
Getting Started Guide

Table of Contents
Get started with Neo4j . 2

Installing Neo4j . 2

Documentation . 2

Graph database concepts . 3

Example graph. 3

Node . 4

Node labels. 5

Relationship . 6

Relationship type . 7

Properties . 8

Traversals and paths . 9

Schema . 10

Indexes . 10

Constraints. 10

Naming conventions . 10

Introduction to Cypher . 11

Patterns . 11

Patterns in practice . 14

Getting the correct results . 19

Composing large statements . 24

Defining a schema . 25

Import data . 27

Neo4j v4.0
License: Creative Commons 4.0

Neo4j

Neo4j is the world’s leading graph database. The architecture is designed for optimal management,
storage, and traversal of nodes and relationships. The graph database takes a property graph approach,
which is beneficial for both traversal performance and operations runtime.

Cypher

Cypher is Neo4j’s graph query language that allows users to store and retrieve data from the graph
database. It is a declarative, SQL-inspired language for describing visual patterns in graphs using ASCII-
art syntax. The syntax provides a visual and logical way to match patterns of nodes and relationships in
the graph. Cypher has been designed to be easy to learn, understand, and use for everyone, but also
incorporate the power and functionality of other standard data access languages.

Contents of this guide

The Neo4j Getting Started Guide covers the following areas:

• Get started with Neo4j — How to get started with Neo4j.

• Graph database concepts — Introduction to graph database concepts.

• Introduction to Cypher — Introduction to the graph query language Cypher.

Who should read this?

This guide is written for anyone who is exploring Neo4j and Cypher.

1

Get started with Neo4j
There are a number of options how to install Neo4j and how to get started running Cypher queries.

Installing Neo4j
The easiest way to set up an environment for developing an application with Neo4j and Cypher is to use
Neo4j Desktop. Download Neo4j Desktop from https://neo4j.com/download/ and follow the installation
instructions for your operating system.

For more options on how to get started with Neo4j and Cypher see https://neo4j.com/
try-neo4j/.

Documentation
All the official documentation is available at https://neo4j.com/docs/.

That is where you find the full manuals such as:

• The Cypher manual — This is the comprehensive manual for Cypher.

• The Driver manual — This manual describes the officially supported drivers for Neo4j.

• The Operations manual — This manual describes how to deploy and maintain Neo4j.

The Cypher Refcard is a valuable asset when learning and writing Cypher.

Additionally, you can find more specialized documentation along with API documentation and
documentation for older Neo4j releases.

2

https://neo4j.com/download/
https://neo4j.com/try-neo4j/
https://neo4j.com/try-neo4j/
https://neo4j.com/docs/
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf
https://neo4j.com/docs/pdf/neo4j-driver-manual-4.0.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf
https://neo4j.com/docs/cypher-refcard/current

Graph database concepts
Neo4j uses a property graph database model.

A graph data structure consists of nodes (discrete objects) that can be connected by relationships.

Example 1. Concept of a graph structure.

A graph with three nodes (the circles) and three relationships (the arrows).

The Neo4j property graph database model consists of:

• Nodes describe entities (discrete objects) of a domain.

• Nodes can have zero or more labels to define (classify) what kind of nodes they are.

• Relationships describes a connection between a source node and a target node.

• Relationships always has a direction (one direction).

• Relationships must have a type (one type) to define (classify) what type of relationship they are.

• Nodes and relationships can have properties (key-value pairs), which further describe them.

In mathematics, graph theory is the study of graphs.

In graph therory:

• Nodes are also refered to as vertices or points.

• Relationships are also refered to as edges, links, or lines.

Example graph
The example graph shown below, introduces the basic concepts of the property graph:

3

Example 2. Example graph.

ACTED_IN

roles: ['Forrest']

DIRECTED

Person

Actor

name: 'Tom Hanks'
born: 1956

Movie

title: 'Forrest Gump'
released: 1994

Person

name: 'Robert Zemeckis'
born: 1951

Example 3. Cypher.

To create the example graph, use the Cypher clause CREATE.

CREATE (:Person:Actor {name: 'Tom Hanks', born: 1956})-[:ACTED_IN {roles: ['Forrest']}]->(:Movie
{title: 'Forrest Gump'})<-[:DIRECTED]-(:Person {name: 'Robert Zemeckis', born: 1951})

Node
Nodes are used to represent entities (discrete objects) of a domain.

The simplest possible graph is a single node with no relationships. Consider the following graph,
consisting of a single node.

4

Example 4. Node.

Person

Actor

name: 'Tom Hanks'
born: 1956

The node labels are:

• Person

• Actor

The properties are:

• name: Tom Hanks

• born: 1956

The node can be created with Cypher using the query:

CREATE (:Person:Actor {name: 'Tom Hanks', born: 1956})

Node labels
Labels shape the domain by grouping (classifying) nodes into sets where all nodes with a certain label
belong to the same set.

For example, all nodes representing users could be labeled with the label User. With that in place, you can
ask Neo4j to perform operations only on your user nodes, such as finding all users with a given name.

Since labels can be added and removed during runtime, they can also be used to mark temporary states
for nodes. A Suspended label could be used to denote bank accounts that are suspended, and a Seasonal
label can denote vegetables that are currently in season.

A node can have zero to many labels.

In the example graph, the node labels, Person, Actor, and Movie, are used to describe (classify) the nodes.
More labels can be added to express different dimensions of the data.

The following graph shows the use of multiple labels.

5

Example 5. Multiple labels.

Person
Actor

name = 'Tom Hanks'
born = 1956

Movie

title = 'Forrest Gump'
released = 1994

Person
Director

name = 'Robert Zemeckis'
born = 1951

Relationship
A relationship describes how a connection between a source node and a target node are related. It is
possible for a node to have a relationship to itself.

A relationship:

• Connects a source node and a target node.

• Has a direction (one direction).

• Must have a type (one type) to define (classify) what type of relationship it is.

• Can have properties (key-value pairs), which further describe the relationship.

Relationships organize nodes into structures, allowing a graph to resemble a list, a tree, a map, or a
compound entity — any of which may be combined into yet more complex, richly inter-connected
structures.

6

Example 6. Relationship.

ACTED_IN

roles: ['Forrest']
performance: 5

The relationship type: ACTED_IN

The properties are:

• roles: ['Forrest']

• performance: 5

The roles property has an array value with a single item ('Forrest') in it.

The relationship can be created with Cypher using the query:

CREATE ()-[:ACTED_IN {roles: ['Forrest'], performance: 5}]->()

You must create or reference a source node and a target node to be able to create a
relationship.

Relationships always have a direction. However, the direction can be disregarded where it is not useful.
This means that there is no need to add duplicate relationships in the opposite direction unless it is needed
to describe the data model properly.

A node can have relationships to itself. To express that Tom Hanks KNOWS himself would be expressed as:

Example 7. Relationship to a single node.

name = 'Tom Hanks'
born = 1956 KNOWS

Relationship type
A relationship must have exactly one relationship type.

Below is an ACTED_IN relationship, with the Tom Hanks node as the source node and Forrest Gump as the
target node.

7

Example 8. Relationsip type.

name = 'Tom Hanks'
born = 1956

title = 'Forrest Gump'
released = 1994

ACTED_IN
roles = ['Forrest']

Observe that the Tom Hanks node has an outgoing relationship, while the Forrest Gump node has an
incoming relationship.

Properties
Properties are key-value pairs that are used for storing data on nodes and relationships.

The value part of a property:

• Can hold different data types, such as number, string, or boolean.

• Can hold a homogeneous list (array) containing, for example, strings, numbers, or boolean values.

Example 9. Number

CREATE (:Example {a: 1, b: 3.14})

• The property a has the type integer with the value 1.

• The property b has the type float with the value 3.14.

Example 10. String and boolean

CREATE (:Example {c: 'This is an example string', d: true, e: false})

• The property c has the type string with the value 'This is an example string'.

• The property d has the type boolean with the value true.

• The property e has the type boolean with the value false.

Example 11. Lists

CREATE (:Example {f: [1, 2, 3], g: [2.71, 3.14], h: ['abc', 'example'], i: [true, true, false]})

• The property f contains an array with the value [1, 2, 3].

• The property g contains an array with the value [2.71, 3.14].

• The property h contains an array with the value ['abc', 'example'].

• The property i contains an array with the value [true, true, false].

8

For a thorough description of the available data types, refer to the Cypher manual →
Values and types.

Traversals and paths
A traversal is how you query a graph in order to find answers to questions, for example: "What music do
my friends like that I don’t yet own?", or "What web services are affected if this power supply goes
down?".

Traversing a graph means visiting nodes by following relationships according to some rules. In most cases
only a subset of the graph is visited.

Example 12. Path matching.

To find out which movies Tom Hanks acted in according to the tiny example database, the traversal
would start from the Tom Hanks node, follow any ACTED_IN relationships connected to the node, and
end up with Forrest Gump as the result (see the dashed lines):

Person

name = 'Tom Hanks'
born = 1956

Movie

title = 'Forrest Gump'
released = 1994

ACTED_IN
roles = ['Forrest']

Person

name = 'Robert Zemeckis'
born = 1951

DIRECTED

The traversal result could be returned as a path with the length 1:

Person name = 'Tom Hanks'
born = 1956 Movie title = 'Forrest Gump'

released = 1994

ACTED_IN
roles = ['Forrest']

The shortest possible path has length zero. It contains a single node and no relationships.

Example 13. Path of length zero.

A path containing only a single node has the length of 0.

Person

name = 'Tom Hanks'
born = 1956

9

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#cypher-values
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#cypher-values
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#cypher-values
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#cypher-values

Example 14. Path of length one.

A path containing one relationship has the length of 1.

Person

name = 'Tom Hanks'
born = 1956

KNOWS

Schema
A schema in Neo4j refers to indexes and constraints.

Neo4j is often described as schema optional, meaning that it is not necessary to create indexes and
constraints. You can create data — nodes, relationships and properties — without defining a schema up
front. Indexes and constraints can be introduced when desired, in order to gain performance or modeling
benefits.

Indexes
Indexes are used to increase performance. To see examples of how to work with indexes, see Using
indexes. For detailed descriptions of how to work with indexes in Cypher, see Cypher Manual → Indexes.

Constraints
Constraints are used to make sure that the data adheres to the rules of the domain. To see examples of
how to work with constraints, see Using constraints. For detailed descriptions of how to work with
constraints in Cypher, see the Cypher manual → Constraints.

Naming conventions
Node labels, relationship types, and properties (the key part) are case sensitive, meaning, for example, that
the property name is different from the property Name.

The following naming conventions are recommended:

Table 1. Naming conventions

Graph entity Recommended style Example

Node label Camel case, beginning with an upper-
case character

:VehicleOwner rather than
:vehice_owner

Relationship type Upper case, using underscore to
separate words

:OWNS_VEHICLE rather than :ownsVehicle

Property Lower camel case, beginning with a
lower-case character

firstName rather than first_name

For the precise naming rules, refer to the Cypher manual → Naming rules and recommendations.

10

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#administration-indexes-fulltext-search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#administration-indexes-fulltext-search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#administration-indexes-fulltext-search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#administration-constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#administration-constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#administration-constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#cypher-naming
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#cypher-naming
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#cypher-naming

Introduction to Cypher
This section will introduce you to the graph query language Cypher. It will help you start thinking about
graphs and patterns, apply this knowledge to simple problems, and learn how to write Cypher statements.

 For the full reference of Cypher, see the Cypher manual.

• Patterns

◦ Node syntax

◦ Relationship syntax

◦ Pattern syntax

◦ Pattern variables

◦ Clauses

• Patterns in practice

◦ Creating data

◦ Matching patterns

◦ Attaching structures

◦ Completing patterns

• Getting the correct results

◦ Filtering results

◦ Returning results

◦ Aggregating information

◦ Ordering and pagination

◦ Collecting aggregation

• Composing large statements

◦ UNION

◦ WITH

• Defining a schema

◦ Using indexes

◦ Using constraints

• Import data

Patterns
Neo4j’s Property Graphs are composed of nodes and relationships, either of which may have properties.
Nodes represent entities, for example concepts, events, places and things. Relationships connect pairs of
nodes.

11

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf

However, nodes and relationships can be considered as low-level building blocks. The real strength of the
property graph lies in its ability to encode patterns of connected nodes and relationships. A single node or
relationship typically encodes very little information, but a pattern of nodes and relationships can encode
arbitrarily complex ideas.

Cypher, Neo4j’s query language, is strongly based on patterns. Specifically, patterns are used to match
desired graph structures. Once a matching structure has been found or created, Neo4j can use it for further
processing.

A simple pattern, which has only a single relationship, connects a pair of nodes (or, occasionally, a node to
itself). For example, a Person LIVES_IN a City or a City is PART_OF a Country.

Complex patterns, using multiple relationships, can express arbitrarily complex concepts and support a
variety of interesting use cases. For example, we might want to match instances where a Person LIVES_IN
a Country. The following Cypher code combines two simple patterns into a slightly more complex pattern
which performs this match:

(:Person) -[:LIVES_IN]-> (:City) -[:PART_OF]-> (:Country)

Diagrams made up of icons and arrows are commonly used to visualize graphs. Textual annotations
provide labels, define properties etc.

Node syntax

Cypher uses a pair of parentheses to represent a node: (). This is reminiscent of a circle or a rectangle with
rounded end caps. Below are some examples of nodes, providing varying types and amounts of detail:

()
(matrix)
(:Movie)
(matrix:Movie)
(matrix:Movie {title: 'The Matrix'})
(matrix:Movie {title: 'The Matrix', released: 1997})

The simplest form, (), represents an anonymous, uncharacterized node. If we want to refer to the node
elsewhere, we can add a variable, for example: (matrix). A variable is restricted to a single statement. It
may have different or no meaning in another statement.

The :Movie pattern declares a label of the node. This allows us to restricts the pattern, keeping it from
matching (say) a structure with an Actor node in this position.

The node’s properties, for example title, are represented as a list of key-value pairs, enclosed within a
pair of braces, for example: {name: 'Keanu Reeves'}. Properties can be used to store information and/or
restrict patterns.

Relationship syntax

Cypher uses a pair of dashes (--) to represent an undirected relationship. Directed relationships have an
arrowhead at one end (<--, -->). Bracketed expressions ([...]) can be used to add details. This may
include variables, properties, and type information:

12

-->
-[role]->
-[:ACTED_IN]->
-[role:ACTED_IN]->
-[role:ACTED_IN {roles: ['Neo']}]->

The syntax and semantics found within a relationship’s bracket pair are very similar to those used between
a node’s parentheses. A variable (e.g., role) can be defined, to be used elsewhere in the statement. The
relationship’s type (e.g., :ACTED_IN) is analogous to the node’s label. The properties (e.g., roles) are entirely
equivalent to node properties.

Pattern syntax

Combining the syntax for nodes and relationships, we can express patterns. The following could be a
simple pattern (or fact) in this domain:

(keanu:Person:Actor {name: 'Keanu Reeves'})-[role:ACTED_IN {roles: ['Neo']}]->(matrix:Movie {title: 'The
Matrix'})

Equivalent to node labels, the :ACTED_IN pattern declares the relationship type of the relationship.
Variables (e.g., role) can be used elsewhere in the statement to refer to the relationship.

As with node properties, relationship properties are represented as a list of key/value pairs enclosed within
a pair of braces, for example: {roles: ['Neo']}. In this case, we used an array property for the roles,
allowing multiple roles to be specified. Properties can be used to store information and/or restrict patterns.

Pattern variables

To increase modularity and reduce repetition, Cypher allows patterns to be assigned to variables. This
allows the matching paths to be inspected, used in other expressions, etc.

acted_in = (:Person)-[:ACTED_IN]->(:Movie)

The acted_in variable would contain two nodes and the connecting relationship for each path that was
found or created. There are a number of functions to access details of a path, for example: nodes(path),
relationships(path), and length(path).

Clauses

Cypher statements typically have multiple clauses, each of which performs a specific task, for example:

• create and match patterns in the graph

• filter, project, sort, or paginate results

• compose partial statements

By combining Cypher clauses, we can compose more complex statements that express what we want to
know or create.

13

Patterns in practice

Creating data

We’ll start by looking into the clauses that allow us to create data.

To add data, we just use the patterns we already know. By providing patterns we can specify what graph
structures, labels and properties we would like to make part of our graph.

Obviously the simplest clause is called CREATE. It will just go ahead and directly create the patterns that you
specify.

For the patterns we have looked at so far this could look like the following:

CREATE (:Movie {title: 'The Matrix', released: 1997})

If we execute this statement, Cypher returns the number of changes, in this case adding 1 node, 1 label
and 2 properties.

Created Nodes: 1
Added Labels: 1
Set Properties: 2
Rows: 0

As we started out with an empty database, we now have a database with a single node in it:

Movie

title = 'The Matrix'
released = 1997

If case we also want to return the created data we can add a RETURN clause, which refers to the variable we
have assigned to our pattern elements.

CREATE (p:Person {name: 'Keanu Reeves', born: 1964})
RETURN p

This is what gets returned:

Created Nodes: 1
Added Labels: 1
Set Properties: 2
Rows: 1

+--+
| p |
+--+
| (:Person {name: 'Keanu Reeves', born: 1964}) |
+--+

If we want to create more than one element, we can separate the elements with commas or use multiple
CREATE statements.

14

We can of course also create more complex structures, like an ACTED_IN relationship with information
about the character, or DIRECTED ones for the director.

CREATE (a:Person {name: 'Tom Hanks', born: 1956})-[r:ACTED_IN {roles: ['Forrest']}]->(m:Movie {title:
'Forrest Gump', released: 1994})
CREATE (d:Person {name: 'Robert Zemeckis', born: 1951})-[:DIRECTED]->(m)
RETURN a, d, r, m

This is the part of the graph we just updated:

Person

name = 'Tom Hanks'
born = 1956

Movie

title = 'Forrest Gump'
released = 1994

ACTED_IN
roles = ['Forrest']

Person

name = 'Robert Zemeckis'
born = 1951

DIRECTED

In most cases, we want to connect new data to existing structures. This requires that we know how to find
existing patterns in our graph data, which we will look at next.

Matching patterns

Matching patterns is a task for the MATCH statement. We pass the same kind of patterns we’ve used so far
to MATCH to describe what we’re looking for. It is similar to query by example, only that our examples also
include the structures.

A MATCH statement will search for the patterns we specify and return one row per
successful pattern match.

To find the data we have created so far, we can start looking for all nodes labeled with the Movie label.

MATCH (m:Movie)
RETURN m

Here’s the result:

Movie

title = 'The Matrix'
released = 1997

Movie

title = 'Forrest Gump'
released = 1994

This should show both The Matrix and Forrest Gump.

We can also look for a specific person, like Keanu Reeves.

MATCH (p:Person {name: 'Keanu Reeves'})
RETURN p

15

This query returns the matching node:

Person

name = 'Keanu Reeves'
born = 1964

Note that we only provide enough information to find the nodes, not all properties are required. In most
cases you have key-properties like SSN, ISBN, emails, logins, geolocation or product codes to look for.

We can also find more interesting connections, like for instance the movies titles that Tom Hanks acted in
and the roles he played.

MATCH (p:Person {name: 'Tom Hanks'})-[r:ACTED_IN]->(m:Movie)
RETURN m.title, r.roles

Rows: 1

+------------------------------+
| m.title | r.roles |
+------------------------------+
| 'Forrest Gump' | ['Forrest'] |
+------------------------------+

In this case we only returned the properties of the nodes and relationships that we were interested in. You
can access them everywhere via a dot notation identifer.property.

Of course this only lists his role as Forrest in Forrest Gump because that’s all data that we have added.

Now we know enough to connect new nodes to existing ones and can combine MATCH and CREATE to attach
structures to the graph.

Attaching structures

To extend the graph with new information, we first match the existing connection points and then attach
the newly created nodes to them with relationships. Adding Cloud Atlas as a new movie for Tom Hanks
could be achieved like this:

MATCH (p:Person {name: 'Tom Hanks'})
CREATE (m:Movie {title: 'Cloud Atlas', released: 2012})
CREATE (p)-[r:ACTED_IN {roles: ['Zachry']}]->(m)
RETURN p, r, m

Here’s what the structure looks like in the database:

16

Person

name = 'Tom Hanks'
born = 1956

Movie

title = 'Cloud Atlas'
released = 2012

ACTED_IN
roles = ['Zachry']

It is important to remember that we can assign variables to both nodes and relationships
and use them later on, no matter if they were created or matched.

It is possible to attach both node and relationship in a single CREATE clause. For readability it helps to split
them up though.

A tricky aspect of the combination of MATCH and CREATE is that we get one row per
matched pattern. This causes subsequent CREATE statements to be executed once for
each row. In many cases this is what you want. If that’s not intended, please move the
CREATE statement before the MATCH, or change the cardinality of the query with means
discussed later or use the get or create semantics of the next clause: MERGE.

Completing patterns

Whenever we get data from external systems or are not sure if certain information already exists in the
graph, we want to be able to express a repeatable (idempotent) update operation. In Cypher MERGE has this
function. It acts like a combination of MATCH or CREATE, which checks for the existence of data first before
creating it. With MERGE you define a pattern to be found or created. Usually, as with MATCH you only want to
include the key property to look for in your core pattern. MERGE allows you to provide additional properties
you want to set ON CREATE.

If we would not know if our graph already contained Cloud Atlas we could merge it in again.

MERGE (m:Movie {title: 'Cloud Atlas'})
ON CREATE SET m.released = 2012
RETURN m

Created Nodes: 1
Added Labels: 1
Set Properties: 2
Rows: 1

+---+
| m |
+---+
| (:Movie {title: 'Cloud Atlas', released: 2012}) |
+---+

We get a result in any both cases: either the data (potentially more than one row) that was already in the
graph or a single, newly created Movie node.

17

A MERGE clause without any previously assigned variables in it either matches the full
pattern or creates the full pattern. It never produces a partial mix of matching and
creating within a pattern. To achieve a partial match/create, make sure to use already
defined variables for the parts that shouldn’t be affected.

So foremost MERGE makes sure that you can’t create duplicate information or structures, but it comes with
the cost of needing to check for existing matches first. Especially on large graphs it can be costly to scan a
large set of labeled nodes for a certain property. You can alleviate some of that by creating supporting
indexes or constraints, which we will discuss later. But it’s still not for free, so whenever you’re sure to not
create duplicate data use CREATE over MERGE.

MERGE can also assert that a relationship is only created once. For that to work you have
to pass in both nodes from a previous pattern match.

MATCH (m:Movie {title: 'Cloud Atlas'})
MATCH (p:Person {name: 'Tom Hanks'})
MERGE (p)-[r:ACTED_IN]->(m)
ON CREATE SET r.roles =['Zachry']
RETURN p, r, m

Person

name = 'Tom Hanks'
born = 1956

Movie

title = 'Cloud Atlas'
released = 2012

ACTED_IN
roles = ['Zachry']

In case the direction of a relationship is arbitrary, you can leave off the arrowhead. MERGE will then check for
the relationship in either direction, and create a new directed relationship if no matching relationship was
found.

If you choose to pass in only one node from a preceding clause, MERGE offers an interesting functionality. It
will then only match within the direct neighborhood of the provided node for the given pattern, and, if not
found create it. This can come in very handy for creating for example tree structures.

CREATE (y:Year {year: 2014})
MERGE (y)<-[:IN_YEAR]-(m10:Month {month: 10})
MERGE (y)<-[:IN_YEAR]-(m11:Month {month: 11})
RETURN y, m10, m11

This is the graph structure that gets created:

18

Year

year = 2014

Month

month = 11

IN_YEAR

Month

month = 10

IN_YEAR

Here there is no global search for the two Month nodes; they are only searched for in the context of the
2014 Year node.

Getting the correct results

Example graph

First we create some data to use for our examples:

CREATE (matrix:Movie {title: 'The Matrix', released: 1997})
CREATE (cloudAtlas:Movie {title: 'Cloud Atlas', released: 2012})
CREATE (forrestGump:Movie {title: 'Forrest Gump', released: 1994})
CREATE (keanu:Person {name: 'Keanu Reeves', born: 1964})
CREATE (robert:Person {name: 'Robert Zemeckis', born: 1951})
CREATE (tom:Person {name: 'Tom Hanks', born: 1956})
CREATE (tom)-[:ACTED_IN {roles: ['Forrest']}]->(forrestGump)
CREATE (tom)-[:ACTED_IN {roles: ['Zachry']}]->(cloudAtlas)
CREATE (robert)-[:DIRECTED]->(forrestGump)

This is the resulting graph:

Movie

title = 'The Matrix'
released = 1997

Movie

title = 'Cloud Atlas'
released = 2012

Movie

title = 'Forrest Gump'
released = 1994

Person

name = 'Keanu Reeves'
born = 1964

Person

name = 'Robert Zemeckis'
born = 1951

DIRECTED

Person

name = 'Tom Hanks'
born = 1956

ACTED_IN
roles = ['Zachry']

ACTED_IN
roles = ['Forrest']

Filtering results

So far we have matched patterns in the graph and always returned all results we found. Now we will look
into options for filtering the results and only return the subset of data that we are interested in. Those filter
conditions are expressed using the WHERE clause. This clause allows to use any number of boolean
expressions, predicates, combined with AND, OR, XOR and NOT. The simplest predicates are comparisons;
especially equality.

MATCH (m:Movie)
WHERE m.title = 'The Matrix'
RETURN m

19

Rows: 1

+--+
| m |
+--+
| (:Movie {title: 'The Matrix', released: 1997}) |
+--+

The query above, using the WHERE clause, is equivalent to this query which includes the
condition in the pattern matching:

MATCH (m:Movie {title: 'The Matrix'})
RETURN m

Other options are numeric comparisons, matching regular expressions, and checking the existence of
values within a list.

The WHERE clause in the following example includes a regular expression match, a greater-than comparison,
and a test to see if a value exists in a list:

MATCH (p:Person)-[r:ACTED_IN]->(m:Movie)
WHERE p.name =~ 'K.+' OR m.released > 2000 OR 'Neo' IN r.roles
RETURN p, r, m

Rows: 1

+---
----------------------+
| p | r | m
|
+---
----------------------+
| (:Person {name: 'Tom Hanks', born: 1956}) | [:ACTED_IN {roles: ['Zachry']}] | (:Movie {title: 'Cloud
Atlas', released: 2012}) |
+---
----------------------+

An advanced aspect is that patterns can be used as predicates. Where MATCH expands the number and
shape of patterns matched, a pattern predicate restricts the current result set. It only allows the paths to
pass that satisfy the specified pattern. As we can expect, the use of NOT only allows the paths to pass that
do not satisfy the specified pattern.

MATCH (p:Person)-[:ACTED_IN]->(m)
WHERE NOT (p)-[:DIRECTED]->()
RETURN p, m

Rows: 2

+--+
| p | m |
+--+
| (:Person {name: 'Tom Hanks', born: 1956}) | (:Movie {title: 'Cloud Atlas', released: 2012}) |
| (:Person {name: 'Tom Hanks', born: 1956}) | (:Movie {title: 'Forrest Gump', released: 1994}) |
+--+

Here we find actors, because they sport an ACTED_IN relationship but then skip those that ever DIRECTED

20

any movie.

There are more advanced ways of filtering, for example list predicates, which we will discuss later in this
section.

Returning results

So far, we have returned nodes, relationships and paths directly via their variables. However, the RETURN
clause can return any number of expressions. But what are expressions in Cypher?

The simplest expressions are literal values. Examples of literal values are: numbers, strings, arrays (for
example: [1,2,3]), and maps (for example: {name: 'Tom Hanks', born:1964, movies: ['Forrest Gump',
...], count: 13}). Individual properties of any node, relationship or map can be accessed using the dot
syntax, for example: n.name. Individual elements or slices of arrays can be retrieved with subscripts, for
example: names[0] and movies[1..-1]. Each function evaluation, for example: length(array),
toInteger('12'), substring('2014-07-01', 0, 4) and coalesce(p.nickname, 'n/a'), is also an
expression.

Predicates used in WHERE clauses count as boolean expressions.

Simple expressions can be composed and concatenated to form more complex expressions.

By default the expression itself will be used as label for the column, in many cases you want to alias that
with a more understandable name using expression AS alias. The alias can be used subsequently to refer
to that column.

MATCH (p:Person)
RETURN
 p,
 p.name AS name,
 toUpper(p.name),
 coalesce(p.nickname, 'n/a') AS nickname,
 {name: p.name, label: head(labels(p))} AS person

Rows: 3

+---
--+
| p | name | toUpper(p.name) | nickname |
person |
+---
--+
| (:Person {name: 'Keanu Reeves', born: 1964}) | 'Keanu Reeves' | 'KEANU REEVES' | 'n/a' |
{name: 'Keanu Reeves', label: 'Person'} |
| (:Person {name: 'Robert Zemeckis', born: 1951}) | 'Robert Zemeckis' | 'ROBERT ZEMECKIS' | 'n/a' |
{name: 'Robert Zemeckis', label: 'Person'} |
| (:Person {name: 'Tom Hanks', born: 1956}) | 'Tom Hanks' | 'TOM HANKS' | 'n/a' |
{name: 'Tom Hanks', label: 'Person'} |
+---
--+

If we wish to display only unique results we can use the DISTINCT keyword after RETURN:

MATCH (n)
RETURN DISTINCT labels(n) AS Labels

21

Rows: 2

+------------+
| Labels |
+------------+
| ['Movie'] |
| ['Person'] |
+------------+

Aggregating information

In many cases we wish to aggregate or group the data encountered while traversing patterns in our graph.
In Cypher, aggregation happens in the RETURN clause while computing the final results. Many common
aggregation functions are supported, e.g. count, sum, avg, min, and max, but there are several more.

Counting the number of people in your database could be achieved by this:

MATCH (:Person)
RETURN count(*) AS people

Rows: 1

+--------+
| people |
+--------+
| 3 |
+--------+

Note that NULL values are skipped during aggregation. For aggregating only unique values use DISTINCT,
for example: count(DISTINCT role).

Aggregation works implicitly in Cypher. We specify which result columns we wish to aggregate. Cypher
will use all non-aggregated columns as grouping keys.

Aggregation affects which data is still visible in ordering or later query parts.

The following statement finds out how often an actor and director have worked together:

MATCH (actor:Person)-[:ACTED_IN]->(movie:Movie)<-[:DIRECTED]-(director:Person)
RETURN actor, director, count(*) AS collaborations

Rows: 1

+---
-----+
| actor | director |
collaborations |
+---
-----+
| (:Person {name: 'Tom Hanks', born: 1956}) | (:Person {name: 'Robert Zemeckis', born: 1951}) | 1
|
+---
-----+

22

Ordering and pagination

It is common to sort and paginate after aggregating using count(x).

Ordering is done using the ORDER BY expression [ASC|DESC] clause. The expression can be any
expression, as long as it is computable from the returned information.

For instance, if we return person.name we can still ORDER BY person.age since both are accessible from the
person reference. We cannot order by things that are not returned. This is especially important with
aggregation and DISTINCT return values, since both remove the visibility of data that is aggregated.

Pagination is done using the SKIP {offset} and LIMIT {count} clauses.

A common pattern is to aggregate for a count (score or frequency), order by it, and only return the top-n
entries.

For instance to find the most prolific actors we could do:

MATCH (a:Person)-[:ACTED_IN]->(m:Movie)
RETURN a, count(*) AS appearances
ORDER BY appearances DESC LIMIT 10

Rows: 1

+---+
| a | appearances |
+---+
| (:Person {name: 'Tom Hanks', born: 1956}) | 2 |
+---+

Collecting aggregation

A very helpful aggregation function is collect(), which collects all the aggregated values into a list. This is
very useful in many situations, since no information of details is lost while aggregating.

collect() is well-suited for retrieving typical parent-child structures, where one core entity (parent, root or
head) is returned per row with all its dependent information in associated lists created with collect().
This means that there is no need to repeat the parent information for each child row, or running n+1
statements to retrieve the parent and its children individually.

The following statement could be used to retrieve the cast of each movie in our database:

MATCH (m:Movie)<-[:ACTED_IN]-(a:Person)
RETURN m.title AS movie, collect(a.name) AS cast, count(*) AS actors

Rows: 2

+---+
| movie | cast | actors |
+---+
| 'Forrest Gump' | ['Tom Hanks'] | 1 |
| 'Cloud Atlas' | ['Tom Hanks'] | 1 |
+---+

23

The lists created by collect() can either be used from the client consuming the Cypher results, or directly
within a statement with any of the list functions or predicates.

Composing large statements

Example graph

We continue using the same example data as before:

CREATE (matrix:Movie {title: 'The Matrix', released: 1997})
CREATE (cloudAtlas:Movie {title: 'Cloud Atlas', released: 2012})
CREATE (forrestGump:Movie {title: 'Forrest Gump', released: 1994})
CREATE (keanu:Person {name: 'Keanu Reeves', born: 1964})
CREATE (robert:Person {name: 'Robert Zemeckis', born: 1951})
CREATE (tom:Person {name: 'Tom Hanks', born: 1956})
CREATE (tom)-[:ACTED_IN {roles: ['Forrest']}]->(forrestGump)
CREATE (tom)-[:ACTED_IN {roles: ['Zachry']}]->(cloudAtlas)
CREATE (robert)-[:DIRECTED]->(forrestGump)

This is the resulting graph:

Movie

title = 'The Matrix'
released = 1997

Movie

title = 'Cloud Atlas'
released = 2012

Movie

title = 'Forrest Gump'
released = 1994

Person

name = 'Keanu Reeves'
born = 1964

Person

name = 'Robert Zemeckis'
born = 1951

DIRECTED

Person

name = 'Tom Hanks'
born = 1956

ACTED_IN
roles = ['Zachry']

ACTED_IN
roles = ['Forrest']

UNION

If you want to combine the results of two statements that have the same result structure, you can use
UNION [ALL].

For example, the following statement lists both actors and directors:

MATCH (actor:Person)-[r:ACTED_IN]->(movie:Movie)
RETURN actor.name AS name, type(r) AS type, movie.title AS title
UNION
MATCH (director:Person)-[r:DIRECTED]->(movie:Movie)
RETURN director.name AS name, type(r) AS type, movie.title AS title

Rows: 3

+---+
| name | type | title |
+---+
'Tom Hanks'	'ACTED_IN'	'Cloud Atlas'
'Tom Hanks'	'ACTED_IN'	'Forrest Gump'
'Robert Zemeckis'	'DIRECTED'	'Forrest Gump'
+---+

24

Note that the returned columns must be aliased in the same way in all the sub-clauses.

The query above is equivalent to this more compact query:

MATCH (actor:Person)-[r:ACTED_IN|DIRECTED]->(movie:Movie)
RETURN actor.name AS name, type(r) AS type, movie.title AS title

WITH

In Cypher it is possible to chain fragments of statements together, similar to how it is done within a data-
flow pipeline. Each fragment works on the output from the previous one, and its results can feed into the
next one. Only columns declared in the WITH clause are available in subsequent query parts.

The WITH clause is used to combine the individual parts and declare which data flows from one to the
other. WITH is similar to the RETURN clause. The difference is that the WITH clause does not finish the query,
but prepares the input for the next part. Expressions, aggregations, ordering and pagination can be used in
the same way as in the RETURN clause. The only difference is all columns must be aliased.

In the example below, we collect the movies someone appeared in, and then filter out those which appear
in only one movie:

MATCH (person:Person)-[:ACTED_IN]->(m:Movie)
WITH person, count(*) AS appearances, collect(m.title) AS movies
WHERE appearances > 1
RETURN person.name, appearances, movies

Rows: 1

+---+
| person.name | appearances | movies |
+---+
| 'Tom Hanks' | 2 | ['Cloud Atlas', 'Forrest Gump'] |
+---+

Defining a schema

Example graph

First we create some data to use for our examples:

CREATE (matrix:Movie {title: 'The Matrix', released: 1997})
CREATE (cloudAtlas:Movie {title: 'Cloud Atlas', released: 2012})
CREATE (forrestGump:Movie {title: 'Forrest Gump', released: 1994})
CREATE (keanu:Person {name: 'Keanu Reeves'})
CREATE (robert:Person {name: 'Robert Zemeckis', born: 1951})
CREATE (tom:Person {name: 'Tom Hanks', born: 1956})
CREATE (tom)-[:ACTED_IN {roles: ['Forrest']}]->(forrestGump)
CREATE (tom)-[:ACTED_IN {roles: ['Zachry']}]->(cloudAtlas)
CREATE (robert)-[:DIRECTED]->(forrestGump)

This is the resulting graph:

25

Movie

title = 'The Matrix'
released = 1997

Movie

title = 'Cloud Atlas'
released = 2012

Movie

title = 'Forrest Gump'
released = 1994

Person

name = 'Keanu Reeves'

Person

name = 'Robert Zemeckis'
born = 1951

DIRECTED

Person

name = 'Tom Hanks'
born = 1956

ACTED_IN
roles = ['Zachry']

ACTED_IN
roles = ['Forrest']

Using indexes

The main reason for using indexes in a graph database is to find the starting point of a graph traversal.
Once that starting point is found, the traversal relies on in-graph structures to achieve high performance.

Indexes can be added at any time. Note, however, that if there is existing data in the database, it will take
some time for an index to come online.

In this case we want to create an index to speed up finding actors by name in the database:

CREATE INDEX FOR (a:Actor) ON (a.name)

In most cases it is not necessary to specify indexes when querying for data, as the appropriate indexes will
be used automatically. For example, the following query will automatically use the index defined above:

MATCH (actor:Actor {name: 'Tom Hanks'})
RETURN actor

A composite index is an index on multiple properties for all nodes that have a particular label. For example,
the following statement will create a composite index on all nodes labeled with Actor and which have both
a name and a born property. Note that since the node with the Actor label that has a name of "Keanu
Reeves" does not have the born property. Therefore that node will not be added to the index.

CREATE INDEX FOR (a:Actor) ON (a.name, a.born)

We can inspect our database to find out what indexes are defined. We do this by calling the built-in
procedure db.indexes:

CALL db.indexes
YIELD description, tokenNames, properties, type;

Rows: 2

+---+
| description | tokenNames | properties | type |
+---+
| 'INDEX ON :Actor(name)' | ['Actor'] | ['name'] | 'node_label_property' |
| 'INDEX ON :Actor(name, born)' | ['Actor'] | ['name', 'born'] | 'node_label_property' |
+---+

26

Learn more about indexes in Cypher Manual → Indexes.

It is possible to specify which index to use in a particular query, using index hints. This is
one of several options for query tuning, described in detail in Cypher manual → Query
tuning.

Using constraints

Constraints are used to make sure that the data adheres to the rules of the domain. For example: "If a node
has a label of Actor and a property of name, then the value of name must be unique among all nodes that
have the Actor label".

To create a constraint that makes sure that our database will never contain more than one node with the
label Movie and the property title, we use the IS UNIQUE syntax:

CREATE CONSTRAINT ON (movie:Movie) ASSERT movie.title IS UNIQUE

Adding the unique constraint will implicitly add an index on that property. If the constraint is dropped, but
the index is still needed, the index will have to be created explicitly.

Constraints can be added to database that already has data in it. This requires that the existing data
complies with the constraint that is being added.

We can inspect our database to find out what constraints are defined. We do this by calling the built-in
procedure db.constraints:

CALL db.constraints

Rows: 1

+--+
| description |
+--+
| 'CONSTRAINT ON (movie:Movie) ASSERT movie.title IS UNIQUE' |
+--+

The constraint described above is available for all editions of Neo4j. Additional
constraints are available for Neo4j Enterprise Edition.

Learn more about constraints in Cypher manual → Constraints.

Import data

This tutorial demonstrates how to import data from CSV files using LOAD CSV.

With the combination of the Cypher clauses LOAD CSV, MERGE, and CREATE you can conveniently import data
into Neo4j. LOAD CSV allows you to access the data values and perform actions on them.

27

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#administration-indexes-fulltext-search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#administration-indexes-fulltext-search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#administration-indexes-fulltext-search
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-tuning
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-tuning
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-tuning
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-tuning
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#administration-constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#administration-constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#administration-constraints

• For a full description of LOAD CSV , see Cypher Manual → LOAD CSV.

• For a full list of Cypher clauses, see Cypher Manual → Clauses.

The data files

In this tutorial, you import data from the following CSV files:

• persons.csv

• movies.csv

• roles.csv

The content of the persons.csv file:

persons.csv

id,name
1,Charlie Sheen
2,Michael Douglas
3,Martin Sheen
4,Morgan Freeman

The persons.csv file contains two columns id and name. Each row represents one person that has a unique
id and a name.

The content of the movies.csv file:

movies.csv

id,title,country,year
1,Wall Street,USA,1987
2,The American President,USA,1995
3,The Shawshank Redemption,USA,1994

The movies.csv file contains the columns id, title, country, and year. Each row represents one movie that
has a unique id, a title, a country of origin, and a release year.

The content of the roles.csv file:

roles.csv

personId,movieId,role
1,1,Bud Fox
4,1,Carl Fox
3,1,Gordon Gekko
4,2,A.J. MacInerney
3,2,President Andrew Shepherd
5,3,Ellis Boyd 'Red' Redding

The roles.csv file contains the columns personId, movieId, and role. Each row represents one role with
relationship data about the person id (from the persons.csv file) and the movie id (from the movies.csv
file).

28

https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-load-csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-load-csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-load-csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-load-csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-clause
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-clause
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-clause

The graph model

The following simple data model shows what a graph model for this data set could look like:

Movie

title = 'movie title'
year = 'year released'

Country

name = 'name of country'

ORIGIN

Person

name = 'name of person'

ACTED_IN
role = 'name of role'

This is the resulting graph, based on the data from the CSV files:

Movie

title = 'Wall Street'
year = 1987

Country

name = 'USA'

ORIGIN

Movie

title = 'The Shawshank Redemption'
year = 1994

ORIGIN

Movie

title = 'The American President'
year = 1995

ORIGIN

Person

name = 'Martin Sheen'

ACTED_IN
role = 'Carl Fox'

ACTED_IN
role = 'A.J. MacInerney'

Person

name = 'Charlie Sheen'

ACTED_IN
role = 'Bud Fox'

Person

name = 'Morgan Freeman'

ACTED_IN
role = 'Ellis Boyd 'Red' Redding'

Person

name = 'Michael Douglas'

ACTED_IN
role = 'Gordon Gekko'

ACTED_IN
role = 'President Andrew Shepherd'

Prerequisites

This tutorial uses the Linux or macOS tarball installation.

It assumes that your current work directory is the <neo4j-home> directory of the tarball installation, and
the CSV files are placed in the default import directory.

• For the default directory of other installations see, Operations Manual → File locations.

• The import location can be configured with Operations Manual →
dbms.directories.import.

Prepare the database

Before importing the data, you should prepare the database you want to use by creating indexes and
constraints.

You should ensure that the Person and Movie nodes have unique id properties by creating constraints on

29

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#file-locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#file-locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#file-locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#config_dbms.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#config_dbms.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#config_dbms.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#config_dbms.directories.import

them.

Creating a unique constraint also implicitly creates an index. By indexing the id property, node lookup (e.g.
by MATCH) will be much faster.

Additionally, it is a good idea to index the country name for a fast lookup.

1. Start neo4j.

Run the command:

bin/neo4j start

 The default user name is neo4j and password neo4j.

2. Create a constraint so that each Person node has a unique id property.

You create a constraint on the id property of Person nodes to ensure that nodes with the Person label will
have a unique id property.

Using Neo4j Browser, run the following Cypher:

CREATE CONSTRAINT personIdConstraint ON (person:Person) ASSERT person.id IS UNIQUE

Or using Neo4j Cypher Shell, run the command:

bin/cypher-shell --database=neo4j "CREATE CONSTRAINT personIdConstraint ON (person:Person) ASSERT
person.id IS UNIQUE"

3. Create a constraint so that each Movie node has a unique id propery.

You create a constraint on the id property of Movie nodes to ensure that nodes with the Movie label will
have a unique id property.

Using Neo4j Browser, run the following Cypher:

CREATE CONSTRAINT movieIdConstraint ON (movie:Movie) ASSERT movie.id IS UNIQUE

Or using Neo4j Cypher Shell, run the command:

bin/cypher-shell --database=neo4j "CREATE CONSTRAINT movieIdConstraint ON (movie:Movie) ASSERT movie.id IS
UNIQUE"

4. Create an index for Country node for the name property.

Create an index on the name property of Country nodes to ensure fast lookups.

30

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#cypher-shell
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#cypher-shell

When using MERGE or MATCH with LOAD CSV, make sure you have an index or a unique
constraint on the property that you are merging on. This will ensure that the query
executes in a performant way.

Using Neo4j Browser, run the following Cypher:

CREATE INDEX FOR (c:Country) ON (c.name)

Or using Neo4j Cypher Shell, run the command:

bin/cypher-shell --database=neo4j "CREATE INDEX FOR (c:Country) ON (c.name)"

Import data using LOAD CSV

1. Load the data from the persons.csv file.

You create nodes with the Person label and the properties id and name.

Using Neo4j Browser, run the following Cypher:

LOAD CSV WITH HEADERS FROM "file:///persons.csv" AS csvLine
CREATE (p:Person {id: toInteger(csvLine.id), name: csvLine.name})

Or using Neo4j Cypher Shell, run the command:

bin/cypher-shell --database=neo4j 'LOAD CSV WITH HEADERS FROM "file:///persons.csv" AS csvLine CREATE
(p:Person {id:toInteger(csvLine.id), name:csvLine.name})'

Output:

Added 4 nodes, Set 8 properties, Added 4 labels

LOAD CSV also supports accessing CSV files via HTTPS, HTTP, and FTP, see Cypher Manual
→ LOAD CSV.

2. Load the data from the movies.csv file.

You create nodes with the Movie label and the properties id, title, and year.

Also you create nodes with the Country label. Using MERGE avoids creating duplicate Country nodes in the
case where multiple movies have the same country of origin.

The relationship with the type ORIGIN will connect the Country node and the Movie node.

Using Neo4j Browser, run the following Cypher:

31

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#cypher-shell
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#cypher-shell
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-load-csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-load-csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-load-csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-load-csv

LOAD CSV WITH HEADERS FROM "file:///movies.csv" AS csvLine
MERGE (country:Country {name: csvLine.country})
CREATE (movie:Movie {id: toInteger(csvLine.id), title: csvLine.title, year:toInteger(csvLine.year)})
CREATE (movie)-[:ORIGIN]->(country)

Or using Neo4j Cypher Shell, run the command:

bin/cypher-shell --database=neo4j 'LOAD CSV WITH HEADERS FROM "file:///movies.csv" AS csvLine MERGE
(country:Country {name:csvLine.country}) CREATE (movie:Movie {id:toInteger(csvLine.id),
title:csvLine.title, year:toInteger(csvLine.year)}) CREATE (movie)-[:ORIGIN]->(country)'

Output:

Added 4 nodes, Created 3 relationships, Set 10 properties, Added 4 labels

3. Load the data from the roles.csv file

Importing the data from the roles.csv file is a matter of finding the Person node and Movie node and then
creating relationships between them.

For larger data files, it is useful to use the hint USING PERIODIC COMMIT clause of LOAD
CSV. This hint tells Neo4j that the query might build up inordinate amounts of transaction
state, and thus needs to be periodically committed. For more information, see
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-using-periodic-commit-
hint.

Using Neo4j Browser, run the following Cypher:

USING PERIODIC COMMIT 500
LOAD CSV WITH HEADERS FROM "file:///roles.csv" AS csvLine
MATCH (person:Person {id: toInteger(csvLine.personId)}), (movie:Movie {id: toInteger(csvLine.movieId)})
CREATE (person)-[:ACTED_IN {role: csvLine.role}]->(movie)

Or using Neo4j Cypher Shell, run the command:

bin/cypher-shell --database=neo4j 'USING PERIODIC COMMIT 500 LOAD CSV WITH HEADERS FROM
"file:///roles.csv" AS csvLine MATCH (person:Person {id:toInteger(csvLine.personId)}), (movie:Movie
{id:toInteger(csvLine.movieId)}) CREATE (person)-[:ACTED_IND {role:csvLine.role}]->(movie)'

Output:

Created 5 relationships, Set 5 properties

Validate the imported data

Check the resulting data set by finding all the nodes that have a relationship.

Using Neo4j Browser, run the following Cypher:

32

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#cypher-shell
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-using-periodic-commit-hint
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.0.pdf#query-using-periodic-commit-hint
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#cypher-shell

MATCH (n)-[r]->(m) RETURN n, r, m

Or using Neo4j Cypher Shell, run the command:

bin/cypher-shell --database=neo4j 'MATCH (n)-[r]->(m) RETURN n, r, m'

Output:

+---
--+
| n | r
| m |
+---
--+
| (:Movie {id: 3, title: "The Shawshank Redemption", year: 1994}) | [:ORIGIN]
| (:Country {name: "USA"}) |
| (:Movie {id: 2, title: "The American President", year: 1995}) | [:ORIGIN]
| (:Country {name: "USA"}) |
| (:Movie {id: 1, title: "Wall Street", year: 1987}) | [:ORIGIN]
| (:Country {name: "USA"}) |
| (:Person {name: "Morgan Freeman", id: 4}) | [:ACTED_IN {role: "Carl Fox"}]
| (:Movie {id: 1, title: "Wall Street", year: 1987}) |
| (:Person {name: "Charlie Sheen", id: 1}) | [:ACTED_IN {role: "Bud Fox"}]
| (:Movie {id: 1, title: "Wall Street", year: 1987}) |
| (:Person {name: "Martin Sheen", id: 3}) | [:ACTED_IN {role: "Gordon Gekko"}]
| (:Movie {id: 1, title: "Wall Street", year: 1987}) |
| (:Person {name: "Martin Sheen", id: 3}) | [:ACTED_IN {role: "President Andrew
Shepherd"}] | (:Movie {id: 2, title: "The American President", year: 1995}) |
| (:Person {name: "Morgan Freeman", id: 4}) | [:ACTED_IN {role: "A.J. MacInerney"}]
| (:Movie {id: 2, title: "The American President", year: 1995}) |
+---
--+

33

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.0.pdf#cypher-shell

License
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

You are free to

Share

copy and redistribute the material in any medium or format

Adapt

remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial

You may not use the material for commercial purposes.

ShareAlike

If you remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

Notices

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for further details. The full license text is available
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

34

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

	Getting Started Guide
	Table of Contents
	Get started with Neo4j
	Installing Neo4j
	Documentation

	Graph database concepts
	Example graph
	Node
	Node labels
	Relationship
	Relationship type
	Properties
	Traversals and paths
	Schema
	Indexes
	Constraints
	Naming conventions

	Introduction to Cypher
	Patterns
	Patterns in practice
	Getting the correct results
	Composing large statements
	Defining a schema
	Import data

