7474 for HTTP and the port 7473 for HTTPS.

O See the Operations Manual » Ports for an overview of the Neo4j-specific ports.
w

Root discovery

Each server provides a root discovery URI that lists a basic index of other URIs, as well as version

information.

Example request

GET http://localhost:7474/
Accept: application/json

Example response

200 OK
Content-Type: application/json

{
"bolt_direct": "bolt://localhost:7687",
"bolt_routing": "neo4j://localhost:7687",
"transaction": "http://localhost:7474/db/{databaseName}/tx",
"neo4j_version": "4.3.0",
"neo4j_edition": "enterprise"

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf

Cypher transaction AP

There are several actions that can be performed using the Cypher transaction HTTP endpoint.
Concepts:

e Transaction flow
e Query format

e Result formats
Using the API:

e Begin a transaction

e Run queries inside a transaction

Keeping transactions alive with an empty statement

Commit a transaction

Rollback an open transaction

Begin and commit a transaction in one request
Additional actions:

e Execute multiple statements
e Include query statistics

e Return results in graph format
Error handling:

e Expired transactions
e Handling errors

e Handling errors in an open transaction

Transaction flow

Cypher transactions are managed over several distinct URIs that are designed to be used in a prescribed
pattern. Facilities are provided to carry out the full transaction cycle over a single HTTP request, or over
multiple HTTP requests.

The overall flow is illustrated below, with each box representing a separate HTTP request:

coMMIT

POST /ftx/{n}/commit

POST /tx POST /tx/{n}

START END

DELETE /tx/{n}

BEGIN & COMMIT

POST /tx/commit

I Query

Figure 1. Cypher transaction flow

Transaction lifetime

The state of each transaction is maintained on the server on which the transaction began. Transactions
expire automatically after a period of inactivity. By default this is 60 seconds.

To keep a transaction alive without submitting new queries, an empty statement list can be posted to the
/tx/{n} URI.

Query format

All transaction POST requests can accept one or more Cypher queries within the request payload. This
enables a large amount of flexibility in how, and when, queries are sent, and can help to reduce the
number of individual HTTP requests overall.

The payload is sent as JSON with the following general structure:

{
"statements": [
{
"statement": "...",
"parameters": {...}
3,
{
"statement": "...",
"parameters": {...}
}7
]

For example:

{
"statements": [
{
"statement": "CREATE (n $props) RETURN n",
"parameters": {
"props": {
"name": "My Node"
3
3
}y
{
"statement": "CREATE (n $props) RETURN n",
"parameters": {
"props": {
"name": "Another Node"
3
3
3
]
3

Parameters are included as key-value pairs, with each value adopting a type that corresponds to an entry

in the mapping table below:

Table 1. HTTP API parameter type mappings

JSON Type Cypher Type
null Null
boolean Boolean
number Float
string String
array List

object Map

Result formats

Default

This format returns JSON with an embedded results element. To request this format, place
application/json in the Accept header. This format is the default returned if no Accept header is provided.

"results": [

{
"columns": [],
"data": [
{
"row": [row-data 1,
"meta": [metadata]
}7
{
3
1
}’
{
//another statement’s results
3

For example, running the query UNWIND range(@, 2, 1) AS number RETURN number will return the following

results:
{
"results": [
{
"columns": [
"number"
:l)
"data": [
{
"row": [
0
:ly
"meta": [
null
1
}y
{
"row": [
1
:ly
"meta": [
null
]
}y
{
"row": [
2
:ly
"meta": [
null
1
3
1
3
:ly
// other transactional data
3
Jolt

Jolt, short for JSON Bolt, is a JISON-based format which encloses the response value’s type together with
the value inside a singleton object.

For example:

{uzu: ||2||}

This labels the value 2 as an integer type.

This format can be returned when adding application/vnd.neo4j. jolt to the request’'s Accept header.

Line delimited and Sequenced

Jolt may be returned in either line feed delimited or JSON sequence!” mode. The formats are made
available via the application/vnd.neo4j.jolt and application/vnd.neo4j.jolt+json-seq types which
may be passed to the request’s Accept header respectively.

Strict and sparse
There are two modes of Jolt that can be returned:

e Strict mode, where all values are paired with their type.
e Sparse mode, which omits typing pairing on values which can suitably be matched to JSON types.
By default, the sparse mode is returned. To enable strict mode, pass

application/vnd.neo4j.jolt;strict=true or application/vnd.neo4j.jolt+json-seq;strict=true in the
Accept header.

Jolt types

Base types

Type Label Type Example

(N/A) null null

? Boolean {"?": "true"}

Z Integer {"z": "123"}

R Float/Real {"R": "9.87"} ™

U String {"U": "A string"}

T Date/Time {"T": "2002-04-16T12:34:56"}
e Geospatial {"@": "POINT (30 10)"}

Type Label

#

Composite types

Type Label

L]

{3

Entity types

Node

{"O": [node_id, [node_labels], {"prop1": "valuel", "prop2":

For example:

{
O T
4711,
L
||A||,
"B"
l
{
"prop1": {
VAREES B
}7
"prop2": {
"U": "Hello"
3
3
]
3

Relationships

Type

Hexadecimal

Type

List

Dictionary

Example

{"#": "FAQ8"}

Example

{u[]u: [{uzu: H123"}, -]}

{U{}H: {”name": {”U": "Jeff"},
o3

"value2"}1}

{"->": [rel_id, start_node_id, rel_type, end_node_id, {properties}]1}
{"<-": [rel_id, end_node_id, rel_type, start_node_id, {properties}]1}

For example:

{

"_sn. [
4711,
123,
"KNOWS"
124,
{
"since": {
"Z": "1999"
3
3
]
3
Paths
{"..": [{node_13}, {rel_1}, {node_2}, ..., {node_n}, {rel_n}, {node_n+1}1%}

For example:

"O": [
111,
[1,
{3
]
}'
{
n_su. [
9090,
111,
"KNOWS"
222,
{
"since": {
"Z": "1999"
3
3
]

})
{

"O": [
222,
[1,
{3

]

3
]
3

Container format

Jolt results will be returned in a new container format based on events. A typical response will contain:

{"header":{"fields":["name", "age"1}}
{"datall:[{llUll : IlBobll}’{llzll : Il30|l}]}
{"data":[{"u" : llAlice"},{"le:l|4@l|}]}
{"data":[{"U":"Eve"},{"Z2":"50"} 1}

{;éummary“:{}}
{"info":{"commit":"commit/uri/1"}}

10

Each event is a separate JSON document separated by a single LF character (Line Feed, UTF encoding:

0x8A) or, if JSON sequences are requested, encapsulated within an RS character'™ (Information Separator

Two, UTF-8 encoding: 0x1E) at the beginning of each document as well as a LF character at the end:

Event

header

data

summary

info

error

Function

Marks the start of a result set for a statement, and
contains query fields.

For each record returned in the result set there will
be a data json object. Depending on the query, each
query can return multiple data objects.

The order of values in the array match the fields
received in the header.

Marks the end of a result set for a statement.

Can contain query plan information if requested.

Final event to appear after processing all
statements (unless an error has occurred), and can
contain transaction information (e.g. a commit URI).

Errors which occur during the processing of the
transaction.

For example, the default Jolt encoding will result in a stream encoded as follows:

{"header":{"fields":["result"1}}\n
{"data":[{"Z2":"1"}1}\n
{"summary":{}}\n

{"info":{33\n

While the JSON sequence based Jolt encoding will result in the following response:

\u@@1E{"header":{"fields":["result"1}}\n
\u@01E{"data":[{"Z":"1"}1}\n
\u@O1E{"summary" :{3}\n
\UGO1E{"info": {3}\n

Multiple result sets in a request

When there are multiple queries in a single request there will be multiple header, data, and summary

outputs for each query.

For example, posting the following request:

11

{

"statements" : [

{ "statement" : "RETURN 1 as resultA"},

{ "statement" : "UNWIND range(1,3,1) as resultB RETURN resultB"}
]

}
will yield the following result response:

{"header":{"fields":["resultA"1}}
{"data":[{"Z2":"1"}1}
{"summary": {3}
{"header":{"fields":["resultB"1}}
{"data":[{"Z":"1"}1}
{"data":[{"Z2":"2"}1}
{"data":[{"Z":"3"}1}
{"summary":{}}

{"info":{}}

Results sets will be returned in the same order as passed in the original request.

Begin a transaction

A new transaction can be started by posting zero or more Cypher queries to the transaction endpoint. The
server will respond with the results of your queries, as well as the location of your new transaction.

Transactions expire automatically after a period of inactivity (i.e. queries and a commit). By default this is

60 seconds.

To keep a transaction alive without submitting new queries, an empty statement list can be posted to the
transaction URI.

Example request

e POST http://localhost:7474/db/neo4;j/tx
e Accept: application/json;charset=UTF-8

e Content-Type: application/json

{
"statements" : [{
"statement" : "CREATE (n $props) RETURN n",
"parameters" : {
"props" : {
"name" : "My Node"
3
3
3]
3

Example response

e 201: Created
e Content-Type: application/json;charset=utf-8

e Location: http://localhost:7474/db/neo4j/tx/16

12

{

"results" : [{

"columns" : ["n" 1,
"data" : [{
"row" : [{
"name" : "My Node"
],
"meta" : [{
"id" : 11,
"type" : "node",
"deleted" : false
1]
3]
],
"errors" : [1,
"commit" : "http://localhost:7474/db/neodj/tx/16/commit",
"transaction" : {
"expires" : "Mon, 20 Sep 2021 07:57:37 GMT"

b
}

Run queries inside a transaction

Once you have an open transaction by calling db/{name}/tx, you can run additional statements that form

part of your transaction by calling the newly created transaction endpoint. The endpoint will be in the form

db/{name}/tx/{txid}, where txid is provided in the response of the initial call to begin the transaction.

Example request
e POST http://localhost:7474/db/neo4j/tx/18

e Accept: application/json;charset=UTF-8

e Content-Type: application/json

{
"statements": [
{
"statement": "CREATE (n) RETURN n"
3
]
3

Example response

e 200: OK

e Content-Type: application/json;charset=utf-8

13

"results" : [{

"columns" : ["n" 1,
"data" : [{
"row" : [{1} 1,
"meta" : [{
"id" : 12,
"type" : "node",
"deleted" : false
1]
3]
T,
"errors" : [1,
"commit" : "http://localhost:7474/db/neo4j/tx/18/commit",
"transaction" : {
"expires" : "Mon, 20 Sep 2021 07:57:38 GMT"
3
3

Keeping transactions alive with an empty statement

If you need to extend the timeout while processing a transaction, you can send a POST to the transaction’s
endpoint with a blank HTTP body.

Example request

e POST http://localhost:7474/db/neo4;j/tx/2
e Accept: application/json;charset=UTF-8

e Content-Type: application/json

{
3

"statements": []

Example response

e 200: OK

e Content-Type: application/json;charset=utf-8

"results" : [1],
"errors" : [1,
"commit" : "http://localhost:7474/db/neo4j/tx/2/commit",
"transaction" : {
"expires" : "Mon, 20 Sep 2021 07:57:36 GMT"

b
3

Commit a transaction

When you have executed all the statements for the transaction, and want to commit the changes to the
database, you can use POST db/{name}/tx/{txid}/commit, which can also include any final statements to

execute before committing.

Example request

14

e POST http://localhost:7474/db/neo4j/tx/2/commit
e Accept: application/json;charset=UTF-8

e Content-Type: application/json

{
"statements": [
{
"statement": "MATCH (n) WHERE id(n) = $nodeId RETURN n",
"parameters": {
"nodelId": 6
3
3
]
3

Example response

e 200: OK

e Content-Type: application/json;charset=utf-8

{

"results" : [{
"columns" : ["n" 1,
"data" : [{

"row" : [{1} 1,
"meta" : [{
"id" : 6,
"type" : "node",
"deleted" : false
3]
3]
],
"errors" : []
3

Rollback an open transaction

Given that you have an open transaction, you can send a rollback request. The server will roll back the
transaction. Any attempt to run additional statements in this transaction will fail immediately.

Example request

e DELETE http://localhost:7474/db/neo4j/tx/3

e Accept: application/json;charset=UTF-8
Example response

e 200: OK

e Content-Type: application/json;charset=utf-8

{
"results" : [1,
"errors" : []

3

15

Begin and commit a transaction in one request

Begin and commit request

If there is no need to keep a transaction open across multiple HTTP requests, you can begin a transaction,

execute statements, and commit within a single HTTP request.

Example request

e POST http://localhost:747 4/db/neo4j/tx/commit
e Accept: application/json;charset=UTF-8

e Content-Type: application/json

{
"statements": [
{
"statement": "MATCH (n) WHERE id(n) = $nodeId RETURN n",
"parameters": {
"nodelId": 7
3
3
]
3

Example response

e 200: OK

e Content-Type: application/json;charset=utf-8

{

"results" : [{
"columns" : ["n" 1,
"data" : [{

"row" : [{1} 1,
"meta" : [{
"id" : 7,
"type" : "node",
"deleted" : false
3]
]
],
"errors" : []
3

Legacy Endpoints |Deprecated

o The API described in this section of the manual has been deprecated and will be
removed in Neo4j 5.0.

Starting with Neo4j version 4.3, statements submitted via these endpoints will be processed by the user’s
respective home database. Previous versions rely on the the globally configured default database.

Example request

16

e POST http://localhost:747 4/db/neo4j/tx/commit
e Accept: application/json;charset=UTF-8

e Content-Type: application/json

{
"statements": [
{
"statement": "MATCH (n) WHERE id(n) = $nodeId RETURN n",
"parameters": {
"nodelId": 2
3
3
]
3

Example response

e 200: OK

e Content-Type: application/json;charset=utf-8

{

"results" : [{
"columns" : ["n" 1,
"data" : [{

"row" : [{1} 1,
"meta" : [{
"id" : 2,
"type" : "node",
"deleted" : false
3]
3]
],
"errors" : []
3

Execute multiple statements

It is possible to send multiple Cypher statements in the same request. The response will contain the result
of each statement.

Example request

e POST http://localhost:7474/db/neo4j/tx/commit
e Accept: application/json;charset=UTF-8

e Content-Type: application/json

{
"statements": [
{
"statement": "RETURN 1"
}7
{
"statement": "RETURN 2"
3
]
3

17

Example response

e 200: OK

e Content-Type: application/json;charset=utf-8

{
"results": [
{
"columns": ["a"],
"data": [{ "row": [1], "meta": [null] }]
}7
{
"columns": ["b"],
"data": [{ "row": [2], "meta": [null] }]
3
]’
"errors": []
3

Include query statistics
By setting includeStats to true for a statement, query statistics will be returned for it.
Example request

e POST http://localhost:747 4/db/neo4j/tx/commit
e Accept: application/json;charset=UTF-8

e Content-Type: application/json

{
"statements": [
{
"statement": "CREATE (n) RETURN id(n)",
"includeStats": true
3
]
3

Example response

e 200: OK

e Content-Type: application/json;charset=utf-8

18

{
"results" : [{
"columns" : ["id(n)" 1,
"data" : [{
"row" : [5 1,
"meta" : [null]

T,

"stats" : {
"contains_updates" : true,
"nodes_created" : 1,
"nodes_deleted" : 0,
"properties_set" : 0,
"relationships_created" : 0,
"relationship_deleted" : 0,
"labels_added" : 0,

"labels_removed" : 0,
"indexes_added" : 0,
"indexes_removed" : 0,
"constraints_added" : 0,
"constraints_removed" : 0,
"contains_system_updates" : false,
"system_updates" : 0
3
S
"errors" : []

3

Return results in graph format

If you want to understand the graph structure of nodes and relationships returned by your query, you can
specify the graph results data format. This is useful when you want to visualize the graph structure. The
format collates all the nodes and relationships from all columns of the result, and also flattens collections of
nodes and relationships, including paths.

Example request

e POST http://localhost:7474/db/neo4j/tx/commit
e Accept: application/json;charset=UTF-8

e Content-Type: application/json

{

"statements": [
{

"statement": "CREATE (bike:Bike {weight: 10}) CREATE (frontWheel:Wheel {spokes: 3}) CREATE
(backWheel:Wheel {spokes: 32}) CREATE p1 = (bike)-[:HAS {position: 1}]->(frontWheel) CREATE p2 = (bike)-
[:HAS {position: 2} 1->(backWheel) RETURN bike, p1, p2",

"resultDataContents": ["row", "graph"]

3
]
3

Example response

e 200: OK

e Content-Type: application/json;charset=utf-8

"results" : [{
"CO]_UITII’]S" : [Ilbike“’ Ilp‘lll, llp2l|],
"data" : [{

19

20

"row" [{

"weight" :

3, A

"weight" :

A
"position

Bo

"spokes" :

Y1, A

"weight" :

oA
"position

By

"spokes" :

Y11,

10

10

"

3

10

"2

32

"meta" : [{

"id" : 8,
n type" .

"deleted" :

3, [Ao
"id" : 8,
"type" :

"deleted" :

hd
"id" : o,
"type" .

"deleted" :

Yp
"id" @ 9,
Vtype" -

"deleted" :

Y1, 0L
"id" : 8,
"type" .

"deleted" :

A
"id" : 1,
Vtype" :

"deleted" :

B
"id" : 10
"type" .

"deleted" :

311,
"graph" : {
"nodes"
Ilidll :
"labels

||n0deu ,
false

"node",
false

"relationship",
false

"node",
false

||n0deu ,
false

"relationship",
false

|In0dell ,
false

L1

“8",
" . ["Bike"]’

"properties" : {
"weight" : 10

3

3 A
Ilid" :
"labels

||9n’
LI ["Wheel"],

"properties" : {
"spokes" : 3

3

3
Ilid" :
"labels

||-|0||’
L ["Wheel" :l,

"properties" : {
"spokes" : 32

3
T,

"relationships" : [{

"j.d“ .

utypeu .

||®||,
"HAS",

"startNode" :
Il9l| ,

"endNode" :

"properties" :
"position" :

}

3 {
"j.d“ .
utypeu .

09 ||,

"startNode" :
II-IOH,

"endNode" :

"8",

{
1

"HAS",

"8",

"properties" : {
"position" : 2
}
3]

}
3]
1

Ilr

e
3

;ors“ s [1

Expired transactions

If an attempt is made to commit a transaction which has timed out, you will see the following error:

404 Not Found
Content-Type: application/json

{
"results": [1,
"errors": [
{
"code": "Neo.ClientError.Transaction.TransactionNotFound",
"message": "Unrecognized transaction id. Transaction may have timed out and been rolled back."
3
1
3

Handling errors

The result of any request against the transaction endpoint is streamed back to the client. Therefore, the
server does not know whether the request will be successful or not when it sends the HTTP status code.

Because of this, all requests against the transactional endpoint will return 200 or 201 status code,
regardless of whether statements were successfully executed. At the end of the response payload, the
server includes a list of errors that occurred while executing statements. If the list is empty, the request
completed successfully.

If errors occur while executing statements, the server will roll back the transaction.

In this example, we send an invalid statement to the server in order to demonstrate error handling.
For more information on the status codes, see Neo4j Status Codes.

Example request

e POST http://localhost:7474/db/neo4j/tx/17/commit
e Accept: application/json;charset=UTF-8

e Content-Type: application/json

{
"statements": [
{
"statement": "This is not a valid Cypher Statement."
3
]
}

21

https://neo4j.com/docs/pdf/neo4j-status-codes-4.3.pdf

Example response

e 200: OK

e Content-Type: application/json;charset=utf-8

{
"results" : [1,
"errors" : [{
"code" : "Neo.ClientError.Statement.SyntaxError",
"message" : "Invalid input 'T': expected <init> (line 1, column 1 (offset: @))\n\"This is not a valid
Cypher Statement.\"\n *"
],
"commit" : "http://localhost:7474/db/neo4j/tx/17/commit"
3

Handling errors in an open transaction

If there is an error in a request, the server will roll back the transaction. You can tell if the transaction is still
open by inspecting the response for the presence/absence of the transaction key.

Example request

POST http://localhost:7474/db/neo4j/tx/15

Accept: application/json;charset=UTF-8

Content-Type: application/json

{
"statements": [
{
"statement": "This is not a valid Cypher Statement."
3
]
3

Example response

e 200: OK

e Content-Type: application/json;charset=utf-8

{
"results" : [],
"errors" : [{
"code" : "Neo.ClientError.Statement.SyntaxError",
"message" : "Invalid input 'T': expected <init> (line 1, column 1 (offset: @))\n\"This is not a valid
Cypher Statement.\"\n *"
],
"commit" : "http://localhost:7474/db/neo4j/tx/15/commit"
3

[1] JSON Sequences are encoded as outlined in RFC 7464.

[2] The type label R is used both to indicate floating point numbers and integers that are outside the range of 32-bit signed
integers.

[3] The common name is Record Separator, and the Unicode name is Information Separator Two.

22

https://tools.ietf.org/html/rfc7464#section-2.2

Authentication and authorization

Authentication and authorization are enabled by default in Neo4j (refer to Operations Manual »
Authentication and authorization). With authentication and authorization enabled, requests to the HTTP
API must be authorized using the username and password of a valid user.

Missing authorization

If an Authorization header is not supplied, the server will reply with an error.
Example request

e POST http://localhost:747 4/db/neo4j/tx/commit
e Accept: application/json;charset=UTF-8

e Content-Type: application/json

{
"statements": [
{
"statement": "CREATE (n:MyLabel) RETURN n"
3
]
3

Example response

e 401: Unauthorized
e Content-Type: application/json;charset=utf-8

e WWW-Authenticate: Basic realm="Neo4j"

{
"errors" : [{
"code" : "Neo.ClientError.Security.Unauthorized",
"message" : "No authentication header supplied."
1
3
o If authentication and authorization have been disabled, HTTP API requests can be sent
without an Authorization header.

Incorrect authentication

If an incorrect username or password is provided, the server replies with an error.
Example request

e POST http://localhost:7474/db/neo4j/tx/commit

e Accept: application/json;charset=UTF-8

23

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf

e Authorization: Basic bmVvNGo6aW5jb3JyZWNO

e Content-Type: application/json

{
"statements": [
{
"statement": "CREATE (n:MyLabel) RETURN n"
3
]
3

Example response

e 401: Unauthorized
e Content-Type: application/json;charset=utf-8

e WWW-Authenticate: Basic realm="Neo4j"

{
"errors" : [{
"code" : "Neo.ClientError.Security.Unauthorized",
"message" : "Invalid username or password."
31
3

Authentication failure on open transactions

A Neo.ClientError.Security.Unauthorized error will typically imply a transaction rollback. However, due
to the way authentication is processed in the HTTP server, the transaction will remain open.

24

License

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

You are free to
Share

copy and redistribute the material in any medium or format

Adapt

remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial

You may not use the material for commercial purposes.

ShareAlike

If you remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

Notices

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for further details. The full license text is available
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

25

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

	HTTP API
	Table of Contents
	Introduction
	Discovery API
	Root discovery

	Cypher transaction API
	Transaction flow
	Query format
	Result formats
	Begin a transaction
	Run queries inside a transaction
	Keeping transactions alive with an empty statement
	Commit a transaction
	Rollback an open transaction
	Begin and commit a transaction in one request
	Execute multiple statements
	Include query statistics
	Return results in graph format
	Expired transactions
	Handling errors
	Handling errors in an open transaction

	Authentication and authorization
	Missing authorization
	Incorrect authentication
	Authentication failure on open transactions

