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The manual covers the following areas:

• Introduction — An introduction to the Neo4j Graph Data Science library.

• Installation — Instructions for how to install and use the Neo4j Graph Data Science library.

• Common usage — General usage patterns and recommendations for getting the most out of the Neo4j
Graph Data Science library.

• Graph management — A detailed guide to the graph catalog and utility procedures included in the
Neo4j Graph Data Science library.

• Model catalog — A detailed guide to the model catalog and utility procedures included in the Neo4j
Graph Data Science library.

• Algorithms — A detailed guide to each of the algorithms in their respective categories, including use-
cases and examples.

• Production deployment — This chapter explains advanced details with regards to common Neo4j
components.

• Operations reference — Reference of all procedures contained in the Neo4j Graph Data Science library.

• Migration from Graph Algorithms v3.5 — Additional resources - migration guide, books, etc - to help
using the Neo4j Graph Data Science library.

The source code of the library is available at GitHub. If you have a suggestion on how we can improve the
library or want to report a problem, you can create a new issue.
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Chapter 1. Introduction
This library provides efficiently implemented, parallel versions of common graph algorithms for Neo4j,
exposed as Cypher procedures.

1.1. Algorithms
Graph algorithms are used to compute metrics for graphs, nodes, or relationships.

They can provide insights on relevant entities in the graph (centralities, ranking), or inherent structures like
communities (community-detection, graph-partitioning, clustering).

Many graph algorithms are iterative approaches that frequently traverse the graph for the computation
using random walks, breadth-first or depth-first searches, or pattern matching.

Due to the exponential growth of possible paths with increasing distance, many of the approaches also
have high algorithmic complexity.

Fortunately, optimized algorithms exist that utilize certain structures of the graph, memoize already
explored parts, and parallelize operations. Whenever possible, we’ve applied these optimizations.

The Neo4j Graph Data Science library contains a large number of algorithms, which are detailed in the
Algorithms chapter.

1.1.1. Algorithm traits

Algorithms in GDS have specific ways to make use of various aspects of its input graph(s). We call these
algorithm traits. When an algorithm supports an algorithm trait this indicates that the algorithm has been
implemented to produce well-defined results in accordance with the trait. The following algorithm traits
exist:

Directed

The algorithm is well-defined on a directed graph.

Undirected

The algorithm is well-defined on an undirected graph.

Homogeneous

The algorithm will treat all nodes and relationships in its input graph(s) similarly, as if they were all of
the same type. If multiple types of nodes or relationships exist in the graph, this must be taken into
account when analysing the results of the algorithm.

Heterogeneous

The algorithm has the ability to distinguish between nodes and/or relationships of different types.

Weighted

The algorithm supports configuration to set node and/or relationship properties to use as weights.
These values can represent cost, time, capacity or some other domain-specific property, specified via
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the nodeWeightProperty and relationshipWeightProperty configuration parameters. The algorithm will
by default consider each node and/or relationship as equally important.

1.2. Graph Catalog
In order to run the algorithms as efficiently as possible, the Neo4j Graph Data Science library uses a
specialized in-memory graph format to represent the graph data. It is therefore necessary to load the
graph data from the Neo4j database into an in memory graph catalog. The amount of data loaded can be
controlled by so called graph projections, which also allow, for example, filtering on node labels and
relationship types, among other options.

For more information see Graph Management.

1.3. Editions
The Neo4j Graph Data Science library is available in two editions.

• The open source Community Edition includes all algorithms and features, but is limited to four CPU
cores.

• The Neo4j Graph Data Science library Enterprise Edition:

◦ Can run on an unlimited amount of CPU cores.

◦ Supports the role-based access control system (RBAC) from Neo4j Enterprise Edition.

◦ Supports various additional model catalog features

▪ Storing unlimited amounts of models in the model catalog

▪ Publishing a stored model

▪ Persisting a stored model to disk

◦ Supports an optimized in-memory graph implementation

For more information see System Requirements - CPU.
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Chapter 2. Installation
The Neo4j Graph Data Science (GDS) library is delivered as a plugin to the Neo4j Graph Database. The
plugin needs to be installed into the database and added to the allowlist in the Neo4j configuration. There
are two main ways of achieving this, which we will detail in this chapter.

This chapter is divided into the following sections:

1. Supported Neo4j versions

2. Neo4j Desktop

3. Neo4j Server

4. Enterprise Edition Configuration

5. Neo4j Docker

6. Neo4j Causal Cluster

7. Additional configuration options

8. System Requirements

2.1. Supported Neo4j versions
Below is the compatibility matrix for The GDS library vs Neo4j. In general, you can count on the latest
version of GDS supporting the latest version of Neo4j and vice versa, and we recommend you always
upgrade to that combination.

We list software with major and minor version only, e.g. GDS library 1.5. You should read that as any
patch version of that major+minor version, but again, do upgrade to the latest patch always, to ensure you
get all bug fixes included.

Not finding your version of GDS or Neo4j listed? Time to upgrade!

Neo4j Graph Data Science Neo4j version

1.8.8 [1]

4.4

4.3

4.2

4.1 [2]

1.7 [1]

4.3

4.2

4.1 [3]

1.1 [1] 3.5
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2.2. Neo4j Desktop
The most convenient way of installing the GDS library is through the Neo4j Desktop plugin called Neo4j
Graph Data Science. The plugin can be found in the 'Plugins' tab of a database.

The installer will download the GDS library and install it in the 'plugins' directory of the database. It will
also add the following entry to the settings file:

dbms.security.procedures.unrestricted=gds.*

This configuration entry is necessary because the GDS library accesses low-level components of Neo4j to
maximise performance.

If the procedure allowlist is configured, make sure to also include procedures from the GDS library:

dbms.security.procedures.allowlist=gds.*


Before Neo4j 4.2, the configuration setting is called
dbms.security.procedures.whitelist

2.3. Neo4j Server
The GDS library is intended to be used on a standalone Neo4j server.


Running the GDS library in a Neo4j Causal Cluster is not supported. Read more about
how to use GDS in conjunction with Neo4j Causal Cluster deployment below.

On a standalone Neo4j Server, the library will need to be installed and configured manually.
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1. Download neo4j-graph-data-science-[version].jar from the Neo4j Download Center and copy it
into the $NEO4J_HOME/plugins directory.

2. Add the following to your $NEO4J_HOME/conf/neo4j.conf file:

dbms.security.procedures.unrestricted=gds.*

This configuration entry is necessary because the GDS library accesses low-level components of Neo4j
to maximise performance.

3. Check if the procedure allowlist is enabled in the $NEO4J_HOME/conf/neo4j.conf file and add the GDS
library if necessary:

dbms.security.procedures.allowlist=gds.*


Before Neo4j 4.2, the configuration setting is called
dbms.security.procedures.whitelist

4. Restart Neo4j

2.3.1. Verifying installation

To verify your installation, the library version can be printed by entering into the browser in Neo4j Desktop
and calling the gds.version() function:

RETURN gds.version()

To list all installed algorithms, run the gds.list() procedure:

CALL gds.list()

2.4. Enterprise Edition Configuration
Unlocking the Enterprise Edition of the Neo4j Graph Data Science library requires a valid license key. To
register for a license, please contact Neo4j at https://neo4j.com/contact-us/?ref=graph-analytics.

The license is issued in the form of a license key file, which needs to be placed in a directory accessible by
the Neo4j server. You can configure the location of the license key file by setting the
gds.enterprise.license_file option in the neo4j.conf configuration file of your Neo4j installation. The
location must be specified using an absolute path. It is necessary to restart the database when configuring
the license key for the first time and every time the license key is changed, e.g., when a new license key is
added or the location of the key file changes.

Example configuration for the license key file:

gds.enterprise.license_file=/path/to/my/license/keyfile

6

https://neo4j.com/download-center/#algorithms
https://neo4j.com/contact-us/?ref=graph-analytics


If the gds.enterprise.license_file setting is set to a non-empty value, the Neo4j Graph Data Science
library will verify that the license key file is accessible and contains a valid license key. When a valid license
key is configured, all Enterprise Edition features are unlocked. In case of a problem, e.g, when the license
key file is inaccessible, the license has expired or is invalid for any other reason, all calls to the Neo4j Graph
Data Science Library will result in an error, stating the problem with the license key.

2.5. Neo4j Docker
The Neo4j Graph Data Science library is available as a plugin for Neo4j on Docker. The plugins guide for
Docker is found at the operations manual.

To run a Neo4j Container with GDS available, you can run

docker run -it --rm \
  --publish=7474:7474 --publish=7687:7687 \
  --user="$(id -u):$(id -g)" \
  -e NEO4J_AUTH=none \
  --env NEO4JLABS_PLUGINS='["graph-data-science"]' \
  neo4j:4.2

2.6. Neo4j Causal Cluster
A Neo4j Causal Cluster consists of multiple machines that together support a highly available database
management system. The GDS library uses main memory on a single machine for hosting graphs in the
graph catalog and computing algorithms over these. These two architectures are not compatible and
should not be used in conjunction. A GDS workload will attempt to consume most of the system resources
of the machine during runtime, which may make the machine unresponsive for extended periods of time.
For these reasons, we strongly advise against running GDS in a cluster as this potentially leads to data
corruption or cluster outage.

To make use of GDS on graphs hosted by a Neo4j Causal Cluster deployment, these graphs should be
detached from the running cluster. This can be accomplished in several ways, including:

1. Dumping a snapshot of the Neo4j store and importing it in a separate standalone Neo4j server.

2. Adding a Read Replica to the Neo4j Causal Cluster and then detaching it to safely operate GDS on a
snapshot in separation from the Neo4j Causal Cluster.

3. Adding a Read Replica to the Neo4j Causal Cluster and configuring it for GDS workloads. Be aware
that the in-memory graph and the underlying database will eventually become out of sync due to
updates to the Read Replica. Since GDS can consume all available resources, responsiveness of the
Read Replica might decrease and its state might fall behind the cluster. Using GDS in this scenario
requires:

◦ installing GDS on the Read Replica

◦ using mutate or stream invocation modes

◦ consuming results from GDS workloads directly via Cypher (see Utility functions)

◦ not using GDS write-back features (writing triggers many large transactions and will potentially
terminate the cluster)
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After the GDS workload has finished on a detached machine (for cases 1. and 2.) it now contains out-of-
sync results written to its copied version of the graph from the Neo4j Causal Cluster. To integrate these
results back to the cluster, custom programs are necessary.

2.7. Additional configuration options
In order to make use of certain features of the GDS library, additional configuration is necessary.
Configuration is done in the neo4j.conf configuration file before starting the DBMS. The following features
require such additional configuration:

2.7.1. Graph export

Exporting graphs to CSV files requires the configuration parameter gds.export.location to be set to the
absolute path to the folder in which exported graphs will be stored. This directory has to be writable by the
Neo4j process.

2.7.2. Model persistence

The model persistence feature requires the configuration parameter gds.model.store_location to be set
to the absolute path to the folder in which the models will be stored. This directory has to be writable by
the Neo4j process.

2.8. System Requirements

2.8.1. Main Memory

The GDS library runs within a Neo4j instance and is therefore subject to the general Neo4j memory
configuration.

Figure 1. GDS heap memory usage

Heap size

The heap space is used for storing graph projections in the graph catalog and algorithm state. When
writing algorithm results back to Neo4j, heap space is also used for handling transaction state (see
dbms.tx_state.memory_allocation). For purely analytical workloads, a general recommendation is to set the
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heap space to about 90% of the available main memory. This can be done via
dbms.memory.heap.initial_size and dbms.memory.heap.max_size.

To better estimate the heap space required to create in-memory graphs and run algorithms, consider the
Memory Estimation feature. The feature estimates the memory consumption of all involved data structures
using information about number of nodes and relationships from the Neo4j count store.

Page cache

The page cache is used to cache the Neo4j data and will help to avoid costly disk access.

For purely analytical workloads including native projections, it is recommended to decrease
dbms.memory.pagecache.size in favor of an increased heap size. However, setting a minimum page cache
size is still important while creating in-memory graphs:

• For native projections, the minimum page cache size for creating the in-memory graph can be roughly
estimated by 8KB * 100 * readConcurrency.

• For Cypher projections, a higher page cache is required depending on the query complexity.

However, if it is required to write algorithm results back to Neo4j, the write performance is highly
depended on store fragmentation as well as the number of properties and relationships to write. We
recommend starting with a page cache size of roughly 250MB * writeConcurrency and evaluate write
performance and adapt accordingly. Ideally, if the memory estimation feature has been used to find a good
heap size, the remaining memory can be used for page cache and OS.


Decreasing the page cache size in favor of heap size is not recommended if the Neo4j
instance runs both, operational and analytical workloads at the same time. See Neo4j
memory configuration for general information about page cache sizing.

2.8.2. CPU

The library uses multiple CPU cores for graph projections, algorithm computation, and results writing.
Configuring the workloads to make best use of the available CPU cores in your system is important to
achieve maximum performance. The concurrency used for the stages of projection, computation and
writing is configured per algorithm execution, see Common Configuration parameters

The default concurrency used for most operations in the Graph Data Science library is 4.

The maximum concurrency that can be used is limited depending on the license under which the library is
being used:

• Neo4j Graph Data Science Library - Community Edition (GDS CE)

◦ The maximum concurrency in the library is limited to 4.

• Neo4j Graph Data Science Library - Enterprise Edition (GDS EE)

◦ The maximum concurrency in the library is unlimited. To register for a license, please contact Neo4j
at https://neo4j.com/contact-us/?ref=graph-data-science.
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
Concurrency limits are determined based on whether you have a GDS EE license, or if
you are using GDS CE. The maximum concurrency limit in the graph data science library
is not set based on your edition of the Neo4j database.

[1] This version series is end-of-life and will not receive further patches. Please use a later version.
[2] There is a bug in Neo4j 4.1.1 that can lead to an exception when using Cypher projection. If possible, use the latest patch
version.
[3] There is a bug in Neo4j 4.1.1 that can lead to an exception when using Cypher projection. If possible, use the latest patch
version.
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Chapter 3. Common usage
The GDS library usage pattern is typically split in two phases: development and production. In the
development phase the goal is to establish a workflow of useful algorithms. In order to do this, the system
must be configured, graph projections must be defined, and algorithms must be selected. It is typical to
make use of the memory estimation features of the library. This enables you to successfully configure your
system to handle the amount of data to be processed. There are two kinds of resources to keep in mind:
the in-memory graph and the algorithm data structures.

In the production phase, the system would be configured appropriately to successfully run the desired
algorithms. The sequence of operations would normally be to create a graph, run one or more algorithms
on it, and consume results.

The below image illustrates an overview of standard operation of the GDS library:



The GDS library runs its procedures greedily in terms of system resources. That means
that each procedure will try to use:

• as much memory as it needs (see Memory estimation)

• as many CPU cores as it needs (not exceeding the limits of the concurrency it’s
configured to run with)

Concurrently running procedures share the resources of the system hosting the DBMS
and as such may affect each other’s performance. To get an overview of the status of
the system you can use the System monitor procedure.

The more detail on each individual operation, see the corresponding section:

1. Graph Catalog

2. Creating graphs
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3. Running algorithms

In this chapter, we will go through these aspects and guide you towards the most useful operations.

This chapter is divided into the following sections:

• Memory Estimation

• Creating graphs

• Running algorithms

• Logging

• Monitoring system

3.1. Memory Estimation
The graph algorithms library operates completely on the heap, which means we’ll need to configure our
Neo4j Server with a much larger heap size than we would for transactional workloads. The diagram
belows shows how memory is used by the projected graph model:

The model contains three types of data:

• Node ids - up to 245 ("35 trillion")

• Relationships - pairs of node ids. Relationships are stored twice if orientation: "UNDIRECTED" is used.

• Weights - stored as doubles (8 bytes per node) in an array-like data structure next to the relationships

Memory configuration depends on the graph projection that we’re using.

3.1.1. Estimating memory requirements for algorithms

In many use cases it will be useful to estimate the required memory of projecting a graph and running an
algorithm before running it in order to make sure that the workload can run on the available free memory.
To do this the .estimate mode can be used, which returns an estimate of the amount of memory required
to run graph algorithms. Note that only algorithms in the production-ready tier are guaranteed to have an
.estimate mode. For more details please refer to Syntax overview.
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Syntax outline:

CALL gds[.<tier>].<algorithm>.<execution-mode>.estimate(
  graphNameOrConfig: String or Map, configuration: Map
) YIELD
  nodeCount: Integer,
  relationshipCount: Integer,
  requiredMemory: String,
  treeView: String,
  mapView: Map,
  bytesMin: Integer,
  bytesMax: Integer,
  heapPercentageMin: Float,
  heapPercentageMax: Float

Table 1. Parameters

Name Type Default Optional Description

graphNameOr
Config

String or Map - no The name of the projected graph or the algorithm
configuration in the case of an anonymous graph.

configuration Map {} yes If the first parameter is the name of a projected graph, this
parameter is the algorithm config, otherwise it needs to be
null or an empty map.

The configuration map accepts the same configuration parameters as the estimated algorithm. See the
specific algorithm documentation for more information.

Table 2. Results

Name Type Description

nodeCount Integer The number of nodes in the graph.

relationship
Count

Integer The number of relationships in the graph.

requiredMemo
ry

String An estimation of the required memory in a human readable format.

treeView String A more detailed representation of the required memory, including estimates of the different
components in human readable format.

mapView Map A more detailed representation of the required memory, including estimates of the different
components in structured format.

bytesMin Integer The minimum number of bytes required.

bytesMax Integer The maximum number of bytes required.

heapPercenta
geMin

Float The minimum percentage of the configured maximum heap required.

heapPercenta
geMax

Float The maximum percentage of the configured maximum heap required.

3.1.2. Estimating memory requirements for graphs

The gds.graph.create procedures also support .estimate to estimate memory usage for just the graph.
Those procedures don’t accept the graph name as the first argument, as they don’t actually create the
graph.
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Syntax

CALL gds.graph.create.estimate(nodeProjection: String|List|Map, relationshipProjection: String|List|Map,
configuration: Map)
YIELD requiredMemory, treeView, mapView, bytesMin, bytesMax, heapPercentageMin, heapPercentageMax,
nodeCount, relationshipCount

The nodeProjection and relationshipProjection parameters follow the same syntax as in
gds.graph.create.

Table 3. Parameters

Name Type Default Optional Description

nodeProjectio
n

String or List
or Map

- no The node projection to estimate for.

relationshipPr
ojection

String or List
or Map

- no The relationship projection to estimate for.

configuration Map {} yes Additional configuration, such as concurrency.

The result of running gds.graph.create.estimate has the same form as the algorithm memory estimation
results above.

It is also possible to estimate the memory of a fictive graph, by explicitly specifying its node and
relationship count. Using this feature, one can estimate the memory consumption of an arbitrarily sized
graph.

To achieve this, use the following configuration options:

Table 4. Configuration

Name Type Default Optional Description

nodeCount Integer 0 yes The number of nodes in a fictive graph.

relationshipC
ount

Integer 0 yes The number of relationships in a fictive graph.

When estimating a fictive graph, syntactically valid nodeProjection and relationshipProjection must be
specified. However, it is recommended to specify '*' for both in the fictive graph case as this does not
interfere with the specified values above.

The query below is an example of estimating a fictive graph with 100 nodes and 1000 relationships.

Example

CALL gds.graph.create.estimate('*', '*', {
  nodeCount: 100,
  relationshipCount: 1000,
  nodeProperties: 'foo',
  relationshipProperties: 'bar'
})
YIELD requiredMemory, treeView, mapView, bytesMin, bytesMax, nodeCount, relationshipCount

Table 5. Results
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requiredMemory bytesMin bytesMax nodeCount relationshipCount

"593 KiB" 607576 607576 100 1000

The gds.graph.create.cypher procedure has to execute both, the nodeQuery and relationshipQuery, in
order to count the number of nodes and relationships of the graph.

Syntax

CALL gds.graph.create.cypher.estimate(nodeQuery: String, relationshipQuery: String, configuration: Map)
YIELD requiredMemory, treeView, mapView, bytesMin, bytesMax, heapPercentageMin, heapPercentageMax,
nodeCount, relationshipCount

Table 6. Parameters

Name Type Default Optional Description

nodeQuery String - no The node query to estimate for.

relationshipQ
uery

String - no The relationship query to estimate for.

configuration Map {} yes Additional configuration, such as concurrency.

3.1.3. Automatic estimation and execution blocking

All procedures in the GDS library that support estimation, including graph creation, will do an estimation
check at the beginning of their execution. This includes all execution modes, but not the estimate
procedures themselves.

If the estimation check can determine that the current amount of free memory is insufficient to carry
through the operation, the operation will be aborted and an error will be reported. The error will contain
details of the estimation and the free memory at the time of estimation.

This heap control logic is restrictive in the sense that it only blocks executions that are certain to not fit into
memory. It does not guarantee that an execution that passed the heap control will succeed without
depleting memory. Thus, it is still useful to first run the estimation mode before running an algorithm or
graph creation on a large data set, in order to view all details of the estimation.

The free memory taken into consideration is based on the Java runtime system information. The amount of
free memory can be increased by either dropping unused graphs from the catalog, or by increasing the
maximum heap size prior to starting the Neo4j instance.

Bypassing heap control

Occasionally you will want the ability to bypass heap control if it is too restrictive. You might have insights
into how your particular procedure call will behave, memory-wise; or you might just want to take a chance
e.g. because the memory estimate you received is very close to system limits.

For that use case we have sudo mode which allows you to manually skip heap control and run your
procedure regardless. Sudo mode is off by default to protect users - we fail fast if we can see your
potentially long-running procedure would not be able to complete successfully.
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To enable sudo mode, add the sudo parameter when calling a procedure. Here is an example of calling the
popular Louvain community detection algorithm in sudo mode:

Run Louvain in sudo mode:

CALL gds.louvain.write('myGraph', { writeProperty: 'community', sudo: true })
YIELD communityCount, modularity, modularities

Accidentally enabling sudo mode when calling a procedure, causing it to run out of memory, will not
significantly damage your installation, but it will waste your time.

3.2. Creating graphs
In order for any algorithm in the GDS library to run, we must first create a graph to run on. The graph is
created as either an anonymous graph or a named graph. An anonymous graph is created for just a single
algorithm and will be lost after its execution has finished. A named graph is given a name and stored in the
graph catalog. For a detailed guide on all graph catalog operations, see Graph Catalog.

Creating a named graph has several advantages:

• it can be used by multiple algorithms

• the creation is cleanly separated from the algorithm execution

• the algorithm runtime can be measured in isolation

• the configuration for creating the graph may be retrieved from the graph catalog

Using an anonymous graph has the advantage that a single query may be used for an entire algorithm
computation. This can be especially useful in the development phase when the workflow is being set up
and the graph projections are experimented with.

3.3. Running algorithms
All algorithms are exposed as Neo4j procedures. They can be called directly from Cypher using Neo4j
Browser, cypher-shell, or from your client code using a Neo4j Driver in the language of your choice.

For a detailed guide on the syntax to run algorithms, please see the Syntax overview section. In short,
algorithms are run using one of the execution modes stream, stats, mutate or write, which we cover in this
chapter.

The execution of any algorithm can be canceled by terminating the Cypher transaction that is executing
the procedure call. For more on how transactions are used, see Transaction Handling.

3.3.1. Stream

The stream mode will return the results of the algorithm computation as Cypher result rows. This is similar
to how standard Cypher reading queries operate.

The returned data can be a node ID and a computed value for the node (such as a Page Rank score, or
WCC componentId), or two node IDs and a computed value for the node pair (such as a Node Similarity
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similarity score).

If the graph is very large, the result of a stream mode computation will also be very large. Using the ORDER
BY and LIMIT subclauses in the Cypher query could be useful to support 'top N'-style use cases.

3.3.2. Stats

The stats mode returns statistical results for the algorithm computation like counts or percentile
distributions. A statistical summary of the computation is returned as a single Cypher result row. The direct
results of the algorithm are not available when using the stats mode. This mode forms the basis of the
mutate and write execution modes but does not attempt to make any modifications or updates anywhere.

3.3.3. Mutate

The mutate mode will write the results of the algorithm computation back to the in-memory graph. Note
that the specified mutateProperty value must not exist in the in-memory graph beforehand. This enables
running multiple algorithms on the same in-memory graph without writing results to Neo4j in-between
algorithm executions.

This execution mode is especially useful in three scenarios:

• Algorithms can depend on the results of previous algorithms without the need to write to Neo4j.

• Algorithm results can be written altogether (see write node properties and write relationships).

• Algorithm results can be queried via Cypher without the need to write to Neo4j at all (see
gds.util.nodeProperty).

A statistical summary of the computation is returned similar to the stats mode. Mutated data can be node
properties (such as Page Rank scores), new relationships (such as Node Similarity similarities), or
relationship properties.

3.3.4. Write

The write mode will write the results of the algorithm computation back to the Neo4j database. This is
similar to how standard Cypher writing queries operate. A statistical summary of the computation is
returned similar to the stats mode. This is the only execution mode that will attempt to make modifications
to the Neo4j database.

The written data can be node properties (such as Page Rank scores), new relationships (such as Node
Similarity similarities), or relationship properties. The write mode can be very useful for use cases where
the algorithm results would be inspected multiple times by separate queries since the computational
results are handled entirely by the library.

In order for the results from a write mode computation to be used by another algorithm, a new graph must
be created from the Neo4j database with the updated graph.
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3.3.5. Common Configuration parameters

All algorithms allow adjustment of their runtime characteristics through a set of configuration parameters.
Although some of the parameters are algorithm-specific, many are shared between algorithms and
execution modes.


To learn more about algorithm specific parameters and to find out if an algorithm
supports a certain parameter, please consult the algorithm-specific documentation page.

List of the most commonly accepted configuration parameters

concurrency - Integer

Controls the parallelism with which the algorithm is executed. By default this value is set to 4. For more
details on the concurrency settings and limitations please see the CPU section of the System
Requirements.

nodeLabels - List of String

If the graph, on which the algorithm is run, was created with multiple node label projections, this
parameter can be used to select only a subset of the projected labels. The algorithm will only consider
nodes with the selected labels.

relationshipTypes - List of String

If the graph, on which the algorithm is run, was created with multiple relationship type projections, this
parameter can be used to select only a subset of the projected types. The algorithm will only consider
relationships with the selected types.

nodeWeightProperty - String

In algorithms that support node weights this parameter defines the node property that contains the
weights.

relationshipWeightProperty - String

In algorithms that support relationship weights this parameter defines the relationship property that
contains the weights. The specified property is required to exist in the specified graph on all specified
relationship types. The values must be numeric, and some algorithms may have additional value
restrictions, such as requiring only positive weights.

maxIterations - Integer

For iterative algorithms this parameter controls the maximum number of iterations.

tolerance - Float

Many iterative algorithms accept the tolerance parameter. It controls the minimum delta between two
iterations. If the delta is less than the tolerance value, the algorithm is considered converged and stops.

seedProperty - String

Some algorithms can be calculated incrementally. This means that results from a previous execution
can be taken into account, even though the graph has changed. The seedProperty parameter defines
the node property that contains the seed value. Seeding can speed up computation and write times.
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writeProperty - String

In write mode this parameter sets the name of the node or relationship property to which results are
written. If the property already exists, existing values will be overwritten.

writeConcurrency - Integer

In write mode this parameter controls the parallelism of write operations. The Default is concurrency

3.4. Logging
In the GDS library there are two types of logging: debug logging and progress logging.

Debug logging provides information about events in the system. For example, when an algorithm
computation completes, the amount of memory used and the total runtime may be logged. Exceptional
events, when an operation fails to complete normally, are also logged. The debug log information is useful
for understanding events in the system, especially when troubleshooting a problem.

Progress logging is performed to track the progress of operations that are expected to take a long time.
This includes graph projections, algorithm computation, and result writing.

All log entries are written to the log files configured for the Neo4j database. For more information on
configuring Neo4j logs, please refer to the Neo4j Operations Manual.

3.4.1. Progress-logging procedure Beta

Progress is also tracked by the GDS library itself. This makes it possible to inspect progress via Cypher, in
addition to looking in the log files. To access progress information for currently running tasks (also referred
to as jobs), we can make use of the list progress procedure: gds.beta.listProgress. A task in the GDS
library is defined as a running procedure, such as an algorithm or a graph load procedure.

The list progress procedure has two modes, depending on whether a jobId parameter was set: First, if
jobId is not set, the procedure will produce a single row for each task currently running. This can be seen
as the summary of those tasks, displaying the overall progress of a particular task for example. Second, if
the jobId parameter is set it will show a detailed view for the given running job. The detailed view will
produce a row for each step or task that job will perform during execution. It will also show how tasks are
structured as a tree and print progress for each individual task.

Syntax

Getting the progress of tasks:

CALL gds.beta.listProgress(jobId: String)
YIELD
  jobId,
  taskName,
  progress,
  progressBar,
  status,
  timeStarted,
  elapsedTime

Table 7. Parameters
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Name Type Default Optional Description

jobId String "" yes The jobId of a running task. This will trigger a detailed
overview for that particular task.

Table 8. Results

Name Type Description

jobId String A generated identifier of the running task.

taskName String The name of the running task, i.e. Node2Vec.

progress String The progress of the job shown as a percentage value.

progressBar String The progress of the job shown as an ASCII progress bar.

status String The current status of the job, i.e. RUNNING or CANCELED.

timeStarted LocalTime The local wall clock time when the task has been started.

elapsedTime Duration The duration from timeStarted to now.

Examples

Assuming we just started gds.beta.node2vec.stream procedure.

CALL gds.beta.listProgress()
YIELD
  jobId,
  taskName,
  progress

Table 9. Results

jobId taskName progress

"d21bb4ca-e1e9-4a31-a487-
42ac8c9c1a0d"

"Node2Vec" "42%"

3.5. Monitoring system
GDS supports multiple users concurrently working on the same system. Typically, GDS procedures are
resource heavy in the sense that they may use a lot of memory and/or many CPU cores to do their
computation. To know whether it is a reasonable time for a user to run a GDS procedure it is useful to
know the current capacity of the system hosting Neo4j and GDS, as well as the current GDS workload on
the system. Graphs and models are not shared between non-admin users by default, however GDS users
on the same system will share its capacity.

3.5.1. System monitor procedure Alpha

To be able to get an overview of the system’s current capacity and its analytics workload one can use the
procedure gds.alpha.systemMonitor. It will give you information on the capacity of the DBMS’s JVM
instance in terms of memory and CPU cores, and an overview of the resources consumed by the GDS
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procedures currently being run on the system.

Syntax

Monitor the system capacity and analytics workload:

CALL gds.alpha.systemMonitor()
YIELD
  freeHeap,
  totalHeap,
  maxHeap,
  jvmAvailableCpuCores,
  availableCpuCoresNotRequested,
  jvmHeapStatus,
  ongoingGdsProcedures

Table 10. Results

Name Type Description

freeHeap Integer The amount of currently free memory in bytes in the Java Virtual Machine hosting the Neo4j
instance.

totalHeap Integer The total amount of memory in bytes in the Java virtual machine hosting the Neo4j instance.
This value may vary over time, depending on the host environment.

maxHeap Integer The maximum amount of memory in bytes that the Java virtual machine hosting the Neo4j
instance will attempt to use.

jvmAvailableC
puCores

Integer The number of logical CPU cores currently available to the Java virtual machine. This value
may change vary over the lifetime of the DBMS.

availableCpuC
oresNotRequ
ested

Integer The number of logical CPU cores currently available to the Java virtual machine that are not
requested for use by currently running GDS procedures. Note that this number may be
negative in case there are fewer available cores to the JVM than there are cores being
requested by ongoing GDS procedures.

jvmHeapStatu
s

Map The above-mentioned heap metrics in human-readable form.

ongoingGdsP
rocedures

List of Map A list of maps containing resource usage and progress information for all GDS procedures (of
all users) currently running on the Neo4j instance. Each map contains the name of the
procedure, how far it has progressed, its estimated memory usage as well as how many CPU
cores it will try to use at most.



freeHeap is influenced by ongoing GDS procedures, graphs stored the Graph catalog
and the underlying Neo4j DBMS. Stored graphs can take up a significant amount of heap
memory. To inspect the graphs in the graph catalog you can use the Graph list
procedure.

Example

First let us assume that we just started gds.beta.node2vec.stream procedure with some arbitrary
parameters.

We can have a look at the status of the JVM heap.
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Monitor JVM heap status:

CALL gds.alpha.systemMonitor()
YIELD
  freeHeap,
  totalHeap,
  maxHeap

Table 11. Results

freeHeap totalHeap maxHeap

1234567 2345678 3456789

We can see that there currently is around 1.23 MB free heap memory in the JVM instance running our
Neo4j DBMS. This may increase independently of any procedures finishing their execution as totalHeap is
currently smaller than maxHeap. We can also inspect CPU core usage as well as the status of currently
running GDS procedures on the system.

Monitor CPU core usage and ongoing GDS procedures:

CALL gds.alpha.systemMonitor()
YIELD
  availableCpuCoresNotRequested,
  jvmAvailableCpuCores,
  ongoingGdsProcedures

Table 12. Results

jvmAvailableCpuCores availableCpuCoresNotRequested ongoingGdsProcedures

100 84 [{ procedure: "Node2Vec", progress: "33.33%",
estimatedMemoryRange: "[123 kB … 234 kB]",
requestedNumberOfCpuCores: "16" }]

Here we can note that there is only one GDS procedure currently running, namely the Node2Vec procedure
we just started. It has finished around 33.33% of its execution already. We also see that it may use up to an
estimated 234 kB of memory. Note that it may not currently be using that much memory and so it may
require more memory later in its execution, thus possible lowering our current freeHeap. Apparently it
wants to use up to 16 CPU cores, leaving us with a total of 84 currently available cores in the system not
requested by any GDS procedures.
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Chapter 4. Graph management
A central concept in the GDS library is the management of in-memory graphs.

This chapter is divided into the following sections:

• Graph Catalog

• Anonymous graphs

• Node Properties

• Utility functions

• Cypher on GDS graph

• Administration

4.1. Graph Catalog
Graph algorithms run on a graph data model which is a projection of the Neo4j property graph data model.
A graph projection can be seen as a materialized view over the stored graph, containing only analytically
relevant, potentially aggregated, topological and property information. Graph projections are stored
entirely in-memory using compressed data structures optimized for topology and property lookup
operations.

The graph catalog is a concept within the GDS library that allows managing multiple graph projections by
name. Using its name, a created graph can be used many times in the analytical workflow. Named graphs
can be created using either a Native projection or a Cypher projection. After usage, named graphs can be
removed from the catalog to free up main memory.

Graphs can also be created when running an algorithm without placing them in the catalog. We refer to
such graphs as anonymous graphs.


The graph catalog exists as long as the Neo4j instance is running. When Neo4j is
restarted, graphs stored in the catalog are lost and need to be re-created.

This chapter explains the available graph catalog operations.

Name Description

gds.graph.create Creates a graph in the catalog using Native projection.

gds.graph.create.cypher Creates a graph in the catalog using Cypher projection.

gds.beta.graph.create.subgraph Creates a graph in the catalog by filtering an existing graph
using node and relationship predicates.

gds.graph.list Prints information about graphs that are currently stored in
the catalog.

gds.graph.exists Checks if a named graph is stored in the catalog.

gds.graph.removeNodeProperties Removes node properties from a named graph.
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Name Description

gds.graph.deleteRelationships Deletes relationships of a given relationship type from a
named graph.

gds.graph.drop Drops a named graph from the catalog.

gds.graph.streamNodeProperty Streams a single node property stored in a named graph.

gds.graph.streamNodeProperties Streams node properties stored in a named graph.

gds.graph.streamRelationshipProperty Streams a single relationship property stored in a named
graph.

gds.graph.streamRelationshipProperties Streams relationship properties stored in a named graph.

gds.graph.writeNodeProperties Writes node properties stored in a named graph to Neo4j.

gds.graph.writeRelationship Writes relationships stored in a named graph to Neo4j.

gds.graph.export Exports a named graph into a new offline Neo4j database.

gds.beta.graph.export.csv Exports a named graph into CSV files.


Creating, using, listing, and dropping named graphs are management operations bound
to a Neo4j user. Graphs created by a different Neo4j user are not accessible at any time.

4.1.1. Creating graphs

A projected graph can be stored in the catalog under a user-defined name. Using that name, the graph can
be referred to by any algorithm in the library. This allows multiple algorithms to use the same graph
without having to re-create it on each algorithm run.

Native projections provide the best performance by reading from the Neo4j store files. Recommended for
both the development, and the production phase.


There is also a way to generate a random graph, see Graph Generation documentation
for more details.



The projected graphs will reside in the catalog until:

• the graph is dropped using gds.graph.drop

• the Neo4j database from which to graph was projected is stopped or dropped

• the Neo4j database management system is stopped.

Syntax

A native projection takes three mandatory arguments: graphName, nodeProjection and
relationshipProjection. In addition, the optional configuration parameter allows us to further configure
the graph creation.
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CALL gds.graph.create(
    graphName: String,
    nodeProjection: String or List or Map,
    relationshipProjection: String or List or Map,
    configuration: Map
)
YIELD
  graphName: String,
  nodeProjection: Map,
  nodeCount: Integer,
  relationshipProjection: Map,
  relationshipCount: Integer,
  createMillis: Integer

 To get information about a stored graph, such as its schema, one can use gds.graph.list.

Table 13. Parameters

Name Type Optional Description

graphName String no The name under which the graph is stored in the catalog.

nodeProjection String, List or
Map

no One or more node projections.

relationshipProj
ection

String, List or
Map

no One or more relationship projections.

configuration Map yes Additional parameters to configure the native projection.

Table 14. Configuration

Name Type Default Description

readConcurrenc
y

Integer 4 The number of concurrent threads used for creating the graph.

nodeProperties String, List or
Map

{} The node properties to load for all node projections.

relationshipProp
erties

String, List or
Map

{} The relationship properties to load for all relationship projections.

validateRelation
ships

Boolean false Whether to throw an error if the relationshipProjection includes
relationships between nodes not part of the nodeProjection.

Table 15. Results

Name Type Description

graphName String The name under which the graph is stored in the catalog.

nodeProjection Map The node projections used to project the graph.

nodeCount Integer The number of nodes stored in the projected graph.

relationshipProjection Map The relationship projections used to project the graph.

relationshipCount Integer The number of relationships stored in the projected graph.

createMillis Integer Milliseconds for creating the graph.
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Node Projection

Short-hand String-syntax for nodeProjection. The projected graph will contain the given neo4j-label.

<neo4j-label>

Short-hand List-syntax for nodeProjection. The projected graph will contain the given `neo4j-label`s.

[<neo4j-label>, ..., <neo4j-label>]

Extended Map-syntax for nodeProjection.

{
    <projected-label>: {
        label: <neo4j-label>,
        properties: <neo4j-property-key>
    },
    <projected-label>: {
        label: <neo4j-label>,
        properties: [<neo4j-property-key>, <neo4j-property-key>, ...]
    },
    ...
    <projected-label>: {
        label: <neo4j-label>,
        properties: {
            <projected-property-key>: {
                property: <neo4j-property-key>,
                defaultValue: <fallback-value>
            },
            ...
            <projected-property-key>: {
                property: <neo4j-property-key>,
                defaultValue: <fallback-value>
            }
        }
    }
}

Table 16. Node Projection fields

Name Type Optional Default Description

<projected-
label>

String no n/a The node label in the projected graph.

label String yes projected-label The node label in the Neo4j graph. If not set, uses the
projected-label.

properties Map, List or
String

yes {} The projected node properties for the specified
projected-label.

<projected-
property-
key>

String no n/a The key for the node property in the projected graph.

property String yes projected-property-key The node property key in the Neo4j graph. If not set,
uses the projected-property-key.
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Name Type Optional Default Description

defaultValue

Float

yes

Double.NaN The default value if the property is not defined for a
node.

Float[] null

Integer Integer.MIN_VALUE

Integer[] null

Relationship Projection

Short-hand String-syntax for relationshipProjection. The projected graph will contain the given neo4j-
type.

<neo4j-type>

Short-hand List-syntax for relationshipProjection. The projected graph will contain the given `neo4j-
type`s.

[<neo4j-type>, ..., <neo4j-type>]

Extended Map-syntax for relationshipProjection.

{
    <projected-type>: {
        type: <neo4j-type>,
        orientation: <orientation>,
        aggregation: <aggregation-type>,
        properties: <neo4j-property-key>
    },
    <projected-type>: {
        type: <neo4j-type>,
        orientation: <orientation>,
        aggregation: <aggregation-type>,
        properties: [<neo4j-property-key>, <neo4j-property-key>]
    },
    ...
    <projected-type>: {
        type: <neo4j-type>,
        orientation: <orientation>,
        aggregation: <aggregation-type>,
        properties: {
            <projected-property-key>: {
                property: <neo4j-property-key>,
                defaultValue: <fallback-value>,
                aggregation: <aggregation-type>
            },
            ...
            <projected-property-key>: {
                property: <neo4j-property-key>,
                defaultValue: <fallback-value>,
                aggregation: <aggregation-type>
            }
        }
    }
}

Table 17. Relationship Projection fields
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Name Type Optional Default Description

<projected-type> String no n/a The name of the relationship type in the
projected graph.

type String yes projected-type The relationship type in the Neo4j graph.

orientation String yes NATURAL Denotes how Neo4j relationships are
represented in the projected graph. Allowed
values are NATURAL, UNDIRECTED, REVERSE.

aggregation String no NONE Handling of parallel relationships. Allowed
values are NONE, MIN, MAX, SUM, SINGLE, COUNT.

properties Map, List
or String

yes {} The projected relationship properties for the
specified projected-type.

<projected-property-
key>

String no n/a The key for the relationship property in the
projected graph.

property String yes projected-property-key The node property key in the Neo4j graph. If
not set, uses the projected-property-key.

defaultValue Float or
Integer

yes Double.NaN The default value if the property is not
defined for a node.

Examples

In order to demonstrate the GDS Graph Create capabilities we are going to create a small social network
graph in Neo4j. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (florentin:Person { name: 'Florentin', age: 16 }),
  (adam:Person { name: 'Adam', age: 18 }),
  (veselin:Person { name: 'Veselin', age: 20, ratings: [5.0] }),
  (hobbit:Book { name: 'The Hobbit', isbn: 1234, numberOfPages: 310, ratings: [1.0, 2.0, 3.0, 4.5] }),
  (frankenstein:Book { name: 'Frankenstein', isbn: 4242, price: 19.99 }),

  (florentin)-[:KNOWS { since: 2010 }]->(adam),
  (florentin)-[:KNOWS { since: 2018 }]->(veselin),
  (florentin)-[:READ { numberOfPages: 4 }]->(hobbit),
  (florentin)-[:READ { numberOfPages: 42 }]->(hobbit),
  (adam)-[:READ { numberOfPages: 30 }]->(hobbit),
  (veselin)-[:READ]->(frankenstein)
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Simple graph

A simple graph is a graph with only one node label and relationship type, i.e., a monopartite graph. We are
going to start with demonstrating how to load a simple graph by projecting only the Person node label and
KNOWS relationship type.

Project Person nodes and KNOWS relationships:

CALL gds.graph.create(
  'persons',            ①
  'Person',             ②
  'KNOWS'               ③
)
YIELD
  graphName AS graph, nodeProjection, nodeCount AS nodes, relationshipProjection, relationshipCount AS
rels

① The name of the graph. Afterwards, persons can be used to run algorithms or manage the graph.

② The nodes to be projected. In this example, the nodes with the Person label.

③ The relationships to be projected. In this example, the relationships of type KNOWS.

Table 18. Results

graph nodeProjection nodes relationshipProjection rels

"persons" {Person={label=Person,
properties={}}}

3 {KNOWS={orientation=NATURAL,
aggregation=DEFAULT, type=KNOWS,
properties={}}}

2

In the example above, we used a short-hand syntax for the node and relationship projection. The used
projections are internally expanded to the full Map syntax as shown in the Results table. In addition, we can
see the projected in-memory graph contains three Person nodes, and the two KNOWS relationships.

Multi-graph

A multi-graph is a graph with multiple node labels and relationship types.

To project multiple node labels and relationship types, we can adjust the projections as follows:

Project Person and Book nodes and KNOWS and READ relationships:

CALL gds.graph.create(
  'personsAndBooks',    ①
  ['Person', 'Book'],   ②
  ['KNOWS', 'READ']     ③
)
YIELD
  graphName AS graph, nodeProjection, nodeCount AS nodes, relationshipCount AS rels

① Projects a graph under the name personsAndBooks.

② The nodes to be projected. In this example, the nodes with a Person or Book label.

③ The relationships to be projected. In this example, the relationships of type KNOWS or READ.

Table 19. Results
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graph nodeProjection nodes rels

"personsAndBooks
"

{Book={label=Book, properties={}},
Person={label=Person, properties={}}}

5 6

In the example above, we used a short-hand syntax for the node and relationship projection. The used
projections are internally expanded to the full Map syntax as shown for the nodeProjection in the Results
table. In addition, we can see the projected in-memory graph contains five nodes, and the two
relationships.

Relationship orientation

By default, relationships are loaded in the same orientation as stored in the Neo4j db. In GDS, we call this
the NATURAL orientation. Additionally, we provide the functionality to load the relationships in the REVERSE
or even UNDIRECTED orientation.

Project Person nodes and undirected KNOWS relationships:

CALL gds.graph.create(
  'undirectedKnows',                    ①
  'Person',                             ②
  {KNOWS: {orientation: 'UNDIRECTED'}}  ③
)
YIELD
  graphName AS graph,
  relationshipProjection AS knowsProjection,
  nodeCount AS nodes,
  relationshipCount AS rels

① Projects a graph under the name undirectedKnows.

② The nodes to be projected. In this example, the nodes with the Person label.

③ Projects relationships with type KNOWS and specifies that they should be UNDIRECTED by using the
orientation parameter.

Table 20. Results

graph knowsProjection nodes rels

"undirectedKnows" {KNOWS={orientation=UNDIRECTED, aggregation=DEFAULT,
type=KNOWS, properties={}}}

3 4

To specify the orientation, we need to write the relationshipProjection with the extended Map-syntax.
Projecting the KNOWS relationships UNDIRECTED, loads each relationship in both directions. Thus, the
undirectedKnows graph contains four relationships, twice as many as the persons graph in Simple graph.

Node properties

To project node properties, we can either use the nodeProperties configuration parameter for shared
properties, or extend an individual nodeProjection for a specific label.
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Project Person and Book nodes and KNOWS and READ relationships:

CALL gds.graph.create(
  'graphWithProperties',                                ①
  {                                                     ②
    Person: {properties: 'age'},                        ③
    Book: {properties: {price: {defaultValue: 5.0}}}    ④
  },
  ['KNOWS', 'READ'],                                    ⑤
  {nodeProperties: 'ratings'}                           ⑥
)
YIELD
  graphName, nodeProjection, nodeCount AS nodes, relationshipCount AS rels
RETURN graphName, nodeProjection.Book AS bookProjection, nodes, rels

① Projects a graph under the name graphWithProperties.

② Use the expanded node projection syntax.

③ Projects nodes with the Person label and their age property.

④ Projects nodes with the Book label and their price property. Each Book that doesn’t have the price
property will get the defaultValue of 5.0.

⑤ The relationships to be projected. In this example, the relationships of type KNOWS or READ.

⑥ The global configuration, projects node property rating on each of the specified labels.

Table 21. Results

graphName bookProjection nodes rels

"graphWithPropert
ies"

{label=Book, properties={price={defaultValue=5.0,
property=price}, ratings={defaultValue=null,
property=ratings}}}

5 6

The projected graphWithProperties graph contains five nodes and six relationships. In the returned
bookProjection we can observe, the node properties price and ratings are loaded for Books.

 GDS currently only supports loading numeric properties.

Further, the price property has a default value of 5.0. Not every book has a price specified in the example
graph. In the following we check if the price was correctly projected:

Verify the ratings property of Adam in the projected graph:

MATCH (n:Book)
RETURN n.name AS name, gds.util.nodeProperty('graphWithProperties', id(n), 'price') as price
ORDER BY price

Table 22. Results

name price

"The Hobbit" 5.0

"Frankenstein" 19.99

We can see, that the price was projected with the Hobbit having the default price of 5.0.
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Relationship properties

Analogous to node properties, we can either use the relationshipProperties configuration parameter or
extend an individual relationshipProjection for a specific type.

Project Person and Book nodes and READ relationships with numberOfPages property:

CALL gds.graph.create(
  'readWithProperties',                     ①
  ['Person', 'Book'],                       ②
  {                                         ③
    READ: { properties: "numberOfPages" }   ④
  }
)
YIELD
  graphName AS graph,
  relationshipProjection AS readProjection,
  nodeCount AS nodes,
  relationshipCount AS rels

① Projects a graph under the name readWithProperties.

② The nodes to be projected. In this example, the nodes with a Person or Book label.

③ Use the expanded relationship projection syntax.

④ Project relationships of type READ and their numberOfPages property.

Table 23. Results

graph readProjection nodes rels

"readWithProperti
es"

{READ={orientation=NATURAL, aggregation=DEFAULT,
type=READ,
properties={numberOfPages={defaultValue=null,
property=numberOfPages, aggregation=DEFAULT}}}}

5 4

Next, we will verify that the relationship property numberOfPages were correctly loaded.

Stream the relationship property numberOfPages of the projected graph:

CALL gds.graph.streamRelationshipProperty('readWithProperties', 'numberOfPages')
YIELD sourceNodeId, targetNodeId, propertyValue AS numberOfPages
RETURN
  gds.util.asNode(sourceNodeId).name AS person,
  gds.util.asNode(targetNodeId).name AS book,
  numberOfPages
ORDER BY person ASC, numberOfPages DESC

Table 24. Results

person book numberOfPages

"Adam" "The Hobbit" 30.0

"Florentin" "The Hobbit" 42.0

"Florentin" "The Hobbit" 4.0

"Veselin" "Frankenstein" NaN

We can see, that the numberOfPages property is loaded. The default property value is Double.NaN and could
be changed using the Map-Syntax the same as for node properties in Node properties.
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Parallel relationships

Neo4j supports parallel relationships, i.e., multiple relationships between two nodes. By default, GDS
preserves parallel relationships. For some algorithms, we want the projected graph to contain at most one
relationship between two nodes.

We can specify how parallel relationships should be aggregated into a single relationship via the
aggregation parameter in a relationship projection.

For graphs without relationship properties, we can use the COUNT aggregation. If we do not need the count,
we could use the SINGLE aggregation.

Project Person and Book nodes and COUNT aggregated READ relationships:

CALL gds.graph.create(
  'readCount',                      ①
  ['Person', 'Book'],               ②
  {
    READ: {                         ③
      properties: {
        numberOfReads: {            ④
          property: '*',            ⑤
          aggregation: 'COUNT'      ⑥
        }
      }
    }
  }
)
YIELD
  graphName AS graph,
  relationshipProjection AS readProjection,
  nodeCount AS nodes,
  relationshipCount AS rels

① Projects a graph under the name readCount.

② The nodes to be projected. In this example, the nodes with a Person or Book label.

③ Project relationships of type READ.

④ Project relationship property numberOfReads.

⑤ A placeholder, signaling that the value of the relationship property is derived and not based on Neo4j
property.

⑥ The aggregation type. In this example, COUNT results in the value of the property being the number of
parallel relationships.

Table 25. Results

graph readProjection nodes rels

"readCount" {READ={orientation=NATURAL, aggregation=DEFAULT,
type=READ,
properties={numberOfReads={defaultValue=null,
property=*, aggregation=COUNT}}}}

5 3

Next, we will verify that the READ relationships were correctly aggregated.
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Stream the relationship property numberOfReads of the projected graph:

CALL gds.graph.streamRelationshipProperty('readCount', 'numberOfReads')
YIELD sourceNodeId, targetNodeId, propertyValue AS numberOfReads
RETURN
  gds.util.asNode(sourceNodeId).name AS person,
  gds.util.asNode(targetNodeId).name AS book,
  numberOfReads
ORDER BY numberOfReads DESC, person

Table 26. Results

person book numberOfReads

"Florentin" "The Hobbit" 2.0

"Adam" "The Hobbit" 1.0

"Veselin" "Frankenstein" 1.0

We can see, that the two READ relationships between Florentin, and the Hobbit result in 2
numberOfReads.

Parallel relationships with properties

For graphs with relationship properties we can also use other aggregations.

Project Person and Book nodes and aggregated READ relationships by summing the numberOfPages:

CALL gds.graph.create(
  'readSums',                                                   ①
  ['Person', 'Book'],                                           ②
  {READ: {properties: {numberOfPages: {aggregation: 'SUM'}}}}   ③
)
YIELD
  graphName AS graph,
  relationshipProjection AS readProjection,
  nodeCount AS nodes,
  relationshipCount AS rels

① Projects a graph under the name readSums.

② The nodes to be projected. In this example, the nodes with a Person or Book label.

③ Project relationships of type READ. Aggregation type SUM results in a projected numberOfPages property
with its value being the sum of the numberOfPages properties of the parallel relationships.

Table 27. Results

graph readProjection nodes rels

"readSums" {READ={orientation=NATURAL, aggregation=DEFAULT,
type=READ,
properties={numberOfPages={defaultValue=null,
property=numberOfPages, aggregation=SUM}}}}

5 3

Next, we will verify that the relationship property numberOfPages was correctly aggregated.

34



Stream the relationship property numberOfPages of the projected graph:

CALL gds.graph.streamRelationshipProperty('readSums', 'numberOfPages')
YIELD
  sourceNodeId, targetNodeId, propertyValue AS numberOfPages
RETURN
  gds.util.asNode(sourceNodeId).name AS person,
  gds.util.asNode(targetNodeId).name AS book,
  numberOfPages
ORDER BY numberOfPages DESC, person

Table 28. Results

person book numberOfPages

"Florentin" "The Hobbit" 46.0

"Adam" "The Hobbit" 30.0

"Veselin" "Frankenstein" 0.0

We can see, that the two READ relationships between Florentin and the Hobbit sum up to 46
numberOfReads.

Validate relationships flag

As mentioned in the syntax section, the validateRelationships flag controls whether an error will be
raised when attempting to create a relationship where either the source or target node is not present in the
node projection. Note that even if the flag is set to false such a relationship will still not be created but the
loading process will not be aborted.

We can simulate such a case with the graph present in the Neo4j database:

Project READ and KNOWS relationships but only Person nodes, with validateRelationships set to true:

CALL gds.graph.create(
  'danglingRelationships',
  'Person',
  ['READ', 'KNOWS'],
  {
    validateRelationships: true
  }
)
YIELD
  graphName AS graph,
  relationshipProjection AS readProjection,
  nodeCount AS nodes,
  relationshipCount AS rels

Results

org.neo4j.graphdb.QueryExecutionException: Failed to invoke procedure `gds.graph.create`: Caused by:
java.lang.IllegalArgumentException: Failed to load a relationship because its target-node with id 3 is not
part of the node query or projection. To ignore the relationship, set the configuration parameter
`validateRelationships` to false.

We can see that the above query resulted in an exception being thrown. The exception message will
provide information about the specific node id that was missing, which will help debugging underlying
problems.
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4.1.2. Creating graphs using Cypher

A projected graph can be stored in the catalog under a user-defined name. Using that name, the graph can
be referred to by any algorithm in the library. This allows multiple algorithms to use the same graph
without having to re-create it on each algorithm run.

Using Cypher projections is a more flexible and expressive approach with diminished focus on
performance compared to the native projections. Cypher projections are primarily recommended for the
development phase (see Common usage).


There is also a way to generate a random graph, see Graph Generation documentation
for more details.



The projected graph will reside in the catalog until:

• the graph is dropped using gds.graph.drop

• the Neo4j database from which the graph was projected is stopped or dropped

• the Neo4j database management system is stopped.

Syntax

A Cypher projection takes three mandatory arguments: graphName, nodeQuery and relationshipQuery. In
addition, the optional configuration parameter allows us to further configure graph creation.

CALL gds.graph.create.cypher(
    graphName: String,
    nodeQuery: String,
    relationshipQuery: String,
    configuration: Map
) YIELD
    graphName: String,
    nodeQuery: String,
    nodeCount: Integer,
    relationshipQuery: String,
    relationshipCount: Integer,
    createMillis: Integer

Table 29. Parameters

Name Optional Description

graphNam
e

no The name under which the graph is stored in the catalog.

nodeQuery no Cypher query to project nodes. The query result must contain an id column. Optionally, a labels
column can be specified to represent node labels. Additional columns are interpreted as properties.

relationshi
pQuery

no Cypher query to project relationships. The query result must contain source and target columns.
Optionally, a type column can be specified to represent relationship type. Additional columns are
interpreted as properties.

configurati
on

yes Additional parameters to configure the Cypher projection.

36



Table 30. Configuration

Name Type Default Description

readConcurrenc
y

Integer 4 The number of concurrent threads used for creating the graph.

validateRelation
ships

Boolean true Whether to throw an error if the relationshipQuery returns
relationships between nodes not returned by the nodeQuery.

parameters Map {} A map of user-defined query parameters that are passed into the
node and relationship queries.

Table 31. Results

Name Type Description

graphName String The name under which the graph is stored in the catalog.

nodeQuery String The Cypher query used to project the nodes in the graph.

nodeCount Integer The number of nodes stored in the projected graph.

relationshipQuery String The Cypher query used to project the relationships in the graph.

relationshipCount Integer The number of relationships stored in the projected graph.

createMillis Integer Milliseconds for creating the graph.

 To get information about a stored graph, such as its schema, one can use gds.graph.list.

Examples

In order to demonstrate the GDS Graph Create capabilities we are going to create a small social network
graph in Neo4j. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (florentin:Person { name: 'Florentin', age: 16 }),
  (adam:Person { name: 'Adam', age: 18 }),
  (veselin:Person { name: 'Veselin', age: 20, ratings: [5.0] }),
  (hobbit:Book { name: 'The Hobbit', isbn: 1234, numberOfPages: 310, ratings: [1.0, 2.0, 3.0, 4.5] }),
  (frankenstein:Book { name: 'Frankenstein', isbn: 4242, price: 19.99 }),

  (florentin)-[:KNOWS { since: 2010 }]->(adam),
  (florentin)-[:KNOWS { since: 2018 }]->(veselin),
  (florentin)-[:READ { numberOfPages: 4 }]->(hobbit),
  (florentin)-[:READ { numberOfPages: 42 }]->(hobbit),
  (adam)-[:READ { numberOfPages: 30 }]->(hobbit),
  (veselin)-[:READ]->(frankenstein)

Simple graph

A simple graph is a graph with only one node label and relationship type, i.e., a monopartite graph. We are
going to start with demonstrating how to load a simple graph by projecting only the Person node label and
KNOWS relationship type.

Project Person nodes and KNOWS relationships:

CALL gds.graph.create.cypher(
  'persons',
  'MATCH (n:Person) RETURN id(n) AS id',
  'MATCH (n:Person)-[r:KNOWS]->(m:Person) RETURN id(n) AS source, id(m) AS target')
YIELD
  graphName AS graph, nodeQuery, nodeCount AS nodes, relationshipQuery, relationshipCount AS rels

Table 32. Results

graph nodeQuery nodes relationshipQuery rels

"persons" "MATCH (n:Person) RETURN id(n) AS
id"

3 "MATCH (n:Person)-[r:KNOWS]
→(m:Person) RETURN id(n) AS
source, id(m) AS target"

2

Multi-graph

A multi-graph is a graph with multiple node labels and relationship types.

To retain the label and type information when we load multiple node labels and relationship types, we can
add a labels column to the node query and a type column to the relationship query.

Project Person and Book nodes and KNOWS and READ relationships:

CALL gds.graph.create.cypher(
  'personsAndBooks',
  'MATCH (n) WHERE n:Person OR n:Book RETURN id(n) AS id, labels(n) AS labels',
  'MATCH (n)-[r:KNOWS|READ]->(m) RETURN id(n) AS source, id(m) AS target, type(r) AS type')
YIELD
  graphName AS graph, nodeQuery, nodeCount AS nodes, relationshipCount AS rels
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Table 33. Results

graph nodeQuery nodes rels

"personsAndBooks
"

"MATCH (n) WHERE n:Person OR n:Book RETURN id(n) AS
id, labels(n) AS labels"

5 6

Relationship orientation

The native projection supports specifying an orientation per relationship type. The Cypher projection will
treat every relationship returned by the relationship query as if it was in NATURAL orientation. It is thus not
possible to project graphs in UNDIRECTED or REVERSE orientation when Cypher projections are used.


Some algorithms require that the graph was loaded with UNDIRECTED orientation. These
algorithms can not be used with a graph created by a Cypher projection.

Node properties

To load node properties, we add a column to the result of the node query for each property. Thereby, we
use the Cypher function coalesce() function to specify the default value, if the node does not have the
property.

Project Person and Book nodes and KNOWS and READ relationships:

CALL gds.graph.create.cypher(
  'graphWithProperties',
  'MATCH (n)
   WHERE n:Book OR n:Person
   RETURN
    id(n) AS id,
    labels(n) AS labels,
    coalesce(n.age, 18) AS age,
    coalesce(n.price, 5.0) AS price,
    n.ratings AS ratings',
  'MATCH (n)-[r:KNOWS|READ]->(m) RETURN id(n) AS source, id(m) AS target, type(r) AS type'
)
YIELD
  graphName, nodeCount AS nodes, relationshipCount AS rels
RETURN graphName, nodes, rels

Table 34. Results

graphName nodes rels

"graphWithProperties" 5 6

The projected graphWithProperties graph contains five nodes and six relationships. In a Cypher projection
every node from the nodeQuery gets the same node properties, which means you can’t have label-specific
properties. For instance in the example above the Person nodes will also get ratings and price properties,
while Book nodes get the age property.

Further, the price property has a default value of 5.0. Not every book has a price specified in the example
graph. In the following we check if the price was correctly projected:
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Verify the ratings property of Adam in the projected graph:

MATCH (n:Book)
RETURN n.name AS name, gds.util.nodeProperty('graphWithProperties', id(n), 'price') AS price
ORDER BY price

Table 35. Results

name price

"The Hobbit" 5.0

"Frankenstein" 19.99

We can see, that the price was projected with the Hobbit having the default price of 5.0.

Relationship properties

Analogous to node properties, we can project relationship properties using the relationshipQuery.

Project Person and Book nodes and READ relationships with numberOfPages property:

CALL gds.graph.create.cypher(
  'readWithProperties',
  'MATCH (n) RETURN id(n) AS id, labels(n) AS labels',
  'MATCH (n)-[r:READ]->(m)
    RETURN id(n) AS source, id(m) AS target, type(r) AS type, r.numberOfPages AS numberOfPages'
)
YIELD
  graphName AS graph, nodeCount AS nodes, relationshipCount AS rels

Table 36. Results

graph nodes rels

"readWithProperties" 5 4

Next, we will verify that the relationship property numberOfPages was correctly loaded.

Stream the relationship property numberOfPages from the projected graph:

CALL gds.graph.streamRelationshipProperty('readWithProperties', 'numberOfPages')
YIELD sourceNodeId, targetNodeId, propertyValue AS numberOfPages
RETURN
  gds.util.asNode(sourceNodeId).name AS person,
  gds.util.asNode(targetNodeId).name AS book,
  numberOfPages
ORDER BY person ASC, numberOfPages DESC

Table 37. Results

person book numberOfPages

"Adam" "The Hobbit" 30.0

"Florentin" "The Hobbit" 42.0

"Florentin" "The Hobbit" 4.0
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person book numberOfPages

"Veselin" "Frankenstein" NaN

We can see, that the numberOfPages are loaded. The default property value is Double.Nan and can be
changed as in the previous example Node properties by using the Cypher function coalesce().

Parallel relationships

The Property Graph Model in Neo4j supports parallel relationships, i.e., multiple relationships between two
nodes. By default, GDS preserves the parallel relationships. For some algorithms, we want the projected
graph to contain at most one relationship between two nodes.

The simplest way to achieve relationship deduplication is to use the DISTINCT operator in the relationship
query. Alternatively, we can aggregate the parallel relationship by using the count() function and store the
count as a relationship property.

Project Person and Book nodes and COUNT aggregated READ relationships:

CALL gds.graph.create.cypher(
  'readCount',
  'MATCH (n) RETURN id(n) AS id, labels(n) AS labels',
  'MATCH (n)-[r:READ]->(m)
    RETURN id(n) AS source, id(m) AS target, type(r) AS type, count(r) AS numberOfReads'
)
YIELD
  graphName AS graph, nodeCount AS nodes, relationshipCount AS rels

Table 38. Results

graph nodes rels

"readCount" 5 3

Next, we will verify that the READ relationships were correctly aggregated.

Stream the relationship property numberOfReads of the projected graph:

CALL gds.graph.streamRelationshipProperty('readCount', 'numberOfReads')
YIELD sourceNodeId, targetNodeId, propertyValue AS numberOfReads
RETURN
  gds.util.asNode(sourceNodeId).name AS person,
  gds.util.asNode(targetNodeId).name AS book,
  numberOfReads
ORDER BY numberOfReads DESC, person

Table 39. Results

person book numberOfReads

"Florentin" "The Hobbit" 2.0

"Adam" "The Hobbit" 1.0

"Veselin" "Frankenstein" 1.0

We can see, that the two READ relationships between Florentin and the Hobbit result in 2
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numberOfReads.

Parallel relationships with properties

For graphs with relationship properties we can also use other aggregations documented in the Cypher
Manual.

Project Person and Book nodes and aggregated READ relationships by summing the numberOfPages:

CALL gds.graph.create.cypher(
  'readSums',
  'MATCH (n) RETURN id(n) AS id, labels(n) AS labels',
  'MATCH (n)-[r:READ]->(m)
    RETURN id(n) AS source, id(m) AS target, type(r) AS type, sum(r.numberOfPages) AS numberOfPages'
)
YIELD
  graphName AS graph, nodeCount AS nodes, relationshipCount AS rels

Table 40. Results

graph nodes rels

"readSums" 5 3

Next, we will verify that the relationship property numberOfPages were correctly aggregated.

Stream the relationship property numberOfPages of the projected graph:

CALL gds.graph.streamRelationshipProperty('readSums', 'numberOfPages')
YIELD sourceNodeId, targetNodeId, propertyValue AS numberOfPages
RETURN
  gds.util.asNode(sourceNodeId).name AS person,
  gds.util.asNode(targetNodeId).name AS book,
  numberOfPages
ORDER BY numberOfPages DESC, person

Table 41. Results

person book numberOfPages

"Florentin" "The Hobbit" 46.0

"Adam" "The Hobbit" 30.0

"Veselin" "Frankenstein" 0.0

We can see, that the two READ relationships between Florentin and the Hobbit sum up to 46
numberOfPages.

Projecting filtered Neo4j graphs

Cypher-projections allow us to specify the graph to project in a more fine-grained way. The following
examples will demonstrate how we to filter out READ relationship if they do not have a numberOfPages
property.
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Project Person and Book nodes and READ relationships where numberOfPages is present:

CALL gds.graph.create.cypher(
  'existingNumberOfPages',
  'MATCH (n) RETURN id(n) AS id, labels(n) AS labels',
  'MATCH (n)-[r:READ]->(m)
    WHERE r.numberOfPages IS NOT NULL
    RETURN id(n) AS source, id(m) AS target, type(r) AS type, r.numberOfPages AS numberOfPages'
)
YIELD
  graphName AS graph, nodeCount AS nodes, relationshipCount AS rels

Table 42. Results

graph nodes rels

"existingNumberOfPages" 5 3

Next, we will verify that the relationship property numberOfPages was correctly loaded.

Stream the relationship property numberOfPages from the projected graph:

CALL gds.graph.streamRelationshipProperty('existingNumberOfPages', 'numberOfPages')
YIELD sourceNodeId, targetNodeId, propertyValue AS numberOfPages
RETURN
  gds.util.asNode(sourceNodeId).name AS person,
  gds.util.asNode(targetNodeId).name AS book,
  numberOfPages
ORDER BY person ASC, numberOfPages DESC

Table 43. Results

person book numberOfPages

"Adam" "The Hobbit" 30.0

"Florentin" "The Hobbit" 42.0

"Florentin" "The Hobbit" 4.0

If we compare the results to the ones from Relationship properties, we can see that using IS NOT NULL is
filtering out the relationship from Veselin to the book Frankenstein. This functionality is only expressible
with native projections by creating a subraph.

Using query parameters

Similar to Cypher, it is also possible to set query parameters. In the following example we supply a list of
strings to limit the cities we want to project.

Project Person and Book nodes and READ relationships where numberOfPages is greater than 9:
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CALL gds.graph.create.cypher(
  'existingNumberOfPages',
  'MATCH (n) RETURN id(n) AS id, labels(n) AS labels',
  'MATCH (n)-[r:READ]->(m)
    WHERE r.numberOfPages > $minNumberOfPages
    RETURN id(n) AS source, id(m) AS target, type(r) AS type, r.numberOfPages AS numberOfPages',
  { parameters: { minNumberOfPages: 9} }
)
YIELD
  graphName AS graph, nodeCount AS nodes, relationshipCount AS rels

Table 44. Results

graph nodes rels

"existingNumberOfPages" 5 2

Further usage of parameters

The parameters can also be used to directly pass in a list of nodes or a list of relationships. For example,
pre-computing the list of nodes can be useful if the node filter is expensive.

Project Person nodes younger than 17 and their name not beginning with V, and KNOWS relationships:

CALL gds.graph.create.cypher(
  'personSubset',
  'MATCH (n)
    WHERE n.age < 20 AND NOT n.name STARTS WITH "V"
    RETURN id(n) AS id, labels(n) AS labels',
  'MATCH (n)-[r:KNOWS]->(m)
    WHERE (n.age < 20 AND NOT n.name STARTS WITH "V") AND
          (m.age < 20 AND NOT m.name STARTS WITH "V")
    RETURN id(n) AS source, id(m) AS target, type(r) AS type, r.numberOfPages AS numberOfPages'
)
YIELD
  graphName, nodeCount AS nodes, relationshipCount AS rels

Table 45. Results

graphName nodes rels

"personSubset" 2 1

By passing the relevant Persons as a parameter, the above query can be transformed into the following:

Project Person nodes younger than 20 and their name not beginning with V, and KNOWS relationships by
using parameters:

44



MATCH (n)
WHERE n.age < 20 AND NOT n.name STARTS WITH "V"
WITH collect(n) AS olderPersons
CALL gds.graph.create.cypher(
  'personSubsetViaParameters',
  'UNWIND $nodes AS n RETURN id(n) AS id, labels(n) AS labels',
  'MATCH (n)-[r:KNOWS]->(m)
    WHERE (n IN $nodes) AND (m IN $nodes)
    RETURN id(n) AS source, id(m) AS target, type(r) AS type, r.numberOfPages AS numberOfPages',
  { parameters: { nodes: olderPersons} }
)
 YIELD
  graphName, nodeCount AS nodes, relationshipCount AS rels
 RETURN graphName, nodes, rels

Table 46. Results

graphName nodes rels

"personSubsetViaParameters" 2 1

4.1.3. Listing graphs

Information about graphs in the catalog can be retrieved using the gds.graph.list() procedure.

Syntax

List information about graphs in the catalog:

CALL gds.graph.list(
  graphName: String
) YIELD
  graphName: String,
  database: String,
  nodeProjection: Map,
  relationshipProjection: Map,
  nodeQuery: String,
  relationshipQuery: String,
  nodeFilter: String,
  relationshipFilter: String,
  nodeCount: Integer,
  relationshipCount: Integer,
  schema: Map,
  degreeDistribution: Map,
  density: Float,
  creationTime: Datetime,
  modificationTime: Datetime,
  sizeInBytes: Integer,
  memoryUsage: String

Table 47. Parameters

Name Type Optional Description

graphName String yes The name under which the graph is stored in the catalog. If no graph
name is given, information about all graphs will be listed. If a graph
name is given but not found in the catalog, an empty list will be
returned.

Table 48. Results
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Name Type Description

graphName String Name of the graph.

database String Name of the database in which the graph has been created.

nodeProjection Map Node projection used to create the graph. If a Cypher projection was
used, this will be a derived node projection.

relationshipProjection Map Relationship projection used to create the graph. If a Cypher projection
was used, this will be a derived relationship projection.

nodeQuery String Node query used to create the graph. If a native projection was used, this
will be null.

relationshipQuery String Relationship query used to create the graph. If a native projection was
used, this will be null.

nodeFilter String The node filter used when creating this subgraph from another in-
memory graph. If the graph has been created from Neo4j, this will be
null.

relationshipFilter String The relationship filter used when creating this subgraph from another in-
memory graph. If the graph has been created from Neo4j, this will be
null.

nodeCount Integer Number of nodes in the graph.

relationshipCount Integer Number of relationships in the graph.

schema Map Node labels, Relationship types and properties contained in the in-
memory graph.

degreeDistribution Map Histogram of degrees in the graph.

density Float Density of the graph.

creationTime Datetime Time when the graph was created.

modificationTime Datetime Time when the graph was last modified.

sizeInBytes Integer Number of bytes used in the Java heap to store the graph.

memoryUsage String Human readable description of sizeInBytes.

The information contains basic statistics about the graph, e.g., the node and relationship count. The result
field creationTime indicates when the graph was created in memory. The result field modificationTime
indicates when the graph was updated by an algorithm running in mutate mode.

The database column refers to the name of the database the corresponding graph has been created on.
Referring to a named graph in a procedure is only allowed on the database it has been created on.

The schema consists of information about the nodes and relationships stored in the graph. For each node
label, the schema maps the label to its property keys and their corresponding property types. Similarly, the
schema maps the relationship types to their property keys and property types. The property type is either
Integer, Float, List of Integer or List of Float.

The degreeDistribution field can be fairly time-consuming to compute for larger graphs. Its computation
is cached per graph, so subsequent listing for the same graph will be fast. To avoid computing the degree
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distribution, specify a YIELD clause that omits it. Note that not specifying a YIELD clause is the same as
requesting all possible return fields to be returned.

The density is the result of relationshipCount divided by the maximal number of relationships for a
simple graph with the given nodeCount.

Examples

In order to demonstrate the GDS Graph List capabilities we are going to create a small social network
graph in Neo4j.

The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (florentin:Person { name: 'Florentin', age: 16 }),
  (adam:Person { name: 'Adam', age: 18 }),
  (veselin:Person { name: 'Veselin', age: 20 }),
  (florentin)-[:KNOWS { since: 2010 }]->(adam),
  (florentin)-[:KNOWS { since: 2018 }]->(veselin)

Additionally we will project a few graphs to the graph catalog, for more details see native projections and
Cypher projections.

Project Person nodes and KNOWS relationships using native projections:

CALL gds.graph.create('personsNative', 'Person', 'KNOWS')

Project Person nodes and KNOWS relationships using Cypher projections:

CALL gds.graph.create.cypher(
  'personsCypher',
  'MATCH (n:Person) RETURN id(n) AS id, labels(n) as labels',
  'MATCH (n:Person)-[r:KNOWS]->(m:Person) RETURN id(n) AS source, id(m) AS target, type(r) as type')

Project Person nodes with property age and KNOWS relationships using Native projections:

CALL gds.graph.create(
  'personsWithAgeNative',
  {
    Person: {properties: 'age'}
  },
  'KNOWS'
)

List basic information about all graphs in the catalog

List basic information about all graphs in the catalog:

CALL gds.graph.list()
YIELD graphName, nodeCount, relationshipCount
RETURN graphName, nodeCount, relationshipCount
ORDER BY graphName ASC

Table 49. Results
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graphName nodeCount relationshipCount

"personsCypher" 3 2

"personsNative" 3 2

"personsWithAgeNative" 3 2

List extended information about a specific named graph in the catalog

List extended information about a specific Cypher named graph in the catalog:

CALL gds.graph.list('personsCypher')
YIELD graphName, nodeProjection, nodeQuery

Table 50. Results

graphName nodeProjection nodeQuery

"personsCypher" null "MATCH (n:Person) RETURN id(n) AS id, labels(n) as labels"

List extended information about a specific native named graph in the catalog:

CALL gds.graph.list('personsNative')
YIELD graphName, nodeProjection, nodeQuery

Table 51. Results

graphName nodeProjection nodeQuery

"personsNative" {Person={label=Person, properties={}}} null

The above examples demonstrate that nodeQuery only has value when the graph is projected using Cypher
projection while nodeProjection is present when we have a native graph. This is also true for
relationshipQuery and relationshipProjection` respectively.

Despite different result columns being present for the different projections that we can use the Graph
Schemas are the same, which is demonstrated in the example below.

Cypher graph schema:

CALL gds.graph.list('personsCypher')
YIELD graphName, schema

Table 52. Results

graphName schema

"personsCypher" {relationships={KNOWS={}}, nodes={Person={}}}

Native graph schema:

CALL gds.graph.list('personsNative')
YIELD graphName, schema
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Table 53. Results

graphName schema

"personsNative" {relationships={KNOWS={}}, nodes={Person={}}}

Degree distribution of a specific graph

List information about the degree distribution of a specific graph:

CALL gds.graph.list('personsNative')
YIELD graphName, degreeDistribution;

Table 54. Results

graphName degreeDistribution

"personsNative" {p99=2, min=0, max=2, mean=0.6666666666666666, p90=2, p50=0, p999=2, p95=2, p75=0}

4.1.4. Check if a graph exists

We can check if a graph is stored in the catalog by looking up its name.

Syntax

Check if a graph exists in the catalog:

CALL gds.graph.exists(graphName: String) YIELD
  graphName: String,
  exists: Boolean

Table 55. Parameters

Name Type Optional Description

graphName String no The name under which the graph is stored in the catalog.

Table 56. Results

Name Type Description

graphName String Name of the removed graph.

exists Boolean If the graph exists in the graph catalog.

Additionally, to the procedure, we provide a function which directly returns the exists field from the
procedure.

Check if a graph exists in the catalog:

RETURN gds.graph.exists(graphName: String)::Boolean
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Examples

In order to demonstrate the GDS Graph Exists capabilities we are going to create a small social network
graph in Neo4j and project it into our graph catalog.

The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (florentin:Person { name: 'Florentin', age: 16 }),
  (adam:Person { name: 'Adam', age: 18 }),
  (veselin:Person { name: 'Veselin', age: 20 }),
  (florentin)-[:KNOWS { since: 2010 }]->(adam),
  (florentin)-[:KNOWS { since: 2018 }]->(veselin)

Project Person nodes and KNOWS relationships:

CALL gds.graph.create('persons', 'Person', 'KNOWS')

Procedure

Check if graphs exist in the catalog:

UNWIND ['persons', 'books'] AS graph
CALL gds.graph.exists(graph)
  YIELD graphName, exists
RETURN graphName, exists

Table 57. Results

graphName exists

"persons" true

"books" false

We can verify the projected persons graph exists while a books graph does not.

Function

As an alternative to the procedure, we can also use the corresponding function. Unlike procedures,
functions can be inlined in other cypher-statements such as RETURN or WHERE.

Check if graphs exists in the catalog:

RETURN gds.graph.exists('persons') AS personsExists, gds.graph.exists('books') AS booksExists

Table 58. Results

personsExists booksExists

true false

As before, we can verify the projected persons graph exists while a books graph does not.
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4.1.5. Removing graphs

To free up memory, we can remove unused graphs. In order to do so, the gds.graph.drop procedure
comes in handy.

Syntax

Remove a graph from the catalog:

CALL gds.graph.drop(
  graphName: String,
  failIfMissing: Boolean,
  dbName: String,
  username: String
) YIELD
  graphName: String,
  database: String,
  nodeProjection: Map,
  relationshipProjection: Map,
  nodeQuery: String,
  relationshipQuery: String,
  nodeFilter: String,
  relationshipFilter: String,
  nodeCount: Integer,
  relationshipCount: Integer,
  schema: Map,
  density: Float,
  creationTime: Datetime,
  modificationTime: Datetime,
  sizeInBytes: Integer,
  memoryUsage: String

Table 59. Parameters

Name Type Optional Description

graphName String no The name under which the graph is stored in the catalog.

failIfMissing Boolean true By default, the library will raise an error when trying to remove a non-
existing graph. When set to false, the procedure returns empty result.

dbName String active database
name

Then name of the database that was used to project the graph. When
empty, the current database is used.

username String active user The name of the user who projected the graph. Can only be used by
GDS administrator.

Table 60. Results

Name Type Description

graphName String Name of the removed graph.

database String Name of the database in which the graph has been created.

nodeProjection Map Node projection used to create the graph. If a Cypher projection was
used, this will be a derived node projection.

relationshipProjection Map Relationship projection used to create the graph. If a Cypher projection
was used, this will be a derived relationship projection.

nodeQuery String Node query used to create the graph. If a native projection was used, this
will be null.
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Name Type Description

relationshipQuery String Relationship query used to create the graph. If a native projection was
used, this will be null.

nodeFilter String The node filter used when creating this subgraph from another in-
memory graph.

relationshipFilter String The relationship filter used when creating this subgraph from another in-
memory graph.

nodeCount Integer Number of nodes in the graph.

relationshipCount Integer Number of relationships in the graph.

schema Map Node labels, Relationship types and properties contained in the in-
memory graph.

density Float Density of the graph.

creationTime Datetime Time when the graph was created.

modificationTime Datetime Time when the graph was last modified.

sizeInBytes Integer Number of bytes used in the Java heap to store the graph.

memoryUsage String Human readable description of sizeInBytes.

Examples

In this section we are going to demonstrate the usage of gds.graph.drop. All the graph names used in
these examples are fictive and should be replaced with real values.

Basic usage

Remove a graph from the catalog:

CALL gds.graph.drop('my-store-graph') YIELD graphName;

If we run the example above twice, the second time it will raise an error. If we want the procedure to fail
silently on non-existing graphs, we can set a boolean flag as the second parameter to false. This will yield
an empty result for non-existing graphs.

Try removing a graph from the catalog:

CALL gds.graph.drop('my-fictive-graph', false) YIELD graphName;

Multi-database support Enterprise edition

If we want to drop a graph created on another database, we can set the database name as the third
parameter.
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Try removing a graph from the catalog:

CALL gds.graph.drop('my-fictive-graph', true, 'my-other-db') YIELD graphName;

Multi-user support

If we are a GDS administrator and want to drop a graph that belongs to another user we can set the
username as the fourth parameter to the procedure. This is useful if there are multiple users with graphs of
the same name.

Remove a graph from a specific user’s graph catalog:

CALL gds.graph.drop('my-fictive-graph', true, '', 'another-user') YIELD graphName;

See Administration for more details on this.

4.1.6. Creating a subgraph Beta

In GDS, algorithms can be executed on a named graph that has been filtered based on its node labels and
relationship types. However, that filtered graph only exists during the execution of the algorithm and it is
not possible to filter on property values. If a filtered graph needs to be used multiple times, one can use the
subgraph catalog procedure to create a new graph in the graph catalog.

The filter predicates in the subgraph procedure can take labels, relationship types as well as node and
relationship properties into account. The new graph can be used in the same way as any other in-memory
graph in the catalog. Creating subgraphs of subgraphs is also possible.

Syntax

A new graph can be created by using the gds.beta.graph.create.subgraph() procedure:

CALL gds.beta.graph.create.subgraph(
  graphName: String,
  fromGraphName: String,
  nodeFilter: String,
  relationshipFilter: String,
  configuration: Map
) YIELD
  graphName: String,
  fromGraphName: String,
  nodeFilter: String,
  relationshipFilter: String,
  nodeCount: Integer,
  relationshipCount: Integer,
  createMillis: Integer

Table 61. Parameters

Name Type Description

graphName String The name of the new graph that is stored in the graph catalog.

fromGraphName String The name of the original graph in the graph catalog.
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Name Type Description

nodeFilter String A Cypher predicate for filtering nodes in the input graph. * can be used to allow all
nodes.

relationshipFilter String A Cypher predicate for filtering relationships in the input graph. * can be used to
allow all relationships.

configuration Map Additional parameters to configure subgraph creation.

Table 62. Subgraph specific configuration

Name Type Default Optional Description

concurrency Integer 4 yes The number of concurrent threads used for filtering the graph.

Table 63. Results

Name Type Description

graphName String The name of the new graph that is stored in the graph catalog.

fromGraphName String The name of the original graph in the graph catalog.

nodeFilter String Filter predicate for nodes.

relationshipFilter String Filter predicate for relationships.

nodeCount Integer Number of nodes in the subgraph.

relationshipCount Integer Number of relationships in the subgraph.

createMillis Integer Milliseconds for creating the subgraph.

The nodeFilter and relationshipFilter configuration keys can be used to express filter predicates. Filter
predicates are Cypher predicates bound to a single entity. An entity is either a node or a relationship. The
filter predicate always needs to evaluate to true or false. A node is contained in the subgraph if the node
filter evaluates to true. A relationship is contained in the subgraph if the relationship filter evaluates to
true and its source and target nodes are contained in the subgraph.

A predicate is a combination of expressions. The simplest form of expression is a literal. GDS currently
supports the following literals:

• float literals, e.g., 13.37

• integer literals, e.g., 42

• boolean literals, i.e., TRUE and FALSE

Property, label and relationship type expressions are bound to an entity. The node entity is always
identified by the variable n, the relationship entity is identified by r. Using the variable, we can refer to:

• node label expression, e.g., n:Person

• relationship type expression, e.g., r:KNOWS

• node property expression, e.g., n.age

• relationship property expression, e.g., r.since
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Boolean predicates combine two expressions and return either true or false. GDS supports the following
boolean predicates:

• greater/lower than, such as n.age > 42 or r.since < 1984

• greater/lower than or equal, such as n.age > 42 or r.since < 1984

• equality, such as n.age = 23 or r.since = 2020

• logical operators, such as

• n.age > 23 AND n.age < 42

• n.age = 23 OR n.age = 42

• n.age = 23 XOR n.age = 42

• n.age IS NOT 23

Variable names that can be used within predicates are not arbitrary. A node predicate must refer to
variable n. A relationship predicate must refer to variable r.

Examples

In order to demonstrate the GDS create subgraph capabilities we are going to create a small social graph
in Neo4j.

The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (p0:Person { age: 16 }),
  (p1:Person { age: 18 }),
  (p2:Person { age: 20 }),
  (b0:Book   { isbn: 1234 }),
  (b1:Book   { isbn: 4242 }),
  (p0)-[:KNOWS { since: 2010 }]->(p1),
  (p0)-[:KNOWS { since: 2018 }]->(p2),
  (p0)-[:READS]->(b0),
  (p1)-[:READS]->(b0),
  (p2)-[:READS]->(b1)

Project the social network graph:

CALL gds.graph.create(
  'social-graph',
  {
    Person: { properties: 'age' },    ①
    Book: {}                          ②
  },
  {
    KNOWS: { properties: 'since' },   ③
    READS: {}                         ④
  }
)
YIELD graphName, nodeCount, relationshipCount, createMillis

① Project Person nodes with their age property.

② Project Book nodes without any of their properties.

③ Project KNOWS relationships with their since property.

④ Project READS relationships without any of their properties.
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Node filtering

Create a new graph containing only users of a certain age group:

CALL gds.beta.graph.create.subgraph(
  'teenagers',
  'social-graph',
  'n.age > 13 AND n.age <= 18',
  '*'
)
YIELD graphName, fromGraphName, nodeCount, relationshipCount

Table 64. Results

graphName fromGraphName nodeCount relationshipCount

"teenagers" "social-graph" 2 1

Node and relationship filtering

Create a new graph containing only users of a certain age group that know each other since a given point
a time:

CALL gds.beta.graph.create.subgraph(
  'teenagers',
  'social-graph',
  'n.age > 13 AND n.age <= 18',
  'r.since >= 2012.0'
)
YIELD graphName, fromGraphName, nodeCount, relationshipCount

Table 65. Results

graphName fromGraphName nodeCount relationshipCount

"teenagers" "social-graph" 2 0

Bipartite subgraph

Create a new bipartite graph between books and users connected by the READS relationship type:

CALL gds.beta.graph.create.subgraph(
  'teenagers-books',
  'social-graph',
  'n:Book OR n:Person',
  'r:READS'
)
YIELD graphName, fromGraphName, nodeCount, relationshipCount

Table 66. Results

graphName fromGraphName nodeCount relationshipCount

"teenagers-books" "social-graph" 5 3
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Bipartite graph node filtering

The previous example can be extended with an additional filter applied only to persons:

CALL gds.beta.graph.create.subgraph(
  'teenagers-books',
  'social-graph',
  'n:Book OR (n:Person AND n.age > 18)',
  'r:READS'
)
YIELD graphName, fromGraphName, nodeCount, relationshipCount

Table 67. Results

graphName fromGraphName nodeCount relationshipCount

"teenagers-books" "social-graph" 3 1

4.1.7. Node operations

The graphs in the Neo4j Graph Data Science Library support properties for nodes. We provide multiple
operations to work with the stored node-properties in projected graphs. Node properties are either created
during the graph creation or when using the mutate mode of our graph algorithms.

To inspect stored values, the gds.graph.streamNodeProperties procedure can be used. This is useful if we
ran multiple algorithms in mutate mode and want to retrieve some or all of the results.

To persist the values in a Neo4j database, we can use gds.graph.writeNodeProperties. Similar to
streaming node properties, it is also possible to write those back to Neo4j. This is similar to what an
algorithm write execution mode does, but allows more fine-grained control over the operations.

We can also remove node properties from a named graph in the catalog. This is useful to free up main
memory or to remove accidentally created node properties.

Syntax
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Syntax descriptions of the different operations over node properties

CALL gds.graph.streamNodeProperty(
    graphName: String,
    nodeProperties: String,
    nodeLabels: String or List of Strings,
    configuration: Map
)
YIELD
    nodeId: Integer,
    propertyValue: Integer or Float or List of Integer or List of Float

Table 68. Parameters

Name Type Optional Description

graphNa
me

String no The name under which the graph is stored in the
catalog.

nodeProp
erties

String no The node property in the graph to stream.

nodeLabe
ls

String or List of Strings yes The node labels to stream the node properties for
graph.

configura
tion

Map yes Additional parameters to configure
streamNodeProperties.

Table 69. Configuration

Name Type Default Description

concurren
cy

Integer 4 The number of concurrent threads. Note, this procedure is always running
single-threaded.

Table 70. Results

Name Type Description

nodeId Integer The id of the node.

propertyValue

• Integer

• Float

• List of Integer

• List of Float

The stored property value.
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CALL gds.graph.streamNodeProperties(
    graphName: String,
    nodeProperties: String or List of Strings,
    nodeLabels: String or List of Strings,
    configuration: Map
)
YIELD
    nodeId: Integer,
    nodeProperty: String,
    propertyValue: Integer or Float or List of Integer or List of Float

Table 71. Parameters

Name Type Optional Description

graphNa
me

String no The name under which the graph is stored in the
catalog.

nodeProp
erties

String or List of Strings no The node properties in the graph to stream.

nodeLabe
ls

String or List of Strings yes The node labels to stream the node properties for
graph.

configura
tion

Map yes Additional parameters to configure
streamNodeProperties.

Table 72. Configuration

Name Type Default Description

concurren
cy

Integer 4 The number of concurrent threads. Note, this procedure is always running
single-threaded.

Table 73. Results

Name Type Description

nodeId Integer The id of the node.

nodeProperty String The name of the node property.

propertyValue

• Integer

• Float

• List of Integer

• List of Float

The stored property value.
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CALL gds.graph.writeNodeProperties(
    graphName: String,
    nodeProperties: String or List of Strings,
    nodeLabels: String or List of Strings,
    configuration: Map
)
YIELD
    writeMillis: Integer,
    propertiesWritten: Integer,
    graphName: String,
    nodeProperties: String or List of String

Table 74. Parameters

Name Type Optional Description

graphNa
me

String no The name under which the graph is stored in the
catalog.

nodeProp
erties

String or List of Strings no The node properties in the graph to write back.

nodeLabe
ls

String or List of Strings yes The node labels to write back their node properties.

configura
tion

Map yes Additional parameters to configure
writeNodeProperties.

Table 75. Configuration

Name Type Default Description

concurren
cy

Integer 4 The number of concurrent threads used for running the procedure. Also
provides the default value for writeConcurrency

writeCon
currency

Integer 'concurre
ncy'

The number of concurrent threads used for writing the node properties.

Table 76. Results

Name Type Description

writeMillis Integer Milliseconds for writing result data back to Neo4j.

propertiesWritten Integer Number of properties written.

graphName String The name of a graph stored in the catalog.

nodeProperties String or List of String The written node properties.
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CALL gds.graph.removeNodeProperties(
    graphName: String,
    nodeProperties: String or List of Strings,
    nodeLabels: String or List of Strings,
    configuration: Map
)
YIELD
    propertiesRemoved: Integer,
    graphName: String,
    nodeProperties: String or List of String

Table 77. Parameters

Name Type Optional Description

graphNa
me

String no The name under which the graph is stored in the
catalog.

nodeProp
erties

String or List of Strings no The node properties in the graph to remove.

nodeLabe
ls

String or List of Strings yes The node labels to remove the node properties from.

configura
tion

Map yes Additional parameters to configure
removeNodeProperties.

Table 78. Configuration

Name Type Default Description

concurren
cy

Integer 4 The number of concurrent threads. Note, this procedure is always running
single-threaded.

Table 79. Results

Name Type Description

propertiesRemoved Integer Number of properties removed.

graphName String The name of a graph stored in the catalog.

nodeProperties String or List of String The removed node properties.

Examples

In order to demonstrate the GDS capabilities over node properties, we are going to create a small social
network graph in Neo4j and project it into our graph catalog.
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (florentin:Person { name: 'Florentin', age: 16 }),
  (adam:Person { name: 'Adam', age: 18 }),
  (veselin:Person { name: 'Veselin', age: 20 }),
  (hobbit:Book { name: 'The Hobbit', numberOfPages: 310 }),
  (florentin)-[:KNOWS { since: 2010 }]->(adam),
  (florentin)-[:KNOWS { since: 2018 }]->(veselin),
  (adam)-[:READ]->(hobbit)

Project the small social network graph:

CALL gds.graph.create(
  'socialGraph',
  {
    Person: {properties: "age"},
    Book: {}
  },
  ['KNOWS', 'READ']
)

Compute the Degree Centrality in our social graph:

CALL gds.degree.mutate('socialGraph', {mutateProperty: 'score'})

Stream

We can stream node properties stored in a named in-memory graph back to the user. This is useful if we
ran multiple algorithms in mutate mode and want to retrieve some or all of the results. This is similar to
what an algorithm stream execution mode does, but allows more fine-grained control over the operations.

Single property

In the following, we stream the previously computed scores score.

Stream the score node property:

CALL gds.graph.streamNodeProperty('socialGraph', 'score')
YIELD nodeId, propertyValue
RETURN gds.util.asNode(nodeId).name AS name, propertyValue AS score
ORDER BY score DESC

Table 80. Results

name score

"Florentin" 2.0

"Adam" 1.0

"Veselin" 0.0

"The Hobbit" 0.0
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
The above example requires all given properties to be present on at least one node
projection, and the properties will be streamed for all such projections.

NodeLabels

The procedure can be configured to stream just the properties for specific node labels.

Stream the score property for Person nodes:

CALL gds.graph.streamNodeProperty('socialGraph', 'score', ['Person'])
YIELD nodeId, propertyValue
RETURN gds.util.asNode(nodeId).name AS name, propertyValue AS score
ORDER BY score DESC

Table 81. Results

name score

"Florentin" 2.0

"Adam" 1.0

"Veselin" 0.0

It is required, that all specified node labels have the node property.

Multiple Properties

We can also stream several properties at once.

Stream multiple node properties:

CALL gds.graph.streamNodeProperties('socialGraph', ['score', 'age'])
YIELD nodeId, nodeProperty, propertyValue
RETURN gds.util.asNode(nodeId).name AS name, nodeProperty, propertyValue
ORDER BY name, nodeProperty

Table 82. Results

name nodeProperty propertyValue

"Adam" "age" 18

"Adam" "score" 1.0

"Florentin" "age" 16

"Florentin" "score" 2.0

"Veselin" "age" 20

"Veselin" "score" 0.0
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
When streaming multiple node properties, the name of each property is included in the
result. This adds with some overhead, as each property name must be repeated for each
node in the result, but is necessary in order to distinguish properties.

Write

To write the 'score' property for all node labels in the social graph, we use the following query:

Write the score property back to Neo4j:

CALL gds.graph.writeNodeProperties('socialGraph', ['score'])
YIELD propertiesWritten

Table 83. Results

propertiesWritten

4

The above example requires the score property to be present on at least one projected node label, and the
properties will be written for all such labels.

NodeLabels

The procedure can be configured to write just the properties for some specific node labels. In the following
example, we will only write back the scores of the Person nodes.

Write node properties of a specific projected node label to Neo4j:

CALL gds.graph.writeNodeProperties('socialGraph', ['score'], ['Person'])
YIELD propertiesWritten

Table 84. Results

propertiesWritten

3


If the nodeLabels parameter is specified, it is required that all given node labels have all
of the given properties.

Remove

Remove the score property from all projected nodes in the socialGraph:

CALL gds.graph.removeNodeProperties('socialGraph', ['score'])
YIELD propertiesRemoved

Table 85. Results
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propertiesRemoved

4


The above example requires all given properties to be present on at least one projected
node label.

NodeLabels

Consider we compute the Degree Centrality only for a subset of the graph.

Compute the Degree Centrality for only the Book nodes in our social graph:

CALL gds.degree.mutate('socialGraph', {nodeLabels: ['Book'], mutateProperty: 'degree'})

The procedure can be configured to remove just the properties for s. In the following example, we will only
remove the scores from the Book nodes.

Remove the degree property from the projected Book nodes:

CALL gds.graph.removeNodeProperties('socialGraph', ['degree'], ['Book'])
YIELD propertiesRemoved

Table 86. Results

propertiesRemoved

1


If the nodeLabels parameter is specified, it is required that all given node labels have all
of the given properties.

Utility functions

Utility functions allow accessing specific nodes of in-memory graphs directly from a Cypher query.

Table 87. Catalog Functions

Name Description

gds.util.nodeProperty Allows accessing a node property stored in a named graph.

Syntax

Name Description

gds.util.nodeProperty(graphName: STRING, nodeId:
INTEGER, propertyKey: STRING, nodeLabel: STRING?)

Named graph in the catalog, Neo4j node id, node property
key and optional node label present in the named-graph.

If a node label is given, the property value for the corresponding projection and the given node is returned.
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If no label or '*' is given, the property value is retrieved and returned from an arbitrary projection that
contains the given propertyKey. If the property value is missing for the given node, null is returned.

Examples

We use the socialGraph with the property score introduced above.

Access a property node property for Florentin:

MATCH (florentin:Person {name: 'Florentin'})
RETURN
  florentin.name AS name,
  gds.util.nodeProperty('socialGraph', id(florentin), 'score') AS score

Table 88. Results

name score

"Florentin" 2.0

We can also specifically return the score property from the Person projection in case other projections also
have a score property as follows.

Access a property node property from Person for Florentin:

MATCH (florentin:Person {name: 'Florentin'})
RETURN
  florentin.name AS name,
  gds.util.nodeProperty('socialGraph', id(florentin), 'score', 'Person') AS score

Table 89. Results

name score

"Florentin" 2.0

4.1.8. Relationship operations

The graphs in the Neo4j Graph Data Science Library support properties for relationships. We provide
multiple operations to work with the stored relationship-properties in projected graphs. Relationship
properties are either created during the graph creation or when using the mutate mode of our graph
algorithms.

To inspect stored relationship property values, the streamRelationshipProperties procedure can be used.
This is useful if we ran multiple algorithms in mutate mode and want to retrieve some or all of the results.

To persist relationship types in a Neo4j database, we can use gds.graph.writeRelationship. Similar to
streaming relationship properties, it is also possible to write back to Neo4j. This is similar to what an
algorithm write execution mode does, but allows more fine-grained control over the operations. By
default, no relationship properties will be written. To write relationship properties, these have to be
explicitly specified.

We can also remove relationships from a named graph in the catalog. This is useful to free up main
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memory or to remove accidentally created relationship types.

Syntax
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Syntax descriptions of the different operations over relationship types

CALL gds.graph.streamRelationshipProperty(
    graphName: String,
    relationshipProperties: List of String,
    relationshipTypes: List of Strings,
    configuration: Map
)
YIELD
    sourceNodeId: Integer,
    targetNodeId: Integer,
    relationshipType: String,
    propertyValue: Integer or Float

Table 90. Parameters

Name Type Optional Description

graphNa
me

String no The name under which the graph is stored in the
catalog.

relationsh
ipProperti
es

List of String no The relationship properties in the graph to stream.

relationsh
ipTypes

List of Strings yes The relationship types to stream the relationship
properties for graph.

configura
tion

Map yes Additional parameters to configure
streamNodeProperties.

Table 91. Configuration

Name Type Default Description

concurren
cy

Integer 4 The number of concurrent threads. Note, this procedure is always running
single-threaded.

Table 92. Results

Name Type Description

sourceNodeId Integer The id of the source node for the relationship.

targetNodeId Integer The id of the target node for the relationship.

relationshipType Integer The type of the relationship.

propertyValue

• Integer

• Float The stored property value.
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CALL gds.graph.streamRelationshipProperties(
    graphName: String,
    relationshipProperties: List of String,
    relationshipTypes: List of Strings,
    configuration: Map
)
YIELD
    sourceNodeId: Integer,
    targetNodeId: Integer,
    relationshipType: String,
    relationshipProperty: String,
    propertyValue: Integer or Float

Table 93. Parameters

Name Type Optional Description

graphNa
me

String no The name under which the graph is stored in the
catalog.

relationsh
ipProperti
es

List of String no The relationship properties in the graph to stream.

relationsh
ipTypes

List of Strings yes The relationship types to stream the relationship
properties for graph.

configura
tion

Map yes Additional parameters to configure
streamNodeProperties.

Table 94. Configuration

Name Type Default Description

concurren
cy

Integer 4 The number of concurrent threads. Note, this procedure is always running
single-threaded.

Table 95. Results

Name Type Description

sourceNodeId Integer The id of the source node for the relationship.

targetNodeId Integer The id of the target node for the relationship.

relationshipType Integer The type of the relationship.

relationshipProperty Integer The name of the relationship property.

propertyValue

• Integer

• Float The stored property value.
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CALL gds.graph.writeRelationship(
    graphName: String,
    relationshipType: String,
    relationshipProperty: String,
    configuration: Map
)
YIELD
  writeMillis: Integer,
  graphName: String,
  relationshipType: String,
  relationshipsWritten: Integer,
  relationshipProperty: String,
  propertiesWritten: Integer

Table 96. Parameters

Name Type Optional Description

graphNa
me

String no The name under which the graph is stored in the
catalog.

relationsh
ipType

String no The relationship type in the graph to write back.

relationsh
ipPropert
y

String yes The relationship property to write back.

configura
tion

Map yes Additional parameters to configure writeRelationship.

Table 97. Configuration

Name Type Default Description

concurren
cy

Integer 4 The number of concurrent threads used for running the procedure. Also
provides the default value for writeConcurrency. Note, this procedure is
always running single-threaded.

writeCon
currency

Integer 'concurre
ncy'

The number of concurrent threads used for writing the relationship properties.
Note, this procedure is always running single-threaded.

Table 98. Results

Name Type Description

writeMillis Integer Milliseconds for writing result data back to Neo4j.

graphName String The name of a graph stored in the catalog.

relationshipType String The type of the relationship that was written.

relationshipsWritten Integer Number relationships written.

relationshipProperty String The name of the relationship property that was written.

propertiesWritten Integer Number relationships properties written.
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CALL gds.graph.deleteRelationships(
    graphName: String,
    relationshipType: String
)
YIELD
  graphName: String,
  relationshipType: String,
  deletedRelationships: Integer,
  deletedProperties: Map

Table 99. Parameters

Name Type Optional Description

graphNa
me

String no The name under which the graph is stored in the
catalog.

relationsh
ipType

String no The relationship type in the graph to remove.

Table 100. Results

Name Type Description

graphName String The name of a graph stored in the catalog.

relationshipType String The type of the removed relationships.

deletedRelationships Integer Number of removed relationships from the in-memory
graph.

deletedProperties Integer Map where the key is the name of the relationship
property, and the value is the number of removed
properties under that name.

Examples

In order to demonstrate the GDS capabilities over node properties, we are going to create a small graph in
Neo4j and project it into our graph catalog.
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LIKESLIKES

LIKES

LIKESLIKES

LIKES

LIKES

LIKESLIKES

Guitar Synthesi…

Bongos

Trumpet

Alice

Bob

Carol

Dave

Eve

The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (alice:Person {name: 'Alice'}),
  (bob:Person {name: 'Bob'}),
  (carol:Person {name: 'Carol'}),
  (dave:Person {name: 'Dave'}),
  (eve:Person {name: 'Eve'}),
  (guitar:Instrument {name: 'Guitar'}),
  (synth:Instrument {name: 'Synthesizer'}),
  (bongos:Instrument {name: 'Bongos'}),
  (trumpet:Instrument {name: 'Trumpet'}),

  (alice)-[:LIKES { score: 5 }]->(guitar),
  (alice)-[:LIKES { score: 4 }]->(synth),
  (alice)-[:LIKES { score: 3, strength: 0.5}]->(bongos),
  (bob)-[:LIKES { score: 4 }]->(guitar),
  (bob)-[:LIKES { score: 5 }]->(synth),
  (carol)-[:LIKES { score: 2 }]->(bongos),
  (dave)-[:LIKES { score: 3 }]->(guitar),
  (dave)-[:LIKES { score: 1 }]->(synth),
  (dave)-[:LIKES { score: 5 }]->(bongos)

Project the graph:

CALL gds.graph.create(
  'personsAndInstruments',
  ['Person', 'Instrument'],         ①
  {
    LIKES: {
      type: 'LIKES',                ②
      properties: {
        strength: {                 ③
          property: 'strength',
          defaultValue: 1.0
        },
        score: {
          property: 'score'         ④
        }
      }
    }
  }
)

① Project node labels Person and Instrument.

② Project relationship type LIKES.
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③ Project property strength of relationship type LIKES setting a default value of 1.0 because not all
relationships have that property.

④ Project property score of relationship type LIKES.

Compute the Node Similarity in our graph:

CALL gds.nodeSimilarity.mutate('personsAndInstruments', {   ①
  mutateRelationshipType: 'SIMILAR',                        ②
  mutateProperty: 'score'                                   ③
})

① Run NodeSimilarity in mutate mode on personsAndInstruments projected graph.

② The algorithm will create relationships of type SIMILAR in the projected graph.

③ The algorithm will create relationship property score for each created relationship.

Stream

Single property

The most basic case for streaming relationship information from a named graph is a single property. In the
example below we stream the relationship property score.

Stream a single relationship property:

CALL gds.graph.streamRelationshipProperty(
  'personsAndInstruments',                  ①
  'score'                                   ②
)
YIELD
  sourceNodeId, targetNodeId, relationshipType, propertyValue
RETURN
  gds.util.asNode(sourceNodeId).name as source, gds.util.asNode(targetNodeId).name as target,
relationshipType, propertyValue
ORDER BY source ASC, target ASC

① The name of the projected graph.

② The property we want to stream out.

Table 101. Results

source target relationshipType propertyValue

"Alice" "Bob" "SIMILAR" 0.6666666666666666

"Alice" "Bongos" "LIKES" 3.0

"Alice" "Carol" "SIMILAR" 0.3333333333333333

"Alice" "Dave" "SIMILAR" 1.0

"Alice" "Guitar" "LIKES" 5.0

"Alice" "Synthesizer" "LIKES" 4.0

"Bob" "Alice" "SIMILAR" 0.6666666666666666
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source target relationshipType propertyValue

"Bob" "Dave" "SIMILAR" 0.6666666666666666

"Bob" "Guitar" "LIKES" 4.0

"Bob" "Synthesizer" "LIKES" 5.0

"Carol" "Alice" "SIMILAR" 0.3333333333333333

"Carol" "Bongos" "LIKES" 2.0

"Carol" "Dave" "SIMILAR" 0.3333333333333333

"Dave" "Alice" "SIMILAR" 1.0

"Dave" "Bob" "SIMILAR" 0.6666666666666666

"Dave" "Bongos" "LIKES" 5.0

"Dave" "Carol" "SIMILAR" 0.3333333333333333

"Dave" "Guitar" "LIKES" 3.0

"Dave" "Synthesizer" "LIKES" 1.0

As we can see from the results, we get two relationship types (SIMILAR and LIKES) that have the score
relationship property. We can further on filter the relationship types we want to stream, this is
demonstrated in the next example.

Stream a single relationship property for specific relationship type:

CALL gds.graph.streamRelationshipProperty(
  'personsAndInstruments',                  ①
  'score',                                  ②
  ['SIMILAR']                               ③
)
YIELD
  sourceNodeId, targetNodeId, relationshipType, propertyValue
RETURN
  gds.util.asNode(sourceNodeId).name as source, gds.util.asNode(targetNodeId).name as target,
relationshipType, propertyValue
ORDER BY source ASC, target ASC

① The name of the projected graph.

② The property we want to stream out.

③ List of relationship types we want to stream the property from, only use the ones we need.

Table 102. Results

source target relationshipType propertyValue

"Alice" "Bob" "SIMILAR" 0.6666666666666666

"Alice" "Carol" "SIMILAR" 0.3333333333333333

"Alice" "Dave" "SIMILAR" 1.0

"Bob" "Alice" "SIMILAR" 0.6666666666666666

"Bob" "Dave" "SIMILAR" 0.6666666666666666
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source target relationshipType propertyValue

"Carol" "Alice" "SIMILAR" 0.3333333333333333

"Carol" "Dave" "SIMILAR" 0.3333333333333333

"Dave" "Alice" "SIMILAR" 1.0

"Dave" "Bob" "SIMILAR" 0.6666666666666666

"Dave" "Carol" "SIMILAR" 0.3333333333333333

Multiple properties

It is also possible to stream multiple relationship properties.

Stream multiple relationship properties:

CALL gds.graph.streamRelationshipProperties(
  'personsAndInstruments',                      ①
  ['score', 'strength'],                        ②
  ['LIKES']                                     ③
)
YIELD
  sourceNodeId, targetNodeId, relationshipType, relationshipProperty, propertyValue
RETURN
  gds.util.asNode(sourceNodeId).name as source, gds.util.asNode(targetNodeId).name as target,
relationshipType, relationshipProperty, propertyValue
ORDER BY source ASC, target ASC

① The name of the projected graph.

② List of properties we want to stream out, allows us to stream more than one property.

③ List of relationship types we want to stream the property from, only use the ones we need.

Table 103. Results

source target relationshipType relationshipProperty propertyValue

"Alice" "Bongos" "LIKES" "score" 3.0

"Alice" "Bongos" "LIKES" "strength" 0.5

"Alice" "Guitar" "LIKES" "score" 5.0

"Alice" "Guitar" "LIKES" "strength" 1.0

"Alice" "Synthesizer" "LIKES" "score" 4.0

"Alice" "Synthesizer" "LIKES" "strength" 1.0

"Bob" "Guitar" "LIKES" "score" 4.0

"Bob" "Guitar" "LIKES" "strength" 1.0

"Bob" "Synthesizer" "LIKES" "score" 5.0

"Bob" "Synthesizer" "LIKES" "strength" 1.0

"Carol" "Bongos" "LIKES" "score" 2.0

"Carol" "Bongos" "LIKES" "strength" 1.0
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source target relationshipType relationshipProperty propertyValue

"Dave" "Bongos" "LIKES" "score" 5.0

"Dave" "Bongos" "LIKES" "strength" 1.0

"Dave" "Guitar" "LIKES" "score" 3.0

"Dave" "Guitar" "LIKES" "strength" 1.0

"Dave" "Synthesizer" "LIKES" "score" 1.0

"Dave" "Synthesizer" "LIKES" "strength" 1.0

Multiple relationship types

Similar to the multiple relationship properties we can stream properties for multiple relationship types.

Stream relationship properties of a multiple relationship projections:

CALL gds.graph.streamRelationshipProperties(
  'personsAndInstruments',                          ①
  ['score'],                                        ②
  ['LIKES', 'SIMILAR']                              ③
)
YIELD
  sourceNodeId, targetNodeId, relationshipType, relationshipProperty, propertyValue
RETURN
  gds.util.asNode(sourceNodeId).name as source,     ④
  gds.util.asNode(targetNodeId).name as target,     ⑤
  relationshipType,
  relationshipProperty,
  propertyValue
ORDER BY source ASC, target ASC

① The name of the projected graph.

② List of properties we want to stream out, allows us to stream more than one property.

③ List of relationship types we want to stream the property from, only use the ones we need.

④ Return the name of the source node.

⑤ Return the name of the target node.

Table 104. Results

source target relationshipType relationshipProperty propertyValue

"Alice" "Bob" "SIMILAR" "score" 0.6666666666666666

"Alice" "Bongos" "LIKES" "score" 3.0

"Alice" "Carol" "SIMILAR" "score" 0.3333333333333333

"Alice" "Dave" "SIMILAR" "score" 1.0

"Alice" "Guitar" "LIKES" "score" 5.0

"Alice" "Synthesizer" "LIKES" "score" 4.0

"Bob" "Alice" "SIMILAR" "score" 0.6666666666666666
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source target relationshipType relationshipProperty propertyValue

"Bob" "Dave" "SIMILAR" "score" 0.6666666666666666

"Bob" "Guitar" "LIKES" "score" 4.0

"Bob" "Synthesizer" "LIKES" "score" 5.0

"Carol" "Alice" "SIMILAR" "score" 0.3333333333333333

"Carol" "Bongos" "LIKES" "score" 2.0

"Carol" "Dave" "SIMILAR" "score" 0.3333333333333333

"Dave" "Alice" "SIMILAR" "score" 1.0

"Dave" "Bob" "SIMILAR" "score" 0.6666666666666666

"Dave" "Bongos" "LIKES" "score" 5.0

"Dave" "Carol" "SIMILAR" "score" 0.3333333333333333

"Dave" "Guitar" "LIKES" "score" 3.0

"Dave" "Synthesizer" "LIKES" "score" 1.0

 The properties we want to stream must exist for each specified relationship type.

Write

We can write relationships stored in a named in-memory graph back to Neo4j. This can be used to write
algorithm results (for example from Node Similarity) or relationships that have been aggregated during
graph creation.

The relationships to write are specified by a relationship type.

 Relationships are always written using a single thread.

Relationship type

Write relationships to Neo4j:

CALL gds.graph.writeRelationship(
  'personsAndInstruments',        ①
  'SIMILAR'                       ②
)
YIELD
  graphName, relationshipType, relationshipProperty, relationshipsWritten, propertiesWritten

① The name of the projected graph.

② The relationship type we want to write back to the Neo4j database.

Table 105. Results
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graphName relationshipType relationshipProperty relationshipsWritten propertiesWritten

"personsAndInstrumen
ts"

"SIMILAR" null 10 0

By default, no relationship properties will be written, as it can be seen from the results, the
relationshipProperty value is null and propertiesWritten are 0.

Here is an illustration of how the example graph looks in Neo4j after executing the example above.
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The SIMILAR relationships have been added to the underlying database and can be used in Cypher queries
or for projecting to in-memory graph for running algorithms. The relationships in this example are
undirected because we used Node Similarity to mutate the in-memory graph and this algorithm creates
undirected relationships, this may not be the case if we use different algorithms.

Relationship type with property

To write relationship properties, these have to be explicitly specified.

Write relationships and their properties to Neo4j:

CALL gds.graph.writeRelationship(
  'personsAndInstruments',          ①
  'SIMILAR',                        ②
  'score'                           ③
)
YIELD
  graphName, relationshipType, relationshipProperty, relationshipsWritten, propertiesWritten

① The name of the projected graph.
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② The relationship type we want to write back to the Neo4j database.

③ The property name of the relationship we want to write back to the Neo4j database.

Table 106. Results

graphName relationshipType relationshipProperty relationshipsWritten propertiesWritten

"personsAndInstrumen
ts"

"SIMILAR" "score" 10 10

Delete

We can delete all relationships of a given type from a named graph in the catalog. This is useful to free up
main memory or to remove accidentally created relationship types.


Deleting relationships of a given type is only possible if it is not the last relationship type
present in the graph. If we still want to delete these relationships we need to drop the
graph instead.

Delete all relationships of type SIMILAR from a named graph:

CALL gds.graph.deleteRelationships(
  'personsAndInstruments',            ①
  'SIMILAR'                           ②
)
YIELD
  graphName, relationshipType, deletedRelationships, deletedProperties

① The name of the projected graph.

② The relationship type we want to delete from the projected graph.

Table 107. Results

graphName relationshipType deletedRelationships deletedProperties

"personsAndInstruments" "SIMILAR" 10 {score=10}

4.1.9. Export operations

Create Neo4j databases from named graphs

We can create new Neo4j databases from named in-memory graphs stored in the graph catalog. All
nodes, relationships and properties present in an in-memory graph are written to a new Neo4j database.
This includes data that has been projected in gds.graph.create and data that has been added by running
algorithms in mutate mode. The newly created database will be stored in the Neo4j databases directory
using a given database name.

The feature is useful in the following, exemplary scenarios:

• Avoid heavy write load on the operational system by exporting the data instead of writing back.

• Create an analytical view of the operational system that can be used as a basis for running algorithms.
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• Produce snapshots of analytical results and persistent them for archiving and inspection.

• Share analytical results within the organization.

Syntax

Export an in-memory graph to a new database in the Neo4j databases directory:

CALL gds.graph.export(graphName: String, configuration: Map)
YIELD
    dbName: String,
    graphName: String,
    nodeCount: Integer,
    nodePropertyCount: Integer,
    relationshipCount: Integer,
    relationshipTypeCount: Integer,
    relationshipPropertyCount: Integer,
    writeMillis: Integer

Table 108. Parameters

Name Type Optional Description

graphName String no The name under which the graph is stored in the catalog.

configuration Map no Additional parameters to configure the database export.

Table 109. Graph export configuration

Name Type Default Optional Description

dbName String none No The name of the exported Neo4j database.

writeConcurre
ncy

Boolean 4 yes The number of concurrent threads used for writing the
database.

enableDebug
Log

Boolean false yes Prints debug information to Neo4j log files.

batchSize Integer 10000 yes Number of entities processed by one single thread at a time.

defaultRelatio
nshipType

String __ALL__ yes Relationship type used for * relationship projections.

additionalNod
eProperties

String, List or
Map

{} yes Allows for exporting additional node properties from the
original graph backing the in-memory graph.

Table 110. Results

Name Type Description

dbName String The name of the exported Neo4j database.

graphName String The name under which the graph is stored in the catalog.

nodeCount Integer The number of nodes exported.

nodePropertyCount Integer The number of node properties exported.

relationshipCount Integer The number of relationships exported.
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Name Type Description

relationshipTypeCount Integer The number of relationship types exported.

relationshipPropertyCount Integer The number of relationship properties exported.

writeMillis Integer Milliseconds for writing the graph into the new database.

Example

Export the my-graph from GDS into a Neo4j database called mydatabase:

CALL gds.graph.export('my-graph', { dbName: 'mydatabase' })

The new database can be started using databases management commands.


The database must not exist when using the export procedure. It needs to be created
manually using the following commands.

After running exporting the graph, we can start a new database and query the exported graph:

:use system
CREATE DATABASE mydatabase;
:use mydatabase
MATCH (n) RETURN n;

Example with additional node properties

Suppose we have a graph my-db-graph in the Neo4j database that has a string node property myproperty,
and that we have a corresponding in-memory graph called my-in-memory-graph which does not have the
myproperty node property. If we want to export my-in-memory-graph but additionally add the myproperty
properties from my-db-graph we can use the additionalProperties configuration parameter.

Export the my-in-memory-graph from GDS with myproperty from my-db-graph into a Neo4j database called
mydatabase:

CALL gds.graph.export('my-graph', { dbName: 'mydatabase', additionalNodeProperties: ['myproperty']})

The new database can be started using databases management commands.


The original database (my-db-graph) must not have changed since loading the in-
memory representation (my-in-memory-graph) that we export in order for the export to
work correctly.

The additionalNodeProperties parameter uses the same syntax as nodeProperties of the graph create
procedure. So we could for instance define a default value for our myproperty.
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Export the my-in-memory-graph from GDS with myproperty from my-db-graph with default value into a
Neo4j database called mydatabase:

CALL gds.graph.export('my-graph', { dbName: 'mydatabase', additionalNodeProperties: [{ myproperty:
{defaultValue: 'my-default-value'}}] })
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Chapter 5. Export a named graph to CSV
We can export named in-memory graphs stored in the graph catalog to a set of CSV files. All nodes,
relationships and properties present in an in-memory graph are exported. This includes data that has been
projected with gds.graph.create and data that has been added by running algorithms in mutate mode.
The location of the exported CSV files can be configured via the configuration parameter
gds.export.location in the neo4j.conf. All files will be stored in a subfolder using the specified export
name. The export will fail if a folder with the given export name already exists.

 The gds.export.location parameter must be configured for this feature.

5.1. Syntax
Export a named graph to a set of CSV files:

CALL gds.beta.graph.export.csv(graphName: String, configuration: Map)
YIELD
    graphName: String,
    exportName: String,
    nodeCount: Integer,
    nodePropertyCount: Integer,
    relationshipCount: Integer,
    relationshipTypeCount: Integer,
    relationshipPropertyCount: Integer,
    writeMillis: Integer

Table 111. Parameters

Name Type Optional Description

graphName String no The name under which the graph is stored in the catalog.

configuration Map no Additional parameters to configure the database export.

Table 112. Graph export configuration

Name Type Default Optional Description

exportName String none No The name of the directory where the graph is exported to.
The absolute path of the exported CSV files depends on the
configuration parameter gds.export.location in the
neo4j.conf.

writeConcurre
ncy

Boolean 4 yes The number of concurrent threads used for writing the
database.

defaultRelatio
nshipType

String __ALL__ yes Relationship type used for * relationship projections.

additionalNod
eProperties

String, List or
Map

{} yes Allows for exporting additional node properties from the
original graph backing the in-memory graph.

Table 113. Results
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Name Type Description

graphName String The name under which the graph is stored in the catalog.

exportName String The name of the directory where the graph is exported to.

nodeCount Integer The number of nodes exported.

nodePropertyCount Integer The number of node properties exported.

relationshipCount Integer The number of relationships exported.

relationshipTypeCount Integer The number of relationship types exported.

relationshipPropertyCount Integer The number of relationship properties exported.

writeMillis Integer Milliseconds for writing the graph into the new database.

5.2. Estimation
As many other procedures in GDS, export to csv has an estimation mode. For more details see Memory
Estimation. Using the gds.beta.graph.export.csv.estimate procedure, it is possible to estimate the
required disk space of the exported CSV files. The estimation uses sampling to generate a more accurate
estimate.

Estimate the required disk space for exporting a named graph to CSV files.:

CALL gds.beta.graph.export.csv.estimate(graphName:String, configuration: Map)
YIELD
  nodeCount: Integer,
  relationshipCount: Integer,
  requiredMemory: String,
  treeView: String,
  mapView: Map,
  bytesMin: Integer,
  bytesMax: Integer,
  heapPercentageMin: Float,
  heapPercentageMax: Float;

Table 114. Parameters

Name Type Optional Description

graphName String no The name under which the graph is stored in the catalog.

configuration Map no Additional parameters to configure the database export.

Table 115. Graph export estimate configuration

Name Type Default Optional Description

exportName String none no Name of the folder the exported CSV files are saved at.

samplingFact
or

Double 0.001 yes The fraction of nodes and relationships to sample for the
estimation.

writeConcurre
ncy

Boolean 4 yes The number of concurrent threads used for writing the
database.
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Name Type Default Optional Description

defaultRelatio
nshipType

String __ALL__ yes Relationship type used for * relationship projections.

Table 116. Results

Name Type Description

nodeCount Integer The number of nodes in the graph.

relationship
Count

Integer The number of relationships in the graph.

requiredMemo
ry

String An estimation of the required memory in a human readable format.

treeView String A more detailed representation of the required memory, including estimates of the different
components in human readable format.

mapView Map A more detailed representation of the required memory, including estimates of the different
components in structured format.

bytesMin Integer The minimum number of bytes required.

bytesMax Integer The maximum number of bytes required.

heapPercenta
geMin

Float The minimum percentage of the configured maximum heap required.

heapPercenta
geMax

Float The maximum percentage of the configured maximum heap required.

5.3. Export format
The format of the exported CSV files is based on the format that is supported by the Neo4j Admin import
command.

5.3.1. Nodes

Nodes are exported into files grouped by the nodes labels, i.e., for every label combination that exists in
the graph a set of export files is created. The naming schema of the exported files is:
nodes_LABELS_INDEX.csv, where:

• LABELS is the ordered list of labels joined by _.

• INDEX is a number between 0 and concurrency.

For each label combination one or more data files are created, as each exporter thread exports into a
separate file.

Additionally, each label combination produces a single header file, which contains a single line describing
the columns in the data files More information about the header files can be found here: CSV header
format.

For example a Graph with the node combinations :A, :B and :A:B might create the following files
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nodes_A_header.csv
nodes_A_0.csv
nodes_B_header.csv
nodes_B_0.csv
nodes_B_2.csv
nodes_A_B_header.csv
nodes_A_B_0.csv
nodes_A_B_1.csv
nodes_A_B_2.csv

5.3.2. Relationships

The format of the relationship files is similar to those of the nodes. Relationships are exported into files
grouped by the relationship type. The naming schema of the exported files is:
relationships_TYPE_INDEX.csv, where:

• TYPE is the relationship type

• INDEX is a number between 0 and concurrency.

For each relationship type one or more data files are created, as each exporter thread exports into a
separate file.

Additionally, each relationship type produces a single header file, which contains a single line describing
the columns in the data files.

For example a Graph with the relationship types :KNOWS, :LIVES_IN might create the following files

relationships_KNOWS_header.csv
relationships_KNOWS_0.csv
relationships_LIVES_IN_header.csv
relationships_LIVES_IN_0.csv
relationships_LIVES_IN_2.csv

5.4. Example
Export the my-graph from GDS into a directory my-export:

CALL gds.beta.graph.export.csv('my-graph', { exportName: 'my-export' })

5.5. Example with additional node properties
Suppose we have a graph my-db-graph in the Neo4j database that has a string node property myproperty,
and that we have a corresponding in-memory graph called my-in-memory-graph which does not have the
myproperty node property. If we want to export my-in-memory-graph but additionally add the myproperty
properties from my-db-graph we can use the additionalProperties configuration parameter.

Export the my-in-memory-graph from GDS with the myproperty from my-db-graph into a directory my-
export:

CALL gds.beta.graph.export.csv('my-graph', { exportName: 'my-export', additionalNodeProperties:
['myproperty']})

86




The original database (my-db-graph) must not have changed since loading the in-
memory representation (my-in-memory-graph) that we export in order for the export to
work correctly.

The additionalNodeProperties parameter uses the same syntax as nodeProperties of the graph create
procedure. So we could for instance define a default value for our myproperty.

Export the my-in-memory-graph from GDS with myproperty from my-db-graph with default value into a
directory called my-export:

CALL gds.beta.graph.export.csv('my-graph', { exportName: 'my-export', additionalNodeProperties: [{
myproperty: {defaultValue: 'my-default-value'}}] })

5.6. Anonymous graphs
The typical workflow when using the GDS library is to create a graph and store it in the catalog. This is
useful to minimize reads from Neo4j and to run an algorithm with various settings or several algorithms on
the same graph projection.

However, if you want to quickly run a single algorithm, it can be convenient to use an anonymous
projection. The syntax is similar to the ordinary syntax for gds.graph.create, described here. It differs
however in that relationship projections cannot have more than one property. Moreover, the
nodeProjection and relationshipProjection arguments are named and placed in the configuration map
of the algorithm:

Anonymous native projection syntax

CALL gds.<algo>.<mode>(
  {
    nodeProjection: String, List or Map,
    relationshipProjection: String, List or Map,
    nodeProperties: String, List or Map,
    relationshipProperties: String, List or Map,
    // algorithm and other create configuration
  }
)

The following examples demonstrates creating an anonymous graph from Person nodes and KNOWS
relationships.

CALL gds.<algo>.<mode>(
  {
    nodeProjection: 'Person',
    relationshipProjection: 'KNOWS',
    nodeProperties: 'age',
    relationshipProperties: 'weight',
    // algorithm and other create configuration
  }
)

The above example can be an alternative to the calls below:
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CALL gds.graph.create(
  {
    'new-graph-name',
    'Person',
    'KNOWS',
    {
      nodeProperties: 'age',
      relationshipProperties: 'weight'
      // other create configuration
    }
  }
);
CALL gds.<algo>.<mode>(
  'new-graph-name',
  {
    // algorithm configuration
  }
);
CALL gds.graph.drop('new-graph-name');

Similarly for Cypher projection, the explicit creation with gds.graph.create.cypher can be inlined in an
algorithm call using the nodeQuery and relationshipQuery configuration keys.

Anonymous cypher projection syntax

CALL gds.<algo>.<mode>(
  {
    nodeQuery: String,
    relationshipQuery: String,
    // algorithm and other create configuration
  }
)

5.7. Node Properties
The Neo4j Graph Data Science Library is capable of augmenting nodes with additional properties. These
properties can be loaded from the database when the graph projection is created. Many algorithms can
also persist their result as one or more node properties when they are run using the mutate mode.

5.7.1. Supported types

The Neo4j Graph Data Science library does not support all property types that are supported by the Neo4j
database. Every supported type also defines a fallback value, which is used to indicate that the value of
this property is not set.

The following table lists the supported property types, as well as, their corresponding fallback values.

• Long - Long.MIN_VALUE

• Double - NaN

• Long Array - null

• Float Array - null

• Double Array - null
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5.7.2. Defining the type of a node property

When creating a graph projection that specifies a set of node properties, the type of these properties is
automatically determined using the first property value that is read by the loader for any specified
property. All integral numerical types are interpreted as Long values, all floating point values are interpreted
as Double values. Array values are explicitly defined by the type of the values that the array contains, i.e. a
conversion of, for example, an Integer Array into a Long Array is not supported. Arrays with mixed
content types are not supported.

5.7.3. Automatic type conversion

Most algorithms that are capable of using node properties require a specific property type. In cases of a
mismatch between the type of the provided property and the required type, the library will try to convert
the property value into the required type. This automatic conversion only happens when the following
conditions are satisfied:

• Neither the given, nor the expected type are an Array type.

• The conversion is loss-less

◦ Long to Double: The Long values does not exceed the supported range of the Double type.

◦ Double to Long: The Double value does not have any decimal places.

The algorithm computation will fail if any of these conditions are not satisfied for any node property value.


The automatic conversion is computationally more expensive and should therefore be
avoided in performance critical applications.

5.8. Utility functions

5.8.1. System Functions

Name Description

gds.version Return the version of the installed Neo4j Graph Data Science
library.

Usage:

RETURN gds.version() AS version

Table 117. Results

version

"1.8.9"
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5.8.2. Numeric Functions

Table 118. Numeric Functions

Name Description

gds.util.NaN Returns NaN as a Cypher value.

gds.util.infinity Return infinity as a Cypher value.

gds.util.isFinite Return false if the given argument is ±Infinity, NaN, or null.

gds.util.isInfinite Return true if the given argument is ±Infinity, NaN, or null.

Syntax

Name Parameter

gds.util.NaN() -

gds.util.infinity() -

gds.util.isFinite(value: NUMBER) value to be checked if it is finite.

gds.util.isInfinite(value: NUMBER) value to be checked if it is infinite.

Examples

Example for gds.util.IsFinite:

UNWIND [1.0, gds.util.NaN(), gds.util.infinity()] AS value
RETURN gds.util.isFinite(value) AS isFinite

Table 119. Results

isFinite

true

false

false

Example for gds.util.isInfinite():

UNWIND [1.0, gds.util.NaN(), gds.util.infinity()] AS value
RETURN gds.util.isInfinite(value) AS isInfinite

Table 120. Results

isInfinite

false

true

true
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The utility function gds.util.NaN can be used as an default value for input parameters, as shown in the
examples of cosine similarity. A common usage of gds.util.IsFinite and gds.util.IsInfinite is for
filtering streamed results, as for instance seen in the examples of gds.alpha.allShortestPaths.

5.8.3. Node id functions

Table 121. Node id functions

Name Description

gds.util.asNode Return the node object for the given node id or null
if none exists.

gds.util.asNodes Return the node objects for the given node ids or an
empty list if none exists.

Syntax

Name Parameters

gds.util.asNode(nodeId: NUMBER) nodeId of a node in the neo4j-graph

gds.util.asNodes(nodeIds: List of NUMBER) list of nodeIds of nodes in the neo4j-graph

Examples

Consider the graph created by the following Cypher statement:

Example graph:

CREATE  (nAlice:User {name: 'Alice'})
CREATE  (nBridget:User {name: 'Bridget'})
CREATE  (nCharles:User {name: 'Charles'})
CREATE  (nAlice)-[:LINK]->(nBridget)
CREATE  (nBridget)-[:LINK]->(nCharles)

Example for gds.util.asNode:

MATCH (u:User{name: 'Alice'})
WITH id(u) AS nodeId
RETURN gds.util.asNode(nodeId).name AS node

Table 122. Results

node

"Alice"

Example for gds.util.asNodes:

MATCH (u:User)
WHERE NOT u.name = 'Charles'
WITH collect(id(u)) AS nodeIds
RETURN [x in gds.util.asNodes(nodeIds)| x.name] AS nodes

Table 123. Results
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nodes

[Alice, Bridget]

As many algorithms streaming mode only return the node id, gds.util.asNode and gds.util.asNodes can
be used to retrieve the whole node from the neo4j database.

5.9. Cypher on GDS graph Enterprise edition
This feature is in the alpha tier.

Exploring in-memory graphs after loading them and potentially executing algorithms in mutate mode can
be tricky in the Neo4j Graph Data Science library. A natural way to achieve this in the Neo4j database is to
use Cypher queries. Cypher queries allow for example to get a hold of which properties are present on a
node among many other things. Executing Cypher queries on an in-memory graph can be achieved by
leveraging the gds.alpha.create.cypherdb procedure. This procedure will create a new impermanent
database which you can switch to. That database will then use data from the in-memory graph as
compared to the store files for usual Neo4j databases.

5.9.1. Limitations

Although it is possible to execute arbitrary Cypher queries on the database created by the
gds.alpha.create.cypherdb procedure, not every aspect of Cypher is implemented yet. Some known
limitations are listed below:

• Dropping the newly created database

◦ Restarting the DBMS will remove the database instead

• Writes

◦ All queries that attempt to write things, such as nodes, properties or labels, will fail

5.9.2. Syntax

CALL gds.alpha.create.cypherdb(
    dbName: String
    graphName: String
)
YIELD
    dbName: String,
    graphName: String,
    createMillis: Integer

Table 124. Parameters

Name Type Optional Description

dbName String no The name under which the new database is stored.

graphName String no The name under which the graph is stored in the catalog.

Table 125. Results
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Name Type Description

dbName String The name under which the new database is stored.

graphName String The name under which the graph is stored in the catalog.

createMillis Integer Milliseconds for creating the database.

5.9.3. Example

To demonstrate how to execute cypher statements on in-memory graphs we are going to create a simple
social network graph. We will use this graph to create a new database which we will execute our
statements on.

CREATE
  (alice:Person { name: 'Alice', age: 23 }),
  (bob:Person { name: 'Bob', age: 42 }),
  (carl:Person { name: 'Carl', age: 31 }),

  (alice)-[:KNOWS]->(bob),
  (bob)-[:KNOWS]->(alice),
  (alice)-[:KNOWS]->(carl)

We will now load a graph projection of the created graph via the graph create procedure:

Project Person nodes and KNOWS relationships:

CALL gds.graph.create(
  'social_network',
  'Person',
  'KNOWS'
)
YIELD
  graphName, nodeCount, relationshipCount

Table 126. Results

graph nodeCont relationshipCount

"social_network" 3 3

With a named graph loaded into the Neo4j Graph Data Science library, we can proceed to create the new
database using the loaded graph as underlying data.

Create a new database gdsDb using our social_network graph:

CALL gds.alpha.create.cypherdb(
  'gdsDb',
  'social_network'
)

In order to verify that the new database was created successfully we can use the Neo4j database
administration commands.

SHOW DATABASES
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Table 127. Results

name address role requestedStat
us

currentStatus error default home

"neo4j" "localhost:768
7"

"standalone" "online" "online" "" true true

"system" "localhost:768
7"

"standalone" "online" "online" "" false false

"gdsDb" "localhost:768
7"

"standalone" "online" "online" "" false false

We can now switch to the newly created database.

:use gdsDb

Finally, we are set up to execute cypher queries on our in-memory graph.

MATCH (n:Person)-[:KNOWS]->(m:Person) RETURN n.age AS age1, m.age AS age2

Table 128. Results

age1 age2

23 42

42 23

23 31

We can see that the returned ages correspond to the structure of the original graph.

5.10. Administration
The GDS catalog offers elevated access to administrator users. Any user granted a role with the name
admin is considered an administrator by GDS.

A GDS administrator has access to graphs created by any other user. This includes the ability to list, drop
and run algorithms over these graphs.

5.10.1. Disambiguating identically named graphs

Sometimes, several users (including the admin user themselves) could have a graph with the same name.
To disambiguate between these graphs, the username configuration parameter can be used.

5.10.2. Examples

We will illustrate the administrator capabilities using a small example. In this example we have three users
where one is an administrator. We create the users and set up the roles using the following Cypher
commands:
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CREATE USER alice SET PASSWORD $alice_pw CHANGE NOT REQUIRED;
CREATE USER bob SET PASSWORD $bob_pw CHANGE NOT REQUIRED;
CREATE USER carol SET PASSWORD $carol_pw CHANGE NOT REQUIRED;

GRANT ROLE reader TO alice;
GRANT ROLE reader TO bob;
GRANT ROLE admin TO carol;

As we can see, alice and bob are standard users with read access to the database. carol is an
administrator by virtue of being granted the admin role (for more information about this role see the Cypher
manual).

Now alice and bob each create a few graphs. They both create a graph called graphA and bob also creates
a graph called graphB.

Listing

To list all graphs from all users, carol simply uses the graph list procedure.

Listing all graphs as administrator user:

CALL gds.graph.list()
YIELD graphName

Table 129. Results

graphName

"graphA"

"graphA"

"graphB"

Notice that all graphs from all users are visible to carol since they are considered a GDS admin.

Running algorithms with other users' graphs

carol may use graphB by simply naming it.

carol can run WCC on the graphB graph owned by bob:

CALL gds.wcc.stats('graphB')
YIELD componentCount

To use the graphA owned by alice, carol must use the username override.

carol can run WCC on graphA owned by alice:

CALL gds.wcc.stats('graphA', { username: 'alice' })
YIELD componentCount
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Dropping other users' graphs

Unlike for listing, the full procedure signature must be used when using the username override to
disambiguate. In the query below we have used the default values for the second and third parameter for
the drop procedure. username is the fourth parameter. For more details see Dropping graphs.

To drop graphA owned by bob, carol can run the following:

CALL gds.graph.drop('graphA', true, '', 'bob')
YIELD graphName
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Chapter 6. Model catalog
Some graph algorithms use trained models in their computation. A model is generally a mathematical
formula representing a real-world or fictitious entities. Each algorithm requiring a trained model provides
the formulation and means to compute this model (see GraphSage train syntax).

The model catalog is a concept within the GDS library that allows storing and managing multiple trained
models by name.

This chapter explains the available model catalog operations.

Name Description

gds.beta.model.list Prints information about models that are currently available
in the catalog.

gds.beta.model.exists Checks if a named model is available in the catalog.

gds.beta.model.drop Drops a named model from the catalog.

gds.alpha.model.store Stores a names model from the catalog on disk.

gds.alpha.model.load Loads a named and stored model from disk.

gds.alpha.model.delete Removes a named and stored model from disk.

gds.alpha.model.publish Makes a model accessible to all users.



Training models is a responsibility of the corresponding algorithm and is provided by a
procedure mode - train. Training, using, listing, and dropping named models are
management operations bound to a Neo4j user. Models trained by a different Neo4j user
are not accessible at any time.

6.1. Listing models
Information about models in the catalog can be retrieved using the gds.beta.model.list() procedure.

6.1.1. Syntax

List models from the catalog:

CALL gds.beta.model.list(modelName: String)
YIELD
    modelInfo: Map,
    trainConfig: Map,
    graphSchema: Map,
    loaded: Boolean,
    stored: Boolean,
    creationTime: DateTime,
    shared: Boolean

Table 130. Parameters
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Name Type Default Optional Description

modelName String n/a yes The name of a model. If not specified, all models in the
catalog are listed.

Table 131. Results

Name Type Description

modelInfo Map Detailed information about the trained model. Always includes the modelName and
modelType, e.g., GraphSAGE. Dependent on the model type, there are additional
fields.

trainConfig Map The configuration used for training the model.

graphSchema Map The schema of the graph on which the model was trained.

loaded Boolean True, if the model is loaded in the in-memory model catalog.

stored Boolean True, if the model is stored on disk.

creationTime Datetime Time when the model was created.

shared Boolean True, if the model is shared between users.

6.1.2. Examples

Once we have trained models in the catalog we can see information about either all of them or a single
model using its name

Listing all models

Listing detailed information about all models:

CALL gds.beta.model.list()
YIELD modelInfo, loaded, shared, stored
RETURN modelInfo.modelName AS modelName, loaded, shared, stored

Table 132. Results

modelName loaded shared stored

"my-model" true false false

Listing a specific model

Listing detailed information about specific model:

CALL gds.beta.model.list('my-model')
YIELD modelInfo, loaded, shared, stored
RETURN modelInfo.modelName AS modelName, loaded, shared, stored

Table 133. Results

modelName loaded shared stored

"my-model" true false false
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6.2. Checking if a model exists
We can check if a model is available in the catalog by looking up its name.

6.2.1. Syntax

Check if a model exists in the catalog:

CALL gds.beta.model.exists(modelName: String)
YIELD
    modelName: String,
    modelType: String,
    exists: Boolean

Table 134. Parameters

Name Type Default Optional Description

modelName String n/a no The name of a model.

Table 135. Results

Name Type Description

modelName String The name of a model.

modelType String The type of the model.

exists Boolean True, if the model exists in the model catalog.

6.2.2. Example

In this section we are going to demonstrate the usage of gds.beta.model.exists. Assume we trained a
model by running train on one of our Machine learning algorithms.

Check if a model exists in the catalog:

CALL gds.beta.model.exists('my-model');

Table 136. Results

modelName modelType exists

"my-model" "graphSage" true

6.3. Removing models
If we no longer need a trained model and want to free up memory, we can remove the model from the
catalog.

6.3.1. Syntax
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Remove a model from the catalog:

CALL gds.beta.model.drop(modelName: String)
YIELD
    modelInfo: Map,
    trainConfig: Map,
    graphSchema: Map,
    loaded: Boolean,
    stored: Boolean,
    creationTime: DateTime,
    shared: Boolean

Table 137. Parameters

Name Type Default Optional Description

modelName String n/a no The name of a model stored in the catalog.

Table 138. Results

Name Type Description

modelInfo Map Detailed information about the trained model. Always includes the modelName and
modelType, e.g., GraphSAGE. Dependent on the model type, there are additional
fields.

trainConfig Map The configuration used for training the model.

graphSchema Map The schema of the graph on which the model was trained.

loaded Boolean True, if the model is loaded in the in-memory model catalog.

stored Boolean True, if the model is stored on disk.

creationTime Datetime Time when the model was created.

shared Boolean True, if the model is shared between users.

6.3.2. Example

In this section we are going to demonstrate the usage of gds.beta.model.drop. Assume we trained a
model by running train on one of our Machine learning algorithms.

Remove a model from the catalog:

CALL gds.beta.model.drop('my-model')
YIELD modelInfo, loaded, shared, stored
RETURN modelInfo.modelName AS modelName, loaded, shared, stored

Table 139. Results

modelName loaded shared stored

"my-model" true false false

In this example, the removed my-model was of the imaginary type some-model-type. The model was loaded
in-memory, but neither stored on disk nor published.

 If the model name does not exist, an error will be raised.
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6.4. Storing models on disk
The model store feature is in the alpha tier.

The model catalog exists as long as the Neo4j instance is running. When Neo4j is restarted, models are no
longer available in the catalog and need to be trained again. This can be prevented by storing a model on
disk.

The location of the stored models can be configured via the configuration parameter
gds.model.store_location in the neo4j.conf. The location must be a directory and writable by the Neo4j
process.

 The gds.model.store_location parameter must be configured for this feature.

6.4.1. Storing models from the catalog on disk Alpha

Models that can be stored

• GraphSAGE model

• Node Classification model

• Link Prediction model

Models that cannot be stored

• Link prediction training pipeline

• Link prediction pipeline

Syntax

Remove a model from the catalog:

CALL gds.alpha.model.store(
    modelName: String,
    failIfUnsupportedType: Boolean
)
YIELD
    modelName: String,
    storeMillis: Integer

Table 140. Parameters

Name Type Default Optional Description

modelName String n/a no The name of a model.

failIfUnsuppor
tedType

Boolean true yes By default, the library will raise an error when trying to store
a non-supported model. When set to false, the procedure
returns an empty result.

Table 141. Results
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Name Type Description

modelName String The name of the stored model.

storeMillis Integer The number of milliseconds it took to store the model.

Example

Store a model on disk:

CALL gds.alpha.model.store('my-model')
YIELD
  modelName,
  storeMillis

6.4.2. Loading models from disk Alpha

GDS will discover available models from the configured store location upon database startup. During
discovery, only model metadata is loaded, not the actual model data. In order to use a stored model, it has
to be explicitly loaded.

Syntax

Remove a model from the catalog:

CALL gds.alpha.model.load(modelName: String)
YIELD
    modelName: String,
    loadMillis: Integer

Table 142. Parameters

Name Type Default Optional Description

modelName String n/a no The name of a model.

Table 143. Results

Name Type Description

modelName String The name of the loaded model.

loadMillis Integer The number of milliseconds it took to load the model.

Example

Store a model on disk:

CALL gds.alpha.model.load('my-model')
YIELD
  modelName,
  loadMillis

To verify if a model is loaded, we can use the gds.beta.model.list procedure. The procedure returns flags
to indicate if the model is stored and if the model is loaded into memory. The operation is idempotent, and

102



skips loading if the model is already loaded.

6.4.3. Deleting models from disk Alpha

To remove a stored model from disk, it has to be deleted. This is different from dropping a model.
Dropping a model will remove it from the in-memory model catalog, but not from disk. Deleting a model
will remove it from disk, but keep it in the in-memory model catalog if it was already loaded.

Syntax

Remove a model from the catalog:

CALL gds.alpha.model.delete(modelName: String)
YIELD
    modelName: String,
    deleteMillis: Integer

Table 144. Parameters

Name Type Default Optional Description

modelName String n/a no The name of a model.

Table 145. Results

Name Type Description

modelName String The name of the loaded model.

deleteMillis Integer The number of milliseconds it took to delete the model.

Example

Store a model on disk:

CALL gds.alpha.model.delete('my-model')
YIELD
  modelName,
  deleteMillis

6.5. Publishing models
Publishing models is an alpha tier feature.

By default, a trained model is visible to the user that created it. Making a model accessible to other users
can be achieved by publishing it.

6.5.1. Syntax
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Publish a model from the catalog:

CALL gds.alpha.model.publish(modelName: String)
YIELD
    modelInfo: Map,
    trainConfig: Map,
    graphSchema: Map,
    loaded: Boolean,
    stored: Boolean,
    creationTime: DateTime,
    shared: Boolean

Table 146. Parameters

Name Type Default Optional Description

modelName String n/a no The name of a model stored in the catalog.

Table 147. Results

Name Type Description

modelInfo Map Detailed information about the trained model. Always includes the modelName and
modelType, e.g., GraphSAGE. Dependent on the model type, there are additional
fields.

trainConfig Map The configuration used for training the model.

graphSchema Map The schema of the graph on which the model was trained.

loaded Boolean True, if the model is loaded in the in-memory model catalog.

stored Boolean True, if the model is stored on disk.

creationTime Datetime Time when the model was created.

shared Boolean True, if the model is shared between users.

6.5.2. Examples

Publishing trained model:

CALL gds.alpha.model.publish('my-model')
YIELD modelInfo, loaded, shared, stored
RETURN modelInfo.modelName AS modelName, shared

Table 148. Results

modelName shared

"my-model_public" true

We can see that the model is now shared. The shared model has the _public suffix.
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Chapter 7. Algorithms
The Neo4j Graph Data Science (GDS) library contains many graph algorithms. The algorithms are divided
into categories which represent different problem classes. The categories are listed in this chapter.

Algorithms exist in one of three tiers of maturity:

• Production-quality

◦ Indicates that the algorithm has been tested with regards to stability and scalability.

◦ Algorithms in this tier are prefixed with gds.<algorithm>.

• Beta

◦ Indicates that the algorithm is a candidate for the production-quality tier.

◦ Algorithms in this tier are prefixed with gds.beta.<algorithm>.

• Alpha

◦ Indicates that the algorithm is experimental and might be changed or removed at any time.

◦ Algorithms in this tier are prefixed with gds.alpha.<algorithm>.

This chapter is divided into the following sections:

• Syntax overview

• Centrality

• Community detection

• Similarity

• Path finding

• Topological link prediction

• Node embeddings

• Machine learning models

• Auxiliary procedures

• Pregel API

7.1. Syntax overview
The general algorithm syntax comes in two variants:

• Named graph variant

◦ The graph to operate over will be read from the graph catalog.

• Anonymous graph variant

◦ The graph to operate over will be created and deleted as part of the algorithm execution.

Each syntax variant additionally provides different execution modes. These are the supported execution
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modes:

• stream

◦ Returns the result of the algorithm as a stream of records.

• stats

◦ Returns a single record of summary statistics, but does not write to the Neo4j database.

• mutate

◦ Writes the results of the algorithm to the in-memory graph and returns a single record of summary
statistics. This mode is designed for the named graph variant, as its effects will be invisible on an
anonymous graph.

• write

◦ Writes the results of the algorithm to the Neo4j database and returns a single record of summary
statistics.

Finally, an execution mode may be estimated by appending the command with estimate.


Only the production-quality tier guarantees availability of all execution modes and
estimation procedures.

Including all of the above mentioned elements leads to the following syntax outlines:

Syntax composition for the named graph variant:

CALL gds[.<tier>].<algorithm>.<execution-mode>[.<estimate>](
  graphName: String,
  configuration: Map
)

Syntax composition for the anonymous graph variant:

CALL gds[.<tier>].<algorithm>.<execution-mode>[.<estimate>](
  configuration: Map
)

The detailed sections in this chapter include concrete syntax overviews and examples.

7.2. Centrality
Centrality algorithms are used to determine the importance of distinct nodes in a network. The Neo4j GDS
library includes the following centrality algorithms, grouped by quality tier:

• Production-quality

◦ Page Rank

◦ Article Rank

◦ Eigenvector Centrality

◦ Betweenness Centrality
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◦ Degree Centrality

• Alpha

◦ Closeness Centrality

◦ Harmonic Centrality

◦ HITS

◦ Influence Maximization

7.2.1. PageRank

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

The PageRank algorithm measures the importance of each node within the graph, based on the number
incoming relationships and the importance of the corresponding source nodes. The underlying assumption
roughly speaking is that a page is only as important as the pages that link to it.

PageRank is introduced in the original Google paper as a function that solves the following equation:

where,

• we assume that a page A has pages T1 to Tn which point to it.

• d is a damping factor which can be set between 0 (inclusive) and 1 (exclusive). It is usually set to 0.85.

• C(A) is defined as the number of links going out of page A.

This equation is used to iteratively update a candidate solution and arrive at an approximate solution to the
same equation.

For more information on this algorithm, see:

• The original google paper

• An Efficient Partition-Based Parallel PageRank Algorithm

• PageRank beyond the web for use cases
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
Running this algorithm requires sufficient memory availability. Before running this
algorithm, we recommend that you read Memory Estimation.

Considerations

There are some things to be aware of when using the PageRank algorithm:

• If there are no relationships from within a group of pages to outside the group, then the group is
considered a spider trap.

• Rank sink can occur when a network of pages is forming an infinite cycle.

• Dead-ends occur when pages have no outgoing relationship.

Changing the damping factor can help with all the considerations above. It can be interpreted as a
probability of a web surfer to sometimes jump to a random page and therefore not getting stuck in sinks.

Syntax

This section covers the syntax used to execute the PageRank algorithm in each of its execution modes.
We are describing the named graph variant of the syntax. To learn more about general syntax variants,
see Syntax overview.
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PageRank syntax per mode
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Run PageRank in stream mode on a named graph.

CALL gds.pageRank.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  score: Float

Table 149. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 150. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 151. Algorithm specific configuration

Name Type Default Optional Description

dampingFac
tor

Float 0.85 yes The damping factor of the Page Rank calculation. Must
be in [0, 1).

maxIteration
s

Integer 20 yes The maximum number of iterations of Page Rank to
run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all
scores change less than the tolerance value the result
is considered stable and the algorithm returns.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

sourceNode
s

List or Node
or Number

[] yes The nodes or node ids to use for computing
Personalized Page Rank.

scaler String None yes The name of the scaler applied for the final scores.
Supported values are None, MinMax, Max, Mean, Log,
L1Norm, L2Norm and StdScore.

Table 152. Results
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Name Type Description

nodeId Integer Node ID.

score Float PageRank score.
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Run PageRank in stats mode on a named graph.

CALL gds.pageRank.stats(
  graphName: String,
  configuration: Map
)
YIELD
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  centralityDistribution: Map,
  configuration: Map

Table 153. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 154. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 155. Algorithm specific configuration

Name Type Default Optional Description

dampingFac
tor

Float 0.85 yes The damping factor of the Page Rank calculation. Must
be in [0, 1).

maxIteration
s

Integer 20 yes The maximum number of iterations of Page Rank to
run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all
scores change less than the tolerance value the result
is considered stable and the algorithm returns.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

sourceNode
s

List or Node
or Number

[] yes The nodes or node ids to use for computing
Personalized Page Rank.

scaler String None yes The name of the scaler applied for the final scores.
Supported values are None, MinMax, Max, Mean, Log,
L1Norm, L2Norm and StdScore.
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Table 156. Results

Name Type Description

ranIterations Integer The number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the centralityDistribution.

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

configuratio
n

Map The configuration used for running the algorithm.
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Run PageRank in mutate mode on a named graph.

CALL gds.pageRank.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  nodePropertiesWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  centralityDistribution: Map,
  configuration: Map

Table 157. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 158. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 159. Algorithm specific configuration

Name Type Default Optional Description

dampingFac
tor

Float 0.85 yes The damping factor of the Page Rank calculation. Must
be in [0, 1).

maxIteration
s

Integer 20 yes The maximum number of iterations of Page Rank to
run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all
scores change less than the tolerance value the result
is considered stable and the algorithm returns.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

sourceNode
s

List or Node
or Number

[] yes The nodes or node ids to use for computing
Personalized Page Rank.
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Name Type Default Optional Description

scaler String None yes The name of the scaler applied for the final scores.
Supported values are None, MinMax, Max, Mean, Log,
L1Norm, L2Norm and StdScore.

Table 160. Results

Name Type Description

ranIterations Integer The number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the centralityDistribution.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

nodePropert
iesWritten

Integer The number of properties that were written to the in-memory graph.

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

configuratio
n

Map The configuration used for running the algorithm.
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Run PageRank in write mode on a named graph.

CALL gds.pageRank.write(
  graphName: String,
  configuration: Map
)
YIELD
  nodePropertiesWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  centralityDistribution: Map,
  configuration: Map

Table 161. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 162. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 163. Algorithm specific configuration

Name Type Default Optional Description

dampingFac
tor

Float 0.85 yes The damping factor of the Page Rank calculation. Must
be in [0, 1).

maxIteration
s

Integer 20 yes The maximum number of iterations of Page Rank to
run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all
scores change less than the tolerance value the result
is considered stable and the algorithm returns.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.
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Name Type Default Optional Description

sourceNode
s

List or Node
or Number

[] yes The nodes or node ids to use for computing
Personalized Page Rank.

scaler String None yes The name of the scaler applied for the final scores.
Supported values are None, MinMax, Max, Mean, Log,
L1Norm, L2Norm and StdScore.

Table 164. Results

Name Type Description

ranIterations Integer The number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the centralityDistribution.

writeMillis Integer Milliseconds for writing result data back.

nodePropert
iesWritten

Integer The number of properties that were written to Neo4j.

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.
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Run PageRank in write mode on an anonymous graph:

CALL gds.pageRank.write(
  configuration: Map
)
YIELD
  nodePropertiesWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  centralityDistribution: Map,
  configuration: Map

Table 165. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 166. Algorithm specific configuration

Name Type Default Optional Description

dampingFacto
r

Float 0.85 yes The damping factor of the Page Rank calculation. Must be in
[0, 1).

maxIterations Integer 20 yes The maximum number of iterations of Page Rank to run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all scores
change less than the tolerance value the result is considered
stable and the algorithm returns.

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.
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Name Type Default Optional Description

sourceNodes List or Node
or Number

[] yes The nodes or node ids to use for computing Personalized
Page Rank.

scaler String None yes The name of the scaler applied for the final scores. Supported
values are None, MinMax, Max, Mean, Log, L1Norm, L2Norm and
StdScore.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the PageRank algorithm on a concrete graph. The
intention is to illustrate what the results look like and to provide a guide in how to make use of the
algorithm in a real setting. We will do this on a small web network graph of a handful nodes connected in
a particular pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (home:Page {name:'Home'}),
  (about:Page {name:'About'}),
  (product:Page {name:'Product'}),
  (links:Page {name:'Links'}),
  (a:Page {name:'Site A'}),
  (b:Page {name:'Site B'}),
  (c:Page {name:'Site C'}),
  (d:Page {name:'Site D'}),

  (home)-[:LINKS {weight: 0.2}]->(about),
  (home)-[:LINKS {weight: 0.2}]->(links),
  (home)-[:LINKS {weight: 0.6}]->(product),
  (about)-[:LINKS {weight: 1.0}]->(home),
  (product)-[:LINKS {weight: 1.0}]->(home),
  (a)-[:LINKS {weight: 1.0}]->(home),
  (b)-[:LINKS {weight: 1.0}]->(home),
  (c)-[:LINKS {weight: 1.0}]->(home),
  (d)-[:LINKS {weight: 1.0}]->(home),
  (links)-[:LINKS {weight: 0.8}]->(home),
  (links)-[:LINKS {weight: 0.05}]->(a),
  (links)-[:LINKS {weight: 0.05}]->(b),
  (links)-[:LINKS {weight: 0.05}]->(c),
  (links)-[:LINKS {weight: 0.05}]->(d);

This graph represents eight pages, linking to one another. Each relationship has a property called weight,
which describes the importance of the relationship.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
  'myGraph',
  'Page',
  'LINKS',
  {
    relationshipProperties: 'weight'
  }
)

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.
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The following will estimate the memory requirements for running the algorithm:

CALL gds.pageRank.write.estimate('myGraph', {
  writeProperty: 'pageRank',
  maxIterations: 20,
  dampingFactor: 0.85
})
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 167. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

8 14 696 696 "696 Bytes"

Stream

In the stream execution mode, the algorithm returns the score for each node. This allows us to inspect the
results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm in stream mode:

CALL gds.pageRank.stream('myGraph')
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 168. Results

name score

"Home" 3.215681999884452

"About" 1.0542700552146722

"Links" 1.0542700552146722

"Product" 1.0542700552146722

"Site A" 0.3278578964488539

"Site B" 0.3278578964488539

"Site C" 0.3278578964488539

"Site D" 0.3278578964488539

The above query is running the algorithm in stream mode as unweighted and the returned scores are not
normalized. Below, one can find an example for weighted graphs. Another example shows the application
of a scaler to normalize the final scores.


While we are using the stream mode to illustrate running the algorithm as weighted or
unweighted, all the algorithm modes support this configuration parameter.
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Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.

The following will run the algorithm and returns the result in form of statistical and measurement values

CALL gds.pageRank.stats('myGraph', {
  maxIterations: 20,
  dampingFactor: 0.85
})
YIELD centralityDistribution
RETURN centralityDistribution.max AS max

Table 169. Results

max

3.2156810760498047

The centrality histogram can be useful for inspecting the computed scores or perform normalizations.

Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new node property containing the score for that node. The name of the new property is
specified using the mandatory configuration parameter mutateProperty. The result is a single summary
row, similar to stats, but with some additional metrics. The mutate mode is especially useful when multiple
algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

CALL gds.pageRank.mutate('myGraph', {
  maxIterations: 20,
  dampingFactor: 0.85,
  mutateProperty: 'pagerank'
})
YIELD nodePropertiesWritten, ranIterations

Table 170. Results

nodePropertiesWritten ranIterations

8 20

122



Write

The write execution mode extends the stats mode with an important side effect: writing the score for
each node as a property to the Neo4j database. The name of the new property is specified using the
mandatory configuration parameter writeProperty. The result is a single summary row, similar to stats,
but with some additional metrics. The write mode enables directly persisting the results to the database.

For more details on the write mode in general, see Write.

The following will run the algorithm in write mode:

CALL gds.pageRank.write('myGraph', {
  maxIterations: 20,
  dampingFactor: 0.85,
  writeProperty: 'pagerank'
})
YIELD nodePropertiesWritten, ranIterations

Table 171. Results

nodePropertiesWritten ranIterations

8 20

Weighted

By default, the algorithm is considering the relationships of the graph to be unweighted, to change this
behaviour we can use configuration parameter called relationshipWeightProperty. In the weighted case,
the previous score of a node send to its neighbors, is multiplied by the relationship weight and then
divided by the sum of the weights of its outgoing relationships. If the value of the relationship property is
negative it will be ignored during computation. Below is an example of running the algorithm using the
relationship property.

The following will run the algorithm in stream mode using relationship weights:

CALL gds.pageRank.stream('myGraph', {
  maxIterations: 20,
  dampingFactor: 0.85,
  relationshipWeightProperty: 'weight'
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 172. Results

name score

"Home" 3.53751028396339

"Product" 1.9357838291651097

"About" 0.7452612763883698

"Links" 0.7452612763883698

"Site A" 0.18152677135466103
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name score

"Site B" 0.18152677135466103

"Site C" 0.18152677135466103

"Site D" 0.18152677135466103


We are using stream mode to illustrate running the algorithm as weighted or unweighted,
all the algorithm modes support this configuration parameter.

Tolerance

The tolerance configuration parameter denotes the minimum change in scores between iterations. If all
scores change less than the configured tolerance value the result stabilises, and the algorithm returns.

The following will run the algorithm in stream mode using bigger tolerance value:

CALL gds.pageRank.stream('myGraph', {
  maxIterations: 20,
  dampingFactor: 0.85,
  tolerance: 0.1
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 173. Results

name score

"Home" 1.5812450669583336

"About" 0.5980194356381945

"Links" 0.5980194356381945

"Product" 0.5980194356381945

"Site A" 0.23374955154166668

"Site B" 0.23374955154166668

"Site C" 0.23374955154166668

"Site D" 0.23374955154166668

In this example we are using tolerance: 0.1, so the results are a bit different compared to the ones from
stream example which is using the default value of tolerance. Note that the nodes 'About', 'Link' and
'Product' now have the same score, while with the default value of tolerance the node 'Product' has
higher score than the other two.

Damping Factor

The damping factor configuration parameter accepts values between 0 (inclusive) and 1 (exclusive). If its

124



value is too high then problems of sinks and spider traps may occur, and the values may oscillate so that
the algorithm does not converge. If it’s too low then all scores are pushed towards 1, and the result will not
sufficiently reflect the structure of the graph.

The following will run the algorithm in stream mode using smaller dampingFactor value:

CALL gds.pageRank.stream('myGraph', {
  maxIterations: 20,
  dampingFactor: 0.05
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 174. Results

name score

"Home" 1.2487309425844906

"About" 0.9708121818724536

"Links" 0.9708121818724536

"Product" 0.9708121818724536

"Site A" 0.9597081216238426

"Site B" 0.9597081216238426

"Site C" 0.9597081216238426

"Site D" 0.9597081216238426

Compared to the results from the stream example which is using the default value of dampingFactor the
score values are closer to each other when using dampingFactor: 0.05. Also, note that the nodes 'About',
'Link' and 'Product' now have the same score, while with the default value of dampingFactor the node
'Product' has higher score than the other two.

Personalised PageRank

Personalized PageRank is a variation of PageRank which is biased towards a set of sourceNodes. This
variant of PageRank is often used as part of recommender systems.

The following examples show how to run PageRank centered around 'Site A'.

The following will run the algorithm and stream results:

MATCH (siteA:Page {name: 'Site A'})
CALL gds.pageRank.stream('myGraph', {
  maxIterations: 20,
  dampingFactor: 0.85,
  sourceNodes: [siteA]
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC
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Table 175. Results

name score

"Home" 0.39902290442518784

"Site A" 0.16890325301726694

"About" 0.11220151747374331

"Links" 0.11220151747374331

"Product" 0.11220151747374331

"Site B" 0.01890325301726691

"Site C" 0.01890325301726691

"Site D" 0.01890325301726691

Comparing these results to the ones from the stream example (which is not using sourceNodes
configuration parameter) shows that the 'Site A' node that we used in the sourceNodes list now scores
second instead of fourth.

Scaling centrality scores

To normalize the final scores as part of the algorithm execution, one can use the scaler configuration
parameter. A common scaler is the L1Norm, which normalizes each score to a value between 0 and 1. A
description of all available scalers can be found in the documentation for the scaleProperties procedure.

The following will run the algorithm in stream mode and returns normalized results:

CALL gds.pageRank.stream('myGraph', {
  scaler: "L1Norm"
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 176. Results

name score

"Home" 0.4181682554824872

"About" 0.1370975954128506

"Links" 0.1370975954128506

"Product" 0.1370975954128506

"Site A" 0.04263473956974027

"Site B" 0.04263473956974027

"Site C" 0.04263473956974027

"Site D" 0.04263473956974027
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Comparing the results with the stream example, we can see that the relative order of scores is the same.

7.2.2. Article Rank

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

ArticleRank is a variant of the Page Rank algorithm, which measures the transitive influence of nodes.

Page Rank follows the assumption that relationships originating from low-degree nodes have a higher
influence than relationships from high-degree nodes. Article Rank lowers the influence of low-degree
nodes by lowering the scores being sent to their neighbors in each iteration.

The Article Rank of a node v at iteration i is defined as:

where,

• Nin(v) denotes incoming neighbors and Nout(v) denotes outgoing neighbors of node v.

• d is a damping factor in [0, 1].

• Nout is the average out-degree

For more information, see ArticleRank: a PageRank‐based alternative to numbers of citations for analysing
citation networks.

Considerations

There are some things to be aware of when using the Article Rank algorithm:

• If there are no relationships from within a group of pages to outside the group, then the group is
considered a spider trap.

• Rank sink can occur when a network of pages is forming an infinite cycle.

• Dead-ends occur when pages have no outgoing relationship.

Changing the damping factor can help with all the considerations above. It can be interpreted as a
probability of a web surfer to sometimes jump to a random page and therefore not getting stuck in sinks.
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Syntax

This section covers the syntax used to execute the Article Rank algorithm in each of its execution modes.
We are describing the named graph variant of the syntax. To learn more about general syntax variants,
see Syntax overview.
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Article Rank syntax per mode
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Run Article Rank in stream mode on a named graph.

CALL gds.articleRank.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  score: Float

Table 177. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 178. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 179. Algorithm specific configuration

Name Type Default Optional Description

dampingFac
tor

Float 0.85 yes The damping factor of the Page Rank calculation. Must
be in [0, 1).

maxIteration
s

Integer 20 yes The maximum number of iterations of Article Rank to
run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all
scores change less than the tolerance value the result
is considered stable, and the algorithm returns.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

sourceNode
s

List or Node
or Number

[] yes The nodes or node ids to use for computing
Personalized Page Rank.

scaler String None yes The name of the scaler applied for the final scores.
Supported values are None, MinMax, Max, Mean, Log,
L1Norm, L2Norm and StdScore.

Table 180. Results
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Name Type Description

nodeId Integer Node ID.

score Float Eigenvector score.
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Run Article Rank in stats mode on a named graph.

CALL gds.articleRank.stats(
  graphName: String,
  configuration: Map
)
YIELD
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  centralityDistribution: Map,
  configuration: Map

Table 181. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 182. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 183. Algorithm specific configuration

Name Type Default Optional Description

dampingFac
tor

Float 0.85 yes The damping factor of the Page Rank calculation. Must
be in [0, 1).

maxIteration
s

Integer 20 yes The maximum number of iterations of Article Rank to
run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all
scores change less than the tolerance value the result
is considered stable, and the algorithm returns.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

sourceNode
s

List or Node
or Number

[] yes The nodes or node ids to use for computing
Personalized Page Rank.

scaler String None yes The name of the scaler applied for the final scores.
Supported values are None, MinMax, Max, Mean, Log,
L1Norm, L2Norm and StdScore.
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Table 184. Results

Name Type Description

ranIterations Integer The number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the centralityDistribution.

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

configuratio
n

Map The configuration used for running the algorithm.
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Run Article Rank in mutate mode on a named graph.

CALL gds.articleRank.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  nodePropertiesWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  centralityDistribution: Map,
  configuration: Map

Table 185. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 186. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 187. Algorithm specific configuration

Name Type Default Optional Description

dampingFac
tor

Float 0.85 yes The damping factor of the Page Rank calculation. Must
be in [0, 1).

maxIteration
s

Integer 20 yes The maximum number of iterations of Article Rank to
run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all
scores change less than the tolerance value the result
is considered stable, and the algorithm returns.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

sourceNode
s

List or Node
or Number

[] yes The nodes or node ids to use for computing
Personalized Page Rank.
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Name Type Default Optional Description

scaler String None yes The name of the scaler applied for the final scores.
Supported values are None, MinMax, Max, Mean, Log,
L1Norm, L2Norm and StdScore.

Table 188. Results

Name Type Description

ranIterations Integer The number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the centralityDistribution.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

nodePropert
iesWritten

Integer The number of properties that were written to the in-memory graph.

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

configuratio
n

Map The configuration used for running the algorithm.
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Run Article Rank in write mode on a named graph.

CALL gds.articleRank.write(
  graphName: String,
  configuration: Map
)
YIELD
  nodePropertiesWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  centralityDistribution: Map,
  configuration: Map

Table 189. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 190. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 191. Algorithm specific configuration

Name Type Default Optional Description

dampingFac
tor

Float 0.85 yes The damping factor of the Page Rank calculation. Must
be in [0, 1).

maxIteration
s

Integer 20 yes The maximum number of iterations of Article Rank to
run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all
scores change less than the tolerance value the result
is considered stable, and the algorithm returns.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.
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Name Type Default Optional Description

sourceNode
s

List or Node
or Number

[] yes The nodes or node ids to use for computing
Personalized Page Rank.

scaler String None yes The name of the scaler applied for the final scores.
Supported values are None, MinMax, Max, Mean, Log,
L1Norm, L2Norm and StdScore.

Table 192. Results

Name Type Description

ranIterations Integer The number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the centralityDistribution.

writeMillis Integer Milliseconds for writing result data back.

nodePropert
iesWritten

Integer The number of properties that were written to Neo4j.

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.
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Run Article Rank in write mode on an anonymous graph:

CALL gds.articleRank.write(
  configuration: Map
)
YIELD
  nodePropertiesWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  centralityDistribution: Map,
  configuration: Map

Table 193. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 194. Algorithm specific configuration

Name Type Default Optional Description

dampingFacto
r

Float 0.85 yes The damping factor of the Page Rank calculation. Must be in
[0, 1).

maxIterations Integer 20 yes The maximum number of iterations of Article Rank to run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all scores
change less than the tolerance value the result is considered
stable, and the algorithm returns.

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.
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Name Type Default Optional Description

sourceNodes List or Node
or Number

[] yes The nodes or node ids to use for computing Personalized
Page Rank.

scaler String None yes The name of the scaler applied for the final scores. Supported
values are None, MinMax, Max, Mean, Log, L1Norm, L2Norm and
StdScore.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the Article Rank algorithm on a concrete graph. The
intention is to illustrate what the results look like and to provide a guide in how to make use of the
algorithm in a real setting. We will do this on a small web network graph of a handful nodes connected in
a particular pattern. The example graph looks like this:

LIN
K

S

LI
N

K
S

LINKS

LINKS

LIN
K

S

LINKS

LINKS

LINKS

LI
N

K
S

LINKS

LINKS

LINKS

LINKS

LINKS

Home

About

Product

Links

Site A

Site B

Site C

Site D

139



The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (home:Page {name:'Home'}),
  (about:Page {name:'About'}),
  (product:Page {name:'Product'}),
  (links:Page {name:'Links'}),
  (a:Page {name:'Site A'}),
  (b:Page {name:'Site B'}),
  (c:Page {name:'Site C'}),
  (d:Page {name:'Site D'}),

  (home)-[:LINKS {weight: 0.2}]->(about),
  (home)-[:LINKS {weight: 0.2}]->(links),
  (home)-[:LINKS {weight: 0.6}]->(product),
  (about)-[:LINKS {weight: 1.0}]->(home),
  (product)-[:LINKS {weight: 1.0}]->(home),
  (a)-[:LINKS {weight: 1.0}]->(home),
  (b)-[:LINKS {weight: 1.0}]->(home),
  (c)-[:LINKS {weight: 1.0}]->(home),
  (d)-[:LINKS {weight: 1.0}]->(home),
  (links)-[:LINKS {weight: 0.8}]->(home),
  (links)-[:LINKS {weight: 0.05}]->(a),
  (links)-[:LINKS {weight: 0.05}]->(b),
  (links)-[:LINKS {weight: 0.05}]->(c),
  (links)-[:LINKS {weight: 0.05}]->(d);

This graph represents eight pages, linking to one another. Each relationship has a property called weight,
which describes the importance of the relationship.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
  'myGraph',
  'Page',
  'LINKS',
  {
    relationshipProperties: 'weight'
  }
)

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.
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The following will estimate the memory requirements for running the algorithm:

CALL gds.articleRank.write.estimate('myGraph', {
  writeProperty: 'centrality',
  maxIterations: 20
})
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 195. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

8 14 696 696 "696 Bytes"

Stream

In the stream execution mode, the algorithm returns the score for each node. This allows us to inspect the
results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm in stream mode:

CALL gds.articleRank.stream('myGraph')
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 196. Results

name score

"Home" 0.5607071761939444

"About" 0.250337073634706

"Links" 0.250337073634706

"Product" 0.250337073634706

"Site A" 0.18152391630760797

"Site B" 0.18152391630760797

"Site C" 0.18152391630760797

"Site D" 0.18152391630760797

The above query is running the algorithm in stream mode as unweighted. Below, one can find an example
for weighted graphs.

Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
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the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.

The following will run the algorithm and return statistics about the centrality scores.

CALL gds.articleRank.stats('myGraph')
YIELD centralityDistribution
RETURN centralityDistribution.max AS max

Table 197. Results

max

0.5607099533081055

Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new node property containing the score for that node. The name of the new property is
specified using the mandatory configuration parameter mutateProperty. The result is a single summary
row, similar to stats, but with some additional metrics. The mutate mode is especially useful when multiple
algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

CALL gds.articleRank.mutate('myGraph', {
  mutateProperty: 'centrality'
})
YIELD nodePropertiesWritten, ranIterations

Table 198. Results

nodePropertiesWritten ranIterations

8 19

Write

The write execution mode extends the stats mode with an important side effect: writing the score for
each node as a property to the Neo4j database. The name of the new property is specified using the
mandatory configuration parameter writeProperty. The result is a single summary row, similar to stats,
but with some additional metrics. The write mode enables directly persisting the results to the database.

For more details on the write mode in general, see Write.
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The following will run the algorithm in write mode:

CALL gds.articleRank.write('myGraph', {
  writeProperty: 'centrality'
})
YIELD nodePropertiesWritten, ranIterations

Table 199. Results

nodePropertiesWritten ranIterations

8 19

Weighted

By default, the algorithm considers the relationships of the graph to be unweighted. To change this
behaviour, we can use the relationshipWeightProperty configuration parameter. If the parameter is set,
the associated property value is used as relationship weight. In the weighted case, the previous score of a
node sent to its neighbors is multiplied by the normalized relationship weight. Note, that negative
relationship weights are ignored during the computation.

In the following example, we use the weight property of the input graph as relationship weight property.

The following will run the algorithm in stream mode using relationship weights:

CALL gds.articleRank.stream('myGraph', {
  relationshipWeightProperty: 'weight'
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 200. Results

name score

"Home" 0.5160810726222141

"Product" 0.24570958074084706

"About" 0.1819031935802824

"Links" 0.1819031935802824

"Site A" 0.15281123078335393

"Site B" 0.15281123078335393

"Site C" 0.15281123078335393

"Site D" 0.15281123078335393

As in the unweighted example, the "Home" node has the highest score. In contrast, the "Product" now has
the second highest instead of the fourth highest score.


We are using stream mode to illustrate running the algorithm as weighted, however, all
the algorithm modes support the relationshipWeightProperty configuration parameter.
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Tolerance

The tolerance configuration parameter denotes the minimum change in scores between iterations. If all
scores change less than the configured tolerance, the iteration is aborted and considered converged. Note,
that setting a higher tolerance leads to earlier convergence, but also to less accurate centrality scores.

The following will run the algorithm in stream mode using a high tolerance value:

CALL gds.articleRank.stream('myGraph', {
  tolerance: 0.1
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 201. Results

name score

"Home" 0.4470707070707072

"About" 0.23000212652844235

"Links" 0.23000212652844235

"Product" 0.23000212652844235

"Site A" 0.16888888888888892

"Site B" 0.16888888888888892

"Site C" 0.16888888888888892

"Site D" 0.16888888888888892

We are using tolerance: 0.1, which leads to slightly different results compared to the stream example.
However, the computation converges after four iterations, and we can already observe a trend in the
resulting scores.

Personalised Article Rank

Personalized Article Rank is a variation of Article Rank which is biased towards a set of sourceNodes. By
default, the power iteration starts with the same value for all nodes: 1 / |V|. For a given set of source
nodes S, the initial value of each source node is set to 1 / |S| and to 0 for all remaining nodes.

The following examples show how to run Eigenvector centrality centered around 'Site A' and 'Site B'.

The following will run the algorithm and stream results:

MATCH (siteA:Page {name: 'Site A'}), (siteB:Page {name: 'Site B'})
CALL gds.articleRank.stream('myGraph', {
  maxIterations: 20,
  sourceNodes: [siteA, siteB]
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC
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Table 202. Results

name score

"Site A" 0.15249052775314756

"Site B" 0.15249052775314756

"Home" 0.1105231342997017

"About" 0.019777824032578193

"Links" 0.019777824032578193

"Product" 0.019777824032578193

"Site C" 0.002490527753147571

"Site D" 0.002490527753147571

Comparing these results to the ones from the stream example (which is not using sourceNodes
configuration parameter) shows the 'Site A' and Site B nodes we used in the sourceNodes list now score
second and third instead of fourth and fifth.

Scaling centrality scores

To normalize the final scores as part of the algorithm execution, one can use the scaler configuration
parameter. A common scaler is the L1Norm, which normalizes each score to a value between 0 and 1. A
description of all available scalers can be found in the documentation for the scaleProperties procedure.

The following will run the algorithm in stream mode and returns normalized results:

CALL gds.articleRank.stream('myGraph', {
  scaler: "L1Norm"
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 203. Results

name score

"Home" 0.275151294006312

"About" 0.12284588582564794

"Links" 0.12284588582564794

"Product" 0.12284588582564794

"Site A" 0.08907776212918608

"Site B" 0.08907776212918608

"Site C" 0.08907776212918608

"Site D" 0.08907776212918608
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Comparing the results with the stream example, we can see that the relative order of scores is the same.

7.2.3. Eigenvector Centrality

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

Eigenvector Centrality is an algorithm that measures the transitive influence of nodes. Relationships
originating from high-scoring nodes contribute more to the score of a node than connections from low-
scoring nodes. A high eigenvector score means that a node is connected to many nodes who themselves
have high scores.

The algorithm computes the eigenvector associated with the largest absolute eigenvalue. To compute that
eigenvalue, the algorithm applies the power iteration approach. Within each iteration, the centrality score
for each node is derived from the scores of its incoming neighbors. In the power iteration method, the
eigenvector is L2-normalized after each iteration, leading to normalized results by default.

The PageRank algorithm is a variant of Eigenvector Centrality with an additional jump probability.

Considerations

There are some things to be aware of when using the Eigenvector centrality algorithm:

• Centrality scores for nodes with no incoming relationships will converge to 0.

• Due to missing degree normalization, high-degree nodes have a very strong influence on their
neighbors' score.

Syntax

This section covers the syntax used to execute the Eigenvector Centrality algorithm in each of its execution
modes. We are describing the named graph variant of the syntax. To learn more about general syntax
variants, see Syntax overview.
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Eigenvector Centrality syntax per mode
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Run Eigenvector Centrality in stream mode on a named graph.

CALL gds.eigenvector.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  score: Float

Table 204. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 205. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 206. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer 20 yes The maximum number of iterations of Eigenvector
Centrality to run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all
scores change less than the tolerance value the result
is considered stable and the algorithm returns.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

sourceNode
s

List or Node
or Number

[] yes The nodes or node ids to use for computing
Personalized Page Rank.

scaler String None yes The name of the scaler applied for the final scores.
Supported values are None, MinMax, Max, Mean, Log,
L1Norm, L2Norm and StdScore.

Table 207. Results

Name Type Description

nodeId Integer Node ID.
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Name Type Description

score Float Eigenvector score.

149



Run Eigenvector Centrality in stats mode on a named graph.

CALL gds.eigenvector.stats(
  graphName: String,
  configuration: Map
)
YIELD
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  centralityDistribution: Map,
  configuration: Map

Table 208. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 209. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 210. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer 20 yes The maximum number of iterations of Eigenvector
Centrality to run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all
scores change less than the tolerance value the result
is considered stable and the algorithm returns.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

sourceNode
s

List or Node
or Number

[] yes The nodes or node ids to use for computing
Personalized Page Rank.

scaler String None yes The name of the scaler applied for the final scores.
Supported values are None, MinMax, Max, Mean, Log,
L1Norm, L2Norm and StdScore.

Table 211. Results
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Name Type Description

ranIterations Integer The number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the centralityDistribution.

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

configuratio
n

Map The configuration used for running the algorithm.
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Run Eigenvector Centrality in mutate mode on a named graph.

CALL gds.eigenvector.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  nodePropertiesWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  centralityDistribution: Map,
  configuration: Map

Table 212. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 213. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 214. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer 20 yes The maximum number of iterations of Eigenvector
Centrality to run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all
scores change less than the tolerance value the result
is considered stable and the algorithm returns.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

sourceNode
s

List or Node
or Number

[] yes The nodes or node ids to use for computing
Personalized Page Rank.

scaler String None yes The name of the scaler applied for the final scores.
Supported values are None, MinMax, Max, Mean, Log,
L1Norm, L2Norm and StdScore.
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Table 215. Results

Name Type Description

ranIterations Integer The number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the centralityDistribution.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

nodePropert
iesWritten

Integer The number of properties that were written to the in-memory graph.

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

configuratio
n

Map The configuration used for running the algorithm.
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Run Eigenvector Centrality in write mode on a named graph.

CALL gds.eigenvector.write(
  graphName: String,
  configuration: Map
)
YIELD
  nodePropertiesWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  centralityDistribution: Map,
  configuration: Map

Table 216. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 217. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 218. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer 20 yes The maximum number of iterations of Eigenvector
Centrality to run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all
scores change less than the tolerance value the result
is considered stable and the algorithm returns.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

sourceNode
s

List or Node
or Number

[] yes The nodes or node ids to use for computing
Personalized Page Rank.
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Name Type Default Optional Description

scaler String None yes The name of the scaler applied for the final scores.
Supported values are None, MinMax, Max, Mean, Log,
L1Norm, L2Norm and StdScore.

Table 219. Results

Name Type Description

ranIterations Integer The number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the centralityDistribution.

writeMillis Integer Milliseconds for writing result data back.

nodePropert
iesWritten

Integer The number of properties that were written to Neo4j.

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run Eigenvector Centrality in write mode on an anonymous graph:

CALL gds.eigenvector.write(
  configuration: Map
)
YIELD
  nodePropertiesWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  centralityDistribution: Map,
  configuration: Map
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Table 220. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 221. Algorithm specific configuration

Name Type Default Optional Description

maxIterations Integer 20 yes The maximum number of iterations of Eigenvector Centrality
to run.

tolerance Float 0.0000001 yes Minimum change in scores between iterations. If all scores
change less than the tolerance value the result is considered
stable and the algorithm returns.

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

sourceNodes List or Node
or Number

[] yes The nodes or node ids to use for computing Personalized
Page Rank.

scaler String None yes The name of the scaler applied for the final scores. Supported
values are None, MinMax, Max, Mean, Log, L1Norm, L2Norm and
StdScore.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the Eigenvector Centrality algorithm on a concrete graph.
The intention is to illustrate what the results look like and to provide a guide in how to make use of the

156



algorithm in a real setting. We will do this on a small web network graph of a handful nodes connected in
a particular pattern. The example graph looks like this:
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Site C

Site D

The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (home:Page {name:'Home'}),
  (about:Page {name:'About'}),
  (product:Page {name:'Product'}),
  (links:Page {name:'Links'}),
  (a:Page {name:'Site A'}),
  (b:Page {name:'Site B'}),
  (c:Page {name:'Site C'}),
  (d:Page {name:'Site D'}),

  (home)-[:LINKS {weight: 0.2}]->(about),
  (home)-[:LINKS {weight: 0.2}]->(links),
  (home)-[:LINKS {weight: 0.6}]->(product),
  (about)-[:LINKS {weight: 1.0}]->(home),
  (product)-[:LINKS {weight: 1.0}]->(home),
  (a)-[:LINKS {weight: 1.0}]->(home),
  (b)-[:LINKS {weight: 1.0}]->(home),
  (c)-[:LINKS {weight: 1.0}]->(home),
  (d)-[:LINKS {weight: 1.0}]->(home),
  (links)-[:LINKS {weight: 0.8}]->(home),
  (links)-[:LINKS {weight: 0.05}]->(a),
  (links)-[:LINKS {weight: 0.05}]->(b),
  (links)-[:LINKS {weight: 0.05}]->(c),
  (links)-[:LINKS {weight: 0.05}]->(d);

This graph represents eight pages, linking to one another. Each relationship has a property called weight,
which describes the importance of the relationship.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.
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The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
  'myGraph',
  'Page',
  'LINKS',
  {
    relationshipProperties: 'weight'
  }
)

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.

The following will estimate the memory requirements for running the algorithm:

CALL gds.eigenvector.write.estimate('myGraph', {
  writeProperty: 'centrality',
  maxIterations: 20
})
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 222. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

8 14 696 696 "696 Bytes"

Stream

In the stream execution mode, the algorithm returns the score for each node. This allows us to inspect the
results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm in stream mode:

CALL gds.eigenvector.stream('myGraph')
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 223. Results

158



name score

"Home" 0.7465574981728249

"About" 0.33997520529777137

"Links" 0.33997520529777137

"Product" 0.33997520529777137

"Site A" 0.15484062876886298

"Site B" 0.15484062876886298

"Site C" 0.15484062876886298

"Site D" 0.15484062876886298

The above query is running the algorithm in stream mode as unweighted. Below, one can find an example
for weighted graphs.

Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.

The following will run the algorithm and return statistics about the centrality scores.

CALL gds.eigenvector.stats('myGraph', {
  maxIterations: 20
})
YIELD centralityDistribution
RETURN centralityDistribution.max AS max

Table 224. Results

max

0.7465581893920898

Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new node property containing the score for that node. The name of the new property is
specified using the mandatory configuration parameter mutateProperty. The result is a single summary
row, similar to stats, but with some additional metrics. The mutate mode is especially useful when multiple
algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.
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The following will run the algorithm in mutate mode:

CALL gds.eigenvector.mutate('myGraph', {
  maxIterations: 20,
  mutateProperty: 'centrality'
})
YIELD nodePropertiesWritten, ranIterations

Table 225. Results

nodePropertiesWritten ranIterations

8 20

Write

The write execution mode extends the stats mode with an important side effect: writing the score for
each node as a property to the Neo4j database. The name of the new property is specified using the
mandatory configuration parameter writeProperty. The result is a single summary row, similar to stats,
but with some additional metrics. The write mode enables directly persisting the results to the database.

For more details on the write mode in general, see Write.

The following will run the algorithm in write mode:

CALL gds.eigenvector.write('myGraph', {
  maxIterations: 20,
  writeProperty: 'centrality'
})
YIELD nodePropertiesWritten, ranIterations

Table 226. Results

nodePropertiesWritten ranIterations

8 20

Weighted

By default, the algorithm considers the relationships of the graph to be unweighted. To change this
behaviour, we can use the relationshipWeightProperty configuration parameter. If the parameter is set,
the associated property value is used as relationship weight. In the weighted case, the previous score of a
node sent to its neighbors is multiplied by the normalized relationship weight. Note, that negative
relationship weights are ignored during the computation.

In the following example, we use the weight property of the input graph as relationship weight property.
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The following will run the algorithm in stream mode using relationship weights:

CALL gds.eigenvector.stream('myGraph', {
  maxIterations: 20,
  relationshipWeightProperty: 'weight'
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 227. Results

name score

"Home" 0.8328163407319487

"Product" 0.5004775834976313

"About" 0.1668258611658771

"Links" 0.1668258611658771

"Site A" 0.008327591469710233

"Site B" 0.008327591469710233

"Site C" 0.008327591469710233

"Site D" 0.008327591469710233

As in the unweighted example, the "Home" node has the highest score. In contrast, the "Product" now has
the second highest instead of the fourth highest score.


We are using stream mode to illustrate running the algorithm as weighted, however, all
the algorithm modes support the relationshipWeightProperty configuration parameter.

Tolerance

The tolerance configuration parameter denotes the minimum change in scores between iterations. If all
scores change less than the configured tolerance, the iteration is aborted and considered converged. Note,
that setting a higher tolerance leads to earlier convergence, but also to less accurate centrality scores.

The following will run the algorithm in stream mode using a high tolerance value:

CALL gds.eigenvector.stream('myGraph', {
  maxIterations: 20,
  tolerance: 0.1
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 228. Results

name score

"Home" 0.7108273818583551
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name score

"About" 0.3719400001993262

"Links" 0.3719400001993262

"Product" 0.3719400001993262

"Site A" 0.14116155811301126

"Site B" 0.14116155811301126

"Site C" 0.14116155811301126

"Site D" 0.14116155811301126

We are using tolerance: 0.1, which leads to slightly different results compared to the stream example.
However, the computation converges after three iterations, and we can already observe a trend in the
resulting scores.

Personalised Eigenvector Centrality

Personalized Eigenvector Centrality is a variation of Eigenvector Centrality which is biased towards a set
of sourceNodes. By default, the power iteration starts with the same value for all nodes: 1 / |V|. For a
given set of source nodes S, the initial value of each source node is set to 1 / |S| and to 0 for all remaining
nodes.

The following examples show how to run Eigenvector centrality centered around 'Site A'.

The following will run the algorithm and stream results:

MATCH (siteA:Page {name: 'Site A'}), (siteB:Page {name: 'Site B'})
CALL gds.eigenvector.stream('myGraph', {
  maxIterations: 20,
  sourceNodes: [siteA, siteB]
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 229. Results

name score

"Home" 0.7465645391567868

"About" 0.33997203172449453

"Links" 0.33997203172449453

"Product" 0.33997203172449453

"Site A" 0.15483736775159632

"Site B" 0.15483736775159632

"Site C" 0.15483736775159632

"Site D" 0.15483736775159632
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Scaling centrality scores

Internally, centrality scores are scaled after each iteration using L2 normalization. As a consequence, the
final values are already normalized. This behavior cannot be changed as it is part of the power iteration
method.

However, to normalize the final scores as part of the algorithm execution, one can use the scaler
configuration parameter. A common scaler is the L1Norm, which normalizes each score to a value between
0 and 1. A description of all available scalers can be found in the documentation for the scaleProperties
procedure.

The following will run the algorithm in stream mode and returns normalized results:

CALL gds.eigenvector.stream('myGraph', {
  scaler: "L1Norm"
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Table 230. Results

name score

"Home" 0.31291106560043064

"About" 0.1424967320371402

"Links" 0.1424967320371402

"Product" 0.1424967320371402

"Site A" 0.06489968457203725

"Site B" 0.06489968457203725

"Site C" 0.06489968457203725

"Site D" 0.06489968457203725

Comparing the results with the stream example, we can see that the relative order of scores is the same.

7.2.4. Betweenness Centrality

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted
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Introduction

Betweenness centrality is a way of detecting the amount of influence a node has over the flow of
information in a graph. It is often used to find nodes that serve as a bridge from one part of a graph to
another.

The algorithm calculates unweighted shortest paths between all pairs of nodes in a graph. Each node
receives a score, based on the number of shortest paths that pass through the node. Nodes that more
frequently lie on shortest paths between other nodes will have higher betweenness centrality scores.

The GDS implementation is based on Brandes' approximate algorithm for unweighted graphs. The
implementation requires O(n + m) space and runs in O(n * m) time, where n is the number of nodes and m
the number of relationships in the graph.

For more information on this algorithm, see:

• A Faster Algorithm for Betweenness Centrality

• Centrality Estimation in Large Networks

• A Set of Measures of Centrality Based on Betweenness


Running this algorithm requires sufficient memory availability. Before running this
algorithm, we recommend that you read Memory Estimation.

Considerations and sampling

The Betweenness Centrality algorithm can be very resource-intensive to compute. Brandes' approximate
algorithm computes single-source shortest paths (SSSP) for a set of source nodes. When all nodes are
selected as source nodes, the algorithm produces an exact result. However, for large graphs this can
potentially lead to very long runtimes. Thus, approximating the results by computing the SSSPs for only a
subset of nodes can be useful. In GDS we refer to this technique as sampling, where the size of the source
node set is the sampling size.

There are two things to consider when executing the algorithm on large graphs:

• A higher parallelism leads to higher memory consumption as each thread executes SSSPs for a subset
of source nodes sequentially.

◦ In the worst case, a single SSSP requires the whole graph to be duplicated in memory.

• A higher sampling size leads to more accurate results, but also to a potentially much longer execution
time.

Changing the values of the configuration parameters concurrency and samplingSize, respectively, can help
to manage these considerations.

Sampling strategies

Brandes defines several strategies for selecting source nodes. The GDS implementation is based on the
random degree selection strategy, which selects nodes with a probability proportional to their degree. The
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idea behind this strategy is that such nodes are likely to lie on many shortest paths in the graph and thus
have a higher contribution to the betweenness centrality score.

Syntax

This section covers the syntax used to execute the Betweenness Centrality algorithm in each of its
execution modes. We are describing the named graph variant of the syntax. To learn more about general
syntax variants, see Syntax overview.
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Betweenness Centrality syntax per mode

Run Betweenness Centrality in stream mode on a named graph.

CALL gds.betweenness.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  score: Float

Table 231. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 232. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 233. Algorithm specific configuration

Name Type Default Optional Description

samplingSiz
e

Integer node count yes The number of source nodes to consider for computing
centrality scores.

samplingSee
d

Integer null yes The seed value for the random number generator that
selects start nodes.

Table 234. Results

Name Type Description

nodeId Integer Node ID.

score Float Betweenness Centrality score.
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Run Betweenness Centrality in stats mode on a named graph.

CALL gds.betweenness.stats(
  graphName: String,
  configuration: Map
)
YIELD
  centralityDistribution: Map,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  configuration: Map

Table 235. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 236. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 237. Algorithm specific configuration

Name Type Default Optional Description

samplingSiz
e

Integer node count yes The number of source nodes to consider for computing
centrality scores.

samplingSee
d

Integer null yes The seed value for the random number generator that
selects start nodes.

Table 238. Results

Name Type Description

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the statistics.
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Name Type Description

configuratio
n

Map Configuration used for running the algorithm.

168



Run Betweenness Centrality in mutate mode on a named graph.

CALL gds.betweenness.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  centralityDistribution: Map,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 239. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 240. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 241. Algorithm specific configuration

Name Type Default Optional Description

samplingSiz
e

Integer node count yes The number of source nodes to consider for computing
centrality scores.

samplingSee
d

Integer null yes The seed value for the random number generator that
selects start nodes.

Table 242. Results

Name Type Description

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the statistics.
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Name Type Description

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

nodePropert
iesWritten

Integer Number of properties added to the in-memory graph.

configuratio
n

Map Configuration used for running the algorithm.
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Run Betweenness Centrality in write mode on a named graph.

CALL gds.betweenness.write(
  graphName: String,
  configuration: Map
)
YIELD
  centralityDistribution: Map,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 243. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 244. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 245. Algorithm specific configuration

Name Type Default Optional Description

samplingSiz
e

Integer node count yes The number of source nodes to consider for computing
centrality scores.

samplingSee
d

Integer null yes The seed value for the random number generator that
selects start nodes.

Table 246. Results

Name Type Description

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

createMillis Integer Milliseconds for creating the graph.
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Name Type Description

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the statistics.

writeMillis Integer Milliseconds for writing result data back.

nodePropert
iesWritten

Integer Number of properties written to Neo4j.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run Betweenness Centrality in write mode on an anonymous graph:

CALL gds.betweenness.write(
  configuration: Map
)
YIELD
  centralityDistribution: Map,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 247. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.
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Name Type Default Optional Description

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 248. Algorithm specific configuration

Name Type Default Optional Description

samplingSize Integer node count yes The number of source nodes to consider for computing
centrality scores.

samplingSeed Integer null yes The seed value for the random number generator that selects
start nodes.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the Betweenness Centrality algorithm on a concrete
graph. The intention is to illustrate what the results look like and to provide a guide in how to make use of
the algorithm in a real setting. We will do this on a small social network graph of a handful nodes
connected in a particular pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (alice:User {name: 'Alice'}),
  (bob:User {name: 'Bob'}),
  (carol:User {name: 'Carol'}),
  (dan:User {name: 'Dan'}),
  (eve:User {name: 'Eve'}),
  (frank:User {name: 'Frank'}),
  (gale:User {name: 'Gale'}),

  (alice)-[:FOLLOWS]->(carol),
  (bob)-[:FOLLOWS]->(carol),
  (carol)-[:FOLLOWS]->(dan),
  (carol)-[:FOLLOWS]->(eve),
  (dan)-[:FOLLOWS]->(frank),
  (eve)-[:FOLLOWS]->(frank),
  (frank)-[:FOLLOWS]->(gale);

With the graph in Neo4j we can now project it into the graph catalog to prepare it for algorithm execution.
We do this using a native projection targeting the User nodes and the FOLLOWS relationships.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create('myGraph', 'User', 'FOLLOWS')

In the following examples we will demonstrate using the Betweenness Centrality algorithm on this graph.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.

The following will estimate the memory requirements for running the algorithm:

CALL gds.betweenness.write.estimate('myGraph', { writeProperty: 'betweenness' })
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 249. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

7 7 2912 2912 "2912 Bytes"

As is discussed in Considerations and sampling we can configure the memory requirements using the
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concurrency configuration parameter.

The following will estimate the memory requirements for running the algorithm:

CALL gds.betweenness.write.estimate('myGraph', { writeProperty: 'betweenness', concurrency: 1 })
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 250. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

7 7 848 848 "848 Bytes"

Here we can note that the estimated memory requirements were lower than when running with the
default concurrency setting. Similarly, using a higher value will increase the estimated memory
requirements.

Stream

In the stream execution mode, the algorithm returns the centrality for each node. This allows us to inspect
the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm in stream mode:

CALL gds.betweenness.stream('myGraph')
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY name ASC

Table 251. Results

name score

"Alice" 0.0

"Bob" 0.0

"Carol" 8.0

"Dan" 3.0

"Eve" 3.0

"Frank" 5.0

"Gale" 0.0

We note that the 'Carol' node has the highest score, followed by the 'Frank' node. Studying the example
graph we can see that these nodes are in bottleneck positions in the graph. The 'Carol' node connects the
'Alice' and 'Bob' nodes to all other nodes, which increases its score. In particular, the shortest path from
'Alice' or 'Bob' to any other reachable node passes through 'Carol'. Similarly, all shortest paths that lead to
the 'Gale' node passes through the 'Frank' node. Since 'Gale' is reachable from each other node, this
causes the score for 'Frank' to be high.
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Conversely, there are no shortest paths that pass through either of the nodes 'Alice', 'Bob' or 'Gale' which
causes their betweenness centrality score to be zero.

Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.

The following will run the algorithm in stats mode:

CALL gds.betweenness.stats('myGraph')
YIELD centralityDistribution
RETURN centralityDistribution.min AS minimumScore, centralityDistribution.mean AS meanScore

Table 252. Results

minimumScore meanScore

0.0 2.714292253766741

Comparing this to the results we saw in the stream example, we can find our minimum and maximum
values from the table. It is worth noting that unless the graph has a particular shape involving a directed
cycle, the minimum score will almost always be zero.

Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new node property containing the centrality for that node. The name of the new property is
specified using the mandatory configuration parameter mutateProperty. The result is a single summary
row, similar to stats, but with some additional metrics. The mutate mode is especially useful when multiple
algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

CALL gds.betweenness.mutate('myGraph', { mutateProperty: 'betweenness' })
YIELD centralityDistribution, nodePropertiesWritten
RETURN centralityDistribution.min AS minimumScore, centralityDistribution.mean AS meanScore,
nodePropertiesWritten

Table 253. Results

minimumScore meanScore nodePropertiesWritten

0.0 2.714292253766741 7
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The returned result is the same as in the stats example. Additionally, the graph 'myGraph' now has a node
property betweenness which stores the betweenness centrality score for each node. To find out how to
inspect the new schema of the in-memory graph, see Listing graphs.

Write

The write execution mode extends the stats mode with an important side effect: writing the centrality for
each node as a property to the Neo4j database. The name of the new property is specified using the
mandatory configuration parameter writeProperty. The result is a single summary row, similar to stats,
but with some additional metrics. The write mode enables directly persisting the results to the database.

For more details on the write mode in general, see Write.

The following will run the algorithm in write mode:

CALL gds.betweenness.write('myGraph', { writeProperty: 'betweenness' })
YIELD centralityDistribution, nodePropertiesWritten
RETURN centralityDistribution.min AS minimumScore, centralityDistribution.mean AS meanScore,
nodePropertiesWritten

Table 254. Results

minimumScore meanScore nodePropertiesWritten

0.0 2.714292253766741 7

The returned result is the same as in the stats example. Additionally, each of the seven nodes now has a
new property betweenness in the Neo4j database, containing the betweenness centrality score for that
node.

Sampling

Betweenness Centrality can be very resource-intensive to compute. To help with this, it is possible to
approximate the results using a sampling technique. The configuration parameters samplingSize and
samplingSeed are used to control the sampling. We illustrate this on our example graph by approximating
Betweenness Centrality with a sampling size of two. The seed value is an arbitrary integer, where using
the same value will yield the same results between different runs of the procedure.

The following will run the algorithm in stream mode with a sampling size of two:

CALL gds.betweenness.stream('myGraph', {samplingSize: 2, samplingSeed: 0})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY name ASC

Table 255. Results

name score

"Alice" 0.0

"Bob" 0.0
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name score

"Carol" 4.0

"Dan" 2.0

"Eve" 2.0

"Frank" 2.0

"Gale" 0.0

Here we can see that the 'Carol' node has the highest score, followed by a three-way tie between the
'Dan', 'Eve', and 'Frank' nodes. We are only sampling from two nodes, where the probability of a node
being picked for the sampling is proportional to its outgoing degree. The 'Carol' node has the maximum
degree and is the most likely to be picked. The 'Gale' node has an outgoing degree of zero and is very
unlikely to be picked. The other nodes all have the same probability to be picked.

With our selected sampling seed of 0, we seem to have selected either of the 'Alice' and 'Bob' nodes, as
well as the 'Carol' node. We can see that because either of 'Alice' and 'Bob' would add four to the score of
the 'Carol' node, and each of 'Alice', 'Bob', and 'Carol' adds one to all of 'Dan', 'Eve', and 'Frank'.

To increase the accuracy of our approximation, the sampling size could be increased. In fact, setting the
samplingSize to the node count of the graph (seven, in our case) will produce exact results.

Undirected

Betweenness Centrality can also be run on undirected graphs. To illustrate this, we will project our
example graph using the UNDIRECTED orientation.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myUndirectedGraph'.

CALL gds.graph.create('myUndirectedGraph', 'User', {FOLLOWS: {orientation: 'UNDIRECTED'}})

Now we can run Betweenness Centrality on our undirected graph. The algorithm automatically figures out
that the graph is undirected.


Running the algorithm on an undirected graph is about twice as computationally
intensive compared to a directed graph.

The following will run the algorithm in stream mode on the undirected graph:

CALL gds.betweenness.stream('myUndirectedGraph')
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY name ASC

Table 256. Results

name score

"Alice" 0.0
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name score

"Bob" 0.0

"Carol" 9.5

"Dan" 3.0

"Eve" 3.0

"Frank" 5.5

"Gale" 0.0

The central nodes now have slightly higher scores, due to the fact that there are more shortest paths in the
graph, and these are more likely to pass through the central nodes. The 'Dan' and 'Eve' nodes retain the
same centrality scores as in the directed case.

7.2.5. Degree Centrality

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

The Degree Centrality algorithm can be used to find popular nodes within a graph. Degree centrality
measures the number of incoming or outgoing (or both) relationships from a node, depending on the
orientation of a relationship projection. For more information on relationship orientations, see the
relationship projection syntax section. It can be applied to either weighted or unweighted graphs. In the
weighted case the algorithm computes the sum of all positive weights of adjacent relationships of a node,
for each node in the graph. Non-positive weights are ignored.

For more information on this algorithm, see:

• Linton C. Freeman: Centrality in Social Networks Conceptual Clarification, 1979.

Use-cases

The Degree Centrality algorithm has been shown to be useful in many different applications. For example:

• Degree centrality is an important component of any attempt to determine the most important people in
a social network. For example, in BrandWatch’s most influential men and women on Twitter 2017 the
top 5 people in each category have over 40m followers each, which is a lot higher than the average
degree.
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• Weighted degree centrality has been used to help separate fraudsters from legitimate users of an
online auction. The weighted centrality for fraudsters is significantly higher because they tend to
collude with each other to artificially increase the price of items. Read more in Two Step graph-based
semi-supervised Learning for Online Auction Fraud Detection

Syntax

This section covers the syntax used to execute the Degree Centrality algorithm in each of its execution
modes. We are describing the named graph variant of the syntax. To learn more about general syntax
variants, see Syntax overview.
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Degree Centrality syntax per mode

Run Degree Centrality in stream mode on a named graph.

CALL gds.degree.stream(
  graphName: String,
  configuration: Map
) YIELD
  nodeId: Integer,
  score: Float

Table 257. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 258. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 259. Algorithm specific configuration

Name Type Default Optional Description

orientation String NATURAL yes The orientation used to compute node degrees.
Supported orientations are NATURAL, REVERSE and
UNDIRECTED.

relationship
WeightProp
erty

String null yes Name of the relationship property to use for weighted
degree computation. If unspecified, the algorithm runs
unweighted.

Table 260. Results

Name Type Description

nodeId Integer Node ID.

score Float Degree Centrality score.
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Run Degree Centrality in stats mode on a named graph.

CALL gds.degree.stats(
  graphName: String,
  configuration: Map
) YIELD
  centralityDistribution: Map,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  configuration: Map

Table 261. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 262. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 263. Algorithm specific configuration

Name Type Default Optional Description

orientation String NATURAL yes The orientation used to compute node degrees.
Supported orientations are NATURAL, REVERSE and
UNDIRECTED.

relationship
WeightProp
erty

String null yes Name of the relationship property to use for weighted
degree computation. If unspecified, the algorithm runs
unweighted.

Table 264. Results

Name Type Description

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the statistics.
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Name Type Description

configuratio
n

Map Configuration used for running the algorithm.
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Run Degree Centrality in mutate mode on a named graph.

CALL gds.degree.mutate(
  graphName: String,
  configuration: Map
) YIELD
  centralityDistribution: Map,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 265. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 266. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 267. Algorithm specific configuration

Name Type Default Optional Description

orientation String NATURAL yes The orientation used to compute node degrees.
Supported orientations are NATURAL, REVERSE and
UNDIRECTED.

relationship
WeightProp
erty

String null yes Name of the relationship property to use for weighted
degree computation. If unspecified, the algorithm runs
unweighted.

Table 268. Results

Name Type Description

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.
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Name Type Description

postProcessi
ngMillis

Integer Milliseconds for computing the statistics.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

nodePropert
iesWritten

Integer Number of properties added to the in-memory graph.

configuratio
n

Map Configuration used for running the algorithm.
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Run Degree Centrality in write mode on a named graph.

CALL gds.degree.write(
  graphName: String,
  configuration: Map
) YIELD
  centralityDistribution: Map,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 269. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 270. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 271. Algorithm specific configuration

Name Type Default Optional Description

orientation String NATURAL yes The orientation used to compute node degrees.
Supported orientations are NATURAL, REVERSE and
UNDIRECTED.

relationship
WeightProp
erty

String null yes Name of the relationship property to use for weighted
degree computation. If unspecified, the algorithm runs
unweighted.

Table 272. Results

Name Type Description

centralityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of centrality values.

createMillis Integer Milliseconds for creating the graph.
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Name Type Description

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the statistics.

writeMillis Integer Milliseconds for writing result data back.

nodePropert
iesWritten

Integer Number of properties written to Neo4j.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run Degree Centrality in write mode on an anonymous graph:

CALL gds.degree.write(
  configuration: Map
) YIELD
  centralityDistribution: Map,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 273. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.
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Name Type Default Optional Description

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 274. Algorithm specific configuration

Name Type Default Optional Description

orientation String NATURAL yes The orientation used to compute node degrees. Supported
orientations are NATURAL, REVERSE and UNDIRECTED.

relationshipW
eightProperty

String null yes Name of the relationship property to use for weighted degree
computation. If unspecified, the algorithm runs unweighted.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the Degree Centrality algorithm on a concrete graph. The
intention is to illustrate what the results look like and to provide a guide in how to make use of the
algorithm in a real setting. We will do this on a small social network graph of a handful nodes connected in
a particular pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (alice:User {name: 'Alice'}),
  (bridget:User {name: 'Bridget'}),
  (charles:User {name: 'Charles'}),
  (doug:User {name: 'Doug'}),
  (mark:User {name: 'Mark'}),
  (michael:User {name: 'Michael'}),

  (alice)-[:FOLLOWS {score: 1}]->(doug),
  (alice)-[:FOLLOWS {score: -2}]->(bridget),
  (alice)-[:FOLLOWS {score: 5}]->(charles),
  (mark)-[:FOLLOWS {score: 1.5}]->(doug),
  (mark)-[:FOLLOWS {score: 4.5}]->(michael),
  (bridget)-[:FOLLOWS {score: 1.5}]->(doug),
  (charles)-[:FOLLOWS {score: 2}]->(doug),
  (michael)-[:FOLLOWS {score: 1.5}]->(doug)

With the graph in Neo4j we can now project it into the graph catalog to prepare it for algorithm execution.
We do this using a native projection targeting the User nodes and the FOLLOWS relationships.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a reverse projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
  'myGraph',
  'User',
  {
    FOLLOWS: {
      orientation: 'REVERSE',
      properties: ['score']
    }
  }
)

The graph is projected in a REVERSE orientation in order to retrieve people with the most followers in the
following examples. This will be demonstrated using the Degree Centrality algorithm on this graph.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.

The following will estimate the memory requirements for running the algorithm:

CALL gds.degree.write.estimate('myGraph', { writeProperty: 'degree' })
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory
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Table 275. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

6 8 40 40 "40 Bytes"

Stream

In the stream execution mode, the algorithm returns the degree centrality for each node. This allows us to
inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm in stream mode:

CALL gds.degree.stream('myGraph')
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score AS followers
ORDER BY followers DESC, name DESC

Table 276. Results

name followers

"Doug" 5.0

"Michael" 1.0

"Charles" 1.0

"Bridget" 1.0

"Mark" 0.0

"Alice" 0.0

We can see that Doug is the most popular user in our imaginary social network graph, with 5 followers -
all other users follow them, but they don’t follow anybody back. In a real social network, celebrities have
very high follower counts but tend to follow only very few people. We could therefore consider Doug quite
the celebrity!

Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.
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The following will run the algorithm in stats mode:

CALL gds.degree.stats('myGraph')
YIELD centralityDistribution
RETURN centralityDistribution.min AS minimumScore, centralityDistribution.mean AS meanScore

Table 277. Results

minimumScore meanScore

0.0 1.3333358764648438

Comparing this to the results we saw in the stream example, we can find our minimum and mean values
from the table.

Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new node property containing the degree centrality for that node. The name of the new
property is specified using the mandatory configuration parameter mutateProperty. The result is a single
summary row, similar to stats, but with some additional metrics. The mutate mode is especially useful
when multiple algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

CALL gds.degree.mutate('myGraph', { mutateProperty: 'degree' })
YIELD centralityDistribution, nodePropertiesWritten
RETURN centralityDistribution.min AS minimumScore, centralityDistribution.mean AS meanScore,
nodePropertiesWritten

Table 278. Results

minimumScore meanScore nodePropertiesWritten

0.0 1.3333358764648438 6

The returned result is the same as in the stats example. Additionally, the graph 'myGraph' now has a node
property degree which stores the degree centrality score for each node. To find out how to inspect the new
schema of the in-memory graph, see Listing graphs in the catalog.

Write

The write execution mode extends the stats mode with an important side effect: writing the degree
centrality for each node as a property to the Neo4j database. The name of the new property is specified
using the mandatory configuration parameter writeProperty. The result is a single summary row, similar to
stats, but with some additional metrics. The write mode enables directly persisting the results to the
database.

For more details on the write mode in general, see Write.
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The following will run the algorithm in write mode:

CALL gds.degree.write('myGraph', { writeProperty: 'degree' })
YIELD centralityDistribution, nodePropertiesWritten
RETURN centralityDistribution.min AS minimumScore, centralityDistribution.mean AS meanScore,
nodePropertiesWritten

Table 279. Results

minimumScore meanScore nodePropertiesWritten

0.0 1.3333358764648438 6

The returned result is the same as in the stats example. Additionally, each of the seven nodes now has a
new property degree in the Neo4j database, containing the degree centrality score for that node.

Weighted Degree Centrality example

This example will explain the weighted Degree Centrality algorithm. This algorithm is a variant of the
Degree Centrality algorithm, that measures the sum of positive weights of incoming and outgoing
relationships.

The following will run the algorithm in stream mode, showing which users have the highest weighted
degree centrality:

CALL gds.degree.stream(
   'myGraph',
   { relationshipWeightProperty: 'score' }
)
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score AS weightedFollowers
ORDER BY weightedFollowers DESC, name DESC

Table 280. Results

name weightedFollowers

"Doug" 7.5

"Charles" 5.0

"Michael" 4.5

"Mark" 0.0

"Bridget" 0.0

"Alice" 0.0

Doug still remains our most popular user, but there isn’t such a big gap to the next person. Charles and
Michael both only have one follower, but those relationships have a high relationship weight. Note that
Bridget also has a weighted score of 0.0, despite having a connection from Alice. That is because the
score property value between Bridget and Alice is negative and will be ignored by the algorithm.

Setting an orientation

By default, node centrality uses the NATURAL orientation to compute degrees. For some use-cases it makes
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sense to analyze a different orientation, for example, if we want to find out how many users follow another
user. In order to change the orientation, we can use the orientation configuration key. Supported values
are NATURAL (default), REVERSE and UNDIRECTED.

The following will run the algorithm in stream mode, showing which users have the highest in-degree
centrality using the reverse orientation of the relationships:

CALL gds.degree.stream(
   'myGraph',
   { orientation: 'REVERSE' }
)
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score AS followees
ORDER BY followees DESC, name DESC

Table 281. Results

name followees

"Alice" 3.0

"Mark" 2.0

"Michael" 1.0

"Charles" 1.0

"Bridget" 1.0

"Doug" 0.0

The example shows that when looking at the reverse orientation, Alice is more central in the network than
Doug.

7.2.6. Closeness Centrality Alpha

Closeness centrality is a way of detecting nodes that are able to spread information very efficiently
through a graph.

The closeness centrality of a node measures its average farness (inverse distance) to all other nodes.
Nodes with a high closeness score have the shortest distances to all other nodes.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

For each node u, the Closeness Centrality algorithm calculates the sum of its distances to all other nodes,
based on calculating the shortest paths between all pairs of nodes. The resulting sum is then inverted to
determine the closeness centrality score for that node.

The raw closeness centrality of a node u is calculated using the following formula:

raw closeness centrality(u) = 1 / sum(distance from u to all other nodes)

It is more common to normalize this score so that it represents the average length of the shortest paths
rather than their sum. This adjustment allow comparisons of the closeness centrality of nodes of graphs of

193



different sizes

The formula for normalized closeness centrality of node u is as follows:

normalized closeness centrality(u) = (number of nodes - 1) / sum(distance from u to all other
nodes)

 Wasserman and Faust have proposed an improved formula for dealing with unconnected graphs.
Assuming that _n_  is the number of nodes reachable from _u_ (counting also itself),
their corrected formula for a given node _u_ is given as follows

Wasserman-Faust normalized closeness centrality(u) = (n-1)^2/ number of nodes - 1) *
sum(distance from u to all other nodes

Note that in the case of a directed graph, closeness centrality is defined alternatively. That is, rather than
considering distances from u to every other node, we instead sum and average the distance from every
other node to u.

Use-cases - when to use the Closeness Centrality algorithm

• Closeness centrality is used to research organizational networks, where individuals with high
closeness centrality are in a favourable position to control and acquire vital information and resources
within the organization. One such study is "Mapping Networks of Terrorist Cells" by Valdis E. Krebs.

• Closeness centrality can be interpreted as an estimated time of arrival of information flowing through
telecommunications or package delivery networks where information flows through shortest paths to a
predefined target. It can also be used in networks where information spreads through all shortest
paths simultaneously, such as infection spreading through a social network. Find more details in
"Centrality and network flow" by Stephen P. Borgatti.

• Closeness centrality has been used to estimate the importance of words in a document, based on a
graph-based keyphrase extraction process. This process is described by Florian Boudin in "A
Comparison of Centrality Measures for Graph-Based Keyphrase Extraction".

Constraints - when not to use the Closeness Centrality algorithm

• Academically, closeness centrality works best on connected graphs. If we use the original formula on
an unconnected graph, we can end up with an infinite distance between two nodes in separate
connected components. This means that we’ll end up with an infinite closeness centrality score when
we sum up all the distances from that node.

In practice, a variation on the original formula is used so that we don’t run into these issues.

Syntax

The following will run the algorithm and write back results:

CALL gds.alpha.closeness.write(configuration: Map)
YIELD nodes, createMillis, computeMillis, writeMillis, centralityDistribution

Table 282. Parameters
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Name Type Default Optional Description

concurrency int 4 yes The number of concurrent threads used for running the algorithm.
Also provides the default value for 'readConcurrency' and
'writeConcurrency'.

readConcurr
ency

int value of
'concurrenc
y'

yes The number of concurrent threads used for reading the graph.

writeConcur
rency

int value of
'concurrenc
y'

yes The number of concurrent threads used for writing the result.

writePropert
y

string 'centrality' yes The property name written back to.

improved boolean false yes Denotes whether the Wasserman-Faust formula is used.

Table 283. Results

Name Type Description

nodes int The number of nodes considered.

createMillis int Milliseconds for loading data.

computeMillis int Milliseconds for running the algorithm.

writeMillis int Milliseconds for writing result data back.

writeProperty string The property name written back to.

centralityDistr
ibution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999 percentile
values of centrality values.

The following will run the algorithm and stream results:

CALL gds.alpha.closeness.stream(configuration: Map)
YIELD nodeId, centrality

Table 284. Parameters

Name Type Default Optional Description

concurrency int 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

int value of
'concurrency'

yes The number of concurrent threads used for reading the
graph.

Table 285. Results

Name Type Description

node long Node ID

centrality float Closeness centrality score
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Closeness Centrality algorithm sample

The following will create a sample graph:

CREATE (a:Node{id:"A"}),
       (b:Node{id:"B"}),
       (c:Node{id:"C"}),
       (d:Node{id:"D"}),
       (e:Node{id:"E"}),
       (a)-[:LINK]->(b),
       (b)-[:LINK]->(a),
       (b)-[:LINK]->(c),
       (c)-[:LINK]->(b),
       (c)-[:LINK]->(d),
       (d)-[:LINK]->(c),
       (d)-[:LINK]->(e),
       (e)-[:LINK]->(d);

The following will run the algorithm and stream results:

CALL gds.alpha.closeness.stream({
  nodeProjection: 'Node',
  relationshipProjection: 'LINK'
})
YIELD nodeId, centrality
RETURN gds.util.asNode(nodeId).name AS user, centrality
ORDER BY centrality DESC

Table 286. Results

Name Centrality weight

C 0.6666666666666666

B 0.5714285714285714

D 0.5714285714285714

A 0.4
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Name Centrality weight

E 0.4

C is the best connected node in this graph, although B and D aren’t far behind. A and E don’t have close
ties to many other nodes, so their scores are lower. Any node that has a direct connection to all other
nodes would score 1.

The following will run the algorithm and write back results:

CALL gds.alpha.closeness.write({
  nodeProjection: 'Node',
  relationshipProjection: 'LINK',
  writeProperty: 'centrality'
}) YIELD nodes, writeProperty

Table 287. Results

nodes writeProperty

5 "centrality"

Cypher projection

If node labels and relationship types are not selective enough to project a graph, you can use Cypher
queries instead. Cypher projections can also be used to run algorithms on a virtual graph. You can learn
more in the Creating graphs using Cypher section of the manual.

CALL gds.alpha.closeness.write({
  nodeQuery: 'MATCH (p:Node) RETURN id(p) AS id',
  relationshipQuery: 'MATCH (p1:Node)-[:LINK]->(p2:Node) RETURN id(p1) AS source, id(p2) AS target'
}) YIELD nodes, writeProperty

Table 288. Results

nodes writeProperty

5 "centrality"

Calculation:

• count farness in each msbfs-callback

• divide by N-1

N = 5 // number of nodes

k = N-1 = 4 // used for normalization
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     A     B     C     D     E
 --|-----------------------------
 A | 0     1     2     3     4       // farness between each pair of nodes
 B | 1     0     1     2     3
 C | 2     1     0     1     2
 D | 3     2     1     0     1
 E | 4     3     2     1     0
 --|-----------------------------
 S | 10    7     6     7     10      // raw closeness centrality
 ==|=============================
k/S| 0.4  0.57  0.67  0.57   0.4     // normalized closeness centrality

7.2.7. Harmonic Centrality Alpha

Harmonic centrality (also known as valued centrality) is a variant of closeness centrality, that was invented
to solve the problem the original formula had when dealing with unconnected graphs. As with many of the
centrality algorithms, it originates from the field of social network analysis.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

Harmonic centrality was proposed by Marchiori and Latora in Harmony in the Small World while trying to
come up with a sensible notion of "average shortest path".

They suggested a different way of calculating the average distance to that used in the Closeness Centrality
algorithm. Rather than summing the distances of a node to all other nodes, the harmonic centrality
algorithm sums the inverse of those distances. This enables it deal with infinite values.

The raw harmonic centrality for a node is calculated using the following formula:

raw harmonic centrality(node) = sum(1 / distance from node to every other node excluding
itself)

As with closeness centrality, we can also calculate a normalized harmonic centrality with the following
formula:

normalized harmonic centrality(node) = sum(1 / distance from node to every other node excluding
itself) / (number of nodes - 1)

In this formula, ∞ values are handled cleanly.

Use-cases - when to use the Harmonic Centrality algorithm

Harmonic centrality was proposed as an alternative to closeness centrality, and therefore has similar use
cases.

For example, we might use it if we’re trying to identify where in the city to place a new public service so
that it’s easily accessible for residents. If we’re trying to spread a message on social media we could use
the algorithm to find the key influencers that can help us achieve our goal.
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Syntax

The following will run the algorithm and write back results:

CALL gds.alpha.closeness.harmonic.write(configuration: Map)
YIELD nodes, createMillis, computeMillis, writeMillis, centralityDistribution

Table 289. Parameters

Name Type Default Optional Description

concurrency int 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

int value of
'concurrency'

yes The number of concurrent threads used for reading the
graph.

writeConcurre
ncy

int value of
'concurrency'

yes The number of concurrent threads used for writing the result.

writeProperty string 'centrality' yes The property name written back to.

Table 290. Results

Name Type Description

nodes int The number of nodes considered.

createMillis int Milliseconds for loading data.

computeMillis int Milliseconds for running the algorithm.

writeMillis int Milliseconds for writing result data back.

writeProperty string The property name written back to.

centralityDistr
ibution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999 percentile
values of centrality values.

The following will run the algorithm and stream results:

CALL gds.alpha.closeness.harmonic.stream(configuration: Map)
YIELD nodeId, centrality

Table 291. Parameters

Name Type Default Optional Description

concurrency int 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

int value of
'concurrency'

yes The number of concurrent threads used for reading the
graph.

Table 292. Results

199



Name Type Description

node long Node ID

centrality float Harmonic centrality score

Harmonic Centrality algorithm sample

The following will create a sample graph:

CREATE (a:Node{id:"A"}),
       (b:Node{id:"B"}),
       (c:Node{id:"C"}),
       (d:Node{id:"D"}),
       (e:Node{id:"E"}),
       (a)-[:LINK]->(b),
       (b)-[:LINK]->(c),
       (d)-[:LINK]->(e)

The following will run the algorithm and stream results:

CALL gds.alpha.closeness.harmonic.stream({
  nodeProjection: 'Node',
  relationshipProjection: 'LINK'
})
YIELD nodeId, centrality
RETURN gds.util.asNode(nodeId).name AS user, centrality
ORDER BY centrality DESC

Table 293. Results

Name Centrality weight

B 0.5

A 0.375

c 0.375

D 0.25

E 0.25

The following will run the algorithm and write back results:

CALL gds.alpha.closeness.harmonic.write({
  nodeProjection: 'Node',
  relationshipProjection: 'LINK',
  writeProperty: 'centrality'
}) YIELD nodes, writeProperty

Table 294. Results

nodes writeProperty

5 "centrality"
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7.2.8. HITS Alpha

Introduction

The Hyperlink-Induced Topic Search (HITS) is a link analysis algorithm that rates nodes based on two
scores, a hub score and an authority score. The authority score estimates the importance of the node
within the network. The hub score estimates the value of its relationships to other nodes. The GDS
implementation is based on the Authoritative Sources in a Hyperlinked Environment publication by Jon M.
Kleinberg.

Syntax

This section covers the syntax used to execute the HITS algorithm in each of its execution modes. We are
describing the named graph variant of the syntax. To learn more about general syntax variants, see Syntax
overview.
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HITS syntax per mode

Run HITS in stream mode on a named graph.

CALL gds.alpha.hits.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  values: Map

Table 295. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 296. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 297. Algorithm specific configuration

Name Type Default Optional Description

hitsIteration
s

Integer n/a no The number of hits iterations to run. The number of
pregel iterations will be equal to hitsIterations * 4 +
1

authPropert
y

String "auth" yes The name that is used for the auth property when
using STREAM, MUTATE or WRITE modes.

hubProperty String "hub" yes The name that is used for the hub property when using
STREAM, MUTATE or WRITE modes.

Table 298. Results

Name Type Description

nodeId Integer Node ID.

values Map A map containing the auth and hub
keys.
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Run HITS in stats mode on a named graph.

CALL gds.alpha.hits.stats(
  graphName: String,
  configuration: Map
)
YIELD
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  configuration: Map

Table 299. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 300. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 301. Algorithm specific configuration

Name Type Default Optional Description

hitsIteration
s

Integer n/a no The number of hits iterations to run. The number of
pregel iterations will be equal to hitsIterations * 4 +
1

authPropert
y

String "auth" yes The name that is used for the auth property when
using STREAM, MUTATE or WRITE modes.

hubProperty String "hub" yes The name that is used for the hub property when using
STREAM, MUTATE or WRITE modes.

Table 302. Results

Name Type Description

ranIterations Integer Number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.
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Name Type Description

configuratio
n

Map Configuration used for running the algorithm.
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Run HITS in mutate mode on a named graph.

CALL gds.alpha.hits.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  mutateMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 303. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 304. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 305. Algorithm specific configuration

Name Type Default Optional Description

hitsIteration
s

Integer n/a no The number of hits iterations to run. The number of
pregel iterations will be equal to hitsIterations * 4 +
1

authPropert
y

String "auth" yes The name that is used for the auth property when
using STREAM, MUTATE or WRITE modes.

hubProperty String "hub" yes The name that is used for the hub property when using
STREAM, MUTATE or WRITE modes.

Table 306. Results

Name Type Description

ranIterations Integer The number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.
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Name Type Description

computeMilli
s

Integer Milliseconds for running the algorithm.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

nodePropert
iesWritten

Integer The number of properties that were written to Neo4j.

configuratio
n

Map The configuration used for running the algorithm.
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Run HITS in write mode on a named graph.

CALL gds.alpha.hits.write(
  graphName: String,
  configuration: Map
)
YIELD
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 307. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 308. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 309. Algorithm specific configuration

Name Type Default Optional Description

hitsIteration
s

Integer n/a no The number of hits iterations to run. The number of
pregel iterations will be equal to hitsIterations * 4 +
1

authPropert
y

String "auth" yes The name that is used for the auth property when
using STREAM, MUTATE or WRITE modes.

hubProperty String "hub" yes The name that is used for the hub property when using
STREAM, MUTATE or WRITE modes.

Table 310. Results

Name Type Description

ranIterations Integer The number of iterations run.
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Name Type Description

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

writeMillis Integer Milliseconds for writing result data back.

nodePropert
iesWritten

Integer The number of properties that were written to Neo4j.

configuratio
n

Map The configuration used for running the algorithm.

Examples

In this section we will show examples of running the HITS algorithm on a concrete graph. The intention is
to illustrate what the results look like and to provide a guide in how to make use of the algorithm in a real
setting. We will do this on a small social network graph of a handful nodes connected in a particular
pattern. The example graph looks like this:

A B

C D

E F G

H I
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (a:Website {name: 'A'}),
  (b:Website {name: 'B'}),
  (c:Website {name: 'C'}),
  (d:Website {name: 'D'}),
  (e:Website {name: 'E'}),
  (f:Website {name: 'F'}),
  (g:Website {name: 'G'}),
  (h:Website {name: 'H'}),
  (i:Website {name: 'I'}),

  (a)-[:LINK]->(b),
  (a)-[:LINK]->(c),
  (a)-[:LINK]->(d),
  (b)-[:LINK]->(c),
  (b)-[:LINK]->(d),
  (c)-[:LINK]->(d),

  (e)-[:LINK]->(b),
  (e)-[:LINK]->(d),
  (e)-[:LINK]->(f),
  (e)-[:LINK]->(h),

  (f)-[:LINK]->(g),
  (f)-[:LINK]->(i),
  (f)-[:LINK]->(h),
  (g)-[:LINK]->(h),
  (g)-[:LINK]->(i),
  (h)-[:LINK]->(i);

In the example, we will use the HITS algorithm to calculate the authority and hub scores.

The following statement will create the graph and store it in the graph catalog.

CALL gds.graph.create(
  'myGraph',
  'Website',
  'LINK'
);

In the following examples we will demonstrate using the HITS algorithm on this graph.

Stream

In the stream execution mode, the algorithm returns the authority and hub scores for each node. This
allows us to inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm, and stream results:

CALL gds.alpha.hits.stream('myGraph', {hitsIterations: 20})
YIELD nodeId, values
RETURN gds.util.asNode(nodeId).name AS Name, values.auth AS auth, values.hub as hub
ORDER BY Name ASC

Table 311. Results
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Name auth hub

"A" 0.0 0.5147630377521207

"B" 0.42644630743935796 0.3573686670593437

"C" 0.3218729455718005 0.23857061715828276

"D" 0.6463862608483191 0.0

"E" 0.0 0.640681017095129

"F" 0.23646490227616518 0.2763222153580397

"G" 0.10200264424057169 0.23867470447760597

"H" 0.426571816146601 0.0812340105698113

"I" 0.22009646020698218 0.0

7.2.9. Influence Maximization

The objective of influence maximization is to find a small subset of k nodes from a network in order to
achieve maximization to the total number of nodes influenced by these k nodes. The Neo4j GDS library
includes the following alpha influence maximization algorithms:

• Alpha

◦ Greedy

◦ CELF

CELF Alpha

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

This topic includes:

• Introduction

• Syntax

• Examples

◦ Stream

Introduction

The CELF algorithm for influence maximization aims to find k nodes that maximize the expected spread of
influence in the network. It simulates the influence spread using the Independent Cascade model, which
calculates the expected spread by taking the average spread over the mc Monte-Carlo simulations. In the
propagation process, a node is influenced in case that a uniform random draw is less than the probability p.

Leskovec et al. 2007 introduced the CELF algorithm in their study Cost-effective Outbreak Detection in
Networks to deal with the NP-hard problem of influence maximization. The CELF algorithm is based on a
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"lazy-forward" optimization. Τhe CELF algorithm dramatically improves the efficiency of the Greedy
algorithm and should be preferred for large networks.

Syntax

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.
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CELF syntax per mode

Run CELF in stream mode on a named graph.

CALL gds.alpha.influenceMaximization.celf.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  spread: Float

Table 312. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 313. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 314. Algorithm specific configuration

Name Type Default Optional Description

seedSetSize Integer n/a no The number of nodes that maximize the expected
spread in the network.

monteCarlo
Simulations

Integer 1000 yes The number of Monte-Carlo simulations.

propagation
Probability

Float 0.1 yes The probability of a node being activated by an active
neighbour node.

Table 315. Results

Name Type Description

nodeId Integer Node ID.

spread Float The spread gained by selecting the
node.
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Run CELF in stats mode on a named graph.

CALL gds.alpha.influenceMaximization.celf.stats(
  graphName: String,
  configuration: Map
)
YIELD
  nodes: Integer,
  computeMillis: Integer,

Table 316. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 317. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 318. Algorithm specific configuration

Name Type Default Optional Description

seedSetSize Integer n/a no The number of nodes that maximize the expected
spread in the network.

monteCarlo
Simulations

Integer 1000 yes The number of Monte-Carlo simulations.

propagation
Probability

Float 0.1 yes The probability of a node being activated by an active
neighbour node.

Table 319. Results

Name Type Description

nodes Integer The number of nodes in the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.
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Examples

In this section we will show examples of running the CELF algorithm on a concrete graph. The intention is
to illustrate what the results look like and to provide a guide in how to make use of the algorithm in a real
setting. We will do this on a small social network graph of a handful nodes connected in a particular
pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (a:Person {name: 'Jimmy'}),
  (b:Person {name: 'Jack'}),
  (c:Person {name: 'Alice'}),
  (d:Person {name: 'Ceri'}),
  (e:Person {name: 'Mohammed'}),
  (f:Person {name: 'Michael'}),
  (g:Person {name: 'Ethan'}),
  (h:Person {name: 'Lara'}),
  (i:Person {name: 'Amir'}),
  (j:Person {name: 'Willie'}),

  (b)-[:FRIEND_OF]->(c),
  (c)-[:FRIEND_OF]->(a),
  (c)-[:FRIEND_OF]->(g),
  (c)-[:FRIEND_OF]->(h),
  (c)-[:FRIEND_OF]->(i),
  (c)-[:FRIEND_OF]->(j),
  (d)-[:FRIEND_OF]->(g),
  (f)-[:FRIEND_OF]->(e),
  (f)-[:FRIEND_OF]->(g),
  (g)-[:FRIEND_OF]->(a),
  (g)-[:FRIEND_OF]->(b),
  (g)-[:FRIEND_OF]->(h),
  (g)-[:FRIEND_OF]->(e),
  (h)-[:FRIEND_OF]->(i);

In the example, we will use the CELF algorithm to find k nodes subset.

The following statement will create the graph and store it in the graph catalog.

CALL gds.graph.create(
  'myGraph',
  'Person',
  'FRIEND_OF'
);
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In the following examples we will demonstrate using the CELF algorithm on this graph.

Stream

In the stream execution mode, the algorithm returns the spread for each node. This allows us to inspect the
results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm, and stream results:

CALL gds.alpha.influenceMaximization.celf.stream('myGraph', {seedSetSize: 3, concurrency: 4})
YIELD nodeId, spread
RETURN gds.util.asNode(nodeId).name AS Name, spread
ORDER BY spread ASC

Table 320. Results

Name spread

"Alice" 1.519

"Ethan" 2.701

"Michael" 3.8

Greedy Alpha

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

This topic includes:

• Introduction

• Syntax

• Examples

◦ Stream

Introduction

The Greedy algorithm for influence maximization aims to find k nodes that maximize the expected spread
of influence in a network. It simulates the influence spread using the Independent Cascade model, which
calculates the expected spread by taking the average spread over the mc Monte-Carlo simulations. In the
propagation process, a node is influenced in case that a uniform random draw is less than the probability p.

Kempe et al. 2003 introduced the Greedy algorithm in their study Maximizing the Spread of Influence
through a Social Network to deal with the NP-hard problem of influence maximization. The Greedy
algorithm successively selecting the node within the maximum marginal gain approximation in polynomial
time. For large networks CELF algorithm should be used.
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Syntax

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.
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Greedy syntax per mode

Run Greedy in stream mode on a named graph.

CALL gds.alpha.influenceMaximization.greedy.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  spread : Float

Table 321. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 322. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 323. Algorithm specific configuration

Name Type Default Optional Description

seedSetSize Integer n/a no The number of nodes that maximize the expected
spread in the network.

monteCarlo
Simulations

Integer 1000 yes The number of Monte-Carlo simulations.

propagation
Probability

Float 0.1 yes The probability of a node being activated by an active
neighbour node.

Table 324. Results

Name Type Description

nodeId Integer Node ID.

spread Float The spread gained by selecting the
node.
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Run Greedy in stats mode on a named graph.

CALL gds.alpha.influenceMaximization.greedy.stats(
  graphName: String,
  configuration: Map
)
YIELD
  nodes: Integer,
  computeMillis: Integer,

Table 325. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 326. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 327. Algorithm specific configuration

Name Type Default Optional Description

seedSetSize Integer n/a no The number of nodes that maximize the expected
spread in the network.

monteCarlo
Simulations

Integer 1000 yes The number of Monte-Carlo simulations.

propagation
Probability

Float 0.1 yes The probability of a node being activated by an active
neighbour node.

Table 328. Results

Name Type Description

nodes Integer The number of nodes in the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.
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Examples

In this section we will show examples of running the Greedy algorithm on a concrete graph. The intention
is to illustrate what the results look like and to provide a guide in how to make use of the algorithm in a real
setting. We will do this on a small social network graph of a handful nodes connected in a particular
pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (a:Person {name: 'Jimmy'}),
  (b:Person {name: 'Jack'}),
  (c:Person {name: 'Alice'}),
  (d:Person {name: 'Ceri'}),
  (e:Person {name: 'Mohammed'}),
  (f:Person {name: 'Michael'}),
  (g:Person {name: 'Ethan'}),
  (h:Person {name: 'Lara'}),
  (i:Person {name: 'Amir'}),
  (j:Person {name: 'Willie'}),

  (b)-[:FRIEND_OF]->(c),
  (c)-[:FRIEND_OF]->(a),
  (c)-[:FRIEND_OF]->(g),
  (c)-[:FRIEND_OF]->(h),
  (c)-[:FRIEND_OF]->(i),
  (c)-[:FRIEND_OF]->(j),
  (d)-[:FRIEND_OF]->(g),
  (f)-[:FRIEND_OF]->(e),
  (f)-[:FRIEND_OF]->(g),
  (g)-[:FRIEND_OF]->(a),
  (g)-[:FRIEND_OF]->(b),
  (g)-[:FRIEND_OF]->(h),
  (g)-[:FRIEND_OF]->(e),
  (h)-[:FRIEND_OF]->(i);

In the example, we will use the Greedy algorithm to find k nodes subset.

The following statement will create the graph and store it in the graph catalog.

CALL gds.graph.create(
  'myGraph',
  'Person',
  'FRIEND_OF'
);
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In the following examples we will demonstrate using the Greedy algorithm on this graph.

Stream

In the stream execution mode, the algorithm returns the spread for each node. This allows us to inspect the
results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm, and stream results:

CALL gds.alpha.influenceMaximization.greedy.stream('myGraph', {seedSetSize: 3, concurrency: 4})
YIELD nodeId, spread
RETURN gds.util.asNode(nodeId).name AS Name, spread
ORDER BY spread ASC

Table 329. Results

Name spread

"Alice" 1.519

"Ethan" 2.701

"Michael" 3.8

7.3. Community detection
Community detection algorithms are used to evaluate how groups of nodes are clustered or partitioned, as
well as their tendency to strengthen or break apart. The Neo4j GDS library includes the following
community detection algorithms, grouped by quality tier:

• Production-quality

◦ Louvain

◦ Label Propagation

◦ Weakly Connected Components

◦ Triangle Count

◦ Local Clustering Coefficient

• Beta

◦ K-1 Coloring

◦ Modularity Optimization

• Alpha

◦ Strongly Connected Components

◦ Speaker-Listener Label Propagation

◦ Approximate Maximum k-cut

◦ Conductance metric
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7.3.1. Louvain

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

The Louvain method is an algorithm to detect communities in large networks. It maximizes a modularity
score for each community, where the modularity quantifies the quality of an assignment of nodes to
communities. This means evaluating how much more densely connected the nodes within a community
are, compared to how connected they would be in a random network.

The Louvain algorithm is a hierarchical clustering algorithm, that recursively merges communities into a
single node and executes the modularity clustering on the condensed graphs.

For more information on this algorithm, see:

• Lu, Hao, Mahantesh Halappanavar, and Ananth Kalyanaraman "Parallel heuristics for scalable
community detection."

• https://en.wikipedia.org/wiki/Louvain_modularity


Running this algorithm requires sufficient memory availability. Before running this
algorithm, we recommend that you read Memory Estimation.

Syntax

This section covers the syntax used to execute the Louvain algorithm in each of its execution modes. We
are describing the named graph variant of the syntax. To learn more about general syntax variants, see
Syntax overview.
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Louvain syntax per mode
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Run Louvain in stream mode on a named graph.

CALL gds.louvain.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  communityId: Integer,
  intermediateCommunityIds: List of Integer

Table 330. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 331. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 332. Algorithm specific configuration

Name Type Default Optional Description

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedPropert
y

String n/a yes Used to set the initial community for a node. The
property value needs to be a number.

maxLevels Integer 10 yes The maximum number of levels in which the graph is
clustered and then condensed.

maxIteration
s

Integer 10 yes The maximum number of iterations that the modularity
optimization will run for each level.

tolerance Float 0.0001 yes Minimum change in modularity between iterations. If
the modularity changes less than the tolerance value,
the result is considered stable and the algorithm
returns.

includeInter
mediateCom
munities

Boolean false yes Indicates whether to write intermediate communities. If
set to false, only the final community is persisted.
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Name Type Default Optional Description

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory). Cannot be used in combination with the
includeIntermediateCommunities flag.

Table 333. Results

Name Type Description

nodeId Integer Node ID.

communityI
d

Integer The community ID of the final level.

intermediate
CommunityI
ds

List of
Integer

Community IDs for each level. Null if includeIntermediateCommunities is set to
false.
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Run Louvain in stats mode on a named graph.

CALL gds.louvain.stats(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  communityCount: Integer,
  ranLevels: Integer,
  modularity: Float,
  modularities: List of Float,
  communityDistribution: Map,
  configuration: Map

Table 334. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 335. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 336. Algorithm specific configuration

Name Type Default Optional Description

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedPropert
y

String n/a yes Used to set the initial community for a node. The
property value needs to be a number.

maxLevels Integer 10 yes The maximum number of levels in which the graph is
clustered and then condensed.

maxIteration
s

Integer 10 yes The maximum number of iterations that the modularity
optimization will run for each level.

tolerance Float 0.0001 yes Minimum change in modularity between iterations. If
the modularity changes less than the tolerance value,
the result is considered stable and the algorithm
returns.
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Name Type Default Optional Description

includeInter
mediateCom
munities

Boolean false yes Indicates whether to write intermediate communities. If
set to false, only the final community is persisted.

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory). Cannot be used in combination with the
includeIntermediateCommunities flag.

Table 337. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing percentiles and community count.

communityC
ount

Integer The number of communities found.

ranLevels Integer The number of supersteps the algorithm actually ran.

modularity Float The final modularity score.

modularities List of Float The modularity scores for each level.

communityD
istribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of community size for the last level.

configuratio
n

Map The configuration used for running the algorithm.
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Run Louvain in mutate mode on a named graph.

CALL gds.louvain.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  mutateMillis: Integer,
  postProcessingMillis: Integer,
  communityCount: Integer,
  ranLevels: Integer,
  modularity: Float,
  modularities: List of Float,
  nodePropertiesWritten: Integer,
  communityDistribution: Map,
  configuration: Map

Table 338. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 339. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 340. Algorithm specific configuration

Name Type Default Optional Description

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedPropert
y

String n/a yes Used to set the initial community for a node. The
property value needs to be a number.

maxLevels Integer 10 yes The maximum number of levels in which the graph is
clustered and then condensed.

maxIteration
s

Integer 10 yes The maximum number of iterations that the modularity
optimization will run for each level.

tolerance Float 0.0001 yes Minimum change in modularity between iterations. If
the modularity changes less than the tolerance value,
the result is considered stable and the algorithm
returns.
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Name Type Default Optional Description

includeInter
mediateCom
munities

Boolean false yes Indicates whether to write intermediate communities. If
set to false, only the final community is persisted.

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory). Cannot be used in combination with the
includeIntermediateCommunities flag.

Table 341. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

postProcessi
ngMillis

Integer Milliseconds for computing percentiles and community count.

communityC
ount

Integer The number of communities found.

ranLevels Integer The number of supersteps the algorithm actually ran.

modularity Float The final modularity score.

modularities List of Float The modularity scores for each level.

nodePropert
iesWritten

Integer Number of properties added to the in-memory graph.

communityD
istribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of community size for the last level.

configuratio
n

Map The configuration used for running the algorithm.
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Run Louvain in write mode on a named graph.

CALL gds.louvain.write(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  postProcessingMillis: Integer,
  nodePropertiesWritten: Integer,
  communityCount: Integer,
  ranLevels: Integer,
  modularity: Float,
  modularities: List of Float,
  communityDistribution: Map,
  configuration: Map

Table 342. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 343. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 344. Algorithm specific configuration

Name Type Default Optional Description

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedPropert
y

String n/a yes Used to set the initial community for a node. The
property value needs to be a number.

maxLevels Integer 10 yes The maximum number of levels in which the graph is
clustered and then condensed.

maxIteration
s

Integer 10 yes The maximum number of iterations that the modularity
optimization will run for each level.
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Name Type Default Optional Description

tolerance Float 0.0001 yes Minimum change in modularity between iterations. If
the modularity changes less than the tolerance value,
the result is considered stable and the algorithm
returns.

includeInter
mediateCom
munities

Boolean false yes Indicates whether to write intermediate communities. If
set to false, only the final community is persisted.

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory). Cannot be used in combination with the
includeIntermediateCommunities flag.

minCommun
itySize

Integer 0 yes Only community ids of communities with a size greater
than or equal to the given value are written to Neo4j.

Table 345. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

writeMillis Integer Milliseconds for writing result data back.

postProcessi
ngMillis

Integer Milliseconds for computing percentiles and community count.

nodePropert
iesWritten

Integer The number of node properties written.

communityC
ount

Integer The number of communities found.

ranLevels Integer The number of supersteps the algorithm actually ran.

modularity Float The final modularity score.

modularities List of Float The modularity scores for each level.

communityD
istribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of community size for the last level.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

230



Run Louvain in write mode on an anonymous graph.

CALL gds.louvain.write(configuration: Map)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  postProcessingMillis: Integer,
  nodePropertiesWritten: Integer,
  communityCount: Integer,
  ranLevels: Integer,
  modularity: Float,
  modularities: List of Float,
  communityDistribution: Map,
  configuration: Map

Table 346. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 347. Algorithm specific configuration

Name Type Default Optional Description

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedProperty String n/a yes Used to set the initial community for a node. The property
value needs to be a number.

maxLevels Integer 10 yes The maximum number of levels in which the graph is
clustered and then condensed.
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Name Type Default Optional Description

maxIterations Integer 10 yes The maximum number of iterations that the modularity
optimization will run for each level.

tolerance Float 0.0001 yes Minimum change in modularity between iterations. If the
modularity changes less than the tolerance value, the result is
considered stable and the algorithm returns.

includeInterm
ediateCommu
nities

Boolean false yes Indicates whether to write intermediate communities. If set to
false, only the final community is persisted.

consecutiveId
s

Boolean false yes Flag to decide whether component identifiers are mapped
into a consecutive id space (requires additional memory).
Cannot be used in combination with the
includeIntermediateCommunities flag.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the Louvain community detection algorithm on a concrete
graph. The intention is to illustrate what the results look like and to provide a guide in how to make use of
the algorithm in a real setting. We will do this on a small social network graph of a handful nodes
connected in a particular pattern. The example graph looks like this:

LINK
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LINK
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K

LINK

LIN
KLI

NK

Bridget Charles

Doug

Mark

Michael

Alice

The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (nAlice:User {name: 'Alice', seed: 42}),
  (nBridget:User {name: 'Bridget', seed: 42}),
  (nCharles:User {name: 'Charles', seed: 42}),
  (nDoug:User {name: 'Doug'}),
  (nMark:User {name: 'Mark'}),
  (nMichael:User {name: 'Michael'}),

  (nAlice)-[:LINK {weight: 1}]->(nBridget),
  (nAlice)-[:LINK {weight: 1}]->(nCharles),
  (nCharles)-[:LINK {weight: 1}]->(nBridget),

  (nAlice)-[:LINK {weight: 5}]->(nDoug),

  (nMark)-[:LINK {weight: 1}]->(nDoug),
  (nMark)-[:LINK {weight: 1}]->(nMichael),
  (nMichael)-[:LINK {weight: 1}]->(nMark);
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This graph has two clusters of Users, that are closely connected. Between those clusters there is one
single edge. The relationships that connect the nodes in each component have a property weight which
determines the strength of the relationship.

We can now create the graph and store it in the graph catalog. We load the LINK relationships with
orientation set to UNDIRECTED as this works best with the Louvain algorithm.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create the graph and store it in the graph catalog.

CALL gds.graph.create(
    'myGraph',
    'User',
    {
        LINK: {
            orientation: 'UNDIRECTED'
        }
    },
    {
        nodeProperties: 'seed',
        relationshipProperties: 'weight'
    }
)

In the following examples we will demonstrate using the Louvain algorithm on this graph.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.

The following will estimate the memory requirements for running the algorithm:

CALL gds.louvain.write.estimate('myGraph', { writeProperty: 'community' })
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 348. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

6 14 5321 563904 "[5321 Bytes ... 550
KiB]"
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Stream

In the stream execution mode, the algorithm returns the community ID for each node. This allows us to
inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm and stream results:

CALL gds.louvain.stream('myGraph')
YIELD nodeId, communityId, intermediateCommunityIds
RETURN gds.util.asNode(nodeId).name AS name, communityId, intermediateCommunityIds
ORDER BY name ASC

Table 349. Results

name communityId intermediateCommunityIds

"Alice" 2 null

"Bridget" 2 null

"Charles" 2 null

"Doug" 5 null

"Mark" 5 null

"Michael" 5 null

We use default values for the procedure configuration parameter. Levels and innerIterations are set to
10 and the tolerance value is 0.0001. Because we did not set the value of
includeIntermediateCommunities to true, the column communities is always null.

Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.

The following will run the algorithm and returns the result in form of statistical and measurement values

CALL gds.louvain.stats('myGraph')
YIELD communityCount

Table 350. Results

communityCount

2
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Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new node property containing the community ID for that node. The name of the new property
is specified using the mandatory configuration parameter mutateProperty. The result is a single summary
row, similar to stats, but with some additional metrics. The mutate mode is especially useful when multiple
algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm and store the results in myGraph:

CALL gds.louvain.mutate('myGraph', { mutateProperty: 'communityId' })
YIELD communityCount, modularity, modularities

Table 351. Results

communityCount modularity modularities

2 0.3571428571428571 [0.3571428571428571]

In mutate mode, only a single row is returned by the procedure. The result contains meta information, like
the number of identified communities and the modularity values. In contrast to the write mode the result is
written to the GDS in-memory graph instead of the Neo4j database.

Write

The write execution mode extends the stats mode with an important side effect: writing the community
ID for each node as a property to the Neo4j database. The name of the new property is specified using the
mandatory configuration parameter writeProperty. The result is a single summary row, similar to stats,
but with some additional metrics. The write mode enables directly persisting the results to the database.

For more details on the write mode in general, see Write.

The following run the algorithm, and write back results:

CALL gds.louvain.write('myGraph', { writeProperty: 'community' })
YIELD communityCount, modularity, modularities

Table 352. Results

communityCount modularity modularities

2 0.3571428571428571 [0.3571428571428571]

When writing back the results, only a single row is returned by the procedure. The result contains meta
information, like the number of identified communities and the modularity values.
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Weighted

The Louvain algorithm can also run on weighted graphs, taking the given relationship weights into concern
when calculating the modularity.

The following will run the algorithm on a weighted graph and stream results:

CALL gds.louvain.stream('myGraph', { relationshipWeightProperty: 'weight' })
YIELD nodeId, communityId, intermediateCommunityIds
RETURN gds.util.asNode(nodeId).name AS name, communityId, intermediateCommunityIds
ORDER BY name ASC

Table 353. Results

name communityId intermediateCommunityIds

"Alice" 3 null

"Bridget" 2 null

"Charles" 2 null

"Doug" 3 null

"Mark" 5 null

"Michael" 5 null

Using the weighted relationships, we see that Alice and Doug have formed their own community, as their
link is much stronger than all the others.

Seeded

The Louvain algorithm can be run incrementally, by providing a seed property. With the seed property an
initial community mapping can be supplied for a subset of the loaded nodes. The algorithm will try to keep
the seeded community IDs.

The following will run the algorithm and stream results:

CALL gds.louvain.stream('myGraph', { seedProperty: 'seed' })
YIELD nodeId, communityId, intermediateCommunityIds
RETURN gds.util.asNode(nodeId).name AS name, communityId, intermediateCommunityIds
ORDER BY name ASC

Table 354. Results

name communityId intermediateCommunityIds

"Alice" 42 null

"Bridget" 42 null

"Charles" 42 null

"Doug" 47 null

"Mark" 47 null
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name communityId intermediateCommunityIds

"Michael" 47 null

Using the seeded graph, we see that the community around Alice keeps its initial community ID of 42. The
other community is assigned a new community ID, which is guaranteed to be larger than the largest
seeded community ID. Note that the consecutiveIds configuration option cannot be used in combination
with seeding in order to retain the seeding values.

Stream intermediate communities

As described before, Louvain is a hierarchical clustering algorithm. That means that after every clustering
step all nodes that belong to the same cluster are reduced to a single node. Relationships between nodes
of the same cluster become self-relationships, relationships to nodes of other clusters connect to the
clusters representative. This condensed graph is then used to run the next level of clustering. The process
is repeated until the clusters are stable.

In order to demonstrate this iterative behavior, we need to construct a more complex graph.
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CREATE (a:Node {name: 'a'})
CREATE (b:Node {name: 'b'})
CREATE (c:Node {name: 'c'})
CREATE (d:Node {name: 'd'})
CREATE (e:Node {name: 'e'})
CREATE (f:Node {name: 'f'})
CREATE (g:Node {name: 'g'})
CREATE (h:Node {name: 'h'})
CREATE (i:Node {name: 'i'})
CREATE (j:Node {name: 'j'})
CREATE (k:Node {name: 'k'})
CREATE (l:Node {name: 'l'})
CREATE (m:Node {name: 'm'})
CREATE (n:Node {name: 'n'})
CREATE (x:Node {name: 'x'})

CREATE (a)-[:TYPE]->(b)
CREATE (a)-[:TYPE]->(d)
CREATE (a)-[:TYPE]->(f)
CREATE (b)-[:TYPE]->(d)
CREATE (b)-[:TYPE]->(x)
CREATE (b)-[:TYPE]->(g)
CREATE (b)-[:TYPE]->(e)
CREATE (c)-[:TYPE]->(x)
CREATE (c)-[:TYPE]->(f)
CREATE (d)-[:TYPE]->(k)
CREATE (e)-[:TYPE]->(x)
CREATE (e)-[:TYPE]->(f)
CREATE (e)-[:TYPE]->(h)
CREATE (f)-[:TYPE]->(g)
CREATE (g)-[:TYPE]->(h)
CREATE (h)-[:TYPE]->(i)
CREATE (h)-[:TYPE]->(j)
CREATE (i)-[:TYPE]->(k)
CREATE (j)-[:TYPE]->(k)
CREATE (j)-[:TYPE]->(m)
CREATE (j)-[:TYPE]->(n)
CREATE (k)-[:TYPE]->(m)
CREATE (k)-[:TYPE]->(l)
CREATE (l)-[:TYPE]->(n)
CREATE (m)-[:TYPE]->(n);

The following will load the example graph, run the algorithm and stream results including the intermediate
communities:

CALL gds.louvain.stream({
    nodeProjection: 'Node',
    relationshipProjection: {
        TYPE: {
            type: 'TYPE',
            orientation: 'undirected',
            aggregation: 'NONE'
        }
    },
    includeIntermediateCommunities: true
}) YIELD nodeId, communityId, intermediateCommunityIds
RETURN gds.util.asNode(nodeId).name AS name, communityId, intermediateCommunityIds
ORDER BY name ASC

Table 355. Results

name communityId intermediateCommunityIds

"a" 14 [3, 14]

"b" 14 [3, 14]

"c" 14 [14, 14]

"d" 14 [3, 14]
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name communityId intermediateCommunityIds

"e" 14 [14, 14]

"f" 14 [14, 14]

"g" 7 [7, 7]

"h" 7 [7, 7]

"i" 7 [7, 7]

"j" 12 [12, 12]

"k" 12 [12, 12]

"l" 12 [12, 12]

"m" 12 [12, 12]

"n" 12 [12, 12]

"x" 14 [14, 14]

In this example graph, after the first iteration we see 4 clusters, which in the second iteration are reduced
to three.

7.3.2. Label Propagation

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

The Label Propagation algorithm (LPA) is a fast algorithm for finding communities in a graph. It detects
these communities using network structure alone as its guide, and doesn’t require a pre-defined objective
function or prior information about the communities.

LPA works by propagating labels throughout the network and forming communities based on this process
of label propagation.

The intuition behind the algorithm is that a single label can quickly become dominant in a densely
connected group of nodes, but will have trouble crossing a sparsely connected region. Labels will get
trapped inside a densely connected group of nodes, and those nodes that end up with the same label
when the algorithms finish can be considered part of the same community.

The algorithm works as follows:
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• Every node is initialized with a unique community label (an identifier).

• These labels propagate through the network.

• At every iteration of propagation, each node updates its label to the one that the maximum numbers of
its neighbours belongs to. Ties are broken arbitrarily but deterministically.

• LPA reaches convergence when each node has the majority label of its neighbours.

• LPA stops if either convergence, or the user-defined maximum number of iterations is achieved.

As labels propagate, densely connected groups of nodes quickly reach a consensus on a unique label. At
the end of the propagation only a few labels will remain - most will have disappeared. Nodes that have the
same community label at convergence are said to belong to the same community.

One interesting feature of LPA is that nodes can be assigned preliminary labels to narrow down the range
of solutions generated. This means that it can be used as semi-supervised way of finding communities
where we hand-pick some initial communities.

For more information on this algorithm, see:

• "Near linear time algorithm to detect community structures in large-scale networks"

• Use cases:

◦ Twitter polarity classification with label propagation over lexical links and the follower graph

◦ Label Propagation Prediction of Drug-Drug Interactions Based on Clinical Side Effects

◦ "Feature Inference Based on Label Propagation on Wikidata Graph for DST"


Running this algorithm requires sufficient memory availability. Before running this
algorithm, we recommend that you read Memory Estimation.

Syntax

This section covers the syntax used to execute the Label Propagation algorithm in each of its execution
modes. We are describing the named graph variant of the syntax. To learn more about general syntax
variants, see Syntax overview.
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Label Propagation syntax per mode
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Run Label Propagation in stream mode on a named graph.

CALL gds.labelPropagation.stream(
  graphName: String,
  configuration: Map
)
YIELD
    nodeId: Integer,
    communityId: Integer

Table 356. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 357. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 358. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer 10 yes The maximum number of iterations to run.

nodeWeight
Property

String null yes The name of a node property that contains node
weights.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedPropert
y

String n/a yes The name of a node property that defines an initial
numeric label.

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory).

Table 359. Results

Name Type Description

nodeId Integer Node ID.

communityId Integer Community ID.
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Run Label Propagation in stats mode on a named graph.

CALL gds.labelPropagation.stats(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  communityCount: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  communityDistribution: Map,
  configuration: Map

Table 360. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 361. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 362. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer 10 yes The maximum number of iterations to run.

nodeWeight
Property

String null yes The name of a node property that contains node
weights.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedPropert
y

String n/a yes The name of a node property that defines an initial
numeric label.

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory).

Table 363. Results
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Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing percentiles and community count.

communityC
ount

Integer The number of communities found.

ranIterations Integer The number of iterations that were executed.

didConverge Boolean True if the algorithm did converge to a stable labelling within the provided number
of maximum iterations.

communityD
istribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of community size.

configuratio
n

Map The configuration used for running the algorithm.
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Run Label Propagation in mutate mode on a named graph.

CALL gds.labelPropagation.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  mutateMillis: Integer,
  postProcessingMillis: Integer,
  nodePropertiesWritten: Integer,
  communityCount: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  communityDistribution: Map,
  configuration: Map

Table 364. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 365. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 366. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer 10 yes The maximum number of iterations to run.

nodeWeight
Property

String null yes The name of a node property that contains node
weights.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedPropert
y

String n/a yes The name of a node property that defines an initial
numeric label.

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory).
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Table 367. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

postProcessi
ngMillis

Integer Milliseconds for computing percentiles and community count.

nodePropert
iesWritten

Integer The number of node properties written.

communityC
ount

Integer The number of communities found.

ranIterations Integer The number of iterations that were executed.

didConverge Boolean True if the algorithm did converge to a stable labelling within the provided number
of maximum iterations.

communityD
istribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of community size.

configuratio
n

Map The configuration used for running the algorithm.
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Run Label Propagation in write mode on a named graph.

CALL gds.labelPropagation.write(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  postProcessingMillis: Integer,
  nodePropertiesWritten: Integer,
  communityCount: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  communityDistribution: Map,
  configuration: Map

Table 368. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 369. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 370. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer 10 yes The maximum number of iterations to run.

nodeWeight
Property

String null yes The name of a node property that contains node
weights.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedPropert
y

String n/a yes The name of a node property that defines an initial
numeric label.
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Name Type Default Optional Description

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory).

minCommun
itySize

Integer 0 yes Only community ids of communities with a size greater
than or equal to the given value are written to Neo4j.

Table 371. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

writeMillis Integer Milliseconds for writing result data back.

postProcessi
ngMillis

Integer Milliseconds for computing percentiles and community count.

nodePropert
iesWritten

Integer The number of node properties written.

communityC
ount

Integer The number of communities found.

ranIterations Integer The number of iterations that were executed.

didConverge Boolean True if the algorithm did converge to a stable labelling within the provided number
of maximum iterations.

communityD
istribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of community size.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.
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Run Label Propagation in write mode on an anonymous graph:

CALL gds.labelPropagation.write(
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  postProcessingMillis: Integer,
  nodePropertiesWritten: Integer,
  communityCount: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  communityDistribution: Map,
  configuration: Map

Table 372. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 373. Algorithm specific configuration

Name Type Default Optional Description

maxIterations Integer 10 yes The maximum number of iterations to run.

nodeWeightP
roperty

String null yes The name of a node property that contains node weights.

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.
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Name Type Default Optional Description

seedProperty String n/a yes The name of a node property that defines an initial numeric
label.

consecutiveId
s

Boolean false yes Flag to decide whether component identifiers are mapped
into a consecutive id space (requires additional memory).

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the Label Propagation algorithm on a concrete graph.
The intention is to illustrate what the results look like and to provide a guide in how to make use of the
algorithm in a real setting. We will do this on a small social network graph of a handful nodes connected in
a particular pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (alice:User {name: 'Alice', seed_label: 52}),
  (bridget:User {name: 'Bridget', seed_label: 21}),
  (charles:User {name: 'Charles', seed_label: 43}),
  (doug:User {name: 'Doug', seed_label: 21}),
  (mark:User {name: 'Mark', seed_label: 19}),
  (michael:User {name: 'Michael', seed_label: 52}),

  (alice)-[:FOLLOW {weight: 1}]->(bridget),
  (alice)-[:FOLLOW {weight: 10}]->(charles),
  (mark)-[:FOLLOW {weight: 1}]->(doug),
  (bridget)-[:FOLLOW {weight: 1}]->(michael),
  (doug)-[:FOLLOW {weight: 1}]->(mark),
  (michael)-[:FOLLOW {weight: 1}]->(alice),
  (alice)-[:FOLLOW {weight: 1}]->(michael),
  (bridget)-[:FOLLOW {weight: 1}]->(alice),
  (michael)-[:FOLLOW {weight: 1}]->(bridget),
  (charles)-[:FOLLOW {weight: 1}]->(doug)

This graph represents six users, some of whom follow each other. Besides a name property, each user also
has a seed_label property. The seed_label property represents a value in the graph used to seed the node
with a label. For example, this can be a result from a previous run of the Label Propagation algorithm. In
addition, each relationship has a weight property.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

250



The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
    'myGraph',
    'User',
    'FOLLOW',
    {
        nodeProperties: 'seed_label',
        relationshipProperties: 'weight'
    }
)

In the following examples we will demonstrate using the Label Propagation algorithm on this graph.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.

The following will estimate the memory requirements for running the algorithm in write mode:

CALL gds.labelPropagation.write.estimate('myGraph', { writeProperty: 'community' })
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 374. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

6 10 1608 1608 "1608 Bytes"

Stream

In the stream execution mode, the algorithm returns the community ID for each node. This allows us to
inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm and stream results:

CALL gds.labelPropagation.stream('myGraph')
YIELD nodeId, communityId AS Community
RETURN gds.util.asNode(nodeId).name AS Name, Community
ORDER BY Community, Name

Table 375. Results
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Name Community

"Alice" 1

"Bridget" 1

"Michael" 1

"Charles" 4

"Doug" 4

"Mark" 4

In the above example we can see that our graph has two communities each containing three nodes. The
default behaviour of the algorithm is to run unweighted, e.g. without using node or relationship weights.
The weighted option will be demonstrated in Weighted

Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.

The following will run the algorithm in stats mode:

CALL gds.labelPropagation.stats('myGraph')
YIELD communityCount, ranIterations, didConverge

Table 376. Results

communityCount ranIterations didConverge

2 3 true

As we can see from the example above the algorithm finds two communities and converges in three
iterations. Note that we ran the algorithm unweighted.

Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new node property containing the community ID for that node. The name of the new property
is specified using the mandatory configuration parameter mutateProperty. The result is a single summary
row, similar to stats, but with some additional metrics. The mutate mode is especially useful when multiple
algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.
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The following will run the algorithm and write back results:

CALL gds.labelPropagation.mutate('myGraph', { mutateProperty: 'community' })
YIELD communityCount, ranIterations, didConverge

Table 377. Results

communityCount ranIterations didConverge

2 3 true

The returned result is the same as in the stats example. Additionally, the graph 'myGraph' now has a node
property community which stores the community ID for each node. To find out how to inspect the new
schema of the in-memory graph, see Listing graphs.

Write

The write execution mode extends the stats mode with an important side effect: writing the community
ID for each node as a property to the Neo4j database. The name of the new property is specified using the
mandatory configuration parameter writeProperty. The result is a single summary row, similar to stats,
but with some additional metrics. The write mode enables directly persisting the results to the database.

For more details on the write mode in general, see Write.

The following will run the algorithm and write back results:

CALL gds.labelPropagation.write('myGraph', { writeProperty: 'community' })
YIELD communityCount, ranIterations, didConverge

Table 378. Results

communityCount ranIterations didConverge

2 3 true

The returned result is the same as in the stats example. Additionally, each of the six nodes now has a new
property community in the Neo4j database, containing the community ID for that node.

Weighted

The Label Propagation algorithm can also be configured to use node and/or relationship weights into
account. By specifying a node weight via the nodeWeightProperty key, we can control the influence of a
nodes community onto its neighbors. During the computation of the weight of a specific community, the
node property will be multiplied by the weight of that nodes relationships.

When we created myGraph, we projected the relationship property weight. In order to tell the algorithm to
consider this property as a relationship weight, we have to set the relationshipWeightProperty
configuration parameter to weight.
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The following will run the algorithm on a graph with weighted relationships and stream results:

CALL gds.labelPropagation.stream('myGraph', { relationshipWeightProperty: 'weight' })
YIELD nodeId, communityId AS Community
RETURN gds.util.asNode(nodeId).name AS Name, Community
ORDER BY Community, Name

Table 379. Results

Name Community

"Bridget" 2

"Michael" 2

"Alice" 4

"Charles" 4

"Doug" 4

"Mark" 4

Compared to the unweighted run of the algorithm we still have two communities, but they contain two
and four nodes respectively. Using the weighted relationships, the nodes Alice and Charles are now in the
same community as there is a strong link between them.


We have used the stream mode to demonstrate running the algorithm using weights,
the configuration parameters are available for all the modes of the algorithm.

Seeded communities

At the beginning of the algorithm computation, every node is initialized with a unique label, and the labels
propagate through the network.

An initial set of labels can be provided by setting the seedProperty configuration parameter. When we
created myGraph, we projected the node property seed_label. We can use this node property as
seedProperty.

The algorithm first checks if there is a seed label assigned to the node. If no seed label is present, the
algorithm assigns new unique label to the node. Using this preliminary set of labels, it then sequentially
updates each node’s label to a new one, which is the most frequent label among its neighbors at every
iteration of label propagation.


The consecutiveIds configuration option cannot be used in combination with
seedProperty in order to retain the seeding values.

The following will run the algorithm with pre-defined labels:

CALL gds.labelPropagation.stream('myGraph', { seedProperty: 'seed_label' })
YIELD nodeId, communityId AS Community
RETURN gds.util.asNode(nodeId).name AS Name, Community
ORDER BY Community, Name
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Table 380. Results

Name Community

"Charles" 19

"Doug" 19

"Mark" 19

"Alice" 21

"Bridget" 21

"Michael" 21

As we can see, the communities are based on the seed_label property, concretely 19 is from the node Mark
and 21 from Doug.


We have used the stream mode to demonstrate running the algorithm using
seedProperty, this configuration parameter is available for all the modes of the algorithm.

7.3.3. Weakly Connected Components

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

The WCC algorithm finds sets of connected nodes in an undirected graph, where all nodes in the same set
form a connected component. WCC is often used early in an analysis to understand the structure of a
graph. Using WCC to understand the graph structure enables running other algorithms independently on
an identified cluster. As a preprocessing step for directed graphs, it helps quickly identify disconnected
groups.

For more information on this algorithm, see:

• "An efficient domain-independent algorithm for detecting approximately duplicate database records".

• One study uses WCC to work out how well connected the network is, and then to see whether the
connectivity remains if 'hub' or 'authority' nodes are moved from the graph: "Characterizing and Mining
Citation Graph of Computer Science Literature"


Running this algorithm requires sufficient memory availability. Before running this
algorithm, we recommend that you read Memory Estimation.
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Syntax

This section covers the syntax used to execute the Weakly Connected Components algorithm in each of its
execution modes. We are describing the named graph variant of the syntax. To learn more about general
syntax variants, see Syntax overview.
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WCC syntax per mode
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Run WCC in stream mode on a named graph.

CALL gds.wcc.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  componentId: Integer

Table 381. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 382. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 383. Algorithm specific configuration

Name Type Default Optional Description

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedPropert
y

String n/a yes Used to set the initial component for a node. The
property value needs to be a number.

threshold Float null yes The value of the weight above which the relationship is
considered in the computation.

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory).

Table 384. Results

Name Type Description

nodeId Integer Node ID.

componentI
d

Integer Component ID.
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Run WCC in stats mode on a named graph.

CALL gds.wcc.stats(
  graphName: String,
  configuration: Map
)
YIELD
  componentCount: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  componentDistribution: Map,
  configuration: Map

Table 385. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 386. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 387. Algorithm specific configuration

Name Type Default Optional Description

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedPropert
y

String n/a yes Used to set the initial component for a node. The
property value needs to be a number.

threshold Float null yes The value of the weight above which the relationship is
considered in the computation.

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory).

Table 388. Results

Name Type Description

componentC
ount

Integer The number of computed components.
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Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing component count and distribution statistics.

component
Distribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of component sizes.

configuratio
n

Map The configuration used for running the algorithm.
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Run WCC in mutate mode on a named graph.

CALL gds.wcc.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  componentCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  mutateMillis: Integer,
  postProcessingMillis: Integer,
  componentDistribution: Map,
  configuration: Map

Table 389. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 390. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 391. Algorithm specific configuration

Name Type Default Optional Description

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedPropert
y

String n/a yes Used to set the initial component for a node. The
property value needs to be a number.

threshold Float null yes The value of the weight above which the relationship is
considered in the computation.

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory).

Table 392. Results
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Name Type Description

componentC
ount

Integer The number of computed components.

nodePropert
iesWritten

Integer The number of node properties written.

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

postProcessi
ngMillis

Integer Milliseconds for computing component count and distribution statistics.

component
Distribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of component sizes.

configuratio
n

Map The configuration used for running the algorithm.
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Run WCC in write mode on a named graph.

CALL gds.wcc.write(
  graphName: String,
  configuration: Map
)
YIELD
  componentCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  postProcessingMillis: Integer,
  componentDistribution: Map,
  configuration: Map

Table 393. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 394. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 395. Algorithm specific configuration

Name Type Default Optional Description

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedPropert
y

String n/a yes Used to set the initial component for a node. The
property value needs to be a number.

threshold Float null yes The value of the weight above which the relationship is
considered in the computation.

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory).
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Name Type Default Optional Description

minCompon
entSize

Integer 0 yes Only component ids of components with a size greater
than or equal to the given value are written to Neo4j.

Table 396. Results

Name Type Description

componentC
ount

Integer The number of computed components.

nodePropert
iesWritten

Integer The number of node properties written.

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

writeMillis Integer Milliseconds for writing result back to Neo4j.

postProcessi
ngMillis

Integer Milliseconds for computing component count and distribution statistics.

component
Distribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of component sizes.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run WCC in write mode on an anonymous graph:

CALL gds.wcc.write(
  configuration: Map
)
YIELD
  componentCount: Integer,
  nodePropertiesWritten: Integer,
  relationshipPropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  postProcessingMillis: Integer,
  componentDistribution: Map,
  configuration: Map
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Table 397. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 398. Algorithm specific configuration

Name Type Default Optional Description

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

seedProperty String n/a yes Used to set the initial component for a node. The property
value needs to be a number.

threshold Float null yes The value of the weight above which the relationship is
considered in the computation.

consecutiveId
s

Boolean false yes Flag to decide whether component identifiers are mapped
into a consecutive id space (requires additional memory).

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the Weakly Connected Components algorithm on a
concrete graph. The intention is to illustrate what the results look like and to provide a guide in how to
make use of the algorithm in a real setting. We will do this on a small user network graph of a handful
nodes connected in a particular pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (nAlice:User {name: 'Alice'}),
  (nBridget:User {name: 'Bridget'}),
  (nCharles:User {name: 'Charles'}),
  (nDoug:User {name: 'Doug'}),
  (nMark:User {name: 'Mark'}),
  (nMichael:User {name: 'Michael'}),

  (nAlice)-[:LINK {weight: 0.5}]->(nBridget),
  (nAlice)-[:LINK {weight: 4}]->(nCharles),
  (nMark)-[:LINK {weight: 1.1}]->(nDoug),
  (nMark)-[:LINK {weight: 2}]->(nMichael);

This graph has two connected components, each with three nodes. The relationships that connect the
nodes in each component have a property weight which determines the strength of the relationship.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
  'myGraph',
  'User',
  'LINK',
  {
    relationshipProperties: 'weight'
  }
)

In the following examples we will demonstrate using the Weakly Connected Components algorithm on
this graph.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
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actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.

The following will estimate the memory requirements for running the algorithm in write mode:

CALL gds.wcc.write.estimate('myGraph', { writeProperty: 'component' })
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 399. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

6 4 176 176 "176 Bytes"

Stream

In the stream execution mode, the algorithm returns the component ID for each node. This allows us to
inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm and stream results:

CALL gds.wcc.stream('myGraph')
YIELD nodeId, componentId
RETURN gds.util.asNode(nodeId).name AS name, componentId
ORDER BY componentId, name

Table 400. Results

name componentId

"Alice" 0

"Bridget" 0

"Charles" 0

"Doug" 3

"Mark" 3

"Michael" 3

The result shows that the algorithm identifies two components. This can be verified in the example graph.

The default behaviour of the algorithm is to run unweighted, e.g. without using relationship weights. The
weighted option will be demonstrated in Weighted
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Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.

The following will run the algorithm in stats mode:

CALL gds.wcc.stats('myGraph')
YIELD componentCount

Table 401. Results

componentCount

2

The result shows that myGraph has two components and this can be verified by looking at the example
graph.

Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new node property containing the component ID for that node. The name of the new
property is specified using the mandatory configuration parameter mutateProperty. The result is a single
summary row, similar to stats, but with some additional metrics. The mutate mode is especially useful
when multiple algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

CALL gds.wcc.mutate('myGraph', { mutateProperty: 'componentId' })
YIELD nodePropertiesWritten, componentCount;

Table 402. Results

nodePropertiesWritten componentCount

6 2

Write

The write execution mode extends the stats mode with an important side effect: writing the component
ID for each node as a property to the Neo4j database. The name of the new property is specified using the
mandatory configuration parameter writeProperty. The result is a single summary row, similar to stats,
but with some additional metrics. The write mode enables directly persisting the results to the database.
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For more details on the write mode in general, see Write.

The following will run the algorithm in write mode:

CALL gds.wcc.write('myGraph', { writeProperty: 'componentId' })
YIELD nodePropertiesWritten, componentCount;

Table 403. Results

nodePropertiesWritten componentCount

6 2

As we can see from the results, the nodes connected to one another are calculated by the algorithm as
belonging to the same connected component.

Weighted

By configuring the algorithm to use a weight we can increase granularity in the way the algorithm
calculates component assignment. We do this by specifying the property key with the
relationshipWeightProperty configuration parameter. Additionally, we can specify a threshold for the
weight value. Then, only weights greater than the threshold value will be considered by the algorithm. We
do this by specifying the threshold value with the threshold configuration parameter.

If a relationship does not have the specified weight property, the algorithm falls back to using a default
value of zero.

The following will run the algorithm and stream results:

CALL gds.wcc.stream('myGraph', {
  relationshipWeightProperty: 'weight',
  threshold: 1.0
}) YIELD nodeId, componentId
RETURN gds.util.asNode(nodeId).name AS Name, componentId AS ComponentId
ORDER BY ComponentId, Name

Table 404. Results

Name ComponentId

"Alice" 0

"Charles" 0

"Bridget" 1

"Doug" 3

"Mark" 3

"Michael" 3

As we can see from the results, the node named 'Bridget' is now in its own component, due to its
relationship weight being less than the configured threshold and thus ignored.

269




We are using stream mode to illustrate running the algorithm as weighted or
unweighted, all the other algorithm modes also support this configuration parameter.

Seeded components

It is possible to define preliminary component IDs for nodes using the seedProperty configuration
parameter. This is helpful if we want to retain components from a previous run and it is known that no
components have been split by removing relationships. The property value needs to be a number.

The algorithm first checks if there is a seeded component ID assigned to the node. If there is one, that
component ID is used. Otherwise, a new unique component ID is assigned to the node.

Once every node belongs to a component, the algorithm merges components of connected nodes. When
components are merged, the resulting component is always the one with the lower component ID. Note
that the consecutiveIds configuration option cannot be used in combination with seeding in order to retain
the seeding values.


The algorithm assumes that nodes with the same seed value do in fact belong to the
same component. If any two nodes in different components have the same seed,
behavior is undefined. It is then recommended running WCC without seeds.

To demonstrate this in practice, we will go through a few steps:

1. We will run the algorithm and write the results to Neo4j.

2. Then we will add another node to our graph, this node will not have the property computed in Step 1.

3. We will create a new in-memory graph that has the result from Step 1 as nodeProperty

4. And then we will run the algorithm again, this time in stream mode, and we will use the seedProperty
configuration parameter.

We will use the weighted variant of WCC.

Step 1

The following will run the algorithm in write mode:

CALL gds.wcc.write('myGraph', {
  writeProperty: 'componentId',
  relationshipWeightProperty: 'weight',
  threshold: 1.0
})
YIELD nodePropertiesWritten, componentCount;

Table 405. Results

nodePropertiesWritten componentCount

6 3

Step 2
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After the algorithm has finished writing to Neo4j we want to create a new node in the database.

The following will create a new node in the Neo4j graph, with no component ID:

MATCH (b:User {name: 'Bridget'})
CREATE (b)-[:LINK {weight: 2.0}]->(new:User {name: 'Mats'})

Step 3

Note, that we cannot use our already created graph as it does not contain the component id. We will
therefore create a second in-memory graph that contains the previously computed component id.

The following will create a new graph containing the previously computed component id:

CALL gds.graph.create(
  'myGraph-seeded',
  'User',
  'LINK',
  {
    nodeProperties: 'componentId',
    relationshipProperties: 'weight'
  }
)

Step 4

The following will run the algorithm in stream mode using seedProperty:

CALL gds.wcc.stream('myGraph-seeded', {
  seedProperty: 'componentId',
  relationshipWeightProperty: 'weight',
  threshold: 1.0
}) YIELD nodeId, componentId
RETURN gds.util.asNode(nodeId).name AS name, componentId
ORDER BY componentId, name

Table 406. Results

name componentId

"Alice" 0

"Charles" 0

"Bridget" 1

"Mats" 1

"Doug" 3

"Mark" 3

"Michael" 3

The result shows that despite not having the seedProperty when it was created, the node 'Mats' has been
assigned to the same component as the node 'Bridget'. This is correct because these two nodes are
connected.

271



Writing Seeded components

In the previous section we demonstrated the seedProperty usage in stream mode. It is also available in the
other modes of the algorithm. Below is an example on how to use seedProperty in write mode. Note that
the example below relies on Steps 1 - 3 from the previous section.

The following will run the algorithm in write mode using seedProperty:

CALL gds.wcc.write('myGraph-seeded', {
  seedProperty: 'componentId',
  writeProperty: 'componentId',
  relationshipWeightProperty: 'weight',
  threshold: 1.0
})
YIELD nodePropertiesWritten, componentCount;

Table 407. Results

nodePropertiesWritten componentCount

1 3


If the seedProperty configuration parameter has the same value as writeProperty, the
algorithm only writes properties for nodes where the component ID has changed. If they
differ, the algorithm writes properties for all nodes.

7.3.4. Triangle Count

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

The Triangle Count algorithm counts the number of triangles for each node in the graph. A triangle is a set
of three nodes where each node has a relationship to the other two. In graph theory terminology, this is
sometimes referred to as a 3-clique. The Triangle Count algorithm in the GDS library only finds triangles in
undirected graphs.

Triangle counting has gained popularity in social network analysis, where it is used to detect communities
and measure the cohesiveness of those communities. It can also be used to determine the stability of a
graph, and is often used as part of the computation of network indices, such as clustering coefficients. The
Triangle Count algorithm is also used to compute the Local Clustering Coefficient.

For more information on this algorithm, see:
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• Triangle count and clustering coefficient have been shown to be useful as features for classifying a
given website as spam, or non-spam, content. This is described in "Efficient Semi-streaming
Algorithms for Local Triangle Counting in Massive Graphs".

Syntax

This section covers the syntax used to execute the Triangle Count algorithm in each of its execution
modes. We are describing the named graph variant of the syntax. To learn more about general syntax
variants, see Syntax overview.


The named graphs must be projected in the UNDIRECTED orientation for the Triangle
Count algorithm.
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Triangle Count syntax per mode

Run Triangle Count in stream mode on a named graph:

CALL gds.triangleCount.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  triangleCount: Integer

Table 408. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 409. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 410. Algorithm specific configuration

Name Type Default Optional Description

maxDegree Integer 263 - 1 Yes If a node has a degree higher than this it will not be
considered by the algorithm. The triangle count for
these nodes will be -1.

Table 411. Results

Name Type Description

nodeId Integer Node ID.

triangleCoun
t

Integer Number of triangles the node is part of. Is -1 if the node has been excluded from
computation using the maxDegree configuration parameter.
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Run Triangle Count in stats mode on a named graph:

CALL gds.triangleCount.stats(
  graphName: String,
  configuration: Map
)
YIELD
  globalTriangleCount: Integer,
  nodeCount: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  configuration: Map

Table 412. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 413. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 414. Algorithm specific configuration

Name Type Default Optional Description

maxDegree Integer 263 - 1 Yes If a node has a degree higher than this it will not be
considered by the algorithm. The triangle count for
these nodes will be -1.

Table 415. Results

Name Type Description

globalTriang
leCount

Integer Total number of triangles in the graph.

nodeCount Integer Number of nodes in the graph.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the global metrics.
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Name Type Description

configuratio
n

Map The configuration used for running the algorithm.
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Run Triangle Count in mutate mode on a named graph:

CALL gds.triangleCount.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  globalTriangleCount: Integer,
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  configuration: Map

Table 416. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 417. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 418. Algorithm specific configuration

Name Type Default Optional Description

maxDegree Integer 263 - 1 Yes If a node has a degree higher than this it will not be
considered by the algorithm. The triangle count for
these nodes will be -1.

Table 419. Results

Name Type Description

globalTriang
leCount

Integer Total number of triangles in the graph.

nodeCount Integer Number of nodes in the graph.

nodePropert
iesWritten

Integer Number of properties added to the in-memory graph.

createMillis Integer Milliseconds for creating the graph.
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Name Type Description

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the global metrics.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

configuratio
n

Map The configuration used for running the algorithm.
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Run Triangle Count in write mode on a named graph:

CALL gds.triangleCount.write(
  graphName: String,
  configuration: Map
)
YIELD
  globalTriangleCount: Integer,
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 420. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 421. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 422. Algorithm specific configuration

Name Type Default Optional Description

maxDegree Integer 263 - 1 Yes If a node has a degree higher than this it will not be
considered by the algorithm. The triangle count for
these nodes will be -1.

Table 423. Results

Name Type Description

globalTriang
leCount

Integer Total number of triangles in the graph.

nodeCount Integer Number of nodes in the graph.

nodePropert
iesWritten

Integer Number of properties written to Neo4j.

createMillis Integer Milliseconds for creating the graph.
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Name Type Description

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the global metrics.

writeMillis Integer Milliseconds for writing results back to Neo4j.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run Triangle Count in write mode on an anonymous graph:

CALL gds.triangleCount.write(
  configuration: Map
)
YIELD
  globalTriangleCount: Integer,
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 424. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

280



Name Type Default Optional Description

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 425. Algorithm specific configuration

Name Type Default Optional Description

maxDegree Integer 263 - 1 Yes If a node has a degree higher than this it will not be
considered by the algorithm. The triangle count for these
nodes will be -1.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Triangles listing

In addition to the standard execution modes there is an alpha procedure gds.alpha.triangles that can be
used to list all triangles in the graph.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

The following will return a stream of node IDs for each triangle:

CALL gds.alpha.triangles(
  graphName: String,
  configuration: Map
)
YIELD nodeA, nodeB, nodeC

Table 426. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuration Map {} yes Configuration for algorithm-specifics and/or graph filtering.

Table 427. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node labels.
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Name Type Default Optional Description

relationshipTypes List of
String

['*'] yes Filter the named graph using the given relationship
types.

concurrency Integer 4 yes The number of concurrent threads used for running
the algorithm.

Table 428. Results

Name Type Description

nodeA Integer The ID of the first node in the given triangle.

nodeB Integer The ID of the second node in the given triangle.

nodeC Integer The ID of the third node in the given triangle.

Examples

In this section we will show examples of running the Triangle Count algorithm on a concrete graph. The
intention is to illustrate what the results look like and to provide a guide in how to make use of the
algorithm in a real setting. We will do this on a small social network graph of a handful nodes connected in
a particular pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (alice:Person {name: 'Alice'}),
  (michael:Person {name: 'Michael'}),
  (karin:Person {name: 'Karin'}),
  (chris:Person {name: 'Chris'}),
  (will:Person {name: 'Will'}),
  (mark:Person {name: 'Mark'}),

  (michael)-[:KNOWS]->(karin),
  (michael)-[:KNOWS]->(chris),
  (will)-[:KNOWS]->(michael),
  (mark)-[:KNOWS]->(michael),
  (mark)-[:KNOWS]->(will),
  (alice)-[:KNOWS]->(michael),
  (will)-[:KNOWS]->(chris),
  (chris)-[:KNOWS]->(karin)

With the graph in Neo4j we can now project it into the graph catalog to prepare it for algorithm execution.
We do this using a native projection targeting the Person nodes and the KNOWS relationships. For the
relationships we must use the UNDIRECTED orientation. This is because the Triangle Count algorithm is
defined only for undirected graphs.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
  'myGraph',
  'Person',
  {
    KNOWS: {
      orientation: 'UNDIRECTED'
    }
  }
)


The Triangle Count algorithm requires the graph to be created using the UNDIRECTED
orientation for relationships.

In the following examples we will demonstrate using the Triangle Count algorithm on this graph.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.
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The following will estimate the memory requirements for running the algorithm in write mode:

CALL gds.triangleCount.write.estimate('myGraph', { writeProperty: 'triangleCount' })
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 429. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

6 16 152 152 "152 Bytes"

Note that the relationship count is 16 although we only created 8 relationships in the original Cypher
statement. This is because we used the UNDIRECTED orientation, which will project each relationship in each
direction, effectively doubling the number of relationships.

Stream

In the stream execution mode, the algorithm returns the triangle count for each node. This allows us to
inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm in stream mode:

CALL gds.triangleCount.stream('myGraph')
YIELD nodeId, triangleCount
RETURN gds.util.asNode(nodeId).name AS name, triangleCount
ORDER BY triangleCount DESC

Table 430. Results

name triangleCount

"Michael" 3

"Chris" 2

"Will" 2

"Karin" 1

"Mark" 1

"Alice" 0

Here we find that the 'Michael' node has the most triangles. This can be verified in the example graph.
Since the 'Alice' node only KNOWS one other node, it can not be part of any triangle, and indeed the
algorithm reports a count of zero.

Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
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the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.

The following will run the algorithm in stats mode:

CALL gds.triangleCount.stats('myGraph')
YIELD globalTriangleCount, nodeCount

Table 431. Results

globalTriangleCount nodeCount

3 6

Here we can see that the graph has six nodes with a total number of three triangles. Comparing this to the
stream example we can see that the 'Michael' node has a triangle count equal to the global triangle count.
In other words, that node is part of all of the triangles in the graph and thus has a very central position in
the graph.

Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new node property containing the triangle count for that node. The name of the new property
is specified using the mandatory configuration parameter mutateProperty. The result is a single summary
row, similar to stats, but with some additional metrics. The mutate mode is especially useful when multiple
algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

CALL gds.triangleCount.mutate('myGraph', {
  mutateProperty: 'triangles'
})
YIELD globalTriangleCount, nodeCount

Table 432. Results

globalTriangleCount nodeCount

3 6

The returned result is the same as in the stats example. Additionally, the graph 'myGraph' now has a node
property triangles which stores the triangle count for each node. To find out how to inspect the new
schema of the in-memory graph, see Listing graphs.

Write

The write execution mode extends the stats mode with an important side effect: writing the triangle
count for each node as a property to the Neo4j database. The name of the new property is specified using
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the mandatory configuration parameter writeProperty. The result is a single summary row, similar to
stats, but with some additional metrics. The write mode enables directly persisting the results to the
database.

For more details on the write mode in general, see Write.

The following will run the algorithm in write mode:

CALL gds.triangleCount.write('myGraph', {
  writeProperty: 'triangles'
})
YIELD globalTriangleCount, nodeCount

Table 433. Results

globalTriangleCount nodeCount

3 6

The returned result is the same as in the stats example. Additionally, each of the six nodes now has a new
property triangles in the Neo4j database, containing the triangle count for that node.

Maximum Degree

The Triangle Count algorithm supports a maxDegree configuration parameter that can be used to exclude
nodes from processing if their degree is greater than the configured value. This can be useful to speed up
the computation when there are nodes with a very high degree (so-called super nodes) in the graph. Super
nodes have a great impact on the performance of the Triangle Count algorithm. To learn about the degree
distribution of your graph, see Listing graphs.

The nodes excluded from the computation get assigned a triangle count of -1.

The following will run the algorithm in stream mode with the maxDegree parameter:

CALL gds.triangleCount.stream('myGraph', {
  maxDegree: 4
})
YIELD nodeId, triangleCount
RETURN gds.util.asNode(nodeId).name AS name, triangleCount
ORDER BY name ASC

Table 434. Results

name triangleCount

"Alice" 0

"Chris" 0

"Karin" 0

"Mark" 0

"Michael" -1

"Will" 0
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Running the algorithm on the example graph with maxDegree: 4 excludes the 'Michael' node from the
computation, as it has a degree of 5.

As this node is part of all the triangles in the example graph excluding it results in no triangles.

Triangles listing

It is also possible to list all the triangles in the graph. To do this we make use of the alpha procedure
gds.alpha.triangles.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

The following will compute a stream of node IDs for each triangle and return the name property of the
nodes:

CALL gds.alpha.triangles('myGraph')
YIELD nodeA, nodeB, nodeC
RETURN
  gds.util.asNode(nodeA).name AS nodeA,
  gds.util.asNode(nodeB).name AS nodeB,
  gds.util.asNode(nodeC).name AS nodeC

Table 435. Results

nodeA nodeB nodeC

"Michael" "Karin" "Chris"

"Michael" "Chris" "Will"

"Michael" "Will" "Mark"

We can see that there are three triangles in the graph: "Will, Michael, and Chris", "Will, Mark, and Michael",
and "Michael, Karin, and Chris". The node "Alice" is not part of any triangle and thus does not appear in the
triangles listing.

7.3.5. Local Clustering Coefficient

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

The Local Clustering Coefficient algorithm computes the local clustering coefficient for each node in the
graph. The local clustering coefficient Cn of a node n describes the likelihood that the neighbours of n are
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also connected. To compute Cn we use the number of triangles a node is a part of Tn, and the degree of the
node dn. The formula to compute the local clustering coefficient is as follows:

As we can see the triangle count is required to compute the local clustering coefficient. To do this the
Triangle Count algorithm is utilised.

Additionally, the algorithm can compute the average clustering coefficient for the whole graph. This is the
normalised sum over all the local clustering coefficients.

For more information, see Clustering Coefficient.

Syntax

This section covers the syntax used to execute the Local Clustering Coefficient algorithm in each of its
execution modes. We are describing the named graph variant of the syntax. To learn more about general
syntax variants, see Syntax overview.
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Local Clustering Coefficient syntax per mode

Run Local Clustering Coefficient in stream mode on a named graph:

CALL gds.localClusteringCoefficient.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  localClusteringCoefficient: Double

Table 436. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 437. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 438. Algorithm specific configuration

Name Type Default Optional Description

triangleCoun
tProperty

String n/a Yes Node property that contains pre-computed triangle
count.

Table 439. Results

Name Type Description

nodeId Integer Node ID.

localClusteringCoefficient Double Local clustering coefficient.
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Run Local Clustering Coefficient in stats mode on a named graph:

CALL gds.localClusteringCoefficient.stats(
  graphName: String,
  configuration: Map
)
YIELD
  averageClusteringCoefficient: Double,
  nodeCount: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  configuration: Map

Table 440. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 441. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 442. Algorithm specific configuration

Name Type Default Optional Description

triangleCoun
tProperty

String n/a Yes Node property that contains pre-computed triangle
count.

Table 443. Results

Name Type Description

averageClusteringCoefficient Double The average clustering coefficient.

nodeCount Integer Number of nodes in the graph.

createMillis Integer Milliseconds for creating the graph.

computeMillis Integer Milliseconds for running the
algorithm.

postProcessingMillis Integer Milliseconds for computing the
global metrics.

configuration Map The configuration used for running
the algorithm.
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Run Local Clustering Coefficient in mutate mode on a named graph:

CALL gds.localClusteringCoefficient.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  averageClusteringCoefficient: Double,
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  configuration: Map

Table 444. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 445. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 446. Algorithm specific configuration

Name Type Default Optional Description

triangleCoun
tProperty

String n/a Yes Node property that contains pre-computed triangle
count.

Table 447. Results

Name Type Description

averageClusteringCoefficient Double The average clustering coefficient.

nodeCount Integer Number of nodes in the graph.

nodePropertiesWritten Integer Number of properties added to the
in-memory graph.

createMillis Integer Milliseconds for creating the graph.

computeMillis Integer Milliseconds for running the
algorithm.
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Name Type Description

postProcessingMillis Integer Milliseconds for computing the
global metrics.

mutateMillis Integer Milliseconds for adding properties to
the in-memory graph.

configuration Map The configuration used for running
the algorithm.
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Run Local Clustering Coefficient in write mode on a named graph:

CALL gds.localClusteringCoefficient.write(
  graphName: String,
  configuration: Map
)
YIELD
  averageClusteringCoefficient: Double,
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 448. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 449. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 450. Algorithm specific configuration

Name Type Default Optional Description

triangleCoun
tProperty

String n/a Yes Node property that contains pre-computed triangle
count.

Table 451. Results

Name Type Description

averageClusteringCoefficient Double The average clustering coefficient.

nodeCount Integer Number of nodes in the graph.

nodePropertiesWritten Integer Number of properties written to
Neo4j.

createMillis Integer Milliseconds for creating the graph.
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Name Type Description

computeMillis Integer Milliseconds for running the
algorithm.

postProcessingMillis Integer Milliseconds for computing the
global metrics.

writeMillis Integer Milliseconds for writing results back
to Neo4j.

configuration Map The configuration used for running
the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run Local Clustering Coefficient in write mode on an anonymous graph:

CALL gds.localClusteringCoefficient.write(
  configuration: Map
)
YIELD
  averageClusteringCoefficient: Double,
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 452. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.
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Name Type Default Optional Description

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 453. Algorithm specific configuration

Name Type Default Optional Description

triangleCount
Property

String n/a Yes Node property that contains pre-computed triangle count.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the Local Clustering Coefficient algorithm on a concrete
graph. The intention is to illustrate what the results look like and to provide a guide in how to make use of
the algorithm in a real setting. We will do this on a small social network graph of a handful nodes
connected in a particular pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (alice:Person {name: 'Alice'}),
  (michael:Person {name: 'Michael'}),
  (karin:Person {name: 'Karin'}),
  (chris:Person {name: 'Chris'}),
  (will:Person {name: 'Will'}),
  (mark:Person {name: 'Mark'}),

  (michael)-[:KNOWS]->(karin),
  (michael)-[:KNOWS]->(chris),
  (will)-[:KNOWS]->(michael),
  (mark)-[:KNOWS]->(michael),
  (mark)-[:KNOWS]->(will),
  (alice)-[:KNOWS]->(michael),
  (will)-[:KNOWS]->(chris),
  (chris)-[:KNOWS]->(karin)

With the graph in Neo4j we can now project it into the graph catalog to prepare it for algorithm execution.
We do this using a native projection targeting the Person nodes and the KNOWS relationships. For the
relationships we must use the UNDIRECTED orientation. This is because the Local Clustering Coefficient
algorithm is defined only for undirected graphs.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
  'myGraph',
  'Person',
  {
    KNOWS: {
      orientation: 'UNDIRECTED'
    }
  }
)


The Local Clustering Coefficient algorithm requires the graph to be created using the
UNDIRECTED orientation for relationships.

In the following examples we will demonstrate using the Local Clustering Coefficient algorithm on
'myGraph'.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.
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The following will estimate the memory requirements for running the algorithm:

CALL gds.localClusteringCoefficient.write.estimate('myGraph', {
  writeProperty: 'localClusteringCoefficient'
})
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 454. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

6 16 296 296 "296 Bytes"

Note that the relationship count is 16 although we only created 8 relationships in the original Cypher
statement. This is because we used the UNDIRECTED orientation, which will project each relationship in each
direction, effectively doubling the number of relationships.

Stream

In the stream execution mode, the algorithm returns the local clustering coefficient for each node. This
allows us to inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm in stream mode:

CALL gds.localClusteringCoefficient.stream('myGraph')
YIELD nodeId, localClusteringCoefficient
RETURN gds.util.asNode(nodeId).name AS name, localClusteringCoefficient
ORDER BY localClusteringCoefficient DESC

Table 455. Results

name localClusteringCoefficient

"Karin" 1.0

"Mark" 1.0

"Chris" 0.6666666666666666

"Will" 0.6666666666666666

"Michael" 0.3

"Alice" 0.0

From the results we can see that the nodes 'Karin' and 'Mark' have the highest local clustering coefficients.
This shows that they are the best at introducing their friends - all the people who know them, know each
other! This can be verified in the example graph.

Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
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result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.

The following will run the algorithm in stats mode:

CALL gds.localClusteringCoefficient.stats('myGraph')
YIELD averageClusteringCoefficient, nodeCount

Table 456. Results

averageClusteringCoefficient nodeCount

0.6055555555555555 6

The result shows that on average each node of our example graph has approximately 60% of its
neighbours connected.

Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new node property containing the local clustering coefficient for that node. The name of the
new property is specified using the mandatory configuration parameter mutateProperty. The result is a
single summary row, similar to stats, but with some additional metrics. The mutate mode is especially
useful when multiple algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

CALL gds.localClusteringCoefficient.mutate('myGraph', {
  mutateProperty: 'localClusteringCoefficient'
})
YIELD averageClusteringCoefficient, nodeCount

Table 457. Results

averageClusteringCoefficient nodeCount

0.6055555555555555 6

The returned result is the same as in the stats example. Additionally, the graph 'myGraph' now has a node
property localClusteringCoefficient which stores the local clustering coefficient for each node. To find
out how to inspect the new schema of the in-memory graph, see Listing graphs.

Write

The write execution mode extends the stats mode with an important side effect: writing the local
clustering coefficient for each node as a property to the Neo4j database. The name of the new property is
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specified using the mandatory configuration parameter writeProperty. The result is a single summary row,
similar to stats, but with some additional metrics. The write mode enables directly persisting the results
to the database.

For more details on the write mode in general, see Write.

The following will run the algorithm in write mode:

CALL gds.localClusteringCoefficient.write('myGraph', {
  writeProperty: 'localClusteringCoefficient'
})
YIELD averageClusteringCoefficient, nodeCount

Table 458. Results

averageClusteringCoefficient nodeCount

0.6055555555555555 6

The returned result is the same as in the stats example. Additionally, each of the six nodes now has a new
property localClusteringCoefficient in the Neo4j database, containing the local clustering coefficient for
that node.

Pre-computed Counts

By default, the Local Clustering Coefficient algorithm executes Triangle Count as part of its computation. It
is also possible to avoid the triangle count computation by configuring the Local Clustering Coefficient
algorithm to read the triangle count from a node property. In order to do that we specify the
triangleCountProperty configuration parameter. Please note that the Local Clustering Coefficient
algorithm depends on the property holding actual triangle counts and not another number for the results to
be actual local clustering coefficients.

To illustrate this we make use of the Triangle Count algorithm in mutate mode. The Triangle Count
algorithm is going to store its result back into 'myGraph'. It is also possible to obtain the property value
from the Neo4j database using a graph projection with a node property when creating the in-memory
graph.

The following computes the triangle counts and stores the result into the in-memory graph:

CALL gds.triangleCount.mutate('myGraph', {
  mutateProperty: 'triangles'
})

The following will run the algorithm in stream mode using pre-computed triangle counts:

CALL gds.localClusteringCoefficient.stream('myGraph', {
  triangleCountProperty: 'triangles'
})
YIELD nodeId, localClusteringCoefficient
RETURN gds.util.asNode(nodeId).name AS name, localClusteringCoefficient
ORDER BY localClusteringCoefficient DESC

Table 459. Results
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name localClusteringCoefficient

"Karin" 1.0

"Mark" 1.0

"Chris" 0.6666666666666666

"Will" 0.6666666666666666

"Michael" 0.3

"Alice" 0.0

As we can see the results are the same as in the stream example where we did not specify a
triangleCountProperty.

7.3.6. K-1 Coloring Beta

This algorithm is in the beta tier. For more information on algorithm tiers, see Algorithms.

Introduction

The K-1 Coloring algorithm assigns a color to every node in the graph, trying to optimize for two
objectives:

1. To make sure that every neighbor of a given node has a different color than the node itself.

2. To use as few colors as possible.

Note that the graph coloring problem is proven to be NP-complete, which makes it intractable on anything
but trivial graph sizes. For that reason the implemented algorithm is a greedy algorithm. Thus it is neither
guaranteed that the result is an optimal solution, using as few colors as theoretically possible, nor does it
always produce a correct result where no two neighboring nodes have different colors. However the
precision of the latter can be controlled by the number of iterations this algorithm runs.

For more information on this algorithm, see:

• Çatalyürek, Ümit V., et al. "Graph coloring algorithms for multi-core and massively multithreaded
architectures."

• https://en.wikipedia.org/wiki/Graph_coloring#Vertex_coloring


Running this algorithm requires sufficient memory availability. Before running this
algorithm, we recommend that you read Memory Estimation.

Syntax
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K-1 Coloring syntax per mode

The following describes the API for running the algorithm and stream results:

CALL gds.beta.k1coloring.stream(graphName: String, configuration: Map)
YIELD nodeId, color

Table 460. Parameters

Name Type Default Optional Description

graphName String null yes The name of an existing graph on which to run the
algorithm. If no graph name is provided, the
configuration map must contain configuration for
creating a graph.

configuratio
n

Map {} yes Additional configuration, see below.

Table 461. Configuration

Name Type Default Optional Description

nodeProjecti
on

String null yes The projection of nodes to use when creating the
implicit graph.

relationship
Projection

String null yes The projection of relationships to use when creating
the implicit graph.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'. This is
dependent on the Neo4j edition; for more information,
see CPU.

readConcurr
ency

Integer value of
'concurrency
'

yes The number of concurrent threads used for reading the
graph.

maxIteration
s

Integer 10 yes The maximum number of iterations of K1 Coloring to
run.

Table 462. Results

Name Type Description

nodeId Integer The ID of the Node

color Integer The color of the Node
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The following describes the API for running the algorithm and returning the computation
statistics:

CALL gds.beta.k1coloring.stats(
    graphName: String,
    configuration: Map
)
YIELD
    nodeCount,
    colorCount,
    ranIterations,
    didConverge,
    configuration,
    createMillis,
    computeMillis

Table 463. Parameters

Name Type Default Optional Description

graphName String or
Map

n/a no Either the name of a graph stored in the catalog or a
Map configuring the graph creation and algorithm
execution.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering. Must be empty if graphNameOrConfig is a
Map.

Table 464. Configuration

Name Type Default Optional Description

nodeProjecti
on

String null yes The projection of nodes to use when creating the
implicit graph.

relationship
Projection

String null yes The projection of relationships to use when creating
the implicit graph.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'. This is
dependent on the Neo4j edition; for more information,
see CPU.

readConcurr
ency

Integer value of
'concurrency
'

yes The number of concurrent threads used for reading the
graph.

maxIteration
s

Integer 10 yes The maximum number of iterations of K1 Coloring to
run.

Table 465. Results

Name Type Description

nodeCount Integer The number of nodes considered.

ranIterations Integer The actual number of iterations the algorithm ran.

didConverge Boolean An indicator of whether the algorithm found a correct coloring.
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Name Type Description

colorCount Integer The number of colors used.

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

configuratio
n

Map The configuration used for running the algorithm.

The following describes the API for running the algorithm and mutating the in-memory graph:

CALL gds.beta.k1coloring.mutate(graphName: String, configuration: Map)
YIELD nodeCount, colorCount, ranIterations, didConverge, configuration, createMillis,
computeMillis, mutateMillis

Table 466. Parameters

Name Type Default Optional Description

graphName String or
Map

n/a no Either the name of a graph stored in the catalog or a
Map configuring the graph creation and algorithm
execution.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering. Must be empty if graphNameOrConfig is a
Map.

The configuration for the mutate mode is similar to the write mode. Instead of specifying a
writeProperty, we need to specify a mutateProperty. Also, specifying writeConcurrency is not
possible in mutate mode.

Table 467. Results

Name Type Description

nodeCount Integer The number of nodes considered.

ranIterations Integer The actual number of iterations the algorithm ran.

didConverge Boolean An indicator of whether the algorithm found a correct coloring.

colorCount Integer The number of colors used.

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

configuratio
n

Map The configuration used for running the algorithm.
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The following describes the API for running the algorithm and writing results back to Neo4j:

CALL gds.beta.k1coloring.write(graphName: String, configuration: Map)
YIELD nodeCount, colorCount, ranIterations, didConverge, configuration, createMillis,
computeMillis, writeMillis

Table 468. Parameters

Name Type Default Optional Description

graphName String or
Map

n/a no Either the name of a graph stored in the catalog or a
Map configuring the graph creation and algorithm
execution.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering. Must be empty if graphNameOrConfig is a
Map.

Table 469. Configuration

Name Type Default Optional Description

nodeProjecti
on

String null yes The projection of nodes to use when creating the
implicit graph.

relationship
Projection

String null yes The projection of relationships to use when creating
the implicit graph.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'. This is
dependent on the Neo4j edition; for more information,
see CPU.

readConcurr
ency

Integer value of
'concurrency
'

yes The number of concurrent threads used for reading the
graph.

writeConcur
rency

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the
result.

maxIteration
s

Integer 10 yes The maximum number of iterations of K1 Coloring to
run.

writePropert
y

String n/a no The node property this procedure writes the color to.

Table 470. Results

Name Type Description

nodeCount Integer The number of nodes considered.

ranIterations Integer The actual number of iterations the algorithm ran.

didConverge Boolean An indicator of whether the algorithm found a correct coloring.

colorCount Integer The number of colors used.
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Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

writeMillis Integer Milliseconds for writing result data back to Neo4j.

configuratio
n

Map The configuration used for running the algorithm.

Examples

Consider the graph created by the following Cypher statement:

CREATE (alice:User {name: 'Alice'}),
       (bridget:User {name: 'Bridget'}),
       (charles:User {name: 'Charles'}),
       (doug:User {name: 'Doug'}),

       (alice)-[:LINK]->(bridget),
       (alice)-[:LINK]->(charles),
       (alice)-[:LINK]->(doug),
       (bridget)-[:LINK]->(charles)

This graph has a super node with name "Alice" that connects to all other nodes. It should therefore not be
possible for any other node to be assigned the same color as the Alice node.

CALL gds.graph.create(
    'myGraph',
    'User',
    {
        LINK : {
            orientation: 'UNDIRECTED'
        }
    }
)

We can now go ahead and create an in-memory graph with all the User nodes and the LINK relationships
with UNDIRECTED orientation.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create the graph and store it in the graph catalog.

CALL gds.graph.create('myGraph', 'Person', 'LIKES')

In the following examples we will demonstrate using the K-1 Coloring algorithm on this graph.
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Running the K-1 Coloring algorithm in stream mode:

CALL gds.beta.k1coloring.stream('myGraph')
YIELD nodeId, color
RETURN gds.util.asNode(nodeId).name AS name, color
ORDER BY name

Table 471. Results

name color

"Alice" 0

"Bridget" 1

"Charles" 2

"Doug" 1

It is also possible to write the assigned colors back to the database using the write mode.

Running the K-1 Coloring algorithm in write mode:

CALL gds.beta.k1coloring.write('myGraph', {writeProperty: 'color'})
YIELD nodeCount, colorCount, ranIterations, didConverge

Table 472. Results

nodeCount colorCount ranIterations didConverge

4 3 1 true

When using write mode the procedure will return information about the algorithm execution. In this
example we return the number of processed nodes, the number of colors used to color the graph, the
number of iterations and information whether the algorithm converged.

To instead mutate the in-memory graph with the assigned colors, the mutate mode can be used as follows.

Running the K-1 Coloring algorithm in mutate mode:

CALL gds.beta.k1coloring.mutate('myGraph', {mutateProperty: 'color'})
YIELD nodeCount, colorCount, ranIterations, didConverge

Table 473. Results

nodeCount colorCount ranIterations didConverge

4 3 1 true

Similar to the write mode, stats mode can run the algorithm and return only the execution statistics
without persisting the results.

Running the K-1 Coloring algorithm in stats mode:

CALL gds.beta.k1coloring.stats('myGraph')
YIELD nodeCount, colorCount, ranIterations, didConverge

Table 474. Results
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nodeCount colorCount ranIterations didConverge

4 3 1 true

7.3.7. Modularity Optimization Beta

This algorithm is in the beta tier. For more information on algorithm tiers, see Algorithms.

Introduction

The Modularity Optimization algorithm tries to detect communities in the graph based on their modularity.
Modularity is a measure of the structure of a graph, measuring the density of connections within a module
or community. Graphs with a high modularity score will have many connections within a community but
only few pointing outwards to other communities. The algorithm will explore for every node if its
modularity score might increase if it changes its community to one of its neighboring nodes.

For more information on this algorithm, see:

• MEJ Newman, M Girvan "Finding and evaluating community structure in networks"

• https://en.wikipedia.org/wiki/Modularity_(networks)


Running this algorithm requires sufficient memory availability. Before running this
algorithm, we recommend that you read Memory Estimation.

Syntax
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Modularity Optimization syntax per mode
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Run Modularity Optimization in stream mode on a named graph.

CALL gds.beta.modularityOptimization.stream(graphName: String, configuration: Map)
YIELD
  nodeId: Integer,
  communityId: Integer

Table 475. Parameters

Name Type Default Optional Description

graphName String or
Map

n/a no Either the name of a graph stored in the catalog or a
Map configuring the graph creation and algorithm
execution.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering. Must be empty if graphNameOrConfig is a
Map.

Table 476. General configuration

Name Type Default Optional Description

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurr
ency

Integer value of
'concurrenc
y'

yes The number of concurrent threads used for reading the
graph.

writeConcur
rency

Integer value of
'concurrenc
y'

yes The number of concurrent threads used for writing the
result (applicable in WRITE mode).

nodeProjecti
on

Map or List null yes The node projection used for implicit graph loading or
filtering nodes of an explicitly loaded graph.

relationship
Projection

Map or List null yes The relationship projection used for implicit graph
loading or filtering relationship of an explicitly loaded
graph.

nodeQuery String null yes The Cypher query used to select the nodes for implicit
graph loading via a Cypher projection.

relationship
Query

String null yes The Cypher query used to select the relationships for
implicit graph loading via a Cypher projection.

nodePropert
ies

Map or List null yes The node properties to load during implicit graph
loading.

relationship
Properties

Map or List null yes The relationship properties to load during implicit
graph loading.

Table 477. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer 10 yes The maximum number of iterations to run.
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Name Type Default Optional Description

tolerance Float 0.0001 yes Minimum change in modularity between iterations. If
the modularity changes less than the tolerance value,
the result is considered stable and the algorithm
returns.

seedPropert
y

String n/a yes Used to define initial set of labels (must be a number).

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory).

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

Table 478. Results

Name Type Description

nodeId Integer Node ID

communityId Integer Community ID
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Run Modularity Optimization in mutate mode on a named graph.

CALL gds.beta.modularityOptimization.mutate(graphName: String|Map, configuration: Map})
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  communityCount: Integer,
  communityDistribution: Map,
  modularity: Float,
  ranIterations: Integer,
  didConverge: Boolean,
  nodes: Integer,
  configuration: Map

Table 479. Parameters

Name Type Default Optional Description

graphName String or
Map

n/a no Either the name of a graph stored in the catalog or a
Map configuring the graph creation and algorithm
execution.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering. Must be empty if graphNameOrConfig is a
Map.

The configuration for the mutate mode is similar to the write mode. Instead of specifying a
writeProperty, we need to specify a mutateProperty. Also, specifying writeConcurrency is not
possible in mutate mode.

Table 480. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

postProcessi
ngMillis

Integer Milliseconds for computing percentiles and community count.

nodes Integer The number of nodes considered.

didConverge Boolean True if the algorithm did converge to a stable modularity score within the provided
number of maximum iterations.

ranIterations Integer The number of iterations run.

modularity Float The final modularity score.

communityC
ount

Integer The number of communities found.

communityD
istribution

Map The containing min, max, mean as well as 50, 75, 90, 95, 99 and 999 percentile of
community size.
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Name Type Description

configuratio
n

Map The configuration used for running the algorithm.
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Run Modularity Optimization in write mode on a named graph.

CALL gds.beta.modularityOptimization.write(graphName: String|Map, configuration: Map})
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  communityCount: Integer,
  communityDistribution: Map,
  modularity: Float,
  ranIterations: Integer,
  didConverge: Boolean,
  nodes: Integer,
  configuration: Map

Table 481. Parameters

Name Type Default Optional Description

graphName String or
Map

n/a no Either the name of a graph stored in the catalog or a
Map configuring the graph creation and algorithm
execution.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering. Must be empty if graphNameOrConfig is a
Map.

Table 482. General configuration

Name Type Default Optional Description

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurr
ency

Integer value of
'concurrenc
y'

yes The number of concurrent threads used for reading the
graph.

writeConcur
rency

Integer value of
'concurrenc
y'

yes The number of concurrent threads used for writing the
result (applicable in WRITE mode).

nodeProjecti
on

Map or List null yes The node projection used for implicit graph loading or
filtering nodes of an explicitly loaded graph.

relationship
Projection

Map or List null yes The relationship projection used for implicit graph
loading or filtering relationship of an explicitly loaded
graph.

nodeQuery String null yes The Cypher query used to select the nodes for implicit
graph loading via a Cypher projection.

relationship
Query

String null yes The Cypher query used to select the relationships for
implicit graph loading via a Cypher projection.

nodePropert
ies

Map or List null yes The node properties to load during implicit graph
loading.

relationship
Properties

Map or List null yes The relationship properties to load during implicit
graph loading.
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Table 483. Algorithm specific configuration

Name Type Default Optional Description

seedPropert
y

String n/a yes Used to set the initial community for a node. The
property value needs to be a number.

writePropert
y

String n/a yes The property name written back the ID of the partition
particular node belongs to.

maxIteration
s

Integer 10 yes The maximum number of iterations that the modularity
optimization will run for each level.

tolerance Float 0.0001 yes Minimum change in modularity between iterations. If
the modularity changes less than the tolerance value,
the result is considered stable and the algorithm
returns.

consecutiveI
ds

Boolean false yes Flag to decide whether component identifiers are
mapped into a consecutive id space (requires additional
memory).

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

Table 484. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

writeMillis Integer Milliseconds for writing result data back.

postProcessi
ngMillis

Integer Milliseconds for computing percentiles and community count.

nodes Integer The number of nodes considered.

didConverge Boolean True if the algorithm did converge to a stable modularity score within the provided
number of maximum iterations.

ranIterations Integer The number of iterations run.

modularity Float The final modularity score.

communityC
ount

Integer The number of communities found.

communityD
istribution

Map The containing min, max, mean as well as 50, 75, 90, 95, 99 and 999 percentile of
community size.

configuratio
n

Map The configuration used for running the algorithm.
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Examples

Consider the graph created by the following Cypher statement:

CREATE
  (a:Person {name:'Alice'})
, (b:Person {name:'Bridget'})
, (c:Person {name:'Charles'})
, (d:Person {name:'Doug'})
, (e:Person {name:'Elton'})
, (f:Person {name:'Frank'})
, (a)-[:KNOWS {weight: 0.01}]->(b)
, (a)-[:KNOWS {weight: 5.0}]->(e)
, (a)-[:KNOWS {weight: 5.0}]->(f)
, (b)-[:KNOWS {weight: 5.0}]->(c)
, (b)-[:KNOWS {weight: 5.0}]->(d)
, (c)-[:KNOWS {weight: 0.01}]->(e)
, (f)-[:KNOWS {weight: 0.01}]->(d)

This graph consists of two center nodes "Alice" and "Bridget" each of which have two more neighbors.
Additionally, each neighbor of "Alice" is connected to one of the neighbors of "Bridget". Looking at the
weights of the relationships, it can be seen that the connections from the two center nodes to their
neighbors are very strong, while connections between those groups are weak. Therefore the Modularity
Optimization algorithm should detect two communities: "Alice" and "Bob" together with their neighbors
respectively.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create the graph and store it in the graph catalog.

CALL gds.graph.create(
    'myGraph',
    'Person',
    {
        KNOWS: {
            type: 'KNOWS',
            orientation: 'UNDIRECTED',
            properties: ['weight']
        }
    })

The following example demonstrates using the Modularity Algorithm on this weighted graph.

Running the Modularity Optimization algorithm in stream mode:

CALL gds.beta.modularityOptimization.stream('myGraph', { relationshipWeightProperty: 'weight' })
YIELD nodeId, communityId
RETURN gds.util.asNode(nodeId).name AS name, communityId
ORDER BY name

Table 485. Results

name communityId

"Alice" 4

"Bridget" 1

"Charles" 1
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name communityId

"Doug" 1

"Elton" 4

"Frank" 4

It is also possible to write the assigned community ids back to the database using the write mode.

Running the Modularity Optimization algorithm in write mode:

CALL gds.beta.modularityOptimization.write('myGraph', { relationshipWeightProperty: 'weight',
writeProperty: 'community' })
YIELD nodes, communityCount, ranIterations, didConverge

Table 486. Results

nodes communityCount ranIterations didConverge

6 2 3 true

When using write mode the procedure will return information about the algorithm execution. In this
example we return the number of processed nodes, the number of communities assigned to the nodes in
the graph, the number of iterations and information whether the algorithm converged.

Running the algorithm without specifying the relationshipWeightProperty will default all relationship
weights to 1.0.

To instead mutate the in-memory graph with the assigned community ids, the mutate mode is used.

Running the Modularity Optimization algorithm in mutate mode:

CALL gds.beta.modularityOptimization.mutate('myGraph', { relationshipWeightProperty: 'weight',
mutateProperty: 'community' })
YIELD nodes, communityCount, ranIterations, didConverge

Table 487. Results

nodes communityCount ranIterations didConverge

6 2 3 true

When using mutate mode the procedure will return information about the algorithm execution as in write
mode.

7.3.8. Strongly Connected Components Alpha

The Strongly Connected Components (SCC) algorithm finds maximal sets of connected nodes in a directed
graph. A set is considered a strongly connected component if there is a directed path between each pair of
nodes within the set. It is often used early in a graph analysis process to help us get an idea of how our
graph is structured.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.
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History and explanation

SCC is one of the earliest graph algorithms, and the first linear-time algorithm was described by Tarjan in
1972. Decomposing a directed graph into its strongly connected components is a classic application of the
depth-first search algorithm.

Use-cases - when to use the Strongly Connected Components algorithm

• In the analysis of powerful transnational corporations, SCC can be used to find the set of firms in which
every member owns directly and/or indirectly owns shares in every other member. Although it has
benefits, such as reducing transaction costs and increasing trust, this type of structure can weaken
market competition. Read more in "The Network of Global Corporate Control".

• SCC can be used to compute the connectivity of different network configurations when measuring
routing performance in multihop wireless networks. Read more in "Routing performance in the
presence of unidirectional links in multihop wireless networks"

• Strongly Connected Components algorithms can be used as a first step in many graph algorithms that
work only on strongly connected graph. In social networks, a group of people are generally strongly
connected (For example, students of a class or any other common place). Many people in these groups
generally like some common pages, or play common games. The SCC algorithms can be used to find
such groups, and suggest the commonly liked pages or games to the people in the group who have
not yet liked those pages or games.

Syntax

The following will run the algorithm and write back results:

CALL gds.alpha.scc.write(graphName: String|Map, configuration: Map)
YIELD createMillis, computeMillis, writeMillis, setCount, maxSetSize, minSetSize

Table 488. Parameters

Name Type Default Optional Description

writeProperty String 'componentId' yes The property name written back to.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency'

yes The number of concurrent threads used for reading the
graph.

writeConcurre
ncy

Integer value of
'concurrency'

yes The number of concurrent threads used for writing the result.

Table 489. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMillis Integer Milliseconds for running the algorithm.
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Name Type Description

writeMillis Integer Milliseconds for writing result data back.

postProcessin
gMillis

Integer Milliseconds for computing percentiles and community count.

nodes Integer The number of nodes considered.

communityCo
unt

Integer The number of communities found.

p1 Float The 1 percentile of community size.

p5 Float The 5 percentile of community size.

p10 Float The 10 percentile of community size.

p25 Float The 25 percentile of community size.

p50 Float The 50 percentile of community size.

p75 Float The 75 percentile of community size.

p90 Float The 90 percentile of community size.

p95 Float The 95 percentile of community size.

p99 Float The 99 percentile of community size.

p100 Float The 100 percentile of community size.

writeProperty String The property name written back to.

The following will run the algorithm and stream results:

CALL gds.alpha.scc.stream(graphName: String, configuration: Map)
YIELD nodeId, componentId

Table 490. Parameters

Name Type Default Optional Description

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency'.

readConcurre
ncy

Integer value of
'concurrency'

yes The number of concurrent threads used for reading the
graph.

Table 491. Results

Name Type Description

nodeId Integer Node ID.

componentId Integer Component ID.
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Strongly Connected Components algorithm example

The following will create a sample graph:

CREATE (nAlice:User {name:'Alice'})
CREATE (nBridget:User {name:'Bridget'})
CREATE (nCharles:User {name:'Charles'})
CREATE (nDoug:User {name:'Doug'})
CREATE (nMark:User {name:'Mark'})
CREATE (nMichael:User {name:'Michael'})

CREATE (nAlice)-[:FOLLOW]->(nBridget)
CREATE (nAlice)-[:FOLLOW]->(nCharles)
CREATE (nMark)-[:FOLLOW]->(nDoug)
CREATE (nMark)-[:FOLLOW]->(nMichael)
CREATE (nBridget)-[:FOLLOW]->(nMichael)
CREATE (nDoug)-[:FOLLOW]->(nMark)
CREATE (nMichael)-[:FOLLOW]->(nAlice)
CREATE (nAlice)-[:FOLLOW]->(nMichael)
CREATE (nBridget)-[:FOLLOW]->(nAlice)
CREATE (nMichael)-[:FOLLOW]->(nBridget);

The following will run the algorithm and write back results:

CALL gds.alpha.scc.write({
  nodeProjection: 'User',
  relationshipProjection: 'FOLLOW',
  writeProperty: 'componentId'
})
YIELD setCount, maxSetSize, minSetSize;

Table 492. Results
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setCount maxSetSize minSetSize

3 3 1

The following will run the algorithm and stream back results:

CALL gds.alpha.scc.stream({
  nodeProjection: 'User',
  relationshipProjection: 'FOLLOW'
})
YIELD nodeId, componentId
RETURN gds.util.asNode(nodeId).name AS Name, componentId AS Component
ORDER BY Component DESC

Table 493. Results

Name Component

"Doug" 3

"Mark" 3

"Charles" 2

"Alice" 0

"Bridget" 0

"Michael" 0

We have 3 strongly connected components in our sample graph.

The first, and biggest, component has members Alice, Bridget, and Michael, while the second component
has Doug and Mark. Charles ends up in his own component because there isn’t an outgoing relationship
from that node to any of the others.

The following will find the largest partition:

MATCH (u:User)
RETURN u.componentId AS Component, count(*) AS ComponentSize
ORDER BY ComponentSize DESC
LIMIT 1

Table 494. Results

Component ComponentSize

0 3

Cypher projection

If node labels and relationship types are not selective enough to project a graph, you can use Cypher
queries instead. Cypher projections can also be used to run algorithms on a virtual graph. You can learn
more in the Creating graphs using Cypher section of the manual.
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Use nodeQuery and relationshipQuery in the config:

CALL gds.alpha.scc.stream({
  nodeQuery: 'MATCH (u:User) RETURN id(u) AS id',
  relationshipQuery: 'MATCH (u1:User)-[:FOLLOW]->(u2:User) RETURN id(u1) AS source, id(u2) AS target' })
YIELD nodeId, componentId
RETURN gds.util.asNode(nodeId).name AS Name, componentId AS Component
ORDER BY Component DESC

Table 495. Results

Name Component

"Doug" 3

"Mark" 3

"Charles" 2

"Alice" 0

"Bridget" 0

"Michael" 0

References

• https://pdfs.semanticscholar.org/61db/6892a92d1d5bdc83e52cc18041613cf895fa.pdf

• http://code.activestate.com/recipes/578507-strongly-connected-components-of-a-directed-graph/

• http://www.sandia.gov/~srajama/publications/BFS_and_Coloring.pdf

7.3.9. Speaker-Listener Label Propagation Alpha

Introduction

The Speaker-Listener Label Propagation Algorithm (SLLPA) is a variation of the Label Propagation
algorithm that is able to detect multiple communities per node. The GDS implementation is based on the
SLPA: Uncovering Overlapping Communities in Social Networks via A Speaker-listener Interaction
Dynamic Process publication by Xie et al.

The algorithm is randomized in nature and will not produce deterministic results. To accommodate this, we
recommend using a higher number of iterations.

Syntax

This section covers the syntax used to execute the SLLPA algorithm in each of its execution modes. We
are describing the named graph variant of the syntax. To learn more about general syntax variants, see
Syntax overview.
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SLLPA syntax per mode

Run SLLPA in stream mode on a named graph.

CALL gds.alpha.sllpa.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  values: Map {
    communtiyIds: List of Integer
  }

Table 496. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 497. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 498. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer n/a no Maximum number of iterations to run.

minAssociati
onStrength

String 0.2 yes Minimum influence required for a community to retain a
node.

Table 499. Results

Name Type Description

nodeId Integer Node ID.

values Map A map that contains the key
communityIds.

322



Run SLLPA in stats mode on a named graph.

CALL gds.alpha.sllpa.stats(
  graphName: String,
  configuration: Map
)
YIELD
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  configuration: Map

Table 500. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 501. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 502. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer n/a no Maximum number of iterations to run.

minAssociati
onStrength

String 0.2 yes Minimum influence required for a community to retain a
node.

Table 503. Results

Name Type Description

ranIterations Integer Number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

configuratio
n

Map Configuration used for running the algorithm.
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Run SLLPA in mutate mode on a named graph.

CALL gds.alpha.sllpa.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  mutateMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 504. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 505. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 506. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer n/a no Maximum number of iterations to run.

minAssociati
onStrength

String 0.2 yes Minimum influence required for a community to retain a
node.

Table 507. Results

Name Type Description

ranIterations Integer The number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.
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Name Type Description

nodePropert
iesWritten

Integer The number of properties that were written to Neo4j.

configuratio
n

Map The configuration used for running the algorithm.
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Run SLLPA in write mode on a named graph.

CALL gds.alpha.sllpa.write(
  graphName: String,
  configuration: Map
)
YIELD
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 508. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 509. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 510. Algorithm specific configuration

Name Type Default Optional Description

maxIteration
s

Integer n/a no Maximum number of iterations to run.

minAssociati
onStrength

String 0.2 yes Minimum influence required for a community to retain a
node.

Table 511. Results

Name Type Description

ranIterations Integer The number of iterations run.

didConverge Boolean Indicates if the algorithm converged.

createMillis Integer Milliseconds for creating the graph.
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Name Type Description

computeMilli
s

Integer Milliseconds for running the algorithm.

writeMillis Integer Milliseconds for writing result data back.

nodePropert
iesWritten

Integer The number of properties that were written to Neo4j.

configuratio
n

Map The configuration used for running the algorithm.

Examples

In this section we will show examples of running the SLLPA algorithm on a concrete graph. The intention
is to illustrate what the results look like and to provide a guide in how to make use of the algorithm in a real
setting. We will do this on a small social network graph of a handful nodes connected in a particular
pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (a:Person {name: 'Alice'}),
  (b:Person {name: 'Bob'}),
  (c:Person {name: 'Carol'}),
  (d:Person {name: 'Dave'}),
  (e:Person {name: 'Eve'}),
  (f:Person {name: 'Fredrick'}),
  (g:Person {name: 'Gary'}),
  (h:Person {name: 'Hilda'}),
  (i:Person {name: 'Ichabod'}),
  (j:Person {name: 'James'}),
  (k:Person {name: 'Khalid'}),

  (a)-[:KNOWS]->(b),
  (a)-[:KNOWS]->(c),
  (a)-[:KNOWS]->(d),
  (b)-[:KNOWS]->(c),
  (b)-[:KNOWS]->(d),
  (c)-[:KNOWS]->(d),

  (b)-[:KNOWS]->(e),
  (e)-[:KNOWS]->(f),
  (f)-[:KNOWS]->(g),
  (g)-[:KNOWS]->(h),

  (h)-[:KNOWS]->(i),
  (h)-[:KNOWS]->(j),
  (h)-[:KNOWS]->(k),
  (i)-[:KNOWS]->(j),
  (i)-[:KNOWS]->(k),
  (j)-[:KNOWS]->(k);

In the example, we will use the SLLPA algorithm to find the communities in the graph.

The following statement will create the graph and store it in the graph catalog.

CALL gds.graph.create(
  'myGraph',
  'Person',
  {
    KNOWS: {
      orientation: 'UNDIRECTED'
    }
  }
);

In the following examples we will demonstrate using the SLLPA algorithm on this graph.

Stream

In the stream execution mode, the algorithm returns the community IDs for each node. This allows us to
inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm, and stream results:

CALL gds.alpha.sllpa.stream('myGraph', {maxIterations: 100, minAssociationStrength: 0.1})
YIELD nodeId, values
RETURN gds.util.asNode(nodeId).name AS Name, values.communityIds AS communityIds
  ORDER BY Name ASC
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Table 512. Results

Name communityIds

"Alice" [0]

"Bob" [0]

"Carol" [0]

"Dave" [0]

"Eve" [0, 1]

"Fredrick" [0, 1]

"Gary" [0, 1]

"Hilda" [1]

"Ichabod" [1]

"James" [1]

"Khalid" [1]

Due to the randomness of the algorithm, the results will tend to vary between runs.

7.3.10. Approximate Maximum k-cut Alpha

Introduction

A k-cut of a graph is an assignment of its nodes into k disjoint communities. So for example a 2-cut of a
graph with nodes a,b,c,d could be the communities {a,b,c} and {d}.

A Maximum k-cut is a k-cut such that the total weight of relationships between nodes from different
communities in the k-cut is maximized. That is, a k-cut that maximizes the sum of weights of relationships
whose source and target nodes are assigned to different communities in the k-cut. Suppose in the simple
a,b,c,d node set example above we only had one relationship b → c, and it was of weight 1.0. The 2-cut
we outlined above would then not be a maximum 2-cut (with a cut cost of 0.0), whereas for example the
2-cut with communities {a,b} and {c,d} would be one (with a cut cost of 1.0).

 Maximum k-cut is the same as Maximum Cut when k = 2.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

Applications

Finding the maximum k-cut for a graph has several known applications, for example it is used to:

• analyze protein interaction

• design circuit (VLSI) layouts

• solve wireless communication problems
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• analyze cryptocurrency transaction patterns

• design computer networks

Approximation

In practice, finding the best cut is not feasible for larger graphs and only an approximation can be
computed in reasonable time.

The approximate heuristic algorithm implemented in GDS is a parallelized GRASP style algorithm
optionally enhanced (via config) with variable neighborhood search (VNS).

For detailed information about a serial version of the algorithm, with a slightly different construction phase,
when k = 2 see GRASP+VNR in the paper:

• Festa et al. Randomized Heuristics for the Max-Cut Problem, 2002.

To see how the algorithm above performs in terms of solution quality compared to other algorithms when
k = 2 see FES02GV in the paper:

• Dunning et al. What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and
QUBO, 2018.


By the stochastic nature of the algorithm, the results it yields will not be deterministic
unless running single-threaded (concurrency = 1) and using the same random seed
(randomSeed = SOME_FIXED_VALUE).

Tuning the algorithm parameters

There are two important algorithm specific parameters which lets you trade solution quality for shorter
runtime.

Iterations

GRASP style algorithms are iterative by nature. Every iteration they run the same well-defined steps to
derive a solution, but each time with a different random seed yielding solutions that (highly likely) are
different too. In the end the highest scoring solution is picked as the winner.

VNS max neighborhood order

Variable neighborhood search (VNS) works by slightly perturbing a locally optimal solution derived from
the previous steps in an iteration of the algorithm, followed by locally optimizing this perturbed solution.
Perturb in this case means to randomly move some nodes from their current (locally optimal) community to
another community.

VNS will in turn move 1,2,…,vnsMaxNeighborhoodOrder random nodes and using each of the resulting
solutions try to find a new locally optimal solution that’s better. This means that although potentially better
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solutions can be derived using VNS it will take more time, and additionally some more memory will be
needed to temporarily store the perturbed solutions.

By default, VNS is not used (vnsMaxNeighborhoodOrder = 0). To use it, experimenting with a maximum
order equal to 20 is a good place to start.

Syntax

This section covers the syntax used to execute the Approximate Maximum k-cut algorithm in each of its
execution modes. We are describing the named graph variant of the syntax. To learn more about general
syntax variants, see Syntax overview.
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Example 1. Approximate Maximum k-cut syntax per mode
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Run Approximate Maximum k-cut in stream mode on a named graph.

CALL gds.alpha.maxkcut.stream(
  graphName: String,
  configuration: Map
) YIELD
  nodeId: Integer,
  communityId: Integer

Table 513. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 514. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 515. Algorithm specific configuration

Name Type Default Optional Description

k Integer 2 yes The number of disjoint communities the
nodes will be divided into.

iterations Integer 8 yes The number of iterations the algorithm will
run before returning the best solution
among all the iterations.

vnsMaxNeighborhoodOrder Integer 0 (VNS
off)

yes The maximum number of nodes VNS will
swap when perturbing solutions.

randomSeed Integer n/a yes A random seed which is used for all
randomness in the computation. Requires
concurrency = 1.

relationshipWeightProperty String null yes If set, the values stored at the given
property are used as relationship weights
during the computation. If not set, the graph
is considered unweighted.

Table 516. Results

Name Type Description

nodeId Integer Node ID.
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Name Type Description

communityId Integer Community ID.
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Run Approximate Maximum k-cut in mutate mode on a named graph.

CALL gds.alpha.maxkcut.mutate(
  graphName: String,
  configuration: Map
) YIELD
  cutCost: Float,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 517. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 518. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 519. Algorithm specific configuration

Name Type Default Optional Description

k Integer 2 yes The number of disjoint communities the
nodes will be divided into.

iterations Integer 8 yes The number of iterations the algorithm will
run before returning the best solution
among all the iterations.

vnsMaxNeighborhoodOrder Integer 0 (VNS
off)

yes The maximum number of nodes VNS will
swap when perturbing solutions.

randomSeed Integer n/a yes A random seed which is used for all
randomness in the computation. Requires
concurrency = 1.

relationshipWeightProperty String null yes If set, the values stored at the given
property are used as relationship weights
during the computation. If not set, the graph
is considered unweighted.

Table 520. Results
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Name Type Description

cutCost Float Sum of weights of all relationships connecting nodes from different communities.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the statistics.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

nodePropert
iesWritten

Integer Number of properties added to the in-memory graph.

configuratio
n

Map Configuration used for running the algorithm.

Examples

In this section we will show examples of running the Approximate Maximum k-cut algorithm on a concrete
graph. The intention is to illustrate what the results look like and to provide a guide in how to make use of
the algorithm in a real setting. We will do this on a small Bitcoin transactions graph of a handful nodes
connected in a particular pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (alice:Person {name: 'Alice'}),
  (bridget:Person {name: 'Bridget'}),
  (charles:Person {name: 'Charles'}),
  (doug:Person {name: 'Doug'}),
  (eric:Person {name: 'Eric'}),
  (fiona:Person {name: 'Fiona'}),
  (george:Person {name: 'George'}),
  (alice)-[:TRANSACTION {value: 81.0}]->(bridget),
  (alice)-[:TRANSACTION {value: 7.0}]->(doug),
  (bridget)-[:TRANSACTION {value: 1.0}]->(doug),
  (bridget)-[:TRANSACTION {value: 1.0}]->(eric),
  (bridget)-[:TRANSACTION {value: 1.0}]->(fiona),
  (bridget)-[:TRANSACTION {value: 1.0}]->(george),
  (charles)-[:TRANSACTION {value: 45.0}]->(bridget),
  (charles)-[:TRANSACTION {value: 3.0}]->(eric),
  (doug)-[:TRANSACTION {value: 3.0}]->(charles),
  (doug)-[:TRANSACTION {value: 1.0}]->(bridget),
  (eric)-[:TRANSACTION {value: 1.0}]->(bridget),
  (fiona)-[:TRANSACTION {value: 3.0}]->(alice),
  (fiona)-[:TRANSACTION {value: 1.0}]->(bridget),
  (george)-[:TRANSACTION {value: 1.0}]->(bridget),
  (george)-[:TRANSACTION {value: 4.0}]->(charles)

With the graph in Neo4j we can now project it into the graph catalog to prepare it for algorithm execution.
We do this using a native projection targeting the Person nodes and the TRANSACTION relationships.

The following statement will create a graph store it in the graph catalog under the name 'myGraph'.

CALL gds.graph.create(
  'myGraph',
  'Person',
  {
    TRANSACTION: {
      properties: ['value']
    }
  }
)

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the mutate mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.

The following will estimate the memory requirements for running the algorithm:

CALL gds.alpha.maxkcut.mutate.estimate('myGraph', {mutateProperty: 'community'})
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 521. Results
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nodeCount relationshipCount bytesMin bytesMax requiredMemory

7 15 488 488 "488 Bytes"

Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new node property containing the approximate maximum k-cut for that node. The name of
the new property is specified using the mandatory configuration parameter mutateProperty. The result is a
single summary row, similar to stats, but with some additional metrics. The mutate mode is especially
useful when multiple algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

CALL gds.alpha.maxkcut.mutate('myGraph', {mutateProperty: 'community'})
YIELD cutCost, nodePropertiesWritten

Table 522. Results

cutCost nodePropertiesWritten

13.0 7

We can see that when relationship weight is not taken into account we derive a cut into two (since we
didn’t override the default k = 2) communities of cost 13.0. The total cost is represented by the cutCost
column here. This is the value we want to be as high as possible. Additionally, the graph 'myGraph' now
has a node property community which stores the community to which each node belongs.

To inspect which community each node belongs to we can stream node properties.

Stream node properties:

CALL gds.graph.streamNodeProperty('myGraph', 'community')
YIELD nodeId, propertyValue
RETURN gds.util.asNode(nodeId).name as name, propertyValue AS community

Table 523. Results

name community

"Alice" 0

"Bridget" 0

"Charles" 0

"Doug" 1

"Eric" 1

"Fiona" 1

"George" 1
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Looking at our graph topology we can see that there are no relationships between the nodes of community
1, and two relationships between the nodes of community 0, namely Alice → Bridget and Charles →
Bridget. However, since there are a total of eight relationships between Bridget and nodes of community
1, and our graph is unweighted assigning Bridget to community 1 would not yield a cut of a higher total
weight. Thus, since the number of relationships connecting nodes of different communities greatly
outnumber the number of relationships connecting nodes of the same community it seems like a good
solution. In fact, this is the maximum 2-cut for this graph.



Because of the inherent randomness in the Approximate Maximum k-Cut algorithm
(unless having concurrency = 1 and fixed randomSeed), running it another time might
yield a different solution. For our case here it would be equally plausible to get the
inverse solution, i.e. when our community 0 nodes are mapped to community 1 instead,
and vice versa. Note however, that for that solution the cut cost would remain the same.

Mutate with relationship weights

In this example we will have a look at how adding relationship weight can affect our solution.

The following will run the algorithm in mutate mode, diving our nodes into two communities once again:

CALL gds.alpha.maxkcut.mutate(
   'myGraph',
   {
        relationshipWeightProperty: 'value',
        mutateProperty: 'weightedCommunity'
    }
)
YIELD cutCost, nodePropertiesWritten

Table 524. Results

cutCost nodePropertiesWritten

146.0 7

Since the value properties on our TRANSACTION relationships were all at least 1.0 and several of a larger
value it’s not surprising that we obtain a cut with a larger cost in the weighted case.

Let us now stream node properties to once again inspect the node community distribution.

Stream node properties:

CALL gds.graph.streamNodeProperty('myGraph', 'weightedCommunity')
YIELD nodeId, propertyValue
RETURN gds.util.asNode(nodeId).name as name, propertyValue AS weightedCommunity

Table 525. Results

name weightedCommunity

"Alice" 0

"Bridget" 1
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name weightedCommunity

"Charles" 0

"Doug" 1

"Eric" 1

"Fiona" 1

"George" 1

Comparing this result with that of unweighted case we can see that Bridget has moved to another
community but the output is otherwise the same. Indeed, this makes sense by looking at our graph.
Bridget is connected to nodes of community 1 by eight relationships, but these relationships all have
weight 1.0. And although Bridget is only connected to two community 0 nodes, these relationships are of
weight 81.0 and 45.0. Moving Bridget back to community 0 would lower the total cut cost of 81.0 + 45.0
- 8 * 1.0 = 118.0. Hence, it does make sense that Bridget is now in community 1. In fact, this is the
maximum 2-cut in the weighted case.



Because of the inherent randomness in the Approximate Maximum k-Cut algorithm
(unless having concurrency = 1 and fixed randomSeed), running it another time might
yield a different solution. For our case here it would be equally plausible to get the
inverse solution, i.e. when our community 0 nodes are mapped to community 1 instead,
and vice versa. Note however, that for that solution the cut cost would remain the same.

Stream

In the stream execution mode, the algorithm returns the approximate maximum k-cut for each node. This
allows us to inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm in stream mode using default configuration parameters:

CALL gds.alpha.maxkcut.stream('myGraph')
YIELD nodeId, communityId
RETURN gds.util.asNode(nodeId).name AS name, communityId

Table 526. Results

name communityId

"Alice" 0

"Bridget" 0

"Charles" 0

"Doug" 1

"Eric" 1

"Fiona" 1
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name communityId

"George" 1

We can see that the result is what we expect, namely the same as in the mutate unweighted example.



Because of the inherent randomness in the Approximate Maximum k-Cut algorithm
(unless having concurrency = 1 and fixed randomSeed), running it another time might
yield a different solution. For our case here it would be equally plausible to get the
inverse solution, i.e. when our community 0 nodes are mapped to community 1 instead,
and vice versa. Note however, that for that solution the cut cost would remain the same.

7.3.11. Conductance metric Alpha

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

Conductance is a metric that allows you to evaluate the quality of a community detection. Relationships of
nodes in a community C connect to nodes either within C or outside C. The conductance is the ratio
between relationships that point outside C and the total number of relationships of C. The lower the
conductance, the more "well-knit" a community is.

It was shown by Yang and Leskovec in the paper "Defining and Evaluating Network Communities based
on Ground-truth" that conductance is a very good metric for evaluating actual communities of real world
graphs.

The algorithm runs in time linear to the number of relationships in the graph.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

Syntax

This section covers the syntax used to execute the Conductance algorithm in each of its execution modes.
We are describing the named graph variant of the syntax. To learn more about general syntax variants,
see Syntax overview.
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Example 2. Conductance syntax per mode

Run Conductance in stream mode on a named graph.

CALL gds.alpha.conductance.stream(
  graphName: String,
  configuration: Map
) YIELD
  community: Integer,
  conductance: Float

Table 527. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 528. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 529. Algorithm specific configuration

Name Type Default Optional Description

communityProperty String n/a no The node property that holds the community ID as an
integer for each node. Note that only non-negative
community IDs are considered valid and will have their
conductance computed.

Table 530. Results

Name Type Description

community Integer Community ID.

conductance Float Conductance of the community.



Only non-negative community IDs are valid for identifying communities. Nodes with a
negative community ID will only take part in the computation to the extent that they are
connected to nodes in valid communities, and thus contribute to those valid
communities' outward relationship counts.
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Examples

In this section we will show examples of running the Conductance algorithm on a concrete graph. The
intention is to illustrate what the results look like and to provide a guide in how to make use of the
algorithm in a real setting. We will do this on a small social network graph of a handful nodes connected in
a particular pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (nAlice:User {name: 'Alice', seed: 42}),
  (nBridget:User {name: 'Bridget', seed: 42}),
  (nCharles:User {name: 'Charles', seed: 42}),
  (nDoug:User {name: 'Doug'}),
  (nMark:User {name: 'Mark'}),
  (nMichael:User {name: 'Michael'}),

  (nAlice)-[:LINK {weight: 1}]->(nBridget),
  (nAlice)-[:LINK {weight: 1}]->(nCharles),
  (nCharles)-[:LINK {weight: 1}]->(nBridget),

  (nAlice)-[:LINK {weight: 5}]->(nDoug),

  (nMark)-[:LINK {weight: 1}]->(nDoug),
  (nMark)-[:LINK {weight: 1}]->(nMichael),
  (nMichael)-[:LINK {weight: 1}]->(nMark);

This graph has two clusters of Users, that are closely connected. Between those clusters there is one
single edge. The relationships that connect the nodes in each component have a property weight which
determines the strength of the relationship.

We can now create the graph and store it in the graph catalog. We load the LINK relationships with
orientation set to UNDIRECTED as this works best with the Louvain algorithm which we will use to create the
communities that we evaluate using Conductance.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.
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The following statement will create the graph and store it in the graph catalog.

CALL gds.graph.create(
    'myGraph',
    'User',
    {
        LINK: {
            orientation: 'UNDIRECTED'
        }
    },
    {
        nodeProperties: 'seed',
        relationshipProperties: 'weight'
    }
)

We now run the Louvain algorithm to create a division of the nodes into communities that we can then
evalutate.

The following will run the Louvain algorithm and store the results in myGraph:

CALL gds.louvain.mutate('myGraph', { mutateProperty: 'community', relationshipWeightProperty: 'weight' })
YIELD communityCount

Table 531. Results

communityCount

3

Now our in-memory graph myGraph is populated with node properties under the key community that we can
set as input for our evaluation using Conductance. The nodes are now assigned to communities in the
following way:

Table 532. Community assignments

name community

"Alice" 3

"Bridget" 2

"Charles" 2

"Doug" 3

"Mark" 5

"Michael" 5

Please see the stream node properties procedure for how to obtain such an assignment table.

For more information about Louvain, see its algorithm page.

Stream

Since we now have a community detection, we can evaluate how good it is under the conductance metric.
Note that we in this case we use the feature of relationships being weighted by a relationship property.
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The Conductance stream procedure returns the conductance for each community. This allows us to inspect
the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the Conductance algorithm in stream mode:

CALL gds.alpha.conductance.stream('myGraph', { communityProperty: 'community', relationshipWeightProperty:
'weight' })
YIELD community, conductance

Table 533. Results

community conductance

2 0.5

3 0.23076923076923078

5 0.2

We can see that the community of the weighted graph with the lowest conductance is community 5. This
means that 5 is the community that is most "well-knit" in the sense that most of its relationship weights
are internal to the community.

7.4. Similarity
Similarity algorithms compute the similarity of pairs of nodes using different vector-based metrics. The
Neo4j GDS library includes the following similarity algorithms, grouped by quality tier:

• Production-quality

◦ Node Similarity

• Beta

◦ K-Nearest Neighbors

• Alpha

◦ Approximate Nearest Neighbors

◦ Cosine Similarity

◦ Euclidean Similarity

◦ Jaccard Similarity

◦ Overlap Similarity

◦ Pearson Similarity

7.4.1. Node Similarity

Supported algorithm traits:

Directed
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Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

The Node Similarity algorithm compares a set of nodes based on the nodes they are connected to. Two
nodes are considered similar if they share many of the same neighbors. Node Similarity computes pair-
wise similarities based on the Jaccard metric, also known as the Jaccard Similarity Score.

Given two sets A and B, the Jaccard Similarity is computed using the following formula:

The input of this algorithm is a bipartite, connected graph containing two disjoint node sets. Each
relationship starts from a node in the first node set and ends at a node in the second node set.

The Node Similarity algorithm compares each node that has outgoing relationships with each other such
node. For every node n, we collect the outgoing neighborhood N(n) of that node, that is, all nodes m such
that there is a relationship from n to m. For each pair n, m, the algorithm computes a similarity for that pair
which is the Jaccard similarity of N(n) and N(m).

The complexity of this comparison grows quadratically with the number of nodes to compare. The
algorithm reduces the complexity by ignoring disconnected nodes.

In addition to computational complexity, the memory requirement for producing results also scales roughly
quadratically. In order to bound memory usage, the algorithm requires an explicit limit on the number of
results to compute per node. This is the 'topK' parameter. It can be set to any value, except 0.

The output of the algorithm are new relationships between pairs of the first node set. Similarity scores are
expressed via relationship properties.

A related function for computing Jaccard similarity is described in Jaccard Similarity.

For more information on this algorithm, see:

• Structural equivalence (Wikipedia)

• The Jaccard index (Wikipedia).
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• Bipartite graphs (Wikipedia)


Running this algorithm requires sufficient available memory. Before running this
algorithm, we recommend that you read Memory Estimation.

Syntax

This section covers the syntax used to execute the Node Similarity algorithm in each of its execution
modes. We are describing the named graph variant of the syntax. To learn more about general syntax
variants, see Syntax overview.
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Node Similarity syntax per mode
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Run Node Similarity in stream mode on a named graph.

CALL gds.nodeSimilarity.stream(
  graphName: String,
  configuration: Map
) YIELD
  node1: Integer,
  node2: Integer,
  similarity: Float

Table 534. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 535. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 536. Algorithm specific configuration

Name Type Default Optional Description

similarityCut
off

Float 1E-42 yes Lower limit for the similarity score to be present in the
result. Values must be between 0 and 1.

degreeCutof
f

Integer 1 yes Lower limit on the node degree for a node to be
considered in the comparisons. This value can not be
lower than 1.

topK Integer 10 yes Limit on the number of scores per node. The K largest
results are returned. This value cannot be lower than 1.

bottomK Integer 10 yes Limit on the number of scores per node. The K smallest
results are returned. This value cannot be lower than 1.

topN Integer 0 yes Global limit on the number of scores computed. The N
largest total results are returned. This value cannot be
negative, a value of 0 means no global limit.

bottomN Integer 0 yes Global limit on the number of scores computed. The N
smallest total results are returned. This value cannot be
negative, a value of 0 means no global limit.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.
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Table 537. Results

Name Type Description

node1 Integer Node ID of the first node.

node2 Integer Node ID of the second node.

similarity Float Similarity score for the two nodes.
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Run Node Similarity in stats mode on a named graph.

CALL gds.nodeSimilarity.stats(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  nodesCompared: Integer,
  similarityPairs: Integer,
  similarityDistribution: Map,
  configuration: Map

Table 538. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 539. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 540. Algorithm specific configuration

Name Type Default Optional Description

similarityCut
off

Float 1E-42 yes Lower limit for the similarity score to be present in the
result. Values must be between 0 and 1.

degreeCutof
f

Integer 1 yes Lower limit on the node degree for a node to be
considered in the comparisons. This value can not be
lower than 1.

topK Integer 10 yes Limit on the number of scores per node. The K largest
results are returned. This value cannot be lower than 1.

bottomK Integer 10 yes Limit on the number of scores per node. The K smallest
results are returned. This value cannot be lower than 1.

topN Integer 0 yes Global limit on the number of scores computed. The N
largest total results are returned. This value cannot be
negative, a value of 0 means no global limit.

bottomN Integer 0 yes Global limit on the number of scores computed. The N
smallest total results are returned. This value cannot be
negative, a value of 0 means no global limit.
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Name Type Default Optional Description

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

Table 541. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

nodesComp
ared

Integer The number of nodes compared.

postProcessi
ngMillis

Integer Milliseconds for computing component count and distribution statistics.

similarityPai
rs

Integer The number of pairs of similar nodes computed.

similarityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of the computed similarity results.

configuratio
n

Map The configuration used for running the algorithm.
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Run Node Similarity in mutate mode on a graph stored in the catalog.

CALL gds.nodeSimilarity.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  mutateMillis: Integer,
  postProcessingMillis: Integer,
  relationshipsWritten: Integer,
  nodesCompared: Integer,
  similarityDistribution: Map,
  configuration: Map

Table 542. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 543. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 544. Algorithm specific configuration

Name Type Default Optional Description

similarityCut
off

Float 1E-42 yes Lower limit for the similarity score to be present in the
result. Values must be between 0 and 1.

degreeCutof
f

Integer 1 yes Lower limit on the node degree for a node to be
considered in the comparisons. This value can not be
lower than 1.

topK Integer 10 yes Limit on the number of scores per node. The K largest
results are returned. This value cannot be lower than 1.

bottomK Integer 10 yes Limit on the number of scores per node. The K smallest
results are returned. This value cannot be lower than 1.

topN Integer 0 yes Global limit on the number of scores computed. The N
largest total results are returned. This value cannot be
negative, a value of 0 means no global limit.
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Name Type Default Optional Description

bottomN Integer 0 yes Global limit on the number of scores computed. The N
smallest total results are returned. This value cannot be
negative, a value of 0 means no global limit.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

Table 545. Results

Name Type Description

nodesComp
ared

Integer The number of nodes compared.

relationships
Written

Integer The number of relationships created.

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

postProcessi
ngMillis

Integer Milliseconds for computing percentiles.

similarityDis
tribution

Map Map containing min, max, mean, stdDev and p1, p5, p10, p25, p75, p90, p95, p99,
p100 percentile values of the computed similarity results.

configuratio
n

Map The configuration used for running the algorithm.
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Run Node Similarity in write mode on a graph stored in the catalog.

CALL gds.nodeSimilarity.write(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  postProcessingMillis: Integer,
  nodesCompared: Integer,
  relationshipsWritten: Integer,
  similarityDistribution: Map,
  configuration: Map

Table 546. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 547. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 548. Algorithm specific configuration

Name Type Default Optional Description

similarityCut
off

Float 1E-42 yes Lower limit for the similarity score to be present in the
result. Values must be between 0 and 1.

degreeCutof
f

Integer 1 yes Lower limit on the node degree for a node to be
considered in the comparisons. This value can not be
lower than 1.

topK Integer 10 yes Limit on the number of scores per node. The K largest
results are returned. This value cannot be lower than 1.

bottomK Integer 10 yes Limit on the number of scores per node. The K smallest
results are returned. This value cannot be lower than 1.
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Name Type Default Optional Description

topN Integer 0 yes Global limit on the number of scores computed. The N
largest total results are returned. This value cannot be
negative, a value of 0 means no global limit.

bottomN Integer 0 yes Global limit on the number of scores computed. The N
smallest total results are returned. This value cannot be
negative, a value of 0 means no global limit.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

Table 549. Results

Name Type Description

nodesComp
ared

Integer The number of nodes compared.

relationships
Written

Integer The number of relationships created.

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

writeMillis Integer Milliseconds for writing result data back to Neo4j.

postProcessi
ngMillis

Integer Milliseconds for computing percentiles.

similarityDis
tribution

Map Map containing min, max, mean, stdDev and p1, p5, p10, p25, p75, p90, p95, p99,
p100 percentile values of the computed similarity results.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.
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Run Node Similarity in write mode on an anonymous graph.

CALL gds.nodeSimilarity.write(
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  postProcessingMillis: Integer,
  nodesCompared: Integer,
  relationshipsWritten: Integer,
  similarityDistribution: Map,
  configuration: Map

Table 550. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 551. Algorithm specific configuration

Name Type Default Optional Description

similarityCuto
ff

Float 1E-42 yes Lower limit for the similarity score to be present in the result.
Values must be between 0 and 1.

degreeCutoff Integer 1 yes Lower limit on the node degree for a node to be considered in
the comparisons. This value can not be lower than 1.

topK Integer 10 yes Limit on the number of scores per node. The K largest results
are returned. This value cannot be lower than 1.

bottomK Integer 10 yes Limit on the number of scores per node. The K smallest
results are returned. This value cannot be lower than 1.
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Name Type Default Optional Description

topN Integer 0 yes Global limit on the number of scores computed. The N largest
total results are returned. This value cannot be negative, a
value of 0 means no global limit.

bottomN Integer 0 yes Global limit on the number of scores computed. The N
smallest total results are returned. This value cannot be
negative, a value of 0 means no global limit.

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the Node Similarity algorithm on a concrete graph. The
intention is to illustrate what the results look like and to provide a guide in how to make use of the
algorithm in a real setting. We will do this on a small knowledge graph of a handful nodes connected in a
particular pattern. The example graph looks like this:

LIKESLIKES

LIKES

LIKESLIKES

LIKES

LIKES

LIKESLIKES

Guitar Synthesi…

Bongos

Trumpet

Alice

Bob

Carol

Dave

Eve
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (alice:Person {name: 'Alice'}),
  (bob:Person {name: 'Bob'}),
  (carol:Person {name: 'Carol'}),
  (dave:Person {name: 'Dave'}),
  (eve:Person {name: 'Eve'}),
  (guitar:Instrument {name: 'Guitar'}),
  (synth:Instrument {name: 'Synthesizer'}),
  (bongos:Instrument {name: 'Bongos'}),
  (trumpet:Instrument {name: 'Trumpet'}),

  (alice)-[:LIKES]->(guitar),
  (alice)-[:LIKES]->(synth),
  (alice)-[:LIKES {strength: 0.5}]->(bongos),
  (bob)-[:LIKES]->(guitar),
  (bob)-[:LIKES]->(synth),
  (carol)-[:LIKES]->(bongos),
  (dave)-[:LIKES]->(guitar),
  (dave)-[:LIKES]->(synth),
  (dave)-[:LIKES]->(bongos);

This bipartite graph has two node sets, Person nodes and Instrument nodes. The two node sets are
connected via LIKES relationships. Each relationship starts at a Person node and ends at an Instrument
node.

In the example, we want to use the Node Similarity algorithm to compare people based on the instruments
they like.

The Node Similarity algorithm will only compute similarity for nodes that have a degree of at least 1. In the
example graph, the Eve node will not be compared to other Person nodes.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create the graph and store it in the graph catalog.

CALL gds.graph.create(
    'myGraph',
    ['Person', 'Instrument'],
    {
        LIKES: {
            type: 'LIKES',
            properties: {
                strength: {
                    property: 'strength',
                    defaultValue: 1.0
                }
            }
        }
    }
);

In the following examples we will demonstrate using the Node Similarity algorithm on this graph.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
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to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.

The following will estimate the memory requirements for running the algorithm:

CALL gds.nodeSimilarity.write.estimate('myGraph', {
  writeRelationshipType: 'SIMILAR',
  writeProperty: 'score'
})
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 552. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

9 9 2592 2808 "[2592 Bytes ... 2808
Bytes]"

Stream

In the stream execution mode, the algorithm returns the similarity score for each relationship. This allows
us to inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm, and stream results:

CALL gds.nodeSimilarity.stream('myGraph')
YIELD node1, node2, similarity
RETURN gds.util.asNode(node1).name AS Person1, gds.util.asNode(node2).name AS Person2, similarity
ORDER BY similarity DESCENDING, Person1, Person2

Table 553. Results

Person1 Person2 similarity

"Alice" "Dave" 1.0

"Dave" "Alice" 1.0

"Alice" "Bob" 0.6666666666666666

"Bob" "Alice" 0.6666666666666666

"Bob" "Dave" 0.6666666666666666

"Dave" "Bob" 0.6666666666666666

"Alice" "Carol" 0.3333333333333333

"Carol" "Alice" 0.3333333333333333

"Carol" "Dave" 0.3333333333333333
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Person1 Person2 similarity

"Dave" "Carol" 0.3333333333333333

We use default values for the procedure configuration parameter. TopK is set to 10, topN is set to 0.
Because of that the result set contains the top 10 similarity scores for each node.


If we would like to instead compare the Instruments to each other, we would then
project the LIKES relationship type using REVERSE orientation. This would return
similarities for pairs of Instruments and not compute any similarities between Persons.

Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.

The following will run the algorithm and returns the result in form of statistical and measurement values

CALL gds.nodeSimilarity.stats('myGraph')
YIELD nodesCompared, similarityPairs

Table 554. Results

nodesCompared similarityPairs

4 10

Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new relationship property containing the similarity score for that relationship. The name of
the new property is specified using the mandatory configuration parameter mutateProperty. The result is a
single summary row, similar to stats, but with some additional metrics. The mutate mode is especially
useful when multiple algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm, and write back results to the in-memory graph:

CALL gds.nodeSimilarity.mutate('myGraph', {
    mutateRelationshipType: 'SIMILAR',
    mutateProperty: 'score'
})
YIELD nodesCompared, relationshipsWritten

Table 555. Results
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nodesCompared relationshipsWritten

4 10

As we can see from the results, the number of created relationships is equal to the number of rows in the
streaming example.

Write

The write execution mode extends the stats mode with an important side effect: for each pair of nodes
we create a relationship with the Jaccard similarity score as a property to the Neo4j database. The type of
the new relationship is specified using the mandatory configuration parameter writeRelationshipType.
The name of the new property is specified using the mandatory configuration parameter writeProperty.
The result is a single summary row, similar to stats, but with some additional metrics.

For more details on the write mode in general, see Write.

The following will run the algorithm, and write back results:

CALL gds.nodeSimilarity.write('myGraph', {
    writeRelationshipType: 'SIMILAR',
    writeProperty: 'score'
})
YIELD nodesCompared, relationshipsWritten

Table 556. Results

nodesCompared relationshipsWritten

4 10

As we can see from the results, the number of created relationships is equal to the number of rows in the
streaming example.

Limit results

There are four limits that can be applied to the similarity results. Top limits the result to the highest
similarity scores. Bottom limits the result to the lowest similarity scores. Both top and bottom limits can
apply to the result as a whole ("N"), or to the result per node ("K").


There must always be a "K" limit, either bottomK or topK, which is a positive number.
The default value for topK and bottomK is 10.

Table 557. Result limits

total results results per node

highest score topN topK

lowest score bottomN bottomK
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topK and bottomK

TopK and bottomK are limits on the number of scores computed per node. For topK, the K largest similarity
scores per node are returned. For bottomK, the K smallest similarity scores per node are returned. TopK
and bottomK cannot be 0, used in conjunction, and the default value is 10. If neither is specified, topK is
used.

The following will run the algorithm, and stream the top 1 result per node:

CALL gds.nodeSimilarity.stream('myGraph', { topK: 1 })
YIELD node1, node2, similarity
RETURN gds.util.asNode(node1).name AS Person1, gds.util.asNode(node2).name AS Person2, similarity
ORDER BY Person1

Table 558. Results

Person1 Person2 similarity

"Alice" "Dave" 1.0

"Bob" "Alice" 0.6666666666666666

"Carol" "Alice" 0.3333333333333333

"Dave" "Alice" 1.0

The following will run the algorithm, and stream the bottom 1 result per node:

CALL gds.nodeSimilarity.stream('myGraph', { bottomK: 1 })
YIELD node1, node2, similarity
RETURN gds.util.asNode(node1).name AS Person1, gds.util.asNode(node2).name AS Person2, similarity
ORDER BY Person1

Table 559. Results

Person1 Person2 similarity

"Alice" "Carol" 0.3333333333333333

"Bob" "Alice" 0.6666666666666666

"Carol" "Alice" 0.3333333333333333

"Dave" "Carol" 0.3333333333333333

topN and bottomN

TopN and bottomN limit the number of similarity scores across all nodes. This is a limit on the total result
set, in addition to the topK or bottomK limit on the results per node. For topN, the N largest similarity
scores are returned. For bottomN, the N smallest similarity scores are returned. A value of 0 means no
global limit is imposed and all results from topK or bottomK are returned.
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The following will run the algorithm, and stream the 3 highest out of the top 1 results per node:

CALL gds.nodeSimilarity.stream('myGraph', { topK: 1, topN: 3 })
YIELD node1, node2, similarity
RETURN gds.util.asNode(node1).name AS Person1, gds.util.asNode(node2).name AS Person2, similarity
ORDER BY similarity DESC, Person1, Person2

Table 560. Results

Person1 Person2 similarity

"Alice" "Dave" 1.0

"Dave" "Alice" 1.0

"Bob" "Alice" 0.6666666666666666

Degree cutoff and similarity cutoff

Degree cutoff is a lower limit on the node degree for a node to be considered in the comparisons. This
value can not be lower than 1.

The following will ignore nodes with less than 3 LIKES relationships:

CALL gds.nodeSimilarity.stream('myGraph', { degreeCutoff: 3 })
YIELD node1, node2, similarity
RETURN gds.util.asNode(node1).name AS Person1, gds.util.asNode(node2).name AS Person2, similarity
ORDER BY Person1

Table 561. Results

Person1 Person2 similarity

"Alice" "Dave" 1.0

"Dave" "Alice" 1.0

Similarity cutoff is a lower limit for the similarity score to be present in the result. The default value is very
small (1E-42) to exclude results with a similarity score of 0.


Setting similarity cutoff to 0 may yield a very large result set, increased runtime and
memory consumption.

The following will ignore node pairs with a similarity score less than 0.5:

CALL gds.nodeSimilarity.stream('myGraph', { similarityCutoff: 0.5 })
YIELD node1, node2, similarity
RETURN gds.util.asNode(node1).name AS Person1, gds.util.asNode(node2).name AS Person2, similarity
ORDER BY Person1

Table 562. Results

Person1 Person2 similarity

"Alice" "Dave" 1.0
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Person1 Person2 similarity

"Alice" "Bob" 0.6666666666666666

"Bob" "Dave" 0.6666666666666666

"Bob" "Alice" 0.6666666666666666

"Dave" "Alice" 1.0

"Dave" "Bob" 0.6666666666666666

Weighted Jaccard Similarity

Relationship properties can be used to modify the similarity induced by certain relationships. For example a
relationship value of 2 is equal to counting that relationship twice while computing the jaccard similarity.

 Weighted jaccard similarity is only defined for values greater or equal to 0.

The following query will respect relationship properties in the similarity computation:

CALL gds.nodeSimilarity.stream('myGraph', { relationshipWeightProperty: 'strength', similarityCutoff: 0.5
})
YIELD node1, node2, similarity
RETURN gds.util.asNode(node1).name AS Person1, gds.util.asNode(node2).name AS Person2, similarity
ORDER BY Person1

Table 563. Results

Person1 Person2 similarity

"Alice" "Dave" 0.8333333333333334

"Alice" "Bob" 0.8

"Bob" "Alice" 0.8

"Bob" "Dave" 0.6666666666666666

"Dave" "Alice" 0.8333333333333334

"Dave" "Bob" 0.6666666666666666

It can be seen that the similarity between Alice and Dave decreased compared to the non-weighted
version of this algorithm. This is the case as the strength of the relationship between Alice and Bongos is
reduced and both persons now only share 2.5 out of 3 possible instruments. Analogous the similarity
between Alice and Bob increased as the missing liked instrument has a lower impact on the similarity
score.

7.4.2. K-Nearest Neighbors Beta

Introduction

The K-Nearest Neighbors algorithm computes a distance value for all node pairs in the graph and creates
new relationships between each node and its k nearest neighbors. The distance is calculated based on
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node properties.

The input of this algorithm is a monopartite graph. The graph does not need to be connected, in fact,
existing relationships between nodes will be ignored. New relationships are created between each node
and its k nearest neighbors.

The K-Nearest Neighbors algorithm compares a given property of each node. The k nodes where this
property is most similar are the k-nearest neighbors.

The initial set of neighbors is picked at random and verified and refined in multiple iterations. The number
of iterations is limited by the configuration parameter maxIterations. The algorithm may stop earlier if the
neighbor lists only change by a small amount, which can be controlled by the configuration parameter
deltaThreshold.

The particular implementation is based on Efficient k-nearest neighbor graph construction for generic
similarity measures by Wei Dong et al. Instead of comparing every node with every other node, the
algorithm selects possible neighbors based on the assumption, that the neighbors-of-neighbors of a node
are most likely already the nearest one. The algorithm scales quasi-linear with respect to the node count,
instead of being quadratic.

Furthermore, the algorithm only compares a sample of all possible neighbors on each iteration, assuming
that eventually all possible neighbors will be seen. This can be controlled with the configuration parameter
sampleRate:

• A valid sample rate must be in between 0 (exclusive) and 1 (inclusive).

• The default value is 0.5.

• The parameter is used to control the trade-off between accuracy and runtime-performance.

• A higher sample rate will increase the accuracy of the result.

◦ The algorithm will also require more memory and will take longer to compute.

• A lower sample rate will increase the runtime-performance.

◦ Some potential nodes may be missed in the comparison and may not be included in the result.

The output of the algorithm are new relationships between nodes and their k-nearest neighbors. Similarity
scores are expressed via relationship properties.

For more information on this algorithm, see:

• Efficient k-nearest neighbor graph construction for generic similarity measures

• Nearest neighbor graph (Wikipedia)


Running this algorithm requires sufficient available memory. Before running this
algorithm, we recommend that you read Memory Estimation.

Similarity measures

The similarity measure used in the KNN algorithm depends on the type of the configured node property.
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KNN supports both scalar numeric values as well as lists of numbers.

Scalar numeric property

When the property is a scalar number, the similarity is computed as one divided by one plus the
absolute difference between the values:

List of integers

When the property is a list of integers, the similarity is computed as one divided by one plus the
number of unequal numbers in the list:

List of floating-point numbers

When the property is a list of floating-point numbers, the similarity is computed using the cosine
similarity metric. See the Cosine Similarity algorithm for more details. If the cosine similarity is negative,
we clip the value to 0, i.e., max(cosine(a, b), 0)).

Syntax

This section covers the syntax used to execute the K-Nearest Neighbors algorithm in each of its execution
modes. We are describing the named graph variant of the syntax. To learn more about general syntax
variants, see Syntax overview.
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K-Nearest Neighbors syntax per mode
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Run K-Nearest Neighbors in stream mode on a named graph.

CALL gds.beta.knn.stream(
  graphName: String,
  configuration: Map
) YIELD
  node1: Integer,
  node2: Integer,
  similarity: Float

Table 564. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 565. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 566. Algorithm specific configuration

Name Type Default Optional Description

nodeWeight
Property

String n/a no The name of a node property that contains node
weights which will be used for similarity computation.

topK Integer 10 yes The number of neighbors to find for each node. The K-
nearest neighbors are returned. This value cannot be
lower than 1.

sampleRate Float 0.5 yes Sample rate to limit the number of comparisons per
node. Value must be between 0 (exclusive) and 1
(inclusive).

deltaThresh
old

Float 0.001 yes Value as a percentage to determine when to stop early.
If fewer updates than the configured value happen, the
algorithm stops. Value must be between 0 (exclusive)
and 1 (inclusive).

maxIteration
s

Integer 100 yes Hard limit to stop the algorithm after that many
iterations.

randomJoins Integer 10 yes Between every iteration, how many attempts are being
made to connect new node neighbors based on
random selection.
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Name Type Default Optional Description

randomSeed Integer n/a yes The seed value to control the randomness of the
algorithm. Note that concurrency must be set to 1
when setting this parameter.

Table 567. Results

Name Type Description

node1 Integer Node ID of the first node.

node2 Integer Node ID of the second node.

similarity Float Similarity score for the two nodes.
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Run K-Nearest Neighbors in stats mode on a named graph.

CALL gds.beta.knn.stats(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  nodesCompared: Integer,
  similarityPairs: Integer,
  similarityDistribution: Map,
  configuration: Map

Table 568. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 569. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 570. Algorithm specific configuration

Name Type Default Optional Description

nodeWeight
Property

String n/a no The name of a node property that contains node
weights which will be used for similarity computation.

topK Integer 10 yes The number of neighbors to find for each node. The K-
nearest neighbors are returned. This value cannot be
lower than 1.

sampleRate Float 0.5 yes Sample rate to limit the number of comparisons per
node. Value must be between 0 (exclusive) and 1
(inclusive).

deltaThresh
old

Float 0.001 yes Value as a percentage to determine when to stop early.
If fewer updates than the configured value happen, the
algorithm stops. Value must be between 0 (exclusive)
and 1 (inclusive).

maxIteration
s

Integer 100 yes Hard limit to stop the algorithm after that many
iterations.

371



Name Type Default Optional Description

randomJoins Integer 10 yes Between every iteration, how many attempts are being
made to connect new node neighbors based on
random selection.

randomSeed Integer n/a yes The seed value to control the randomness of the
algorithm. Note that concurrency must be set to 1
when setting this parameter.

Table 571. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing similarity value distribution statistics.

nodesComp
ared

Integer The number of nodes compared.

similarityPai
rs

Integer The number of pairs of similar nodes computed.

similarityDis
tribution

Map Map containing min, max, mean as well as p50, p75, p90, p95, p99 and p999
percentile values of the computed similarity results.

configuratio
n

Map The configuration used for running the algorithm.
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Run K-Nearest Neighbors in mutate mode on a graph stored in the catalog.

CALL gds.beta.knn.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  mutateMillis: Integer,
  postProcessingMillis: Integer,
  relationshipsWritten: Integer,
  nodesCompared: Integer,
  similarityDistribution: Map,
  configuration: Map

Table 572. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 573. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 574. Algorithm specific configuration

Name Type Default Optional Description

nodeWeight
Property

String n/a no The name of a node property that contains node
weights which will be used for similarity computation.

topK Integer 10 yes The number of neighbors to find for each node. The K-
nearest neighbors are returned. This value cannot be
lower than 1.

sampleRate Float 0.5 yes Sample rate to limit the number of comparisons per
node. Value must be between 0 (exclusive) and 1
(inclusive).

deltaThresh
old

Float 0.001 yes Value as a percentage to determine when to stop early.
If fewer updates than the configured value happen, the
algorithm stops. Value must be between 0 (exclusive)
and 1 (inclusive).

maxIteration
s

Integer 100 yes Hard limit to stop the algorithm after that many
iterations.
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Name Type Default Optional Description

randomJoins Integer 10 yes Between every iteration, how many attempts are being
made to connect new node neighbors based on
random selection.

randomSeed Integer n/a yes The seed value to control the randomness of the
algorithm. Note that concurrency must be set to 1
when setting this parameter.

Table 575. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

postProcessi
ngMillis

Integer Milliseconds for computing similarity value distribution statistics.

nodesComp
ared

Integer The number of nodes compared.

relationships
Written

Integer The number of relationships created.

similarityDis
tribution

Map Map containing min, max, mean, stdDev and p1, p5, p10, p25, p75, p90, p95, p99,
p100 percentile values of the computed similarity results.

configuratio
n

Map The configuration used for running the algorithm.

374



Run K-Nearest Neighbors in write mode on a graph stored in the catalog.

CALL gds.beta.knn.write(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  postProcessingMillis: Integer,
  nodesCompared: Integer,
  relationshipsWritten: Integer,
  similarityDistribution: Map,
  configuration: Map

Table 576. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 577. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 578. Algorithm specific configuration

Name Type Default Optional Description

nodeWeight
Property

String n/a no The name of a node property that contains node
weights which will be used for similarity computation.

topK Integer 10 yes The number of neighbors to find for each node. The K-
nearest neighbors are returned. This value cannot be
lower than 1.

sampleRate Float 0.5 yes Sample rate to limit the number of comparisons per
node. Value must be between 0 (exclusive) and 1
(inclusive).

deltaThresh
old

Float 0.001 yes Value as a percentage to determine when to stop early.
If fewer updates than the configured value happen, the
algorithm stops. Value must be between 0 (exclusive)
and 1 (inclusive).
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Name Type Default Optional Description

maxIteration
s

Integer 100 yes Hard limit to stop the algorithm after that many
iterations.

randomJoins Integer 10 yes Between every iteration, how many attempts are being
made to connect new node neighbors based on
random selection.

randomSeed Integer n/a yes The seed value to control the randomness of the
algorithm. Note that concurrency must be set to 1
when setting this parameter.

Table 579. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

writeMillis Integer Milliseconds for writing result data back to Neo4j.

postProcessi
ngMillis

Integer Milliseconds for computing similarity value distribution statistics.

nodesComp
ared

Integer The number of nodes compared.

relationships
Written

Integer The number of relationships created.

similarityDis
tribution

Map Map containing min, max, mean, stdDev and p1, p5, p10, p25, p75, p90, p95, p99,
p100 percentile values of the computed similarity results.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.
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Run K-Nearest Neighbors in write mode on an anonymous graph.

CALL gds.beta.knn.write(
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  postProcessingMillis: Integer,
  nodesCompared: Integer,
  relationshipsWritten: Integer,
  similarityDistribution: Map,
  configuration: Map

Table 580. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.


The KNN algorithm does not read any relationships, but the values for
relationshipProjection or relationshipQuery are still being used and respected for the
graph loading.

Table 581. Algorithm specific configuration

Name Type Default Optional Description

nodeWeightP
roperty

String n/a no The name of a node property that contains node weights
which will be used for similarity computation.
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Name Type Default Optional Description

topK Integer 10 yes The number of neighbors to find for each node. The K-
nearest neighbors are returned. This value cannot be lower
than 1.

sampleRate Float 0.5 yes Sample rate to limit the number of comparisons per node.
Value must be between 0 (exclusive) and 1 (inclusive).

deltaThreshol
d

Float 0.001 yes Value as a percentage to determine when to stop early. If
fewer updates than the configured value happen, the
algorithm stops. Value must be between 0 (exclusive) and 1
(inclusive).

maxIterations Integer 100 yes Hard limit to stop the algorithm after that many iterations.

randomJoins Integer 10 yes Between every iteration, how many attempts are being made
to connect new node neighbors based on random selection.

randomSeed Integer n/a yes The seed value to control the randomness of the algorithm.
Note that concurrency must be set to 1 when setting this
parameter.

The results are the same as running write mode on a named graph, see write mode syntax above.



To get a deterministic result when running the algorithm:

• the concurrency parameter must be set to one

• the randomSeed must be explicitly set to something other than -1.

Examples

Consider the graph created by the following Cypher statement:

CREATE (alice:Person {name: 'Alice', age: 24})
CREATE (bob:Person {name: 'Bob', age: 73})
CREATE (carol:Person {name: 'Carol', age: 24})
CREATE (dave:Person {name: 'Dave', age: 48})
CREATE (eve:Person {name: 'Eve', age: 67});

In the example, we want to use the K-Nearest Neighbors algorithm to compare people based on their age.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.
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The following statement will create the graph and store it in the graph catalog.

CALL gds.graph.create(
    'myGraph',
    {
        Person: {
            label: 'Person',
            properties: 'age'
        }
    },
    '*'
);

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.

The following will estimate the memory requirements for running the algorithm:

CALL gds.beta.knn.write.estimate('myGraph', {
  nodeWeightProperty: 'age',
  writeRelationshipType: 'SIMILAR',
  writeProperty: 'score',
  topK: 1
})
YIELD nodeCount, bytesMin, bytesMax, requiredMemory

Table 582. Results

nodeCount bytesMin bytesMax requiredMemory

5 1944 3000 "[1944 Bytes ... 3000 Bytes]"

Stream

In the stream execution mode, the algorithm returns the similarity score for each relationship. This allows
us to inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

379



The following will run the algorithm, and stream results:

CALL gds.beta.knn.stream('myGraph', {
    topK: 1,
    nodeWeightProperty: 'age',
    // The following parameters are set to produce a deterministic result
    randomSeed: 1337,
    concurrency: 1,
    sampleRate: 1.0,
    deltaThreshold: 0.0
})
YIELD node1, node2, similarity
RETURN gds.util.asNode(node1).name AS Person1, gds.util.asNode(node2).name AS Person2, similarity
ORDER BY similarity DESCENDING, Person1, Person2

Table 583. Results

Person1 Person2 similarity

"Alice" "Carol" 1.0

"Carol" "Alice" 1.0

"Bob" "Eve" 0.14285714285714285

"Eve" "Bob" 0.14285714285714285

"Dave" "Eve" 0.05

We use default values for the procedure configuration parameter for most parameters. The randomSeed
and concurrency is set to produce the same result on every invocation. The topK parameter is set to 1 to
only return the single nearest neighbor for every node.

Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.

The following will run the algorithm and return the result in form of statistical and measurement values:

CALL gds.beta.knn.stats('myGraph', {topK: 1, concurrency: 1, randomSeed: 42, nodeWeightProperty: 'age'})
YIELD nodesCompared, similarityPairs

Table 584. Results

nodesCompared similarityPairs

5 5
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Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new relationship property containing the similarity score for that relationship. The name of
the new property is specified using the mandatory configuration parameter mutateProperty. The result is a
single summary row, similar to stats, but with some additional metrics. The mutate mode is especially
useful when multiple algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm, and write back results to the in-memory graph:

CALL gds.beta.knn.mutate('myGraph', {
    mutateRelationshipType: 'SIMILAR',
    mutateProperty: 'score',
    topK: 1,
    randomSeed: 42,
    concurrency: 1,
    nodeWeightProperty: 'age'
})
YIELD nodesCompared, relationshipsWritten

Table 585. Results

nodesCompared relationshipsWritten

5 5

As we can see from the results, the number of created relationships is equal to the number of rows in the
streaming example.

Write

The write execution mode extends the stats mode with an important side effect: for each pair of nodes
we create a relationship with the similarity score as a property to the Neo4j database. The type of the new
relationship is specified using the mandatory configuration parameter writeRelationshipType. Each new
relationship stores the similarity score between the two nodes it represents. The relationship property key
is set using the mandatory configuration parameter writeProperty. The result is a single summary row,
similar to stats, but with some additional metrics.

For more details on the write mode in general, see Write.

The following will run the algorithm, and write back results:

CALL gds.beta.knn.write('myGraph', {
    writeRelationshipType: 'SIMILAR',
    writeProperty: 'score',
    topK: 1,
    randomSeed: 42,
    concurrency: 1,
    nodeWeightProperty: 'age'
})
YIELD nodesCompared, relationshipsWritten

Table 586. Results
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nodesCompared relationshipsWritten

5 5

As we can see from the results, the number of created relationships is equal to the number of rows in the
streaming example.

7.4.3. Jaccard Similarity Alpha

Jaccard Similarity (coefficient), a term coined by Paul Jaccard, measures similarities between sets. It is
defined as the size of the intersection divided by the size of the union of two sets. This notion has been
generalized for multisets, where duplicate elements are counted as weights.

The GDS Jaccard Similarity function is defined for lists, which are interpreted as multisets.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

A related procedure for computing Jaccard similarity is described in Node Similarity.

History and explanation

Given two sets A and B, the Jaccard Similarity is computed using the following formula:

The library contains functions to calculate similarity between sets of data. The Jaccard Similarity function is
best used when calculating the similarity between small numbers of sets.

Use-cases - when to use the Jaccard Similarity algorithm

We can use the Jaccard Similarity algorithm to work out the similarity between two things. We might then
use the computed similarity as part of a recommendation query. For example, you can use the Jaccard
Similarity algorithm to show the products that were purchased by similar customers, in terms of previous
products purchased.

Jaccard Similarity algorithm function sample

The Jaccard Similarity function computes the similarity of two lists of numbers.

We can use it to compute the similarity of two hardcoded lists.
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The following will return the Jaccard Similarity of two lists of numbers:

RETURN gds.alpha.similarity.jaccard([1,2,3], [1,2,4,5]) AS similarity

Table 587. Results

similarity

0.4

These two lists of numbers have a Jaccard Similarity of 0.4. We can see how this result is derived by
breaking down the formula:

J(A,B) = ∣A ∩ B∣ / ∣A∣ + ∣B∣ - ∣A ∩ B|
J(A,B) = 2 / 3 + 4 - 2
       = 2 / 5
       = 0.4

We can also use it to compute the similarity of nodes based on lists computed by a Cypher query.

The following will create a sample graph:

CREATE
  (french:Cuisine {name:'French'}),
  (italian:Cuisine {name:'Italian'}),
  (indian:Cuisine {name:'Indian'}),
  (lebanese:Cuisine {name:'Lebanese'}),
  (portuguese:Cuisine {name:'Portuguese'}),

  (zhen:Person {name: 'Zhen'}),
  (praveena:Person {name: 'Praveena'}),
  (michael:Person {name: 'Michael'}),
  (arya:Person {name: 'Arya'}),
  (karin:Person {name: 'Karin'}),

  (praveena)-[:LIKES]->(indian),
  (praveena)-[:LIKES]->(portuguese),

  (zhen)-[:LIKES]->(french),
  (zhen)-[:LIKES]->(indian),

  (michael)-[:LIKES]->(french),
  (michael)-[:LIKES]->(italian),
  (michael)-[:LIKES]->(indian),

  (arya)-[:LIKES]->(lebanese),
  (arya)-[:LIKES]->(italian),
  (arya)-[:LIKES]->(portuguese),

  (karin)-[:LIKES]->(lebanese),
  (karin)-[:LIKES]->(italian)

The following will return the Jaccard Similarity of Karin and Arya:

MATCH (p1:Person {name: 'Karin'})-[:LIKES]->(cuisine1)
WITH p1, collect(id(cuisine1)) AS p1Cuisine
MATCH (p2:Person {name: "Arya"})-[:LIKES]->(cuisine2)
WITH p1, p1Cuisine, p2, collect(id(cuisine2)) AS p2Cuisine
RETURN p1.name AS from,
       p2.name AS to,
       gds.alpha.similarity.jaccard(p1Cuisine, p2Cuisine) AS similarity

Table 588. Results
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from to similarity

"Karin" "Arya" 0.6666666666666666

The following will return the Jaccard Similarity of Karin and the other people that have a cuisine in
common:

MATCH (p1:Person {name: 'Karin'})-[:LIKES]->(cuisine1)
WITH p1, collect(id(cuisine1)) AS p1Cuisine
MATCH (p2:Person)-[:LIKES]->(cuisine2) WHERE p1 <> p2
WITH p1, p1Cuisine, p2, collect(id(cuisine2)) AS p2Cuisine
RETURN p1.name AS from,
       p2.name AS to,
       gds.alpha.similarity.jaccard(p1Cuisine, p2Cuisine) AS similarity
ORDER BY to, similarity DESC

Table 589. Results

from to similarity

"Karin" "Arya" 0.6666666666666666

"Karin" "Michael" 0.25

"Karin" "Praveena" 0.0

"Karin" "Zhen" 0.0

7.4.4. Cosine Similarity Alpha

Cosine similarity is the cosine of the angle between two n-dimensional vectors in an n-dimensional space.
It is the dot product of the two vectors divided by the product of the two vectors' lengths (or magnitudes).

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

Cosine similarity is computed using the following formula:

Values range between -1 and 1, where -1 is perfectly dissimilar and 1 is perfectly similar.

The library contains both procedures and functions to calculate similarity between sets of data. The
function is best used when calculating the similarity between small numbers of sets. The procedures
parallelize the computation and are therefore more appropriate for computing similarities on bigger
datasets.
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Use-cases - when to use the Cosine Similarity algorithm

We can use the Cosine Similarity algorithm to work out the similarity between two things. We might then
use the computed similarity as part of a recommendation query. For example, to get movie
recommendations based on the preferences of users who have given similar ratings to other movies that
you’ve seen.

Syntax

The following will create an anonymous graph to run the algorithm on and write back results:

CALL gds.alpha.similarity.cosine.write(configuration: Map)
YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, stdDev, p25, p50, p75,
p90, p95, p99, p999, p100

Table 590. Parameters

Name Type Default Optional Description

configuration Map n/a no Algorithm-specific configuration.

Table 591. Configuration

Name Type Default Optional Description

data List of String null no A list of maps of the following structure: {item: nodeId,
weights: [double, double, double]} or a Cypher query.

top Integer 0 yes The number of similar pairs to return. If 0, it will return as
many as it finds.

topK Integer 3 yes The number of similar values to return per node. If 0, it will
return as many as it finds.

similarityCuto
ff

Integer -1 yes The threshold for similarity. Values below this will not be
returned.

degreeCutoff Integer 0 yes The threshold for the number of items in the targets list. If
the list contains less than this amount, that node will be
excluded from the calculation.

skipValue Float gds.util.NaN() yes Value to skip when executing similarity computation. A value
of null means that skipping is disabled.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'writeConcurrency'.

writeConcurre
ncy

Integer value of
'concurrency'

yes The number of concurrent threads used for writing the result.

graph String dense yes The graph type ('dense' or 'cypher').

writeBatchSiz
e

Integer 10000 yes The batch size to use when storing results.

writeRelation
shipType

String SIMILAR yes The relationship type to use when storing results.
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Name Type Default Optional Description

writeProperty String score yes The property to use when storing results.

sourceIds List of Integer null yes The ids of items from which we need to compute similarities.
Defaults to all the items provided in the data parameter.

targetIds List of Integer null yes The ids of items to which we need to compute similarities.
Defaults to all the items provided in the data parameter.

Table 592. Results

Name Type Description

nodes Integer The number of nodes passed in.

similarityPairs Integer The number of pairs of similar nodes computed.

writeRelation
shipType

String The relationship type used when storing results.

writeProperty String The property used when storing results.

min Float The minimum similarity score computed.

max Float The maximum similarity score computed.

mean Float The mean of similarities scores computed.

stdDev Float The standard deviation of similarities scores computed.

p25 Float The 25 percentile of similarities scores computed.

p50 Float The 50 percentile of similarities scores computed.

p75 Float The 75 percentile of similarities scores computed.

p90 Float The 90 percentile of similarities scores computed.

p95 Float The 95 percentile of similarities scores computed.

p99 Float The 99 percentile of similarities scores computed.

p999 Float The 99.9 percentile of similarities scores computed.

p100 Float The 100 percentile of similarities scores computed.

The following will create an anonymous graph to run the algorithm on and stream results:

CALL gds.alpha.similarity.cosine.stream(configuration: Map)
YIELD item1, item2, count1, count2, intersection, similarity

Table 593. Parameters

Name Type Default Optional Description

configuration Map n/a no Algorithm-specific configuration.

Table 594. Configuration
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Name Type Default Optional Description

data List of String null no A list of maps of the following structure: {item: nodeId,
weights: [double, double, double]} or a Cypher query.

top Integer 0 yes The number of similar pairs to return. If 0, it will return as
many as it finds.

topK Integer 3 yes The number of similar values to return per node. If 0, it will
return as many as it finds.

similarityCuto
ff

Integer -1 yes The threshold for similarity. Values below this will not be
returned.

degreeCutoff Integer 0 yes The threshold for the number of items in the targets list. If
the list contains less than this amount, that node will be
excluded from the calculation.

skipValue Float null yes Value to skip when executing similarity computation. A value
of null means that skipping is disabled.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm.

graph String dense yes The graph type ('dense' or 'cypher').

sourceIds List of Integer null yes The ids of items from which we need to compute similarities.
Defaults to all the items provided in the data parameter.

targetIds List of Integer null yes The ids of items to which we need to compute similarities.
Defaults to all the items provided in the data parameter.

Table 595. Results

Name Type Description

item1 Integer The ID of one node in the similarity pair.

item2 Integer The ID of other node in the similarity pair.

count1 Integer The size of the targets list of one node.

count2 Integer The size of the targets list of other node.

intersection Integer The number of intersecting values in the two nodes targets lists.

similarity Integer The cosine similarity of the two nodes.

Cosine Similarity algorithm function sample

The Cosine Similarity function computes the similarity of two lists of numbers.


Cosine Similarity is only calculated over non-NULL dimensions. When calling the
function, we should provide lists that contain the overlapping items.

We can use it to compute the similarity of two hardcoded lists.
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The following will return the cosine similarity of two lists of numbers:

RETURN gds.alpha.similarity.cosine([3,8,7,5,2,9], [10,8,6,6,4,5]) AS similarity

Table 596. Results

similarity

0.8638935626791597

These two lists of numbers have a Cosine similarity of 0.863. We can see how this result is derived by
breaking down the formula:

We can also use it to compute the similarity of nodes based on lists computed by a Cypher query.

The following will create a sample graph:

CREATE (french:Cuisine {name:'French'})
CREATE (italian:Cuisine {name:'Italian'})
CREATE (indian:Cuisine {name:'Indian'})
CREATE (lebanese:Cuisine {name:'Lebanese'})
CREATE (portuguese:Cuisine {name:'Portuguese'})
CREATE (british:Cuisine {name:'British'})
CREATE (mauritian:Cuisine {name:'Mauritian'})

CREATE (zhen:Person {name: "Zhen"})
CREATE (praveena:Person {name: "Praveena"})
CREATE (michael:Person {name: "Michael"})
CREATE (arya:Person {name: "Arya"})
CREATE (karin:Person {name: "Karin"})

CREATE (praveena)-[:LIKES {score: 9}]->(indian)
CREATE (praveena)-[:LIKES {score: 7}]->(portuguese)
CREATE (praveena)-[:LIKES {score: 8}]->(british)
CREATE (praveena)-[:LIKES {score: 1}]->(mauritian)

CREATE (zhen)-[:LIKES {score: 10}]->(french)
CREATE (zhen)-[:LIKES {score: 6}]->(indian)
CREATE (zhen)-[:LIKES {score: 2}]->(british)

CREATE (michael)-[:LIKES {score: 8}]->(french)
CREATE (michael)-[:LIKES {score: 7}]->(italian)
CREATE (michael)-[:LIKES {score: 9}]->(indian)
CREATE (michael)-[:LIKES {score: 3}]->(portuguese)

CREATE (arya)-[:LIKES {score: 10}]->(lebanese)
CREATE (arya)-[:LIKES {score: 10}]->(italian)
CREATE (arya)-[:LIKES {score: 7}]->(portuguese)
CREATE (arya)-[:LIKES {score: 9}]->(mauritian)

CREATE (karin)-[:LIKES {score: 9}]->(lebanese)
CREATE (karin)-[:LIKES {score: 7}]->(italian)
CREATE (karin)-[:LIKES {score: 10}]->(portuguese)
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The following will return the Cosine similarity of Michael and Arya:

 MATCH (p1:Person {name: 'Michael'})-[likes1:LIKES]->(cuisine)
 MATCH (p2:Person {name: "Arya"})-[likes2:LIKES]->(cuisine)
 RETURN p1.name AS from,
        p2.name AS to,
        gds.alpha.similarity.cosine(collect(likes1.score), collect(likes2.score)) AS similarity

Table 597. Results

from to similarity

"Michael" "Arya" 0.9788908326303921

The following will return the Cosine similarity of Michael and the other people that have a cuisine in
common:

 MATCH (p1:Person {name: 'Michael'})-[likes1:LIKES]->(cuisine)
 MATCH (p2:Person)-[likes2:LIKES]->(cuisine) WHERE p2 <> p1
 RETURN p1.name AS from,
        p2.name AS to,
        gds.alpha.similarity.cosine(collect(likes1.score), collect(likes2.score)) AS similarity
 ORDER BY similarity DESC

Table 598. Results

from to similarity

"Michael" "Arya" 0.9788908326303921

"Michael" "Zhen" 0.9542262139256075

"Michael" "Praveena" 0.9429903335828894

"Michael" "Karin" 0.8498063272285821

Cosine Similarity algorithm procedures examples

The Cosine Similarity procedure computes similarity between all pairs of items. It is a symmetrical
algorithm, which means that the result from computing the similarity of Item A to Item B is the same as
computing the similarity of Item B to Item A. We can therefore compute the score for each pair of nodes
once. We don’t compute the similarity of items to themselves.

The number of computations is ((# items)^2 / 2) - # items, which can be very computationally
expensive if we have a lot of items.


Cosine Similarity is only calculated over non-NULL dimensions. The procedures expect
to receive the same length lists for all items. Otherwise, longer lists will be trimmed to
the length of the shortest list.
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The following will create a sample graph:

CREATE (french:Cuisine {name:'French'})
CREATE (italian:Cuisine {name:'Italian'})
CREATE (indian:Cuisine {name:'Indian'})
CREATE (lebanese:Cuisine {name:'Lebanese'})
CREATE (portuguese:Cuisine {name:'Portuguese'})
CREATE (british:Cuisine {name:'British'})
CREATE (mauritian:Cuisine {name:'Mauritian'})

CREATE (zhen:Person {name: "Zhen"})
CREATE (praveena:Person {name: "Praveena"})
CREATE (michael:Person {name: "Michael"})
CREATE (arya:Person {name: "Arya"})
CREATE (karin:Person {name: "Karin"})

CREATE (praveena)-[:LIKES {score: 9}]->(indian)
CREATE (praveena)-[:LIKES {score: 7}]->(portuguese)
CREATE (praveena)-[:LIKES {score: 8}]->(british)
CREATE (praveena)-[:LIKES {score: 1}]->(mauritian)

CREATE (zhen)-[:LIKES {score: 10}]->(french)
CREATE (zhen)-[:LIKES {score: 6}]->(indian)
CREATE (zhen)-[:LIKES {score: 2}]->(british)

CREATE (michael)-[:LIKES {score: 8}]->(french)
CREATE (michael)-[:LIKES {score: 7}]->(italian)
CREATE (michael)-[:LIKES {score: 9}]->(indian)
CREATE (michael)-[:LIKES {score: 3}]->(portuguese)

CREATE (arya)-[:LIKES {score: 10}]->(lebanese)
CREATE (arya)-[:LIKES {score: 10}]->(italian)
CREATE (arya)-[:LIKES {score: 7}]->(portuguese)
CREATE (arya)-[:LIKES {score: 9}]->(mauritian)

CREATE (karin)-[:LIKES {score: 9}]->(lebanese)
CREATE (karin)-[:LIKES {score: 7}]->(italian)
CREATE (karin)-[:LIKES {score: 10}]->(portuguese)

Stream

The following will return a stream of node pairs along with their Cosine similarities:

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.cosine.stream({data: data})
 YIELD item1, item2, count1, count2, similarity
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
 ORDER BY similarity DESC

Table 599. Results

from to similarity

"Praveena" "Karin" 1.0

"Michael" "Arya" 0.9788908326303921

"Arya" "Karin" 0.9610904115204073

"Zhen" "Michael" 0.9542262139256075

"Praveena" "Michael" 0.9429903335828895

"Zhen" "Praveena" 0.9191450300180579
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from to similarity

"Michael" "Karin" 0.8498063272285821

"Praveena" "Arya" 0.7194014606174091

"Zhen" "Arya" 0.0

"Zhen" "Karin" 0.0

Praveena and Karin have the most similar food tastes, with a score of 1.0, and there are also several other
pairs of users with similar tastes. The scores here are unusually high because our users haven’t liked many
of the same cuisines. We also have 2 pairs of users who are not similar at all. We’d probably want to filter
those out, which we can do by passing in the similarityCutoff parameter.

The following will return a stream of node pairs that have a similarity of at least 0.1, along with their cosine
similarities:

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.cosine.stream({
   data: data,
   similarityCutoff: 0.0
 })
 YIELD item1, item2, count1, count2, similarity
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
 ORDER BY similarity DESC

Table 600. Results

from to similarity

"Praveena" "Karin" 1.0

"Michael" "Arya" 0.9788908326303921

"Arya" "Karin" 0.9610904115204073

"Zhen" "Michael" 0.9542262139256075

"Praveena" "Michael" 0.9429903335828895

"Zhen" "Praveena" 0.9191450300180579

"Michael" "Karin" 0.8498063272285821

"Praveena" "Arya" 0.7194014606174091

We can see that those users with no similarity have been filtered out. If we’re implementing a k-Nearest
Neighbors type query we might instead want to find the most similar k users for a given user. We can do
that by passing in the topK parameter.
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The following will return a stream of users along with the most similar user to them (i.e. k=1):

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.cosine.stream({
   data: data,
   similarityCutoff: 0.0,
   topK: 1
 })
 YIELD item1, item2, count1, count2, similarity
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
 ORDER BY from

Table 601. Results

from to similarity

"Arya" "Michael" 0.9788908326303921

"Karin" "Praveena" 1.0

"Michael" "Arya" 0.9788908326303921

"Praveena" "Karin" 1.0

"Zhen" "Michael" 0.9542262139256075

These results will not be symmetrical. For example, the person most similar to Zhen is Michael, but the
person most similar to Michael is Arya.

Write

The following will find the most similar user for each user, and store a relationship between those users:

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.cosine.write({
   data: data,
   topK: 1,
   similarityCutoff: 0.1
 })
 YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, stdDev, p25, p50,
p75, p90, p95, p99, p999, p100
 RETURN nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95

Table 602. Results

nodes similarityPa
irs

writeRelatio
nshipType

writePropert
y

min max mean p95

5 5 "SIMILAR" "score" 0.954223632
8125

1.000003814
6972656

0.982402038
5742187

1.000003814
6972656

We then could write a query to find out what types of cuisine that other people similar to us might like.
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The following will find the most similar user to Praveena, and return their favourite cuisines that Praveena
doesn’t (yet!) like:

 MATCH (p:Person {name: "Praveena"})-[:SIMILAR]->(other),
       (other)-[:LIKES]->(cuisine)
 WHERE not((p)-[:LIKES]->(cuisine))
 RETURN cuisine.name AS cuisine

Table 603. Results

cuisine

Italian

Lebanese

Stats

The following will run the algorithm and returns the result in form of statistical and measurement values

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.cosine.stats({
   data: data,
   topK: 1,
   similarityCutoff: 0.1
 })
 YIELD nodes, similarityPairs, min, max, mean, p95
 RETURN nodes, similarityPairs, min, max, mean, p95

Specifying source and target ids

Sometimes, we don’t want to compute all pairs similarity, but would rather specify subsets of items to
compare to each other. We do this using the sourceIds and targetIds keys in the config.

We could use this technique to compute the similarity of a subset of items to all other items.

The following will find the most similar person (i.e. k=1) to Arya and Praveena:

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), name: p.name, weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS personCuisines
 WITH personCuisines,
      [value in personCuisines WHERE value.name IN ["Praveena", "Arya"] | value.item ] AS sourceIds
 CALL gds.alpha.similarity.cosine.stream({
  data: personCuisines,
  sourceIds: sourceIds,
  topK: 1
 })
 YIELD item1, item2, similarity
 WITH gds.util.asNode(item1) AS from, gds.util.asNode(item2) AS to, similarity
 RETURN from.name AS from, to.name AS to, similarity
  ORDER BY similarity DESC

Table 604. Results
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from to similarity

Praveena Karin 1.0

Arya Michael 0.9788908326303921

Skipping values

The algorithm checks every value in the input vectors against the skipValue to determine whether that
value should be considered as part of the similarity computation. Vectors of different length are padded
with NaN values which are skipped by default. Setting a skipValue allows skipping an additional value. A
common value to skip is 0.0.

The following will create a sample graph storing an embedding vector for each node:

CREATE (french:Cuisine {name:'French'})          SET french.embedding = [0.0, 0.33, 0.81, 0.52, 0.41]
CREATE (italian:Cuisine {name:'Italian'})        SET italian.embedding = [0.31, 0.72, 0.58, 0.67, 0.31]
CREATE (indian:Cuisine {name:'Indian'})          SET indian.embedding = [0.43, 0.0, 0.98, 0.51, 0.76]
CREATE (lebanese:Cuisine {name:'Lebanese'})      SET lebanese.embedding = [0.12, 0.23, 0.35, 0.31, 0.39]
CREATE (portuguese:Cuisine {name:'Portuguese'})  SET portuguese.embedding = [0.47, 0.98, 0.0, 0.72, 0.89]
CREATE (british:Cuisine {name:'British'})        SET british.embedding = [0.94, 0.12, 0.23, 0.4, 0.71]
CREATE (mauritian:Cuisine {name:'Mauritian'})    SET mauritian.embedding = [0.31, 0.56, 0.98, 0.0, 0.62]

The following will find the top 3 similarities between cuisines based on the embedding property:

 MATCH (c:Cuisine)
 WITH {item:id(c), weights: c.embedding} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.cosine.stream({
  data: data,
  skipValue: 0.0
 })
 YIELD item1, item2, count1, count2, similarity
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
 ORDER BY similarity DESC, from ASC
 LIMIT 3

Table 605. Results with skipping 0.0 values:

from to similarity

"Mauritian" "Portuguese" 0.9955829148132149

"Portuguese" "Mauritian" 0.9955829148132149

"Indian" "Portuguese" 0.9954426605601884

Without skipping 0.0 values the result would look different:

Table 606. Results without skipping 0.0 values:

from to similarity

"Lebanese" "French" 0.9372771447068958

"French" "Lebanese" 0.9372771447068958

"Indian" "Lebanese" 0.9110882139221992
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Cypher projection

If the similarity lists are very large they can take up a lot of memory. For cases where those lists contain
lots of values that should be skipped, you can use the less memory-intensive approach of using Cypher
statements to project the graph instead.

The Cypher projection expects to receive 3 fields:

• item - should contain node ids, which we can return using the id function.

• category - should contain node ids, which we can return using the id function.

• weight - should contain a double value.

Set graph:'cypher' in the config:

 WITH 'MATCH (person:Person)-[likes:LIKES]->(c)
       RETURN id(person) AS item, id(c) AS category, likes.score AS weight' AS query
 CALL gds.alpha.similarity.cosine.write({
  data: query,
  graph: 'cypher',
  topK: 1,
  similarityCutoff: 0.1
 })
 YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, stdDev, p95
 RETURN nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95

7.4.5. Pearson Similarity Alpha

Pearson similarity is the covariance of the two n-dimensional vectors divided by the product of their
standard deviations.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

Pearson similarity is computed using the following formula:

Values range between -1 and 1, where -1 is perfectly dissimilar and 1 is perfectly similar.

The library contains both procedures and functions to calculate similarity between sets of data. The
function is best used when calculating the similarity between small numbers of sets. The procedures
parallelize the computation and are therefore more appropriate for computing similarities on bigger
datasets.

Use-cases - when to use the Pearson Similarity algorithm

We can use the Pearson Similarity algorithm to work out the similarity between two things. We might
then use the computed similarity as part of a recommendation query. For example, to get movie
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recommendations based on the preferences of users who have given similar ratings to other movies that
you’ve seen.

Pearson Similarity algorithm function sample

The Pearson Similarity function computes the similarity of two lists of numbers.


Pearson Similarity is only calculated over non-NULL dimensions. When calling the
function, we should provide lists that contain the overlapping items.

We can use it to compute the similarity of two hardcoded lists.

The following will return the Pearson similarity of two lists of numbers:

RETURN gds.alpha.similarity.pearson([5,8,7,5,4,9], [7,8,6,6,4,5]) AS similarity

Table 607. Results

similarity

0.28767798089123053

We can also use it to compute the similarity of nodes based on lists computed by a Cypher query.

The following will create a sample graph:

MERGE (home_alone:Movie {name:'Home Alone'})
MERGE (matrix:Movie {name:'The Matrix'})
MERGE (good_men:Movie {name:'A Few Good Men'})
MERGE (top_gun:Movie {name:'Top Gun'})
MERGE (jerry:Movie {name:'Jerry Maguire'})
MERGE (gruffalo:Movie {name:'The Gruffalo'})

MERGE (zhen:Person {name: 'Zhen'})
MERGE (praveena:Person {name: 'Praveena'})
MERGE (michael:Person {name: 'Michael'})
MERGE (arya:Person {name: 'Arya'})
MERGE (karin:Person {name: 'Karin'})

MERGE (zhen)-[:RATED {score: 2}]->(home_alone)
MERGE (zhen)-[:RATED {score: 2}]->(good_men)
MERGE (zhen)-[:RATED {score: 3}]->(matrix)
MERGE (zhen)-[:RATED {score: 6}]->(jerry)

MERGE (praveena)-[:RATED {score: 6}]->(home_alone)
MERGE (praveena)-[:RATED {score: 7}]->(good_men)
MERGE (praveena)-[:RATED {score: 8}]->(matrix)
MERGE (praveena)-[:RATED {score: 9}]->(jerry)

MERGE (michael)-[:RATED {score: 7}]->(home_alone)
MERGE (michael)-[:RATED {score: 9}]->(good_men)
MERGE (michael)-[:RATED {score: 3}]->(jerry)
MERGE (michael)-[:RATED {score: 4}]->(top_gun)

MERGE (arya)-[:RATED {score: 8}]->(top_gun)
MERGE (arya)-[:RATED {score: 1}]->(matrix)
MERGE (arya)-[:RATED {score: 10}]->(jerry)
MERGE (arya)-[:RATED {score: 10}]->(gruffalo)

MERGE (karin)-[:RATED {score: 9}]->(top_gun)
MERGE (karin)-[:RATED {score: 7}]->(matrix)
MERGE (karin)-[:RATED {score: 7}]->(home_alone)
MERGE (karin)-[:RATED {score: 9}]->(gruffalo)
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The following will return the Pearson similarity of Arya and Karin:

MATCH (p1:Person {name: 'Arya'})-[rated:RATED]->(movie)
WITH p1, gds.alpha.similarity.asVector(movie, rated.score) AS p1Vector
MATCH (p2:Person {name: 'Karin'})-[rated:RATED]->(movie)
WITH p1, p2, p1Vector, gds.alpha.similarity.asVector(movie, rated.score) AS p2Vector
RETURN p1.name AS from,
       p2.name AS to,
       gds.alpha.similarity.pearson(p1Vector, p2Vector, {vectorType: "maps"}) AS similarity

Table 608. Results

from to similarity

"Arya" "Karin" 0.8194651785206903

In this example, we pass in vectorType: "maps" as an extra parameter, as well as using the
gds.alpha.similarity.asVector function to construct a vector of maps containing each movie and the
corresponding rating. We do this because the Pearson Similarity algorithm needs to compute the average
of all the movies that a user has reviewed, not just the ones that they have in common with the user we’re
comparing them to. We can’t therefore just pass in collections of the ratings of movies that have been
reviewed by both people.

The following will return the Pearson similarity of Arya and other people that have rated at least one
movie:

MATCH (p1:Person {name: 'Arya'})-[rated:RATED]->(movie)
WITH p1, gds.alpha.similarity.asVector(movie, rated.score) AS p1Vector
MATCH (p2:Person)-[rated:RATED]->(movie) WHERE p2 <> p1
WITH p1, p2, p1Vector, gds.alpha.similarity.asVector(movie, rated.score) AS p2Vector
RETURN p1.name AS from,
       p2.name AS to,
       gds.alpha.similarity.pearson(p1Vector, p2Vector, {vectorType: "maps"}) AS similarity
ORDER BY similarity DESC

Table 609. Results

from to similarity

"Arya" "Karin" 0.8194651785206903

"Arya" "Zhen" 0.4839533792540704

"Arya" "Praveena" 0.09262336892949784

"Arya" "Michael" -0.9551953674747637

Pearson Similarity algorithm procedures sample

The Pearson Similarity procedure computes similarity between all pairs of items. It is a symmetrical
algorithm, which means that the result from computing the similarity of Item A to Item B is the same as
computing the similarity of Item B to Item A. We can therefore compute the score for each pair of nodes
once. We don’t compute the similarity of items to themselves.

The number of computations is ((# items)^2 / 2) - # items, which can be very computationally
expensive if we have a lot of items.
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
Pearson Similarity is only calculated over non-NULL dimensions. The procedures expect
to receive the same length lists for all items. Otherwise, longer lists will be trimmed to
the length of the shortest list.

The following will create a sample graph:

MERGE (home_alone:Movie {name:'Home Alone'})
MERGE (matrix:Movie {name:'The Matrix'})
MERGE (good_men:Movie {name:'A Few Good Men'})
MERGE (top_gun:Movie {name:'Top Gun'})
MERGE (jerry:Movie {name:'Jerry Maguire'})
MERGE (gruffalo:Movie {name:'The Gruffalo'})

MERGE (zhen:Person {name: 'Zhen'})
MERGE (praveena:Person {name: 'Praveena'})
MERGE (michael:Person {name: 'Michael'})
MERGE (arya:Person {name: 'Arya'})
MERGE (karin:Person {name: 'Karin'})

MERGE (zhen)-[:RATED {score: 2}]->(home_alone)
MERGE (zhen)-[:RATED {score: 2}]->(good_men)
MERGE (zhen)-[:RATED {score: 3}]->(matrix)
MERGE (zhen)-[:RATED {score: 6}]->(jerry)

MERGE (praveena)-[:RATED {score: 6}]->(home_alone)
MERGE (praveena)-[:RATED {score: 7}]->(good_men)
MERGE (praveena)-[:RATED {score: 8}]->(matrix)
MERGE (praveena)-[:RATED {score: 9}]->(jerry)

MERGE (michael)-[:RATED {score: 7}]->(home_alone)
MERGE (michael)-[:RATED {score: 9}]->(good_men)
MERGE (michael)-[:RATED {score: 3}]->(jerry)
MERGE (michael)-[:RATED {score: 4}]->(top_gun)

MERGE (arya)-[:RATED {score: 8}]->(top_gun)
MERGE (arya)-[:RATED {score: 1}]->(matrix)
MERGE (arya)-[:RATED {score: 10}]->(jerry)
MERGE (arya)-[:RATED {score: 10}]->(gruffalo)

MERGE (karin)-[:RATED {score: 9}]->(top_gun)
MERGE (karin)-[:RATED {score: 7}]->(matrix)
MERGE (karin)-[:RATED {score: 7}]->(home_alone)
MERGE (karin)-[:RATED {score: 9}]->(gruffalo)

Stream

The following will return a stream of node pairs along with their Pearson similarities:

MATCH (p:Person), (m:Movie)
OPTIONAL MATCH (p)-[rated:RATED]->(m)
WITH {item:id(p), weights: collect(coalesce(rated.score, gds.util.NaN()))} AS userData
WITH collect(userData) AS data
CALL gds.alpha.similarity.pearson.stream({
 data: data,
 topK: 0
})
YIELD item1, item2, count1, count2, similarity
RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
ORDER BY similarity DESC

Table 610. Results

from to similarity

"Zhen" "Praveena" 0.8865926413116155
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from to similarity

"Zhen" "Karin" 0.8320502943378437

"Arya" "Karin" 0.8194651785206903

"Zhen" "Arya" 0.4839533792540704

"Praveena" "Karin" 0.4472135954999579

"Praveena" "Arya" 0.09262336892949784

"Praveena" "Michael" -0.788492846568306

"Zhen" "Michael" -0.9091365607973364

"Michael" "Arya" -0.9551953674747637

"Michael" "Karin" -0.9863939238321437

Zhen and Praveena are the most similar with a score of 0.88. The maximum score is 1.0 We also have 4
pairs of users who are not similar at all. We’d probably want to filter those out, which we can do by
passing in the similarityCutoff parameter.

The following will return a stream of node pairs that have a similarity of at least 0.1, along with their
Pearson similarities:

MATCH (p:Person), (m:Movie)
OPTIONAL MATCH (p)-[rated:RATED]->(m)
WITH {item:id(p), weights: collect(coalesce(rated.score, gds.util.NaN()))} AS userData
WITH collect(userData) AS data
CALL gds.alpha.similarity.pearson.stream({
 data: data,
 similarityCutoff: 0.1,
 topK: 0
})
YIELD item1, item2, count1, count2, similarity
RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
ORDER BY similarity DESC

Table 611. Results

from to similarity

"Zhen" "Praveena" 0.8865926413116155

"Zhen" "Karin" 0.8320502943378437

"Arya" "Karin" 0.8194651785206903

"Zhen" "Arya" 0.4839533792540704

"Praveena" "Karin" 0.4472135954999579

We can see that those users with no similarity have been filtered out. If we’re implementing a k-Nearest
Neighbors type query we might instead want to find the most similar k users for a given user. We can do
that by passing in the topK parameter.
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The following will return a stream of users along with the most similar user to them (i.e. k=1):

MATCH (p:Person), (m:Movie)
OPTIONAL MATCH (p)-[rated:RATED]->(m)
WITH {item:id(p), weights: collect(coalesce(rated.score, gds.util.NaN()))} AS userData
WITH collect(userData) AS data
CALL gds.alpha.similarity.pearson.stream({
 data: data,
 topK:1,
 similarityCutoff: 0.0
})
YIELD item1, item2, count1, count2, similarity
RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
ORDER BY similarity DESC

Table 612. Results

from to similarity

"Zhen" "Praveena" 0.8865926413116155

"Praveena" "Zhen" 0.8865926413116155

"Karin" "Zhen" 0.8320502943378437

"Arya" "Karin" 0.8194651785206903

These results will not necessarily be symmetrical. For example, the person most similar to Arya is Karin,
but the person most similar to Karin is Zhen.

Write

The following will find the most similar user for each user, and store a relationship between those users:

MATCH (p:Person), (m:Movie)
OPTIONAL MATCH (p)-[rated:RATED]->(m)
WITH {item:id(p), weights: collect(coalesce(rated.score, gds.util.NaN()))} AS userData
WITH collect(userData) AS data
CALL gds.alpha.similarity.pearson.write({
 data: data,
 topK: 1,
 similarityCutoff: 0.1
})
YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, stdDev, p25, p50, p75,
p90, p95, p99, p999, p100
RETURN nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95

Table 613. Results

nodes similarityPa
irs

writeRelatio
nshipType

writePropert
y

min max mean p95

5 4 "SIMILAR" "score" 0.819461822
5097656

0.886589050
2929688

0.856171607
9711914

0.886589050
2929688

We then could write a query to find out which are the movies that other people similar to us liked.
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The following will find the most similar user to Karin, and return their movies that Karin didn’t (yet!) rate:

MATCH (p:Person {name: 'Karin'})-[:SIMILAR]->(other),
      (other)-[r:RATED]->(movie)
WHERE not((p)-[:RATED]->(movie)) and r.score >= 5
RETURN movie.name AS movie

Table 614. Results

movie

Jerry Maguire

Stats

The following will run the algorithm and returns the result in form of statistical and measurement values

MATCH (p:Person), (m:Movie)
OPTIONAL MATCH (p)-[rated:RATED]->(m)
WITH {item:id(p), weights: collect(coalesce(rated.score, gds.util.NaN()))} AS userData
WITH collect(userData) AS data
CALL gds.alpha.similarity.pearson.stats({
 data: data,
 topK: 1,
 similarityCutoff: 0.1
})
YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95
RETURN nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95

Specifying source and target ids

Sometimes, we don’t want to compute all pairs similarity, but would rather specify subsets of items to
compare to each other. We do this using the sourceIds and targetIds keys in the config.

We could use this technique to compute the similarity of a subset of items to all other items.

The following will find the most similar person (i.e. k=1) to Arya and Praveena:

MATCH (p:Person), (m:Movie)
OPTIONAL MATCH (p)-[rated:RATED]->(m)
WITH {item:id(p), name: p.name, weights: collect(coalesce(rated.score, gds.util.NaN()))} AS userData
WITH collect(userData) AS personCuisines
WITH personCuisines,
     [value in personCuisines WHERE value.name IN ["Praveena", "Arya"] | value.item ] AS sourceIds
CALL gds.alpha.similarity.pearson.stream({
 data: personCuisines,
 sourceIds: sourceIds,
 topK: 1
})
YIELD item1, item2, similarity
WITH gds.util.asNode(item1) AS from, gds.util.asNode(item2) AS to, similarity
RETURN from.name AS from, to.name AS to, similarity
ORDER BY similarity DESC

Table 615. Results

from to similarity

Praveena Zhen 0.8865926413116155

Arya Karin 0.8194651785206903
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Skipping values

By default the skipValue parameter is gds.util.NaN(). The algorithm checks every value against the
skipValue to determine whether that value should be considered as part of the similarity result. For cases
where no values should be skipped, skipping can be disabled by setting skipValue to null.

The following will create a sample graph:

MERGE (home_alone:Movie {name:'Home Alone'})    SET home_alone.embedding = [0.71, 0.33, 0.81, 0.52, 0.41]
MERGE (matrix:Movie {name:'The Matrix'})        SET matrix.embedding = [0.31, 0.72, 0.58, 0.67, 0.31]
MERGE (good_men:Movie {name:'A Few Good Men'})  SET good_men.embedding = [0.43, 0.26, 0.98, 0.51, 0.76]
MERGE (top_gun:Movie {name:'Top Gun'})          SET top_gun.embedding = [0.12, 0.23, 0.35, 0.31, 0.3]
MERGE (jerry:Movie {name:'Jerry Maguire'})      SET jerry.embedding = [0.47, 0.98, 0.81, 0.72, 0]

The following will find the similarity between movies based on the embedding property:

MATCH (m:Movie)
WITH {item:id(m), weights: m.embedding} AS userData
WITH collect(userData) AS data
CALL gds.alpha.similarity.pearson.stream({
 data: data,
 skipValue: null
})
YIELD item1, item2, count1, count2, similarity
RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
ORDER BY similarity DESC

Table 616. Results

from to similarity

The Matrix Jerry Maguire 0.8689113641953199

A Few Good Men Top Gun 0.6846566091701214

Home Alone A Few Good Men 0.556559508845268

The Matrix Top Gun 0.39320549183813097

Home Alone Jerry Maguire 0.10026787755714502

Top Gun Jerry Maguire 0.056232940630734043

Home Alone Top Gun 0.006048691083898151

Home Alone The Matrix -0.23435051666541426

The Matrix A Few Good Men -0.2545273235448378

A Few Good Men Jerry Maquire -0.31099199179883635

Cypher projection

If the similarity lists are very large they can take up a lot of memory. For cases where those lists contain
lots of values that should be skipped, you can use the less memory-intensive approach of using Cypher
statements to project the graph instead.

The Cypher projection expects to receive 3 fields:

• item - should contain node ids, which we can return using the id function.
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• category - should contain node ids, which we can return using the id function.

• weight - should contain a double value.

Set graph:'cypher' in the config:

WITH "MATCH (person:Person)-[rated:RATED]->(c)
      RETURN id(person) AS item, id(c) AS category, rated.score AS weight" AS query
CALL gds.alpha.similarity.pearson({
 data: query,
 graph: 'cypher',
 topK: 1,
 similarityCutoff: 0.1
})
YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, stdDev, p95
RETURN nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95

Table 617. Results

nodes similarityPa
irs

writeRelatio
nshipType

writePropert
y

min max mean p95

5 4 "SIMILAR" "score" 0.819461822
5097656

0.886589050
2929688

0.856171607
9711914

0.886589050
2929688

Syntax

The following will run the algorithm and write back results:

CALL gds.alpha.similarity.pearson.write(configuration: Map)
YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, stdDev, p25, p50, p75,
p90, p95, p99, p999, p100

Table 618. Parameters

Name Type Default Optional Description

configuration Map n/a no Algorithm-specific configuration.

Table 619. Configuration

Name Type Default Optional Description

data List or String null no A list of maps of the following structure: {item: nodeId,
weights: [double, double, double]} or a Cypher query.

top Integer 0 yes The number of similar pairs to return. If 0, it will return as
many as it finds.

topK Integer 3 yes The number of similar values to return per node. If 0, it will
return as many as it finds.

similarityCuto
ff

Integer -1 yes The threshold for similarity. Values below this will not be
returned.

degreeCutoff Integer 0 yes The threshold for the number of items in the targets list. If
the list contains less than this amount, that node will be
excluded from the calculation.

skipValue Float gds.util.NaN() yes Value to skip when executing similarity computation. A value
of null means that skipping is disabled.

403



Name Type Default Optional Description

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'writeConcurrency'.

writeConcurre
ncy

Integer value of
'concurrency'

yes The number of concurrent threads used for writing the result.

graph String dense yes The graph name ('dense' or 'cypher').

writeBatchSiz
e

Integer 10000 yes The batch size to use when storing results.

writeRelation
shipType

String SIMILAR yes The relationship type to use when storing results.

writeProperty String score yes The property to use when storing results.

sourceIds List of String null yes The ids of items from which we need to compute similarities.
Defaults to all the items provided in the data parameter.

targetIds List of String null yes The ids of items to which we need to compute similarities.
Defaults to all the items provided in the data parameter.

Table 620. Results

Name Type Description

nodes Integer The number of nodes passed in.

similarityPairs Integer The number of pairs of similar nodes computed.

writeRelation
shipType

String The relationship type used when storing results.

writeProperty String The property used when storing results.

min Float The minimum similarity score computed.

max Float The maximum similarity score computed.

mean Float The mean of similarities scores computed.

stdDev Float The standard deviation of similarities scores computed.

p25 Float The 25 percentile of similarities scores computed.

p50 Float The 50 percentile of similarities scores computed.

p75 Float The 75 percentile of similarities scores computed.

p90 Float The 90 percentile of similarities scores computed.

p95 Float The 95 percentile of similarities scores computed.

p99 Float The 99 percentile of similarities scores computed.

p999 Float The 99.9 percentile of similarities scores computed.

p100 Float The 100 percentile of similarities scores computed.
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The following will run the algorithm and stream results:

CALL gds.alpha.similarity.pearson.stream(configuration: Map)
YIELD item1, item2, count1, count2, intersection, similarity

Table 621. Parameters

Name Type Default Optional Description

configuration Map n/a no Algorithm-specific configuration.

Table 622. Configuration

Name Type Default Optional Description

data List or String null no A list of maps of the following structure: {item: nodeId,
weights: [double, double, double]} or a Cypher query.

top Integer 0 yes The number of similar pairs to return. If 0, it will return as
many as it finds.

topK Integer 3 yes The number of similar values to return per node. If 0, it will
return as many as it finds.

similarityCuto
ff

Integer -1 yes The threshold for similarity. Values below this will not be
returned.

degreeCutoff Integer 0 yes The threshold for the number of items in the targets list. If
the list contains less than this amount, that node will be
excluded from the calculation.

skipValue Float gds.util.NaN() yes Value to skip when executing similarity computation. A value
of null means that skipping is disabled.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm.

graph String dense yes The graph name ('dense' or 'cypher').

sourceIds List of Integer null yes The ids of items from which we need to compute similarities.
Defaults to all the items provided in the data parameter.

targetIds List of Integer null yes The ids of items to which we need to compute similarities.
Defaults to all the items provided in the data parameter.

Table 623. Results

Name Type Description

item1 Integer The ID of one node in the similarity pair.

item2 Integer The ID of other node in the similarity pair.

count1 Integer The size of the targets list of one node.

count2 Integer The size of the targets list of other node.

intersection Integer The number of intersecting values in the two nodes targets lists.

similarity Integer The pearson similarity of the two nodes.
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7.4.6. Euclidean Distance Alpha

Euclidean distance measures the straight line distance between two points in n-dimensional space.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

Euclidean distance is computed using the following formula:

The library contains both procedures and functions to calculate similarity between sets of data. The
function is best used when calculating the similarity between small numbers of sets. The procedures
parallelize the computation and are therefore more appropriate for computing similarities on bigger
datasets.

Use-cases - when to use the Euclidean Distance algorithm

We can use the Euclidean Distance algorithm to work out the similarity between two things. We might
then use the computed similarity as part of a recommendation query. For example, to get movie
recommendations based on the preferences of users who have given similar ratings to other movies that
you’ve seen.

Euclidean Distance algorithm function sample

The Euclidean Distance function computes the similarity of two lists of numbers.


Euclidean Distance is only calculated over non-NULL dimensions. When calling the
function, we should provide lists that contain the overlapping items.

We can use it to compute the similarity of two hardcoded lists.

The following will return the euclidean similarity of two lists of numbers:

 RETURN gds.alpha.similarity.euclideanDistance([3,8,7,5,2,9], [10,8,6,6,4,5]) AS similarity

Table 624. Results

similarity

8.426149773176359

These two lists of numbers have a euclidean distance of 8.42.

We can also use it to compute the similarity of nodes based on lists computed by a Cypher query.

406



The following will create a sample graph:

 MERGE (french:Cuisine {name:'French'})
 MERGE (italian:Cuisine {name:'Italian'})
 MERGE (indian:Cuisine {name:'Indian'})
 MERGE (lebanese:Cuisine {name:'Lebanese'})
 MERGE (portuguese:Cuisine {name:'Portuguese'})
 MERGE (british:Cuisine {name:'British'})
 MERGE (mauritian:Cuisine {name:'Mauritian'})

 MERGE (zhen:Person {name: "Zhen"})
 MERGE (praveena:Person {name: "Praveena"})
 MERGE (michael:Person {name: "Michael"})
 MERGE (arya:Person {name: "Arya"})
 MERGE (karin:Person {name: "Karin"})

 MERGE (praveena)-[:LIKES {score: 9}]->(indian)
 MERGE (praveena)-[:LIKES {score: 7}]->(portuguese)
 MERGE (praveena)-[:LIKES {score: 8}]->(british)
 MERGE (praveena)-[:LIKES {score: 1}]->(mauritian)

 MERGE (zhen)-[:LIKES {score: 10}]->(french)
 MERGE (zhen)-[:LIKES {score: 6}]->(indian)
 MERGE (zhen)-[:LIKES {score: 2}]->(british)

 MERGE (michael)-[:LIKES {score: 8}]->(french)
 MERGE (michael)-[:LIKES {score: 7}]->(italian)
 MERGE (michael)-[:LIKES {score: 9}]->(indian)
 MERGE (michael)-[:LIKES {score: 3}]->(portuguese)

 MERGE (arya)-[:LIKES {score: 10}]->(lebanese)
 MERGE (arya)-[:LIKES {score: 10}]->(italian)
 MERGE (arya)-[:LIKES {score: 7}]->(portuguese)
 MERGE (arya)-[:LIKES {score: 9}]->(mauritian)

 MERGE (karin)-[:LIKES {score: 9}]->(lebanese)
 MERGE (karin)-[:LIKES {score: 7}]->(italian)
 MERGE (karin)-[:LIKES {score: 10}]->(portuguese)

The following will return the Euclidean distance of Zhen and Praveena:

 MATCH (p1:Person {name: 'Zhen'})-[likes1:LIKES]->(cuisine)
 MATCH (p2:Person {name: 'Praveena'})-[likes2:LIKES]->(cuisine)
 RETURN p1.name AS from,
        p2.name AS to,
        gds.alpha.similarity.euclideanDistance(collect(likes1.score), collect(likes2.score)) AS similarity

Table 625. Results

from to similarity

"Zhen" "Praveena" 6.708203932499369

The following will return the Euclidean distance  of Zhen and the other people that have a cuisine in
common:

 MATCH (p1:Person {name: 'Zhen'})-[likes1:LIKES]->(cuisine)
 MATCH (p2:Person)-[likes2:LIKES]->(cuisine) WHERE p2 <> p1
 RETURN p1.name AS from,
        p2.name AS to,
        gds.alpha.similarity.euclideanDistance(collect(likes1.score), collect(likes2.score)) AS similarity
 ORDER BY similarity DESC

Table 626. Results
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from to similarity

"Zhen" "Praveena" 6.708203932499369

"Zhen" "Michael" 3.605551275463989

Euclidean Distance algorithm procedures sample

The Euclidean Distance procedure computes similarity between all pairs of items. It is a symmetrical
algorithm, which means that the result from computing the similarity of Item A to Item B is the same as
computing the similarity of Item B to Item A. We can therefore compute the score for each pair of nodes
once. We don’t compute the similarity of items to themselves.

The number of computations is ((# items)^2 / 2) - # items, which can be very computationally
expensive if we have a lot of items.


Euclidean Distance is only calculated over non-NULL dimensions. The procedures expect
to receive the same length lists for all items. Otherwise, longer lists will be trimmed to
the length of the shortest list.

The following will create a sample graph:

 MERGE (french:Cuisine {name:'French'})
 MERGE (italian:Cuisine {name:'Italian'})
 MERGE (indian:Cuisine {name:'Indian'})
 MERGE (lebanese:Cuisine {name:'Lebanese'})
 MERGE (portuguese:Cuisine {name:'Portuguese'})
 MERGE (karin:Person {name: "Karin"})

 MERGE (praveena)-[:LIKES {score: 9}]->(indian)
 MERGE (praveena)-[:LIKES {score: 7}]->(portuguese)
 MERGE (praveena)-[:LIKES {score: 8}]->(british)
 MERGE (praveena)-[:LIKES {score: 1}]->(mauritian)

 MERGE (zhen)-[:LIKES {score: 10}]->(french)
 MERGE (zhen)-[:LIKES {score: 6}]->(indian)
 MERGE (zhen)-[:LIKES {score: 2}]->(british)

 MERGE (british:Cuisine {name:'British'})
 MERGE (mauritian:Cuisine {name:'Mauritian'})

 MERGE (zhen:Person {name: "Zhen"})
 MERGE (praveena:Person {name: "Praveena"})
 MERGE (michael:Person {name: "Michael"})
 MERGE (arya:Person {name: "Arya"})
 MERGE (michael)-[:LIKES {score: 8}]->(french)
 MERGE (michael)-[:LIKES {score: 7}]->(italian)
 MERGE (michael)-[:LIKES {score: 9}]->(indian)
 MERGE (michael)-[:LIKES {score: 3}]->(portuguese)

 MERGE (arya)-[:LIKES {score: 10}]->(lebanese)
 MERGE (arya)-[:LIKES {score: 10}]->(italian)
 MERGE (arya)-[:LIKES {score: 7}]->(portuguese)
 MERGE (arya)-[:LIKES {score: 9}]->(mauritian)

 MERGE (karin)-[:LIKES {score: 9}]->(lebanese)
 MERGE (karin)-[:LIKES {score: 7}]->(italian)
 MERGE (karin)-[:LIKES {score: 10}]->(portuguese)
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Stream

The following will return a stream of node pairs, along with their intersection and euclidean similarities:

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.euclidean.stream({
  data: data,
  topK: 0
 })
 YIELD item1, item2, count1, count2, similarity
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
 ORDER BY similarity

Table 627. Results

from to similarity

"Praveena" "Karin" 3.0

"Zhen" "Michael" 3.605551275463989

"Praveena" "Michael" 4.0

"Arya" "Karin" 4.358898943540674

"Michael" "Arya" 5.0

"Zhen" "Praveena" 6.708203932499369

"Michael" "Karin" 7.0

"Praveena" "Arya" 8.0

"Zhen" "Arya" NaN

"Zhen" "Karin" NaN

Praveena and Karin have the most similar food preferences, with a euclidean distance of 3.0. Lower scores
are better here; a score of 0 would indicate that users have exactly the same preferences.

We can also see at the bottom of the list that Zhen and Arya and Zhen and Karin have a similarity of NaN.
We get this result because there is no overlap in their food preferences.

We can filter those results out using the gds.util.isFinite function.

The following will return a stream of node pairs, along with their intersection and finite euclidean
similarities:

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.euclidean.stream({
  data: data,
  topK: 0
 })
 YIELD item1, item2, count1, count2, similarity
 WHERE gds.util.isFinite(similarity)
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
 ORDER BY similarity
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Table 628. Results

from to similarity

"Praveena" "Karin" 3.0

"Zhen" "Michael" 3.605551275463989

"Praveena" "Michael" 4.0

"Arya" "Karin" 4.358898943540674

"Michael" "Arya" 5.0

"Zhen" "Praveena" 6.708203932499369

"Michael" "Karin" 7.0

"Praveena" "Arya" 8.0

We can see in these results that Zhen and Arya and Zhen and Karin have been removed.

We might decide that we don’t want to see users with a similarity above 4 returned in our results. If so, we
can filter those out by passing in the similarityCutoff parameter.

The following will return a stream of node pairs that have a similarity of at most 4, along with their
euclidean distance:

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.euclidean.stream({
  data: data,
  similarityCutoff: 4.0,
  topK: 0
 })
 YIELD item1, item2, count1, count2, similarity
 WHERE gds.util.isFinite(similarity)
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
 ORDER BY similarity

Table 629. Results

from to similarity

"Praveena" "Karin" 3.0

"Zhen" "Michael" 3.605551275463989

"Praveena" "Michael" 4.0

We can see that those users with a high score have been filtered out. If we’re implementing a k-Nearest
Neighbors type query we might instead want to find the most similar k users for a given user. We can do
that by passing in the topK parameter.
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The following will return a stream of users along with the most similar user to them (i.e. k=1):

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.euclidean.stream({
  data: data,
  topK: 1
 })
 YIELD item1, item2, count1, count2, similarity
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
 ORDER BY from

Table 630. Results

from to similarity

"Arya" "Karin" 4.358898943540674

"Karin" "Praveena" 3.0

"Michael" "Zhen" 3.605551275463989

"Praveena" "Karin" 3.0

"Zhen" "Michael" 3.605551275463989

These results will not necessarily be symmetrical. For example, the person most similar to Arya is Karin,
but the person most similar to Karin is Praveena.

Write

The following will find the most similar user for each user, and store a relationship between those users:

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.euclidean.write({
  data: data,
  topK: 1
 })
 YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, stdDev, p25, p50,
p75, p90, p95, p99, p999, p100
 RETURN nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95

Table 631. Results

nodes similarityPa
irs

writeRelatio
nshipType

writePropert
y

min max mean p95

5 5 "SIMILAR" "score" 3.0 4.358901977
5390625

3.513998413
0859374

4.358901977
5390625

We then could write a query to find out what types of cuisine that other people similar to us might like.
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The following will find the most similar user to Praveena, and return their favorite cuisines that Praveena
doesn’t (yet!) like:

 MATCH (p:Person {name: "Praveena"})-[:SIMILAR]->(other),
       (other)-[:LIKES]->(cuisine)
 WHERE not((p)-[:LIKES]->(cuisine))
 RETURN cuisine.name AS cuisine

Table 632. Results

cuisine

Italian

Lebanese

Stats

The following will run the algorithm and returns the result in form of statistical and measurement values

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.euclidean.stats({
  data: data,
  topK: 1
 })
 YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95
 RETURN nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95

Specifying source and target ids

Sometimes, we don’t want to compute all pairs similarity, but would rather specify subsets of items to
compare to each other. We do this using the sourceIds and targetIds keys in the config.

We could use this technique to compute the similarity of a subset of items to all other items.

The following will find the most similar person (i.e. k=1) to Arya and Praveena:

 MATCH (p:Person), (c:Cuisine)
 OPTIONAL MATCH (p)-[likes:LIKES]->(c)
 WITH {item:id(p), name: p.name, weights: collect(coalesce(likes.score, gds.util.NaN()))} AS userData
 WITH collect(userData) AS personCuisines
 WITH personCuisines,
      [value in personCuisines WHERE value.name IN ["Praveena", "Arya"] | value.item ] AS sourceIds
 CALL gds.alpha.similarity.euclidean.stream({
  data: personCuisines,
  sourceIds: sourceIds,
  topK: 1
 })
 YIELD item1, item2, similarity
 WITH gds.util.asNode(item1) AS from, gds.util.asNode(item2) AS to, similarity
 RETURN from.name AS from, to.name AS to, similarity
 ORDER BY similarity DESC

Table 633. Results
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from to similarity

"Arya" "Karin" 4.358898943540674

"Praveena" "Karin" 3.0

Skipping values

By default the skipValue parameter is gds.util.NaN(). The algorithm checks every value against the
skipValue to determine whether that value should be considered as part of the similarity result. For cases
where no values should be skipped, skipping can be disabled by setting skipValue to null.

The following will create a sample graph:

 MERGE (french:Cuisine {name:'French'})          SET french.embedding = [0.71, 0.33, 0.81, 0.52, 0.41]
 MERGE (italian:Cuisine {name:'Italian'})        SET italian.embedding = [0.31, 0.72, 0.58, 0.67, 0.31]
 MERGE (indian:Cuisine {name:'Indian'})          SET indian.embedding = [0.43, 0.26, 0.98, 0.51, 0.76]
 MERGE (lebanese:Cuisine {name:'Lebanese'})      SET lebanese.embedding = [0.12, 0.23, 0.35, 0.31, 0.39]
 MERGE (portuguese:Cuisine {name:'Portuguese'})  SET portuguese.embedding = [0.47, 0.98, 0.81, 0.72, 0.89]
 MERGE (british:Cuisine {name:'British'})        SET british.embedding = [0.94, 0.12, 0.23, 0.4, 0.71]
 MERGE (mauritian:Cuisine {name:'Mauritian'})    SET mauritian.embedding = [0.31, 0.56, 0.98, 0.21, 0.62]

The following will find the similarity between cuisines based on the embedding property:

 MATCH (c:Cuisine)
 WITH {item:id(c), weights: c.embedding} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.euclidean.stream({
  data: data,
  skipValue: null
 })
 YIELD item1, item2, count1, count2, similarity
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
 ORDER BY similarity DESC

Cypher projection

If the similarity lists are very large they can take up a lot of memory. For cases where those lists contain
lots of values that should be skipped, you can use the less memory-intensive approach of using Cypher
statements to project the graph instead.

The Cypher projection expects to receive 3 fields:

• item - should contain node ids, which we can return using the id function.

• category - should contain node ids, which we can return using the id function.

• weight - should contain a double value.
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Set graph:'cypher' in the config:

 WITH "MATCH (person:Person)-[likes:LIKES]->(c)
       RETURN id(person) AS item, id(c) AS category, likes.score AS weight" AS query
 CALL gds.alpha.similarity.euclidean.write({
  data: query,
  graph: 'cypher',
  topK: 1,
  similarityCutoff: 4.0
 })
 YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, stdDev, p95
 RETURN nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95

Syntax

The following will run the algorithm and write back results:

CALL gds.alpha.similarity.euclidean.write(configuration: Map)
YIELD nodes, similarityPair, writeRelationshipType, writeProperty, min, max, mean, stdDev, p25, p50, p75,
p90, p95, p99, p999, p100

Table 634. Parameters

Name Type Default Optional Description

configuration Map n/a no Algorithm-specific configuration.

Table 635. Configuration

Name Type Default Optional Description

data List or String null no A list of maps of the following structure: {item: nodeId,
weights: [double, double, double]} or a Cypher query.

top Integer 0 yes The number of similar pairs to return. If 0, it will return as
many as it finds.

topK Integer 3 yes The number of similar values to return per node. If 0, it will
return as many as it finds.

similarityCuto
ff

Integer -1 yes The threshold for similarity. Values below this will not be
returned.

degreeCutoff Integer 0 yes The threshold for the number of items in the targets list. If
the list contains less than this amount, that node will be
excluded from the calculation.

skipValue Float gds.util.NaN() yes Value to skip when executing similarity computation. A value
of null means that skipping is disabled.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'writeConcurrency'.

writeConcurre
ncy

Integer value of
'concurrency'

yes The number of concurrent threads used for writing the result.

graph String dense yes The graph name ('dense' or 'cypher').

writeBatchSiz
e

Integer 10000 yes The batch size to use when storing results.
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Name Type Default Optional Description

writeRelation
shipType

String SIMILAR yes The relationship type to use when storing results.

writeProperty String score yes The property to use when storing results.

sourceIds List of String null yes The ids of items from which we need to compute similarities.
Defaults to all the items provided in the data parameter.

targetIds List of String null yes The ids of items to which we need to compute similarities.
Defaults to all the items provided in the data parameter.

Table 636. Results

Name Type Description

nodes Integer The number of nodes passed in.

similarityPairs Integer The number of pairs of similar nodes computed.

writeRelation
shipType

String The relationship type used when storing results.

writeProperty String The property used when storing results.

min Float The minimum similarity score computed.

max Float The maximum similarity score computed.

mean Float The mean of similarities scores computed.

stdDev Float The standard deviation of similarities scores computed.

p25 Float The 25 percentile of similarities scores computed.

p50 Float The 50 percentile of similarities scores computed.

p75 Float The 75 percentile of similarities scores computed.

p90 Float The 90 percentile of similarities scores computed.

p95 Float The 95 percentile of similarities scores computed.

p99 Float The 99 percentile of similarities scores computed.

p999 Float The 99.9 percentile of similarities scores computed.

p100 Float The 100 percentile of similarities scores computed.

The following will run the algorithm and stream results:

CALL gds.alpha.similarity.euclidean.stream(configuration: Map)
YIELD item1, item2, count1, count2, intersection, similarity

Table 637. Parameters

Name Type Default Optional Description

configuration Map n/a no Algorithm-specific configuration.

Table 638. Configuration
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Name Type Default Optional Description

data List or String null no A list of maps of the following structure: {item: nodeId,
weights: [double, double, double]} or a Cypher query.

top Integer 0 yes The number of similar pairs to return. If 0, it will return as
many as it finds.

topK Integer 3 yes The number of similar values to return per node. If 0, it will
return as many as it finds.

similarityCuto
ff

Integer -1 yes The threshold for similarity. Values below this will not be
returned.

degreeCutoff Integer 0 yes The threshold for the number of items in the targets list. If
the list contains less than this amount, that node will be
excluded from the calculation.

skipValue Float gds.util.NaN() yes Value to skip when executing similarity computation. A value
of null means that skipping is disabled.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm.

graph String dense yes The graph name ('dense' or 'cypher').

sourceIds List of Integer null yes The ids of items from which we need to compute similarities.
Defaults to all the items provided in the data parameter.

targetIds List of Integer null yes The ids of items to which we need to compute similarities.
Defaults to all the items provided in the data parameter.

Table 639. Results

Name Type Description

item1 Integer The ID of one node in the similarity pair.

item2 Integer The ID of other node in the similarity pair.

count1 Integer The size of the targets list of one node.

count2 Integer The size of the targets list of other node.

intersection Integer The number of intersecting values in the two nodes targets lists.

similarity Integer The euclidean similarity of the two nodes.

7.4.7. Overlap Similarity Alpha

Overlap similarity measures overlap between two sets. It is defined as the size of the intersection of two
sets, divided by the size of the smaller of the two sets.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

Overlap similarity is computed using the following formula:
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The library contains both procedures and functions to calculate similarity between sets of data. The
function is best used when calculating the similarity between small numbers of sets. The procedures
parallelize the computation, and are therefore more appropriate for computing similarities on bigger
datasets.

Use-cases - when to use the Overlap Similarity algorithm

We can use the Overlap Similarity algorithm to work out which things are subsets of others. We might
then use these computed subsets to learn a taxonomy from tagged data, as described by Jesús Barrasa.

Overlap Similarity algorithm function sample

The following will return the Overlap similarity of two lists of numbers:

RETURN gds.alpha.similarity.overlap([1,2,3], [1,2,4,5]) AS similarity

Table 640. Results

similarity

0.6666666666666666

These two lists of numbers have an overlap similarity of 0.66. We can see how this result is derived by
breaking down the formula:

O(A,B) = (∣A ∩ B∣) / (min(∣A|,|B|))
O(A,B) = 2 / min(3,4)
       = 2 / 3
       = 0.66

Overlap Similarity algorithm procedures sample
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The following will create a sample graph:

 CREATE
 (fahrenheit451:Book {title:'Fahrenheit 451'}),
 (dune:Book {title:'Dune'}),
 (hungerGames:Book {title:'The Hunger Games'}),
 (nineteen84:Book {title:'1984'}),
 (gatsby:Book {title:'The Great Gatsby'}),

 (scienceFiction:Genre {name: "Science Fiction"}),
 (fantasy:Genre {name: "Fantasy"}),
 (dystopia:Genre {name: "Dystopia"}),
 (classics:Genre {name: "Classics"}),

 (fahrenheit451)-[:HAS_GENRE]->(dystopia),
 (fahrenheit451)-[:HAS_GENRE]->(scienceFiction),
 (fahrenheit451)-[:HAS_GENRE]->(fantasy),
 (fahrenheit451)-[:HAS_GENRE]->(classics),

 (hungerGames)-[:HAS_GENRE]->(scienceFiction),
 (hungerGames)-[:HAS_GENRE]->(fantasy),

 (nineteen84)-[:HAS_GENRE]->(scienceFiction),
 (nineteen84)-[:HAS_GENRE]->(dystopia),
 (nineteen84)-[:HAS_GENRE]->(classics),

 (dune)-[:HAS_GENRE]->(scienceFiction),
 (dune)-[:HAS_GENRE]->(fantasy),
 (dune)-[:HAS_GENRE]->(classics),

  (gatsby)-[:HAS_GENRE]->(classics)

Stream

The following will return a stream of node pairs, along with their intersection and overlap similarities:

 MATCH (book:Book)-[:HAS_GENRE]->(genre)
 WITH {item:id(genre), categories: collect(id(book))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.overlap.stream({data: data})
 YIELD item1, item2, count1, count2, intersection, similarity
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to,
        count1, count2, intersection, similarity
 ORDER BY similarity DESC

Table 641. Results

from to count1 count2 intersection similarity

Fantasy Science Fiction 3 4 3 1.0

Dystopia Science Fiction 2 4 2 1.0

Dystopia Classics 2 4 2 1.0

Science Fiction Classics 4 4 3 0.75

Fantasy Classics 3 4 2 0.66

Dystopia Fantasy 2 3 1 0.5

Fantasy and Dystopia are both clear subgenres of Science Fiction - 100% of the books that list those as
genres also list Science Fiction as a genre. Dystopia is also a subgenre of Classics. The others are less
obvious; Dystopia probably isn’t a subgenre of Fantasy, but the other two pairs could be subgenres.
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The following will return a stream of node pairs that have a similarity of at least 0.75, along with their
intersection and overlap similarities:

 MATCH (book:Book)-[:HAS_GENRE]->(genre)
 WITH {item:id(genre), categories: collect(id(book))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.overlap.stream({
   data: data,
   similarityCutoff: 0.75
 })
 YIELD item1, item2, count1, count2, intersection, similarity
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to,
        count1, count2, intersection, similarity
 ORDER BY similarity DESC

Table 642. Results

from to count1 count2 intersection similarity

Fantasy Science Fiction 3 4 3 1.0

Dystopia Classics 2 4 2 1.0

Dystopia Science Fiction 2 4 2 1.0

Science Fiction Classics 4 4 3 0.75

We can see that those genres with lower similarity have been filtered out. If we’re implementing a k-
Nearest Neighbors type query we might instead want to find the most similar k super genres for a given
genre. We can do that by passing in the topK parameter.

The following will return a stream of genres, along with the two most similar super genres to them (i.e.
k=2):

 MATCH (book:Book)-[:HAS_GENRE]->(genre)
 WITH {item:id(genre), categories: collect(id(book))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.overlap.stream({
  data: data,
  topK: 2
 })
 YIELD item1, item2, count1, count2, intersection, similarity
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to,
        count1, count2, intersection, similarity
 ORDER BY from

Table 643. Results

from to count1 count2 intersection similarity

Dystopia Classics 2 4 2 1.0

Dystopia Science Fiction 2 4 2 1.0

Fantasy Science Fiction 3 4 3 1.0

Fantasy Classics 3 4 2 0.6666666666666
666

Science Fiction Classics 4 4 3 0.75
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Write

The following will find the most similar genre for each genre, and store a relationship between those
genres:

 MATCH (book:Book)-[:HAS_GENRE]->(genre)
 WITH {item:id(genre), categories: collect(id(book))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.overlap.write({
  data: data,
  topK: 2,
  similarityCutoff: 0.5
 })
 YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, stdDev, p25, p50,
p75, p90, p95, p99, p999, p100
 RETURN nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95

Table 644. Results

nodes similarityPa
irs

writeRelatio
nshipType

writePropert
y

min max mean p95

4 5 NARROWER
_THAN

score 0.666664123
5351562

1.000003814
6972656

0.883335113
5253906

1.000003814
6972656

We then could write a query to find out the genre hierarchy for a specific genre.

The following will find the genre hierarchy for the Fantasy genre

 MATCH path = (fantasy:Genre {name: "Fantasy"})-[:NARROWER_THAN*]->(genre)
 RETURN [node in nodes(path) | node.name] AS hierarchy
 ORDER BY length(path)

Table 645. Results

hierarchy

["Fantasy", "Science Fiction"]

["Fantasy", "Classics"]

["Fantasy", "Science Fiction", "Classics"]

Stats

The following will run the algorithm and returns the result in form of statistical and measurement values

 MATCH (book:Book)-[:HAS_GENRE]->(genre)
 WITH {item:id(genre), categories: collect(id(book))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.similarity.overlap.stats({
  data: data,
  topK: 2,
  similarityCutoff: 0.5
 })
 YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95
 RETURN nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95
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Specifying source and target ids

Sometimes, we don’t want to compute all pairs similarity, but would rather specify subsets of items to
compare to each other. We do this using the sourceIds and targetIds keys in the config.

We could use this technique to compute the similarity of a subset of items to all other items.

The following will return the super genres for the Fantasy and Classics genres:

 MATCH (book:Book)-[:HAS_GENRE]->(genre)
 WITH {item:id(genre), name: genre.name, categories: collect(id(book))} AS userData
 WITH collect(userData) AS data
 WITH data,
      [value in data WHERE value.name IN ["Fantasy", "Classics"] | value.item ] AS sourceIds
 CALL gds.alpha.similarity.overlap.stream({
  data: data,
  sourceIds: sourceIds
 })
 YIELD item1, item2, count1, count2, intersection, similarity
 RETURN gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
 ORDER BY similarity DESC

Table 646. Results

from to similarity

Fantasy Science Fiction 1.0

Classics Science Fiction 0.75

Fantasy Classics 0.6666666666666666

Syntax

The following will run the algorithm and write back results:

CALL gds.alpha.similarity.overlap.write(configuration: Map)
YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, stdDev, p25, p50, p75,
p90, p95, p99, p999, p100

Table 647. Parameters

Name Type Default Optional Description

configuration Map n/a no Algorithm-specific configuration.

Table 648. Configuration

Name Type Default Optional Description

data List or String null no A list of maps of the following structure: {item: nodeId,
weights: [double, double, double]} or a Cypher query.

top Integer 0 yes The number of similar pairs to return. If 0, it will return as
many as it finds.

topK Integer 3 yes The number of similar values to return per node. If 0, it will
return as many as it finds.
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Name Type Default Optional Description

similarityCuto
ff

Integer -1 yes The threshold for similarity. Values below this will not be
returned.

degreeCutoff Integer 0 yes The threshold for the number of items in the targets list. If
the list contains less than this amount, that node will be
excluded from the calculation.

skipValue Float gds.util.NaN() yes Value to skip when executing similarity computation. A value
of null means that skipping is disabled.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'writeConcurrency'.

writeConcurre
ncy

Integer value of
'concurrency'

yes The number of concurrent threads used for writing the result.

graph String dense yes The graph name ('dense' or 'cypher').

writeBatchSiz
e

Integer 10000 yes The batch size to use when storing results.

writeRelation
shipType

String SIMILAR yes The relationship type to use when storing results.

writeProperty String score yes The property to use when storing results.

sourceIds List of String null yes The ids of items from which we need to compute similarities.
Defaults to all the items provided in the data parameter.

targetIds List of String null yes The ids of items to which we need to compute similarities.
Defaults to all the items provided in the data parameter.

Table 649. Results

Name Type Description

nodes Integer The number of nodes passed in.

similarityPairs Integer The number of pairs of similar nodes computed.

writeRelation
shipType

String The relationship type used when storing results.

writeProperty String The property used when storing results.

min Float The minimum similarity score computed.

max Float The maximum similarity score computed.

mean Float The mean of similarities scores computed.

stdDev Float The standard deviation of similarities scores computed.

p25 Float The 25 percentile of similarities scores computed.

p50 Float The 50 percentile of similarities scores computed.

p75 Float The 75 percentile of similarities scores computed.

p90 Float The 90 percentile of similarities scores computed.
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Name Type Description

p95 Float The 95 percentile of similarities scores computed.

p99 Float The 99 percentile of similarities scores computed.

p999 Float The 99.9 percentile of similarities scores computed.

p100 Float The 100 percentile of similarities scores computed.

The following will run the algorithm and stream results:

CALL gds.alpha.similarity.overlap.stream(configuration: Map)
YIELD item1, item2, count1, count2, similarity

Table 650. Parameters

Name Type Default Optional Description

configuration Map n/a no Algorithm-specific configuration.

Table 651. Configuration

Name Type Default Optional Description

data List or String null no A list of maps of the following structure: {item: nodeId,
weights: [double, double, double]} or a Cypher query.

top Integer 0 yes The number of similar pairs to return. If 0, it will return as
many as it finds.

topK Integer 3 yes The number of similar values to return per node. If 0, it will
return as many as it finds.

similarityCuto
ff

Integer -1 yes The threshold for similarity. Values below this will not be
returned.

degreeCutoff Integer 0 yes The threshold for the number of items in the targets list. If
the list contains less than this amount, that node will be
excluded from the calculation.

skipValue Float gds.util.NaN() yes Value to skip when executing similarity computation. A value
of null means that skipping is disabled.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm.

graph String dense yes The graph name ('dense' or 'cypher').

sourceIds List of Integer null yes The ids of items from which we need to compute similarities.
Defaults to all the items provided in the data parameter.

targetIds List of Integer null yes The ids of items to which we need to compute similarities.
Defaults to all the items provided in the data parameter.

Table 652. Results

Name Type Description

item1 Integer The ID of one node in the similarity pair.
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Name Type Description

item2 Integer The ID of other node in the similarity pair.

count1 Integer The size of the targets list of one node.

count2 Integer The size of the targets list of other node.

intersection Integer The number of intersecting values in the two nodes targets lists.

similarity Integer The overlap similarity of the two nodes.

7.4.8. Approximate Nearest Neighbors (ANN) Alpha

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

The Approximate Nearest Neighbors algorithm constructs a k-Nearest Neighbors Graph for a set of
objects based on a provided similarity algorithm. The similarity of items is computed based on Jaccard
Similarity, Cosine Similarity, Euclidean Distance, or Pearson Similarity.

The implementation in the library is based on Dong, Charikar, and Li’s paper Efficient K-Nearest Neighbor
Graph Construction for Generic Similarity Measures.

Syntax

The following will run the algorithm and write back results:

CALL gds.alpha.ml.ann.write(configuration: Map)
YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, stdDev, p25, p50, p75,
p90, p95, p99, p999, p100

Table 653. Configuration

Name Type Default Optional Description

algorithm String null no The similarity algorithm to use. Valid values: jaccard', 'cosine',
'pearson', 'euclidean'.

data List null no If algorithm is jaccard, a list of maps of the following
structure: {item: nodeId, categories: [nodeId, nodeId,
nodeId]}. Otherwise a list of maps of the following structure:
{item: nodeId, weights: [double, double, double]} or a
Cypher query.

top Integer 0 yes The number of similar pairs to return. If 0, it will return as
many as it finds.

topK Integer 3 yes The number of similar values to return per node.

randomSeed Integer n/a yes The random-seed used for neighbor-sampling.

sampling Boolean true yes Whether the potential neighbors should be sampled.

p Float 0.5 yes Influences the sample size: min(1.0, p) * |topK|.

similarityCuto
ff

Integer -1 yes The threshold for similarity. Values below this will not be
returned.
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Name Type Default Optional Description

degreeCutoff Integer 0 yes The threshold for the number of items in the targets list. If
the list contains less than this amount, that node will be
excluded from the calculation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'writeConcurrency'.

writeConcurre
ncy

Integer value of
'concurrency'

yes The number of concurrent threads used for writing the result.

writeBatchSiz
e

Integer 10000 yes The batch size to use when storing results.

writeRelation
shipType

String SIMILAR yes The relationship type to use when storing results.

writeProperty String score yes The property to use when storing results.

Table 654. Results

Name Type Description

nodes Integer The number of nodes passed in.

similarityPairs Integer The number of pairs of similar nodes computed.

writeRelation
shipType

String The relationship type used when storing results.

writeProperty String The property used when storing results.

min Float The minimum similarity score computed.

max Float The maximum similarity score computed.

mean Float The mean of similarities scores computed.

stdDev Float The standard deviation of similarities scores computed.

p25 Float The 25 percentile of similarities scores computed.

p50 Float The 50 percentile of similarities scores computed.

p75 Float The 75 percentile of similarities scores computed.

p90 Float The 90 percentile of similarities scores computed.

p95 Float The 95 percentile of similarities scores computed.

p99 Float The 99 percentile of similarities scores computed.

p999 Float The 99.9 percentile of similarities scores computed.

p100 Float The 25 percentile of similarities scores computed.

The following will run the algorithm and stream results:

CALL gds.alpha.ml.ann.stream(configuration: Map)
YIELD item1, item2, count1, count2, intersection, similarity

425



Table 655. Configuration

Name Type Default Optional Description

algorithm String null no The similarity algorithm to use. Valid values: jaccard', 'cosine',
'pearson', 'euclidean'

data List null no If algorithm is 'jaccard', a list of maps of the following
structure: {item: nodeId, categories: [nodeId, nodeId,
nodeId]}. Otherwise a list of maps of the following structure:
{item: nodeId, weights: [double, double, double]} or a
Cypher query.

top Integer 0 yes The number of similar pairs to return. If 0, it will return as
many as it finds.

topK Integer 3 yes The number of similar values to return per node.

randomSeed Integer 1 yes The random-seed used for neighbor-sampling.

sampling Boolean true yes Whether the potential neighbors should be sampled.

p Float 0.5 yes Influences the sample size: min(1.0, p) * |topK|

similarityCuto
ff

Integer -1 yes The threshold for similarity. Values below this will not be
returned.

degreeCutoff Integer 0 yes The threshold for the number of items in the targets list. If
the list contains less than this amount, that node will be
excluded from the calculation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm.

Table 656. Results

Name Type Description

item1 Integer The ID of one node in the similarity pair.

item2 Integer The ID of other node in the similarity pair.

count1 Integer The size of the targets list of one node.

count2 Integer The size of the targets list of other node.

intersection Integer The number of intersecting values in the two nodes targets lists.

similarity Integer The similarity of the two nodes.

Use-cases - when to use the Approximate Nearest Neighbors algorithm

We can use the Approximate Nearest Neighbors algorithm to work out the approximate k most similar
items to each other. The corresponding k-Nearest Neighbors Graph can then be used as part of
recommendation queries.

Approximate Nearest Neighbors algorithm sample
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The following will create a sample graph:

 CREATE
  (french:Cuisine {name:'French'}),
  (italian:Cuisine {name:'Italian'}),
  (indian:Cuisine {name:'Indian'}),
  (lebanese:Cuisine {name:'Lebanese'}),
  (portuguese:Cuisine {name:'Portuguese'}),

  (zhen:Person {name: 'Zhen'}),
  (praveena:Person {name: 'Praveena'}),
  (michael:Person {name: 'Michael'}),
  (arya:Person {name: 'Arya'}),
  (karin:Person {name: 'Karin'}),

  (praveena)-[:LIKES]->(indian),
  (praveena)-[:LIKES]->(portuguese),

  (zhen)-[:LIKES]->(french),
  (zhen)-[:LIKES]->(indian),

  (michael)-[:LIKES]->(french),
  (michael)-[:LIKES]->(italian),
  (michael)-[:LIKES]->(indian),

  (arya)-[:LIKES]->(lebanese),
  (arya)-[:LIKES]->(italian),
  (arya)-[:LIKES]->(portuguese),

  (karin)-[:LIKES]->(lebanese),
  (karin)-[:LIKES]->(italian)

The following will return a stream of nodes, along with up to the 3 most similar nodes to them based on
Jaccard Similarity:

 MATCH (p:Person)-[:LIKES]->(cuisine)
 WITH {item:id(p), categories: collect(id(cuisine))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.ml.ann.stream({
   data: data,
   algorithm: 'jaccard',
   similarityCutoff: 0.1,
   randomSeed: 1,
   concurrency: 1
 })
 YIELD item1, item2, similarity
 return gds.util.asNode(item1).name AS from, gds.util.asNode(item2).name AS to, similarity
 ORDER BY from

Table 657. Results

from to similarity

Arya Karin 0.6666666666666666

Arya Praveena 0.25

Arya Michael 0.2

Karin Arya 0.6666666666666666

Karin Michael 0.25

Michael Karin 0.25

Michael Praveena 0.25

Michael Arya 0.2
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from to similarity

Praveena Arya 0.25

Praveena Michael 0.25

Zhen Michael 0.6666666666666666

Arya and Karin, and Zhen and Michael have the most similar food preferences, with two overlapping
cuisines for a similarity of 0.66. We also have 3 pairs of users who are not similar at all. We’d probably
want to filter those out, which we can do by passing in the similarityCutoff parameter.

The following will find up to 3 similar users for each user, and store a relationship between those users:

 MATCH (p:Person)-[:LIKES]->(cuisine)
 WITH {item:id(p), categories: collect(id(cuisine))} AS userData
 WITH collect(userData) AS data
 CALL gds.alpha.ml.ann.write({
  algorithm: 'jaccard',
  data: data,
  similarityCutoff: 0.1,
  showComputations: true,
  randomSeed: 1,
  concurrency: 1
 })
 YIELD nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95
 RETURN nodes, similarityPairs, writeRelationshipType, writeProperty, min, max, mean, p95

Table 658. Results

nodes similarityPairs writeRelation
shipType

writeProperty min max mean p95

5 13 "SIMILAR" "score" 0.199999809
26513672

0.666666984
5581055

0.351282266
4701022

0.666666984
5581055

We then could write a query to find out what types of cuisine that other people similar to us might like.

The following will find the most similar user to Praveena, and return their favorite cuisines that Praveena
doesn’t (yet!) like:

 MATCH (p:Person {name: 'Praveena'})-[:SIMILAR]->(other),
       (other)-[:LIKES]->(cuisine)
 WHERE not((p)-[:LIKES]->(cuisine))
 RETURN cuisine.name AS cuisine, count(*) AS count
 ORDER BY cuisine DESC

Table 659. Results

cuisine count

"French" 1

"Italian" 2

"Lebanese" 1
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Usage

When executing ApproximateNearestNeighbors in parallel, it is possible that results are flaky because of
the asynchronous execution fashion of the algorithm.

7.5. Path finding
Path finding algorithms find the shortest path between two or more nodes or evaluate the availability and
quality of paths. The Neo4j GDS library includes the following path finding algorithms, grouped by quality
tier:

• Production-quality

◦ Dijkstra Source-Target

◦ Dijkstra Single-Source

◦ A*

◦ Yen’s algorithm

• Beta

◦ Random Walk

• Alpha

◦ Minimum Weight Spanning Tree

◦ Single Source Shortest Path

◦ All Pairs Shortest Path

◦ Breadth First Search

◦ Depth First Search

7.5.1. Dijkstra Source-Target

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

The Dijkstra Shortest Path algorithm computes the shortest path between nodes. The algorithm supports
weighted graphs with positive relationship weights. The Dijkstra Source-Target algorithm computes the
shortest path between a source and a target node. To compute all paths from a source node to all
reachable nodes, Dijkstra Single-Source can be used.
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The GDS implementation is based on the original description and uses a binary heap as priority queue. The
implementation is also used for the A* and Yen’s algorithms. The algorithm implementation is executed
using a single thread. Altering the concurrency configuration has no effect.

Syntax

This section covers the syntax used to execute the Dijkstra algorithm in each of its execution modes. We
are describing the named graph variant of the syntax. To learn more about general syntax variants, see
Syntax overview.
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Dijkstra syntax per mode
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Run Dijkstra in stream mode on a named graph.

CALL gds.shortestPath.dijkstra.stream(
  graphName: String,
  configuration: Map
)
YIELD
  index: Integer,
  sourceNode: Integer,
  targetNode: Integer,
  totalCost: Float,
  nodeIds: List of Integer,
  costs: List of Float,
  path: Path

Table 660. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 661. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 662. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j source node or node id.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

Table 663. Results

Name Type Description

index Integer 0-based index of the found path.

sourceNode Integer Source node of the path.

targetNode Integer Target node of the path.

totalCost Float Total cost from source to target.

nodeIds List of Integer Node ids on the path in traversal
order.
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Name Type Description

costs List of Float Accumulated costs for each node on
the path.

path Path The path represented as Cypher
entity.
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The mutate mode creates new relationships in the in-memory graph. Each relationship
represents a path from the source node to the target node. The total cost of a path is stored via
the totalCost relationship property.

Run Dijkstra in mutate mode on a named graph.

CALL gds.shortestPath.dijkstra.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  relationshipsWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  configuration: Map

Table 664. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 665. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 666. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j source node or node id.

Table 667. Results

Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Unused.

mutateMillis Integer Milliseconds for adding relationships to the in-memory graph.
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Name Type Description

relationships
Written

Integer The number of relationships that were added.

configuratio
n

Map The configuration used for running the algorithm.

435



The write mode creates new relationships in the Neo4j database. Each relationship represents a
path from the source node to the target node. Additional path information is stored using
relationship properties. By default, the write mode stores a totalCost property. Optionally, one
can also store nodeIds and costs of intermediate nodes on the path.

Run Dijkstra in write mode on a named graph.

CALL gds.shortestPath.dijkstra.write(
  graphName: String,
  configuration: Map
)
YIELD
  relationshipsWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 668. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 669. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 670. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j source node or node id.

writeNodeId
s

Boolean false yes If true, the written relationship has a nodeIds list
property.

writeCosts Boolean false yes If true, the written relationship has a costs list property.

Table 671. Results
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Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Unused.

writeMillis Integer Milliseconds for writing relationships to Neo4j.

relationships
Written

Integer The number of relationships that were written.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run Dijkstra in write mode on an anonymous graph:

CALL gds.shortestPath.dijkstra.write(
  configuration: Map
)
YIELD
  relationshipsWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 672. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.
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Name Type Default Optional Description

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 673. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j node id of the source node.

targetNode Integer n/a no The Neo4j node id of the target node.

writeNodeIds Boolean false yes Iff true, the written relationship has a nodeIds list property.

writeCosts Boolean false yes Iff true, the written relationship has a costs list property.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the Dijkstra algorithm on a concrete graph. The intention
is to illustrate what the results look like and to provide a guide in how to make use of the algorithm in a real
setting. We will do this on a small transport network graph of a handful nodes connected in a particular
pattern. The example graph looks like this:

ROAD

ROAD

ROAD
ROAD

ROAD

ROAD

ROAD

ROAD

R
O

A
D

A

B

C

D

E

F
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE (a:Location {name: 'A'}),
       (b:Location {name: 'B'}),
       (c:Location {name: 'C'}),
       (d:Location {name: 'D'}),
       (e:Location {name: 'E'}),
       (f:Location {name: 'F'}),
       (a)-[:ROAD {cost: 50}]->(b),
       (a)-[:ROAD {cost: 50}]->(c),
       (a)-[:ROAD {cost: 100}]->(d),
       (b)-[:ROAD {cost: 40}]->(d),
       (c)-[:ROAD {cost: 40}]->(d),
       (c)-[:ROAD {cost: 80}]->(e),
       (d)-[:ROAD {cost: 30}]->(e),
       (d)-[:ROAD {cost: 80}]->(f),
       (e)-[:ROAD {cost: 40}]->(f);

This graph builds a transportation network with roads between locations. Like in the real world, the roads
in the graph have different lengths. These lengths are represented by the cost relationship property.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
    'myGraph',
    'Location',
    'ROAD',
    {
        relationshipProperties: 'cost'
    }
)

In the following example we will demonstrate the use of the Dijkstra Shortest Path algorithm using this
graph.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.
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The following will estimate the memory requirements for running the algorithm in write mode:

MATCH (source:Location {name: 'A'}), (target:Location {name: 'F'})
CALL gds.shortestPath.dijkstra.write.estimate('myGraph', {
    sourceNode: source,
    targetNode: target,
    relationshipWeightProperty: 'cost',
    writeRelationshipType: 'PATH'
})
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory
RETURN nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 674. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

6 9 696 696 "696 Bytes"

Stream

In the stream execution mode, the algorithm returns the shortest path for each source-target-pair. This
allows us to inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm and stream results:

MATCH (source:Location {name: 'A'}), (target:Location {name: 'F'})
CALL gds.shortestPath.dijkstra.stream('myGraph', {
    sourceNode: source,
    targetNode: target,
    relationshipWeightProperty: 'cost'
})
YIELD index, sourceNode, targetNode, totalCost, nodeIds, costs, path
RETURN
    index,
    gds.util.asNode(sourceNode).name AS sourceNodeName,
    gds.util.asNode(targetNode).name AS targetNodeName,
    totalCost,
    [nodeId IN nodeIds | gds.util.asNode(nodeId).name] AS nodeNames,
    costs,
    nodes(path) as path
ORDER BY index

Table 675. Results

index sourceNodeNa
me

targetNodeNam
e

totalCost nodeNames costs path

0 "A" "F" 160.0 [A, B, D, E, F] [0.0, 50.0, 90.0,
120.0, 160.0]

[Node[0],
Node[1],
Node[3],
Node[4],
Node[5]]

The result shows the total cost of the shortest path between node A and node F. It also shows an ordered
list of node ids that were traversed to find the shortest path as well as the accumulated costs of the visited
nodes. This can be verified in the example graph. Cypher Path objects can be returned by the path return
field. The Path objects contain the node objects and virtual relationships which have a cost property.
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Mutate

The mutate execution mode updates the named graph with new relationships. Each new relationship
represents a path from source node to target node. The relationship type is configured using the
mutateRelationshipType option. The total path cost is stored using the totalCost property.

The mutate mode is especially useful when multiple algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

MATCH (source:Location {name: 'A'}), (target:Location {name: 'F'})
CALL gds.shortestPath.dijkstra.mutate('myGraph', {
    sourceNode: source,
    targetNode: target,
    relationshipWeightProperty: 'cost',
    mutateRelationshipType: 'PATH'
})
YIELD relationshipsWritten
RETURN relationshipsWritten

Table 676. Results

relationshipsWritten

1

After executing the above query, the in-memory graph will be updated with a new relationship of type
PATH. The new relationship will store a single property totalCost.

Write

The write execution mode updates the Neo4j database with new relationships. Each new relationship
represents a path from source node to target node. The relationship type is configured using the
writeRelationshipType option. The total path cost is stored using the totalCost property. The
intermediate node ids are stored using the nodeIds property. The accumulated costs to reach an
intermediate node are stored using the costs property.

For more details on the write mode in general, see Write.

The following will run the algorithm in write mode:

MATCH (source:Location {name: 'A'}), (target:Location {name: 'F'})
CALL gds.shortestPath.dijkstra.write('myGraph', {
    sourceNode: source,
    targetNode: target,
    relationshipWeightProperty: 'cost',
    writeRelationshipType: 'PATH',
    writeNodeIds: true,
    writeCosts: true
})
YIELD relationshipsWritten
RETURN relationshipsWritten

Table 677. Results
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relationshipsWritten

1

The above query will write a single relationship of type PATH back to Neo4j. The relationship stores three
properties describing the path: totalCost, nodeIds and costs.

7.5.2. Dijkstra Single-Source

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

The Dijkstra Shortest Path algorithm computes the shortest path between nodes. The algorithm supports
weighted graphs with positive relationship weights. The Dijkstra Single-Source algorithm computes the
shortest paths between a source node and all nodes reachable from that node. To compute the shortest
path between a source and a target node, Dijkstra Source-Target can be used.

The GDS implementation is based on the original description and uses a binary heap as priority queue. The
implementation is also used for the A* and Yen’s algorithms. The algorithm implementation is executed
using a single thread. Altering the concurrency configuration has no effect.

Syntax

This section covers the syntax used to execute the Dijkstra algorithm in each of its execution modes. We
are describing the named graph variant of the syntax. To learn more about general syntax variants, see
Syntax overview.
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Run Dijkstra in stream mode on a named graph.

CALL gds.allShortestPaths.dijkstra.stream(
  graphName: String,
  configuration: Map
)
YIELD
  index: Integer,
  sourceNode: Integer,
  targetNode: Integer,
  totalCost: Float,
  nodeIds: List of Integer,
  costs: List of Float,
  path: Path

Table 678. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 679. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 680. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j source node or node id.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

Table 681. Results

Name Type Description

index Integer 0-based index of the found path.

sourceNode Integer Source node of the path.

targetNode Integer Target node of the path.

totalCost Float Total cost from source to target.

nodeIds List of Integer Node ids on the path in traversal
order.
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Name Type Description

costs List of Float Accumulated costs for each node on
the path.

path Path The path represented as Cypher
entity.
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The mutate mode creates new relationships in the in-memory graph. Each relationship
represents a path from the source node to the target node. The total cost of a path is stored via
the totalCost relationship property.

Run Dijkstra in mutate mode on a named graph.

CALL gds.allShortestPaths.dijkstra.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  relationshipsWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  configuration: Map

Table 682. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 683. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 684. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j source node or node id.

Table 685. Results

Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Unused.

mutateMillis Integer Milliseconds for adding relationships to the in-memory graph.
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Name Type Description

relationships
Written

Integer The number of relationships that were added.

configuratio
n

Map The configuration used for running the algorithm.
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The write mode creates new relationships in the Neo4j database. Each relationship represents a
path from the source node to the target node. Additional path information is stored using
relationship properties. By default, the write mode stores a totalCost property. Optionally, one
can also store nodeIds and costs of intermediate nodes on the path.

Run Dijkstra in write mode on a named graph.

CALL gds.allShortestPaths.dijkstra.write(
  graphName: String,
  configuration: Map
)
YIELD
  relationshipsWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 686. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 687. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 688. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j source node or node id.

writeNodeId
s

Boolean false yes If true, the written relationship has a nodeIds list
property.

writeCosts Boolean false yes If true, the written relationship has a costs list property.

Table 689. Results
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Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Unused.

writeMillis Integer Milliseconds for writing relationships to Neo4j.

relationships
Written

Integer The number of relationships that were written.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run Dijkstra in write mode on an anonymous graph:

CALL gds.allShortestPaths.dijkstra.write(
  configuration: Map
)
YIELD
  relationshipsWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 690. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.
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Name Type Default Optional Description

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 691. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j node id of the source node.

targetNode Integer n/a no The Neo4j node id of the target node.

writeNodeIds Boolean false yes Iff true, the written relationship has a nodeIds list property.

writeCosts Boolean false yes Iff true, the written relationship has a costs list property.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the Dijkstra algorithm on a concrete graph. The intention
is to illustrate what the results look like and to provide a guide in how to make use of the algorithm in a real
setting. We will do this on a small transport network graph of a handful nodes connected in a particular
pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE (a:Location {name: 'A'}),
       (b:Location {name: 'B'}),
       (c:Location {name: 'C'}),
       (d:Location {name: 'D'}),
       (e:Location {name: 'E'}),
       (f:Location {name: 'F'}),
       (a)-[:ROAD {cost: 50}]->(b),
       (a)-[:ROAD {cost: 50}]->(c),
       (a)-[:ROAD {cost: 100}]->(d),
       (b)-[:ROAD {cost: 40}]->(d),
       (c)-[:ROAD {cost: 40}]->(d),
       (c)-[:ROAD {cost: 80}]->(e),
       (d)-[:ROAD {cost: 30}]->(e),
       (d)-[:ROAD {cost: 80}]->(f),
       (e)-[:ROAD {cost: 40}]->(f);

This graph builds a transportation network with roads between locations. Like in the real world, the roads
in the graph have different lengths. These lengths are represented by the cost relationship property.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
    'myGraph',
    'Location',
    'ROAD',
    {
        relationshipProperties: 'cost'
    }
)

In the following example we will demonstrate the use of the Dijkstra Shortest Path algorithm using this
graph.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.
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The following will estimate the memory requirements for running the algorithm in write mode:

MATCH (source:Location {name: 'A'})
CALL gds.allShortestPaths.dijkstra.write.estimate('myGraph', {
    sourceNode: source,
    relationshipWeightProperty: 'cost',
    writeRelationshipType: 'PATH'
})
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory
RETURN nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 692. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

6 9 696 696 "696 Bytes"

Stream

In the stream execution mode, the algorithm returns the shortest path for each source-target-pair. This
allows us to inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm and stream results:

MATCH (source:Location {name: 'A'})
CALL gds.allShortestPaths.dijkstra.stream('myGraph', {
    sourceNode: source,
    relationshipWeightProperty: 'cost'
})
YIELD index, sourceNode, targetNode, totalCost, nodeIds, costs, path
RETURN
    index,
    gds.util.asNode(sourceNode).name AS sourceNodeName,
    gds.util.asNode(targetNode).name AS targetNodeName,
    totalCost,
    [nodeId IN nodeIds | gds.util.asNode(nodeId).name] AS nodeNames,
    costs,
    nodes(path) as path
ORDER BY index

Table 693. Results

index sourceNodeNa
me

targetNodeNam
e

totalCost nodeNames costs path

0 "A" "A" 0.0 [A] [0.0] [Node[0]]

1 "A" "B" 50.0 [A, B] [0.0, 50.0] [Node[0],
Node[1]]

2 "A" "C" 50.0 [A, C] [0.0, 50.0] [Node[0],
Node[2]]

3 "A" "D" 90.0 [A, B, D] [0.0, 50.0, 90.0] [Node[0],
Node[1],
Node[3]]
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index sourceNodeNa
me

targetNodeNam
e

totalCost nodeNames costs path

4 "A" "E" 120.0 [A, B, D, E] [0.0, 50.0, 90.0,
120.0]

[Node[0],
Node[1],
Node[3],
Node[4]]

5 "A" "F" 160.0 [A, B, D, E, F] [0.0, 50.0, 90.0,
120.0, 160.0]

[Node[0],
Node[1],
Node[3],
Node[4],
Node[5]]

The result shows the total cost of the shortest path between node A and all other reachable nodes in the
graph. It also shows ordered lists of node ids that were traversed to find the shortest paths as well as the
accumulated costs of the visited nodes. This can be verified in the example graph. Cypher Path objects can
be returned by the path return field. The Path objects contain the node objects and virtual relationships
which have a cost property.

Mutate

The mutate execution mode updates the named graph with new relationships. Each new relationship
represents a path from source node to target node. The relationship type is configured using the
mutateRelationshipType option. The total path cost is stored using the totalCost property.

The mutate mode is especially useful when multiple algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

MATCH (source:Location {name: 'A'})
CALL gds.allShortestPaths.dijkstra.mutate('myGraph', {
    sourceNode: source,
    relationshipWeightProperty: 'cost',
    mutateRelationshipType: 'PATH'
})
YIELD relationshipsWritten
RETURN relationshipsWritten

Table 694. Results

relationshipsWritten

6

After executing the above query, the in-memory graph will be updated with new relationships of type
PATH. The new relationships will store a single property totalCost.
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Write

The write execution mode updates the Neo4j database with new relationships. Each new relationship
represents a path from source node to target node. The relationship type is configured using the
writeRelationshipType option. The total path cost is stored using the totalCost property. The
intermediate node ids are stored using the nodeIds property. The accumulated costs to reach an
intermediate node are stored using the costs property.

For more details on the write mode in general, see Write.

The following will run the algorithm in write mode:

MATCH (source:Location {name: 'A'})
CALL gds.allShortestPaths.dijkstra.write('myGraph', {
    sourceNode: source,
    relationshipWeightProperty: 'cost',
    writeRelationshipType: 'PATH',
    writeNodeIds: true,
    writeCosts: true
})
YIELD relationshipsWritten
RETURN relationshipsWritten

Table 695. Results

relationshipsWritten

6

The above query will write 6 relationships of type PATH back to Neo4j. The relationships store three
properties describing the path: totalCost, nodeIds and costs.

7.5.3. A*

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

The A* (pronounced "A-Star") Shortest Path algorithm computes the shortest path between two nodes.
A* is an informed search algorithm as it uses a heuristic function to guide the graph traversal. The
algorithm supports weighted graphs with positive relationship weights.

Unlike Dijkstra’s shortest path algorithm, the next node to search from is not solely picked on the already
computed distance. Instead, the algorithm combines the already computed distance with the result of a
heuristic function. That function takes a node as input and returns a value that corresponds to the cost to
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reach the target node from that node. In each iteration, the graph traversal is continued from the node with
the lowest combined cost.

In GDS, the A* algorithm is based on the Dijkstra’s shortest path algorithm. The heuristic function is the
haversine distance, which defines the distance between two points on a sphere. Here, the sphere is the
earth and the points are geo-coordinates stored on the nodes in the graph.

The algorithm implementation is executed using a single thread. Altering the concurrency configuration
has no effect.

Requirements

In GDS, the heuristic function used to guide the search is the haversine formula. The formula computes the
distance between two points on a sphere given their longitudes and latitudes. The distance is computed in
nautical miles.

In order to guarantee finding the optimal solution, i.e., the shortest path between two points, the heuristic
must be admissible. To be admissible, the function must not overestimate the distance to the target, i.e.,
the lowest possible cost of a path must always be greater or equal to the heuristic.

This leads to a requirement on the relationship weights of the input graph. Relationship weights must
represent the distance between two nodes and ideally scaled to nautical miles. Kilometers or miles also
work, but the heuristic works best for nautical miles.

Syntax

This section covers the syntax used to execute the A* algorithm in each of its execution modes. We are
describing the named graph variant of the syntax. To learn more about general syntax variants, see Syntax
overview.
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Run A* in stream mode on a named graph.

CALL gds.shortestPath.astar.stream(
  graphName: String,
  configuration: Map
)
YIELD
  index: Integer,
  sourceNode: Integer,
  targetNode: Integer,
  totalCost: Float,
  nodeIds: List of Integer,
  costs: List of Float,
  path: Path

Table 696. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 697. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 698. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j source node or node id.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

Table 699. Results

Name Type Description

index Integer 0-based index of the found path.

sourceNode Integer Source node of the path.

targetNode Integer Target node of the path.

totalCost Float Total cost from source to target.

nodeIds List of Integer Node ids on the path in traversal
order.
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Name Type Description

costs List of Float Accumulated costs for each node on
the path.

path Path The path represented as Cypher
entity.
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The mutate mode creates new relationships in the in-memory graph. Each relationship
represents a path from the source node to the target node. The total cost of a path is stored via
the totalCost relationship property.

Run A* in mutate mode on a named graph.

CALL gds.shortestPath.astar.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  relationshipsWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  configuration: Map

Table 700. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 701. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 702. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j source node or node id.

Table 703. Results

Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Unused.

mutateMillis Integer Milliseconds for adding relationships to the in-memory graph.
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Name Type Description

relationships
Written

Integer The number of relationships that were added.

configuratio
n

Map The configuration used for running the algorithm.
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The write mode creates new relationships in the Neo4j database. Each relationship represents a
path from the source node to the target node. Additional path information is stored using
relationship properties. By default, the write mode stores a totalCost property. Optionally, one
can also store nodeIds and costs of intermediate nodes on the path.

Run A* in write mode on a named graph.

CALL gds.shortestPath.astar.write(
  graphName: String,
  configuration: Map
)
YIELD
  relationshipsWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 704. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 705. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 706. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j source node or node id.

writeNodeId
s

Boolean false yes If true, the written relationship has a nodeIds list
property.

writeCosts Boolean false yes If true, the written relationship has a costs list property.

Table 707. Results
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Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Unused.

writeMillis Integer Milliseconds for writing relationships to Neo4j.

relationships
Written

Integer The number of relationships that were written.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run A* in write mode on an anonymous graph:

CALL gds.shortestPath.astar.write(
  configuration: Map
)
YIELD
  relationshipsWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 708. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.
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Name Type Default Optional Description

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 709. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j node id of the source node.

targetNode Integer n/a no The Neo4j node id of the target node.

writeNodeIds Boolean false yes Iff true, the written relationship has a nodeIds list property.

writeCosts Boolean false yes Iff true, the written relationship has a costs list property.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the A* algorithm on a concrete graph. The intention is to
illustrate what the results look like and to provide a guide in how to make use of the algorithm in a real
setting. We will do this on a small transport network graph of a handful nodes connected in a particular
pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE (a:Station {name: 'Kings Cross',         latitude: 51.5308, longitude: -0.1238}),
       (b:Station {name: 'Euston',              latitude: 51.5282, longitude: -0.1337}),
       (c:Station {name: 'Camden Town',         latitude: 51.5392, longitude: -0.1426}),
       (d:Station {name: 'Mornington Crescent', latitude: 51.5342, longitude: -0.1387}),
       (e:Station {name: 'Kentish Town',        latitude: 51.5507, longitude: -0.1402}),
       (a)-[:CONNECTION {distance: 0.7}]->(b),
       (b)-[:CONNECTION {distance: 1.3}]->(c),
       (b)-[:CONNECTION {distance: 0.7}]->(d),
       (d)-[:CONNECTION {distance: 0.6}]->(c),
       (c)-[:CONNECTION {distance: 1.3}]->(e)

The graph represents a transport network of stations. Each station has a geo-coordinate, expressed by
latitude and longitude properties. Stations are connected via connections. We use the distance property
as relationship weight which represents the distance between stations in kilometers. The algorithm will
pick the next node in the search based on the already traveled distance and the distance to the target
station.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
    'myGraph',
    'Station',
    'CONNECTION',
    {
        nodeProperties: ['latitude', 'longitude'],
        relationshipProperties: 'distance'
    }
)

In the following example we will demonstrate the use of the A* Shortest Path algorithm using this graph.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.
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The following will estimate the memory requirements for running the algorithm in write mode:

MATCH (source:Station {name: 'Kings Cross'}), (target:Station {name: 'Kentish Town'})
CALL gds.shortestPath.astar.write.estimate('myGraph', {
    sourceNode: source,
    targetNode: target,
    latitudeProperty: 'latitude',
    longitudeProperty: 'longitude',
    writeRelationshipType: 'PATH'
})
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory
RETURN nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 710. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

5 5 984 984 "984 Bytes"

Stream

In the stream execution mode, the algorithm returns the shortest path for each source-target-pair. This
allows us to inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm and stream results:

MATCH (source:Station {name: 'Kings Cross'}), (target:Station {name: 'Kentish Town'})
CALL gds.shortestPath.astar.stream('myGraph', {
    sourceNode: source,
    targetNode: target,
    latitudeProperty: 'latitude',
    longitudeProperty: 'longitude',
    relationshipWeightProperty: 'distance'
})
YIELD index, sourceNode, targetNode, totalCost, nodeIds, costs, path
RETURN
    index,
    gds.util.asNode(sourceNode).name AS sourceNodeName,
    gds.util.asNode(targetNode).name AS targetNodeName,
    totalCost,
    [nodeId IN nodeIds | gds.util.asNode(nodeId).name] AS nodeNames,
    costs,
    nodes(path) as path
ORDER BY index

Table 711. Results

index sourceNodeNa
me

targetNodeNam
e

totalCost nodeNames costs path

0 "Kings Cross" "Kentish Town" 3.3 [Kings Cross,
Euston, Camden
Town, Kentish
Town]

[0.0, 0.7, 2.0,
3.3]

[Node[0],
Node[1],
Node[2],
Node[4]]

The result shows the total cost of the shortest path between node King’s Cross and Kentish Town in the
graph. It also shows ordered lists of node ids that were traversed to find the shortest paths as well as the
accumulated costs of the visited nodes. This can be verified in the example graph. Cypher Path objects can
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be returned by the path return field. The Path objects contain the node objects and virtual relationships
which have a cost property.

Mutate

The mutate execution mode updates the named graph with new relationships. Each new relationship
represents a path from source node to target node. The relationship type is configured using the
mutateRelationshipType option. The total path cost is stored using the totalCost property.

The mutate mode is especially useful when multiple algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

MATCH (source:Station {name: 'Kings Cross'}), (target:Station {name: 'Kentish Town'})
CALL gds.shortestPath.astar.mutate('myGraph', {
    sourceNode: source,
    targetNode: target,
    latitudeProperty: 'latitude',
    longitudeProperty: 'longitude',
    relationshipWeightProperty: 'distance',
    mutateRelationshipType: 'PATH'
})
YIELD relationshipsWritten
RETURN relationshipsWritten

Table 712. Results

relationshipsWritten

1

After executing the above query, the in-memory graph will be updated with new relationships of type
PATH. The new relationships will store a single property totalCost.

Write

The write execution mode updates the Neo4j database with new relationships. Each new relationship
represents a path from source node to target node. The relationship type is configured using the
writeRelationshipType option. The total path cost is stored using the totalCost property. The
intermediate node ids are stored using the nodeIds property. The accumulated costs to reach an
intermediate node are stored using the costs property.

For more details on the write mode in general, see Write.
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The following will run the algorithm in write mode:

MATCH (source:Station {name: 'Kings Cross'}), (target:Station {name: 'Kentish Town'})
CALL gds.shortestPath.astar.write('myGraph', {
    sourceNode: source,
    targetNode: target,
    latitudeProperty: 'latitude',
    longitudeProperty: 'longitude',
    relationshipWeightProperty: 'distance',
    writeRelationshipType: 'PATH',
    writeNodeIds: true,
    writeCosts: true
})
YIELD relationshipsWritten
RETURN relationshipsWritten

Table 713. Results

relationshipsWritten

1

The above query will write one relationship of type PATH back to Neo4j. The relationship stores three
properties describing the path: totalCost, nodeIds and costs.

7.5.4. Yen’s algorithm

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

Yen’s Shortest Path algorithm computes a number of shortest paths between two nodes. The algorithm is
often referred to as Yen’s k-Shortest Path algorithm, where k is the number of shortest paths to compute.
The algorithm supports weighted graphs with positive relationship weights. It also respects parallel
relationships between the same two nodes when computing multiple shortest paths.

For k = 1, the algorithm behaves exactly like Dijkstra’s shortest path algorithm and returns the shortest
path. For k = 2, the algorithm returns the shortest path and the second shortest path between the same
source and target node. Generally, for k = n, the algorithm computes at most n paths which are discovered
in the order of their total cost.

The GDS implementation is based on the original description. For the actual path computation, Yen’s
algorithm uses Dijkstra’s shortest path algorithm. The algorithm makes sure that an already discovered
shortest path will not be traversed again.

The algorithm implementation is executed using a single thread. Altering the concurrency configuration
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has no effect.

Syntax

This section covers the syntax used to execute the Yen’s algorithm in each of its execution modes. We are
describing the named graph variant of the syntax. To learn more about general syntax variants, see Syntax
overview.
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Yen’s syntax per mode
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Run Yen’s in stream mode on a named graph.

CALL gds.shortestPath.yens.stream(
  graphName: String,
  configuration: Map
)
YIELD
  index: Integer,
  sourceNode: Integer,
  targetNode: Integer,
  totalCost: Float,
  nodeIds: List of Integer,
  costs: List of Float,
  path: Path

Table 714. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 715. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 716. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j source node or node id.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

Table 717. Results

Name Type Description

index Integer 0-based index of the found path.

sourceNode Integer Source node of the path.

targetNode Integer Target node of the path.

totalCost Float Total cost from source to target.

nodeIds List of Integer Node ids on the path in traversal
order.
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Name Type Description

costs List of Float Accumulated costs for each node on
the path.

path Path The path represented as Cypher
entity.
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The mutate mode creates new relationships in the in-memory graph. Each relationship
represents a path from the source node to the target node. The total cost of a path is stored via
the totalCost relationship property.

Run Yen’s in mutate mode on a named graph.

CALL gds.shortestPath.yens.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  relationshipsWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  configuration: Map

Table 718. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 719. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 720. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j source node or node id.

Table 721. Results

Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Unused.

mutateMillis Integer Milliseconds for adding relationships to the in-memory graph.
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Name Type Description

relationships
Written

Integer The number of relationships that were added.

configuratio
n

Map The configuration used for running the algorithm.
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The write mode creates new relationships in the Neo4j database. Each relationship represents a
path from the source node to the target node. Additional path information is stored using
relationship properties. By default, the write mode stores a totalCost property. Optionally, one
can also store nodeIds and costs of intermediate nodes on the path.

Run Yen’s in write mode on a named graph.

CALL gds.shortestPath.yens.write(
  graphName: String,
  configuration: Map
)
YIELD
  relationshipsWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 722. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 723. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 724. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j source node or node id.

writeNodeId
s

Boolean false yes If true, the written relationship has a nodeIds list
property.

writeCosts Boolean false yes If true, the written relationship has a costs list property.

Table 725. Results
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Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Unused.

writeMillis Integer Milliseconds for writing relationships to Neo4j.

relationships
Written

Integer The number of relationships that were written.

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run Yen’s in write mode on an anonymous graph:

CALL gds.shortestPath.yens.write(
  configuration: Map
)
YIELD
  relationshipsWritten: Integer,
  ranIterations: Integer,
  didConverge: Boolean,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 726. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.
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Name Type Default Optional Description

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
to Neo4j.

Table 727. Algorithm specific configuration

Name Type Default Optional Description

sourceNode Integer n/a no The Neo4j node id of the source node.

targetNode Integer n/a no The Neo4j node id of the target node.

writeNodeIds Boolean false yes Iff true, the written relationship has a nodeIds list property.

writeCosts Boolean false yes Iff true, the written relationship has a costs list property.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the Yen’s algorithm on a concrete graph. The intention is
to illustrate what the results look like and to provide a guide in how to make use of the algorithm in a real
setting. We will do this on a small transport network graph of a handful nodes connected in a particular
pattern. The example graph looks like this:

ROAD

ROAD

ROAD
ROAD

ROAD

ROAD

ROAD

ROAD

R
O

A
D

A

B

C

D

E

F
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE (a:Location {name: 'A'}),
       (b:Location {name: 'B'}),
       (c:Location {name: 'C'}),
       (d:Location {name: 'D'}),
       (e:Location {name: 'E'}),
       (f:Location {name: 'F'}),
       (a)-[:ROAD {cost: 50}]->(b),
       (a)-[:ROAD {cost: 50}]->(c),
       (a)-[:ROAD {cost: 100}]->(d),
       (b)-[:ROAD {cost: 40}]->(d),
       (c)-[:ROAD {cost: 40}]->(d),
       (c)-[:ROAD {cost: 80}]->(e),
       (d)-[:ROAD {cost: 30}]->(e),
       (d)-[:ROAD {cost: 80}]->(f),
       (e)-[:ROAD {cost: 40}]->(f);

This graph builds a transportation network with roads between locations. Like in the real world, the roads
in the graph have different lengths. These lengths are represented by the cost relationship property.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
    'myGraph',
    'Location',
    'ROAD',
    {
        relationshipProperties: 'cost'
    }
)

In the following example we will demonstrate the use of the Yen’s Shortest Path algorithm using this
graph.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the write mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.
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The following will estimate the memory requirements for running the algorithm in write mode:

MATCH (source:Location {name: 'A'}), (target:Location {name: 'F'})
CALL gds.shortestPath.yens.write.estimate('myGraph', {
    sourceNode: source,
    targetNode: target,
    k: 3,
    relationshipWeightProperty: 'cost',
    writeRelationshipType: 'PATH'
})
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory
RETURN nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 728. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

6 9 1008 1008 "1008 Bytes"

Stream

In the stream execution mode, the algorithm returns the shortest path for each source-target-pair. This
allows us to inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm and stream results:

MATCH (source:Location {name: 'A'}), (target:Location {name: 'F'})
CALL gds.shortestPath.yens.stream('myGraph', {
    sourceNode: source,
    targetNode: target,
    k: 3,
    relationshipWeightProperty: 'cost'
})
YIELD index, sourceNode, targetNode, totalCost, nodeIds, costs, path
RETURN
    index,
    gds.util.asNode(sourceNode).name AS sourceNodeName,
    gds.util.asNode(targetNode).name AS targetNodeName,
    totalCost,
    [nodeId IN nodeIds | gds.util.asNode(nodeId).name] AS nodeNames,
    costs,
    nodes(path) as path
ORDER BY index

Table 729. Results

index sourceNodeNa
me

targetNodeNam
e

totalCost nodeNames costs path

0 "A" "F" 160.0 [A, B, D, E, F] [0.0, 50.0, 90.0,
120.0, 160.0]

[Node[0],
Node[1],
Node[3],
Node[4],
Node[5]]
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index sourceNodeNa
me

targetNodeNam
e

totalCost nodeNames costs path

1 "A" "F" 160.0 [A, C, D, E, F] [0.0, 50.0, 90.0,
120.0, 160.0]

[Node[0],
Node[2],
Node[3],
Node[4],
Node[5]]

2 "A" "F" 170.0 [A, B, D, F] [0.0, 50.0, 90.0,
170.0]

[Node[0],
Node[1],
Node[3],
Node[5]]

The result shows the three shortest paths between node A and node F. The first two paths have the same
total cost, however the first one traversed from A to D via the B node, while the second traversed via the C
node. The third path has a higher total cost as it goes directly from D to F using the relationship with a cost
of 80, whereas the detour via E for the first two paths costs 70. This can be verified in the example graph.
Cypher Path objects can be returned by the path return field. The Path objects contain the node objects
and virtual relationships which have a cost property.

Mutate

The mutate execution mode updates the named graph with new relationships. Each new relationship
represents a path from source node to target node. The relationship type is configured using the
mutateRelationshipType option. The total path cost is stored using the totalCost property.

The mutate mode is especially useful when multiple algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

MATCH (source:Location {name: 'A'}), (target:Location {name: 'F'})
CALL gds.shortestPath.yens.mutate('myGraph', {
    sourceNode: source,
    targetNode: target,
    k: 3,
    relationshipWeightProperty: 'cost',
    mutateRelationshipType: 'PATH'
})
YIELD relationshipsWritten
RETURN relationshipsWritten

Table 730. Results

relationshipsWritten

3

After executing the above query, the in-memory graph will be updated with a new relationship of type
PATH. The new relationship will store a single property totalCost.
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Write

The write execution mode updates the Neo4j database with new relationships. Each new relationship
represents a path from source node to target node. The relationship type is configured using the
writeRelationshipType option. The total path cost is stored using the totalCost property. The
intermediate node ids are stored using the nodeIds property. The accumulated costs to reach an
intermediate node are stored using the costs property.

For more details on the write mode in general, see Write.

The following will run the algorithm in write mode:

MATCH (source:Location {name: 'A'}), (target:Location {name: 'F'})
CALL gds.shortestPath.yens.write('myGraph', {
    sourceNode: source,
    targetNode: target,
    k: 3,
    relationshipWeightProperty: 'cost',
    writeRelationshipType: 'PATH',
    writeNodeIds: true,
    writeCosts: true
})
YIELD relationshipsWritten
RETURN relationshipsWritten

Table 731. Results

relationshipsWritten

3

The above query will write a single relationship of type PATH back to Neo4j. The relationship stores three
properties describing the path: totalCost, nodeIds and costs.

7.5.5. Minimum Weight Spanning Tree Alpha

The Minimum Weight Spanning Tree (MST) starts from a given node, and finds all its reachable nodes and
the set of relationships that connect the nodes together with the minimum possible weight. Prim’s
algorithm is one of the simplest and best-known minimum spanning tree algorithms. The K-Means variant
of this algorithm can be used to detect clusters in the graph.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

The first known algorithm for finding a minimum spanning tree was developed by the Czech scientist
Otakar Borůvka in 1926, while trying to find an efficient electricity network for Moravia. Prim’s algorithm
was invented by Jarnik in 1930 and rediscovered by Prim in 1957. It is similar to Dijkstra’s shortest path
algorithm but, rather than minimizing the total length of a path ending at each relationship, it minimizes
the length of each relationship individually. Unlike Dijkstra’s, Prim’s can tolerate negative-weight
relationships.

The algorithm operates as follows:
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• Start with a tree containing only one node (and no relationships).

• Select the minimal-weight relationship coming from that node, and add it to our tree.

• Repeatedly choose a minimal-weight relationship that joins any node in the tree to one that is not in
the tree, adding the new relationship and node to our tree.

• When there are no more nodes to add, the tree we have built is a minimum spanning tree.

Use-cases - when to use the Minimum Weight Spanning Tree algorithm

• Minimum spanning tree was applied to analyze airline and sea connections of Papua New Guinea, and
minimize the travel cost of exploring the country. It could be used to help design low-cost tours that
visit many destinations across the country. The research mentioned can be found in "An Application of
Minimum Spanning Trees to Travel Planning".

• Minimum spanning tree has been used to analyze and visualize correlations in a network of currencies,
based on the correlation between currency returns. This is described in "Minimum Spanning Tree
Application in the Currency Market".

• Minimum spanning tree has been shown to be a useful tool to trace the history of transmission of
infection, in an outbreak supported by exhaustive clinical research. For more information, see Use of
the Minimum Spanning Tree Model for Molecular Epidemiological Investigation of a Nosocomial
Outbreak of Hepatitis C Virus Infection.

Constraints - when not to use the Minimum Weight Spanning Tree algorithm

The MST algorithm only gives meaningful results when run on a graph, where the relationships have
different weights. If the graph has no weights, or all relationships have the same weight, then any
spanning tree is a minimum spanning tree.

Syntax

The following will run the algorithm and write back results:

CALL gds.alpha.spanningTree.write(configuration: Map)
YIELD createMillis, computeMillis, writeMillis, effectiveNodeCount

The following will compute the minimum weight spanning tree and write the results:

CALL gds.alpha.spanningTree.minimum.write(configuration: Map)
YIELD createMillis, computeMillis, writeMillis, effectiveNodeCount

The following will compute the maximum weight spanning tree and write the results:

CALL gds.alpha.spanningTree.maximum.write(configuration: Map)
YIELD createMillis, computeMillis, writeMillis, effectiveNodeCount

Table 732. Configuration

Name Type Default Optional Description

startNodeId Integer null no The start node ID
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Name Type Default Optional Description

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

writeProperty String 'mst' yes The relationship type written back as result

weightWriteP
roperty

String n/a no The weight property of the writeProperty relationship type
written back

Table 733. Results

Name Type Description

effectiveNode
Count

Integer The number of visited nodes

createMillis Integer Milliseconds for loading data

computeMillis Integer Milliseconds for running the algorithm

writeMillis Integer Milliseconds for writing result data back

The following will run the k-spanning tree algorithms and write back results:

CALL gds.alpha.spanningTree.kmin.write(configuration: Map)
YIELD createMillis, computeMillis, writeMillis, effectiveNodeCount

CALL gds.alpha.spanningTree.kmax.write(configuration: Map)
YIELD createMillis, computeMillis, writeMillis, effectiveNodeCount

Table 734. Configuration

Name Type Default Optional Description

k Integer null no The result is a tree with k nodes and k − 1 relationships

startNodeId Integer null no The start node ID

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

writeProperty String 'MST' yes The relationship type written back as result

weightWriteP
roperty

String n/a no The weight property of the writeProperty relationship type
written back

Table 735. Results

Name Type Description

effectiveNode
Count

Integer The number of visited nodes

createMillis Integer Milliseconds for loading data

computeMillis Integer Milliseconds for running the algorithm

writeMillis Integer Milliseconds for writing result data back
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Minimum Weight Spanning Tree algorithm sample

The following will create a sample graph:

CREATE (a:Place {id: 'A'}),
       (b:Place {id: 'B'}),
       (c:Place {id: 'C'}),
       (d:Place {id: 'D'}),
       (e:Place {id: 'E'}),
       (f:Place {id: 'F'}),
       (g:Place {id: 'G'}),
       (d)-[:LINK {cost:4}]->(b),
       (d)-[:LINK {cost:6}]->(e),
       (b)-[:LINK {cost:1}]->(a),
       (b)-[:LINK {cost:3}]->(c),
       (a)-[:LINK {cost:2}]->(c),
       (c)-[:LINK {cost:5}]->(e),
       (f)-[:LINK {cost:1}]->(g);

Minimum weight spanning tree visits all nodes that are in the same connected component as the starting
node, and returns a spanning tree of all nodes in the component where the total weight of the
relationships is minimized.
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The following will run the Minimum Weight Spanning Tree algorithm and write back results:

MATCH (n:Place {id: 'D'})
CALL gds.alpha.spanningTree.minimum.write({
  nodeProjection: 'Place',
  relationshipProjection: {
    LINK: {
      type: 'LINK',
      properties: 'cost',
      orientation: 'UNDIRECTED'
    }
  },
  startNodeId: id(n),
  relationshipWeightProperty: 'cost',
  writeProperty: 'MINST',
  weightWriteProperty: 'writeCost'
})
YIELD createMillis, computeMillis, writeMillis, effectiveNodeCount
RETURN createMillis, computeMillis, writeMillis, effectiveNodeCount;

To find all pairs of nodes included in our minimum spanning tree, run the following query:

MATCH path = (n:Place {id: 'D'})-[:MINST*]-()
WITH relationships(path) AS rels
UNWIND rels AS rel
WITH DISTINCT rel AS rel
RETURN startNode(rel).id AS source, endNode(rel).id AS destination, rel.writeCost AS cost

Figure 2. Results

Table 736. Results
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Source Destination Cost

D B 4

B A 1

A C 2

C E 5

The minimum spanning tree excludes the relationship with cost 6 from D to E, and the one with cost 3
from B to C. Nodes F and G aren’t included because they’re unreachable from D.

Maximum weighted tree spanning algorithm is similar to the minimum one, except that it returns a
spanning tree of all nodes in the component where the total weight of the relationships is maximized.

The following will run the maximum weight spanning tree algorithm and write back results:

MATCH (n:Place{id: 'D'})
CALL gds.alpha.spanningTree.maximum.write({
  nodeProjection: 'Place',
  relationshipProjection: {
    LINK: {
      type: 'LINK',
      properties: 'cost'
    }
  },
  startNodeId: id(n),
  relationshipWeightProperty: 'cost',
  writeProperty: 'MAXST',
  weightWriteProperty: 'writeCost'
})
YIELD createMillis, computeMillis, writeMillis, effectiveNodeCount
RETURN createMillis,computeMillis, writeMillis, effectiveNodeCount;
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Figure 3. Results

K-Spanning tree

Sometimes we want to limit the size of our spanning tree result, as we are only interested in finding a
smaller tree within our graph that does not span across all nodes. K-Spanning tree algorithm returns a tree
with k nodes and k − 1 relationships.

In our sample graph we have 5 nodes. When we ran MST above, we got a 5-minimum spanning tree
returned, that covered all five nodes. By setting the k=3, we define that we want to get returned a 3-
minimum spanning tree that covers 3 nodes and has 2 relationships.
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The following will run the k-minimum spanning tree algorithm and write back results:

MATCH (n:Place{id: 'D'})
CALL gds.alpha.spanningTree.kmin.write({
  nodeProjection: 'Place',
  relationshipProjection: {
    LINK: {
      type: 'LINK',
      properties: 'cost'
    }
  },
  k: 3,
  startNodeId: id(n),
  relationshipWeightProperty: 'cost',
  writeProperty:'kminst'
})
YIELD createMillis, computeMillis, writeMillis, effectiveNodeCount
RETURN createMillis,computeMillis,writeMillis, effectiveNodeCount;

Find nodes that belong to our k-spanning tree result:

MATCH (n:Place)
WITH n.id AS Place, n.kminst AS Partition, count(*) AS count
WHERE count = 3
RETURN Place, Partition

Table 737. Results

Place Partition

A 1

B 1

C 1

D 3

E 4

Nodes A, B, and C are the result 3-minimum spanning tree of our graph.

The following will run the k-maximum spanning tree algorithm and write back results:

MATCH (n:Place{id: 'D'})
CALL gds.alpha.spanningTree.kmax.write({
  nodeProjection: 'Place',
  relationshipProjection: {
    LINK: {
      type: 'LINK',
      properties: 'cost'
    }
  },
  k: 3,
  startNodeId: id(n),
  relationshipWeightProperty: 'cost',
  writeProperty:'kmaxst'
})
YIELD createMillis, computeMillis, writeMillis, effectiveNodeCount
RETURN createMillis,computeMillis,writeMillis, effectiveNodeCount;
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Find nodes that belong to our k-spanning tree result:

MATCH (n:Place)
WITH n.id AS Place, n.kmaxst AS Partition, count(*) AS count
WHERE count = 3
RETURN Place, Partition

Table 738. Results

Place Partition

A 0

B 1

C 3

D 3

E 3

Nodes C, D, and E are the result 3-maximum spanning tree of our graph.

7.5.6. Single Source Shortest Path Alpha

The Single Source Shortest Path (SSSP) algorithm calculates the shortest (weighted) path from a node to
all other nodes in the graph.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

SSSP came into prominence at the same time as the shortest path algorithm and Dijkstra’s algorithm can
act as an implementation for both problems.

We implement a delta-stepping algorithm that has been shown to outperform Dijkstra’s.

Use-cases - when to use the Single Source Shortest Path algorithm

• Open Shortest Path First is a routing protocol for IP networks. It uses Dijkstra’s algorithm to help
detect changes in topology, such as link failures, and come up with a new routing structure in seconds.

Constraints - when not to use the Single Source Shortest Path algorithm

Delta stepping does not support negative weights. The algorithm assumes that adding a relationship to a
path can never make a path shorter - an invariant that would be violated with negative weights.

Syntax

The following will run the algorithm and write back results:

CALL gds.alpha.shortestPath.deltaStepping.write(configuration: Map)
YIELD nodeCount, loadDuration, evalDuration, writeDuration
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Table 739. Configuration

Name Type Default Optional Description

startNode Node null no The start node

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

delta Float null yes The grade of concurrency to use.

writeProperty String 'sssp' yes The property name written back to the node sequence of the
node in the path. The property contains the cost it takes to
get from the start node to the specific node.

Table 740. Results

Name Type Description

nodeCount Integer The number of nodes considered

loadDuration Integer Milliseconds for loading data

evalDuration Integer Milliseconds for running the algorithm

writeDuration Integer Milliseconds for writing result data back

The following will run the algorithm and stream results:

CALL gds.alpha.shortestPath.deltaStepping.stream(configuration: Map)
YIELD nodeId, distance

Table 741. Parameters

Name Type Default Optional Description

startNode Node null no The start node

delta Float null no The grade of concurrency to use.

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

Table 742. Results

Name Type Description

nodeId Integer Node ID

distance Integer The cost it takes to get from the start
node to the specific node.

Single Source Shortest Path algorithm sample

In this section we will show examples of running the Single Source Shortest Path algorithm on a concrete
graph. The intention is to illustrate what the results look like and to provide a guide in how to make use of
the algorithm in a real setting. We will do this on a small transport network graph of a handful nodes
connected in a particular pattern. The example graph looks like this:
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The following will create a sample graph:

CREATE (a:Loc {name: "A"}),
       (b:Loc {name: "B"}),
       (c:Loc {name: "C"}),
       (d:Loc {name: "D"}),
       (e:Loc {name: "E"}),
       (f:Loc {name: "F"}),
       (a)-[:ROAD {cost: 50}]->(b),
       (a)-[:ROAD {cost: 50}]->(c),
       (a)-[:ROAD {cost: 100}]->(d),
       (b)-[:ROAD {cost: 40}]->(d),
       (c)-[:ROAD {cost: 40}]->(d),
       (c)-[:ROAD {cost: 80}]->(e),
       (d)-[:ROAD {cost: 30}]->(e),
       (d)-[:ROAD {cost: 80}]->(f),
       (e)-[:ROAD {cost: 40}]->(f);

Delta stepping algorithm

The following will run the algorithm and stream results:

MATCH (n:Loc {name: 'A'})
CALL gds.alpha.shortestPath.deltaStepping.stream({
  nodeProjection: 'Loc',
  relationshipProjection: {
    ROAD: {
      type: 'ROAD',
      properties: 'cost'
    }
  },
  startNode: n,
  relationshipWeightProperty: 'cost',
  delta: 3.0
})
YIELD nodeId, distance
RETURN gds.util.asNode(nodeId).name AS Name, distance AS Cost

Table 743. Results

Name Cost

"A" 0.0

"B" 50.0

"C" 50.0
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Name Cost

"D" 90.0

"E" 120.0

"F" 160.0

The above table shows the cost of going from A to each of the other nodes, including itself at a cost of 0.

The following will run the algorithm and write back results:

MATCH (n:Loc {name: 'A'})
CALL gds.alpha.shortestPath.deltaStepping.write({
  nodeProjection: 'Loc',
  relationshipProjection: {
    ROAD: {
      type: 'ROAD',
      properties: 'cost'
    }
  },
  startNode: n,
  relationshipWeightProperty: 'cost',
  delta: 3.0,
  writeProperty: 'sssp'
})
YIELD nodeCount
RETURN nodeCount

Table 744. Results

nodeCount

6

Cypher projection

If node labels and relationship types are not selective enough to project a graph, you can use Cypher
queries instead. Cypher projections can also be used to run algorithms on a virtual graph. You can learn
more in the Creating graphs using Cypher section of the manual.

MATCH (start:Loc {name: 'A'})
CALL gds.alpha.shortestPath.deltaStepping.write({
  nodeQuery:'MATCH(n:Loc) WHERE not n.name = "C" RETURN id(n) AS id',
  relationshipQuery:'MATCH(n:Loc)-[r:ROAD]->(m:Loc) WHERE not (n.name = "C" OR m.name = "C")  RETURN id(n)
AS source, id(m) AS target, r.cost AS weight',
  startNode: start,
  relationshipWeightProperty: 'weight',
  delta: 3.0,
  writeProperty: 'sssp'
})
YIELD nodeCount
RETURN nodeCount

Table 745. Results

nodeCount

5
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7.5.7. All Pairs Shortest Path Alpha

The All Pairs Shortest Path (APSP) calculates the shortest (weighted) path between all pairs of nodes. This
algorithm has optimizations that make it quicker than calling the Single Source Shortest Path algorithm for
every pair of nodes in the graph.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

Some pairs of nodes might not be reachable between each other, so no shortest path exists between
these pairs. In this scenario, the algorithm will return Infinity value as a result between these pairs of
nodes.

Plain cypher does not support filtering Infinity values, so gds.util.isFinite function was added to help
filter Infinity values from results.

Use-cases - when to use the All Pairs Shortest Path algorithm

• The All Pairs Shortest Path algorithm is used in urban service system problems, such as the location of
urban facilities or the distribution or delivery of goods. One example of this is determining the traffic
load expected on different segments of a transportation grid. For more information, see Urban
Operations Research.

• All pairs shortest path is used as part of the REWIRE data center design algorithm that finds a network
with maximum bandwidth and minimal latency. There are more details about this approach in
"REWIRE: An Optimization-based Framework for Data Center Network Design"

Syntax

The following will run the algorithm and stream results:

CALL gds.alpha.allShortestPaths.stream(configuration: Map)
YIELD startNodeId, targetNodeId, distance

Table 746. Parameters

Name Type Default Optional Description

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights. If
unspecified, the algorithm runs unweighted.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'. This is dependent
on the Neo4j edition; for more information, see CPU.

readConcurre
ncy

Integer value of
'concurrency'

yes The number of concurrent threads used for reading the
graph.
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All Pairs Shortest Path algorithm sample

The following will create a sample graph:

CREATE (a:Loc {name: 'A'}),
       (b:Loc {name: 'B'}),
       (c:Loc {name: 'C'}),
       (d:Loc {name: 'D'}),
       (e:Loc {name: 'E'}),
       (f:Loc {name: 'F'}),
       (a)-[:ROAD {cost: 50}]->(b),
       (a)-[:ROAD {cost: 50}]->(c),
       (a)-[:ROAD {cost: 100}]->(d),
       (b)-[:ROAD {cost: 40}]->(d),
       (c)-[:ROAD {cost: 40}]->(d),
       (c)-[:ROAD {cost: 80}]->(e),
       (d)-[:ROAD {cost: 30}]->(e),
       (d)-[:ROAD {cost: 80}]->(f),
       (e)-[:ROAD {cost: 40}]->(f);

The following will run the algorithm and stream results:

CALL gds.alpha.allShortestPaths.stream({
  nodeProjection: 'Loc',
  relationshipProjection: {
    ROAD: {
      type: 'ROAD',
      properties: 'cost'
    }
  },
  relationshipWeightProperty: 'cost'
})
YIELD sourceNodeId, targetNodeId, distance
WITH sourceNodeId, targetNodeId, distance
WHERE gds.util.isFinite(distance) = true

MATCH (source:Loc) WHERE id(source) = sourceNodeId
MATCH (target:Loc) WHERE id(target) = targetNodeId
WITH source, target, distance WHERE source <> target

RETURN source.name AS source, target.name AS target, distance
ORDER BY distance DESC, source ASC, target ASC
LIMIT 10

Table 747. Results
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Source Target Cost

A F 160

A E 120

B F 110

C F 110

A D 90

B E 70

C E 70

D F 70

A B 50

A C 50

This query returned the top 10 pairs of nodes that are the furthest away from each other. F and E appear
to be quite distant from the others.

For now, only single-source shortest path support loading the relationship as undirected, but we can use
Cypher loading to help us solve this. Undirected graph can be represented as Bidirected graph, which is a
directed graph in which the reverse of every relationship is also a relationship.

We do not have to save this reversed relationship, we can project it using Cypher loading. Note that
relationship query does not specify direction of the relationship. This is applicable to all other algorithms
that use Cypher loading.

The following will run the algorithm, treating the graph as undirected:

CALL gds.alpha.allShortestPaths.stream({
  nodeQuery: 'MATCH (n:Loc) RETURN id(n) AS id',
  relationshipQuery: 'MATCH (n:Loc)-[r:ROAD]-(p:Loc) RETURN id(n) AS source, id(p) AS target, r.cost AS
cost',
  relationshipWeightProperty: 'cost'
})
YIELD sourceNodeId, targetNodeId, distance
WITH sourceNodeId, targetNodeId, distance
WHERE gds.util.isFinite(distance) = true

MATCH (source:Loc) WHERE id(source) = sourceNodeId
MATCH (target:Loc) WHERE id(target) = targetNodeId
WITH source, target, distance WHERE source <> target

RETURN source.name AS source, target.name AS target, distance
ORDER BY distance DESC, source ASC, target ASC
LIMIT 10

Table 748. Results

Source Target Cost

A F 160

F A 160

A E 120
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Source Target Cost

E A 120

B F 110

C F 110

F B 110

F C 110

A D 90

D A 90

7.5.8. Random Walk Beta

Random Walk is an algorithm that provides random paths in a graph.

A random walk simulates a traversal of the graph in which the traversed relationships are chosen at
random. In a classic random walk, each relationship has the same, possibly weighted, probability of being
picked. This probability is not influenced by the previously visited nodes. The random walk implementation
of the Neo4j Graph Data Science library supports the concept of second order random walks. This method
tries to model the transition probability based on the currently visited node v, the node t visited before the
current one, and the node x which is the target of a candidate relationship. Random walks are thus
influenced by two parameters: the returnFactor and the inOutFactor:

• The returnFactor is used if t equals x, i.e., the random walk returns to the previously visited node.

• The inOutFactor is used if the distance from t to x is equal to 2, i.e., the walk traverses further away
from the node t

vt

x1

x2
1

returnFactor
1

inOutFactor

1

The probabilities for traversing a relationship during a random walk can be further influenced by specifying
a relationshipWeightProperty. A relationship property value greater than 1 will increase the likelihood of
a relationship being traversed, a property value between 0 and 1 will decrease that probability.


To obtain a random walk where the transition probability is independent of the
previously visited nodes both the returnFactor and the inOutFactor can be set to 1.0.


Running this algorithm requires sufficient memory availability. Before running this
algorithm, we recommend that you read Memory Estimation.
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Syntax
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RandomWalk syntax per mode
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Run RandomWalk in stream mode on a named graph.

CALL gds.beta.randomWalk.stream(
  graphName: String,
  configuration: Map
) YIELD
YIELD
  nodeIds: List of Integer,
  path: Path

Table 749. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 750. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 751. Algorithm specific configuration

Name Type Default Optional Description

sourceNod
es

List of
Integer

List of all nodes yes The list of nodes from which to do a random
walk.

walkLengt
h

Integer 80 yes The number of steps in a single random walk.

walksPerN
ode

Integer 10 yes The number of random walks generated for each
node.

inOutFacto
r

Float 1.0 yes Tendency of the random walk to stay close to
the start node or fan out in the graph. Higher
value means stay local.

returnFact
or

Float 1.0 yes Tendency of the random walk to return to the
last visited node. A value below 1.0 means a
higher tendency.

relationshi
pWeightPr
operty

String null yes Name of the relationship property to use as
weights to influence the probabilities of the
random walks. The weights need to be >= 0. If
unspecified, the algorithm runs unweighted.

randomSe
ed

Integer random yes Seed value for the random number generator
used to generate the random walks.
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Name Type Default Optional Description

walkBuffer
Size

Integer 1000 yes The number of random walks to complete before
starting training.

Table 752. Results

Name Type Description

nodeIds List of
Integer

The nodes of the random walk.

path Path A Path object of the random walk.

Examples

Consider the graph created by the following Cypher statement:

CREATE (home:Page {name: 'Home'}),
       (about:Page {name: 'About'}),
       (product:Page {name: 'Product'}),
       (links:Page {name: 'Links'}),
       (a:Page {name: 'Site A'}),
       (b:Page {name: 'Site B'}),
       (c:Page {name: 'Site C'}),
       (d:Page {name: 'Site D'}),

       (home)-[:LINKS]->(about),
       (about)-[:LINKS]->(home),
       (product)-[:LINKS]->(home),
       (home)-[:LINKS]->(product),
       (links)-[:LINKS]->(home),
       (home)-[:LINKS]->(links),
       (links)-[:LINKS]->(a),
       (a)-[:LINKS]->(home),
       (links)-[:LINKS]->(b),
       (b)-[:LINKS]->(home),
       (links)-[:LINKS]->(c),
       (c)-[:LINKS]->(home),
       (links)-[:LINKS]->(d),
       (d)-[:LINKS]->(home)

CALL gds.graph.create(
    'myGraph',
    '*',
    { LINKS: { orientation: 'UNDIRECTED' } }
);

Without specified source nodes
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Run the RandomWalk algorithm on myGraph

CALL gds.beta.randomWalk.stream(
  'myGraph',
  {
    walkLength: 3,
    walksPerNode: 1,
    randomSeed: 42,
    concurrency: 1
  }
)
YIELD nodeIds, path
RETURN nodeIds, [node IN nodes(path) | node.name ] AS pages

Table 753. Results

nodeIds pages

[0, 5, 3] [Home, Site B, Links]

[1, 0, 6] [About, Home, Site C]

[2, 0, 5] [Product, Home, Site B]

[3, 6, 3] [Links, Site C, Links]

[4, 3, 4] [Site A, Links, Site A]

[5, 3, 5] [Site B, Links, Site B]

[6, 3, 7] [Site C, Links, Site D]

[7, 3, 0] [Site D, Links, Home]

With specified source nodes

Run the RandomWalk algorithm on myGraph with specified sourceNodes

MATCH (page:Page)
WHERE page.name IN ['Home', 'About']
WITH COLLECT(page) as sourceNodes
CALL gds.beta.randomWalk.stream(
  'myGraph',
  {
    sourceNodes: sourceNodes,
    walkLength: 3,
    walksPerNode: 1,
    randomSeed: 42,
    concurrency: 1
  }
)
YIELD nodeIds, path
RETURN nodeIds, [node IN nodes(path) | node.name ] AS pages

Table 754. Results

nodeIds pages

[0, 5, 3] [Home, Site B, Links]

[1, 0, 6] [About, Home, Site C]
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7.5.9. Breadth First Search Alpha

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

Introduction

The Breadth First Search algorithm is a graph traversal algorithm that given a start node visits nodes in
order of increasing distance, see https://en.wikipedia.org/wiki/Breadth-first_search. A related algorithm is
the Depth First Search algorithm, Depth First Search. This algorithm is useful for searching when the
likelihood of finding the node searched for decreases with distance. There are multiple termination
conditions supported for the traversal, based on either reaching one of several target nodes, reaching a
maximum depth, exhausting a given budget of traversed relationship cost, or just traversing the whole
graph. The output of the procedure contains information about which nodes were visited and in what
order.

Syntax

The following describes the API for running the algorithm and stream results:

CALL gds.alpha.bfs.stream(
  graphName: string,
  configuration: map
)
YIELD
  // general stream return columns
  startNodeId: int,
  nodeIds: int,
  path: Path

Table 755. Parameters

Name Type Default Optional Description

graphName String or Map n/a no Either the name of a graph stored in the catalog or a Map
configuring the graph creation and algorithm execution.

configuration Map {} yes Configuration for algorithm-specifics and/or graph filtering.
Must be empty if graphNameOrConfig is a Map.

Table 756. General configuration

Name Type Default Optional Description

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for reading the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
(applicable in WRITE mode).

nodeProjectio
n

Map or List null yes The node projection used for implicit graph loading or
filtering nodes of an explicitly loaded graph.

501

https://en.wikipedia.org/wiki/Breadth-first_search


Name Type Default Optional Description

relationshipPr
ojection

Map or List null yes The relationship projection used for implicit graph loading or
filtering relationship of an explicitly loaded graph.

nodeQuery String null yes The Cypher query used to select the nodes for implicit graph
loading via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for implicit
graph loading via a Cypher projection.

nodePropertie
s

Map or List null yes The node properties to load during implicit graph loading.

relationshipPr
operties

Map or List null yes The relationship properties to load during implicit graph
loading.

Table 757. Algorithm specific configuration

Name Type Default Optional Description

startNodeId Integer n/a no The node id of the node where to start the traversal.

targetNodes List of Integer empty list yes Ids for target nodes. Traversal terminates when any target
node is visited.

maxDepth Integer -1 yes The maximum distance from the start node at which nodes
are visited.

Table 758. Results

Name Type Description

startNodeId Integer The node id of the node where to start the traversal.

nodeIds List of Integer The ids of all nodes that were visited during the traversal.

path Path A path containing all the nodes that were visited during the traversal.

Examples

Consider the graph created by the following Cypher statement:

CREATE
       (nA:Node {tag: 'a'}),
       (nB:Node {tag: 'b'}),
       (nC:Node {tag: 'c'}),
       (nD:Node {tag: 'd'}),
       (nE:Node {tag: 'e'}),

       (nA)-[:REL {cost: 8.0}]->(nB),
       (nA)-[:REL {cost: 9.0}]->(nC),
       (nB)-[:REL {cost: 1.0}]->(nE),
       (nC)-[:REL {cost: 5.0}]->(nD)

The following statement will create the graph and store it in the graph catalog.

CALL gds.graph.create('myGraph', 'Node', 'REL', { relationshipProperties: 'cost' })
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In the following examples we will demonstrate using the Breadth First Search algorithm on this graph.

Running the Breadth First Search algorithm:

MATCH (a:Node{tag:'a'})
WITH id(a) AS startNode
CALL gds.alpha.bfs.stream('myGraph', {startNode: startNode})
YIELD path
UNWIND [ n in nodes(path) | n.tag ] AS tags
RETURN tags
ORDER BY tags

Table 759. Results

tags

"a"

"b"

"c"

"d"

"e"

Since none of the options for early termination are specified, the whole graph is visited during the
traversal.

Running the Breadth First Search algorithm with target nodes:

MATCH (a:Node{tag:'a'}), (d:Node{tag:'d'}), (e:Node{tag:'e'})
WITH id(a) AS startNode, [id(d), id(e)] AS targetNodes
CALL gds.alpha.bfs.stream('myGraph', {startNode: startNode, targetNodes: targetNodes})
YIELD path
UNWIND [ n in nodes(path) | n.tag ] AS tags
RETURN tags
ORDER BY tags

Table 760. Results

tags

"a"

"b"

"c"

"e"

Running the Breadth First Search algorithm with maxDepth:

MATCH (a:Node{tag:'a'})
WITH id(a) AS startNode
CALL gds.alpha.bfs.stream('myGraph', {startNode: startNode, maxDepth: 1})
YIELD path
UNWIND [ n in nodes(path) | n.tag ] AS tags
RETURN tags
ORDER BY tags

Table 761. Results
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tags

"a"

"b"

"c"

In the above example, nodes d and e were not visited since they are at distance 2 from a.

7.5.10. Depth First Search Alpha

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

Introduction

The Depth First Search algorithm is a graph traversal that starts at a given node and explores as far as
possible along each branch before backtracking, see https://en.wikipedia.org/wiki/Depth-first_search. A
related algorithm is the Breath First Search algorithm, Breath First Search. This algorithm can be preferred
over Breath First Search for example if one wants to find a target node at a large distance and exploring a
random path has decent probability of success. There are multiple termination conditions supported for the
traversal, based on either reaching one of several target nodes, reaching a maximum depth, exhausting a
given budget of traversed relationship cost, or just traversing the whole graph. The output of the
procedure contains information about which nodes were visited and in what order.

Syntax

The following describes the API for running the algorithm and stream results:

CALL gds.alpha.dfs.stream(
  graphName: String,
  configuration: Map
)
YIELD
  // general stream return columns
  startNodeId: Integer,
  nodeIds: Integer,
  path: Path

Table 762. Parameters

Name Type Default Optional Description

graphName String or Map n/a no Either the name of a graph stored in the catalog or a Map
configuring the graph creation and algorithm execution.

configuration Map {} yes Configuration for algorithm-specifics and/or graph filtering.
Must be empty if graphNameOrConfig is a Map.

Table 763. General configuration
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Name Type Default Optional Description

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for reading the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for writing the result
(applicable in WRITE mode).

nodeProjectio
n

Map or List null yes The node projection used for implicit graph loading or
filtering nodes of an explicitly loaded graph.

relationshipPr
ojection

Map or List null yes The relationship projection used for implicit graph loading or
filtering relationship of an explicitly loaded graph.

nodeQuery String null yes The Cypher query used to select the nodes for implicit graph
loading via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for implicit
graph loading via a Cypher projection.

nodePropertie
s

Map or List null yes The node properties to load during implicit graph loading.

relationshipPr
operties

Map or List null yes The relationship properties to load during implicit graph
loading.

Table 764. Algorithm specific configuration

Name Type Default Optional Description

startNodeId Integer n/a no The node id of the node where to start the traversal.

targetNodes List of Integer empty list yes Ids for target nodes. Traversal terminates when any target
node is visited.

maxDepth Integer -1 yes The maximum distance from the start node at which nodes
are visited.

Table 765. Results

Name Type Description

startNodeId Integer The node id of the node where to start the traversal.

nodeIds List of Integer The ids of all nodes that were visited during the traversal.

path Path A path containing all the nodes that were visited during the traversal.

Examples

Consider the graph created by the following Cypher statement:
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CREATE
       (nA:Node {tag: 'a'}),
       (nB:Node {tag: 'b'}),
       (nC:Node {tag: 'c'}),
       (nD:Node {tag: 'd'}),
       (nE:Node {tag: 'e'}),

       (nA)-[:REL {cost: 8.0}]->(nB),
       (nA)-[:REL {cost: 9.0}]->(nC),
       (nB)-[:REL {cost: 1.0}]->(nE),
       (nC)-[:REL {cost: 5.0}]->(nD)

The following statement will create the graph and store it in the graph catalog.

CALL gds.graph.create('myGraph', 'Node', 'REL', { relationshipProperties: 'cost' })

In the following examples we will demonstrate using the Depth First Search algorithm on this graph. If we
do not specify any of the options for early termination, the whole graph is visited:

Running the Depth First Search algorithm:

MATCH (a:Node{tag:'a'})
WITH id(a) AS startNode
CALL gds.alpha.dfs.stream('myGraph', {startNode: startNode})
YIELD path
UNWIND [ n in nodes(path) | n.tag ] AS tags
RETURN tags
ORDER BY tags

Table 766. Results

tags

"a"

"b"

"c"

"d"

"e"

If specifying d and e as target nodes, not all nodes at distance 1 will be visited due to the depth first
traversal order, in which node d is reached before b:

Running the Depth First Search algorithm with target nodes:

MATCH (a:Node{tag:'a'}), (d:Node{tag:'d'}), (e:Node{tag:'e'})
WITH id(a) AS startNode, [id(d), id(e)] AS targetNodes
CALL gds.alpha.dfs.stream('myGraph', {startNode: startNode, targetNodes: targetNodes})
YIELD path
UNWIND [ n in nodes(path) | n.tag ] AS tags
RETURN tags
ORDER BY tags

Table 767. Results

tags

"a"
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tags

"c"

"d"

Running the Depth First Search algorithm with maxDepth:

MATCH (a:Node{tag:'a'})
WITH id(a) AS startNode
CALL gds.alpha.dfs.stream('myGraph', {startNode: startNode, maxDepth: 1})
YIELD path
UNWIND [ n in nodes(path) | n.tag ] AS tags
RETURN tags
ORDER BY tags

Table 768. Results

tags

"a"

"b"

"c"

In the above case, nodes d and e were not visited since they are at distance 2 from a.

7.6. Topological link prediction
Link prediction algorithms help determine the closeness of a pair of nodes using the topology of the graph.
The computed scores can then be used to predict new relationships between them.


The following algorithms use only the topology of the graph to make predictions about
relationships between nodes. To make predictions also utilizing node properties one can
use the machine learning based methods Link prediction and Link prediction pipelines.

The Neo4j GDS library includes the following link prediction algorithms, grouped by quality tier:

• Alpha

◦ Adamic Adar

◦ Common Neighbors

◦ Preferential Attachment

◦ Resource Allocation

◦ Same Community

◦ Total Neighbors

7.6.1. Adamic Adar Alpha

Adamic Adar is a measure used to compute the closeness of nodes based on their shared neighbors.
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This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

The Adamic Adar algorithm was introduced in 2003 by Lada Adamic and Eytan Adar to predict links in a
social network. It is computed using the following formula:

where N(u) is the set of nodes adjacent to u.

A value of 0 indicates that two nodes are not close, while higher values indicate nodes are closer.

The library contains a function to calculate closeness between two nodes.

Syntax

The following will run the algorithm and return the result:

RETURN gds.alpha.linkprediction.adamicAdar(node1:Node, node2:Node, {
    relationshipQuery:String,
    direction:String
})

Table 769. Parameters

Name Type Default Optional Description

node1 Node null no A node

node2 Node null no Another node

relationship
Query

String null yes The relationship type used to compute similarity between
node1 and node2

direction String BOTH yes The relationship direction used to compute similarity
between node1 and node2. Possible values are OUTGOING,
INCOMING and BOTH.

Adamic Adar algorithm sample

508

https://www.semanticscholar.org/paper/Friends-and-neighbors-on-the-Web-Adamic-Adar/39348c10c90be968357e2a6b65d5e0e479307735
https://www.semanticscholar.org/paper/Friends-and-neighbors-on-the-Web-Adamic-Adar/39348c10c90be968357e2a6b65d5e0e479307735


The following will create a sample graph:

CREATE
 (zhen:Person {name: 'Zhen'}),
 (praveena:Person {name: 'Praveena'}),
 (michael:Person {name: 'Michael'}),
 (arya:Person {name: 'Arya'}),
 (karin:Person {name: 'Karin'}),

 (zhen)-[:FRIENDS]->(arya),
 (zhen)-[:FRIENDS]->(praveena),
 (praveena)-[:WORKS_WITH]->(karin),
 (praveena)-[:FRIENDS]->(michael),
 (michael)-[:WORKS_WITH]->(karin),
 (arya)-[:FRIENDS]->(karin)

The following will return the Adamic Adar score for Michael and Karin:

 MATCH (p1:Person {name: 'Michael'})
 MATCH (p2:Person {name: 'Karin'})
 RETURN gds.alpha.linkprediction.adamicAdar(p1, p2) AS score

Table 770. Results

score

0.9102392266268373

We can also compute the score of a pair of nodes based on a specific relationship type.

The following will return the Adamic Adar score for Michael and Karin based only on the FRIENDS
relationships:

 MATCH (p1:Person {name: 'Michael'})
 MATCH (p2:Person {name: 'Karin'})
 RETURN gds.alpha.linkprediction.adamicAdar(p1, p2, {relationshipQuery: 'FRIENDS'}) AS score

Table 771. Results

score

0.0

7.6.2. Common Neighbors Alpha

Common neighbors captures the idea that two strangers who have a friend in common are more likely to
be introduced than those who don’t have any friends in common.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

It is computed using the following formula:

where N(x) is the set of nodes adjacent to node x, and N(y) is the set of nodes adjacent to node y.
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A value of 0 indicates that two nodes are not close, while higher values indicate nodes are closer.

The library contains a function to calculate closeness between two nodes.

Syntax

The following will run the algorithm and return the result:

RETURN gds.alpha.linkprediction.commonNeighbors(node1:Node, node2:Node, {
    relationshipQuery:String,
    direction:String
})

Table 772. Parameters

Name Type Default Optional Description

node1 Node null no A node

node2 Node null no Another node

relationship
Query

String null yes The relationship type used to compute similarity between
node1 and node2.

direction String BOTH yes The relationship direction used to compute similarity
between node1 and node2. Possible values are OUTGOING,
INCOMING and BOTH.

Common Neighbors algorithm sample

The following will create a sample graph:

CREATE
 (zhen:Person {name: 'Zhen'}),
 (praveena:Person {name: 'Praveena'}),
 (michael:Person {name: 'Michael'}),
 (arya:Person {name: 'Arya'}),
 (karin:Person {name: 'Karin'}),

 (zhen)-[:FRIENDS]->(arya),
 (zhen)-[:FRIENDS]->(praveena),
 (praveena)-[:WORKS_WITH]->(karin),
 (praveena)-[:FRIENDS]->(michael),
 (michael)-[:WORKS_WITH]->(karin),
 (arya)-[:FRIENDS]->(karin)

The following will return the number of common neighbors for Michael and Karin:

 MATCH (p1:Person {name: 'Michael'})
 MATCH (p2:Person {name: 'Karin'})
 RETURN gds.alpha.linkprediction.commonNeighbors(p1, p2) AS score

Table 773. Results

score

1.0

We can also compute the score of a pair of nodes based on a specific relationship type.
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The following will return the number of common neighbors for Michael and Karin based only on the
FRIENDS relationships:

 MATCH (p1:Person {name: 'Michael'})
 MATCH (p2:Person {name: 'Karin'})
 RETURN gds.alpha.linkprediction.commonNeighbors(p1, p2, {relationshipQuery: "FRIENDS"}) AS score

Table 774. Results

score

0.0

7.6.3. Preferential Attachment Alpha

Preferential Attachment is a measure used to compute the closeness of nodes, based on their shared
neighbors.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

Preferential attachment means that the more connected a node is, the more likely it is to receive new links.
This algorithm was popularised by Albert-László Barabási and Réka Albert through their work on scale-
free networks. It is computed using the following formula:

where N(u) is the set of nodes adjacent to u.

A value of 0 indicates that two nodes are not close, while higher values indicate that nodes are closer.

The library contains a function to calculate closeness between two nodes.

Syntax

The following will run the algorithm and return the result:

RETURN gds.alpha.linkprediction.preferentialAttachment(node1:Node, node2:Node, {
    relationshipQuery:String,
    direction:String
})

Table 775. Parameters

Name Type Default Optional Description

node1 Node null no A node

node2 Node null no Another node

relationship
Query

String null yes The relationship type used to compute similarity between
node1 and node2
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Name Type Default Optional Description

direction String BOTH yes The relationship direction used to compute similarity
between node1 and node2. Possible values are OUTGOING,
INCOMING and BOTH.

Preferential Attachment algorithm sample

The following will create a sample graph:

CREATE
 (zhen:Person {name: 'Zhen'}),
 (praveena:Person {name: 'Praveena'}),
 (michael:Person {name: 'Michael'}),
 (arya:Person {name: 'Arya'}),
 (karin:Person {name: 'Karin'}),

 (zhen)-[:FRIENDS]->(arya),
 (zhen)-[:FRIENDS]->(praveena),
 (praveena)-[:WORKS_WITH]->(karin),
 (praveena)-[:FRIENDS]->(michael),
 (michael)-[:WORKS_WITH]->(karin),
 (arya)-[:FRIENDS]->(karin)

The following will return the Preferential Attachment score for Michael and Karin:

 MATCH (p1:Person {name: 'Michael'})
 MATCH (p2:Person {name: 'Karin'})
 RETURN gds.alpha.linkprediction.preferentialAttachment(p1, p2) AS score

Table 776. Results

score

6.0

We can also compute the score of a pair of nodes based on a specific relationship type.

The following will return the Preferential Attachment score for Michael and Karin based only on the
FRIENDS relationship:

 MATCH (p1:Person {name: 'Michael'})
 MATCH (p2:Person {name: 'Karin'})
 RETURN gds.alpha.linkprediction.preferentialAttachment(p1, p2, {relationshipQuery: "FRIENDS"}) AS score

Table 777. Results

score

1.0

7.6.4. Resource Allocation Alpha

Resource Allocation is a measure used to compute the closeness of nodes based on their shared
neighbors.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.
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History and explanation

The Resource Allocation algorithm was introduced in 2009 by Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang
as part of a study to predict links in various networks. It is computed using the following formula:

where N(u) is the set of nodes adjacent to u.

A value of 0 indicates that two nodes are not close, while higher values indicate nodes are closer.

The library contains a function to calculate closeness between two nodes.

Syntax

The following will run the algorithm and return the result:

RETURN gds.alpha.linkprediction.resourceAllocation(node1:Node, node2:Node, {
    relationshipQuery:String,
    direction:String
})

Table 778. Parameters

Name Type Default Optional Description

node1 Node null no A node

node2 Node null no Another node

relationship
Query

String null yes The relationship type to use to compute similarity between
node1 and node2

direction String BOTH yes The relationship direction used to compute similarity
between node1 and node2. Possible values are OUTGOING,
INCOMING and BOTH.

Resource Allocation algorithm sample

The following will create a sample graph:

CREATE
 (zhen:Person {name: 'Zhen'}),
 (praveena:Person {name: 'Praveena'}),
 (michael:Person {name: 'Michael'}),
 (arya:Person {name: 'Arya'}),
 (karin:Person {name: 'Karin'}),

 (zhen)-[:FRIENDS]->(arya),
 (zhen)-[:FRIENDS]->(praveena),
 (praveena)-[:WORKS_WITH]->(karin),
 (praveena)-[:FRIENDS]->(michael),
 (michael)-[:WORKS_WITH]->(karin),
 (arya)-[:FRIENDS]->(karin)

513



The following will return the Resource Allocation score for Michael and Karin:

 MATCH (p1:Person {name: 'Michael'})
 MATCH (p2:Person {name: 'Karin'})
 RETURN gds.alpha.linkprediction.resourceAllocation(p1, p2) AS score

Table 779. Results

score

0.3333333333333333

We can also compute the score of a pair of nodes based on a specific relationship type.

The following will return the Resource Allocation score for Michael and Karin based only on the FRIENDS
relationships:

 MATCH (p1:Person {name: 'Michael'})
 MATCH (p2:Person {name: 'Karin'})
 RETURN gds.alpha.linkprediction.resourceAllocation(p1, p2, {relationshipQuery: "FRIENDS"}) AS score

Table 780. Results

score

0.0

7.6.5. Same Community Alpha

Same Community is a way of determining whether two nodes belong to the same community. These
communities could be computed by using one of the Community detection.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

If two nodes belong to the same community, there is a greater likelihood that there will be a relationship
between them in future, if there isn’t already.

A value of 0 indicates that two nodes are not in the same community. A value of 1 indicates that two
nodes are in the same community.

The library contains a function to calculate closeness between two nodes.

Syntax

The following will run the algorithm and return the result:

RETURN gds.alpha.linkprediction.sameCommunity(node1:Node, node2:Node, communityProperty:String)

Table 781. Parameters
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Name Type Default Optional Description

node1 Node null no A node

node2 Node null no Another node

communityPro
perty

String 'community' yes The property that contains the community to which nodes
belong

Same Community algorithm sample

The following will create a sample graph:

CREATE (zhen:Person {name: 'Zhen', community: 1}),
       (praveena:Person {name: 'Praveena', community: 2}),
       (michael:Person {name: 'Michael', community: 1}),
       (arya:Person {name: 'Arya', partition: 5}),
       (karin:Person {name: 'Karin', partition: 5}),
       (jennifer:Person {name: 'Jennifer'})

The following will indicate that Michael and Zhen belong to the same community:

MATCH (p1:Person {name: 'Michael'})
MATCH (p2:Person {name: 'Zhen'})
RETURN gds.alpha.linkprediction.sameCommunity(p1, p2) AS score

Table 782. Results

score

1.0

The following will indicate that Michael and Praveena do not belong to the same community:

MATCH (p1:Person {name: 'Michael'})
MATCH (p2:Person {name: 'Praveena'})
RETURN gds.alpha.linkprediction.sameCommunity(p1, p2) AS score

Table 783. Results

score

0.0

If one of the nodes doesn’t have a community, this means it doesn’t belong to the same community as any
other node.

The following will indicate that Michael and Jennifer do not belong to the same community:

MATCH (p1:Person {name: 'Michael'})
MATCH (p2:Person {name: 'Jennifer'})
RETURN gds.alpha.linkprediction.sameCommunity(p1, p2) AS score

Table 784. Results

score

0.0
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By default, the community is read from the community property, but it is possible to explicitly state which
property to read from.

The following will indicate that Arya and Karin belong to the same community, based on the partition
property:

MATCH (p1:Person {name: 'Arya'})
MATCH (p2:Person {name: 'Karin'})
RETURN gds.alpha.linkprediction.sameCommunity(p1, p2, 'partition') AS score

Table 785. Results

score

1.0

7.6.6. Total Neighbors Alpha

Total Neighbors computes the closeness of nodes, based on the number of unique neighbors that they
have. It is based on the idea that the more connected a node is, the more likely it is to receive new links.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

History and explanation

Total Neighbors is computed using the following formula:

where N(x) is the set of nodes adjacent to x, and N(y) is the set of nodes adjacent to y.

A value of 0 indicates that two nodes are not close, while higher values indicate nodes are closer.

The library contains a function to calculate the closeness between two nodes.

Syntax

The following will run the algorithm and return the result:

RETURN gds.alpha.linkprediction.totalNeighbors(node1:Node, node2:Node, {
    relationshipQuery: null,
    direction: "BOTH"
})

Table 786. Parameters

Name Type Default Optional Description

node1 Node null no A node

node2 Node null no Another node

relationship
Query

String null yes The relationship type used to compute similarity between
node1 and node2
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Name Type Default Optional Description

direction String BOTH yes The relationship direction used to compute similarity
between node1 and node2. Possible values are OUTGOING,
INCOMING and BOTH.

Total Neighbors algorithm sample

The following will create a sample graph:

CREATE (zhen:Person {name: 'Zhen'}),
       (praveena:Person {name: 'Praveena'}),
       (michael:Person {name: 'Michael'}),
       (arya:Person {name: 'Arya'}),
       (karin:Person {name: 'Karin'}),

       (zhen)-[:FRIENDS]->(arya),
       (zhen)-[:FRIENDS]->(praveena),
       (praveena)-[:WORKS_WITH]->(karin),
       (praveena)-[:FRIENDS]->(michael),
       (michael)-[:WORKS_WITH]->(karin),
       (arya)-[:FRIENDS]->(karin)

The following will return the Total Neighbors score for Michael and Karin:

MATCH (p1:Person {name: 'Michael'})
MATCH (p2:Person {name: 'Karin'})
RETURN gds.alpha.linkprediction.totalNeighbors(p1, p2) AS score

Table 787. Results

score

4.0

We can also compute the score of a pair of nodes, based on a specific relationship type.

The following will return the Total Neighbors score for Michael and Karin based only on the FRIENDS
relationship:

MATCH (p1:Person {name: 'Michael'})
MATCH (p2:Person {name: 'Karin'})
RETURN gds.alpha.linkprediction.totalNeighbors(p1, p2, {relationshipQuery: "FRIENDS"}) AS score

Table 788. Results

score

2.0

7.7. Node embeddings
Node embedding algorithms compute low-dimensional vector representations of nodes in a graph. These
vectors, also called embeddings, can be used for machine learning. The Neo4j Graph Data Science library
contains the following node embedding algorithms:

• Production-quality
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◦ FastRP

• Beta

◦ GraphSAGE

◦ Node2Vec

7.7.1. Fast Random Projection

Supported algorithm traits:

Directed

Undirected

Homogeneous

Heterogeneous

Weighted

Introduction

Fast Random Projection, or FastRP for short, is a node embedding algorithm in the family of random
projection algorithms. These algorithms are theoretically backed by the Johnsson-Lindenstrauss lemma
according to which one can project n vectors of arbitrary dimension into O(log(n)) dimensions and still
approximately preserve pairwise distances among the points. In fact, a linear projection chosen in a
random way satisfies this property.

Such techniques therefore allow for aggressive dimensionality reduction while preserving most of the
distance information. The FastRP algorithm operates on graphs, in which case we care about preserving
similarity between nodes and their neighbors. This means that two nodes that have similar neighborhoods
should be assigned similar embedding vectors. Conversely, two nodes that are not similar should be not be
assigned similar embedding vectors.

The FastRP algorithm initially assigns random vectors to all nodes using a technique called very sparse
random projection, see (Achlioptas, 2003) below. Moreover, in GDS it is possible to use node properties for
the creation of these initial random vectors in a way described below. We will also use projection of a node
synonymously with the initial random vector of a node.

Starting with these random vectors and iteratively averaging over node neighborhoods, the algorithm
constructs a sequence of intermediate embeddings  for each node n. More precisely,

where m ranges over neighbors of n and  is the node’s initial random vector.

The embedding  of node n, which is the output of the algorithm, is a combination of the vectors and
embeddings defined above:
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where normalize is the function which divides a vector with its L2 norm, the value of nodeSelfInfluence is
, and the values of iterationWeights are . We will return to Node Self Influence later on.

Therefore, each node’s embedding depends on a neighborhood of radius equal to the number of iterations.
This way FastRP exploits higher-order relationships in the graph while still being highly scalable.

The present implementation extends the original algorithm to support weighted graphs, which computes
weighted averages of neighboring embeddings using the relationship weights. In order to make use of
this, the relationshipWeightProperty parameter should be set to an existing relationship property.

The original algorithm is intended only for undirected graphs. We support running on both on directed
graphs and undirected graph. For directed graphs we consider only the outgoing neighbors when
computing the intermediate embeddings for a node. Therefore, using the orientations NATURAL, REVERSE or
UNDIRECTED will all give different embeddings. In general, it is recommended to first use UNDIRECTED as this
is what the original algorithm was evaluated on.

For more information on this algorithm see:

• H. Chen, S.F. Sultan, Y. Tian, M. Chen, S. Skiena: Fast and Accurate Network Embeddings via Very
Sparse Random Projection, 2019.

• Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins.
Journal of Computer and System Sciences, 66(4):671–687, 2003.

Node properties

Most real-world graphs contain node properties which store information about the nodes and what they
represent. The FastRP algorithm in the GDS library extends the original FastRP algorithm with a capability
to take node properties into account. The resulting embeddings can therefore represent the graph more
accurately.

The node property aware aspect of the algorithm is configured via the parameters featureProperties and
propertyRatio. Each node property in featureProperties is associated with a randomly generated vector
of dimension propertyDimension, where propertyDimension = embeddingDimension * propertyRatio.
Each node is then initialized with a vector of size embeddingDimension formed by concatenation of two
parts:

1. The first part is formed like in the standard FastRP algorithm,

2. The second one is a linear combination of the property vectors, using the property values of the node
as weights.

The algorithm then proceeds with the same logic as the FastRP algorithm. Therefore, the algorithm will
output arrays of size embeddingDimension. The last propertyDimension coordinates in the embedding
captures information about property values of nearby nodes (the "property part" below), and the
remaining coordinates (embeddingDimension - propertyDimension of them; "topology part") captures
information about nearby presence of nodes.
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[0, 1, ...        | ...,   N - 1, N]
 ^^^^^^^^^^^^^^^^ | ^^^^^^^^^^^^^^^
  topology part   |  property part
                  ^
           property ratio

Tuning algorithm parameters

In order to improve the embedding quality using FastRP on one of your graphs, it is possible to tune the
algorithm parameters. This process of finding the best parameters for your specific use case and graph is
typically referred to as hyperparameter tuning. We will go through each of the configuration parameters
and explain how they behave.

For statistically sound results, it is a good idea to reserve a test set excluded from parameter tuning. After
selecting a set of parameter values, the embedding quality can be evaluated using a downstream machine
learning task on the test set. By varying the parameter values and studying the precision of the machine
learning task, it is possible to deduce the parameter values that best fit the concrete dataset and use case.
To construct such a set you may want to use a dedicated node label in the graph to denote a subgraph
without the test data.

Embedding dimension

The embedding dimension is the length of the produced vectors. A greater dimension offers a greater
precision, but is more costly to operate over.

The optimal embedding dimension depends on the number of nodes in the graph. Since the amount of
information the embedding can encode is limited by its dimension, a larger graph will tend to require a
greater embedding dimension. A typical value is a power of two in the range 128 - 1024. A value of at
least 256 gives good results on graphs in the order of 105 nodes, but in general increasing the dimension
improves results. Increasing embedding dimension will however increase memory requirements and
runtime linearly.

Normalization strength

The normalization strength is used to control how node degrees influence the embedding. Using a
negative value will downplay the importance of high degree neighbors, while a positive value will instead
increase their importance. The optimal normalization strength depends on the graph and on the task that
the embeddings will be used for. In the original paper, hyperparameter tuning was done in the range of [-
1,0] (no positive values), but we have found cases where a positive normalization strengths gives better
results.

Iteration weights

The iteration weights parameter control two aspects: the number of iterations, and their relative impact on
the final node embedding. The parameter is a list of numbers, indicating one iteration per number where
the number is the weight applied to that iteration.
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In each iteration, the algorithm will expand across all relationships in the graph. This has some
implications:

• With a single iteration, only direct neighbors will be considered for each node embedding.

• With two iterations, direct neighbors and second-degree neighbors will be considered for each node
embedding.

• With three iterations, direct neighbors, second-degree neighbors, and third-degree neighbors will be
considered for each node embedding. Direct neighbors may be reached twice, in different iterations.

• In general, the embedding corresponding to the i:th iteration contains features depending on nodes
reachable with paths of length i. If the graph is undirected, then a node reachable with a path of
length L can also be reached with length L+2k, for any integer k.

• In particular, a node may reach back to itself on each even iteration (depending on the direction in the
graph).

It is good to have at least one non-zero weight in an even and in an odd position. Typically, using at least a
few iterations, for example three, is recommended. However, a too high value will consider nodes far away
and may not be informative or even be detrimental. The intuition here is that as the projections reach
further away from the node, the less specific the neighborhood becomes. Of course, a greater number of
iterations will also take more time to complete.

Node Self Influence

Node Self Influence is a variation of the original FastRP algorithm.

How much a node’s embedding is affected by the intermediate embedding at iteration i is controlled by the
i'th element of iterationWeights. This can also be seen as how much the initial random vectors, or
projections, of nodes that can be reached in i hops from a node affect the embedding of the node.
Similarly, nodeSelfInfluence behaves like an iteration weight for a 0 th iteration, or the amount of
influence the projection of a node has on the embedding of the same node.

A reason for setting this parameter to a non-zero value is if your graph has low connectivity or a significant
amount of isolated nodes. Isolated nodes combined with using propertyRatio = 0.0 leads to embeddings
that contain all zeros. However using node properties along with node self influence can thus produce
more meaningful embeddings for such nodes. This can be seen as producing fallback features when graph
structure is (locally) missing. Moreover, sometimes a node’s own properties are simply informative features
and are good to include even if connectivity is high. Finally, node self influence can be used for pure
dimensionality reduction to compress node properties used for node classification.

If node properties are not used, using nodeSelfInfluence may also have a positive effect, depending on
other settings and on the problem.

Orientation

Choosing the right orientation when creating the graph may have the single greatest impact. The FastRP
algorithm is designed to work with undirected graphs, and we expect this to be the best in most cases. If
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you expect only outgoing or incoming relationships to be informative for a prediction task, then you may
want to try using the orientations NATURAL or REVERSE respectively.

Syntax

This section covers the syntax used to execute the FastRP algorithm in each of its execution modes. We
are describing the named graph variant of the syntax. To learn more about general syntax variants, see
Syntax overview.
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FastRP syntax per mode
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Run FastRP in stream mode on a named graph.

CALL gds.fastRP.stream(
  graphName: String,
  configuration: Map
) YIELD
  nodeId: Integer,
  embedding: List of Float

Table 789. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 790. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 791. Algorithm specific configuration

Name Type Default Optional Description

propertyRati
o

Float 0.0 yes The desired ratio of the property embedding dimension
to the total embeddingDimension. A positive value
requires featureProperties to be non-empty.

featureProp
erties

List of String [] yes The names of the node properties that should be used
as input features. All property names must exist in the
in-memory graph and be of type Float or List of Float.

embedding
Dimension

Integer n/a no The dimension of the computed node embeddings.
Minimum value is 1.

iterationWei
ghts

List of Float [0.0, 1.0,
1.0]

yes Contains a weight for each iteration. The weight
controls how much the intermediate embedding from
the iteration contributes to the final embedding.

nodeSelfInfl
uence

Float 0.0 yes Controls for each node how much its initial random
vector contributes to its final embedding.

normalizatio
nStrength

Float 0.0 yes The initial random vector for each node is scaled by its
degree to the power of normalizationStrength.

randomSeed Integer n/a yes A random seed which is used for all randomness in
computing the embeddings.
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Name Type Default Optional Description

relationship
WeightProp
erty

String null yes Name of the relationship property to use for weighted
random projection. If unspecified, the algorithm runs
unweighted.

The number of iterations is equal to the length of iterationWeights.

It is required that iterationWeights is non-empty or nodeSelfInfluence is non-zero.

Table 792. Results

Name Type Description

nodeId Integer Node ID.

embedding List of Float FastRP node embedding.
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Run FastRP in stats mode on a named graph.

CALL gds.fastRP.stats(
  graphName: String,
  configuration: Map
) YIELD
  nodeCount: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  configuration: Map

Table 793. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 794. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 795. Algorithm specific configuration

Name Type Default Optional Description

propertyRati
o

Float 0.0 yes The desired ratio of the property embedding dimension
to the total embeddingDimension. A positive value
requires featureProperties to be non-empty.

featureProp
erties

List of String [] yes The names of the node properties that should be used
as input features. All property names must exist in the
in-memory graph and be of type Float or List of Float.

embedding
Dimension

Integer n/a no The dimension of the computed node embeddings.
Minimum value is 1.

iterationWei
ghts

List of Float [0.0, 1.0,
1.0]

yes Contains a weight for each iteration. The weight
controls how much the intermediate embedding from
the iteration contributes to the final embedding.

nodeSelfInfl
uence

Float 0.0 yes Controls for each node how much its initial random
vector contributes to its final embedding.

normalizatio
nStrength

Float 0.0 yes The initial random vector for each node is scaled by its
degree to the power of normalizationStrength.

randomSeed Integer n/a yes A random seed which is used for all randomness in
computing the embeddings.
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Name Type Default Optional Description

relationship
WeightProp
erty

String null yes Name of the relationship property to use for weighted
random projection. If unspecified, the algorithm runs
unweighted.

The number of iterations is equal to the length of iterationWeights.

It is required that iterationWeights is non-empty or nodeSelfInfluence is non-zero.

Table 796. Results

Name Type Description

nodeCount Integer Number of nodes processed.

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

configuratio
n

Map Configuration used for running the algorithm.
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Run FastRP in mutate mode on a named graph.

CALL gds.fastRP.mutate(
  graphName: String,
  configuration: Map
) YIELD
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  mutateMillis: Integer,
  configuration: Map

Table 797. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 798. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 799. Algorithm specific configuration

Name Type Default Optional Description

propertyRati
o

Float 0.0 yes The desired ratio of the property embedding dimension
to the total embeddingDimension. A positive value
requires featureProperties to be non-empty.

featureProp
erties

List of String [] yes The names of the node properties that should be used
as input features. All property names must exist in the
in-memory graph and be of type Float or List of Float.

embedding
Dimension

Integer n/a no The dimension of the computed node embeddings.
Minimum value is 1.

iterationWei
ghts

List of Float [0.0, 1.0,
1.0]

yes Contains a weight for each iteration. The weight
controls how much the intermediate embedding from
the iteration contributes to the final embedding.

nodeSelfInfl
uence

Float 0.0 yes Controls for each node how much its initial random
vector contributes to its final embedding.

normalizatio
nStrength

Float 0.0 yes The initial random vector for each node is scaled by its
degree to the power of normalizationStrength.
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Name Type Default Optional Description

randomSeed Integer n/a yes A random seed which is used for all randomness in
computing the embeddings.

relationship
WeightProp
erty

String null yes Name of the relationship property to use for weighted
random projection. If unspecified, the algorithm runs
unweighted.

The number of iterations is equal to the length of iterationWeights.

It is required that iterationWeights is non-empty or nodeSelfInfluence is non-zero.

Table 800. Results

Name Type Description

nodeCount Integer Number of nodes processed.

nodePropertiesWritten Integer Number of node properties written.

createMillis Integer Milliseconds for creating the graph.

computeMillis Integer Milliseconds for running the
algorithm.

mutateMillis Integer Milliseconds for adding properties to
the in-memory graph.

configuration Map Configuration used for running the
algorithm.
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Run FastRP in write mode on a named graph.

CALL gds.fastRP.write(
  graphName: String,
  configuration: Map
) YIELD
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 801. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 802. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 803. Algorithm specific configuration

Name Type Default Optional Description

propertyRati
o

Float 0.0 yes The desired ratio of the property embedding dimension
to the total embeddingDimension. A positive value
requires featureProperties to be non-empty.

featureProp
erties

List of String [] yes The names of the node properties that should be used
as input features. All property names must exist in the
in-memory graph and be of type Float or List of Float.

embedding
Dimension

Integer n/a no The dimension of the computed node embeddings.
Minimum value is 1.

iterationWei
ghts

List of Float [0.0, 1.0,
1.0]

yes Contains a weight for each iteration. The weight
controls how much the intermediate embedding from
the iteration contributes to the final embedding.

nodeSelfInfl
uence

Float 0.0 yes Controls for each node how much its initial random
vector contributes to its final embedding.
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Name Type Default Optional Description

normalizatio
nStrength

Float 0.0 yes The initial random vector for each node is scaled by its
degree to the power of normalizationStrength.

randomSeed Integer n/a yes A random seed which is used for all randomness in
computing the embeddings.

relationship
WeightProp
erty

String null yes Name of the relationship property to use for weighted
random projection. If unspecified, the algorithm runs
unweighted.

The number of iterations is equal to the length of iterationWeights.

It is required that iterationWeights is non-empty or nodeSelfInfluence is non-zero.

Table 804. Results

Name Type Description

nodeCount Integer Number of nodes processed.

nodePropertiesWritten Integer Number of node properties written.

createMillis Integer Milliseconds for creating the graph.

computeMillis Integer Milliseconds for running the
algorithm.

writeMillis Integer Milliseconds for writing result data
back to Neo4j.

configuration Map Configuration used for running the
algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run FastRP in write mode on an anonymous graph.

CALL gds.fastRP.write(
  configuration: Map
)
YIELD
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  configuration: Map
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Table 805. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes WRITE mode only: The number of concurrent threads used
for writing the result.

writeProperty String n/a no WRITE mode only: The node property to which the
embedding is written to.

Table 806. Algorithm specific configuration

Name Type Default Optional Description

propertyRatio Float 0.0 yes The desired ratio of the property embedding dimension to
the total embeddingDimension. A positive value requires
featureProperties to be non-empty.

featureProper
ties

List of String [] yes The names of the node properties that should be used as
input features. All property names must exist in the in-
memory graph and be of type Float or List of Float.

embeddingDi
mension

Integer n/a no The dimension of the computed node embeddings. Minimum
value is 1.

iterationWeig
hts

List of Float [0.0, 1.0,
1.0]

yes Contains a weight for each iteration. The weight controls
how much the intermediate embedding from the iteration
contributes to the final embedding.

nodeSelfInflue
nce

Float 0.0 yes Controls for each node how much its initial random vector
contributes to its final embedding.

normalization
Strength

Float 0.0 yes The initial random vector for each node is scaled by its
degree to the power of normalizationStrength.
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Name Type Default Optional Description

randomSeed Integer n/a yes A random seed which is used for all randomness in
computing the embeddings.

relationshipW
eightProperty

String null yes Name of the relationship property to use for weighted
random projection. If unspecified, the algorithm runs
unweighted.

The number of iterations is equal to the length of iterationWeights.

It is required that iterationWeights is non-empty or nodeSelfInfluence is non-zero.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the FastRP node embedding algorithm on a concrete
graph. The intention is to illustrate what the results look like and to provide a guide in how to make use of
the algorithm in a real setting. We will do this on a small social network graph of a handful nodes
connected in a particular pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (dan:Person {name: 'Dan', age: 18}),
  (annie:Person {name: 'Annie', age: 12}),
  (matt:Person {name: 'Matt', age: 22}),
  (jeff:Person {name: 'Jeff', age: 51}),
  (brie:Person {name: 'Brie', age: 45}),
  (elsa:Person {name: 'Elsa', age: 65}),
  (john:Person {name: 'John', age: 64}),

  (dan)-[:KNOWS {weight: 1.0}]->(annie),
  (dan)-[:KNOWS {weight: 1.0}]->(matt),
  (annie)-[:KNOWS {weight: 1.0}]->(matt),
  (annie)-[:KNOWS {weight: 1.0}]->(jeff),
  (annie)-[:KNOWS {weight: 1.0}]->(brie),
  (matt)-[:KNOWS {weight: 3.5}]->(brie),
  (brie)-[:KNOWS {weight: 1.0}]->(elsa),
  (brie)-[:KNOWS {weight: 2.0}]->(jeff),
  (john)-[:KNOWS {weight: 1.0}]->(jeff);

This graph represents seven people who know one another. A relationship property weight denotes the
strength of the knowledge between two persons.

With the graph in Neo4j we can now project it into the graph catalog to prepare it for algorithm execution.
We do this using a native projection targeting the Person nodes and the KNOWS relationships. For the
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relationships we will use the UNDIRECTED orientation. This is because the FastRP algorithm has been
measured to compute more predictive node embeddings in undirected graphs. We will also add the weight
relationship property which we will make use of when running the weighted version of FastRP.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'persons'.

CALL gds.graph.create(
  'persons',
  'Person',
  {
    KNOWS: {
      orientation: 'UNDIRECTED',
      properties: 'weight'
    }
  },
  { nodeProperties: ['age'] }
)

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the stream mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.

The following will estimate the memory requirements for running the algorithm:

CALL gds.fastRP.stream.estimate('persons', {embeddingDimension: 128})
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

Table 807. Results

nodeCount relationshipCount bytesMin bytesMax requiredMemory

7 18 11424 11424 "11424 Bytes"

Stream

In the stream execution mode, the algorithm returns the embedding for each node. This allows us to
inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.
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The following will run the algorithm, and stream results:

CALL gds.fastRP.stream('persons',
  {
    embeddingDimension: 4,
    randomSeed: 42
  }
)
YIELD nodeId, embedding

Table 808. Results

nodeId embedding

0 [0.4774002134799957, -0.6602408289909363,
-0.36686956882476807, -1.7089111804962158]

1 [0.7989360094070435, -0.4918718934059143,
-0.41281944513320923, -1.6314401626586914]

2 [0.47275322675704956, -0.49587157368659973,
-0.3340468406677246, -1.7141895294189453]

3 [0.8290714025497437, -0.3260476291179657,
-0.3317275643348694, -1.4370529651641846]

4 [0.7749264240264893, -0.4773247539997101,
0.0675133764743805, -1.5248265266418457]

5 [0.8408374190330505, -0.37151476740837097,
0.12121132016181946, -1.530960202217102]

6 [1.0, -0.11054422706365585, -0.3697933852672577,
-0.9225144982337952]

The results of the algorithm are not very intuitively interpretable, as the node embedding format is a
mathematical abstraction of the node within its neighborhood, designed for machine learning programs.
What we can see is that the embeddings have four elements (as configured using embeddingDimension)
and that the numbers are relatively small (they all fit in the range of [-2, 2]). The magnitude of the
numbers is controlled by the embeddingDimension, the number of nodes in the graph, and by the fact that
FastRP performs euclidean normalization on the intermediate embedding vectors.


Due to the random nature of the algorithm the results will vary between the runs.
However, this does not necessarily mean that the pairwise distances of two node
embeddings vary as much.

Stats

In the stats execution mode, the algorithm returns a single row containing a summary of the algorithm
result. This execution mode does not have any side effects. It can be useful for evaluating algorithm
performance by inspecting the computeMillis return item. In the examples below we will omit returning
the timings. The full signature of the procedure can be found in the syntax section.

For more details on the stats mode in general, see Stats.
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The following will run the algorithm and returns the result in form of statistical and measurement values

CALL gds.fastRP.stats('persons', { embeddingDimension: 8 })
YIELD nodeCount

Table 809. Results

nodeCount

7

The stats mode does not currently offer any statistical results for the embeddings themselves. We can
however see that the algorithm has successfully processed all seven nodes in our example graph.

Mutate

The mutate execution mode extends the stats mode with an important side effect: updating the named
graph with a new node property containing the embedding for that node. The name of the new property is
specified using the mandatory configuration parameter mutateProperty. The result is a single summary
row, similar to stats, but with some additional metrics. The mutate mode is especially useful when multiple
algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

The following will run the algorithm in mutate mode:

CALL gds.fastRP.mutate(
  'persons',
  {
    embeddingDimension: 8,
    mutateProperty: 'fastrp-embedding'
  }
)
YIELD nodePropertiesWritten

Table 810. Results

nodePropertiesWritten

7

The returned result is similar to the stats example. Additionally, the graph 'persons' now has a node
property fastrp-embedding which stores the node embedding for each node. To find out how to inspect
the new schema of the in-memory graph, see Listing graphs.

Write

The write execution mode extends the stats mode with an important side effect: writing the embedding
for each node as a property to the Neo4j database. The name of the new property is specified using the
mandatory configuration parameter writeProperty. The result is a single summary row, similar to stats,
but with some additional metrics. The write mode enables directly persisting the results to the database.
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For more details on the write mode in general, see Write.

The following will run the algorithm in write mode:

CALL gds.fastRP.write(
  'persons',
  {
    embeddingDimension: 8,
    writeProperty: 'fastrp-embedding'
  }
)
YIELD nodePropertiesWritten

Table 811. Results

nodePropertiesWritten

7

The returned result is similar to the stats example. Additionally, each of the seven nodes now has a new
property fastrp-embedding in the Neo4j database, containing the node embedding for that node.

Weighted

By default, the algorithm is considering the relationships of the graph to be unweighted. To change this
behaviour we can use configuration parameter called relationshipWeightProperty. Below is an example
of running the weighted variant of algorithm.

The following will run the algorithm, and stream results:

CALL gds.fastRP.stream(
  'persons',
  {
    embeddingDimension: 4,
    randomSeed: 42,
    relationshipWeightProperty: 'weight'
  }
)
YIELD nodeId, embedding

Table 812. Results

nodeId embedding

0 [0.10945529490709305, -0.5032674074172974,
0.464673787355423, -1.7539862394332886]

1 [0.3639600872993469, -0.39210301637649536,
0.46271592378616333, -1.829423427581787]

2 [0.12314096093177795, -0.3213110864162445,
0.40100979804992676, -1.471055269241333]

3 [0.30704641342163086, -0.24944794178009033,
0.3947891891002655, -1.3463698625564575]

4 [0.23112300038337708, -0.30148714780807495,
0.584831714630127, -1.2822188138961792]
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nodeId embedding

5 [0.14497177302837372, -0.2312137484550476,
0.5552002191543579, -1.2605633735656738]

6 [0.5139184594154358, -0.07954332232475281,
0.3690345287322998, -0.9176374077796936]

Since the initial state of the algorithm is randomised, it isn’t possible to intuitively analyse the effect of the
relationship weights.

Using node properties as features

To explain the novel initialization using node properties, let us consider an example where
embeddingDimension is 10, propertyRatio is 0.2. The dimension of the embedded properties,
propertyDimension is thus 2. Assume we have a property f1 of scalar type, and a property f2 storing
arrays of length 2. This means that there are 3 features which we order like f1 followed by the two values
of f2. For each of these three features we sample a two dimensional random vector. Let’s say these are
p1=[0.0, 2.4], p2=[-2.4, 0.0] and p3=[2.4, 0.0]. Consider now a node (n {f1: 0.5, f2: [1.0,
-1.0]}). The linear combination mentioned above, is in concrete terms 0.5 * p1 + 1.0 * p2 - 1.0 * p3
= [-4.8, 1.2]. The initial random vector for the node n contains first 8 values sampled as in the original
FastRP paper, and then our computed values -4.8 and 1.2, totalling 10 entries.

In the example below, we again set the embedding dimension to 2, but we set propertyRatio to 1, which
means the embedding is computed from node properties only.

The following will run FastRP with feature properties:

CALL gds.fastRP.stream('persons', {
    randomSeed: 42,
    embeddingDimension: 2,
    propertyRatio: 1.0,
    featureProperties: ['age'],
    iterationWeights: [1.0]
}) YIELD nodeId, embedding

Table 813. Results

nodeId embedding

0 [0.0, -1.0]

1 [0.0, -1.0]

2 [0.0, -0.9999999403953552]

3 [0.0, -1.0]

4 [0.0, -0.9999999403953552]

5 [0.0, -1.0]

6 [0.0, -1.0]

In this example, the embeddings are based on the age property. Because of L2 normalization which is
applied to each iteration (here only one iteration), all nodes have the same embedding despite having
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different age values (apart from rounding errors).

7.7.2. GraphSAGE Beta

GraphSAGE is an inductive algorithm for computing node embeddings. GraphSAGE is using node feature
information to generate node embeddings on unseen nodes or graphs. Instead of training individual
embeddings for each node, the algorithm learns a function that generates embeddings by sampling and
aggregating features from a node’s local neighborhood.

 The algorithm is defined for UNDIRECTED graphs.

For more information on this algorithm see:

• William L. Hamilton, Rex Ying, and Jure Leskovec. "Inductive Representation Learning on Large
Graphs." 2018.

• Amit Pande, Kai Ni and Venkataramani Kini. "SWAG: Item Recommendations using Convolutions on
Weighted Graphs." 2019.

Syntax
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GraphSAGE syntax per mode
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Run GraphSAGE in train mode on a named graph.

CALL gds.beta.graphSage.train(
  graphName: String,
  configuration: Map
) YIELD
  graphName: String,
  graphCreateConfig: Map,
  modelInfo: Map,
  configuration: Map,
  trainMillis: Integer

Table 814. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 815. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 816. Algorithm specific configuration

Name Type Default Optional Description

modelName String n/a no The name of the model to train, must not
exist in the Model Catalog.

featureProperties List of String n/a no The names of the node properties that
should be used as input features. All
property names must exist in the in-
memory graph and be of type Float or
List of Float.

embeddingDimension Integer 64 yes The dimension of the generated node
embeddings as well as their hidden layer
representations.

aggregator String "mean" yes The aggregator to be used by the layers.
Supported values are "mean" and "pool".

activationFunction String "sigmoid" yes The activation function to be used in the
model architecture. Supported values are
"sigmoid" and "relu".
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Name Type Default Optional Description

sampleSizes List of
Integer

[25, 10] yes A list of Integer values, the size of the list
determines the number of layers and the
values determine how many nodes will
be sampled by the layers.

projectedFeatureDimensio
n

Integer n/a yes The dimension of the projected
featureProperties. This enables multi-
label GraphSage, where each label can
have a subset of the featureProperties.

batchSize Integer 100 yes The number of nodes per batch.

tolerance Float 1e-4 yes Tolerance used for the early convergence
of an epoch.

learningRate Float 0.1 yes The learning rate determines the step
size at each iteration while moving
toward a minimum of a loss function.

epochs Integer 1 yes Number of times to traverse the graph.

maxIterations Integer 10 yes Maximum number of weight updates per
batch. Batches can also converge early
based on tolerance.

searchDepth Integer 5 yes Maximum depth of the RandomWalks to
sample nearby nodes for the training.

negativeSampleWeight Integer 20 yes The weight of the negative samples.
Higher values increase the impact of
negative samples in the loss.

relationshipWeightPropert
y

String null yes Name of the relationship property to use
as weights. If unspecified, the algorithm
runs unweighted.

randomSeed Integer random yes A random seed which is used to control
the randomness in computing the
embeddings.

Table 817. Results

Name Type Description

graphName String The name of the in-memory graph used during training.

graphCreateConfig Map Configuration used to create in-memory graph. Only has value if
anonymous graph was used.

modelInfo Map Details of the trained model.

configuration Map The configuration used to run the procedure.

trainMillis Integer Milliseconds to train the model.

Table 818. Details on modelInfo
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Name Type Description

name String The name of the trained model.

type String The type of the trained model. Always graphSage.

metrics Map Metrics related to running the training, details in the table below.

Table 819. Metrics collected during training

Name Type Description

ranEpochs Integer The number of ran epochs during training.

epochLosses List Ordered list of the losses after each epoch.

didConverge Boolean Indicates if the training has converged.
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Run GraphSAGE in stream mode on a named graph.

CALL gds.beta.graphSage.stream(
  graphName: String,
  configuration: Map
) YIELD
  nodeId: Integer,
  embedding: List

Table 820. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 821. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 822. Algorithm specific configuration

Name Type Default Optional Description

batchSize Integer 100 yes The number of nodes per batch.

Table 823. Results

Name Type Description

nodeId Integer The Neo4j node ID.

embedding List of Float The computed node embedding.
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Run GraphSAGE in mutate mode on a graph stored in the catalog.

CALL gds.beta.graphSage.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  mutateMillis: Integer,
  configuration: Map

Table 824. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 825. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 826. Algorithm specific configuration

Name Type Default Optional Description

batchSize Integer 100 yes The number of nodes per batch.

Table 827. Results

Name Type Description

nodeCount Integer The number of nodes processed.

nodePropert
iesWritten

Integer The number of node properties written.

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

mutateMillis Integer Milliseconds for writing result data back to the in-memory graph.

configuratio
n

Map The configuration used for running the algorithm.
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Run GraphSAGE in write mode on a graph stored in the catalog.

CALL gds.beta.graphSage.write(
  graphName: String,
  configuration: Map
)
YIELD
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  configuration: Map

Table 828. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 829. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 830. Algorithm specific configuration

Name Type Default Optional Description

batchSize Integer 100 yes The number of nodes per batch.

Table 831. Results

Name Type Description

nodeCount Integer The number of nodes processed.

nodePropert
iesWritten

Integer The number of node properties written.

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

writeMillis Integer Milliseconds for writing result data back to Neo4j.
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Name Type Description

configuratio
n

Map The configuration used for running the algorithm.

Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run GraphSAGE in write mode on an anonymous graph.

CALL gds.beta.graphSage.write(
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 832. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.
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Name Type Default Optional Description

writeConcurre
ncy

Integer value of
'concurrency
'

yes WRITE mode only: The number of concurrent threads used
for writing the result.

writeProperty String n/a no WRITE mode only: The node property to which the
embedding is written to.

Table 833. Algorithm specific configuration

Name Type Default Optional Description

batchSize Integer 100 yes The number of nodes per batch.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

In this section we will show examples of running the GraphSAGE algorithm on a concrete graph. The
intention is to illustrate what the results look like and to provide a guide in how to make use of the
algorithm in a real setting. We will do this on a small friends network graph of a handful nodes connected
in a particular pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  // Persons
  (  dan:Person {name: 'Dan',   age: 20, heightAndWeight: [185, 75]}),
  (annie:Person {name: 'Annie', age: 12, heightAndWeight: [124, 42]}),
  ( matt:Person {name: 'Matt',  age: 67, heightAndWeight: [170, 80]}),
  ( jeff:Person {name: 'Jeff',  age: 45, heightAndWeight: [192, 85]}),
  ( brie:Person {name: 'Brie',  age: 27, heightAndWeight: [176, 57]}),
  ( elsa:Person {name: 'Elsa',  age: 32, heightAndWeight: [158, 55]}),
  ( john:Person {name: 'John',  age: 35, heightAndWeight: [172, 76]}),

  (dan)-[:KNOWS {relWeight: 1.0}]->(annie),
  (dan)-[:KNOWS {relWeight: 1.6}]->(matt),
  (annie)-[:KNOWS {relWeight: 0.1}]->(matt),
  (annie)-[:KNOWS {relWeight: 3.0}]->(jeff),
  (annie)-[:KNOWS {relWeight: 1.2}]->(brie),
  (matt)-[:KNOWS {relWeight: 10.0}]->(brie),
  (brie)-[:KNOWS {relWeight: 1.0}]->(elsa),
  (brie)-[:KNOWS {relWeight: 2.2}]->(jeff),
  (john)-[:KNOWS {relWeight: 5.0}]->(jeff)

CALL gds.graph.create(
  'persons',
  {
    Person: {
      label: 'Person',
      properties: ['age', 'heightAndWeight']
    }
  }, {
    KNOWS: {
      type: 'KNOWS',
      orientation: 'UNDIRECTED',
      properties: ['relWeight']
    }
})

 The algorithm is defined for UNDIRECTED graphs.

Train

Before we are able to generate node embeddings we need to train a model and store it in the model
catalog. Below is an example of how to do that.


The names specified in the featureProperties configuration parameter must exist in the
in-memory graph.

CALL gds.beta.graphSage.train(
  'persons',
  {
    modelName: 'exampleTrainModel',
    featureProperties: ['age', 'heightAndWeight'],
    aggregator: 'mean',
    activationFunction: 'sigmoid',
    randomSeed: 1337,
    sampleSizes: [25, 10]
  }
) YIELD modelInfo as info
RETURN
  info.modelName as modelName,
  info.metrics.didConverge as didConverge,
  info.metrics.ranEpochs as ranEpochs,
  info.metrics.epochLosses as epochLosses
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Table 834. Results

modelName didConverge ranEpochs epochLosses

"exampleTrainModel" false 1 [186.04946807210226]


Due to the random initialisation of the weight variables the results may vary between
different runs.

Looking at the results we can draw the following conclusions, the training converged after a single epoch,
the losses are almost identical. Tuning the algorithm parameters, such as trying out different sampleSizes,
searchDepth, embeddingDimension or batchSize can improve the losses. For different datasets, GraphSAGE
may require different train parameters for producing good models.

The trained model is automatically registered in the model catalog.

Train with multiple node labels

In this section we describe how to train on a graph with multiple labels. The different labels may have
different sets of properties. To run on such a graph, GraphSAGE is run in multi-label mode, in which the
feature properties are projected into a common feature space. Therefore, all nodes have feature vectors of
the same dimension after the projection.

The projection for a label is linear and given by a matrix of weights. The weights for each label are learned
jointly with the other weights of the GraphSAGE model.

In the multi-label mode, the following is applied prior to the usual aggregation layers:

1. A property representing the label is added to the feature properties for that label

2. The feature properties for each label are projected into a feature vector of a shared dimension

The projected feature dimension is configured with projectedFeatureDimension, and specifying it enables
the multi-label mode.

The feature properties used for a label are those present in the featureProperties configuration parameter
which exist in the graph for that label. In the multi-label mode, it is no longer required that all labels have
all the specified properties.

Assumptions

• A requirement for multi-label mode is that each node belongs to exactly one label.

• A GraphSAGE model trained in this mode must be applied on graphs with the same schema with
regards to node labels and properties.
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Examples

In order to demonstrate GraphSAGE with multiple labels, we add instruments and relationships of type
LIKE between person and instrument to the example graph.
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The following Cypher statement will extend the example graph in the Neo4j database:

MATCH
  (dan:Person {name: "Dan"}),
  (annie:Person {name: "Annie"}),
  (matt:Person {name: "Matt"}),
  (brie:Person {name: "Brie"}),
  (john:Person {name: "John"})
CREATE
  (guitar:Instrument {name: 'Guitar', cost: 1337.0}),
  (synth:Instrument {name: 'Synthesizer', cost: 1337.0}),
  (bongos:Instrument {name: 'Bongos', cost: 42.0}),
  (trumpet:Instrument {name: 'Trumpet', cost: 1337.0}),
  (dan)-[:LIKES]->(guitar),
  (dan)-[:LIKES]->(synth),
  (dan)-[:LIKES]->(bongos),
  (annie)-[:LIKES]->(guitar),
  (annie)-[:LIKES]->(synth),
  (matt)-[:LIKES]->(bongos),
  (brie)-[:LIKES]->(guitar),
  (brie)-[:LIKES]->(synth),
  (brie)-[:LIKES]->(bongos),
  (john)-[:LIKES]->(trumpet)
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CALL gds.graph.create(
  'persons_with_instruments',
  {
    Person: {
      label: 'Person',
      properties: ['age', 'heightAndWeight']
    },
    Instrument: {
      label: 'Instrument',
      properties: ['cost']
    }
  }, {
    KNOWS: {
      type: 'KNOWS',
      orientation: 'UNDIRECTED'
    },
    LIKES: {
      type: 'LIKES',
      orientation: 'UNDIRECTED'
    }
})

We can now run GraphSAGE in multi-label mode on that graph by specifying the
projectedFeatureDimension parameter. Multi-label GraphSAGE removes the requirement, that each node
in the in-memory graph must have all featureProperties. However, the projections are independent per
label and even if two labels have the same featureProperty they are considered as different features
before projection. The projectedFeatureDimension equals the maximum length of the feature-array, i.e.,
age and cost both are scalar features plus the list feature heightAndWeight which has a length of two. For
each node its unique labels properties is projected using a label specific projection to vector space of
dimension projectedFeatureDimension. Note that the cost feature is only defined for the instrument
nodes, while age and heightAndWeight are only defined for persons.

CALL gds.beta.graphSage.train(
  'persons_with_instruments',
  {
    modelName: 'multiLabelModel',
    featureProperties: ['age', 'heightAndWeight', 'cost'],
    projectedFeatureDimension: 4
  }
)

Train with relationship weights

The GraphSAGE implementation supports training using relationship weights. Greater relationship weight
between nodes signifies that the nodes should have more similar embedding values.

The following Cypher query trains a GraphSAGE model using relationship weights

CALL gds.beta.graphSage.train(
  'persons',
  {
    modelName: 'weightedTrainedModel',
    featureProperties: ['age', 'heightAndWeight'],
    relationshipWeightProperty: 'relWeight',
    nodeLabels: ['Person'],
    relationshipTypes: ['KNOWS']
  }
)

552



Train when there are no node properties present in the graph

In the case when you have a graph that does not have node properties we recommend to use existing
algorithm in mutate mode to create node properties. Good candidates are Centrality algorithms or
Community algorithms.

The following example illustrates calling Degree Centrality in mutate mode and then using the mutated
property as feature of GraphSAGE training. For the purpose of this example we are going to use the
Persons graph, but we will not load any properties to the in-memory graph.

Create the in-memory graph without loading any node properties

CALL gds.graph.create(
  'noPropertiesGraph',
  'Person', {
    KNOWS: {
      type: 'KNOWS',
      orientation: 'UNDIRECTED'
    }
})

Run DegreeCentrality mutate to create a new property for each node

CALL gds.degree.mutate(
  'noPropertiesGraph',
  {
    mutateProperty: 'degree'
  }
) YIELD nodePropertiesWritten

Run GraphSAGE train using the property produced by DegreeCentrality as feature property

CALL gds.beta.graphSage.train(
  'noPropertiesGraph',
  {
    modelName: 'myModel',
    featureProperties: ['degree']
  }
)
YIELD trainMillis
RETURN trainMillis

gds.degree.mutate will create a new node property degree for each of the nodes in the in-memory graph,
which then can be used as featureProperty in the GraphSAGE.train mode.


Using separate algorithms to produce featureProperties can also be very useful to
capture graph topology properties.

Stream

To generate embeddings and stream them back to the client we can use the stream mode. We must first
train a model, which we do using the gds.beta.graphSage.train procedure.
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CALL gds.beta.graphSage.train(
  'persons',
  {
    modelName: 'graphSage',
    featureProperties: ['age', 'heightAndWeight'],
    embeddingDimension: 3,
    randomSeed: 19
  }
)

Once we have trained a model (named 'graphSage') we can use it to generate and stream the
embeddings.

CALL gds.beta.graphSage.stream(
  'persons',
  {
    modelName: 'graphSage'
  }
)
YIELD nodeId, embedding

Table 835. Results

nodeId embedding

0 [0.5285002502143177, 0.4682181762801141, 0.7081378570737874]

1 [0.5285002502147674, 0.46821817628034773, 0.7081378570732975]

2 [0.5285002502143014, 0.46821817628010554, 0.7081378570738053]

3 [0.5285002502129178, 0.46821817627938667, 0.7081378570753134]

4 [0.5285002502572376, 0.46821817630241636, 0.7081378570270093]

5 [0.5285002503196665, 0.46821817633485613, 0.7081378569589678]

6 [0.528500250213112, 0.46821817627948753, 0.7081378570751017]


Due to the random initialisation of the weight variables the results may vary slightly
between the runs.

Mutate

The model trained as part of the stream example can be reused to write the results to the in-memory
graph using the mutate mode of the procedure. Below is an example of how to achieve this.

CALL gds.beta.graphSage.mutate(
  'persons',
  {
    mutateProperty: 'inMemoryEmbedding',
    modelName: 'graphSage'
  }
) YIELD
  nodeCount,
  nodePropertiesWritten

Table 836. Results
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nodeCount nodePropertiesWritten

7 7

Write

The model trained as part of the stream example can be reused to write the results to Neo4j. Below is an
example of how to achieve this.

CALL gds.beta.graphSage.write(
  'persons',
  {
    writeProperty: 'embedding',
    modelName: 'graphSage'
  }
) YIELD
  nodeCount,
  nodePropertiesWritten

Table 837. Results

nodeCount nodePropertiesWritten

7 7

Caveats

If you are embedding a graph that has an isolated node, the aggregation step in GraphSAGE can only
draw information from the node itself. When all the properties of that node are 0.0, and the activation
function is relu, this leads to an all-zero vector for that node. However, since GraphSAGE normalizes node
embeddings using the L2-norm, and a zero vector cannot be normalized, we assign all-zero embeddings
to such nodes under these special circumstances. In scenarios where you generate all-zero embeddings
for orphan nodes, that may have impacts on downstream tasks such as nearest neighbor or other similarity
algorithms. It may be more appropriate to filter out these disconnected nodes prior to running GraphSAGE.

When running gds.beta.graphSage.train.estimate, the feature dimension is computed as if each feature
property is scalar.

7.7.3. Node2Vec Beta

Node2Vec is a node embedding algorithm that computes a vector representation of a node based on
random walks in the graph. The neighborhood is sampled through random walks. Using a number of
random neighborhood samples, the algorithm trains a single hidden layer neural network. The neural
network is trained to predict the likelihood that a node will occur in a walk based on the occurrence of
another node.

For more information on this algorithm, see:

• Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. 2016.

• https://snap.stanford.edu/node2vec/
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Random Walks

A main concept of the Node2Vec algorithm are the second order random walks. A random walk simulates
a traversal of the graph in which the traversed relationships are chosen at random. In a classic random
walk, each relationship has the same, possibly weighted, probability of being picked. This probability is not
influenced by the previously visited nodes. The concept of second order random walks, however, tries to
model the transition probability based on the currently visited node v, the node t visited before the current
one, and the node x which is the target of a candidate relationship. Node2Vec random walks are thus
influenced by two parameters: the returnFactor and the inOutFactor:

• The returnFactor is used if t equals x, i.e., the random walk returns to the previously visited node.

• The inOutFactor is used if the distance from t to x is equal to 2, i.e., the walk traverses further away
from the node t

vt

x1

x2
1

returnFactor
1

inOutFactor

1

The probabilities for traversing a relationship during a random walk can be further influenced by specifying
a relationshipWeightProperty. A relationship property value greater than 1 will increase the likelihood of
a relationship being traversed, a property value between 0 and 1 will decrease that probability.

For every node in the graph Node2Vec generates a series of random walks with the particular node as
start node. The number of random walks per node can be influenced by the walkPerNode configuration
parameters, the walk length is controlled by the walkLength parameter.

Syntax
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Node2Vec syntax per mode
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Run Node2Vec in stream mode on a named graph.

CALL gds.beta.node2vec.stream(
  graphName: String,
  configuration: Map
) YIELD
  nodeId: Integer,
  embedding: List of Float

Table 838. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 839. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 840. Algorithm specific configuration

Name Type Default Optional Description

walkLength Integer 80 yes The number of steps in a single random walk.

walksPerNo
de

Integer 10 yes The number of random walks generated for each node.

inOutFactor Float 1.0 yes Tendency of the random walk to stay close to the start
node or fan out in the graph. Higher value means stay
local.

returnFactor Float 1.0 yes Tendency of the random walk to return to the last
visited node. A value below 1.0 means a higher
tendency.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights to
influence the probabilities of the random walks. The
weights need to be >= 0. If unspecified, the algorithm
runs unweighted.

windowSize Integer 10 yes Size of the context window when training the neural
network.

negativeSa
mplingRate

Integer 5 yes Number of negative samples to produce for each
positive sample.
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Name Type Default Optional Description

positiveSam
plingFactor

Float 0.001 yes Factor for influencing the distribution for positive
samples. A higher value increases the probability that
frequent nodes are down-sampled.

negativeSa
mplingExpo
nent

Float 0.75 yes Exponent applied to the node frequency to obtain the
negative sampling distribution. A value of 1.0 samples
proportionally to the frequency. A value of 0.0 samples
each node equally.

embedding
Dimension

Integer 128 yes Size of the computed node embeddings.

iterations Integer 1 yes Number of training iterations.

initialLearnin
gRate

Float 0.01 yes Learning rate used initially for training the neural
network. The learning rate decreases after each
training iteration.

minLearning
Rate

Float 0.0001 yes Lower bound for learning rate as it is decreased during
training.

randomSeed Integer random yes Seed value used to generate the random walks, which
are used as the training set of the neural network.
Note, that the generated embeddings are still
nondeterministic.

walkBufferSi
ze

Integer 1000 yes The number of random walks to complete before
starting training.

Table 841. Results

Name Type Description

nodeId Integer The Neo4j node ID.

embedding List of Float The computed node embedding.
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Run Node2Vec in mutate mode on a graph stored in the catalog.

CALL gds.beta.node2vec.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 842. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 843. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 844. Algorithm specific configuration

Name Type Default Optional Description

walkLength Integer 80 yes The number of steps in a single random walk.

walksPerNo
de

Integer 10 yes The number of random walks generated for each node.

inOutFactor Float 1.0 yes Tendency of the random walk to stay close to the start
node or fan out in the graph. Higher value means stay
local.

returnFactor Float 1.0 yes Tendency of the random walk to return to the last
visited node. A value below 1.0 means a higher
tendency.

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights to
influence the probabilities of the random walks. The
weights need to be >= 0. If unspecified, the algorithm
runs unweighted.

windowSize Integer 10 yes Size of the context window when training the neural
network.
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Name Type Default Optional Description

negativeSa
mplingRate

Integer 5 yes Number of negative samples to produce for each
positive sample.

positiveSam
plingFactor

Float 0.001 yes Factor for influencing the distribution for positive
samples. A higher value increases the probability that
frequent nodes are down-sampled.

negativeSa
mplingExpo
nent

Float 0.75 yes Exponent applied to the node frequency to obtain the
negative sampling distribution. A value of 1.0 samples
proportionally to the frequency. A value of 0.0 samples
each node equally.

embedding
Dimension

Integer 128 yes Size of the computed node embeddings.

iterations Integer 1 yes Number of training iterations.

initialLearnin
gRate

Float 0.01 yes Learning rate used initially for training the neural
network. The learning rate decreases after each
training iteration.

minLearning
Rate

Float 0.0001 yes Lower bound for learning rate as it is decreased during
training.

randomSeed Integer random yes Seed value used to generate the random walks, which
are used as the training set of the neural network.
Note, that the generated embeddings are still
nondeterministic.

walkBufferSi
ze

Integer 1000 yes The number of random walks to complete before
starting training.

Table 845. Results

Name Type Description

nodeCount Integer The number of nodes processed.

nodePropert
iesWritten

Integer The number of node properties written.

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

postProcessi
ngMillis

Integer Milliseconds for post-processing of the results.

configuratio
n

Map The configuration used for running the algorithm.
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Run Node2Vec in write mode on a graph stored in the catalog.

CALL gds.beta.node2vec.write(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 846. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 847. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 848. Algorithm specific configuration

Name Type Default Optional Description

walkLength Integer 80 yes The number of steps in a single random walk.

walksPerNo
de

Integer 10 yes The number of random walks generated for each node.

inOutFactor Float 1.0 yes Tendency of the random walk to stay close to the start
node or fan out in the graph. Higher value means stay
local.

returnFactor Float 1.0 yes Tendency of the random walk to return to the last
visited node. A value below 1.0 means a higher
tendency.
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Name Type Default Optional Description

relationship
WeightProp
erty

String null yes Name of the relationship property to use as weights to
influence the probabilities of the random walks. The
weights need to be >= 0. If unspecified, the algorithm
runs unweighted.

windowSize Integer 10 yes Size of the context window when training the neural
network.

negativeSa
mplingRate

Integer 5 yes Number of negative samples to produce for each
positive sample.

positiveSam
plingFactor

Float 0.001 yes Factor for influencing the distribution for positive
samples. A higher value increases the probability that
frequent nodes are down-sampled.

negativeSa
mplingExpo
nent

Float 0.75 yes Exponent applied to the node frequency to obtain the
negative sampling distribution. A value of 1.0 samples
proportionally to the frequency. A value of 0.0 samples
each node equally.

embedding
Dimension

Integer 128 yes Size of the computed node embeddings.

iterations Integer 1 yes Number of training iterations.

initialLearnin
gRate

Float 0.01 yes Learning rate used initially for training the neural
network. The learning rate decreases after each
training iteration.

minLearning
Rate

Float 0.0001 yes Lower bound for learning rate as it is decreased during
training.

randomSeed Integer random yes Seed value used to generate the random walks, which
are used as the training set of the neural network.
Note, that the generated embeddings are still
nondeterministic.

walkBufferSi
ze

Integer 1000 yes The number of random walks to complete before
starting training.

Table 849. Results

Name Type Description

nodeCount Integer The number of nodes processed.

nodePropert
iesWritten

Integer The number of node properties written.

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

writeMillis Integer Milliseconds for writing result data back to Neo4j.

configuratio
n

Map The configuration used for running the algorithm.
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Anonymous graphs

It is also possible to execute the algorithm on a graph that is projected in conjunction with the algorithm
execution. In this case, the graph does not have a name, and we call it anonymous. When executing over
an anonymous graph the configuration map contains a graph projection configuration as well as an
algorithm configuration. All execution modes support execution on anonymous graphs, although we only
show syntax and mode-specific configuration for the write mode for brevity.

For more information on syntax variants, see Syntax overview.

Run Node2Vec in write mode on an anonymous graph.

CALL gds.beta.node2vec.write(
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  nodeCount: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 850. General configuration for algorithm execution on an anonymous graph.

Name Type Default Optional Description

nodeProjectio
n

String, List of
String or Map

null yes The node projection used for anonymous graph creation via a
Native projection.

relationshipPr
ojection

String, List of
String or Map

null yes The relationship projection used for anonymous graph
creation a Native projection.

nodeQuery String null yes The Cypher query used to select the nodes for anonymous
graph creation via a Cypher projection.

relationshipQ
uery

String null yes The Cypher query used to select the relationships for
anonymous graph creation via a Cypher projection.

nodePropertie
s

String, List of
String or Map

null yes The node properties to project during anonymous graph
creation.

relationshipPr
operties

String, List of
String or Map

null yes The relationship properties to project during anonymous
graph creation.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm. Also provides the default value for
'readConcurrency' and 'writeConcurrency'.

readConcurre
ncy

Integer value of
'concurrency
'

yes The number of concurrent threads used for creating the
graph.

writeConcurre
ncy

Integer value of
'concurrency
'

yes WRITE mode only: The number of concurrent threads used
for writing the result.

writeProperty String n/a no WRITE mode only: The node property to which the
embedding is written to.

Table 851. Algorithm specific configuration
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Name Type Default Optional Description

walkLength Integer 80 yes The number of steps in a single random walk.

walksPerNod
e

Integer 10 yes The number of random walks generated for each node.

inOutFactor Float 1.0 yes Tendency of the random walk to stay close to the start node
or fan out in the graph. Higher value means stay local.

returnFactor Float 1.0 yes Tendency of the random walk to return to the last visited
node. A value below 1.0 means a higher tendency.

relationshipW
eightProperty

String null yes Name of the relationship property to use as weights to
influence the probabilities of the random walks. The weights
need to be >= 0. If unspecified, the algorithm runs
unweighted.

windowSize Integer 10 yes Size of the context window when training the neural
network.

negativeSamp
lingRate

Integer 5 yes Number of negative samples to produce for each positive
sample.

positiveSampl
ingFactor

Float 0.001 yes Factor for influencing the distribution for positive samples. A
higher value increases the probability that frequent nodes are
down-sampled.

negativeSamp
lingExponent

Float 0.75 yes Exponent applied to the node frequency to obtain the
negative sampling distribution. A value of 1.0 samples
proportionally to the frequency. A value of 0.0 samples each
node equally.

embeddingDi
mension

Integer 128 yes Size of the computed node embeddings.

iterations Integer 1 yes Number of training iterations.

initialLearning
Rate

Float 0.01 yes Learning rate used initially for training the neural network.
The learning rate decreases after each training iteration.

minLearningR
ate

Float 0.0001 yes Lower bound for learning rate as it is decreased during
training.

randomSeed Integer random yes Seed value used to generate the random walks, which are
used as the training set of the neural network. Note, that the
generated embeddings are still nondeterministic.

walkBufferSiz
e

Integer 1000 yes The number of random walks to complete before starting
training.

The results are the same as for running write mode with a named graph, see the write mode syntax above.

Examples

Consider the graph created by the following Cypher statement:
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CREATE (alice:Person {name: 'Alice'})
CREATE (bob:Person {name: 'Bob'})
CREATE (carol:Person {name: 'Carol'})
CREATE (dave:Person {name: 'Dave'})
CREATE (eve:Person {name: 'Eve'})
CREATE (guitar:Instrument {name: 'Guitar'})
CREATE (synth:Instrument {name: 'Synthesizer'})
CREATE (bongos:Instrument {name: 'Bongos'})
CREATE (trumpet:Instrument {name: 'Trumpet'})

CREATE (alice)-[:LIKES]->(guitar)
CREATE (alice)-[:LIKES]->(synth)
CREATE (alice)-[:LIKES]->(bongos)
CREATE (bob)-[:LIKES]->(guitar)
CREATE (bob)-[:LIKES]->(synth)
CREATE (carol)-[:LIKES]->(bongos)
CREATE (dave)-[:LIKES]->(guitar)
CREATE (dave)-[:LIKES]->(synth)
CREATE (dave)-[:LIKES]->(bongos);

CALL gds.graph.create('myGraph', ['Person', 'Instrument'], 'LIKES');

Run the Node2Vec algorithm on myGraph

CALL gds.beta.node2vec.stream('myGraph', {embeddingDimension: 2})
YIELD nodeId, embedding
RETURN nodeId, embedding

Table 852. Results

nodeId embedding

0 [-0.14295829832553864, 0.08884537220001221]

1 [0.016700705513358116, 0.2253911793231964]

2 [-0.06589698046445847, 0.042405471205711365]

3 [0.05862073227763176, 0.1193704605102539]

4 [0.10888434946537018, -0.18204474449157715]

5 [0.16728264093399048, 0.14098615944385529]

6 [-0.007779224775731564, 0.02114257402718067]

7 [-0.213893860578537, 0.06195802614092827]

8 [0.2479933649301529, -0.137322798371315]

7.8. Machine learning models
The machine learning procedures in Neo4j GDS allow you to train supervised machine learning models.
Models can then be accessed via the Model catalog and used to make predictions about your graph.

To help with working with the ML models, there are additional guides for pre-processing and
hyperparameter tuning available in:

• Pre-processing

• Tuning parameters for training
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The Neo4j GDS library includes the following machine learning models, grouped by quality tier:

• Alpha

◦ Node Classification

◦ Node Classification Pipelines

◦ Link Prediction

◦ Link Prediction Pipelines

7.8.1. Pre-processing

In most machine learning scenarios, several pre-processing steps are applied to produce data that is
amenable to machine learning algorithms. This is also true for graph data. The goal of pre-processing is to
provide good features for the learning algorithm. In GDS some options include:

• Node embeddings

• Centrality algorithms

• Auxiliary algorithms

◦ Of special interest are Scale Properties and

◦ Split Relationships for Link Prediction.

7.8.2. Tuning parameters

Both Node Classification and Link Prediction have training parameters that can be tuned automatically
given a set of allowed values. The parameters maxEpochs, tolerance and patience control for how long the
training will run until termination. These parameters give ways to limit a computational budget. In general,
higher maxEpochs and patience and lower tolerance lead to longer training but higher quality models. It is
however well-known that restricting the computational budget can serve the purpose of regularization and
mitigate overfitting.

When faced with a heavy training task, a strategy to perform hyperparameter optimization faster, is to
initially use lower values for the budget related parameters while exploring better ranges for other general
or algorithm specific parameters.

More precisely, maxEpochs is the maximum number of epochs trained until termination. Whether the
training exhausted the maximum number of epochs or converged prior is reported in the neo4j debug log.

As for patience and tolerance, the former is the maximum number of consecutive epochs that do not
improve the training loss at least by a tolerance fraction of the current loss. After patience such
unproductive epochs, the training is terminated. In our experience, reasonable values for patience are in
the range 1 to 3.

It is also possible, via minEpochs, to control a minimum number of epochs before the above termination
criteria enter into play.

The training algorithm applied to the above algorithms is gradient descent. The gradient updates are
computed batch-wise on batches of batchSize examples, and batches are computed concurrently on
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concurrency threads. Thus, batchSize can affect the convergence rate, but since the algorithms above
optimize convex functions, the resulting model is in theory (approximately) unique.

7.8.3. Node classification

Introduction

Node Classification is a common machine learning task applied to graph: training a model to learn in which
class a node belongs. There are two major classes of classification problems: binary and multiclass. In
Binary-class classifications, the given dataset is categorized into two classes and in Multi-class
classification, the given dataset is categorized into several classes. Neo4j GDS supports both of the above.
Neo4j GDS trains supervised machine learning models based on node properties (features) in your graph
to predict what class an unseen or future node would belong to. Node Classification can be used favorably
together with pre-processing algorithms.

Concretely, Node Classification models are used to predict a non-existing node property based on other
node properties. The non-existing node property represents the class, and is referred to as the target
property. The specified node properties are used as input features. The Node Classification model does not
rely on relationship information. However, a node embedding algorithm could embed the neighborhoods
of nodes as a node property, to transfer this information into the Node Classification model (see Node
embeddings).

Models are trained on parts of the input graph and evaluated using specified metrics. Splitting of the graph
into a train and a test graph is performed internally by the algorithm, and the test graph is used to evaluate
model performance.

The training process follows this outline:

1. The input graph is split into two parts: the train graph and the test graph.

2. The train graph is further divided into a number of validation folds, each consisting of a train part and a
validation part.

3. Each model candidate is trained on each train part and evaluated on the respective validation part.

4. The training process uses a logistic regression algorithm, and the evaluation uses the specified metrics.
The first metric is the primary metric.

5. The model with the highest average score according to the primary metric will win the training.

6. The winning model will then be retrained on the entire train graph.

7. The winning model is evaluated on the train graph as well as the test graph.

8. The winning model is retrained on the entire original graph.

9. Finally, the winning model will be registered in the Model Catalog.

Trained models may then be used to predict the value of the target property (class) of previously unseen
nodes. In addition to the predicted class for each node, the predicted probability for each class may also be
retained on the nodes. The order of the probabilities matches the order of the classes registered in the
model.
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Metrics

The Node Classification model in the Neo4j GDS library supports the following evaluation metrics:

• Global metrics

◦ F1_WEIGHTED

◦ F1_MACRO

◦ ACCURACY

• Per-class metrics

◦ F1(class=<number>) or F1(class=*)

◦ PRECISION(class=<number>) or PRECISION(class=*)

◦ RECALL(class=<number>) or RECALL(class=*)

◦ ACCURACY(class=<number>) or ACCURACY(class=*)

The * is syntactic sugar for reporting the metric for each class in the graph. When using a per-class metric,
the reported metrics contain keys like for example ACCURACY_class_1.

More than one metric can be specified during training but only the first specified — the primary one — is
used for evaluation, the results of all are present in the train results. The primary metric may not be a *
expansion due to the ambiguity of which of the expanded metrics should be the primary one.

Syntax

This section covers the syntax used to execute the Node Classification algorithm in each of its execution
modes. We are describing the named graph variant of the syntax. To learn more about general syntax
variants, see Syntax overview.
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Node Classification syntax per mode
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Run Node Classification in train mode on a named graph:

CALL gds.alpha.ml.nodeClassification.train(
  graphName: String,
  configuration: Map
) YIELD
  trainMillis: Integer,
  modelInfo: Map,
  configuration: Map

Table 853. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 854. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

modelName String n/a no The name of the model to train, must not exist in the
Model Catalog.

featureProp
erties

List of String [] yes The names of the node properties that should be used
as input features. All property names must exist in the
in-memory graph and be of type Float or List of Float.

nodeLabels List of String ['*'] yes Filter the named graph using the given node labels.

relationship
Types

List of String ['*'] yes Filter the named graph using the given relationship
types.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm.

Table 855. Algorithm specific configuration

Name Type Default Optional Description

targetProper
ty

String n/a no The class of the node. Must be of type Integer.

holdoutFract
ion

Float n/a no Fraction of the graph reserved for testing. Must be in
the range (0, 1).

validationFol
ds

Integer n/a no Number of divisions of the train graph used for model
selection.

metrics List of String n/a no Metrics used to evaluate the models.

params List of Map n/a no List of model configurations to be trained. See next
table for details.

randomSeed Integer n/a yes Seed for the random number generator used during
training.

Table 856. Model configuration
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Name Type Default Optional Description

penalty Float 0.0 yes Penalty used for the logistic regression.

batchSize Integer 100 yes Number of nodes per batch.

minEpochs Integer 1 yes Minimum number of training epochs.

maxEpochs Integer 100 yes Maximum number of training epochs.

patience Integer 1 yes Maximum number of iterations that do not improve the
loss before stopping.

tolerance Float 0.001 yes Minimum acceptable loss before stopping.

For hyperparameter tuning ideas, look here.

Table 857. Results

Name Type Description

trainMillis Integer Milliseconds used for training.

modelInfo Map Information about the training and the winning model.

configuratio
n

Map Configuration used for the train procedure.

The modelInfo can also be retrieved at a later time by using the Model List Procedure. The
modelInfo return field has the following algorithm-specific subfields:

Table 858. Model info fields

Name Type Description

classes List of
Integer

Sorted list of class ids which are the distinct values of targetProperty over the
entire graph.

bestParamet
ers

Map The model parameters which performed best on average on validation folds
according to the primary metric.

metrics Map Map from metric description to evaluated metrics for various models and subsets of
the data, see below.

The structure of modelInfo is:
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{
    bestParameters: Map,        ①
    classes: List of Integer,   ②
    metrics: {                  ③
        <METRIC_NAME>: {        ④
            test: Float,        ⑤
            outerTrain: Float,  ⑥
            train: [{           ⑦
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            {
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            ...
            ],
            validation: [{      ⑧
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            {
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            ...
            ]
        }
    }
}

① The best scoring model candidate configuration.

② Sorted list of class ids which are the distinct values of targetProperty over the entire graph.

③ The metrics map contains an entry for each metric description, and the corresponding
results for that metric.

④ A metric name specified in the configuration of the procedure, e.g., F1_MACRO or
RECALL(class=4).

⑤ Numeric value for the evaluation of the best model on the test set.

⑥ Numeric value for the evaluation of the best model on the outer train set.

⑦ The train entry lists the scores over the train set for all candidate models (e.g., params).
Each such result is in turn also a map with keys params, avg, min and max.

⑧ The validation entry lists the scores over the validation set for all candidate models (e.g.,
params). Each such result is in turn also a map with keys params, avg, min and max.
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Run Node Classification in stream mode on a named graph:

CALL gds.alpha.ml.nodeClassification.predict.stream(
  graphName: String,
  configuration: Map
) YIELD
  nodeId: Integer,
  predictedClass: Integer,
  predictedProbabilities: List of Float

Table 859. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 860. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 861. Algorithm specific configuration

Name Type Default Optional Description

includePredi
ctedProbabil
ities

Boolean false yes Whether to return the probability for each class. If
false then null is returned in predictedProbabilites.

batchSize Integer 100 yes Number of nodes per batch.

Table 862. Results

Name Type Description

nodeId Integer Node ID.

predictedCla
ss

Integer Predicted class for this node.

predictedPr
obabilities

List of Float Probabilities for all classes, for this node.
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Run Node Classification in mutate mode on a named graph:

CALL gds.alpha.ml.nodeClassification.predict.mutate(
  graphName: String,
  configuration: Map
) YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 863. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 864. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 865. Algorithm specific configuration

Name Type Default Optional Description

predictedPr
obabilityPro
perty

String n/a yes The node property in which the class probability list is
stored. If omitted, the probability list is discarded.

batchSize Integer 100 yes Number of nodes per batch.

Table 866. Results

Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the global metrics.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

nodePropert
iesWritten

Integer Number of node properties written.

575



Name Type Description

configuratio
n

Map Configuration used for running the algorithm.
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Run Node Classification in write mode on a named graph:

CALL gds.alpha.ml.nodeClassification.predict.write(
  graphName: String,
  configuration: Map
) YIELD
  createMillis: Integer,
  computeMillis: Integer,
  writeMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 867. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 868. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 869. Algorithm specific configuration

Name Type Default Optional Description

predictedPr
obabilityPro
perty

String n/a yes The node property in which the class probability list is
stored. If omitted, the probability list is discarded.

batchSize Integer 100 yes Number of nodes per batch.

Table 870. Results

Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

writeMillis Integer Milliseconds for writing result back to Neo4j.

577



Name Type Description

nodePropert
iesWritten

Integer Number of relationships created.

configuratio
n

Map Configuration used for running the algorithm.

Examples

In this section we will show examples of training a Node Classification Model on a concrete graph. The
intention is to illustrate what the results look like and to provide a guide in how to make use of the model in
a real setting. We will do this on a small graph of a handful of nodes representing houses. This is an
example of Multi-class classification, the class node property distinct values determine the number of
classes, in this case three (0, 1 and 2). The example graph looks like this:

Gold Red

Blue
Green

GrayBlack

White

Teal

Beige

Magenta
Purple

Pink

Tan

Yellow

The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (:House {color: 'Gold', sizePerStory: [15.5, 23.6, 33.1], class: 0}),
  (:House {color: 'Red', sizePerStory: [15.5, 23.6, 100.0], class: 0}),
  (:House {color: 'Blue', sizePerStory: [11.3, 35.1, 22.0], class: 0}),
  (:House {color: 'Green', sizePerStory: [23.2, 55.1, 0.0], class: 1}),
  (:House {color: 'Gray', sizePerStory: [34.3, 24.0, 0.0],  class: 1}),
  (:House {color: 'Black', sizePerStory: [71.66, 55.0, 0.0], class: 1}),
  (:House {color: 'White', sizePerStory: [11.1, 111.0, 0.0], class: 1}),
  (:House {color: 'Teal', sizePerStory: [80.8, 0.0, 0.0], class: 2}),
  (:House {color: 'Beige', sizePerStory: [106.2, 0.0, 0.0], class: 2}),
  (:House {color: 'Magenta', sizePerStory: [99.9, 0.0, 0.0], class: 2}),
  (:House {color: 'Purple', sizePerStory: [56.5, 0.0, 0.0], class: 2}),
  (:UnknownHouse {color: 'Pink', sizePerStory: [23.2, 55.1, 56.1]}),
  (:UnknownHouse {color: 'Tan', sizePerStory: [22.32, 102.0, 0.0]}),
  (:UnknownHouse {color: 'Yellow', sizePerStory: [39.0, 0.0, 0.0]});

With the graph in Neo4j we can now project it into the graph catalog to prepare it for algorithm execution.
We do this using a native projection targeting the House and UnknownHouse labels. We will also project the
sizeOfStory property to use as a model feature, and the class property to use as a target feature.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.
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The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create('myGraph', {
    House: { properties: ['sizePerStory', 'class'] },
    UnknownHouse: { properties: 'sizePerStory' }
  },
  '*'
)

In the following examples we will demonstrate using the Node Classification model on this graph.

Memory Estimation

First off, we will estimate the cost of running the algorithm using the estimate procedure. This can be done
with any execution mode. We will use the train mode in this example. Estimating the algorithm is useful
to understand the memory impact that running the algorithm on your graph will have. When you later
actually run the algorithm in one of the execution modes the system will perform an estimation. If the
estimation shows that there is a very high probability of the execution going over its memory limitations,
the execution is prohibited. To read more about this, see Automatic estimation and execution blocking.

For more details on estimate in general, see Memory Estimation.

The following will estimate the memory requirements for running the algorithm in write mode:

CALL gds.alpha.ml.nodeClassification.train.estimate('myGraph', {
  nodeLabels: ['House'],
  modelName: 'nc-model',
  featureProperties: ['sizePerStory'],
  targetProperty: 'class',
  randomSeed: 2,
  holdoutFraction: 0.2,
  validationFolds: 5,
  metrics: [ 'F1_WEIGHTED' ],
  params: [
    {penalty: 0.0625},
    {penalty: 0.5},
    {penalty: 1.0},
    {penalty: 4.0}
  ]
})
YIELD bytesMin, bytesMax, requiredMemory

Table 871. Results

bytesMin bytesMax requiredMemory

66874376 66906336 "[63 MiB ... 63 MiB]"

Train

In this example we will train a model to predict the class in which a house belongs, based on its
sizePerStory property.
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Train a Node Classification model:

CALL gds.alpha.ml.nodeClassification.train('myGraph', {
  nodeLabels: ['House'],
  modelName: 'nc-model',
  featureProperties: ['sizePerStory'],
  targetProperty: 'class',
  randomSeed: 2,
  holdoutFraction: 0.2,
  validationFolds: 5,
  metrics: [ 'F1_WEIGHTED' ],
  params: [
    {penalty: 0.0625},
    {penalty: 0.5},
    {penalty: 1.0},
    {penalty: 4.0}
  ]
}) YIELD modelInfo
RETURN
  {penalty: modelInfo.bestParameters.penalty} AS winningModel,
  modelInfo.metrics.F1_WEIGHTED.outerTrain AS trainGraphScore,
  modelInfo.metrics.F1_WEIGHTED.test AS testGraphScore

Table 872. Results

winningModel trainGraphScore testGraphScore

{penalty=0.0625} 0.999999990909091 0.6363636286363638

Here we can observe that the model candidate with penalty 0.0625 performed the best in the training
phase, with a score of almost 100% over the train graph. On the test graph, the model scores a bit lower
at about 64%. This indicates that the model reacted very well to the train graph, and was able to
generalize fairly well to unseen data. In order to achieve a higher test score, we may need to use better
features, a larger graph, or different model configuration.

Stream

In the stream execution mode, the algorithm returns the predicted property for each node. This allows us to
inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

In this example we will show how to use a trained model to predict the class of a node in your in-memory
graph. In addition to the predicted class, we will also produce the probability for each class in another node
property. In order to do this, we must first have an already trained model registered in the Model Catalog.
We will use the model which we trained in the train example which we gave the name 'nc-model'.

CALL gds.alpha.ml.nodeClassification.predict.stream('myGraph', {
  nodeLabels: ['House', 'UnknownHouse'],
  modelName: 'nc-model',
  includePredictedProbabilities: true
}) YIELD nodeId, predictedClass, predictedProbabilities
WITH gds.util.asNode(nodeId) AS houseNode, predictedClass, predictedProbabilities
WHERE houseNode:UnknownHouse
RETURN
  houseNode.color AS classifiedHouse,
  predictedClass,
  floor(predictedProbabilities[predictedClass] * 100) AS confidence
  ORDER BY classifiedHouse
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Table 873. Results

classifiedHouse predictedClass confidence

"Pink" 0 98.0

"Tan" 1 98.0

"Yellow" 2 79.0

As we can see, the model was able to predict the pink house into class 0, tan house into class 1, and
yellow house into class 2. This makes sense, as all houses in class 0 had three stories, class 1 two stories
and class 2 one story, and the same is true of the pink, tan and yellow houses, respectively. Additionally,
we see that the model is confident in these predictions, as the confidence is >=79% in all cases.

Mutate

The mutate execution mode updates the named graph with a new node property containing the predicted
class for that node. The name of the new property is specified using the mandatory configuration
parameter mutateProperty. The result is a single summary row including information about timings and
how many properties were written. The mutate mode is especially useful when multiple algorithms are
used in conjunction.

For more details on the mutate mode in general, see Mutate.

In this example we will show how to use a trained model to predict the class of a node in your in-memory
graph. In addition to the predicted class, we will also produce the probability for each class in another node
property. In order to do this, we must first have an already trained model registered in the Model Catalog.
We will use the model which we trained in the train example which we gave the name 'nc-model'.

CALL gds.alpha.ml.nodeClassification.predict.mutate('myGraph', {
  nodeLabels: ['House', 'UnknownHouse'],
  modelName: 'nc-model',
  mutateProperty: 'predictedClass',
  predictedProbabilityProperty: 'predictedProbabilities'
}) YIELD nodePropertiesWritten

Table 874. Results

nodePropertiesWritten

28

Since we specified also the predictedProbabilityProperty we are writing two properties for each of the
14 nodes. In order to analyse our predicted classes we stream the properties from the in-memory graph:

CALL gds.graph.streamNodeProperties(
  'myGraph', ['predictedProbabilities', 'predictedClass'], ['UnknownHouse']
) YIELD nodeId, nodeProperty, propertyValue
RETURN gds.util.asNode(nodeId).color AS classifiedHouse, nodeProperty, propertyValue
  ORDER BY classifiedHouse, nodeProperty

Table 875. Results
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classifiedHouse nodeProperty propertyValue

"Pink" "predictedClass" 0

"Pink" "predictedProbabilities" [0.9866455686217779,
0.01311656378786989,
2.3786759035214687E-4]

"Tan" "predictedClass" 1

"Tan" "predictedProbabilities" [0.01749164563726576,
0.9824922482993587,
1.610606337562594E-5]

"Yellow" "predictedClass" 2

"Yellow" "predictedProbabilities" [0.0385634113659007,
0.16350471177895198,
0.7979318768551473]

As we can see, the model was able to predict the pink house into class 0, tan house into class 1, and
yellow house into class 2. This makes sense, as all houses in class 0 had three stories, class 1 two stories
and class 2 one story, and the same is true of the pink, tan and yellow houses, respectively. Additionally,
we see that the model is confident in these predictions, as the highest class probability is >75% in all
cases.

Write

The write execution mode writes the predicted property for each node as a property to the Neo4j
database. The name of the new property is specified using the mandatory configuration parameter
writeProperty. The result is a single summary row including information about timings and how many
properties were written. The write mode enables directly persisting the results to the database.

For more details on the write mode in general, see Write.

In this example we will show how to use a trained model to predict the class of a node in your in-memory
graph. In addition to the predicted class, we will also produce the probability for each class in another node
property. In order to do this, we must first have an already trained model registered in the Model Catalog.
We will use the model which we trained in the train example which we gave the name 'nc-model'.

CALL gds.alpha.ml.nodeClassification.predict.write('myGraph', {
  nodeLabels: ['House', 'UnknownHouse'],
  modelName: 'nc-model',
  writeProperty: 'predictedClass',
  predictedProbabilityProperty: 'predictedProbabilities'
}) YIELD nodePropertiesWritten

Table 876. Results

nodePropertiesWritten

28

Since we specified also the predictedProbabilityProperty we are writing two properties for each of the
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14 nodes. In order to analyse our predicted classes we stream the properties from the in-memory graph:

MATCH (house:UnknownHouse)
RETURN house.color AS classifiedHouse, house.predictedClass AS predictedClass,
house.predictedProbabilities AS predictedProbabilities

Table 877. Results

classifiedHouse predictedClass predictedProbabilities

"Pink" 0 [0.9866455686217779,
0.01311656378786989,
2.3786759035214687E-4]

"Tan" 1 [0.01749164563726576,
0.9824922482993587,
1.610606337562594E-5]

"Yellow" 2 [0.0385634113659007,
0.16350471177895198,
0.7979318768551473]

As we can see, the model was able to predict the pink house into class 0, tan house into class 1, and
yellow house into class 2. This makes sense, as all houses in class 0 had three stories, class 1 two stories
and class 2 one story, and the same is true of the pink, tan and yellow houses, respectively. Additionally,
we see that the model is confident in these predictions, as the highest class probability is >75% in all
cases.

7.8.4. Node classification pipelines

Introduction

Node Classification is a common machine learning task applied to graphs: training models to classify
nodes. The GDS library also provides a standalone version of Node Classification. Here we describe Node
Classification Pipelines, which facilitate an end-to-end workflow, from features extraction to node
classification. There are two kinds of pipelines: training pipelines and classification pipelines, both of which
reside in the model catalog. When a training pipeline is executed, a classification pipeline is created and
stored in the model catalog.

A training pipeline is a sequence of two phases:

I. The graph is augmented with new node properties in a series of steps.

II. The augmented graph is used for training a node classification model.

One can configure which steps should be included above. The steps execute GDS algorithms that create
new node properties. After configuring the node property steps, one can select a subset of node properties
to be used as features. The training phase (II) proceeds in a manner akin to the standalone version of Node
Classification, where it can train multiple models, select the best one, and report relevant performance
metrics.

After training the pipeline, a classification pipeline is created. This new pipeline inherits the node property
steps and feature configuration from the training pipeline and uses them to generate the relevant features
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for classifying unlabeled nodes.


Classification can only be done with a trained classification pipeline (not with a training
pipeline).

The motivation for using pipelines:

• easier to get splits right and prevent data leakage

• ensuring that the same feature creation steps are applied at classification and train time

• applying the trained model with a single procedure call

• persisting the pipeline as a whole

The rest of this page is divided as follows:

• Creating a pipeline

• Adding node properties

• Adding features

• Configuring the node splits

• Configuring the model parameters

• Training the pipeline

• Applying a classification pipeline to make predictions

Creating a pipeline

The first step of building a new pipeline is to create one using
gds.alpha.ml.pipeline.nodeClassification.create. This stores a trainable model object in the model
catalog of type Node classification training pipeline. This represents a configurable pipeline that can
later be invoked for training, which in turn creates a classification pipeline. The latter is also a model which
is stored in the catalog with type Node classification pipeline.

Syntax

Create pipeline syntax

CALL gds.alpha.ml.pipeline.nodeClassification.create(
  pipelineName: String
)
YIELD
  name: String,
  nodePropertySteps: List of Map,
  featureProperties: List of String,
  splitConfig: Map,
  parameterSpace: List of Map

Table 878. Parameters
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Name Type Description

pipelineName String The name of the created pipeline.

Table 879. Results

Name Type Description

name String Name of the pipeline.

nodeProperty
Steps

List of Map List of configurations for node property steps.

featureProper
ties

List of String List of node properties to be used as features.

splitConfig Map Configuration to define the split before the model training.

parameterSpa
ce

List of Map List of parameter configurations for models which the train mode uses for model selection.

Example

The following will create a pipeline:

CALL gds.alpha.ml.pipeline.nodeClassification.create('pipe')

Table 880. Results

name nodePropertySteps featureProperties splitConfig parameterSpace

"pipe" [] [] {testFraction=0.3,
validationFolds=3}

[{maxEpochs=100,
minEpochs=1,
penalty=0.0,
patience=1,
batchSize=100,
tolerance=0.001}]

This shows that the newly created pipeline does not contain any steps yet, and has defaults for the split
and train parameters.

Adding node properties

A node classification pipeline can execute one or several GDS algorithms in mutate mode that create node
properties in the in-memory graph. Such steps producing node properties can be chained one after
another and created properties can later be used as features. Moreover, the node property steps that are
added to the training pipeline will be executed both when training a model and when the classification
pipeline is applied for classification.

The name of the procedure that should be added can be a fully qualified GDS procedure name ending with
.mutate. The ending .mutate may be omitted and one may also use shorthand forms such as node2vec
instead of gds.beta.node2vec.mutate.
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For example, pre-processing algorithms can be used as node property steps.

Syntax

Add node property syntax

CALL gds.alpha.ml.pipeline.nodeClassification.addNodeProperty(
  pipelineName: String,
  procedureName: String,
  procedureConfiguration: Map
)
YIELD
  name: String,
  nodePropertySteps: List of Map,
  featureProperties: List of String,
  splitConfig: Map,
  parameterSpace: List of Map

Table 881. Parameters

Name Type Description

pipelineName String The name of the pipeline.

procedureName String The name of the procedure to be added to the pipeline.

procedureConfigur
ation

Map The configuration of the procedure, excluding graphName, nodeLabels and
relationshipTypes.

Table 882. Results

Name Type Description

name String Name of the pipeline.

nodeProperty
Steps

List of Map List of configurations for node property steps.

featureProper
ties

List of String List of node properties to be used as features.

splitConfig Map Configuration to define the split before the model training.

parameterSpa
ce

List of Map List of parameter configurations for models which the train mode uses for model selection.

Example

The following will add a node property step to the pipeline. Here we assume that the input graph contains
a property sizePerStory.

CALL gds.alpha.ml.pipeline.nodeClassification.addNodeProperty('pipe', 'scaleProperties', {
  nodeProperties: 'sizePerStory',
  scaler: 'L1Norm',
  mutateProperty:'scaledSizes'
})
YIELD name, nodePropertySteps
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Table 883. Results

name nodePropertySteps

"pipe" [{name=gds.alpha.scaleProperties.mutate, config={scaler=L1Norm, mutateProperty=scaledSizes,
nodeProperties=sizePerStory}}]

The scaledSizes property can be later used as a feature.

Adding features

A Node Classification Pipeline allows you to select a subset of the available node properties to be used as
features for the machine learning model. When executing the pipeline, the selected nodeProperties must
be either present in the input graph, or created by a previous node property step. For example, the
embedding property could be created by the previous example, and we expect numberOfPosts to already be
present in the in-memory graph used as input, at train and predict time.

Syntax

Adding a feature to a pipeline syntax

CALL gds.alpha.ml.pipeline.nodeClassification.selectFeatures(
  pipelineName: String,
  nodeProperties: List or String
)
YIELD
  name: String,
  nodePropertySteps: List of Map,
  featureProperties: List of String,
  splitConfig: Map,
  parameterSpace: List of Map

Table 884. Parameters

Name Type Description

pipelineName String The name of the pipeline.

nodeProperties List or String Configuration for splitting the relationships.

Table 885. Results

Name Type Description

name String Name of the pipeline.

nodeProperty
Steps

List of Map List of configurations for node property steps.

featureProper
ties

List of String List of node properties to be used as features.

splitConfig Map Configuration to define the split before the model training.

parameterSpa
ce

List of Map List of parameter configurations for models which the train mode uses for model selection.
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Example

The following will select features for the pipeline. Here we assume that the input graph contains a
property sizePerStory and scaledSizes was created in a nodePropertyStep.

CALL gds.alpha.ml.pipeline.nodeClassification.selectFeatures('pipe', ['scaledSizes', 'sizePerStory'])
YIELD name, featureProperties

Table 886. Results

name featureProperties

"pipe" [scaledSizes, sizePerStory]

Configuring the node splits

Node Classification Pipelines manage splitting the nodes into several sets for training, testing and
validating the models defined in the parameter space. Configuring the splitting is optional, and if omitted,
splitting will be done using default settings. The splitting configuration of a pipeline can be inspected by
using gds.beta.model.list and possibly only yielding splitConfig.

The node splits are used in the training process as follows:

1. The input graph is split into two parts: the train graph and the test graph. See the example below.

2. The train graph is further divided into a number of validation folds, each consisting of a train part and a
validation part. See the animation below.

3. Each model candidate is trained on each train part and evaluated on the respective validation part.

4. The model with the highest average score according to the primary metric will win the training.

5. The winning model will then be retrained on the entire train graph.

6. The winning model is evaluated on the train graph as well as the test graph.

7. The winning model is retrained on the entire original graph.

Below we illustrate an example for a graph with 12 nodes. First we use a holdoutFraction of 0.25 to split
into train and test subgraphs.
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Then we carry out three validation folds, where we first split the train subgraph into 3 disjoint subsets (s1,
s2 and s3), and then alternate which subset is used for validation. For each fold, all candidate models are
trained in the red nodes, and validated in the green nodes.

[validation-folds-image] | train-test-splitting/validation-folds-node-classification.gif

Syntax

Configure the node split syntax

CALL gds.alpha.ml.pipeline.nodeClassification.configureSplit(
  pipelineName: String,
  configuration: Map
)
YIELD
  name: String,
  nodePropertySteps: List of Map,
  featureProperties: List of Strings,
  splitConfig: Map,
  parameterSpace: List of Map

Table 887. Parameters

Name Type Description

pipelineName String The name of the pipeline.

configuration Map Configuration for splitting the relationships.

Table 888. Configuration

Name Type Default Description

validationFolds Integer 3 Number of divisions of the training graph used during model selection.

testFraction Double 0.3 Fraction of the graph reserved for testing. Must be in the range (0, 1).
The fraction used for the training is 1 - testFraction.
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Table 889. Results

Name Type Description

name String Name of the pipeline.

nodeProperty
Steps

List of Map List of configurations for node property steps.

featureProper
ties

List of String List of node properties to be used as features.

splitConfig Map Configuration to define the split before the model training.

parameterSpa
ce

List of Map List of parameter configurations for models which the train mode uses for model selection.

Example

The following will configure the splitting of the pipeline:

CALL gds.alpha.ml.pipeline.nodeClassification.configureSplit('pipe', {
 testFraction: 0.2,
  validationFolds: 5
})
YIELD splitConfig

Table 890. Results

splitConfig

{testFraction=0.2, validationFolds=5}

We now reconfigured the splitting of the pipeline, which will be applied during training.

Configuring the model parameters

The gds.alpha.ml.pipeline.nodeClassification.configureParams mode is used to set up the train mode
with a list of configurations of logistic regression models. The set of model configurations is called the
parameter space which parametrizes a set of model candidates. The parameter space can be configured
by passing this procedure a list of maps, where each map configures the training of one logistic regression
model. In Training the pipeline, we explain further how the configured model candidates are trained,
evaluated and compared.

The allowed model parameters are listed in the table Model configuration.

If configureParams is not used, then a single model with defaults for all the model parameters is used. The
parameter space of a pipeline can be inspected using gds.beta.model.list and optionally yielding only
parameterSpace.

Syntax
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Configure the train parameters syntax

CALL gds.alpha.ml.pipeline.nodeClassification.configureParams(
  pipelineName: String,
  parameterSpace: List of Map
)
YIELD
  name: String,
  nodePropertySteps: List of Map,
  featureProperties: List of String,
  splitConfig: Map,
  parameterSpace: List of Map

Table 891. Parameters

Name Type Description

pipelineName String The name of the pipeline.

parameterSpace List of Map The parameter space used to select the best model from. Each Map corresponds
to potential model. The allowed parameters for a model are defined in the next
table.

Table 892. Model configuration

Name Type Default Optional Description

penalty Float 0.0 yes Penalty used for the logistic regression. By default, no
penalty is applied.

batchSize Integer 100 yes Number of nodes per batch.

minEpochs Integer 1 yes Minimum number of training epochs.

maxEpochs Integer 100 yes Maximum number of training epochs.

patience Integer 1 yes Maximum number of unproductive consecutive epochs.

tolerance Float 0.001 yes The minimal improvement of the loss to be considered
productive.

Table 893. Results

Name Type Description

name String Name of the pipeline.

nodeProperty
Steps

List of Map List of configurations for node property steps.

featureProper
ties

List of String List of node properties to be used as features.

splitConfig Map Configuration to define the split before the model training.

parameterSpa
ce

List of Map List of parameter configurations for models which the train mode uses for model selection.
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Example

The following will configure the parameter space of the pipeline:

CALL gds.alpha.ml.pipeline.nodeClassification.configureParams('pipe',
  [{penalty: 0.0625}, {tolerance: 0.01}, {maxEpochs: 500}]
) YIELD parameterSpace

Table 894. Results

parameterSpace

[{maxEpochs=100, minEpochs=1, penalty=0.0625, patience=1, batchSize=100, tolerance=0.001}, {maxEpochs=100,
minEpochs=1, penalty=0.0, patience=1, batchSize=100, tolerance=0.01}, {maxEpochs=500, minEpochs=1, penalty=0.0,
patience=1, batchSize=100, tolerance=0.001}]

The parameterSpace in the pipeline now contains the three different model parameters, expanded with the
default values. Each specified model configuration will be tried out during the model selection in training.

Training the pipeline

The train mode, gds.alpha.ml.pipeline.nodeClassification.train, is responsible for splitting data,
feature extraction, model selection, training and storing a model for future use. Running this mode results
in a classification pipeline of type Node classification pipeline, which is then stored in the model
catalog. The classification pipeline can be applied to a possibly different graph which classifies nodes.

More precisely, the training proceeds as follows:

1. Apply nodeLabels and relationshipType filters to the graph.

2. Apply the node property steps, added according to Adding node properties, on the whole graph.

3. Select node properties to be used as features, as specified in Adding features.

4. Split the input graph into two parts: the train graph and the test graph. This is described in Configuring
the node splits. These graphs are internally managed and exist only for the duration of the training.

5. Split the nodes in the train graph using stratified k-fold cross-validation. The number of folds k can be
configured as described in Configuring the node splits.

6. Each model candidate defined in the parameter space is trained on each train set and evaluated on the
respective validation set for every fold. The training process uses a logistic regression algorithm, and
the evaluation uses the specified metric.

7. Choose the best performing model according to the highest average score for the primary metric.

8. Retrain the winning model on the entire train graph.

9. Evaluate the performance of the winning model on the whole train graph as well as the test graph.

10. Retrain the winning model on the entire original graph.

11. Register the winning model in the Model Catalog.


The above steps describe what the procedure does logically. The actual steps as well as
their ordering in the implementation may differ.
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
A step can only use node properties that are already present in the input graph or
produced by steps, which were added before.

Metrics

The Node Classification model in the Neo4j GDS library supports the following evaluation metrics:

• Global metrics

◦ F1_WEIGHTED

◦ F1_MACRO

◦ ACCURACY

• Per-class metrics

◦ F1(class=<number>) or F1(class=*)

◦ PRECISION(class=<number>) or PRECISION(class=*)

◦ RECALL(class=<number>) or RECALL(class=*)

◦ ACCURACY(class=<number>) or ACCURACY(class=*)

The * is syntactic sugar for reporting the metric for each class in the graph. When using a per-class metric,
the reported metrics contain keys like for example ACCURACY_class_1.

More than one metric can be specified during training but only the first specified — the primary one — is
used for evaluation, the results of all are present in the train results. The primary metric may not be a *
expansion due to the ambiguity of which of the expanded metrics should be the primary one.

Syntax

Run Node Classification in train mode on a named graph:

CALL gds.alpha.ml.pipeline.nodeClassification.train(
  graphName: String,
  configuration: Map
) YIELD
  trainMillis: Integer,
  modelInfo: Map,
  configuration: Map

Table 895. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuration Map {} yes Configuration for algorithm-specifics and/or graph filtering.

Table 896. Configuration
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Name Type Default Optional Description

pipeline String n/a no The name of the pipeline to execute.

nodeLabels List of String ['*'] yes Filter the named graph using the given node labels.

relationshipTy
pes

List of String ['*'] yes Filter the named graph using the given relationship types.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm.

targetPropert
y

String n/a no The class of the node. Must be of type Integer.

metrics List of String n/a no Metrics used to evaluate the models.

randomSeed Integer n/a yes Seed for the random number generator used during training.

modelName String n/a no The name of the model to train, must not exist in the Model
Catalog.

Table 897. Results

Name Type Description

trainMillis Integer Milliseconds used for training.

modelInfo Map Information about the training and the winning model.

configuration Map Configuration used for the train procedure.

The modelInfo can also be retrieved at a later time by using the Model List Procedure. The modelInfo
return field has the following algorithm-specific subfields:

Table 898. Model info fields

Name Type Description

classes List of Integer Sorted list of class ids which are the distinct values of targetProperty over the entire graph.

bestParamete
rs

Map The model parameters which performed best on average on validation folds according to the
primary metric.

metrics Map Map from metric description to evaluated metrics for various models and subsets of the data,
see below.

trainingPipeli
ne

Map The pipeline used for the training.

The structure of modelInfo is:
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{
    bestParameters: Map,        ①
    trainingPipeline: Map       ②
    classes: List of Integer,   ③
    metrics: {                  ④
        <METRIC_NAME>: {        ⑤
            test: Float,        ⑥
            outerTrain: Float,  ⑦
            train: [{           ⑧
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            {
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            ...
            ],
            validation: [{      ⑨
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            {
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            ...
            ]
        }
    }
}

① The best scoring model candidate configuration.

② The pipeline used for the training.

③ Sorted list of class ids which are the distinct values of targetProperty over the entire graph.

④ The metrics map contains an entry for each metric description, and the corresponding results for that
metric.

⑤ A metric name specified in the configuration of the procedure, e.g., F1_MACRO or RECALL(class=4).

⑥ Numeric value for the evaluation of the winning model on the test set.

⑦ Numeric value for the evaluation of the winning model on the outer train set.

⑧ The train entry lists the scores over the train set for all candidate models (e.g., params). Each such
result is in turn also a map with keys params, avg, min and max.

⑨ The validation entry lists the scores over the validation set for all candidate models (e.g., params).
Each such result is in turn also a map with keys params, avg, min and max.

Example

In this section we will show examples of running a Node Classification training pipeline on a concrete
graph. The intention is to illustrate what the results look like and to provide a guide in how to make use of
the model in a real setting. We will do this on a small graph of a handful of nodes representing houses.
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This is an example of Multi-class classification, the class node property distinct values determine the
number of classes, in this case three (0, 1 and 2). The example graph looks like this:

Gold Red

Blue
Green

GrayBlack

White

Teal

Beige

Magenta
Purple

Pink

Tan

Yellow

The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (:House {color: 'Gold', sizePerStory: [15.5, 23.6, 33.1], class: 0}),
  (:House {color: 'Red', sizePerStory: [15.5, 23.6, 100.0], class: 0}),
  (:House {color: 'Blue', sizePerStory: [11.3, 35.1, 22.0], class: 0}),
  (:House {color: 'Green', sizePerStory: [23.2, 55.1, 0.0], class: 1}),
  (:House {color: 'Gray', sizePerStory: [34.3, 24.0, 0.0],  class: 1}),
  (:House {color: 'Black', sizePerStory: [71.66, 55.0, 0.0], class: 1}),
  (:House {color: 'White', sizePerStory: [11.1, 111.0, 0.0], class: 1}),
  (:House {color: 'Teal', sizePerStory: [80.8, 0.0, 0.0], class: 2}),
  (:House {color: 'Beige', sizePerStory: [106.2, 0.0, 0.0], class: 2}),
  (:House {color: 'Magenta', sizePerStory: [99.9, 0.0, 0.0], class: 2}),
  (:House {color: 'Purple', sizePerStory: [56.5, 0.0, 0.0], class: 2}),
  (:UnknownHouse {color: 'Pink', sizePerStory: [23.2, 55.1, 56.1]}),
  (:UnknownHouse {color: 'Tan', sizePerStory: [22.32, 102.0, 0.0]}),
  (:UnknownHouse {color: 'Yellow', sizePerStory: [39.0, 0.0, 0.0]});

With the graph in Neo4j we can now project it into the graph catalog to prepare it for the pipeline
execution. We do this using a native projection targeting the House and UnknownHouse labels. We will also
project the sizeOfStory property to use as a model feature, and the class property to use as a target
feature.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create('myGraph', {
    House: { properties: ['sizePerStory', 'class'] },
    UnknownHouse: { properties: 'sizePerStory' }
  },
  '*'
)

In the following examples we will demonstrate running the Node Classification training pipeline on this
graph. We will train a model to predict the class in which a house belongs, based on its sizePerStory
property.
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The following will train a model using a pipeline:

CALL gds.alpha.ml.pipeline.nodeClassification.train('myGraph', {
  pipeline: 'pipe',
  nodeLabels: ['House'],
  modelName: 'nc-pipeline-model',
  targetProperty: 'class',
  randomSeed: 42,
  concurrency:1,
  metrics: ['F1_WEIGHTED']
}) YIELD modelInfo
RETURN
  modelInfo.bestParameters AS winningModel,
  modelInfo.metrics.F1_WEIGHTED.outerTrain AS trainGraphScore,
  modelInfo.metrics.F1_WEIGHTED.test AS testGraphScore

Table 899. Results

winningModel trainGraphScore testGraphScore

{maxEpochs=100, minEpochs=1,
penalty=0.0625, patience=1,
batchSize=100, tolerance=0.001}

0.9999999912121211 0.9999999850000002

Here we can observe that the model candidate with penalty 0.0625 performed the best in the training
phase, with an F1_WEIGHTED score nearing 1 over the train graph as well as on the test graph. This
indicates that the model reacted very well to the train graph, and was able to generalize fairly well to
unseen data. Notice that this is just a toy example on a very small graph. In order to achieve a higher test
score, we may need to use better features, a larger graph, or different model configuration.

Applying a trained model for prediction

In the previous sections we have seen how to build up a Node Classification training pipeline and train it to
produce a classification pipeline. After training, the runnable model is of type Node classification
pipeline and resides in the model catalog.

The classification pipeline can be executed with a graph in the graph catalog to predict the value of the
target property (class) of previously unseen nodes. In addition to the predicted class for each node, the
predicted probability for each class may also be retained on the nodes. The order of the probabilities
matches the order of the classes registered in the model.

Since the model has been trained on features which are created using the feature pipeline, the same
feature pipeline is stored within the model and executed at prediction time. As during training,
intermediate node properties created by the node property steps in the feature pipeline are transient and
not visible after execution.

The predict graph must contain the properties that the pipeline requires and the used array properties
must have the same dimensions as in the train graph. If the predict and train graphs are distinct, it is also
beneficial that they have similar origins and semantics, so that the model is able to generalize well.

Syntax
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Node Classification syntax per mode

Run Node Classification in stream mode on a named graph:

CALL gds.alpha.ml.pipeline.nodeClassification.predict.stream(
  graphName: String,
  configuration: Map
)
YIELD
  nodeId: Integer,
  predictedClass: Integer,
  predictedProbabilities: List of Float

Table 900. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 901. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 902. Algorithm specific configuration

Name Type Default Optional Description

includePredi
ctedProbabil
ities

Boolean false yes Whether to return the probability for each class. If
false then null is returned in predictedProbabilites.

batchSize Integer 100 yes Number of nodes per batch.

Table 903. Results

Name Type Description

nodeId Integer Node ID.

predictedCla
ss

Integer Predicted class for this node.

predictedPr
obabilities

List of Float Probabilities for all classes, for this node.
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Run Node Classification in mutate mode on a named graph:

CALL gds.alpha.ml.pipeline.nodeClassification.predict.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 904. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 905. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 906. Algorithm specific configuration

Name Type Default Optional Description

predictedPr
obabilityPro
perty

String n/a yes The node property in which the class probability list is
stored. If omitted, the probability list is discarded.

batchSize Integer 100 yes Number of nodes per batch.

Table 907. Results

Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the global metrics.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.
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Name Type Description

nodePropert
iesWritten

Integer Number of node properties written.

configuratio
n

Map Configuration used for running the algorithm.
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Run Node Classification in write mode on a named graph:

CALL gds.alpha.ml.pipeline.nodeClassification.predict.write(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 908. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 909. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm. Also provides the default
value for 'writeConcurrency'.

writeConcurrency Integer value of
'concurren
cy'

yes The number of concurrent threads used for
writing the result to Neo4j.

Table 910. Algorithm specific configuration

Name Type Default Optional Description

predictedPr
obabilityPro
perty

String n/a yes The node property in which the class probability list is
stored. If omitted, the probability list is discarded.

batchSize Integer 100 yes Number of nodes per batch.

Table 911. Results

Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.
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Name Type Description

postProcessi
ngMillis

Integer Milliseconds for computing the global metrics.

writeMillis Integer Milliseconds for writing result back to Neo4j.

nodePropert
iesWritten

Integer Number of node properties written.

configuratio
n

Map Configuration used for running the algorithm.

Example

In the following examples we will show how to use a classification pipeline to predict the class of a node in
your in-memory graph. In addition to the predicted class, we will also produce the probability for each
class in another node property. In order to do this, we must first have an already trained model registered
in the Model Catalog. We will use the model which we trained in the train example which we gave the
name 'nc-pipeline-model'.

Stream

CALL gds.alpha.ml.pipeline.nodeClassification.predict.stream('myGraph', {
  modelName: 'nc-pipeline-model',
  includePredictedProbabilities: true,
  nodeLabels: ['UnknownHouse']
})
 YIELD nodeId, predictedClass, predictedProbabilities
WITH gds.util.asNode(nodeId) AS houseNode, predictedClass, predictedProbabilities
RETURN
  houseNode.color AS classifiedHouse,
  predictedClass,
  floor(predictedProbabilities[predictedClass] * 100) AS confidence
  ORDER BY classifiedHouse

Table 912. Results

classifiedHouse predictedClass confidence

"Pink" 0 98.0

"Tan" 1 98.0

"Yellow" 2 79.0

As we can see, the model was able to predict the pink house into class 0, tan house into class 1, and
yellow house into class 2. This makes sense, as all houses in class 0 had three stories, class 1 two stories
and class 2 one story, and the same is true of the pink, tan and yellow houses, respectively. Additionally,
we see that the model is confident in these predictions, as the confidence is >=79% in all cases.
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Mutate

The mutate execution mode updates the named graph with a new node property containing the predicted
class for that node. The name of the new property is specified using the mandatory configuration
parameter mutateProperty. The result is a single summary row including information about timings and
how many properties were written. The mutate mode is especially useful when multiple algorithms are
used in conjunction.

For more details on the mutate mode in general, see Mutate.

CALL gds.alpha.ml.pipeline.nodeClassification.predict.mutate('myGraph', {
  nodeLabels: ['UnknownHouse'],
  modelName: 'nc-pipeline-model',
  mutateProperty: 'predictedClass',
  predictedProbabilityProperty: 'predictedProbabilities'
}) YIELD nodePropertiesWritten

Table 913. Results

nodePropertiesWritten

6

Since we specified also the predictedProbabilityProperty we are writing two properties for each of the 3
UnknownHouse nodes.

Write

The write execution mode writes the predicted property for each node as a property to the Neo4j
database. The name of the new property is specified using the mandatory configuration parameter
writeProperty. The result is a single summary row including information about timings and how many
properties were written. The write mode enables directly persisting the results to the database.

For more details on the write mode in general, see Write.

CALL gds.alpha.ml.pipeline.nodeClassification.predict.write('myGraph', {
  nodeLabels: ['UnknownHouse'],
  modelName: 'nc-pipeline-model',
  writeProperty: 'predictedClass',
  predictedProbabilityProperty: 'predictedProbabilities'
}) YIELD nodePropertiesWritten

Table 914. Results

nodePropertiesWritten

6

Since we specified also the predictedProbabilityProperty we are writing two properties for each of the 3
UnknownHouse nodes.
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7.8.5. Link prediction

Introduction

Link prediction is a common machine learning task applied to graphs: training a model to learn, between
pairs of nodes in a graph, where relationships should exist. The predicted links are undirected. You can
think of this as building a model to predict missing relationships in your dataset or relationships that are
likely to form in the future. Neo4j GDS trains supervised machine learning models based on the
relationships and node properties in your graph to predict the existence - and probability - of relationships.

Link Prediction can be used favorably together with pre-processing algorithms.

The basic work flow of Link Prediction contains the following parts which are described below:

• Creating training and test graphs

• Training and Evaluating model candidates

• Applying a model for prediction

Training, Model Selection and Evaluation

When building a model, it is possible to specify multiple model configurations and a model selection
metric. The train mode, gds.alpha.ml.linkPrediction.train, is responsible for training and evaluating the
models, selecting the best model, and storing it in the model catalog.

The train mode takes as input two relationship types representing the training graph and test graph
respectively. The relationship types must have an integer property, with values being either 0 or 1. If the
value is 0 the relationship represents a negative example, meaning a node pair which is not connected in
the original graph. If the value is 1 the relationship represents a positive example, meaning a relationship
which does exist in the original graph.

To obtain the feature vector for an example, the algorithm first forms node feature vectors for the source
and target nodes of the example in question. This is done by concatenating the property values of the
specified feature properties in order into a node feature vector. Thus, for each relationship we have one
feature vector for the source node, , and one for the target node, .
Thereafter, the algorithm uses a link feature combiner to combine the two node feature vectors into a
single feature vector f for the training example. There are three supported link feature combiners:

• L2

◦ which gives a feature vector .

• HADAMARD

◦ which gives a feature vector .

• COSINE

◦ which gives a single scalar feature, using the Cosine similarity between s and t given by

.
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The precise steps of the train mode are:

1. The relationships of the training graph are divided into a number of folds, consisting of a training part
and a validation part.

2. Each model candidate is trained on each train part and evaluated on the respective validation part. The
training process uses a logistic regression algorithm, and the evaluation uses the AUCPR metric.

3. The model with the highest average score according to the metric will win the training.

4. The winning model will then be re-trained on the whole training graph and evaluated on the training
graph as well as on the test graph.

5. The winning model will be registered in the Model Catalog.

Trained models may then be used to predict the probability of a relationship between two nodes.

Applying a Link Prediction model

A previously trained model can be applied by invoking the gds.alpha.ml.linkPrediction.predict.mutate
mode. This will retrieve the model by name from the model catalog. The model will thereby be used to
predict the probability of relationships between all node pairs in the graph that are not connected. There
are two mandatory configuration parameters, which limit the size of the output:

• topN retains the most probable predictions.

• threshold retains predictions whose probability is above the threshold.

Train/Test Splitting

In order to train a Link Prediction model, one needs training and test graphs as described above. The
recommended way to obtain these is by using gds.alpha.ml.splitRelationships() procedure, once to
produce the test graph, and another time for the training graph. By invoking this procedure the first time,
one obtains two new relationship types that represent the test graph and a 'remaining' graph. One can
then, invoke the procedure again, on the just created 'remaining' graph, which then creates a training
graph and an even smaller 'remaining' graph. Below, is an example usage of how the splitRelationships
procedure can be used to prepare the required datasets for training.

The 'remaining' graph after the second split can optionally be used to create node embeddings without
data leakage from test or validation sets.

Note that, after the first invocation, we cannot use the 'remaining' graph as the training graph, because it
not guaranteed to have 0/1 value relationship labels nor negative link examples.

Metrics

The Link Prediction model in the Neo4j GDS library supports only the Area Under the Precision-Recall
Curve metric, abbreviated as AUCPR. In order to compute precision and recall we require a set of
examples, each of which has a positive or negative target. For each example we have also a predicted
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target. Given the true and predicted targets, we can compute precision and recall (for reference, see f.e.
Wikipedia).

Then, to compute the AUCPR, we construct the precision-recall curve, as follows:

• Each predicted target is associated with a prediction strength, for example the predicted probability of
a positive target. We sort the examples in descending order of prediction strength.

• For all prediction strengths that occur, we use that strength as a threshold and for all examples of that
strength or higher predict that these examples have positive targets.

• We now compute precision p and recall r and consider the tuple (r, p) as a point on a curve, the
precision-recall curve.

• Finally, the curve is linearly interpolated and the area is computed as a union of trapezoids with corners
on the points.

The curve will have a shape that looks something like this:

Note here the blue area which shows one trapezoid under the curve.

The area under the Precision-Recall curve can also be interpreted as an average precision where the
average is over different classification thresholds.
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Class imbalance

Most graphs have far more non-connected node pairs than connected ones (e.g. sparse graphs). Thus,
typically we have an issue with class imbalance. There are multiple strategies to account for imbalanced
data. In our procedure, the AUCPR metric is used which is considered more suitable than the commonly
used AUROC (Area Under the Receiver Operating Characteristic) metric for imbalanced data. For the
metric to appropriately reflect both positive (connected node pairs) and negative (non-connected pairs)
examples, we provide the ability to both control the ratio of sampling between the classes, and to control
the relative weight of classes via negativeClassWeight. The former is configured by the configuration
parameter negativeSamplingRatio in splitRelationships when using that procedure to generate the test
set. Tuning the negativeClassWeight, which is explained below, means weighting up or down the false
positives when computing precision.

The recommended value for negativeSamplingRatio is the true class ratio of the graph, in other words, not
applying undersampling. However, the higher the value, the bigger the test set and thus the time to
evaluate. The ratio of total probability mass of negative versus positive examples in the test set is
approximately negativeSamplingRatio * negativeClassWeight. Thus, both of these parameters can be
adjusted in tandem to trade off evaluation accuracy with speed.

The true class ratio is computed as (q - r) / r, where q = n(n-1)/2 is the number of possible undirected
relationships, and r is the number of actual undirected relationships. Please note that the
relationshipCount reported by the graph list procedure is the directed count of relationships summed
over all existing relationship types. Thus, we recommend using Cypher to obtain r on the source Neo4j
graph. For example, this query will count the number of relationships of type T or R:

MATCH (a)-[rel:T | R]-(b)
WHERE a < b
RETURN count(rel) AS r

When choosing a value for negativeClassWeight, two factors should be considered. First, the desired ratio
of total probability mass of negative versus positive examples in the test set. Second, what the ratio of
sampled negative examples to positive examples was in the test set. To be consistent with traditional
evaluation, one should choose parameters so that negativeSamplingRatio * negativeClassWeight = 1.0,
for example by setting the values to the true class ratio and its reciprocal, or both values to 1.0.

Alternatively, one can aim for the ratio of total probability weight between the classes to be close to the
true class ratio. That is, making sure negativeSamplingRatio * negativeClassWeight is close to the true
class ratio. The reported metric (AUCPR) then better reflects the expected precision on unseen highly
imbalanced data. With this type of evaluation one has to adjust expectations as the metric value then
becomes much smaller.

Syntax

This section covers the syntax used to execute the Link Prediction algorithm in each of its execution
modes. We are describing the named graph variant of the syntax. To learn more about general syntax
variants, see Syntax overview.


The named graphs must be projected in the UNDIRECTED orientation for the Link
Prediction model.
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Link Prediction syntax per mode
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Run Link Prediction in train mode on a named graph:

CALL gds.alpha.ml.linkPrediction.train(
  graphName: String,
  configuration: Map
) YIELD
  trainMillis: Integer,
  modelInfo: Map,
  configuration: Map

Table 915. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 916. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

modelName String n/a no The name of the model to train, must not exist in the
Model Catalog.

featureProp
erties

List of String [] yes The names of the node properties that should be used
as input features. All property names must exist in the
in-memory graph and be of type Float or List of Float.

nodeLabels List of String ['*'] yes Filter the named graph using the given node labels.

relationship
Types

List of String ['*'] yes Filter the named graph using the given relationship
types.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm.

Table 917. Algorithm specific configuration

Name Type Default Optional Description

trainRelation
shipType

String n/a no Relationship type to use during model training.

testRelation
shipType

String n/a no Relationship type to use during model evaluation.

validationFol
ds

Integer n/a no Number of divisions of the training graph used during
model selection.

negativeClas
sWeight

Float n/a no Weight of negative examples in model evaluation.
Positive examples have weight 1.

params List of Map n/a no List of model configurations to be trained and
compared. See next table for details.

randomSeed Integer n/a yes Seed for the random number generator used during
training.
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Table 918. Model configuration

Name Type Default Optional Description

penalty Float 0.0 yes Penalty used for the logistic regression. By default, no
penalty is applied.

linkFeatureC
ombiner

String "L2" yes Link feature combiner is used to combine two node
feature vectors into the feature vector for the training.
Available combiners are L2, HADAMARD and COSINE.

batchSize Integer 100 yes Number of nodes per batch.

minEpochs Integer 1 yes Minimum number of training epochs.

maxEpochs Integer 100 yes Maximum number of training epochs.

patience Integer 1 yes Maximum number of unproductive consecutive epochs.

tolerance Float 0.001 yes The minimal improvement of the loss to be considered
productive.

For hyperparameter tuning ideas, look here.

Table 919. Results

Name Type Description

trainMillis Integer Milliseconds used for training.

modelInfo Map Information about the training and the winning model.

configuratio
n

Map Configuration used for the train procedure.

The modelInfo can also be retrieved at a later time by using the Model List Procedure. The
modelInfo return field has the following algorithm-specific subfields:

Table 920. Model info fields

Name Type Description

bestParamet
ers

Map The model parameters which performed best on average on validation folds
according to the primary metric.

metrics Map Map from metric description to evaluated metrics for various models and subsets of
the data, see below.

The structure of modelInfo is:
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{
    bestParameters: Map,        ①
    metrics: {                  ②
        AUCPR: {
            test: Float,        ③
            outerTrain: Float,  ④
            train: [{           ⑤
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            {
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            ...
            ],
            validation: [{      ⑥
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            {
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            ...
            ]
        }
    }
}

① The best scoring model candidate configuration.

② The metrics map contains an entry for each metric description (currently only AUCPR) and the
corresponding results for that metric.

③ Numeric value for the evaluation of the best model on the test set.

④ Numeric value for the evaluation of the best model on the outer train set.

⑤ The train entry lists the scores over the train set for all candidate models (e.g., params).
Each such result is in turn also a map with keys params, avg, min and max.

⑥ The validation entry lists the scores over the validation set for all candidate models (e.g.,
params). Each such result is in turn also a map with keys params, avg, min and max.
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Run Link Prediction in stream mode on a named graph:

CALL gds.alpha.ml.linkPrediction.predict.stream(
  graphName: String,
  configuration: Map
)
YIELD
  node1: Integer,
  node2: Integer,
  probability: Float

Table 921. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 922. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 923. Algorithm specific configuration

Name Type Default Optional Description

topN Integer n/a no Limit on predicted relationships to output.

threshold Float n/a no Minimum predicted probability on relationships to
output.

Table 924. Results

Name Type Description

node1 Integer Node ID of the first node.

node2 Integer Node ID of the second node.

probability Float Predicted probability of a link between the nodes.
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Run Link Prediction in mutate mode on a named graph:

CALL gds.alpha.ml.linkPrediction.predict.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  relationshipsWritten: Integer,
  configuration: Map

Table 925. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 926. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

modelName String n/a no The name of a Link Prediction model in the model
catalog.

nodeLabels List of String ['*'] yes Filter the named graph using the given node labels.

relationship
Types

List of String ['*'] yes Filter the named graph using the given relationship
types.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm.

mutateRelati
onshipType

String n/a no The relationship type used for the new relationships
written to the in-memory graph.

mutateProp
erty

String 'probabilit
y'

yes The relationship property in the GDS graph to which
the result is written.

Table 927. Algorithm specific configuration

Name Type Default Optional Description

topN Integer n/a no Limit on predicted relationships to output.

threshold Float n/a no Minimum predicted probability on relationships to
output.

Table 928. Results

Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.
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Name Type Description

postProcessi
ngMillis

Integer Milliseconds for computing the global metrics.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

relationships
Written

Integer Number of relationships created.

configuratio
n

Map Configuration used for running the algorithm.
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Run Link Prediction in write mode on a named graph:

CALL gds.alpha.ml.linkPrediction.predict.write(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  writeMillis: Integer,
  relationshipsWritten: Integer,
  configuration: Map

Table 929. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 930. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

modelName String n/a no The name of a Link Prediction model in the model
catalog.

nodeLabels List of String ['*'] yes Filter the named graph using the given node labels.

relationship
Types

List of String ['*'] yes Filter the named graph using the given relationship
types.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm.

writeRelatio
nshipType

String n/a no The relationship type used to persist the computed
relationships in the Neo4j database.

writePropert
y

String n/a no The relationship property in the Neo4j database to
which the result is written.

Table 931. Algorithm specific configuration

Name Type Default Optional Description

topN Integer n/a no Limit on predicted relationships to output.

threshold Float n/a no Minimum predicted probability on relationships to
output.

Table 932. Results

Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.
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Name Type Description

postProcessi
ngMillis

Integer Milliseconds for computing the global metrics.

writeMillis Integer Milliseconds for writing result data back to Neo4j.

relationships
Written

Integer Number of relationships created.

configuratio
n

Map Configuration used for running the algorithm.

Examples

In this section we will show examples of running the Link Prediction algorithm on a concrete graph. The
intention is to illustrate what the results look like and to provide a guide in how to make use of the
algorithm in a real setting. We will do this on a small social network graph of a handful nodes connected in
a particular pattern. The example graph looks like this:
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The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (alice:Person {name: 'Alice', numberOfPosts: 38}),
  (michael:Person {name: 'Michael', numberOfPosts: 67}),
  (karin:Person {name: 'Karin', numberOfPosts: 30}),
  (chris:Person {name: 'Chris', numberOfPosts: 132}),
  (will:Person {name: 'Will', numberOfPosts: 6}),
  (mark:Person {name: 'Mark', numberOfPosts: 32}),
  (greg:Person {name: 'Greg', numberOfPosts: 29}),
  (veselin:Person {name: 'Veselin', numberOfPosts: 3}),

  (alice)-[:KNOWS]->(michael),
  (michael)-[:KNOWS]->(karin),
  (michael)-[:KNOWS]->(chris),
  (michael)-[:KNOWS]->(greg),
  (will)-[:KNOWS]->(michael),
  (will)-[:KNOWS]->(chris),
  (mark)-[:KNOWS]->(michael),
  (mark)-[:KNOWS]->(will),
  (greg)-[:KNOWS]->(chris),
  (veselin)-[:KNOWS]->(chris),
  (karin)-[:KNOWS]->(veselin),
  (chris)-[:KNOWS]->(karin);

With the graph in Neo4j we can now project it into the graph catalog to prepare it for algorithm execution.
We do this using a native projection targeting the Person nodes and the KNOWS relationships. We will also
project the numberOfPosts property, so we can use it as a model feature. For the relationships we must use
the UNDIRECTED orientation. This is because the Link Prediction model is defined only for undirected graphs.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
  'myGraph',
  {
    Person: {
      properties: ['numberOfPosts']
    }
  },
  {
    KNOWS: {
      orientation: 'UNDIRECTED'
    }
  }
)


The Link Prediction model requires the graph to be created using the UNDIRECTED
orientation for relationships.

In the following examples we will demonstrate using the Link Prediction model on this graph.

Train

First, we must do the test/train splits. For this we will make use of the gds.alpha.ml.splitRelationships
procedure. We will do one split to generate the test graph. We note that in the example graph there are
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eight nodes and twelve directed relationships. Recall that we compute the class ratio as (q - r) / q,
where we then have q = 8(8-1)/2 and r = 12 which gives us class ratio of (28 - 12) / 12 ~= 1.33. We
use this to configure negativeSampleRatio to achieve a sampling proportional to the class ratio.

CALL gds.alpha.ml.splitRelationships.mutate('myGraph', {
  relationshipTypes: ['KNOWS'],
  remainingRelationshipType: 'KNOWS_REMAINING',
  holdoutRelationshipType: 'KNOWS_TESTGRAPH',
  holdoutFraction: 0.2,
  negativeSamplingRatio: 1.33,
  randomSeed: 1984
}) YIELD relationshipsWritten

Table 933. Results

relationshipsWritten

25

We will create copied relationships for each existing relationship, into either the KNOWS_REMAINING or the
KNOWS_TESTGRAPH relationship types. All relationships in KNOWS_TESTGRAPH will have a label property.
Additionally, a number of non-existing relationships will be created into the KNOWS_TESTGRAPH relationship
type to be used as negative examples, with a label of 0.

Next, we will create the train graph.

CALL gds.alpha.ml.splitRelationships.mutate('myGraph', {
  relationshipTypes: ['KNOWS_REMAINING'],
  remainingRelationshipType: 'KNOWS_IGNORED_FOR_TRAINING',
  holdoutRelationshipType: 'KNOWS_TRAINGRAPH',
  holdoutFraction: 0.2,
  negativeSamplingRatio: 1.33,
  randomSeed: 1984
}) YIELD relationshipsWritten

Table 934. Results

relationshipsWritten

20

With both training and test graphs, we are ready to train models. We will use 5 validation folds, meaning
we will split the train graph into 5 pairs, using one part of each pair for training and one for validation.
Since we set the negativeSamplingRatio to 1.33 (the class ratio of the graph) above, we’ll set the
negativeClassWeight during training to 1 / 1.33 to assign equal weight to both classes.
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Train a Link Prediction model:

CALL gds.alpha.ml.linkPrediction.train('myGraph', {
  trainRelationshipType: 'KNOWS_TRAINGRAPH',
  testRelationshipType: 'KNOWS_TESTGRAPH',
  modelName: 'lp-numberOfPosts-model',
  featureProperties: ['numberOfPosts'],
  validationFolds: 5,
  negativeClassWeight: 1.0 / 1.33,
  randomSeed: 2,
  concurrency: 1,
  params: [
    {penalty: 0.5, maxEpochs: 1000},
    {penalty: 1.0, maxEpochs: 1000},
    {penalty: 0.0, maxEpochs: 1000}
  ]
}) YIELD modelInfo
RETURN
  { maxEpochs: modelInfo.bestParameters.maxEpochs, penalty: modelInfo.bestParameters.penalty } AS
winningModel,
  modelInfo.metrics.AUCPR.outerTrain AS trainGraphScore,
  modelInfo.metrics.AUCPR.test AS testGraphScore

Table 935. Results

winningModel trainGraphScore testGraphScore

{maxEpochs=1000, penalty=0.5} 0.38525757517173825 0.46710171439292664

Here we can observe that the model candidate with penalty 0.5 performed the best in the training phase,
with a score of about 71% over the train graph. On the test graph, the model scored much lower at about
35%. This indicates that the model reacted fairly well to the train graph, but did not generalise very well to
unseen data. In order to achieve a higher test score, we may need to use better features, a larger graph, or
different model configuration.

Stream

In the stream execution mode, the algorithm returns the top predicted relationships. This allows us to
inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

CALL gds.alpha.ml.linkPrediction.predict.stream('myGraph', {
  relationshipTypes: ['KNOWS'],
  modelName: 'lp-numberOfPosts-model',
  topN: 5,
  threshold: 0.45
})
 YIELD node1, node2, probability
 RETURN gds.util.asNode(node1).name AS person1, gds.util.asNode(node2).name AS person2, probability
 ORDER BY probability DESC, person1

Table 936. Results

person1 person2 probability

"Karin" "Greg" 0.4991363247445545

"Karin" "Mark" 0.49896977670628373
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person1 person2 probability

"Mark" "Greg" 0.49869219716877955

"Will" "Veselin" 0.49869219716877955

"Alice" "Mark" 0.49719328593255546

We specified threshold to filter out predictions with probability less than 45%, and topN to further limit
output to the top 5 relationships. Note that the predicted link between the Karin and Greg nodes does not
reflect any particular direction between them.

Mutate

In this example we will show how to use a trained model to predict new relationships in your in-memory
graph. In order to do this, we must first have an already trained model registered in the Model Catalog. We
will use the model which we trained in the train example which we gave the name 'lp-numberOfPosts-
model'.

We must also make sure that we do not include any of the relationships from the train or test graphs,
which we do by specifying a relationship filter for the original relationship type 'KNOWS'.

CALL gds.alpha.ml.linkPrediction.predict.mutate('myGraph', {
  relationshipTypes: ['KNOWS'],
  modelName: 'lp-numberOfPosts-model',
  mutateRelationshipType: 'KNOWS_PREDICTED',
  topN: 5,
  threshold: 0.45
}) YIELD relationshipsWritten

Table 937. Results

relationshipsWritten

10

We specified threshold to filter out predictions with probability less than 45%, and topN to further limit
output to the top 5 relationships. Because we are using the UNDIRECTED orientation, we will write twice as
many relationships to the in-memory graph.

Write

In this example we will show how to use a trained model to predict new relationships in your in-memory
graph, and write the predictions back to Neo4j. We will again use the model 'lp-numberOfPosts-model',
as in the mutate example.

CALL gds.alpha.ml.linkPrediction.predict.write('myGraph', {
  relationshipTypes: ['KNOWS'],
  modelName: 'lp-numberOfPosts-model',
  writeRelationshipType: 'KNOWS_PREDICTED',
  topN: 5,
  threshold: 0.45
}) YIELD relationshipsWritten
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Table 938. Results

relationshipsWritten

10

The end result looks like this:
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In yellow we highlight the predicted relationships.

7.8.6. Link prediction pipelines

Introduction

Link prediction is a common machine learning task applied to graphs: training a model to learn, between
pairs of nodes in a graph, where relationships should exist. More precisely, the input of the machine
learning model are examples of node pairs which are labeled as connected or not connected. The GDS
library provides Link prediction, see here. Here we describe an additional method that provides an end-to-
end Link prediction experience. In addition to managing a predictive model, it also manages:

• splitting relationships into subsets for test, train and feature-input

• a pipeline of processing steps that supply custom features for the model

The motivation for using pipelines are:

• easier to get splits right and prevent data leakage

• ensuring that the same feature creation steps are applied at predict and train time

• applying the trained model with a single procedure call

• persisting the pipeline as a whole

The rest of this page is divided as follows:

• Creating a pipeline
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• Adding node properties

• Adding link features

• Configuring the relationship splits

• Configuring the model parameters

• Training the pipeline

• Applying a trained model for prediction

Creating a pipeline

The first step of building a new pipeline is to create one using
gds.alpha.ml.pipeline.linkPrediction.create. This stores a trainable model object in the model catalog
of type Link prediction training pipeline. This represents a configurable pipeline that can later be
invoked for training, which in turn creates a trained pipeline. The latter is also a model which is stored in
the catalog with type Link prediction pipeline.

Syntax

Create pipeline syntax

CALL gds.alpha.ml.pipeline.linkPrediction.create(
  pipelineName: String
)
YIELD
  name: String,
  nodePropertySteps: List of Map,
  featureSteps: List of Map,
  splitConfig: Map,
  parameterSpace: List of Map

Table 939. Parameters

Name Type Description

pipelineName String The name of the created pipeline.

Table 940. Results

Name Type Description

name String Name of the pipeline.

nodeProperty
Steps

List of Map List of configurations for node property steps.

featureSteps List of Map List of configurations for feature steps.

splitConfig Map Configuration to define the split before the model training.

parameterSpa
ce

List of Map List of parameter configurations for models which the train mode uses for model selection.
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Example

The following will create a pipeline:

CALL gds.alpha.ml.pipeline.linkPrediction.create('pipe')

Table 941. Results

name nodePropertySteps featureSteps splitConfig parameterSpace

"pipe" [] [] {negativeSamplingRati
o=1.0,
testFraction=0.1,
validationFolds=3,
trainFraction=0.1}

[{useBiasFeature=true,
maxEpochs=100,
minEpochs=1,
penalty=0.0,
patience=1,
batchSize=100,
tolerance=0.001}]

This shows that the newly created pipeline does not contain any steps yet, and has defaults for the split
and train parameters.

Adding node properties

A link prediction pipeline can execute one or several GDS algorithms in mutate mode that create node
properties in the in-memory graph. Such steps producing node properties can be chained one after
another and created properties can also be used to add features. Moreover, the node property steps that
are added to the pipeline will be executed both when training a model and when the trained model is
applied for prediction.

The name of the procedure that should be added can be a fully qualified GDS procedure name ending with
.mutate. The ending .mutate may be omitted and one may also use shorthand forms such as node2vec
instead of gds.beta.node2vec.mutate.

For example, pre-processing algorithms can be used as node property steps.

Syntax

Add node property syntax

CALL gds.alpha.ml.pipeline.linkPrediction.addNodeProperty(
  pipelineName: String,
  procedureName: String,
  procedureConfiguration: Map
)
YIELD
  name: String,
  nodePropertySteps: List of Map,
  featureSteps: List of Map,
  splitConfig: Map,
  parameterSpace: List of Map

Table 942. Parameters
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Name Type Description

pipelineName String The name of the pipeline.

procedureName String The name of the procedure to be added to the pipeline.

procedureConfigur
ation

Map The configuration of the procedure, excluding graphName, nodeLabels and
relationshipTypes.

Table 943. Results

Name Type Description

name String Name of the pipeline.

nodeProperty
Steps

List of Map List of configurations for node property steps.

featureSteps List of Map List of configurations for feature steps.

splitConfig Map Configuration to define the split before the model training.

parameterSpa
ce

List of Map List of parameter configurations for models which the train mode uses for model selection.

Example

The following will add a node property step to the pipeline:

CALL gds.alpha.ml.pipeline.linkPrediction.addNodeProperty('pipe', 'fastRP', {
  mutateProperty: 'embedding',
  embeddingDimension: 256,
  randomSeed: 42
})

Table 944. Results

name nodePropertySteps featureSteps splitConfig parameterSpace

"pipe" [{name=gds.fastRP.mut
ate,
config={randomSeed=4
2,
embeddingDimension=
256,
mutateProperty=embe
dding}}]

[] {negativeSamplingRati
o=1.0,
testFraction=0.1,
validationFolds=3,
trainFraction=0.1}

[{useBiasFeature=true,
maxEpochs=100,
minEpochs=1,
penalty=0.0,
patience=1,
batchSize=100,
tolerance=0.001}]

The pipeline will now execute the fastRP algorithm in mutate mode both before training a model, and
when the trained model is applied for prediction. This ensures the embedding property can be used as an
input for link features.

Adding link features

A Link Prediction pipeline executes a sequence of steps to compute the features used by a machine
learning model. A feature step computes a vector of features for given node pairs. For each node pair, the
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results are concatenated into a single link feature vector. The order of the features in the link feature vector
follows the order of the feature steps. Like with node property steps, the feature steps are also executed
both at training and prediction time. The supported methods for obtaining features are described below.

Syntax

Adding a link feature to a pipeline syntax

CALL gds.alpha.ml.pipeline.linkPrediction.addFeature(
  pipelineName: String,
  featureType: String,
  configuration: Map
)
YIELD
  name: String,
  nodePropertySteps: List of Map,
  featureSteps: List of Map,
  splitConfig: Map,
  parameterSpace: List of Map

Table 945. Parameters

Name Type Description

pipelineName String The name of the pipeline.

featureType String The featureType determines the method used for computing the link feature. See
supported types.

configuration Map Configuration for splitting the relationships.

Table 946. Configuration

Name Type Default Description

nodeProperties List of String no The names of the node properties that should be used as input.

Table 947. Results

Name Type Description

name String Name of the pipeline.

nodeProperty
Steps

List of Map List of configurations for node property steps.

featureSteps List of Map List of configurations for feature steps.

splitConfig Map Configuration to define the split before the model training.

parameterSpa
ce

List of Map List of parameter configurations for models which the train mode uses for model selection.

Supported feature types

A feature step can use node properties that exist in the input graph or are added by the pipeline. For each
node in each potential link, the values of nodeProperties are concatenated, in the configured order, into a
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vector f. That is, for each potential link the feature vector for the source node, , is combined
with the one for the target node, , into a single feature vector f.

The supported types of features can then be described as follows:

Table 948. Supported feature types

Feature Type Formula / Description

L2

HADAMARD

COSINE

Example

The following will add a feature step to the pipeline:

CALL gds.alpha.ml.pipeline.linkPrediction.addFeature('pipe', 'hadamard', {
  nodeProperties: ['embedding', 'numberOfPosts']
}) YIELD featureSteps

Table 949. Results

featureSteps

[{name=HADAMARD, config={nodeProperties=[embedding, numberOfPosts]}}]

When executing the pipeline, the nodeProperties must be either present in the input graph, or created by
a previous node property step. For example, the embedding property could be created by the previous
example, and we expect numberOfPosts to already be present in the in-memory graph used as input, at
train and predict time.

Configuring the relationship splits

Link Prediction pipelines manage splitting the relationships into several sets and add sampled negative
relationships to some of these sets. Configuring the splitting is optional, and if omitted, splitting will be
done using default settings.

The splitting configuration of a pipeline can be inspected by using gds.beta.model.list and possibly only
yielding splitConfig.

The splitting of relationships proceeds internally in the following steps:

1. The graph is filtered according to specified nodeLabels and relationshipTypes, which are configured
at train time.

2. The relationships remaining after filtering we call positive, and they are split into a test set and
remaining relationships which we refer to as test-complement set.

◦ The test set contains a testFraction fraction of the positive relationships.
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◦ Random negative relationships are added to the test set. The number of negative relationships is
the number of positive ones multiplied by the negativeSamplingRatio.

◦ The negative relationships do not coincide with positive relationships.

3. The relationships in the test-complement set are split into a train set and a feature-input set.

◦ The train set contains a trainFraction fraction of the test-complement set.

◦ The feature-input set contains (1-trainFraction) fraction of the test-complement set.

◦ Random negative relationships are added to the train set. The number of negative relationships is
the number of positive ones multiplied by the negativeSamplingRatio.

◦ The negative relationships do not coincide with positive relationships, nor with test relationships.

The sampled positive and negative relationships are given relationship weights of 1.0 and 0.0 respectively
so that they can be distinguished.

The feature-input graph is used, both in training and testing, for computing node properties and
therefore also features which depend on node properties.

The train and test relationship sets are used for:

• determining the label (positive or negative) for each training or test example

• identifying the node pair for which link features are to be computed

However, they are not used by the algorithms run in the node property steps. The reason for this is that
otherwise the model would use the prediction target (existence of a relationship) as a feature.

Syntax

Configure the relationship split syntax

CALL gds.alpha.ml.pipeline.linkPrediction.configureSplit(
  pipelineName: String,
  configuration: Map
)
YIELD
  name: String,
  nodePropertySteps: List of Map,
  featureSteps: List of Map,
  splitConfig: Map,
  parameterSpace: List of Map

Table 950. Parameters

Name Type Description

pipelineName String The name of the pipeline.

configuration Map Configuration for splitting the relationships.

Table 951. Configuration
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Name Type Default Description

validationFolds Integer 3 Number of divisions of the training graph used during model selection.

testFraction Double 0.1 Fraction of the graph reserved for testing. Must be in the range (0, 1).

trainFraction Double 0.1 Fraction of the test-complement set reserved for training. Must be in
the range (0, 1).

negativeSampli
ngRatio

Double 1.0 The desired ratio of negative to positive samples in the test and train
set.

Table 952. Results

Name Type Description

name String Name of the pipeline.

nodeProperty
Steps

List of Map List of configurations for node property steps.

featureSteps List of Map List of configurations for feature steps.

splitConfig Map Configuration to define the split before the model training.

parameterSpa
ce

List of Map List of parameter configurations for models which the train mode uses for model selection.

Example

The following will configure the splitting of the pipeline:

CALL gds.alpha.ml.pipeline.linkPrediction.configureSplit('pipe', {
  testFraction: 0.3,
  trainFraction: 0.3,
  validationFolds: 7
})
YIELD splitConfig

Table 953. Results

splitConfig

{negativeSamplingRatio=1.0, testFraction=0.3, validationFolds=7, trainFraction=0.3}

We now reconfigured the splitting of the pipeline, which will be applied during training.

Configuring the model parameters

The gds.alpha.ml.pipeline.linkPrediction.configureParams mode is used to set up the train mode with
a list of configurations of logistic regression models. The set of model configurations is called the
parameter space which parametrizes a set of model candidates. The parameter space can be configured
by passing this procedure a list of maps, where each map configures the training of one logistic regression
model. In Training the pipeline, we explain further how the configured model candidates are trained,
evaluated and compared.
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The allowed model parameters are listed in the table Model configuration.

If configureParams is not used, then a single model with defaults for all the model parameters is used. The
parameter space of a pipeline can be inspected using gds.beta.model.list and optionally yielding only
parameterSpace.

Syntax

Configure the train parameters syntax

CALL gds.alpha.ml.pipeline.linkPrediction.configureParams(
  pipelineName: String,
  parameterSpace: List of Map
)
YIELD
  name: String,
  nodePropertySteps: List of Map,
  featureSteps: List of Map,
  splitConfig: Map,
  parameterSpace: List of Map

Table 954. Parameters

Name Type Description

pipelineName String The name of the pipeline.

parameterSpace List of Map The parameter space used to select the best model from. Each Map corresponds
to potential model. The allowed parameters for a model are defined in the next
table.

Table 955. Model configuration

Name Type Default Optional Description

penalty Float 0.0 yes Penalty used for the logistic regression. By default, no
penalty is applied.

batchSize Integer 100 yes Number of nodes per batch.

minEpochs Integer 1 yes Minimum number of training epochs.

maxEpochs Integer 100 yes Maximum number of training epochs.

patience Integer 1 yes Maximum number of unproductive consecutive epochs.

tolerance Float 0.001 yes The minimal improvement of the loss to be considered
productive.

useBiasFeatur
e

Boolean true yes Whether the logistic regression model uses a bias feature.

Table 956. Results

Name Type Description

name String Name of the pipeline.
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Name Type Description

nodeProperty
Steps

List of Map List of configurations for node property steps.

featureSteps List of Map List of configurations for feature steps.

splitConfig Map Configuration to define the split before the model training.

parameterSpa
ce

List of Map List of parameter configurations for models which the train mode uses for model selection.

Example

The following will configure the parameter space of the pipeline:

CALL gds.alpha.ml.pipeline.linkPrediction.configureParams('pipe',
  [{tolerance: 0.001}, {tolerance: 0.01}, {maxEpochs: 500}]
) YIELD parameterSpace

Table 957. Results

parameterSpace

[{useBiasFeature=true, maxEpochs=100, minEpochs=1, penalty=0.0, patience=1, batchSize=100, tolerance=0.001},
{useBiasFeature=true, maxEpochs=100, minEpochs=1, penalty=0.0, patience=1, batchSize=100, tolerance=0.01},
{useBiasFeature=true, maxEpochs=500, minEpochs=1, penalty=0.0, patience=1, batchSize=100, tolerance=0.001}]

The parameterSpace in the pipeline now contains the three different model parameters, expanded with the
default values. Each specified model configuration will be tried out during the model selection in training.

Training the pipeline

The train mode, gds.alpha.ml.pipeline.linkPrediction.train, is responsible for splitting data, feature
extraction, model selection, training and storing a model for future use. Running this mode results in a Link
prediction pipeline model being stored in the model catalog along with metrics collected during training.
The trained pipeline can be applied to a possibly different graph which produces a relationship type of
predicted links, each having a predicted probability stored as a property.

More precisely, the procedure will in order:

1. Apply nodeLabels and relationshipType filters to the graph. All subsequent graphs have the same
node set.

2. Create a relationship split of the graph into test, train and feature-input sets as described in
Configuring the relationship splits. These graphs are internally managed and exist only for the duration
of the training.

3. Apply the node property steps, added according to Adding node properties, on the feature-input
graph.

4. Apply the feature steps, added according to Adding link features, to the train graph, which yields for
each train relationship an instance, that is, a feature vector and a binary label.
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5. Split the training instances using stratified k-fold cross-validation. The number of folds k can be
configured using validationFolds in gds.alpha.ml.pipeline.linkPrediction.configureSplit.

6. Train each model candidate given by the parameter space for each of the folds and evaluate the model
on the respective validation set. The training process uses a logistic regression algorithm, and the
evaluation uses the AUCPR metric.

7. Declare as winner the model with the highest average metric across the folds.

8. Re-train the winning model on the whole training set and evaluate it on both the train and test sets.
In order to evaluate on the test set, the feature pipeline is first applied again as for the train set.

9. Register the winning model in the Model Catalog.


The above steps describe what the procedure does logically. The actual steps as well as
their ordering in the implementation may differ.


A step can only use node properties that are already present in the input graph or
produced by steps, which were added before.

Syntax

Run Link Prediction in train mode on a named graph:

CALL gds.alpha.ml.pipeline.linkPrediction.train(
  graphName: String,
  configuration: Map
) YIELD
  trainMillis: Integer,
  modelInfo: Map,
  configuration: Map

Table 958. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuration Map {} yes Configuration for algorithm-specifics and/or graph filtering.

Table 959. Configuration

Name Type Default Optional Description

modelName String n/a no The name of the model to train, must not exist in the Model
Catalog.

pipeline String n/a no The name of the pipeline to execute.

negativeClass
Weight

Float 1.0 yes Weight of negative examples in model evaluation. Positive
examples have weight 1.

randomSeed Integer n/a yes Seed for the random number generator used during training.

nodeLabels List of String ['*'] yes Filter the named graph using the given node labels.
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Name Type Default Optional Description

relationshipTy
pes

List of String ['*'] yes Filter the named graph using the given relationship types.
The relationships must be undirected.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm.

Table 960. Results

Name Type Description

trainMillis Integer Milliseconds used for training.

modelInfo Map Information about the training and the winning model.

configuration Map Configuration used for the train procedure.

The modelInfo can also be retrieved at a later time by using the Model List Procedure. The modelInfo
return field has the following algorithm-specific subfields:

Table 961. Model info fields

Name Type Description

bestParamete
rs

Map The model parameters which performed best on average on validation folds according to the
primary metric.

metrics Map Map from metric description to evaluated metrics for various models and subsets of the data,
see below.

trainingPipeli
ne

Map The pipeline used for the training.

The structure of modelInfo is:
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{
    bestParameters: Map,        ①
    trainingPipeline: Map       ②
    metrics: {                  ③
        AUCPR: {
            test: Float,        ④
            outerTrain: Float,  ⑤
            train: [{           ⑥
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            {
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            ...
            ],
            validation: [{      ⑦
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            {
                avg: Float,
                max: Float,
                min: Float,
                params: Map
            },
            ...
            ]
        }
    }
}

① The best scoring model candidate configuration.

② The pipeline used for the training.

③ The metrics map contains an entry for each metric description (currently only AUCPR) and the
corresponding results for that metric.

④ Numeric value for the evaluation of the best model on the test set.

⑤ Numeric value for the evaluation of the best model on the outer train set.

⑥ The train entry lists the scores over the train set for all candidate models (e.g., params). Each such
result is in turn also a map with keys params, avg, min and max.

⑦ The validation entry lists the scores over the validation set for all candidate models (e.g., params).
Each such result is in turn also a map with keys params, avg, min and max.

Example

In this example we will create a small graph and train the pipeline we have built up thus far. The graph
consists of a handful nodes connected in a particular pattern. The example graph looks like this:

633



KNOWS

KNOWS

K
N

O
W

S

KNOWS

K
N

O
W

S

KNOWS

KNOWS

KNOW
SKNOW

S
KNOWS

KN
O

W
S

KNOWS

Alice

Michael Karin

Chris

Will

Mark
Greg

Veselin

The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (alice:Person {name: 'Alice', numberOfPosts: 38}),
  (michael:Person {name: 'Michael', numberOfPosts: 67}),
  (karin:Person {name: 'Karin', numberOfPosts: 30}),
  (chris:Person {name: 'Chris', numberOfPosts: 132}),
  (will:Person {name: 'Will', numberOfPosts: 6}),
  (mark:Person {name: 'Mark', numberOfPosts: 32}),
  (greg:Person {name: 'Greg', numberOfPosts: 29}),
  (veselin:Person {name: 'Veselin', numberOfPosts: 3}),

  (alice)-[:KNOWS]->(michael),
  (michael)-[:KNOWS]->(karin),
  (michael)-[:KNOWS]->(chris),
  (michael)-[:KNOWS]->(greg),
  (will)-[:KNOWS]->(michael),
  (will)-[:KNOWS]->(chris),
  (mark)-[:KNOWS]->(michael),
  (mark)-[:KNOWS]->(will),
  (greg)-[:KNOWS]->(chris),
  (veselin)-[:KNOWS]->(chris),
  (karin)-[:KNOWS]->(veselin),
  (chris)-[:KNOWS]->(karin);

With the graph in Neo4j we can now project it into the graph catalog. We do this using a native projection
targeting the Person nodes and the KNOWS relationships. We will also project the numberOfPosts property,
so it can be used when creating link features. For the relationships we must use the UNDIRECTED
orientation. This is because the Link Prediction pipelines are defined only for undirected graphs.

The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
  'myGraph',
  {
    Person: {
      properties: ['numberOfPosts']
    }
  },
  {
    KNOWS: {
      orientation: 'UNDIRECTED'
    }
  }
)
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
The Link Prediction model requires the graph to be created using the UNDIRECTED
orientation for relationships.

The following will train a model using a pipeline:

CALL gds.alpha.ml.pipeline.linkPrediction.train('myGraph', {
  pipeline: 'pipe',
  modelName: 'lp-pipeline-model',
  randomSeed: 42
}) YIELD modelInfo
RETURN
  modelInfo.bestParameters AS winningModel,
  modelInfo.metrics.AUCPR.outerTrain AS trainGraphScore,
  modelInfo.metrics.AUCPR.test AS testGraphScore

Table 962. Results

winningModel trainGraphScore testGraphScore

{useBiasFeature=true, maxEpochs=100, minEpochs=1, penalty=0.0,
patience=1, batchSize=100, tolerance=0.001}

0.4166666666666666
3

0.7638888888888888

We can see the model configuration with tolerance = 0.001 (and defaults filled for remaining parameters)
was selected, and has a score of 0.76 on the test set. The score computed as the AUCPR metric, which is
in the range [0, 1]. A model which gives higher score to all links than non-links will have a score of 1.0, and
a model that assigns random scores will on average have a score of 0.5.

Applying a trained model for prediction

In the previous sections we have seen how to build up a Link Prediction training pipeline and train it to
produce a predictive model. After training, the runnable model is of type Link prediction pipeline and
resides in the model catalog.

The trained model can then be applied to a graph in the graph catalog to create a new relationship type
containing the predicted links. The relationships also have a property which stores the predicted
probability of the link, which can be seen as a relative measure of the model’s prediction confidence.

Since the model has been trained on features which are created using the feature pipeline, the same
feature pipeline is stored within the model and executed at prediction time. As during training,
intermediate node properties created by the node property steps in the feature pipeline are transient and
not visible after execution.

When using the model for prediction, the relationships of the input graph are used in two ways. First, the
input graph is fed into the feature pipeline and therefore influences predictions if there is at least one step
in the pipeline which uses the input relationships (typically any node property step does). Second,
predictions are carried out on each node pair that is not connected in the input graph.

The predicted links are sorted by score before the ones having score below the configured threshold are
discarded. Finally, the configured topN predictions are stored back to the in-memory graph.

It is necessary that the predict graph contains the properties that the pipeline requires and that the used
array properties have the same dimensions as in the train graph. If the predict and train graphs are distinct,
it is also beneficial that they have similar origins and semantics, so that the model is able to generalize
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well.

Syntax
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Link Prediction syntax per mode
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Run Link Prediction in mutate mode on a named graph:

CALL gds.alpha.ml.pipeline.linkPrediction.predict.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  postProcessingMillis: Integer,
  mutateMillis: Integer,
  relationshipsWritten: Integer,
  probabilityDistribution: Integer,
  samplingStats: Map,
  configuration: Map

Table 963. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 964. Configuration

Name Type Default Optional Description

modelNa
me

String n/a no The name of a Link Prediction model in the model
catalog.

nodeLabe
ls

List of
String

['*'] yes Filter the named graph using the given node labels.

relationsh
ipTypes

List of
String

['*'] yes Filter the named graph using the given relationship
types.

concurren
cy

Integer 4 yes The number of concurrent threads used for running the
algorithm.

mutateRe
lationship
Type

String n/a no The relationship type used for the new relationships
written to the in-memory graph.

mutatePr
operty

String 'probability' yes The relationship property in the GDS graph to which
the result is written.

Table 965. Algorithm specific configuration

Name Type Default Optional Description

sampleRate Float n/a no Sample rate to determine how many links are
considered for each node. If set to 1, all possible
links are considered, i.e., exhaustive search.
Otherwise, a kNN-based approximate search will
be used. Value must be between 0 (exclusive)
and 1 (inclusive).

topN [4] Integer n/a no Limit on predicted relationships to output.
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Name Type Default Optional Description

threshold [4] Float 0.0 yes Minimum predicted probability on relationships
to output.

topK [5] Integer 10 yes Limit on number of predicted relationships to
output for each node. This value cannot be lower
than 1.

deltaThreshold [5] Float 0.001 yes Value as a percentage to determine when to
stop early. If fewer updates than the configured
value happen, the algorithm stops. Value must
be between 0 (exclusive) and 1 (inclusive).

maxIterations [5] Integer 100 yes Hard limit to stop the algorithm after that many
iterations.

randomJoins [5] Integer 10 yes Between every iteration, how many attempts are
being made to connect new node neighbors
based on random selection.

randomSeed [5] Integer n/a yes The seed value to control the randomness of the
algorithm. Note that concurrency must be set to
1 when setting this parameter.

Table 966. Results

Name Type Description

createMillis Integer Milliseconds for creating the graph.

computeMilli
s

Integer Milliseconds for running the algorithm.

postProcessi
ngMillis

Integer Milliseconds for computing the global metrics.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

relationships
Written

Integer Number of relationships created.

probabilityDi
stribution

Map Description of distribution of predicted probabilities.

samplingSta
ts

Map Description of how predictions were sampled.

configuratio
n

Map Configuration used for running the algorithm.
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Run Link Prediction in stream mode on a named graph:

CALL gds.alpha.ml.pipeline.linkPrediction.predict.stream(
  graphName: String,
  configuration: Map
)
YIELD
  node1: Integer,
  node2: Integer,
  probability: Float

Table 967. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 968. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 969. Algorithm specific configuration

Name Type Default Optional Description

sampleRate Float n/a no Sample rate to determine how many links are
considered for each node. If set to 1, all possible
links are considered, i.e., exhaustive search.
Otherwise, a kNN-based approximate search will
be used. Value must be between 0 (exclusive)
and 1 (inclusive).

topN [6] Integer n/a no Limit on predicted relationships to output.

threshold [4] Float 0.0 yes Minimum predicted probability on relationships
to output.

topK [7] Integer 10 yes Limit on number of predicted relationships to
output for each node. This value cannot be lower
than 1.

deltaThreshold [5] Float 0.001 yes Value as a percentage to determine when to
stop early. If fewer updates than the configured
value happen, the algorithm stops. Value must
be between 0 (exclusive) and 1 (inclusive).

maxIterations [5] Integer 100 yes Hard limit to stop the algorithm after that many
iterations.
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Name Type Default Optional Description

randomJoins [5] Integer 10 yes Between every iteration, how many attempts are
being made to connect new node neighbors
based on random selection.

randomSeed [5] Integer n/a yes The seed value to control the randomness of the
algorithm. Note that concurrency must be set to
1 when setting this parameter.

Table 970. Results

Name Type Description

node1 Integer Node ID of the first node.

node2 Integer Node ID of the second node.

probability Float Predicted probability of a link between the nodes.

Example

In this example we will show how to use a trained model to predict new relationships in your in-memory
graph. In order to do this, we must first have an already trained model registered in the Model Catalog. We
will use the model which we trained in the train example which we gave the name lp-pipeline-model. The
algorithm excludes predictions for existing relationships in the graph as well as self-loops.

There are two different strategies for choosing which node pairs to consider when predicting new links,
exhaustive search and approximate search. Whereas the former considers all possible new links, the latter
will use a randomized strategy that only considers a subset of them in order to run faster. We will explain
each individually with examples in the mutate examples below.

Stream

CALL gds.alpha.ml.pipeline.linkPrediction.predict.stream('myGraph', {
  modelName: 'lp-pipeline-model',
  topN: 5,
  threshold: 0.45
})
 YIELD node1, node2, probability
 RETURN gds.util.asNode(node1).name AS person1, gds.util.asNode(node2).name AS person2, probability
 ORDER BY probability DESC, person1

We specified threshold to filter out predictions with probability less than 45%, and topN to further limit
output to the top 5 relationships.

Table 971. Results

person1 person2 probability

"Alice" "Chris" 0.5422350772807373
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person1 person2 probability

"Chris" "Mark" 0.5364414066546659

"Alice" "Mark" 0.5130009448848327

"Alice" "Karin" 0.5123040606165334

"Alice" "Greg" 0.51204718863418

We can see, that our model predicts the most likely link is between Alice and Chris.

Mutate

In these examples we will show how to write the predictions to your in-memory graph. We will use the
model lp-pipeline-model, that we trained in the train example.

Exhaustive search

The exhaustive search will simply run through all possible new links, that is, check all node pairs that are
not already connected by a relationship. For each such node pair the model we trained will be used to
predict whether there they should be connected be a link or not.

CALL gds.alpha.ml.pipeline.linkPrediction.predict.mutate('myGraph', {
  modelName: 'lp-pipeline-model',
  relationshipTypes: ['KNOWS'],
  mutateRelationshipType: 'KNOWS_EXHAUSTIVE_PREDICTED',
  topN: 5,
  threshold: 0.45
}) YIELD relationshipsWritten, samplingStats

We specify threshold to filter out predictions with probability less than 45%, and topN to further limit
output to the top 5 relationships. Note that we omit setting the sampleRate in our configuration as it
defaults to 1 implying that the exhaustive search strategy is used. Because we are using the UNDIRECTED
orientation, we will write twice as many relationships to the in-memory graph.

Table 972. Results

relationshipsWritten samplingStats

10 {linksConsidered=16, strategy=exhaustive}

As we can see in the samplingStats, we use the exhaustive search strategy and check 16 possible links
during the prediction. Indeed, since there are a total of 8 * (8 - 1) / 2 = 28 possible links in the graph
and we already have 12, that means we check all possible new links. Although 16 links were considered,
we only mutate the best five (since topN = 5) that are above our threshold.

If our graph is very large there may be a lot of possible new links. As such it may take a very long time to
run the predictions. It may therefore be a more viable option to use a search strategy that only looks at a
subset of all possible new links.
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Approximate search

To avoid possibly having to run for a very long time considering all possible new links (due to the inherent
quadratic complexity over node count) we can use an approximate search strategy.

The approximate search strategy lets us leverage the K-Nearest Neighbors algorithm with our model’s
prediction function as its similarity measure to trade off lower runtime for accuracy. Accuracy in this
context refers to how close we are in finding the very best actual new possible links according to our
models predictions, i.e. the best predictions that would be made by exhaustive search.

The initial set of considered links for each node is picked at random and then refined in multiple iterations
based of previously predicted links. The number of iterations is limited by the configuration parameter
maxIterations, and we also limit the number of random links considered between kNN iterations using
randomJoins. The algorithm may stop earlier if the link predictions per node only change by a small
amount, which can be controlled by the configuration parameter deltaThreshold. See the K-Nearest
Neighbors documentation for more details on how the search works.

CALL gds.alpha.ml.pipeline.linkPrediction.predict.mutate('myGraph', {
  modelName: 'lp-pipeline-model',
  relationshipTypes: ['KNOWS'],
  mutateRelationshipType: 'KNOWS_APPROX_PREDICTED',
  sampleRate: 0.5,
  topK: 1,
  randomJoins: 2,
  maxIterations: 3,
  // necessary for deterministic results
  concurrency: 1,
  randomSeed: 42
})
 YIELD relationshipsWritten, samplingStats

In order to use the approximate strategy we make sure to set the sampleRate explicitly to a value < 1.0. In
this small example we set topK = 1 to only get one link predicted for each node. Because we are using the
UNDIRECTED orientation, we will write twice as many relationships to the in-memory graph.

Table 973. Results

relationshipsWritten samplingStats

16 {linksConsidered=44, didConverge=true, strategy=approximate, ranIterations=2}

As we can see in the samplingStats, we use the approximate search strategy and check 44 possible links
during the prediction. Though in this small example we actually consider more links that in the exhaustive
case, this will typically not be the case for larger graphs. Since the relationships we write are undirected,
reported relationshipsWritten is 16 when we search for the best (topK = 1) prediction for each node.

7.9. Auxiliary procedures
Auxiliary procedures are extra tools that can be useful in your workflow.
The Neo4j GDS library includes the following auxiliary procedures, grouped by quality tier:

• Beta

◦ Graph Generation
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• Alpha

◦ Collapse Path

◦ Scale Properties

◦ One Hot Encoding

◦ Split Relationships

7.9.1. Graph Generation Beta

In certain use cases it is useful to generate random graphs, for example, for testing or benchmarking
purposes. For that reason the Neo4j Graph Algorithm library comes with a set of built-in graph generators.
The generator stores the resulting graph in the graph catalog. That graph can be used as input for any
algorithm in the library.

This algorithm is in the beta tier. For more information on algorithm tiers, see Algorithms.


It is currently not possible to persist these graphs in Neo4j. Running an algorithm in
write mode on a generated graph will lead to unexpected results.

The graph generation is parameterized by three dimensions:

• node count - the number of nodes in the generated graph

• average degree - describes the average out-degree of the generated nodes

• relationship distribution function - the probability distribution method used to connect generated
nodes

Syntax

The following describes the API for running the algorithm

CALL gds.beta.graph.generate(graphName: String, nodeCount: Integer, averageDegree: Integer, {
  relationshipDistribution: String,
  relationshipProperty: Map
})
YIELD name, nodes, relationships, generateMillis, relationshipSeed, averageDegree,
relationshipDistribution, relationshipProperty

Table 974. Parameters

Name Type Default Optional Description

graphName String null no The name under which the generated graph is stored.

nodeCount Integer null no The number of generated nodes.

averageDegree Integer null no The average out-degree of generated nodes.

configuration Map {} yes Additional configuration, see below.

Table 975. Configuration
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Name Type Default Optional Description

relationshipDistribution String UNIFORM yes The probability distribution method used to
connect generated nodes. For more information
see Relationship Distribution.

relationshipSeed Integer null yes The seed used for generating relationships.

relationshipProperty Map {} yes Describes the method used to generate a
relationship property. By default no relationship
property is generated. For more information see
Relationship Property.

aggregation String NONE yes The relationship aggregation method cf.
Relationship Projection.

orientation String NATURAL yes The method of orienting edges. Allowed values
are NATURAL, REVERSE and UNDIRECTED.

allowSelfLoops Boolean false yes Whether to allow relationships with identical
source and target node.

Table 976. Results

Name Type Description

name String The name under which the stored graph was stored.

nodes Integer The number of nodes in the graph.

relationships Integer The number of relationships in the graph.

generateMillis Integer Milliseconds for generating the graph.

relationshipSeed Integer The seed used for generating relationships.

averageDegree Float The average out degree of the generated nodes.

relationshipDistribution String The probability distribution method used to connect generated nodes.

relationshipProperty String The configuration of the generated relationship property.

Relationship Distribution

The relationshipDistribution parameter controls the statistical method used for the generation of new
relationships. Currently there are three supported methods:

• UNIFORM - Distributes the outgoing relationships evenly, i.e., every node has exactly the same out
degree (equal to the average degree). The target nodes are selected randomly.

• RANDOM - Distributes the outgoing relationships using a normal distribution with an average of
averageDegree and a standard deviation of 2 * averageDegree. The target nodes are selected
randomly.

• POWER_LAW - Distributes the incoming relationships using a power law distribution. The out degree is
based on a normal distribution.
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Relationship Seed

The relationshipSeed parameter allows, to generate graphs with the same relationships, if they have no
property. Currently the relationshipProperty is not seeded, therefore the generated graphs can differ in
their property values. Hence generated graphs based on the same relationshipSeed are not identical.

Relationship Property

The graph generator is capable of generating a relationship property. This can be controlled using the
relationshipProperty parameter which accepts the following parameters:

Table 977. Configuration

Name Type Default Optional Description

name String null no The name under which the property values are stored.

type String null no The method used to generate property values.

min Float 0.0 yes Minimal value of the generated property (only supported by
RANDOM).

max Float 1.0 yes Maximum value of the generated property (only supported by
RANDOM).

value Float null yes Fixed value assigned to every relationship (only supported by
FIXED).

Currently, there are two supported methods to generate relationship properties:

• FIXED - Assigns a fixed value to every relationship. The value parameter must be set.

• RANDOM - Assigns a random value between the lower (min) and upper (max) bound.

7.9.2. Collapse Path Alpha

Introduction

The Collapse Path algorithm is a traversal algorithm capable of creating relationships between the start
and end nodes of a traversal. In other words, the path between the start node and the end node is
collapsed into a single relationship (a direct path). The algorithm is intended to support the creation of
monopartite graphs required by many graph algorithms.

The main input for the algorithm is a list of relationship types. Starting from every node in the specified
graph, these relationship types are traversed one after the other using the order specified in the
configuration. Only nodes reached after traversing every relationship type specified are used as end nodes.
Exactly one relationship is created for every pair of nodes for which at least one path from start to end
node exists.

Syntax

646



Collapse Path syntax per mode
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Run Collapse Path in mutate mode on a named graph.

CALL gds.alpha.collapsePath.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  mutateMillis: Integer,
  relationshipsWritten: Integer,
  configuration: Map

Table 978. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 979. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of String ['*'] yes Filter the named graph using the given node labels.

concurrency Integer 4 yes The number of concurrent threads used for running the
algorithm.

Table 980. Algorithm specific configuration

Name Type Default Optional Description

relationship
Types

List of String n/a no Ordered list of relationship types used for the traversal.
The same relationship type can be added multiple
times, in order to traverse them as indicated.

mutateRelati
onshipType

String n/a no Relationship type of the newly created relationships.

allowSelfLoo
ps

Boolean false yes Indicates whether it is possible to create self
referencing relationships, i.e. relationships where the
start and end node are identical.

Table 981. Results

Name Type Description

createMilli
s

Integer Milliseconds for loading data.

computeMill
is

Integer Milliseconds for running the algorithm.

mutateMilli
s

Integer Milliseconds for adding properties to the in-memory graph.

relationshi
psWritten

Integer The number of relationships created by the algorithm.
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Name Type Description

configurati
on

Map The configuration used for running the algorithm.

Examples

Consider the graph created by the following Cypher statement:

CREATE
  (Dan:Person),
  (Annie:Person),
  (Matt:Person),
  (Jeff:Person),

  (Guitar:Instrument),
  (Flute:Instrument),

  (Dan)-[:PLAYS]->(Guitar),
  (Annie)-[:PLAYS]->(Guitar),

  (Matt)-[:PLAYS]->(Flute),
  (Jeff)-[:PLAYS]->(Flute)

In this example we want to create a relationship, called PLAYS_SAME_INSTRUMENT, between Person nodes
that play the same instrument. To achieve that we have to traverse a path specified by the following
Cypher pattern:

(p1:Person)-[:PLAYS]->(:Instrument)-[:PLAYED_BY]->(p2:Person)

In our source graph only the PLAYS relationship type exists. The PLAYED_BY relationship type can be created
by loading the PLAYS relationship type in REVERSE direction. The following query will create such a graph:

CALL gds.graph.create(
  'persons',
  ['Person', 'Instrument'],
  {
    PLAYS: {
      type: 'PLAYS',
      orientation: 'NATURAL'
    },
    PLAYED_BY: {
      type: 'PLAYS',
      orientation: 'REVERSE'
    }
})

Now we can run the algorithm by specifying the traversal PLAYS, PLAYED_BY in the relationshipTypes
option.

CALL gds.alpha.collapsePath.mutate(
  'persons',
  {
    relationshipTypes: ['PLAYS', 'PLAYED_BY'],
    allowSelfLoops: false,
    mutateRelationshipType: 'PLAYS_SAME_INSTRUMENT'
  }
) YIELD relationshipsWritten
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Table 982. Results

relationshipsWritten

4

The mutated graph will look like the following graph when filtered by the PLAYS_SAME_INSTRUMENT
relationship

CREATE
  (Dan:Person),
  (Annie:Person),
  (Matt:Person),
  (Jeff:Person),

  (Guitar:Instrument),
  (Flute:Instrument),

  (Dan)-[:PLAYS_SAME_INSTRUMENT]->(Annie),
  (Annie)-[:PLAYS_SAME_INSTRUMENT]->(Dan),

  (Matt)-[:PLAYS_SAME_INSTRUMENT]->(Jeff),
  (Jeff)-[:PLAYS_SAME_INSTRUMENT]->(Matt),

7.9.3. Scale Properties Alpha

Introduction

The Scale Properties algorithm is a utility algorithm that is used to pre-process node properties for model
training or post-process algorithm results such as PageRank scores. It scales the node properties based on
the specified scaler. Multiple properties can be scaled at once and are returned in a list property.

The input properties must be numbers or lists of numbers. The lists must all have the same size. The
output property will always be a list. The size of the output list is equal to the sum of length of the input
properties. That is, if the input properties are two scalar numeric properties and one list property of length
three, the output list will have a total length of five.

There are a number of supported scalers for the Scale Properties algorithm. These can be configured using
the scaler configuration parameter.

List properties are scaled index-by-index. See the list example for more details.

In the following equations, p denotes the vector containing all property values for a single property across
all nodes in the graph.

Min-max scaler

Scales all property values into the range [0, 1] where the minimum value(s) get the scaled value 0 and the
maximum value(s) get the scaled value 1, according to this formula:
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Max scaler

Scales all property values into the range [-1, 1] where the absolute maximum value(s) get the scaled
value 1, according to this formula:

Mean scaler

Scales all property values into the range [-1, 1] where the average value(s) get the scaled value 0.

Log scaler

Transforms all property values using the natural logarithm.

Standard Score

Scales all property values using the Standard Score (Wikipedia).

L1 Norm

Scales all property values into the range [0.0, 1.0].

L2 Norm

Scales all property values using the L2 Norm (Wikipedia).

Syntax

This section covers the syntax used to execute the Scale Properties algorithm in each of its execution
modes. We are describing the named graph variant of the syntax. To learn more about general syntax
variants, see Syntax overview.
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Scale Properties syntax per mode

Run Scale Properties in stream mode on a named graph.

CALL gds.alpha.scaleProperties.stream(
  graphName: String,
  configuration: Map
) YIELD
  nodeId: Integer,
  scaledProperty: List of Float

Table 983. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 984. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 985. Algorithm specific configuration

Name Type Default Optional Description

nodePropert
ies

List of String n/a no The names of the node properties that are to be scaled.
All property names must exist in the in-memory graph.

scaler String n/a no The name of the scaler applied for the properties.
Supported values are MinMax, Max, Mean, Log, L1Norm,
L2Norm and StdScore.

Table 986. Results

Name Type Description

nodeId Integer Node ID.

scaledPrope
rty

List of Float Scaled values for each input node property.
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Run Scale Properties in mutate mode on a named graph.

CALL gds.alpha.scaleProperties.mutate(
  graphName: String,
  configuration: Map
) YIELD
  createMillis: Integer,
  computeMillis: Integer,
  mutateMillis: Integer,
  postProcessingMillis: Integer,
  nodePropertiesWritten: Integer,
  configuration: Map

Table 987. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 988. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 989. Algorithm specific configuration

Name Type Default Optional Description

nodePropert
ies

List of String n/a no The names of the node properties that are to be scaled.
All property names must exist in the in-memory graph.

scaler String n/a no The name of the scaler applied for the properties.
Supported values are MinMax, Max, Mean, Log, L1Norm,
L2Norm and StdScore.

Table 990. Results

Name Type Description

createMillis Integer Milliseconds for loading data.

computeMilli
s

Integer Milliseconds for running the algorithm.

mutateMillis Integer Milliseconds for adding properties to the in-memory graph.

postProcessi
ngMillis

Integer Unused.
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Name Type Description

nodePropert
iesWritten

Integer Number of node properties written.

configuratio
n

Map Configuration used for running the algorithm.

Examples

In this section we will show examples of running the Scale Properties algorithm on a concrete graph. The
intention is to illustrate what the results look like and to provide a guide in how to make use of the
algorithm in a real setting. We will do this on a small hotel graph of a handful nodes connected in a
particular pattern. The example graph looks like this:

East

Plaza

CentralWest

Polar

Beach

Mountain

Forest

The following Cypher statement will create the example graph in the Neo4j database:

CREATE
  (:Hotel {avgReview: 4.2, buildYear: 1978, storyCapacity: [32, 32, 0], name: 'East'}),
  (:Hotel {avgReview: 8.1, buildYear: 1958, storyCapacity: [18, 20, 0], name: 'Plaza'}),
  (:Hotel {avgReview: 19.0, buildYear: 1999, storyCapacity: [100, 100, 70], name: 'Central'}),
  (:Hotel {avgReview: -4.12, buildYear: 2005, storyCapacity: [250, 250, 250], name: 'West'}),
  (:Hotel {avgReview: 0.01, buildYear: 2020, storyCapacity: [1250, 1250, 900], name: 'Polar'}),
  (:Hotel {avgReview: 3.3, buildYear: 1981, storyCapacity: [240, 240, 0], name: 'Beach'}),
  (:Hotel {avgReview: 6.7, buildYear: 1984, storyCapacity: [80, 0, 0], name: 'Mountain'}),
  (:Hotel {avgReview: -1.2, buildYear: 2010, storyCapacity: [55, 20, 0], name: 'Forest'})

With the graph in Neo4j we can now project it into the graph catalog to prepare it for algorithm execution.
We do this using a native projection targeting the Hotel nodes, including their properties. Note that no
relationships are necessary to scale the node properties. Thus we use a star projection ('*') for
relationships.


In the examples below we will use named graphs and native projections as the norm.
However, anonymous graphs and/or Cypher projections can also be used.
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The following statement will create a graph using a native projection and store it in the graph catalog
under the name 'myGraph'.

CALL gds.graph.create(
  'myGraph',
  'Hotel',
  '*',
  { nodeProperties: ['avgReview', 'buildYear', 'storyCapacity'] }
)

In the following examples we will demonstrate how to scale the node properties of this graph.

Stream

In the stream execution mode, the algorithm returns the scaled properties for each node. This allows us to
inspect the results directly or post-process them in Cypher without any side effects.

For more details on the stream mode in general, see Stream.

The following will run the algorithm in stream mode:

CALL gds.alpha.scaleProperties.stream('myGraph', {
  nodeProperties: ['buildYear', 'avgReview'],
  scaler: 'MinMax'
}) YIELD nodeId, scaledProperty
RETURN gds.util.asNode(nodeId).name AS name, scaledProperty
  ORDER BY name ASC

Table 991. Results

name scaledProperty

"Beach" [0.3709677419354839, 0.3209342560553633]

"Central" [0.6612903225806451, 1.0]

"East" [0.3225806451612903, 0.35986159169550175]

"Forest" [0.8387096774193549, 0.12629757785467127]

"Mountain" [0.41935483870967744, 0.4679930795847751]

"Plaza" [0.0, 0.5285467128027681]

"Polar" [1.0, 0.17863321799307957]

"West" [0.7580645161290323, 0.0]

In the results we can observe that the first element in the resulting scaledProperty we get the min-max-
scaled values for buildYear, where the Plaza hotel has the minimum value and is scaled to zero, while the
Polar hotel has the maximum value and is scaled to one. This can be verified with the example graph. The
second value in the scaledProperty result are the scaled values of the avgReview property.
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Mutate

The mutate execution mode enables updating the named graph with a new node property containing the
scaled properties for that node. The name of the new property is specified using the mandatory
configuration parameter mutateProperty. The result is a single summary row containing metrics from the
computation. The mutate mode is especially useful when multiple algorithms are used in conjunction.

For more details on the mutate mode in general, see Mutate.

In this example we will scale the two hotel properties of buildYear and avgReview using the Mean scaler.
The output is a list property which we will call hotelFeatures, imagining that we will use this as input for a
machine learning model later on.

The following will run the algorithm in mutate mode:

CALL gds.alpha.scaleProperties.mutate('myGraph', {
  nodeProperties: ['buildYear', 'avgReview'],
  scaler: 'Mean',
  mutateProperty: 'hotelFeatures'
}) YIELD nodePropertiesWritten

Table 992. Results

nodePropertiesWritten

8

The result shows that there are now eight new node properties in the in-memory graph. These contain the
scaled values from the input properties, where the scaled buildYear values are in the first list position and
scaled avgReview values are in the second position. To find out how to inspect the new schema of the in-
memory graph, see Listing graphs in the catalog.

List properties

The storyCapacity property models the amount of rooms on each story of the hotel. The property is
normalized so that hotels with fewer stories have a zero value. This is because the Scale Properties
algorithm requires that all values for the same property have the same length. In this example we will
show how to scale the values in these lists using the Scale Properties algorithm. We imagine using the
output as feature vector to input in a machine learning algorithm. Additionally, we will include the
avgReview property in our feature vector.

The following will run the algorithm in mutate mode:

CALL gds.alpha.scaleProperties.stream('myGraph', {
  nodeProperties: ['avgReview', 'storyCapacity'],
  scaler: 'StdScore'
}) YIELD nodeId, scaledProperty
RETURN gds.util.asNode(nodeId).name AS name, scaledProperty AS features
  ORDER BY name ASC

Table 993. Results
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name features

"Beach" [-0.17956547594003253, -0.03401933556831381,
0.00254261210704973, -0.5187592498702616]

"Central" [2.172199255871029, -0.3968922482969945,
-0.3534230828799124, -0.2806402499298136]

"East" [-0.0447509371737933, -0.5731448059080679,
-0.526320706159294, -0.5187592498702616]

"Forest" [-0.8536381697712284, -0.513529970245499,
-0.5568320514438908, -0.5187592498702616]

"Mountain" [0.32973389273242665, -0.4487312358296632,
-0.6076842935848854, -0.5187592498702616]

"Plaza" [0.5394453974799097, -0.609432097180936,
-0.5568320514438908, -0.5187592498702616]

"Polar" [-0.672387512096618, 2.583849534831454,
2.5705808402272767, 2.542770749364069]

"West" [-1.2910364511016934, -0.00809984180197948,
0.027968733177547028, 0.3316657499170525]

The resulting feature vector contains the standard-score scaled value for the avgReview property in the first
list position. We can see that some values are negative and that the maximum value sticks out for the
Central hotel.

The other three list positions are the scaled values for the storyCapacity list property. Note that each list
item is scaled only with respect to the corresponding item in the other lists. Thus, the Polar hotel has the
greatest scaled value in all list positions.

7.9.4. One Hot Encoding Alpha

The One Hot Encoding function is used to convert categorical data into a numerical format that can be
used by Machine Learning libraries.

This algorithm is in the alpha tier. For more information on algorithm tiers, see Algorithms.

One Hot Encoding sample

One hot encoding will return a list equal to the length of the available values. In the list, selected values
are represented by 1, and unselected values are represented by 0.

The following will run the algorithm on hardcoded lists:

RETURN gds.alpha.ml.oneHotEncoding(['Chinese', 'Indian', 'Italian'], ['Italian']) AS embedding

Table 994. Results

embedding

[0,0,1]
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The following will create a sample graph:

CREATE (french:Cuisine {name:'French'}),
       (italian:Cuisine {name:'Italian'}),
       (indian:Cuisine {name:'Indian'}),

       (zhen:Person {name: "Zhen"}),
       (praveena:Person {name: "Praveena"}),
       (michael:Person {name: "Michael"}),
       (arya:Person {name: "Arya"}),

       (praveena)-[:LIKES]->(indian),
       (zhen)-[:LIKES]->(french),
       (michael)-[:LIKES]->(french),
       (michael)-[:LIKES]->(italian)

The following will return a one hot encoding for each user and the types of cuisine that they like:

MATCH (cuisine:Cuisine)
WITH cuisine
  ORDER BY cuisine.name
WITH collect(cuisine) AS cuisines
MATCH (p:Person)
RETURN p.name AS name, gds.alpha.ml.oneHotEncoding(cuisines, [(p)-[:LIKES]->(cuisine) | cuisine]) AS
embedding
  ORDER BY name

Table 995. Results

name embedding

Arya [0,0,0]

Michael [1,0,1]

Praveena [0,1,0]

Zhen [1,0,0]

Table 996. Parameters

Name Type Default Optional Description

availableVal
ues

list null yes The available values. If null, the function will return an empty
list.

selectedValu
es

list null yes The selected values. If null, the function will return a list of all
0’s.

Table 997. Results

Type Description

list One hot encoding of the selected values.

7.9.5. Split Relationships Alpha

Introduction

The Split relationships algorithm is a utility algorithm that is used to pre-process a graph for model
training. It splits the relationships into a holdout set and a remaining set. The holdout set is divided into
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two classes: positive, i.e., existing relationships, and negative, i.e., non-existing relationships. The class is
indicated by a label property on the relationships. This enables the holdout set to be used for training or
testing a machine learning model. Both, the holdout and the remaining relationships are added to the in-
memory graph.

If the configuration option relationshipWeightProperty is specified, then the corresponding relationship
property is preserved on the remaining set of relationships. Note however that the holdout set only has the
label property; it is not possible to induce relationship weights on the holdout set as it also contains
negative samples.

Syntax

This section covers the syntax used to execute the Split Relationships algorithm in each of its execution
modes. We are describing the named graph variant of the syntax. To learn more about general syntax
variants, see Syntax overview.
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Split Relationships syntax per mode
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Run Split Relationships in mutate mode on a named graph.

CALL gds.alpha.ml.splitRelationships.mutate(
  graphName: String,
  configuration: Map
)
YIELD
  createMillis: Integer,
  computeMillis: Integer,
  mutateMillis: Integer,
  relationshipsWritten: Integer,
  configuration: Map

Table 998. Parameters

Name Type Default Optional Description

graphName String n/a no The name of a graph stored in the catalog.

configuratio
n

Map {} yes Configuration for algorithm-specifics and/or graph
filtering.

Table 999. General configuration for algorithm execution on a named graph.

Name Type Default Optional Description

nodeLabels List of
String

['*'] yes Filter the named graph using the given node
labels.

relationshipTypes List of
String

['*'] yes Filter the named graph using the given
relationship types.

concurrency Integer 4 yes The number of concurrent threads used for
running the algorithm.

Table 1000. Algorithm specific configuration

Name Type Default Optional Description

holdoutFract
ion

Float n/a no The fraction of all relationships being used as holdout
set.

negativeSa
mplingRatio

Float n/a no The desired ratio of negative to positive samples in
holdout set.

holdoutRelat
ionshipType

String n/a no Relationship type used for the holdout set. Each
relationship has a property label indicating whether it
is a positive or negative sample.

remainingRe
lationshipTy
pe

String n/a no Relationship type used for the remaining set.

nonNegative
Relationship
Types

List of String n/a yes Additional relationship types that are used for negative
sampling.

relationship
WeightProp
erty

String null yes Name of the relationship property that is inherited by
the remainingRelationshipType.
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Name Type Default Optional Description

randomSeed Integer n/a yes An optional seed value for the random selection of
relationships.

Table 1001. Results

Name Type Description

createMilli
s

Integer Milliseconds for loading data.

computeMill
is

Integer Milliseconds for running the algorithm.

mutateMilli
s

Integer Milliseconds for adding properties to the in-memory graph.

relationshi
psWritten

Integer The number of relationships created by the algorithm.

configurati
on

Map The configuration used for running the algorithm.

Examples

In this section we will show examples of running the Split Relationships algorithm on a concrete graph.
The intention is to illustrate what the results look like and to provide a guide in how to make use of the
algorithm in a real setting. We will do this on a small graph of a handful nodes connected in a particular
pattern. The example graph looks like this:

TYPE

TYPE

TYPE

TYPE

TY
PE

0 1

2

34

5

Consider the graph created by the following Cypher statement:
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CREATE
    (n0:Label),
    (n1:Label),
    (n2:Label),
    (n3:Label),
    (n4:Label),
    (n5:Label),

    (n0)-[:TYPE { prop: 0} ]->(n1),
    (n1)-[:TYPE { prop: 1} ]->(n2),
    (n2)-[:TYPE { prop: 4} ]->(n3),
    (n3)-[:TYPE { prop: 9} ]->(n4),
    (n4)-[:TYPE { prop: 16} ]->(n5)

Given the above graph, we want to use 20% of the relationships as holdout set. The holdout set will be
split into two same-sized classes: positive and negative. Positive relationships will be randomly selected
from the existing relationships and marked with a property label: 1. Negative relationships will be
randomly generated, i.e., they do not exist in the input graph, and are marked with a property label: 0.

CALL gds.graph.create(
    'graph',
    'Label',
    { TYPE: { orientation: 'UNDIRECTED' } }
)

Now we can run the algorithm by specifying the appropriate ratio and the output relationship types. We
use a random seed value in order to produce deterministic results.

CALL gds.alpha.ml.splitRelationships.mutate('graph', {
    holdoutRelationshipType: 'TYPE_HOLDOUT',
    remainingRelationshipType: 'TYPE_REMAINING',
    holdoutFraction: 0.2,
    negativeSamplingRatio: 1.0,
    randomSeed: 1337
}) YIELD relationshipsWritten

Table 1002. Results

relationshipsWritten

10

The input graph consists of 5 relationships. We use 20% (1 relationship) of the relationships to create the
'TYPE_HOLDOUT' relationship type (holdout set). This creates 1 relationship with positive label. Because
of the negativeSamplingRatio, one relationship with negative label is also created. Finally, the
TYPE_REMAINING relationship type is formed with the remaining 80% (4 relationships). These are written as
orientation UNDIRECTED which counts as writing 8 relationships.
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The mutated graph will look like the following graph when filtered by the TEST and TRAIN relationship.

CREATE
    (n0:Label),
    (n1:Label),
    (n2:Label),
    (n3:Label),
    (n4:Label),
    (n5:Label),

    (n2)-[:TYPE_HOLDOUT { label: 0 } ]->(n5), // negative, non-existing
    (n3)-[:TYPE_HOLDOUT { label: 1 } ]->(n2), // positive, existing

    (n0)<-[:TYPE_REMAINING { prop: 0} ]-(n1),
    (n1)<-[:TYPE_REMAINING { prop: 1} ]-(n2),
    (n3)<-[:TYPE_REMAINING { prop: 9} ]-(n4),
    (n4)<-[:TYPE_REMAINING { prop: 16} ]-(n5),
    (n0)-[:TYPE_REMAINING { prop: 0} ]->(n1),
    (n1)-[:TYPE_REMAINING { prop: 1} ]->(n2),
    (n3)-[:TYPE_REMAINING { prop: 9} ]->(n4),
    (n4)-[:TYPE_REMAINING { prop: 16} ]->(n5)

7.10. Pregel API

7.10.1. Introduction

Pregel is a vertex-centric computation model to define your own algorithms via a user-defined compute
function. Node values can be updated within the compute function and represent the algorithm result. The
input graph contains default node values or node values from a graph projection.

The compute function is executed in multiple iterations, also called supersteps. In each superstep, the
compute function runs for each node in the graph. Within that function, a node can receive messages from
other nodes, typically its neighbors. Based on the received messages and its currently stored value, a node
can compute a new value. A node can also send messages to other nodes, typically its neighbors, which
are received in the next superstep. The algorithm terminates after a fixed number of supersteps or if no
messages are being sent between nodes.

A Pregel computation is executed in parallel. Each thread executes the compute function for a batch of
nodes.

For more information about Pregel, have a look at https://kowshik.github.io/JPregel/pregel_paper.pdf.

To implement your own Pregel algorithm, the Graph Data Science library provides a Java API, which is
described below.

The introduction of a new Pregel algorithm can be separated in two main steps. First, we need to
implement the algorithm using the Pregel Java API. Second, we need to expose the algorithm via a Cypher
procedure to make use of it.

For an example on how to expose a custom Pregel computation via a Neo4j procedure, have a look at the
Pregel examples.

7.10.2. Pregel Java API

The Pregel Java API allows us to easily build our own algorithm by implementing several interfaces.
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Computation

The first step is to implement the org.neo4j.gds.beta.pregel.PregelComputation interface. It is the main
interface to express user-defined logic using the Pregel framework.

The Pregel computation

public interface PregelComputation<C extends PregelConfig> {
    // The schema describes the node property layout.
    PregelSchema schema();
    // Called in the first superstep and allows initializing node state.
    default void init(PregelContext.InitContext<C> context) {}
    // Called in each superstep for each node and contains the main logic.
    void compute(PregelContext.ComputeContext<C> context, Pregel.Messages messages);
    // Called exactly once at the end of each superstep by a single thread.
    default void masterCompute(MasterComputeContext<C> context) {}
    // Used to combine all messages sent to a node to a single value.
    default Optional<Reducer> reducer() {
        return Optional.empty();
    }
    // Used to apply a relationship weight on a message.
    default double applyRelationshipWeight(double message, double relationshipWeight);
}

Pregel node values are composite values. The schema describes the layout of that composite value. Each
element of the schema can represent either a primitive long or double value as well as arrays of those. The
element is uniquely identified by a key, which is used to access the value during the computation. Details
on schema declaration can be found in the dedicated section.

The init method is called in the beginning of the first superstep of the Pregel computation and allows
initializing node values. The interface defines an abstract compute method, which is called for each node in
every superstep. Algorithm-specific logic is expressed within the compute method. The context parameter
provides access to node properties of the in-memory graph and the algorithm configuration.

The compute method is called individually for each node in every superstep as long as the node receives
messages or has not voted to halt yet. Since an implementation of PregelComputation is stateless, a node
can only communicate with other nodes via messages. In each superstep, a node receives messages and
can send new messages via the context parameter. Messages can be sent to neighbor nodes or any node
if its identifier is known.

The masterCompute method is called exactly once at the end of each superstep. It is executed by a single
thread and can be used to modify a global state based on the current computation state. Details on using a
master computation can be found in the dedicated section.

An optional reducer can be used to define a function that is being applied on messages sent to a single
node. It takes two arguments, the current value and a message value, and produces a new value. The
function is called repeatedly, once for each message that is sent to a node. Eventually, only one message
will be received by the node in the next superstep. By defining a reducer, memory consumption and
computation runtime can be improved significantly. Check the dedicated section for more details.

The applyRelationshipWeight method can be used to modify the message based on a relationship
property. If the input graph has no relationship properties, i.e. is unweighted, the method is skipped.
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Pregel schema

In Pregel, each node is associated with a value which can be accessed from within the compute method.
The value is typically used to represent intermediate computation state and eventually the computation
result. To represent complex state, the node value is a composite type which consists of one or more
named values. From the perspective of the compute function, each of these values can be accessed by its
name.

When implementing a PregelComputation, one must override the schema() method. The following example
shows the simplest possible example:

PregelSchema schema() {
    return PregelSchema.Builder().add("foobar", ValueType.LONG).build();
}

The node value consists of a single value named foobar which is of type long. A node value can be of any
GDS-supported type, i.e. long, double, long[], double[] and float[].

We can add an arbitrary number of values to the schema:

PregelSchema schema() {
    return PregelSchema.Builder()
        .add("foobar", ValueType.LONG)
        .add("baz", ValueType.DOUBLE)
        .build();
}

Note, that each property consumes additional memory when executing the algorithm, which typically
amounts to the number of nodes multiplied by the size of a single value (e.g. 64 Bit for a long or double).

The add method on the builder takes a third argument: Visibility. There are two possible values: PUBLIC
(default) and PRIVATE. The visibility is considered during procedure code generation to indicate if the value
is part of the Pregel result or not. Any value that has visibility PUBLIC will be part of the computation result
and included in the result of the procedure, e.g., streamed to the caller, mutated to the in-memory graph or
written to the database.

The following shows a schema where one value is used as result and a second value is only used during
computation:

PregelSchema schema() {
    return PregelSchema.Builder()
        .add("result", ValueType.LONG, Visiblity.PUBLIC)
        .add("tempValue", ValueType.DOUBLE, Visiblity.PRIVATE)
        .build();
}

Init context and compute context

The main purpose of the two context objects is to enable the computation to communicate with the Pregel
framework. A context is stateful, and all its methods are subject to the current superstep and the currently
processed node. Both context objects share a set of methods, e.g., to access the config and node state.
Additionally, each context adds context-specific methods.
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The org.neo4j.gds.beta.pregel.PregelContext.InitContext is available in the init method of a Pregel
computation. It provides access to node properties stored in the in-memory graph. We can set the initial
node state to a fixed value, e.g. the node id, or use graph properties and the user-defined configuration to
initialize a context-dependent state.

The InitContext

public final class InitContext {
    // The currently processed node id.
    public long nodeId();
    // User-defined Pregel configuration
    public PregelConfig config();
    // Sets a double node value for the given schema key.
    public void setNodeValue(String key, double value);
    // Sets a long node value for the given schema key.
    public void setNodeValue(String key, long value);
    // Sets a double array node value for the given schema key.
    public void setNodeValue(String key, double[] value);
    // Sets a long array node value for the given schema key.
    public void setNodeValue(String key, long[] value);
    // Number of nodes in the input graph.
    public long nodeCount();
    // Number of relationships in the input graph.
    public long relationshipCount();
    // Number of relationships of the current node.
    public int degree();
    // Available node property keys in the input graph.
    public Set<String> nodePropertyKeys();
    // Node properties stored in the input graph.
    public NodeProperties nodeProperties(String key);
}

In contrast, org.neo4j.gds.beta.pregel.PregelContext.ComputeContext can be accessed inside the
compute method. The context provides methods to access the computation state, e.g. the current
superstep, and to send messages to other nodes in the graph.
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The ComputeContext

public final class ComputeContext {
    // The currently processed node id.
    public long nodeId();
    // User-defined Pregel configuration
    public PregelConfig config();
    // Sets a double node value for the given schema key.
    public void setNodeValue(String key, double value);
    // Sets a long node value for the given schema key.
    public void setNodeValue(String key, long value);
    // Number of nodes in the input graph.
    public long nodeCount();
    // Number of relationships in the input graph.
    public long relationshipCount();
    // Indicates whether the input graph is a multi-graph.
    public boolean isMultiGraph();
    // Number of relationships of the current node.
    public int degree();
    // Double value for the given node schema key.
    public double doubleNodeValue(String key);
    // Double value for the given node schema key.
    public long longNodeValue(String key);
    // Double array value for the given node schema key.
    public double[] doubleArrayNodeValue(String key);
    // Long array value for the given node schema key.
    public long[] longArrayNodeValue(String key);
    // Notify the framework that the node intends to stop its computation.
    public void voteToHalt();
    // Indicates whether this is superstep 0.
    public boolean isInitialSuperstep();
    // 0-based superstep identifier.
    public int superstep();
    // Sends the given message to all neighbors of the node.
    public void sendToNeighbors(double message);
    // Sends the given message to the target node.
    public void sendTo(long targetNodeId, double message);
    // Stream of neighbor ids of the current node.
    public LongStream getNeighbours();
}

Master Computation

Some Pregel programs may require logic that is executed after all threads have finished the current
superstep, for example, to reset or evaluate a global data structure. This can be achieved by overriding the
org.neo4j.gds.beta.pregel.PregelComputation.masterCompute function of the PregelComputation. This
function will be called at the end of each superstep after all compute threads have finished. The master
compute function will be called by a single thread.

The masterCompute function has access to the
org.neo4j.gds.beta.pregel.PregelContext.MasterComputeContext. That context is similar to the
ComputeContext but is not tied to a specific node and does not allow sending messages. Furthermore, the
MasterComputeContext allows to run a function for every node in the graph and has access to the
computation state of all nodes.
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The MasterComputeContext

public final class MasterComputeContext {
    // User-defined Pregel configuration
    public PregelConfig config();
    // Number of nodes in the input graph.
    public long nodeCount();
    // Number of relationships in the input graph.
    public long relationshipCount();
    // Indicates whether the input graph is a multi-graph.
    public boolean isMultiGraph();
    // Run the given consumer for every node in the graph.
    public void forEachNode(LongPredicate consumer);
    // Double value for the given node schema key.
    public double doubleNodeValue(long nodeId, String key);
    // Double value for the given node schema key.
    public long longNodeValue(long nodeId, String key);
    // Double array value for the given node schema key.
    public double[] doubleArrayNodeValue(long nodeId, String key);
    // Long array value for the given node schema key.
    public long[] longArrayNodeValue(long nodeId, String key);
    // Sets a double node value for the given schema key.
    public void setNodeValue(long nodeId, String key, double value);
    // Sets a long node value for the given schema key.
    public void setNodeValue(long nodeId, String key, long value);
    // Sets a double array node value for the given schema key.
    public void setNodeValue(long nodeId, String key, double[] value);
    // Sets a long array node value for the given schema key.
    public void setNodeValue(long nodeId, String key, long[] value);
    // Indicates whether this is superstep 0.
    public boolean isInitialSuperstep();
    // 0-based superstep identifier.
    public int superstep();
}

Message reducer

Many Pregel computations rely on computing a single value from all messages being sent to a node. For
example, the page rank algorithm computes the sum of all messages being sent to a single node. In those
cases, a reducer can be used to combine all messages to a single value. If applicable, this optimization
improves memory consumption and computation runtime.

By default, a Pregel computation does not make use of a reducer. All messages sent to a node are stored
in a queue and received in the next superstep. To enable message reduction, one needs to implement the
reducer method and provide either a custom or a pre-defined reducer.

The Reducer interface that needs to be implemented.

public interface Reducer {
    // The identity element is used as the initial value.
    double identity();
    // Computes a new value based on the current value and the message.
    double reduce(double current, double message);
}

The identity value is used as the initial value for the current argument in the reduce function. All
subsequent calls use the result of the previous call as current value.

The framework already provides implementations for computing the minimum, maximum, sum and count
of messages. The default implementations are part of the Reducer interface and can be applied as follows:
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Applying the sum reducer in a custom computation.

public class CustomComputation implements PregelComputation<PregelConfig> {

    @Override
    public void compute(PregelContext.ComputeContext<CustomConfig> context, Pregel.Messages messages) {
        // ...
        for (var message : messages) {
            // ...
        }
    }

    @Override
    public Optional<Reducer> reducer() {
        return Optional.of(new Reducer.Sum());
    }
}

The implementation of the compute method does not need to be adapted. If a reducer is present, the
messages iterator contains either zero or one message. Note, that defining a reducer precludes running the
computation with asynchronous messaging. The isAsynchronous flag at the config is ignored in that case.

Configuration

To configure the execution of a custom Pregel computation, the framework requires a configuration. The
org.neo4j.gds.beta.pregel.PregelConfig provides the minimum set of options to execute a computation.
The configuration options also map to the parameters that can later be set via a custom procedure. This is
equivalent to all the other algorithms within the GDS library.

Table 1003. Pregel Configuration

Name Type Default
Value

Description

maxIteration
s

Integer - Maximum number of supersteps after which the computation will terminate.

isAsynchron
ous

Boolean false Flag indicating if messages can be sent and received in the same superstep.

partitioning String "range" Selects the partitioning of the input graph, can be either "range", "degree" or
"auto".

relationship
WeightProp
erty

String null Name of the relationship property to use as weights. If unspecified, the algorithm
runs unweighted.

concurrency Integer 4 Concurrency used when executing the Pregel computation.

writeConcur
rency

Integer concurrency Concurrency used when writing computation results to Neo4j.

writePropert
y

String "pregel_" Prefix string that is prepended to node schema keys in write mode.

mutateProp
erty

String "pregel_" Prefix string that is prepended to node schema keys in mutate mode.

For some algorithms, we want to specify additional configuration options.
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Typically, these options are algorithm specific arguments, such as thresholds. Another reason for a custom
config relates to the initialization phase of the computation. If we want to init the node state based on a
graph property, we need to access that property via its key. Since those keys are dynamic properties of the
graph, we need to provide them to the computation. We can achieve that by declaring an option to set that
key in a custom configuration.

If a user-defined Pregel computation requires custom options a custom configuration can be created by
extending the PregelConfig.

A custom configuration and how it can be used in the init phase.

@ValueClass
@Configuration
public interface CustomConfig extends PregelConfig {
    // A property key that refers to a seed property.
    String seedProperty();
    // An algorithm specific parameter.
    int minDegree();
}

public class CustomComputation implements PregelComputation<CustomConfig> {

    @Override
    public void init(PregelContext.InitContext<CustomConfig> context) {
        // Use the custom config key to access a graph property.
        var seedProperties = context.nodeProperties(context.config().seedProperty());
        // Init the node state with the graph property for that node.
        context.setNodeValue("state", seedProperties.doubleValue(context.nodeId()));
    }

    @Override
    public void compute(PregelContext.ComputeContext<CustomConfig> context, Pregel.Messages messages) {
        if (context.degree() >= context.config().minDegree()) {
            // ...
        }
    }

    // ...
}

7.10.3. Run Pregel via Cypher

To make a custom Pregel computation accessible via Cypher, it needs to be exposed via the procedure
API. The Pregel framework in GDS provides an easy way to generate procedures for all the default modes.

Procedure generation

To generate procedures for a computation, it needs to be annotated with the
@org.neo4j.gds.beta.pregel.annotation.PregelProcedure annotation. In addition, the config parameter
of the custom computation must be a subtype of org.neo4j.gds.beta.pregel.PregelProcedureConfig.

Using the @PregelProcedure annotation to configure code generation.

@PregelProcedure(
    name = "custom.pregel.proc",
    modes = {GDSMode.STREAM, GDSMode.WRITE},
    description = "My custom Pregel algorithm"
)
public class CustomComputation implements PregelComputation<PregelProcedureConfig> {
    // ...
}
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The annotation provides a number of configuration options for the code generation.

Table 1004. Configuration

Name Type Default
Value

Description

name String - The prefix of the generated procedure name. It is appended by the mode.

modes List [STREAM,
WRITE,
MUTATE,
STATS]

A procedure is generated for each of the specified modes.

description String "" Procedure description that is printed in dbms.listProcedures().

For the above Code snippet, we generate four procedures:

• custom.pregel.proc.stream

• custom.pregel.proc.stream.estimate

• custom.pregel.proc.write

• custom.pregel.proc.write.estimate

Note that by default, all values specified in the PregelSchema are included in the procedure results. To
change that behaviour, we can change the visibility for individual parts of the schema. For more details,
please refer to the dedicated documentation section.

Building and installing a Neo4j plugin

In order to use a Pregel algorithm in Neo4j via a procedure, we need to package it as Neo4j plugin. The
pregel-bootstrap project is a good starting point. The build.gradle file within the project contains all the
dependencies necessary to implement a Pregel algorithm and to generate corresponding procedures.

Make sure to change the gdsVersion and neo4jVersion according to your setup. GDS and Neo4j are
runtime dependencies. Therefore, GDS needs to be installed as a plugin on the Neo4j server.

To build the project and create a plugin jar, just run:

./gradlew shadowJar

You can find the pregel-bootstrap.jar in build/libs. The jar needs to be placed in the plugins directory
within your Neo4j installation alongside a GDS plugin jar. In order to have access to the procedure in
Cypher, its namespace potentially needs to be added to the neo4j.conf file.

Enabling an example procedure in neo4j.conf

dbms.security.procedures.unrestricted=custom.pregel.proc.*
dbms.security.procedures.allowlist=custom.pregel.proc.*


Before Neo4j 4.2, the configuration setting is called
dbms.security.procedures.whitelist
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7.10.4. Examples

The pregel-examples module contains a set of examples for Pregel algorithms. The algorithm
implementations demonstrate the usage of the Pregel API. Along with each example, we provide test
classes that can be used as a guideline on how to write tests for custom algorithms. To play around, we
recommend copying one of the algorithms into the pregel-bootstrap project, build it and setup the plugin
in Neo4j.

[4] Only applicable in the exhaustive search.
[5] Only applicable in the approximate strategy. For more details look at the syntax section of kNN
[6] Only applicable in the exhaustive search.
[7] Only applicable in the approximate strategy. For more details look at the syntax section of kNN
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Chapter 8. End-to-end examples
For each algorithm in the Algorithms pages we have small examples of limited scope that demonstrate the
usage of that particular algorithm, typically only using that one algorithm. The purpose of this section is
show how the algorithms in GDS can be used to solve fairly realistic use cases end-to-end, typically using
several algorithms in each example.

• Product recommendation engine using FastRP and kNN

8.1. FastRP and kNN example
In this example we consider a graph of products and customers, and we want to find new products to
recommend for each customer. We want to use the K-Nearest Neighbors algorithm (kNN) to identify
similar customers and base our product recommendations on that. In order to be able to leverage
topological information about the graph in kNN, we will first create node embeddings using FastRP. These
embeddings will then be the input to the kNN algorithm.

For each pair of similar customers we can then recommend products that have been purchased by one of
the customers but not the other, using a simple cypher query.

8.1.1. Graph creation

We will start by creating our graph of products and customers in the database. The amount relationship
property represents the average weekly amount of money spent by a customer on a given product.
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Consider the graph created by the following Cypher statement:

CREATE
 (dan:Person {name: 'Dan'}),
 (annie:Person {name: 'Annie'}),
 (matt:Person {name: 'Matt'}),
 (jeff:Person {name: 'Jeff'}),
 (brie:Person {name: 'Brie'}),
 (elsa:Person {name: 'Elsa'}),

 (cookies:Product {name: 'Cookies'}),
 (tomatoes:Product {name: 'Tomatoes'}),
 (cucumber:Product {name: 'Cucumber'}),
 (celery:Product {name: 'Celery'}),
 (kale:Product {name: 'Kale'}),
 (milk:Product {name: 'Milk'}),
 (chocolate:Product {name: 'Chocolate'}),

 (dan)-[:BUYS {amount: 1.2}]->(cookies),
 (dan)-[:BUYS {amount: 3.2}]->(milk),
 (dan)-[:BUYS {amount: 2.2}]->(chocolate),

 (annie)-[:BUYS {amount: 1.2}]->(cucumber),
 (annie)-[:BUYS {amount: 3.2}]->(milk),
 (annie)-[:BUYS {amount: 3.2}]->(tomatoes),

 (matt)-[:BUYS {amount: 3}]->(tomatoes),
 (matt)-[:BUYS {amount: 2}]->(kale),
 (matt)-[:BUYS {amount: 1}]->(cucumber),

 (jeff)-[:BUYS {amount: 3}]->(cookies),
 (jeff)-[:BUYS {amount: 2}]->(milk),

 (brie)-[:BUYS {amount: 1}]->(tomatoes),
 (brie)-[:BUYS {amount: 2}]->(milk),
 (brie)-[:BUYS {amount: 2}]->(kale),
 (brie)-[:BUYS {amount: 3}]->(cucumber),
 (brie)-[:BUYS {amount: 0.3}]->(celery),

 (elsa)-[:BUYS {amount: 3}]->(chocolate),
 (elsa)-[:BUYS {amount: 3}]->(milk);

The graph can be visualized in the following way:

Now we can proceed to create an in-memory graph which we can run the algorithms on.
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Create the in-memory graph and store it in the graph catalog:

CALL gds.graph.create(
  'purchases',
  ['Person','Product'],
  {
    BUYS: {
      orientation: 'UNDIRECTED',
      properties: 'amount'
    }
  }
)

8.1.2. FastRP embedding

Now we run the FastRP algorithm to generate node embeddings that capture topological information from
the graph. We choose to work with embeddingDimension set to 4 which is sufficient since our example
graph is very small. The iterationWeights are chosen empirically to yield sensible results. Please see the
syntax section of the FastRP documentation for more information on these parameters. Since we want to
use the embeddings as input when we run kNN later we use FastRP’s mutate mode.

Create node embeddings using FastRP:

CALL gds.fastRP.mutate('purchases',
  {
    embeddingDimension: 4,
    randomSeed: 42,
    mutateProperty: 'embedding',
    relationshipWeightProperty: 'amount',
    iterationWeights: [0.8, 1, 1, 1]
  }
)
YIELD nodePropertiesWritten

Table 1005. Results

nodePropertiesWritten

13

8.1.3. Similarities with kNN

Now we can run kNN to identify similar nodes by using the node embeddings that we generated with
FastRP as nodeWeightProperty. Since we are working with a small graph, we can set sampleRate to 1 and
deltaThreshold to 0 without having to worry about long computation times. The concurrency parameter is
set to 1 (along with the fixed randomSeed) in order to get a deterministic result. Please see the syntax
section of the kNN documentation for more information on these parameters. Note that we use the
algorithm’s write mode to write the properties and relationships back to our database, so that we can
analyze them later using Cypher.
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Run kNN with FastRP node embeddings as input:

CALL gds.beta.knn.write('purchases', {
    topK: 2,
    nodeWeightProperty: 'embedding',
    randomSeed: 42,
    concurrency: 1,
    sampleRate: 1.0,
    deltaThreshold: 0.0,
    writeRelationshipType: "SIMILAR",
    writeProperty: "score"
})
YIELD nodesCompared, relationshipsWritten, similarityDistribution
RETURN nodesCompared, relationshipsWritten, similarityDistribution.mean as meanSimilarity

Table 1006. Results

nodesCompared relationshipsWritten meanSimilarity

13 26 0.8341259589562049

As we can see the mean similarity between nodes is quite high. This is due to the fact that we have a small
example where there are no long paths between nodes leading to many similar FastRP node embeddings.

8.1.4. Results exploration

Let us now inspect the results of our kNN call by using Cypher. We can use the SIMILARITY relationship
type to filter out the relationships we are interested in. And since we just care about similarities between
people for our product recommendation engine, we make sure to only match nodes with the Person label.

List pairs of people that are similar:

MATCH (n:Person)-[r:SIMILAR]->(m:Person)
RETURN n.name as person1, m.name as person2, r.score as similarity
ORDER BY similarity DESCENDING, person1, person2

Table 1007. Results

person1 person2 similarity

"Annie" "Matt" 0.9661740064620972

"Matt" "Annie" 0.9661740064620972

"Dan" "Elsa" 0.9606010317802429

"Elsa" "Dan" 0.9606010317802429

"Jeff" "Annie" 0.6309423446655273

Our kNN results indicate among other things that the Person nodes named "Annie" and "Matt" are very
similar. Looking at the BUYS relationships for these two nodes we can see that such a conclusion makes
sense. They both buy three products, two of which are the same (Product nodes named "Cucumber" and
"Tomatoes") for both people and with similar amounts. We therefore have high confidence in our
approach.
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8.1.5. Making recommendations

Using the information we derived that the Person nodes named "Annie" and "Matt" are similar, we can
make product recommendations for each of them. Since they are similar, we can assume that products
purchased by only one of the people may be of interest to buy also for the other person not already buying
the product. By this principle we can derive product recommendations for the Person named "Matt" using
a simple Cypher query.

Product recommendations for Person node with name "Matt":

MATCH (:Person {name: "Annie"})-->(p1:Product)
WITH collect(p1) as products
MATCH (:Person {name: "Matt"})-->(p2:Product)
WHERE not p2 in products
RETURN p2.name as recommendation

Table 1008. Results

recommendation

"Kale"

Indeed, "Kale" is the one product that the Person named "Annie" buys that is also not purchased by the
Person named "Matt".

8.1.6. Conclusion

Using two GDS algorithms and some basic Cypher we were easily able to derive some sensible product
recommendations for a customer in our small example.

To make sure to get similarities to other customers for every customer in our graph with kNN, we could
play around with increasing the topK parameter.
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Chapter 9. Production deployment
This chapter is divided into the following sections:

• Transaction Handling

• Using GDS and Fabric

• GDS Feature Toggles

9.1. Transaction Handling

9.1.1. During graph projection

During graph projection, new transactions are used that do not inherit the transaction state of the Cypher
transaction. This means that changes from the Cypher transaction state are not visible to the graph
projection transactions.

For example, the following statement will only create an empty graph (assuming the MyLabel label was not
already present in the Neo4j database):

CREATE (n:MyLabel) // the new node is part of Cypher transaction state
WITH *
CALL gds.graph.create('myGraph', 'MyLabel', '*')
YIELD nodeCount
RETURN nodeCount

Table 1009. Results

nodeCount

0

The situation is the same when using an anonymous projection with an algorithm procedure:

CREATE (n:MyWccLabel) // the new node is part of Cypher transaction state
WITH *
CALL gds.wcc.stats({nodeProjection: 'MyWccLabel', relationshipProjection:'*'})
YIELD componentCount
RETURN componentCount

Table 1010. Results

componentCount

0

9.1.2. During results writing

Results from algorithms (node properties, for example) are written to the graph in new transactions. The
number of transactions used depends on the size of the results and the writeConcurrency configuration
parameter (for more details, please refer to sections Write and Common Configuration parameters). These
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transactions are committed independently from the Cypher transaction. This means, if the Cypher
transaction is terminated (either by the user or by the database system), already committed write
transactions will not be rolled back.

Transaction writing examples


The code in this section is for illustrative purposes. The goal is to demonstrate correct
usage of the GDS library write functionality with Cypher Shell and Java API.

Cypher Shell

Example for incorrect use.

:BEGIN

// Create the in-memory graph
CALL gds.graph.create.cypher(
  'test',
  'MATCH (n) WHERE n:Artist OR n:Genre RETURN id(n) AS id',
  'MATCH (a:Artist)<-[:RELEASED_BY]-(:Album)-[:HAS_GENRE]->(g:Genre)
   RETURN id(g) AS source, id(a) AS target, "IS_ASSOCIATED_WITH" AS type'
);

// Delete the old stuff
MATCH ()-[r:SIMILAR_TO]->() DELETE r;

// Run the algorithm
CALL gds.nodeSimilarity.write(
  'test', {
    writeRelationshipType: 'SIMILAR_TO',
    writeProperty: 'score'
  }
);

:COMMIT

The issue with the above statement is that all the queries run in the same transaction.

A correct handling of the above statement would be to run each statement in its own transaction, which is
shown below. Notice the reordering of the statements, this ensures that the in-memory graph will have
the most recent changes after the removal of the relationships.

First remove the unwanted relationships.

:BEGIN

MATCH ()-[r:SIMILAR_TO]->() DELETE r;

:COMMIT

Create the in-memory graph.
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:BEGIN

CALL gds.graph.create.cypher(
  'test',
  'MATCH (n) WHERE n:Artist OR n:Genre RETURN id(n) AS id',
  'MATCH (a:Artist)<-[:RELEASED_BY]-(:Album)-[:HAS_GENRE]->(g:Genre)
   RETURN id(g) AS source, id(a) AS target, "IS_ASSOCIATED_WITH" AS type'
);

:COMMIT

Run the algorithm.

:BEGIN

CALL gds.nodeSimilarity.write(
  'test', {
    writeRelationshipType: 'SIMILAR_TO',
    writeProperty: 'score'
  }
);

:COMMIT

Java API

The same issue can be seen using the Java API, the examples are below.

Constants used throughout the examples below:

// Removes the in-memory graph (if exists) from the graph catalog
static final String CYPHER_DROP_GDS_GRAPH_IF_EXISTS =
    "CALL gds.graph.drop('test', false)";

// Creates the in-memory graph
static final String CYPHER_CREATE_GDS_GRAPH_ARTIST_GENRE =
    "CALL gds.graph.create.cypher(" +
    "    'test', " +
    "    'MATCH (n) WHERE n:Artist OR n:Genre RETURN id(n) AS id', " +
    "    'MATCH (a:Artist)<-[:RELEASED_BY]-(:Album)-[:HAS_GENRE]->(g:Genre) " +
    "       RETURN id(g) AS source, id(a) AS target, \"IS_ASSOCIATED_WITH\" AS type'" +
    ")";

// Runs NodeSimilarity in `write` mode over the in-memory graph
static final String CYPHER_WRITE_SIMILAR_TO =
    "CALL gds.nodeSimilarity.write(" +
    "   'test', {" +
    "       writeRelationshipType: 'SIMILAR_TO'," +
    "       writeProperty: 'score'"+
    "   }"
    ");";

Incorrect use:

try (var session = driver.session()) {
    var params = Map.<String, Object>of("graphName", "genre-related-to-artist");
    session.writeTransaction(tx -> {
        tx.run(CYPHER_DROP_GDS_GRAPH_IF_EXISTS, params).consume();
        tx.run(CYPHER_CREATE_GDS_GRAPH_ARTIST_GENRE, params).consume();
        tx.run("MATCH ()-[r:SIMILAR_TO]->() DELETE r").consume();
        return tx.run(CYPHER_WRITE_SIMILAR_TO, params).consume();
    });
}
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Here we are facing the same issue with running everything in the same transaction. This can be written
correctly by splitting each statement in its own transaction.

Correct handling of the statements:

try (var session = driver.session()) {

    // First run the remove statement
    session.writeTransaction(tx -> {
        return tx.run("MATCH ()-[r:SIMILAR_TO]->() DELETE r").consume();
    });

    // Create the in-memory graph
    var params = Map.<String, Object>of("graphName", "genre-related-to-artist");
    session.writeTransaction(tx -> {
        tx.run(CYPHER_DROP_GDS_GRAPH_IF_EXISTS, params).consume();
        return tx.run(CYPHER_CREATE_GDS_GRAPH_ARTIST_GENRE, params).consume();
    });

    // Run the algorithm
    session.writeTransaction(tx -> {
        return tx.run(CYPHER_WRITE_SIMILAR_TO, params).consume();
    });
}
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Chapter 10. Transaction termination
The Cypher transaction can be terminated by either the user or the database system. This will eventually
terminate all transactions that have been opened during graph projection, algorithm execution, or results
writing. It is not immediately visible and can take a moment for the transactions to recognize that the
Cypher transaction has been terminated.

10.1. Using GDS and Fabric
Neo4j Fabric is a way to store and retrieve data in multiple databases, whether they are on the same Neo4j
DBMS or in multiple DBMSs, using a single Cypher query. For more information about Fabric itself, please
visit the documentation.

A typical Neo4j Fabric setup consists of two components: one or more shards that hold the data and one
or more Fabric proxies that coordinate the distributed queries. Currently, the way of running the Neo4j
Graph Data Science library in a Fabric deployment is to run GDS on the shards. Executing GDS on a Fabric
proxy is currently not supported.

10.1.1. Running GDS on the Shards

In this mode of using GDS in a Fabric environment, the GDS operations are executed on the shards. The
graph projections and algorithms are then executed on each shard individually, and the results can be
combined via the Fabric proxy. This scenario is useful, if the graph is partitioned into disjoint subgraphs
across shards, i.e. there is no logical relationship between nodes on different shards. Another use case is to
replicate the graph’s topology across multiple shards, where some shards act as operational and others as
analytical databases.

Setup

In this scenario we need to set up the shards to run the Neo4j Graph Data Science library.

Every shard that will run the Graph Data Science library should be configured just as a standalone GDS
database would be, for more information see Installation.

The Fabric proxy nodes do not require any special configuration, i.e., the GDS library plugin does not need
to be installed. However, the proxy nodes should be configured to handle the amount of data received
from the shards.

Examples

Let’s assume we have a Fabric setup with two shards. One shard functions as the operational database
and holds a graph with the schema (Person)-[KNOWS]→(Person). Every Person node also stores an
identifying property id and the persons name and possibly other properties.

The other shard, the analytical database, stores a graph with the same data, except that the only property
is the unique identifier.

Using Fabric, we can now calculate the PageRank score for each Person and join the results with the name
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of that Person.

CALL {
  USE FABRIC_DB_NAME.ANALYTICS_DB
  CALL gds.pagerank.stream({nodeProjection: 'Person', relationshipProjection: 'KNOWS'})
  YIELD nodeId, score AS pageRank
  RETURN gds.util.asNode(nodeId).id AS personId, pageRank
}
CALL {
  USE FABRIC_DB_NAME.OPERATIONAL_DB
  WITH personId
  MATCH (p {id: personId})
  RETURN p.name AS name
}
RETURN name, personId, pageRank

The query first connects to the analytical database where the PageRank algorithm computes the rank for
each node of an anonymous graph. The algorithm results are streamed to the proxy, together with the
unique node id. For every row returned by the first subquery, the operational database is then queried for
the persons name, again using the unique node id to identify the Person node across the shards.

Limitations

• It is not possible to run algorithms across shards.

10.2. GDS Feature Toggles


Feature toggles are not considered part of the public API and can be removed or
changed between minor releases of the GDS Library.

10.2.1. BitIdMap Feature Toggle Enterprise edition

GDS Enterprise Edition uses a different in-memory graph implementation that is consuming less memory
compared to the GDS Community Edition. This in-memory graph implementation performance depends on
the underlying graph size and topology. It can be slower for write procedures and graph creation of
smaller graphs. To switch to the more memory intensive implementation used in GDS Community Edition
you can disable this feature by using the following procedure call.

CALL gds.features.useBitIdMap(false)

10.2.2. Uncompressed Adjacency List Toggle

The in-memory graph for GDS is based on the Compressed Sparse Row (CSR) layout and uses
compressed adjacency lists by default. The compression lowers the memory usage for a graph but
requires additional computation time to decompress during algorithm execution. Using an uncompressed
adjacency list will result in higher memory consumption in order to provide faster traversals. It can also
have negative performance impacts due to the increased resident memory size. Using more memory
requires a higher memory bandwidth to read the same adjacency list. Whether compressed or
uncompressed is better heavily depends on the topology of the graph and the algorithm. Algorithms that
are traversal heavy, such as triangle counting, have a higher chance of benefiting from an uncompressed
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adjacency list. Very dense nodes in graphs with a very skewed degree distribution ("power law") often
achieve a higher compression ratio. Using the uncompressed adjacency list on those graphs has a higher
chance of running into memory bandwidth limitations.

To switch to uncompressed adjacency lists, use the following procedure call.

CALL gds.features.useUncompressedAdjacencyList(true)

To switch to compressed adjacency lists, use the following procedure call.

CALL gds.features.useUncompressedAdjacencyList(false)

To reset the setting to the default value, use the following procedure call.

CALL gds.features.useUncompressedAdjacencyList.reset() YIELD enabled

10.2.3. Reordered Adjacency List Toggle

The in-memory graph for GDS writes adjacency lists out of order due to the way the data is read from the
underlying store. This feature toggle will add a step during graph creation in which the adjacency lists will
be reordered to follow the internal node ids. That reordering results in a CSR representation that is closer
to the textbook layout, where the adjacency lists are written in node id order. Reordering can have benefits
for some graphs and some algorithms because adjacency lists that will be traversed by the same thread
are more likely to be stored close together in memory (caches). The order depends on the GDS internal
node ids that are assigned in the in-memory graph and not on the node ids loaded from the underlying
Neo4j store.

To enable reordering, use the following procedure call.

CALL gds.features.useReorderedAdjacencyList(true)

To disable reordering, use the following procedure call.

CALL gds.features.useReorderedAdjacencyList(false)

To reset the setting to the default value, use the following procedure call.

CALL gds.features.useReorderedAdjacencyList.reset() YIELD enabled

Appendix A: Operations reference
The operations in the Graph Data Science library can be divided into the following categories:

• Graph Catalog

• Model Catalog
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• Graph Algorithms

• Additional Operations

10.A.1. Graph Catalog

Production-quality tier

Table 1011. List of all production-quality graph operations in the GDS library. Functions are written in
italic.

Description Operation

Create Graph

gds.graph.create

gds.graph.create.estimate

gds.graph.create.cypher

gds.graph.create.cypher.estimate

Check if a named graph exists
gds.graph.exists

gds.graph.exists

List graphs gds.graph.list

Remove node properties from a named graph gds.graph.removeNodeProperties

Delete relationships from a named graph gds.graph.deleteRelationships

Remove a named graph from memory gds.graph.drop

Stream a single node property to the procedure caller gds.graph.streamNodeProperty

Stream node properties to the procedure caller gds.graph.streamNodeProperties

Stream a single relationship property to the procedure caller gds.graph.streamRelationshipProperty

Stream relationship properties to the procedure caller gds.graph.streamRelationshipProperties

Write node properties to Neo4j gds.graph.writeNodeProperties

Write relationships to Neo4j gds.graph.writeRelationship

Graph Export gds.graph.export

Beta Tier

Table 1012. List of all beta graph operations in the GDS library. Functions are written in italic.

Description Operation

Create a graph from a named graph gds.beta.graph.create.subgraph

Generate Random Graph gds.beta.graph.generate

CSV Export
gds.beta.graph.export.csv

gds.beta.graph.export.csv.estimate
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10.A.2. Model Catalog

Beta Tier

Table 1013. List of all beta model catalog operations in the GDS library. Functions are written in italic.

Description Operation

Check if a model exists gds.beta.model.exists

Remove a model from memory gds.beta.model.drop

List models gds.beta.model.list

Alpha Tier

Table 1014. List of all alpha model catalog operations in the GDS library. Functions are written in italic.

Description Operation

Store a model gds.alpha.model.store

Load a stored model gds.alpha.model.load

Delete a stored model gds.alpha.model.delete

Publish a model gds.alpha.model.publish

10.A.3. Graph Algorithms

Algorithms exist in one of three tiers of maturity:

• Production-quality

◦ Indicates that the algorithm has been tested with regards to stability and scalability.

◦ Algorithms in this tier are prefixed with gds.<algorithm>.

• Beta

◦ Indicates that the algorithm is a candidate for the production-quality tier.

◦ Algorithms in this tier are prefixed with gds.beta.<algorithm>.

• Alpha

◦ Indicates that the algorithm is experimental and might be changed or removed at any time.

◦ Algorithms in this tier are prefixed with gds.alpha.<algorithm>.

Production-quality tier

Table 1015. List of all production-quality algorithms in the GDS library. Functions are written in italic.
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Algorithm name Operation

Label Propagation

gds.labelPropagation.mutate

gds.labelPropagation.mutate.estimate

gds.labelPropagation.write

gds.labelPropagation.write.estimate

gds.labelPropagation.stream

gds.labelPropagation.stream.estimate

gds.labelPropagation.stats

gds.labelPropagation.stats.estimate

Louvain

gds.louvain.mutate

gds.louvain.mutate.estimate

gds.louvain.write

gds.louvain.write.estimate

gds.louvain.stream

gds.louvain.stream.estimate

gds.louvain.stats

gds.louvain.stats.estimate

Node Similarity

gds.nodeSimilarity.mutate

gds.nodeSimilarity.mutate.estimate

gds.nodeSimilarity.write

gds.nodeSimilarity.write.estimate

gds.nodeSimilarity.stream

gds.nodeSimilarity.stream.estimate

gds.nodeSimilarity.stats

gds.nodeSimilarity.stats.estimate

PageRank

gds.pageRank.mutate

gds.pageRank.mutate.estimate

gds.pageRank.write

gds.pageRank.write.estimate

gds.pageRank.stream

gds.pageRank.stream.estimate

gds.pageRank.stats

gds.pageRank.stats.estimate
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Algorithm name Operation

Weakly Connected Components

gds.wcc.mutate

gds.wcc.mutate.estimate

gds.wcc.write

gds.wcc.write.estimate

gds.wcc.stream

gds.wcc.stream.estimate

gds.wcc.stats

gds.wcc.stats.estimate

Triangle Count

gds.triangleCount.stream

gds.triangleCount.stream.estimate

gds.triangleCount.stats

gds.triangleCount.stats.estimate

gds.triangleCount.write

gds.triangleCount.write.estimate

gds.triangleCount.mutate

gds.triangleCount.mutate.estimate

Local Clustering Coefficient

gds.localClusteringCoefficient.stream

gds.localClusteringCoefficient.stream.estimate

gds.localClusteringCoefficient.stats

gds.localClusteringCoefficient.stats.estimate

gds.localClusteringCoefficient.write

gds.localClusteringCoefficient.write.estimate

gds.localClusteringCoefficient.mutate

gds.localClusteringCoefficient.mutate.estimate

Betweenness Centrality

gds.betweenness.stream

gds.betweenness.stream.estimate

gds.betweenness.stats

gds.betweenness.stats.estimate

gds.betweenness.mutate

gds.betweenness.mutate.estimate

gds.betweenness.write

gds.betweenness.write.estimate

689



Algorithm name Operation

Fast Random Projection

gds.fastRP.mutate

gds.fastRP.mutate.estimate

gds.fastRP.stats

gds.fastRP.stats.estimate

gds.fastRP.stream

gds.fastRP.stream.estimate

gds.fastRP.write

gds.fastRP.write.estimate

Degree Centrality

gds.degree.mutate

gds.degree.mutate.estimate

gds.degree.stats

gds.degree.stats.estimate

gds.degree.stream

gds.degree.stream.estimate

gds.degree.write

gds.degree.write.estimate

ArticleRank

gds.articleRank.mutate

gds.articleRank.mutate.estimate

gds.articleRank.write

gds.articleRank.write.estimate

gds.articleRank.stream

gds.articleRank.stream.estimate

gds.articleRank.stats

gds.articleRank.stats.estimate

Eigenvector

gds.eigenvector.mutate

gds.eigenvector.mutate.estimate

gds.eigenvector.write

gds.eigenvector.write.estimate

gds.eigenvector.stream

gds.eigenvector.stream.estimate

gds.eigenvector.stats

gds.eigenvector.stats.estimate

690



Algorithm name Operation

Shortest Path Dijkstra

gds.shortestPath.dijkstra.stream

gds.shortestPath.dijkstra.stream.estimate

gds.shortestPath.dijkstra.write

gds.shortestPath.dijkstra.write.estimate

gds.shortestPath.dijkstra.mutate

gds.shortestPath.dijkstra.mutate.estimate

All Shortest Paths Dijkstra

gds.allShortestPaths.dijkstra.stream

gds.allShortestPaths.dijkstra.stream.estimate

gds.allShortestPaths.dijkstra.write

gds.allShortestPaths.dijkstra.write.estimate

gds.allShortestPaths.dijkstra.mutate

gds.allShortestPaths.dijkstra.mutate.estimate

Shortest Paths Yens

gds.shortestPath.yens.stream

gds.shortestPath.yens.stream.estimate

gds.shortestPath.yens.write

gds.shortestPath.yens.write.estimate

gds.shortestPath.yens.mutate

gds.shortestPath.yens.mutate.estimate

Shortest Path AStar

gds.shortestPath.astar.stream

gds.shortestPath.astar.stream.estimate

gds.shortestPath.astar.write

gds.shortestPath.astar.write.estimate

gds.shortestPath.astar.mutate

gds.shortestPath.astar.mutate.estimate

Beta tier

Table 1016. List of all beta algorithms in the GDS library. Functions are written in italic.

Algorithm name Operation

GraphSAGE

gds.beta.graphSage.stream

gds.beta.graphSage.stream.estimate

gds.beta.graphSage.mutate

gds.beta.graphSage.mutate.estimate

gds.beta.graphSage.write

gds.beta.graphSage.write.estimate

gds.beta.graphSage.train

gds.beta.graphSage.train.estimate
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Algorithm name Operation

K1Coloring

gds.beta.k1coloring.mutate

gds.beta.k1coloring.mutate.estimate

gds.beta.k1coloring.stats

gds.beta.k1coloring.stats.estimate

gds.beta.k1coloring.stream

gds.beta.k1coloring.stream.estimate

gds.beta.k1coloring.write

gds.beta.k1coloring.write.estimate

K-Nearest Neighbors

gds.beta.knn.mutate

gds.beta.knn.mutate.estimate

gds.beta.knn.stats

gds.beta.knn.stats.estimate

gds.beta.knn.stream

gds.beta.knn.stream.estimate

gds.beta.knn.write

gds.beta.knn.write.estimate

Modularity Optimization

gds.beta.modularityOptimization.mutate

gds.beta.modularityOptimization.mutate.estimate

gds.beta.modularityOptimization.stream

gds.beta.modularityOptimization.stream.estimate

gds.beta.modularityOptimization.write

gds.beta.modularityOptimization.write.estimate

Node2Vec

gds.beta.node2vec.mutate

gds.beta.node2vec.mutate.estimate

gds.beta.node2vec.stream

gds.beta.node2vec.stream.estimate

gds.beta.node2vec.write

gds.beta.node2vec.write.estimate

Random Walk
gds.beta.randomWalk.stream

gds.beta.randomWalk.stream.estimate

Alpha tier

Table 1017. List of all alpha algorithms in the GDS library. Functions are written in italic.

Algorithm name Operation

All Shortest Paths gds.alpha.allShortestPaths.stream
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Algorithm name Operation

Approximate Maximum k-cut

gds.alpha.maxkcut.mutate

gds.alpha.maxkcut.mutate.estimate

gds.alpha.maxkcut.stream

gds.alpha.maxkcut.stream.estimate

Breadth First Search gds.alpha.bfs.stream

Closeness Centrality

gds.alpha.closeness.stream

gds.alpha.closeness.write

gds.alpha.closeness.harmonic.stream

gds.alpha.closeness.harmonic.write

Collapse Path gds.alpha.collapsePath.mutate

Depth First Search gds.alpha.dfs.stream

HITS

gds.alpha.hits.mutate

gds.alpha.hits.mutate.estimate

gds.alpha.hits.stats

gds.alpha.hits.stats.estimate

gds.alpha.hits.stream

gds.alpha.hits.stream.estimate

gds.alpha.hits.write

gds.alpha.hits.write.estimate

Strongly Connected Components
gds.alpha.scc.stream

gds.alpha.scc.write

Single Source Shortest Path
gds.alpha.shortestPath.deltaStepping.write

gds.alpha.shortestPath.deltaStepping.stream

Scale Properties
gds.alpha.scaleProperties.mutate

gds.alpha.scaleProperties.stream

Cosine Similarity

gds.alpha.similarity.cosine.stats

gds.alpha.similarity.cosine.stream

gds.alpha.similarity.cosine.write

gds.alpha.similarity.cosine

Euclidean Similarity

gds.alpha.similarity.euclidean.stats

gds.alpha.similarity.euclidean.stream

gds.alpha.similarity.euclidean.write

gds.alpha.similarity.euclidean

gds.alpha.similarity.euclideanDistance

Jaccard Similarity gds.alpha.similarity.jaccard
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Algorithm name Operation

Overlap Similarity

gds.alpha.similarity.overlap.stats

gds.alpha.similarity.overlap.stream

gds.alpha.similarity.overlap.write

gds.alpha.similarity.overlap

Pearson Similarity

gds.alpha.similarity.pearson.stats

gds.alpha.similarity.pearson.stream

gds.alpha.similarity.pearson.write

gds.alpha.similarity.pearson

Speaker-Listener Label Propagation

gds.alpha.sllpa.mutate

gds.alpha.sllpa.mutate.estimate

gds.alpha.sllpa.stats

gds.alpha.sllpa.stats.estimate

gds.alpha.sllpa.stream

gds.alpha.sllpa.stream.estimate

gds.alpha.sllpa.write

gds.alpha.sllpa.write.estimate

Spanning Tree

gds.alpha.spanningTree.write

gds.alpha.spanningTree.kmax.write

gds.alpha.spanningTree.kmin.write

gds.alpha.spanningTree.maximum.write

gds.alpha.spanningTree.minimum.write

Approximate Nearest Neighbours
gds.alpha.ml.ann.stream

gds.alpha.ml.ann.write

Link Prediction

gds.alpha.ml.linkPrediction.predict.mutate

gds.alpha.ml.linkPrediction.predict.mutate.estimate

gds.alpha.ml.linkPrediction.predict.stream

gds.alpha.ml.linkPrediction.predict.stream.estimate

gds.alpha.ml.linkPrediction.predict.write

gds.alpha.ml.linkPrediction.predict.write.estimate

gds.alpha.ml.linkPrediction.train

gds.alpha.ml.linkPrediction.train.estimate
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Algorithm name Operation

Link Prediction Pipeline

gds.alpha.ml.pipeline.linkPrediction.create

gds.alpha.ml.pipeline.linkPrediction.addNodeProperty

gds.alpha.ml.pipeline.linkPrediction.addFeature

gds.alpha.ml.pipeline.linkPrediction.configureParams

gds.alpha.ml.pipeline.linkPrediction.configureSplit

gds.alpha.ml.pipeline.linkPrediction.train

gds.alpha.ml.pipeline.linkPrediction.predict.mutate

gds.alpha.ml.pipeline.linkPrediction.predict.stream

Node Classification Pipeline

gds.alpha.ml.pipeline.nodeClassification.create

gds.alpha.ml.pipeline.nodeClassification.addNodeProper
ty

gds.alpha.ml.pipeline.nodeClassification.selectFeature
s

gds.alpha.ml.pipeline.nodeClassification.configurePara
ms

gds.alpha.ml.pipeline.nodeClassification.configureSpli
t

gds.alpha.ml.pipeline.nodeClassification.predict.mutat
e

gds.alpha.ml.pipeline.nodeClassification.predict.strea
m

gds.alpha.ml.pipeline.nodeClassification.predict.write

gds.alpha.ml.pipeline.nodeClassification.train

Adamic Adar gds.alpha.linkprediction.adamicAdar

Common Neighbors gds.alpha.linkprediction.commonNeighbors

Preferential Attachment gds.alpha.linkprediction.preferentialAttachment

Preferential Attachment gds.alpha.linkprediction.resourceAllocation

Same Community gds.alpha.linkprediction.sameCommunity

Total Neighbors gds.alpha.linkprediction.totalNeighbors

Node Classification

gds.alpha.ml.nodeClassification.predict.mutate

gds.alpha.ml.nodeClassification.predict.mutate.estimat
e

gds.alpha.ml.nodeClassification.predict.stream

gds.alpha.ml.nodeClassification.predict.stream.estimat
e

gds.alpha.ml.nodeClassification.predict.write

gds.alpha.ml.nodeClassification.predict.write.estimate

gds.alpha.ml.nodeClassification.train

gds.alpha.ml.nodeClassification.train.estimate

Split Relationships gds.alpha.ml.splitRelationships.mutate
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Algorithm name Operation

Triangle Listing gds.alpha.triangles

Influence Maximization - Greedy gds.alpha.influenceMaximization.greedy.stream

Influence Maximization - CELF gds.alpha.influenceMaximization.celf.stream

Conductance gds.alpha.conductance.stream

10.A.4. Additional Operations

Table 1018. List of all additional operations. Functions are written in italic.

Description Operation

List all operations in GDS gds.list

List logged progress gds.beta.listProgress

The version of the installed GDS gds.version

Node id functions
gds.util.asNode

gds.util.asNodes

Numeric Functions

gds.util.NaN

gds.util.infinity

gds.util.isFinite

gds.util.isInfinite

Accessing a node property in a named graph gds.util.nodeProperty

Builds a vector of maps containing items and weights gds.alpha.similarity.asVector

One Hot Encoding gds.alpha.ml.oneHotEncoding

Status of the system gds.debug.sysInfo

Create an impermanent database backed by a named in-
memory graph

gds.alpha.create.cypherdb

Get an overview of the system’s workload and available
resources

gds.alpha.systemMonitor

Appendix B: Migration from Graph Algorithms v3.5

10.B.1. Who should read this guide

This documentation is intended for users who are familiar with the Graph Algorithms library. We assume
that most of the mentioned operations and concepts can be understood with little explanation. Thus we
are intentionally brief in the examples and comparisons. Please see the dedicated chapters in this manual
for details on all the features in the Graph Data Science library.
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10.B.2. Syntax Changes

In this section we will focus on side-by-side examples of operations using the syntax of the Graph
Algorithms library and Graph Data Science library, respectively.

This section is divided into the following sub-sections:

• Common Changes

• Memory estimation

• Graph creation - Named Graph

• Graph creation - Cypher Queries

• Graph listing

• Graph info

• Graph removal

• Production-quality algorithms

10.B.3. Common changes

This section describes changes between Graph Algorithms library and Graph Data Science library that are
common to all procedures.

Table 1019. Namespace

Graph Algorithms v3.5 Graph Data Science v1.0

algo.* gds.*

Table 1020. Changes in Parameters

Graph Algorithms v3.5 Graph Data Science v1.0 Named Graph Graph Data Science v1.0 Anonymous
Graph

- graphName graphConfiguration

node label [8] - -

relationship type [9] - -

direction - -

config configuration -

Table 1021. Changes in configuration parameter map

Graph Algorithms v3.5 Graph Data Science v1.0

write: true Replaced by dedicated write mode

graph: 'cypher'|'huge' Removed. Always using huge graph [10]

direction Replaced by projection parameter of
relationshipProjection
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Graph Algorithms v3.5 Graph Data Science v1.0

direction: 'OUTGOING' orientation: 'NATURAL'

direction: 'INCOMING' orientation: 'REVERSE'

direction: 'BOTH' Removed [11]

undirected: true Replaced by orientation: 'UNDIRECTED' parameter of
relationshipProjection

duplicateRelationships Replaced by aggregation parameter of
relationshipProjection

duplicateRelationships: 'SKIP' aggregation: 'SINGLE'

iterations maxIterations

10.B.4. Memory estimation

Table 1022. Changes in the YIELD fields

Graph Algorithms v3.5 Graph Data Science v1.0

requiredMemory requiredMemory

bytesMin bytesMin

bytesMax bytesMax

mapView mapView

- treeView

- nodeCount

- relationshipCount

The most significant change in memory estimation is that in GDS to estimate an operation you suffix it
with .estimate while in GA the operation had to be passed as parameter to algo.memrec.

Table 1023. Estimating the memory requirements of loading a named graph:

Graph Algorithms v3.5 Graph Data Science v1.0

Native Projections:

CALL algo.memrec(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  'graph.load'
)

CALL gds.graph.create.estimate(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE'
)

Cypher Projections:
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Graph Algorithms v3.5 Graph Data Science v1.0

CALL algo.memrec(
  'MATCH (n:MyLabel) RETURN id(n) AS id',
  'MATCH (s)-[r:MY_RELATIONSHIP_TYPE]->(t)
   RETURN id(s) AS source, id(t) AS target',
  'graph.load',
  {
    graph: 'cypher'
  }
)

CALL gds.graph.create.cypher.estimate(
  'MATCH (n:MyLabel) RETURN id(n) AS id',
  'MATCH (s)-[r:MY_RELATIONSHIP_TYPE]->(t)
   RETURN id(s) AS source, id(t) AS target'
)

10.B.5. Graph creation - Named Graph

Table 1024. Changes in the YIELD fields

Graph Algorithms v3.5 Graph Data Science v1.0

name graphName

graph -

direction -

undirected -

sorted -

nodes nodesCount

loadMillis createMillis

alreadyLoaded -

nodeProperties -

relationshipProperties relationshipCount

relationshipWeight -

loadNodes -

loadRelationships -

- nodeProjection

- relationshipProjection

Table 1025. Loading a named graph in the default way:

Graph Algorithms v3.5 Graph Data Science v1.0

Minimal Native Projection:

CALL algo.graph.load(
  'myGraph',
  'MyLabel',
  'MY_RELATIONSHIP_TYPE'
)

CALL gds.graph.create(
  'myGraph',
  'MyLabel',
  'MY_RELATIONSHIP_TYPE'
)
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Graph Algorithms v3.5 Graph Data Science v1.0

Native Projection with additional properties:

CALL algo.graph.load(
  'myGraph',
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  {
    concurrency: 4,
    graph: 'huge',
    direction: 'INCOMING'
  }
)

CALL gds.graph.create(
  'myGraph',
  'MyLabel',
  {
    MY_RELATIONSHIP_TYPE: {
      orientation: 'REVERSE'
    }
  },
  {
    readConcurrency: 4
  }
)

Native Projection with direction: 'BOTH':

CALL algo.graph.load(
  'myGraph',
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  {
    graph: 'huge',
    direction: 'BOTH'
  }
)

CALL gds.graph.create(
  'myGraph',
  'MyLabel',
  {
    MY_RELATIONSHIP_TYPE_NATURAL: {
      type: 'MY_RELATIONSHIP_TYPE',
      orientation: 'NATURAL'
    },
    MY_RELATIONSHIP_TYPE_REVERSE: {
      type: 'MY_RELATIONSHIP_TYPE',
      orientation: 'REVERSE'
    }
  }
)

Undirected Native Projection:

CALL algo.graph.load(
  'myGraph',
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  {
    graph: 'huge',
    undirected: true
  }
)

CALL gds.graph.create(
  'myGraph',
  'MyLabel',
  {
    MY_RELATIONSHIP_TYPE: {
      orientation: 'UNDIRECTED'
    }
  }
)

10.B.6. Graph creation - Cypher Queries

Table 1026. Loading a named graph using Cypher queries:

Graph Algorithms v3.5 Graph Data Science v1.0

Basic Cypher queries, defining source and target:
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CALL algo.graph.load(
  'myGraph',
  'MATCH (n:MyLabel)
   RETURN id(n) AS id',
  'MATCH (s)-[r:MY_RELATIONSHIP_TYPE]->(t)
   RETURN id(s) AS source, id(t) AS target',
  {
    graph: 'cypher'
  }
)

CALL gds.graph.create.cypher(
  'myGraph',
  'MATCH (n:MyLabel)
   RETURN id(n) AS id',
  'MATCH (s)-[r:MY_RELATIONSHIP_TYPE]->(t)
   RETURN id(s) AS source, id(t) AS target'
)

With concurrency property and Cypher query with relationship property:

CALL algo.graph.load(
  'myGraph',
  'MATCH (n:MyLabel)
   RETURN id(n) AS id',
  'MATCH (s)-[r:MY_RELATIONSHIP_TYPE]->(t)
   RETURN
     id(s) AS source,
     id(t) AS target,
     r.myProperty AS weight',
  {
    concurrency: 4,
    graph: 'cypher'
  }
)

CALL gds.graph.create.cypher(
  'myGraph',
  'MATCH (n:MyLabel)
   RETURN id(n) AS id',
  'MATCH (s)-[r:MY_RELATIONSHIP_TYPE]->(t)
   RETURN
     id(s) AS source,
     id(t) AS target,
     r.myProperty AS weight',
  {
    readConcurrency: 4
  }
)

Parallel loading:

CALL algo.graph.load(
  'myGraph',
  'MATCH (n:MyLabel)
   WITH * SKIP $skip LIMIT $limit
   RETURN id(n) AS id',
  'MATCH (s)-[r:MY_RELATIONSHIP_TYPE]->(t)
   WITH * SKIP $skip LIMIT $limit
   RETURN
     id(s) AS source,
     id(t) AS target,
     r.myProperty AS weight',
  {
    concurrency: 4,
    graph: 'cypher'
  }
)

-

10.B.7. Graph listing

Table 1027. Changes in the YIELD fields

Graph Algorithms v3.5 Graph Data Science v1.0

name graphName

nodes nodeCount

relationships relationshipCount
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type -

direction -

- nodeProjection [12]

- relationshipProjection [12]

- nodeQuery [13]

- relationshipQuery [13]

- degreeDistribution [14]

Table 1028. Listing named graphs:

Graph Algorithms v3.5 Graph Data Science v1.0

CALL algo.graph.list() CALL gds.graph.list()

10.B.8. Graph info

Table 1029. Changes in the YIELD fields

Graph Algorithms v3.5 Graph Data Science v1.0

name graphName

nodes nodeCount

relationships relationshipCount

exists -

removed -

type -

direction -

- nodeProjection [15]

- relationshipProjection [15]

- nodeQuery [16]

- relationshipQuery [16]

- degreeDistribution [17]

min, max, mean, p50, p75, p90, p95, p99, p999 [18] -

Table 1030. Viewing information about a specific named graph:

Graph Algorithms v3.5 Graph Data Science v1.0

View information for a Named graph:
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CALL algo.graph.info('myGraph') CALL gds.graph.list('myGraph')

Check graph existence:

CALL algo.graph.info('myGraph') YIELD exists CALL gds.graph.exists('myGraph') YIELD exists

View graph statistics:

CALL algo.graph.info('myGraph', true)
YIELD min, max, mean, p50

CALL gds.graph.list('myGraph')
YIELD degreeDistribution AS dd
RETURN dd.min, dd.max, dd.mean, dd.p50

10.B.9. Removing named graphs

Table 1031. Changes in the YIELD fields

Graph Algorithms v3.5 Graph Data Science v1.0

name graphName

nodes nodeCount

relationships relationshipCount

exists -

removed -

type -

direction -

- nodeProjection [19]

- relationshipProjection [19]

- nodeQuery [20]

- relationshipQuery [20]

- degreeDistribution

Table 1032. Removing a named graph:

Graph Algorithms v3.5 Graph Data Science v1.0

CALL algo.graph.remove('myGraph') CALL gds.graph.drop('myGraph')
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10.B.10. Production-ready algorithms

This section covers all algorithms that have been migrated to the production-ready tier of the Neo4j Graph
Data Science library. Syntax changes in configuration, return columns, and execution modes are illustrated
with side-by-side examples of queries.

• Label Propagation

• Louvain

• Node Similarity

• PageRank

• Weakly Connected Components

• Triangle Count / Clustering Coefficient

• Betweenness Centrality (exact and sampled)

Label Propagation

Table 1033. Changes in Configuration

Graph Algorithms v3.5 Graph Data Science v1.0

direction -

iterations maxIterations

concurrency concurrency

readConcurrency readConcurrency [21]

writeConcurrency writeConcurrency [22]

weightProperty [23] -

- nodeWeightProperty

- relationshipWeightProperty

seedProperty seedProperty

partitionProperty -

writeProperty writeProperty [22]

write -

graph -

Table 1034. Changes in YIELD fields

Graph Algorithms v3.5 Graph Data Science v1.0

loadMillis createMillis

computeMillis computeMillis

writeMillis writeMillis

postProcessingMillis postProcessingMillis
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nodes nodePropertiesWritten

communityCount communityCount

didConverge didConverge

- ranIterations

write -

- communityDistribution

- configuration [24]

writeProperty [25] -

weightProperty [26] -

min, max, mean, p50, p75, p90, p95, p99, p999 [27] -

Table 1035. Label Propagation Stream Mode

Graph Algorithms v3.5 Graph Data Science v1.0

Streaming over a named graph:

CALL algo.labelPropagation.stream(null, null,
{graph: 'myGraph'})
YIELD nodeId, label

CALL gds.labelPropagation.stream('myGraph')
YIELD nodeId, communityId

Streaming over a named graph using configuration for iterations and relationship weight property:

CALL algo.labelPropagation.stream(
  null,
  null,
  {
    graph: 'myGraph',
    iterations: 15,
    weightProperty: 'myWeightProperty'
  }
)

CALL gds.labelPropagation.stream(
  'myGraph',
  {
    maxIterations: 15,
    relationshipWeightProperty: 'myWeightProperty'
  }
)

Streaming over anonymous graph:

CALL algo.labelPropagation.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE'
)

CALL gds.labelPropagation.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: 'MY_RELATIONSHIP_TYPE'
})

Streaming over anonymous graph using relationship with REVERSE orientation:
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CALL algo.labelPropagation.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  { direction: 'INCOMING' }
)

CALL gds.labelPropagation.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: {
    MY_RELATIONSHIP_TYPE: {
      orientation: 'REVERSE'
    }
  }
})

Streaming over anonymous graph using two way relationships [29]:

CALL algo.labelPropagation.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  { direction: 'BOTH' }
)

CALL gds.labelPropagation.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: {
    MY_RELATIONSHIP_TYPE_NATURAL: {
      type: 'MY_RELATIONSHIP_TYPE',
      orientation: 'NATURAL'
    },
    MY_RELATIONSHIP_TYPE_REVERSE: {
      type: 'MY_RELATIONSHIP_TYPE',
      orientation: 'REVERSE'
    }
  }
})

Table 1036. Label Propagation Write Mode

Graph Algorithms v3.5 Graph Data Science v1.0

Minimalistic write:

CALL algo.labelPropagation(
  null,
  null,
  {
    graph: 'myGraph',
    writeProperty: 'myWriteProperty',
    write: true
  }
)
YIELD
  writeMillis,
  iterations,
  p1,
  writeProperty

CALL gds.labelPropagation.write(
  'myGraph',
  { writeProperty: 'myWriteProperty' }
)
YIELD
  writeMillis,
  ranIterations,
  communityDistribution AS cd,
  configuration AS conf
RETURN
  writeMillis,
  ranIterations,
  cd.p1 AS p1,
  conf.writeProperty AS writeProperty

Write using weight properties [31]:
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CALL algo.labelPropagation(
  null,
  null,
  {
    graph: 'myGraph',
    writeProperty: 'myWriteProperty',
    weightProperty:
'myRelationshipWeightProperty',
    write: true
  }
)

CALL gds.labelPropagation.write(
  'myGraph',
  {
    writeProperty: 'myWriteProperty',
    relationshipWeightProperty:
'myRelationshipWeightProperty',
    nodeWeightProperty: 'myNodeWeightProperty'
  }
)

Memory estimation of the algorithm:

CALL algo.memrec(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  'labelPropagation',
  {
    writeProperty: 'myWriteProperty',
    weightProperty:
'myRelationshipWeightProperty',
    write: true
  }
)

CALL gds.labelPropagation.write.estimate(
  {
    nodeProjection: 'MyLabel',
    relationshipProjection:
'MY_RELATIONSHIP_TYPE',
    writeProperty: 'myWriteProperty',
    relationshipWeightProperty:
'myRelationshipWeightProperty',
    nodeWeightProperty: 'myNodeWeightProperty'
  }
)

Louvain

Table 1037. Changes in Configuration

Graph Algorithms v3.5 Graph Data Science v1.0

direction -

levels maxLevels

concurrency concurrency

readConcurrency readConcurrency [32]

writeConcurrency writeConcurrency [33]

weightProperty relationshipWeightProperty

seedProperty seedProperty

innerIterations maxIterations

includeIntermediateCommunities includeIntermediateCommunities

tolerance tolerance

writeProperty writeProperty [33]

write -

graph -

Table 1038. Changes in YIELD fields
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loadMillis createMillis

computeMillis computeMillis

writeMillis writeMillis

postProcessingMillis postProcessingMillis

nodes nodePropertiesWritten

communityCount communityCount

levels ranLevels

nodeId nodeId [34]

community communityId [34]

communities intermediateCommunityIds [34]

modularity modularity [35]

modularities modularities [35]

write -

- communityDistribution

- configuration [36]

includeIntermediateCommunities [37] -

writeProperty [37] -

weightProperty [38] -

min, max, mean, p50, p75, p90, p95, p99, p999 [39] -

Table 1039. Louvain Stream Mode

Graph Algorithms v3.5 Graph Data Science v1.0

Minimalistic streaming over named graph:

CALL algo.beta.louvain.stream(null, null, {graph:
'myGraph'})
YIELD nodeId, community, communities

CALL gds.louvain.stream('myGraph')
YIELD nodeId, communityId,
intermediateCommunityIds

Streaming over named graph using additional properties - maxLevels and maxIterations:

CALL algo.beta.louvain.stream(
  null,
  null,
  {
    graph: 'myGraph',
    levels: 15,
    innerIterations: 30
  }
)

CALL gds.louvain.stream(
  'myGraph',
  {
    maxLevels: 15,
    maxIterations: 30
  }
)
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Streaming over named graph with weight property:

CALL algo.beta.louvain.stream(
  null,
  null,
  {
    graph: 'myGraph',
    weightProperty: 'myWeightProperty'
  }
)

CALL gds.louvain.stream(
  'myGraph',
  {
    relationshipWeightProperty: 'myWeightProperty'
  }
)

Minimalistic streaming over anonymous graph:

CALL algo.beta.louvain.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE'
)

CALL gds.louvain.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: 'MY_RELATIONSHIP_TYPE'
})

Streaming over anonymous graph with REVERSE relationship orientation:

CALL algo.beta.louvain.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  { direction: 'INCOMING' }
)

CALL gds.louvain.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: {
    MY_RELATIONSHIP_TYPE: {
      orientation: 'REVERSE'
    }
  }
})

Streaming over anonymous graph using two way relationships [41]:

CALL algo.louvain.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  { direction: 'BOTH' }
)

CALL gds.louvain.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: {
    MY_RELATIONSHIP_TYPE_NATURAL: {
      type: 'MY_RELATIONSHIP_TYPE',
      orientation: 'NATURAL'
    },
    MY_RELATIONSHIP_TYPE_REVERSE: {
      type: 'MY_RELATIONSHIP_TYPE',
      orientation: 'REVERSE'
    }
  }
})

Table 1040. Louvain Write Mode

Graph Algorithms v3.5 Graph Data Science v1.0

Minimalistic write with just writeProperty:
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CALL algo.beta.louvain(
  null,
  null,
  {
    graph: 'myGraph',
    writeProperty: 'myWriteProperty',
    write: true
  }
)
YIELD
  nodes,
  writeMillis,
  levels,
  iterations,
  p1,
  writeProperty

CALL gds.louvain.write(
  'myGraph',
  { writeProperty: 'myWriteProperty' }
)
YIELD
  nodePropertiesWritten,
  writeMillis,
  ranLevels,
  ranIterations,
  communityDistribution AS cd,
  configuration AS conf
RETURN
  nodePropertiesWritten,
  writeMillis,
  ranLevels,
  ranIterations,
  cd.p1 AS p1,
  conf.writeProperty AS writeProperty

Running in write mode over weighted graph:

CALL algo.beta.louvain(
  null,
  null,
  {
    graph: 'myGraph',
    writeProperty: 'myWriteProperty',
    weightProperty: 'myWeightProperty',
    write: true
  }
)

CALL gds.louvain.write(
  'myGraph',
  {
    writeProperty: 'myWriteProperty',
    relationshipWeightProperty: 'myWeightProperty'
  }
)

Memory estimation of the algorithm:

CALL algo.memrec(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  'beta.louvain',
  {
    writeProperty: 'myWriteProperty',
    weightProperty:
'myRelationshipWeightProperty',
    write: true
  }
)

CALL gds.louvain.write.estimate(
  {
    nodeProjection: 'MyLabel',
    relationshipProjection:
'MY_RELATIONSHIP_TYPE',
    writeProperty: 'myWriteProperty',
    relationshipWeightProperty: 'myWeightProperty'
  }
)

Node Similarity

Table 1041. Changes in Configuration

Graph Algorithms v3.5 Graph Data Science v1.0

direction -

concurrency concurrency

readConcurrency readConcurrency [42]
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writeConcurrency writeConcurrency [43]

topK topK

bottomK bottomK

topN topN

bottomN bottomN

similarityCutoff similarityCutoff

degreeCutoff degreeCutoff

writeProperty writeProperty [43]

writeRelationshipType writeRelationshipType [43]

write -

graph -

Table 1042. Changes in YIELD fields

Graph Algorithms v3.5 Graph Data Science v1.0

loadMillis createMillis

computeMillis computeMillis

writeMillis writeMillis

postProcessingMillis postProcessingMillis

node1 node1 [44]

node2 node2 [44]

similarity similarity [44]

nodesCompared nodesCompared [45]

relationships relationshipsWritten [45]

write -

- similarityDistribution

- configuration [46]

writeProperty [47] -

writeRelationshipType [47] -

min, max, mean, p50, p75, p90, p95, p99, p999 [48] -

Table 1043. Node Similarity Stream Mode

Graph Algorithms v3.5 Graph Data Science v1.0

Minimalistic streaming over named graph:
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CALL algo.nodeSimilarity.stream(null, null,
{graph: 'myGraph'})
YIELD node1, node2, similarity

CALL gds.nodeSimilarity.stream('myGraph')
YIELD node1, node2, similarity

Streaming over named graph using topK and similarityCutoff configuration properties:

CALL algo.nodeSimilarity.stream(
  null,
  null,
  {
    graph: 'myGraph',
    topK: 1,
    similarityCutoff: 0.5
  }
)

CALL gds.nodeSimilarity.stream(
  'myGraph',
  {
    topK: 1,
    similarityCutoff: 0.5
  }
)

Streaming over named graph using bottomK configuration property:

CALL algo.nodeSimilarity.stream(
  null,
  null,
  {
    graph: 'myGraph',
    bottomK: 15
  }
)

CALL gds.nodeSimilarity.stream(
  'myGraph',
  {
    bottomK: 15
  }
)

Minimalistic streaming over anonymous graph:

CALL algo.nodeSimilarity.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE'
)

CALL gds.nodeSimilarity.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: 'MY_RELATIONSHIP_TYPE'
})

Streaming over anonymous graph using REVERSE relationship projection:

CALL algo.nodeSimilarity.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  { direction: 'INCOMING' }
)

CALL gds.nodeSimilarity.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: {
    MY_RELATIONSHIP_TYPE: {
      orientation: 'REVERSE'
    }
  }
})

Streaming over anonymous graph using two way relationships [50]:
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CALL algo.nodeSimilarity.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  { direction: 'BOTH' }
)

CALL gds.nodeSimilarity.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: {
    MY_RELATIONSHIP_TYPE_NATURAL: {
      type: 'MY_RELATIONSHIP_TYPE',
      orientation: 'NATURAL'
    },
    MY_RELATIONSHIP_TYPE_REVERSE: {
      type: 'MY_RELATIONSHIP_TYPE',
      orientation: 'REVERSE'
    }
  }
})

Table 1044. Node Similarity Write Mode

Graph Algorithms v3.5 Graph Data Science v1.0

Minimalistic write with writeRelationshipType and writeProperty:

CALL algo.nodeSimilarity(
  null,
  null,
  {
    graph: 'myGraph',
    writeRelationshipType: 'MY_WRITE_REL_TYPE',
    writeProperty: 'myWriteProperty',
    write: true
  }
)
YIELD
  nodesCompared,
  relationships,
  writeMillis,
  iterations,
  p1,
  writeProperty

CALL gds.nodeSimilarity.write(
  'myGraph',
  {
    writeRelationshipType: 'MY_WRITE_REL_TYPE',
    writeProperty: 'myWriteProperty'
  }
)
YIELD
  nodesCompared,
  relationships,
  writeMillis,
  ranIterations,
  similarityDistribution AS sd,
  configuration AS conf
RETURN
  nodesCompared,
  relationships,
  writeMillis,
  ranIterations,
  sd.p1 AS p1,
  conf.writeProperty AS writeProperty

Memory estimation of the algorithm:

CALL algo.memrec(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  'nodeSimilarity',
  {
    writeRelationshipType: 'MY_WRITE_REL_TYPE',
    writeProperty: 'myWriteProperty',
    write: true
  }
)

CALL gds.nodeSimilarity.write.estimate(
  {
    nodeProjection: 'MyLabel',
    relationshipProjection:
'MY_RELATIONSHIP_TYPE',
    writeRelationshipType: 'MY_WRITE_REL_TYPE',
    writeProperty: 'myWriteProperty'
  }
)
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Table 1045. Changes in Configuration

Graph Algorithms v3.5 Graph Data Science v1.0

direction -

iterations maxIterations

tolerance tolerance

dampingFactor dampingFactor

concurrency concurrency

readConcurrency readConcurrency [51]

writeConcurrency writeConcurrency [52]

writeProperty writeProperty [52]

weightProperty relationshipWeightProperty

write -

graph -

Table 1046. Changes in YIELD fields

Graph Algorithms v3.5 Graph Data Science v1.0

loadMillis createMillis

computeMillis computeMillis

writeMillis writeMillis

postProcessingMillis postProcessingMillis

node nodeId [53]

score score [53]

nodes nodePropertiesWritten [54]

iterations ranIterations

write -

- configuration [55]

writeProperty [56] -

dampingFactor [56] -

tolerance [56] -

weightProperty [57] -

Table 1047. PageRank Stream Mode

Graph Algorithms v3.5 Graph Data Science v1.0

Minimalistic stream over named graph:
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CALL algo.pageRank.stream(null, null, {graph:
'myGraph'})
YIELD nodeId, score

CALL gds.pageRank.stream('myGraph')
YIELD nodeId, score

Streaming over named graph with iteration limit:

CALL algo.pageRank.stream(
  null,
  null,
  {
    graph: 'myGraph',
    iterations: 20
  }
)

CALL gds.pageRank.stream(
  'myGraph',
  {
    maxIterations: 20
  }
)

Minimalistic streaming over anonymous graph:

CALL algo.pageRank.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE'
)

CALL gds.pageRank.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: 'MY_RELATIONSHIP_TYPE'
})

Streaming over anonymous graph with REVERSE relationship orientation:

CALL algo.pageRank.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  { direction: 'INCOMING' }
)

CALL gds.pageRank.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: {
    MY_RELATIONSHIP_TYPE: {
      orientation: 'REVERSE'
    }
  }
})

Streaming over anonymous graph with relationship weight property, assigning it a default value in case
the property doesn’t have value:

CALL algo.pageRank.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  {
    weightProperty: 'myWeightProperty',
    defaultValue: 1.5
  }
)

CALL gds.pageRank.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: {
    MY_RELATIONSHIP_TYPE: {
      properties: {
        myWeightProperty: {
          defaultValue: 1.5
        }
      }
    }
  }
})

Table 1048. PageRank Write Mode
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Running write mode on named graph:

CALL algo.pageRank(
  null,
  null,
  {
    graph: 'myGraph',
    writeProperty: 'myWriteProperty',
    write: true
  }
)
YIELD
  nodes,
  loadMillis,
  iterations,
  p1,
  writeProperty

CALL gds.pageRank.write(
  'myGraph',
  {
    writeProperty: 'myWriteProperty'
  }
)
YIELD
  nodePropertiesWritten,
  createMillis,
  ranIterations,
  configuration AS conf
RETURN
  nodePropertiesWritten,
  writeMillis,
  ranIterations,
  conf.writeProperty AS writeProperty

Memory estimation of the algorithm:

CALL algo.memrec(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  'pageRank',
  {
    writeProperty: 'myWriteProperty',
    write: true
  }
)

CALL gds.pageRank.write.estimate(
  {
    nodeProjection: 'MyLabel',
    relationshipProjection:
'MY_RELATIONSHIP_TYPE',
    writeProperty: 'myWriteProperty'
  }
)

Weakly Connected Components

Table 1049. Changes in Configuration

Graph Algorithms v3.5 Graph Data Science v1.0

direction -

concurrency concurrency

readConcurrency readConcurrency [58]

writeConcurrency writeConcurrency [59]

writeProperty writeProperty [59]

weightProperty relationshipWeightProperty

defaultValue defaultValue

seedProperty seedProperty

threshold threshold

consecutiveIds consecutiveIds

write -
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graph -

Table 1050. Changes in YIELD fields

Graph Algorithms v3.5 Graph Data Science v1.0

loadMillis createMillis

computeMillis computeMillis

writeMillis writeMillis

postProcessingMillis postProcessingMillis

nodeId nodeId [60]

setId componentId [60]

nodes nodePropertiesWritten [61]

- relationshipPropertiesWritten [61]

write -

- componentDistribution

- configuration [62]

writeProperty [63] -

weightProperty [64] -

min, max, mean, p50, p75, p90, p95, p99, p999 [65] -

Table 1051. Weakly Connected Components Stream Mode

Graph Algorithms v3.5 Graph Data Science v1.0

Minimalistic stream over named graph:

CALL algo.unionFind.stream(null, null, {graph:
'myGraph'})
YIELD nodeId, setId

CALL gds.wcc.stream('myGraph')
YIELD nodeId, componentId

Streaming over weighted named graph:

CALL algo.unionFind.stream(
  null,
  null,
  {
    graph: 'myGraph',
    weightProperty: 'myWeightProperty'
  }
)

CALL gds.wcc.stream(
  'myGraph',
  {
    relationshipWeightProperty: 'myWeightProperty'
  }
)

Minimalistic streaming over anonymous graph:
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CALL algo.unionFind.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE'
)

CALL gds.wcc.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: 'MY_RELATIONSHIP_TYPE'
})

Streaming over anonymous graph with REVERSE relationship orientation:

CALL algo.unionFind.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  { direction: 'INCOMING' }
)

CALL gds.wcc.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: {
    MY_RELATIONSHIP_TYPE: {
      orientation: 'REVERSE'
    }
  }
})

Streaming over anonymous graph with relationship specifying default value for the weight property:

CALL algo.unionFind.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  {
    graph: 'myGraph',
    weightProperty: 'myWeightProperty',
    defaultValue: 2.0
  }
)

CALL gds.wcc.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: {
    MY_RELATIONSHIP_TYPE: {
      properties: {
        myWeightProperty: {
          defaultValue: 2
        }
      }
    }
  }
})

Table 1052. Weakly Connected Components Write Mode

Graph Algorithms v3.5 Graph Data Science v1.0

Minimalistic write mode:

CALL algo.unionFind(
  null,
  null,
  {
    graph: 'myGraph',
    writeProperty: 'myWriteProperty',
    write: true
  }
)
YIELD
  nodes,
  loadMillis,
  p1,
  writeProperty

CALL gds.wcc.write(
  'myGraph',
  { writeProperty: 'myWriteProperty' }
)
YIELD
  nodePropertiesWritten,
  createMillis,
  componentDistribution AS cd,
  configuration AS conf
RETURN
  nodePropertiesWritten,
  createMillis,
  cd.p1 AS p1,
  conf.writeProperty AS writeProperty

Running write mode over weighted named graph:
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CALL algo.unionFind(
  null,
  null,
  {
    graph: 'myGraph',
    writeProperty: 'myWriteProperty',
    weightProperty: 'myWeightProperty',
    write: true
  }
)

CALL gds.wcc.write(
  'myGraph',
  {
    writeProperty: 'myWriteProperty',
    relationshipWeightProperty: 'myWeightProperty'
  }
)

Memory estimation of the algorithm:

CALL algo.memrec(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  'unionFind',
  {
    writeProperty: 'myWriteProperty',
    weightProperty:
'myRelationshipWeightProperty',
    write: true
  }
)

CALL gds.wcc.write.estimate(
  {
    nodeProjection: 'MyLabel',
    relationshipProjection:
'MY_RELATIONSHIP_TYPE',
    writeProperty: 'myWriteProperty',
    relationshipWeightProperty: 'myWeightProperty'
  }
)

Triangle Counting / Clustering Coefficient

The alpha procedures from the namespace algo.triangleCount are being replaced by a pair of procedure
namespaces:

• gds.triangleCount

• gds.localClusteringCoefficient

Everything relating to clustering coefficients has been extracted into a separate algorithm backing
gds.localClusteringCoefficient procedures. To compute both triangle count and local clustering
coefficient values multiple procedures will be necessary.

The triangle enumeration procedure algo.triangles.stream() has been renamed to
gds.alpha.triangles().

Table 1053. Common changes in Configuration

Graph Algorithms v3.5 Graph Data Science v1.2

direction -

concurrency concurrency

readConcurrency readConcurrency [66]

writeConcurrency writeConcurrency [67]

writeProperty writeProperty [67]
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write -

graph -

Table 1054. Changes in YIELD fields of algo.triangleCount

Graph Algorithms v3.5 Graph Data Science v1.2

nodeId nodeId [68]

triangles triangleCount [69]

triangleCount globalTriangleCount [70]

nodeCount nodeCount [70]

averageClusteringCoefficient [71] -

clusteringCoefficientProperty [72] -

loadMillis createMillis

computeMillis computeMillis

writeMillis writeMillis

write -

- configuration [73]

writeProperty [74] -

min, max, mean, p50, p75, p90, p95, p99, p999 -

Table 1055. TriangleCount Stream Mode

Graph Algorithms v3.5 Graph Data Science v1.2

Streaming triangle counts over named graph:

CALL algo.triangleCount.stream(null, null, {graph:
'myGraph'})
YIELD nodeId, triangles

CALL gds.triangleCount.stream('myGraph')
YIELD nodeId, triangleCount

Streaming local clustering coefficients over named graph:

CALL algo.triangleCount.stream(null, null, {graph:
'myGraph'})
YIELD nodeId, coefficient

CALL gds.localClusteringCoefficient.stream
('myGraph')
YIELD nodeId, localClusteringCoefficient

Streaming both triangle counts and local clustering coefficients:
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CALL algo.triangleCount.stream(null, null, {graph:
'myGraph'})
YIELD nodeId, triangles, coefficient

CALL gds.triangleCount.mutate('myGraph',
{mutateProperty: 'tc'})
YIELD globalTriangleCount
CALL gds.localClusteringCoefficient.stream(
  'myGraph', {
    triangleCountProperty: 'tc'
}) YIELD nodeId, localClusteringCoefficient
WITH
  nodeId,
  localClusteringCoefficient,
  gds.util.nodeProperty('myGraph', nodeId, 'tc')
AS triangleCount
RETURN nodeId, triangleCount,
localClusteringCoefficient

Streaming triangle counts over anonymous graph:

CALL algo.triangleCount.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE'
)

CALL gds.triangleCount.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: {
    MY_RELATIONSHIP_TYPE: {
      orientation: 'UNDIRECTED'
    }
  }
})

Table 1056. TriangleCount Write Mode

Graph Algorithms v3.5 Graph Data Science v1.2

Writing triangle counts from named graph:

CALL algo.triangleCount(null, null, {
  graph: 'myGraph',
  write: true,
  writeProperty: 'tc'
}) YIELD nodeCount, triangleCount

CALL gds.triangleCount.write('myGraph', {
  writeProperty: 'tc'
}) YIELD nodeCount, globalTriangleCount

Writing local clustering coefficients from named graph:

CALL algo.triangleCount(null, null, {
  graph: 'myGraph',
  write: true,
  clusteringCoefficientProperty: 'lcc'
}) YIELD nodeCount, averageClusteringCoefficient

CALL gds.localClusteringCoefficient.write
('myGraph', {
  writeProperty: 'lcc'
}) YIELD nodeCount, averageClusteringCoefficient

Writing both triangle counts and local clustering coefficients:
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CALL algo.triangleCount(null, null, {
  graph: 'myGraph',
  write: true,
  writeProperty: 'tc',
  clusteringCoefficientProperty: 'lcc'
}) YIELD nodeCount, triangleCount,
averageClusteringCoefficient

CALL gds.triangleCount.mutate('myGraph', {
  mutateProperty: 'tc'
}) YIELD globalTriangleCount
CALL gds.localClusteringCoefficient.write
('myGraph', {
  triangleCountProperty: 'tc',
  writeProperty: 'lcc'
}) YIELD nodeCount, averageClusteringCoefficient
CALL gds.graph.writeNodeProperties('myGraph',
['tc'])
YIELD propertiesWritten
RETURN nodeCount, globalTriangleCount,
averageClusteringCoefficient

Betweenness Centrality

In Graph Algorithms v3.5, Betweenness Centrality was surfaced in two different procedures:

• algo.betweenness and algo.betweenness.stream

• algo.betweenness.sampled and algo.betweenness.sampled.stream

These two have been merged into a single procedure gds.betweenness with all four execution modes
supported. The sampling is controlled via configuration parameter rather than explicit procedures. Setting
the sampling size to the node count will produce exact results.

Table 1057. Changes in Configuration

Graph Algorithms v3.5 Graph Data Science v1.3

stats -

strategy -

probability -

- samplingSize

- samplingSeed

maxDepth -

direction -

concurrency concurrency

readConcurrency readConcurrency [75]

writeConcurrency writeConcurrency [76]

writeProperty writeProperty [76]

write -

graph -

Table 1058. Changes in YIELD fields
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centrality score [77]

nodes -

minCentrality minimumScore

maxCentrality maximumScore

sumCentrality scoreSum

loadMillis createMillis

evalMillis computeMillis

writeMillis writeMillis

- postProcessingMillis

- configuration [78]

- nodePropertiesWritten [79]

write -

writeProperty [80] -

Table 1059. Betweenness Centrality Stream Mode

Graph Algorithms v3.5 Graph Data Science v1.3

Minimalistic stream over named graph:

CALL algo.betweenness.stream(null, null, {graph:
'myGraph'})
YIELD nodeId, centrality

CALL gds.betweenness.stream('myGraph')
YIELD nodeId, score

Minimalistic stream over named graph, sampled:

CALL algo.betweenness.sampled.stream(null, null,
{graph: 'myGraph', probability: 0.5})
YIELD nodeId, centrality

CALL gds.betweenness.stream('myGraph',
{samplingSize: 1000}) // assume 2000 nodes
YIELD nodeId, score

Minimalistic streaming over anonymous graph:

CALL algo.betweenness.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE'
)

CALL gds.betweenness.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: 'MY_RELATIONSHIP_TYPE'
})

Streaming over anonymous graph with UNDRECTED relationship orientation:
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CALL algo.betweenness.stream(
  'MyLabel',
  'MY_RELATIONSHIP_TYPE',
  { undirected: true }
)

CALL gds.betweenness.stream({
  nodeProjection: 'MyLabel',
  relationshipProjection: {
    MY_RELATIONSHIP_TYPE: {
      orientation: 'UNDIRECTED'
    }
  }
})

Table 1060. Betweenness Centrality Write Mode

Graph Algorithms v3.5 Graph Data Science v1.3

Running write mode on named graph:

CALL algo.betweenness(
  null,
  null,
  {
    graph: 'myGraph',
    writeProperty: 'myWriteProperty',
    write: true
  }
)
YIELD
  nodes,
  minCentrality,
  maxCentrality,
  sumCentrality,
  loadMillis,
  evalMillis,
  writeMillis

CALL gds.betweenness.write(
  'myGraph',
  {
    writeProperty: 'myWriteProperty'
  }
)
YIELD
  nodePropertiesWritten,
  minimumScore,
  maximumScore,
  scoreSum,
  createMillis,
  computeMillis,
  writeMillis,
  configuration

724



License
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

You are free to

Share

copy and redistribute the material in any medium or format

Adapt

remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial

You may not use the material for commercial purposes.

ShareAlike

If you remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

Notices

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for further details. The full license text is available
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

[8] Moved to graphConfiguration as nodeProjection
[9] Moved to graphConfiguration as relationshipProjection
[10] Graph creation with cypher queries has dedicate gds.graph.create.cypher procedure. There are parameters nodeQuery
and relationshipQuery for anonymous graphs
[11] This behaviour can be achieved by creating two relationship projections - one with orientation: 'NATURAL' and one
with orientation: 'REVERSE'
[12] Field will be null if a Cypher projection was used
[13] Field will be null unless a Cypher projection was used
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[14] Graph statistics map, i.e. min, max, percentiles, etc.
[15] Field will be null if a Cypher projection was used
[16] Field will be null unless a Cypher projection was used
[17] Graph statistics map, i.e. min, max, percentiles, etc.
[18] Inlined into degreeDistribution
[19] Field will be null if a Cypher projection was used
[20] Field will be null unless a Cypher projection was used
[21] Only when using anonymous graph
[22] Only for write mode
[23] Can be configured separately by using nodeWeightProperty and relationshipWeightProperty
[24] The configuration used to run the algorithm
[25] Inlined into configuration
[26] Inlined into configuration as nodeWeightProperty and/or relationshipWeightProperty
[27] Inlined into communityDistribution
[32] Only when using anonymous graph
[33] Only for write mode
[34] Only for stream mode
[35] Only for write mode
[36] The configuration used to run the algorithm
[37] Inlined into configuration
[38] Inlined into configuration as relationshipWeightProperty
[39] Inlined into communityDistribution
[42] Only when using anonymous graph
[43] Only for write mode
[44] Only for stream mode
[45] Only for write mode
[46] The configuration used to run the algorithm
[47] Inlined into configuration
[48] Inlined into similarityDistribution
[51] Only when using anonymous graph
[52] Only for write mode
[53] Only for stream mode
[54] Only for write mode
[55] The configuration used to run the algorithm
[56] Inlined into configuration
[57] Inlined into configuration as relationshipWeightProperty
[58] Only when using anonymous graph
[59] Only for write mode
[60] Only for stream mode
[61] Only for write mode
[62] The configuration used to run the algorithm
[63] Inlined into configuration
[64] Inlined into configuration as relationshipWeightProperty
[65] Inlined into componentDistribution
[66] Only when using anonymous graph
[67] Only for write mode
[68] Only for stream mode
[69] Only for stream mode
[70] Not present in stream mode
[71] Moved to gds.localClusteringCoefficient
[72] Moved as writeProperty to gds.localClusteringCoefficient
[73] The configuration used to run the algorithm
[74] Inlined into configuration
[75] Only when using anonymous graph
[76] Only for write mode
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[77] Only for stream mode
[78] The configuration used to run the algorithm
[79] Only for write mode
[80] Inlined into configuration
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