
The Neo4j Python Driver
Manual v5.0

Table of Contents
Quickstart . 1

Installation . 1

Connect to the database . 1

Query the database . 1

Run your own transactions. 2

Close connections and sessions . 4

API documentation . 4

Glossary . 5

=Regular workflow= . 7

Installation . 8

Install the driver . 8

Get a Neo4j instance . 8

Connection . 9

Connect to the database. 9

Connect to an Aura instance . 9

Close connections . 10

Further connection parameters. 10

Query the database . 11

Write to the database. 11

Read from the database . 11

Update the database. 12

Delete from the database. 12

Query parameters . 12

Error handling . 13

Query configuration. 13

A full example. 15

Manipulate query results. 16

Result as a list. 16

Transform to Pandas DataFrame . 16

Transform to graph . 17

Custom transformers . 19

=Advanced usage=. 21

Run your own transactions . 22

Create a session. 22

Run a managed transaction. 22

Run an explicit transaction. 25

Process query results . 27

Session configuration . 28

Close sessions . 29

Explore the query execution summary. 30

Retrieve the execution summary . 30

Query counters . 30

Query execution plan . 31

Notifications . 32

Coordinate parallel transactions . 34

Bookmarks with .execute_query() . 34

Bookmarks within a single session . 34

Bookmarks across multiple sessions . 34

Mix .execute_query() and sessions . 37

Implement a custom BookmarkManager . 37

Run concurrent transactions . 38

Further query mechanisms. 40

Implicit (or auto-commit) transactions . 40

Dynamic values in property keys, relationship types, and labels. 41

Logging . 42

Performance recommendations . 43

Always specify the target database . 43

Be aware of the cost of transactions . 43

Don’t fetch large result sets all at once . 44

Route read queries to cluster readers . 47

Create indexes . 48

Profile queries. 48

Specify node labels . 49

Batch data creation . 50

Use query parameters. 50

Concurrency . 51

Use MERGE for creation only when needed . 51

Filter notifications . 51

=Reference=. 52

Advanced connection information . 53

Connection URI . 53

Connection protocols and security. 53

Authentication methods. 53

Custom address resolver . 54

Further connection parameters. 55

Data types and mapping to Cypher types. 56

Core types . 56

Temporal types. 56

Spatial types . 58

Graph types. 59

Extended types. 62

Exceptions . 63

API documentation . 64

=GraphAcademy courses= . 65

Graph Data Modeling Fundamentals . 66

Intermediate Cypher Queries . 67

Building Neo4j Applications with Python . 68

https://neo4j.com/docs/api/python-driver/current/
https://graphacademy.neo4j.com/courses/modeling-fundamentals/?ref=docs-python
https://graphacademy.neo4j.com/courses/cypher-intermediate-queries/?ref=docs-python
https://graphacademy.neo4j.com/courses/app-python/?ref=docs-python

Quickstart
The Neo4j Python driver is the official library to interact with a Neo4j instance through a Python
application.

At the hearth of Neo4j lies Cypher, the query language to interact with a Neo4j database. While this guide
does not require you to be a seasoned Cypher querier, it is going to be easier to focus on the Python-
specific bits if you already know some Cypher. For this reason, although this guide does also provide a
gentle introduction to Cypher along the way, consider checking out Getting started → Cypher for a more
detailed walkthrough of graph databases modelling and querying if this is your first approach. You may
then apply that knowledge while following this guide to develop your Python application.

Installation
Install the Neo4j Python driver with pip:

pip install neo4j

More info on installing the driver →

Connect to the database
Connect to a database by creating a Driver object and providing a URL and an authentication token. Once
you have a Driver instance, use the .verify_connectivity() method to ensure that a working connection
can be established.

from neo4j import GraphDatabase

URI examples: "neo4j://localhost", "neo4j+s://xxx.databases.neo4j.io"
URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

with GraphDatabase.driver(URI, auth=AUTH) as driver:
 driver.verify_connectivity()

More info on connecting to a database →

Query the database
Execute a Cypher statement with the method Driver.execute_query(). Do not hardcode or concatenate
parameters: use placeholders and specify the parameters as keyword arguments.

1

https://neo4j.com/docs/pdf/neo4j-getting-started-cypher-intro.pdf
https://neo4j.com/docs/pdf/neo4j-getting-started-cypher-intro.pdf
https://neo4j.com/docs/pdf/neo4j-getting-started-cypher-intro.pdf

Get the name of all 42 year-olds
records, summary, keys = driver.execute_query(
 "MATCH (p:Person {age: $age}) RETURN p.name AS name",
 age=42,
 database_="neo4j",
)

Loop through results and do something with them
for person in records:
 print(person)

Summary information
print("The query `{query}` returned {records_count} records in {time} ms.".format(
 query=summary.query, records_count=len(records),
 time=summary.result_available_after,
))

More info on querying the database →

Run your own transactions
For more advanced use-cases, you can run transactions. Use the methods Session.execute_read() and
Session.execute_write() to run managed transactions.

2

A transaction with multiple queries, client logic, and potential roll backs

from neo4j import GraphDatabase

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")
employee_threshold=10

def main():
 with GraphDatabase.driver(URI, auth=AUTH) as driver:
 with driver.session(database="neo4j") as session:
 for i in range(100):
 name = f"Thor{i}"
 org_id = session.execute_write(employ_person_tx, name)
 print(f"User {name} added to organization {org_id}")

def employ_person_tx(tx, name):
 # Create new Person node with given name, if not exists already
 result = tx.run("""
 MERGE (p:Person {name: $name})
 RETURN p.name AS name
 """, name=name
)

 # Obtain most recent organization ID and the number of people linked to it
 result = tx.run("""
 MATCH (o:Organization)
 RETURN o.id AS id, COUNT{(p:Person)-[r:WORKS_FOR]->(o)} AS employees_n
 ORDER BY o.created_date DESC
 LIMIT 1
 """)
 org = result.single()

 if org is not None and org["employees_n"] == 0:
 raise Exception("Most recent organization is empty.")
 # Transaction will roll back -> not even Person is created!

 # If org does not have too many employees, add this Person to that
 if org is not None and org.get("employees_n") < employee_threshold:
 result = tx.run("""
 MATCH (o:Organization {id: $org_id})
 MATCH (p:Person {name: $name})
 MERGE (p)-[r:WORKS_FOR]->(o)
 RETURN $org_id AS id
 """, org_id=org["id"], name=name
)

 # Otherwise, create a new Organization and link Person to it
 else:
 result = tx.run("""
 MATCH (p:Person {name: $name})
 CREATE (o:Organization {id: randomuuid(), created_date: datetime()})
 MERGE (p)-[r:WORKS_FOR]->(o)
 RETURN o.id AS id
 """, name=name
)

 # Return the Organization ID to which the new Person ends up in
 return result.single()["id"]

if __name__ == "__main__":
 main()

More info on running transactions →

3

Close connections and sessions
Unless you created them using the with statement, call the .close() method on all Driver and Session
instances to release any resources still held by them.

from neo4j import GraphDatabase

driver = GraphDatabase.driver(URI, auth=AUTH)
session = driver.session(database="neo4j")

session/driver usage

session.close()
driver.close()

API documentation
For in-depth information about driver features, check out the API documentation.

4

https://neo4j.com/docs/api/python-driver/current/

Glossary
LTS

A Long Term Support release is one guaranteed to be supported for a number of years. Neo4j 4.4 is
LTS, and Neo4j 5 will also have an LTS version.

Aura

Aura is Neo4j’s fully managed cloud service. It comes with both free and paid plans.

Cypher

Cypher is Neo4j’s graph query language that lets you retrieve data from the database. It is like SQL, but
for graphs.

APOC

Awesome Procedures On Cypher (APOC) is a library of (many) functions that can not be easily
expressed in Cypher itself.

Bolt

Bolt is the protocol used for interaction between Neo4j instances and drivers. It listens on port 7687 by
default.

ACID

Atomicity, Consistency, Isolation, Durability (ACID) are properties guaranteeing that database
transactions are processed reliably. An ACID-compliant DBMS ensures that the data in the database
remains accurate and consistent despite failures.

eventual consistency

A database is eventually consistent if it provides the guarantee that all cluster members will, at some
point in time, store the latest version of the data.

causal consistency

A database is causally consistent if read and write queries are seen by every member of the cluster in
the same order. This is stronger than eventual consistency.

NULL

The null marker is not a type but a placeholder for absence of value. For more information, see Cypher →
Working with null.

transaction

A transaction is a unit of work that is either committed in its entirety or rolled back on failure. An
example is a bank transfer: it involves multiple steps, but they must all succeed or be reverted, to avoid
money being subtracted from one account but not added to the other.

backpressure

Backpressure is a force opposing the flow of data. It ensures that the client is not being overwhelmed
by data faster than it can handle.

5

https://neo4j.com/cloud/platform/aura-graph-database/
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#cypher_overview
https://neo4j.com/docs/pdf/neo4j-apoc-current.pdf
https://neo4j.com/docs/pdf/neo4j-bolt-current.pdf
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#working_with_null
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#working_with_null
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#working_with_null
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#working_with_null

transaction function

A transaction function is a callback executed by an execute_read or execute_write call. The driver
automatically re-executes the callback in case of server failure.

Driver

A Driver object holds the details required to establish connections with a Neo4j database.

6

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Driver

=Regular workflow=

7

Installation
To start creating a Neo4j Python application, you first need to install the Python Driver and get a Neo4j
database instance to connect to.

Install the driver
Use pip to install the Neo4j Python Driver (requires Python >= 3.7):

pip install neo4j

Always use the latest version of the driver, as it will always work both with the previous Neo4j LTS release
and with the current and next major releases. The latest 5.x driver supports connection to any Neo4j 5 and
4.4 instance, and will also be compatible with Neo4j 6. For a detailed list of changes across versions, see
the driver’s changelog.



The Rust extension to the Python driver is an alternative driver package that yields a 3x
to 10x speedup compared to the regular driver. You can install it with pip install
neo4j-rust-ext, either alongside the neo4j package or as a replacement to it. Usage-
wise, the drivers are identical: everything in this guide applies to both packages.


To get the driver on an air-gapped machine, download the latest driver tarball and install
it with pip install neo4j-<version>.tar.gz.

Get a Neo4j instance
You need a running Neo4j database in order to use the driver with it. The easiest way to spin up a local
instance is through a Docker container (requires docker.io). The command below runs the latest Neo4j
version in Docker, setting the admin username to neo4j and password to secretgraph:

docker run \
 -p7474:7474 \ # forward port 7474 (HTTP)
 -p7687:7687 \ # forward port 7687 (Bolt)
 -d \ # run in background
 -e NEO4J_AUTH=neo4j/secretgraph \ # set login credentials
 neo4j:latest

Alternatively, you can obtain a free cloud instance through Aura.

You can also install Neo4j on your system, or use Neo4j Desktop to create a local development
environment (not for production).

8

https://pypi.org/project/neo4j/
https://github.com/neo4j/neo4j-python-driver/wiki/5.x-changelog
https://github.com/neo4j-drivers/neo4j-python-driver-rust-ext
https://pypi.org/project/neo4j/#files
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#introduction
https://neo4j.com/download-center/#community
https://neo4j.com/download-center/#desktop

Connection
Once you have installed the driver and have a running Neo4j instance, you are ready to connect your
application to the database.

Connect to the database
You connect to a database by creating a Driver object and providing a URL and an authentication token.

from neo4j import GraphDatabase

URI examples: "neo4j://localhost", "neo4j+s://xxx.databases.neo4j.io"
URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

with GraphDatabase.driver(URI, auth=AUTH) as driver: ①
 driver.verify_connectivity() ②
 print("Connection established.")

① Creating a Driver instance only provides information on how to access the database, but does not
actually establish a connection. Connection is instead deferred to when the first query is executed.

② To verify immediately that the driver can connect to the database (valid credentials, compatible
versions, etc), use the .verify_connectivity() method after initializing the driver.

Both the creation of a Driver object and the connection verification can raise a number of different
exceptions. Since error handling can get quite verbose, and a connection error is a blocker for any
subsequent task, the most common choice is to let the program crash should an exception occur during
connection.

Driver objects are immutable, thread-safe, and expensive to create, so your application should create
only one instance and pass it around (you may share Driver instances across threads). If you need to
query the database through several different users, use impersonation without creating a new Driver
instance. If you want to alter a Driver configuration, you need to create a new object.

Connect to an Aura instance
When you create an Aura instance, you may download a text file (a so-called Dotenv file) containing the
connection information to the database in the form of environment variables. The file has a name of the
form Neo4j-a0a2fa1d-Created-2023-11-06.txt.

You can either manually extract the URI and the credentials from that file, or use a third party-module to
load them. We recommend the package python-dotenv for that purpose.

9

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#errors
https://pypi.org/project/python-dotenv/

import dotenv
import os
from neo4j import GraphDatabase

load_status = dotenv.load_dotenv("Neo4j-a0a2fa1d-Created-2023-11-06.txt")
if load_status is False:
 raise RuntimeError('Environment variables not loaded.')

URI = os.getenv("NEO4J_URI")
AUTH = (os.getenv("NEO4J_USERNAME"), os.getenv("NEO4J_PASSWORD"))

with GraphDatabase.driver(URI, auth=AUTH) as driver:
 driver.verify_connectivity()
 print("Connection established.")



An Aura instance is not conceptually different from any other Neo4j instance, as Aura is
simply a deployment mode for Neo4j. When interacting with a Neo4j database through
the driver, it doesn’t make a difference whether it is an Aura instance it is working with
or a different deployment.

Close connections
Always close Driver objects to free up all allocated resources, even upon unsuccessful connection or
runtime errors. Either instantiate the Driver object using the with statement, or call the Driver.close()
method explicitly.

Further connection parameters
For more Driver configuration parameters and further connection settings, see Advanced connection
information.

10

Query the database
Once you have connected to the database, you can run queries using Cypher and the method
Driver.execute_query().


Driver.execute_query() was introduced with the version 5.8 of the driver.
For queries with earlier versions, use sessions and transactions.

Write to the database
To create a node representing a person named Alice, use the Cypher clause CREATE:

Create a node representing a person named Alice

summary = driver.execute_query(
 "CREATE (:Person {name: $name})", ①
 name="Alice", ②
 database_="neo4j", ③
).summary
print("Created {nodes_created} nodes in {time} ms.".format(
 nodes_created=summary.counters.nodes_created,
 time=summary.result_available_after
))

① The Cypher query

② A map of query parameters

③ Which database the query should be run against

Read from the database
To retrieve information from the database, use the Cypher clause MATCH:

Retrieve all Person nodes

records, summary, keys = driver.execute_query(
 "MATCH (p:Person) RETURN p.name AS name",
 database_="neo4j",
)

Loop through results and do something with them
for record in records: ①
 print(record.data()) # obtain record as dict

Summary information ②
print("The query `{query}` returned {records_count} records in {time} ms.".format(
 query=summary.query, records_count=len(records),
 time=summary.result_available_after
))

① records contains the result as an array of Record objects

② summary contains the summary of execution returned by the server

11

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#create
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#match

Update the database
To update a node’s information in the database, use the Cypher clauses SET:

Update node Alice to add an age property

records, summary, keys = driver.execute_query("""
 MATCH (p:Person {name: $name})
 SET p.age = $age
 """, name="Alice", age=42,
 database_="neo4j",
)
print(f"Query counters: {summary.counters}.")

To create a new relationship, linking it to two already existing node, use a combination of the Cypher
clauses MATCH and CREATE:

Create a relationship :KNOWS between Alice and Bob

records, summary, keys = driver.execute_query("""
 MATCH (alice:Person {name: $name}) ①
 MATCH (bob:Person {name: $friend}) ②
 CREATE (alice)-[:KNOWS]->(bob) ③
 """, name="Alice", friend="Bob",
 database_="neo4j",
)
print(f"Query counters: {summary.counters}.")

① Retrieve the person node named Alice and bind it to a variable alice

② Retrieve the person node named Bob and bind it to a variable bob

③ Create a new :KNOWS relationship outgoing from the node bound to alice and attach to it the Person
node named Bob

Delete from the database
To remove a node and any relationship attached to it, use the Cypher clause DETACH DELETE:

Remove the Alice node

records, summary, keys = driver.execute_query("""
 MATCH (p:Person {name: $name})
 DETACH DELETE p
 """, name="Alice",
 database_="neo4j",
)
print(f"Query counters: {summary.counters}.")

Query parameters
Do not hardcode or concatenate parameters directly into queries. Instead, always use placeholders and
specify the Cypher parameters, as shown in the previous examples. This is for:

1. performance benefits: Neo4j compiles and caches queries, but can only do so if the query structure is
unchanged;

2. security reasons: see protecting against Cypher injection.

12

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#set
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#delete
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#parameters
https://neo4j.com/developer/kb/protecting-against-cypher-injection/

Query parameters can be passed either as several keyword arguments, or grouped together in a dictionary
as value to the parameters_ keyword argument. In case of mix, keyword-argument parameters take
precedence over dictionary ones.

Pass query parameters as keyword arguments

driver.execute_query(
 "MERGE (:Person {name: $name})",
 name="Alice", age=42,
 database_="neo4j",
)

Pass query parameters in a dictionary

parameters = {
 "name": "Alice",
 "age": 42
}
driver.execute_query(
 "MERGE (:Person {name: $name})",
 parameters_=parameters,
 database_="neo4j",
)

None of your keyword query parameters may end with a single underscore. This is to avoid collisions with
the keyword configuration parameters. If you need to use such parameter names, pass them in the
parameters_ dictionary.


There can be circumstances where your query structure prevents the usage of
parameters in all its parts. For those rare use cases, see Dynamic values in property keys,
relationship types, and labels.

Error handling
Because .execute_query() can potentially raise a number of different exceptions, the best way to handle
errors is to catch all exceptions in a single try/except block:

try:
 driver.execute_query(...)
except Exception as e:
 ... # handle exception


The driver automatically retries to run a failed query, if the failure is deemed to be
transient (for example due to temporary server unavailability). An exception will be
raised if the operation keeps failing after a number of attempts.

Query configuration
You can supply further keyword arguments to alter the default behavior of .execute_query().
Configuration parameters are suffixed with _.

13

Database selection

It is recommended to always specify the database explicitly with the database_ parameter, even on single-
database instances. This allows the driver to work more efficiently, as it saves a network round-trip to the
server to resolve the home database. If no database is given, the user’s home database is used.

driver.execute_query(
 "MATCH (p:Person) RETURN p.name",
 database_="neo4j",
)



Specifying the database through the configuration method is preferred over the USE
Cypher clause. If the server runs on a cluster, queries with USE require server-side
routing to be enabled. Queries may also take longer to execute as they may not reach
the right cluster member at the first attempt, and need to be routed to one containing
the requested database.

Request routing

In a cluster environment, all queries are directed to the leader node by default. To improve performance on
read queries, you can use the argument routing_="r" to route a query to the read nodes.

driver.execute_query(
 "MATCH (p:Person) RETURN p.name",
 routing_="r", # short for neo4j.RoutingControl.READ
 database_="neo4j",
)



Although executing a write query in read mode likely results in a runtime error, you
should not rely on this for access control. The difference between the two modes is that
read transactions will be routed to any node of a cluster, whereas write ones will be
directed to the leader. In other words, there is no guarantee that a write query submitted
in read mode will be rejected.

Run queries as a different user

You can execute a query under the security context of a different user with the parameter
impersonated_user_, specifying the name of the user to impersonate. For this to work, the user under
which the Driver was created needs to have the appropriate permissions. Impersonating a user is cheaper
than creating a new Driver object.

1 driver.execute_query(
2 "MATCH (p:Person) RETURN p.name",
3 impersonated_user_="somebody_else",
4 database_="neo4j",
5)

When impersonating a user, the query is run within the complete security context of the impersonated
user and not the authenticated user (i.e. home database, permissions, etc.).

14

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#manage-databases-default
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#use
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#access-control-dbms-administration-impersonation

Transform query result

You can transform a query’s result into a different data structure using the result_transformer_ argument.
The driver provides built-in methods to transform the result into a pandas dataframe or into a graph, but
you can also craft your own transformer.

For more information, see Manipulate query results.

A full example

from neo4j import GraphDatabase

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

people = [{"name": "Alice", "age": 42, "friends": ["Bob", "Peter", "Anna"]},
 {"name": "Bob", "age": 19},
 {"name": "Peter", "age": 50},
 {"name": "Anna", "age": 30}]

with GraphDatabase.driver(URI, auth=AUTH) as driver:
 try:
 # Create some nodes
 for person in people:
 records, summary, keys = driver.execute_query(
 "MERGE (p:Person {name: $person.name, age: $person.age})",
 person=person,
 database_="neo4j",
)

 # Create some relationships
 for person in people:
 if person.get("friends"):
 records, summary, keys = driver.execute_query("""
 MATCH (p:Person {name: $person.name})
 UNWIND $person.friends AS friend_name
 MATCH (friend:Person {name: friend_name})
 MERGE (p)-[:KNOWS]->(friend)
 """, person=person,
 database_="neo4j",
)

 # Retrieve Alice's friends who are under 40
 records, summary, keys = driver.execute_query("""
 MATCH (p:Person {name: $name})-[:KNOWS]-(friend:Person)
 WHERE friend.age < $age
 RETURN friend
 """, name="Alice", age=40,
 routing_="r",
 database_="neo4j",
)
 # Loop through results and do something with them
 for record in records:
 print(record)
 # Summary information
 print("The query `{query}` returned {records_count} records in {time} ms.".format(
 query=summary.query, records_count=len(records),
 time=summary.result_available_after
))

 except Exception as e:
 print(e)
 # further logging/processing

For more information see API documentation → Driver.execute_query().

15

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Driver.execute_query
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Driver.execute_query
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Driver.execute_query

Manipulate query results
This section shows how to work with a query’s result so as to extract data in the form that is most
convenient for your application.

Result as a list
By default, Driver.execute_query() returns an EagerResult object.

records, summary, keys = driver.execute_query(
 "MATCH (a:Person) RETURN a.name AS name, a.age AS age",
 database_="neo4j",
)
for person in records: ①
 print(person)
 # person["name"] or person["age"] are also valid

Some summary information ②
print("Query `{query}` returned {records_count} records in {time} ms.".format(
 query=summary.query, records_count=len(records),
 time=summary.result_available_after
))

print(f"Available keys are {keys}") # ['name', 'age'] ③

① The result records as a list, so it is easy to loop through them.

② A summary of execution, with metadata and information about the result.

③ The keys available in the returned rows.

Transform to Pandas DataFrame
The driver can transform the result into a Pandas DataFrame. To achieve this, use the .execute_query()
keyword argument result_transformer_ and set it to neo4j.Result.to_df. This method is only available if
the pandas library is installed.

Return a DataFrame with two columns (n, m) and 10 rows

import neo4j

pandas_df = driver.execute_query(
 "UNWIND range(1, 10) AS n RETURN n, n+1 AS m",
 database_="neo4j",
 result_transformer_=neo4j.Result.to_df
)
print(type(pandas_df)) # <class 'pandas.core.frame.DataFrame'>

This transformer accepts two optional arguments:

• expand — If True, some data structures in the result will be recursively expanded and flattened. More
info in the API documentation.

• parse_dates — If True, columns exclusively containing time.DateTime objects, time.Date objects, or
None, will be converted to pandas.Timestamp.

16

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.EagerResult
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Result.to_df


If you need to pass parameters to to_df, use lambda functions:
result_transformer_=lambda res: res.to_df(True)

Transform to graph
The driver can transform the result into a collection of graph objects. To achieve this, use the
.execute_query() keyword argument result_transformer_ and set it to neo4j.Result.graph. To make the
most out of this method, your query should return a graph-like result instead of a single column. The graph
transformer returns a Graph object exposing the properties nodes and relationships, which are set views
into Node and Relationship objects.

You can use the graph format for further processing or to visualize the query result. An example
implementation that uses the pyvis library to draw the graph is below.

17

https://neo4j.com/docs/api/python-driver/current/api.html#neo4j.graph.Graph

Visualize graph result with pyvis

import pyvis
from neo4j import GraphDatabase
import neo4j

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

def main():
 with GraphDatabase.driver(URI, auth=AUTH) as driver:
 # Create some friends
 input_list = [("Arthur", "Guinevre"),
 ("Arthur", "Lancelot"),
 ("Arthur", "Merlin")]
 driver.execute_query("""
 UNWIND $pairs AS pair
 MERGE (a:Person {name: pair[0]})
 MERGE (a)-[:KNOWS]->(friend:Person {name: pair[1]})
 """, pairs=input_list,
 database_="neo4j",
)

 # Create a film
 driver.execute_query("""
 MERGE (film:Film {title: $title})
 MERGE (liker:Person {name: $person_name})
 MERGE (liker)-[:LIKES]->(film)
 """, title="Wall-E", person_name="Arthur",
 database_="neo4j",
)

 # Query to get a graphy result
 graph_result = driver.execute_query("""
 MATCH (a:Person {name: $name})-[r]-(b)
 RETURN a, r, b
 """, name="Arthur",
 result_transformer_=neo4j.Result.graph,
)

 # Draw graph
 nodes_text_properties = { # what property to use as text for each node
 "Person": "name",
 "Film": "title",
 }
 visualize_result(graph_result, nodes_text_properties)

def visualize_result(query_graph, nodes_text_properties):
 visual_graph = pyvis.network.Network()

 for node in query_graph.nodes:
 node_label = list(node.labels)[0]
 node_text = node[nodes_text_properties[node_label]]
 visual_graph.add_node(node.element_id, node_text, group=node_label)

 for relationship in query_graph.relationships:
 visual_graph.add_edge(
 relationship.start_node.element_id,
 relationship.end_node.element_id,
 title=relationship.type
)

 visual_graph.show('network.html', notebook=False)

if __name__ == "__main__":
 main()

18

Figure 1. Graph visualization of example above

Custom transformers
For more advanded scenarios, you can use the parameter result_transformer_ to provide a custom
function that further manipulates the Result object resulting from your query. A transformer takes a Result
object and can output any data structure. The transformer’s return value is in turn returned by
.execute_query().

Inside a transformer function you can use any of the Result methods.

A custom transformer using single and consume

Get a single record (or an exception) and the summary from a result.
def get_single_person(result):
 record = result.single(strict=True)
 summary = result.consume()
 return record, summary

record, summary = driver.execute_query(
 "MERGE (a:Person {name: $name}) RETURN a.name AS name",
 name="Alice",
 database_="neo4j",
 result_transformer_=get_single_person,
)
print("The query `{query}` returned {record} in {time} ms.".format(
 query=summary.query, record=record, time=summary.result_available_after))

19

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Result

A custom transformer using fetch and peek

Get exactly 5 records, or an exception.
def exactly_5(result):
 records = result.fetch(5)

 if len(records) != 5:
 raise Exception(f"Expected exactly 5 records, found only {len(records)}.")
 if result.peek():
 raise Exception("Expected exactly 5 records, found more.")

 return records

records = driver.execute_query("""
 UNWIND ['Alice', 'Bob', 'Laura', 'John', 'Patricia'] AS name
 MERGE (a:Person {name: name}) RETURN a.name AS name
 """, database_="neo4j",
 result_transformer_=exactly_5,
)



A transformer must not return the Result object itself. Doing so is roughly equivalent to
returning a pointer to the result buffer, which gets invalidated as soon as the query’s
transaction is over.

def transformer(result):
 return result

result = driver.execute_query(
 "MATCH (a:Person) RETURN a.name",
 result_transformer_=transformer)
print(result)
print(result.single())

neo4j.exceptions.ResultConsumedError: The result is out of scope.
The associated transaction has been closed.
Results can only be used while the transaction is open.

20

=Advanced usage=

21

Run your own transactions
When querying the database with execute_query(), the driver automatically creates a transaction. A
transaction is a unit of work that is either committed in its entirety or rolled back on failure. You can include
multiple Cypher statements in a single query, as for example when using MATCH and CREATE in sequence to
update the database, but you cannot have multiple queries and interleave some client-logic in between
them.

For these more advanced use-cases, the driver provides functions to take full control over the transaction
lifecycle. These are called managed transactions, and you can think of them as a way of unwrapping the
flow of execute_query() and being able to specify its desired behavior in more places.

Create a session
Before running a transaction, you need to obtain a session. Sessions act as concrete query channels
between the driver and the server, and ensure causal consistency is enforced.

Sessions are created with the method Driver.session(), with the keyword argument database allowing to
specify the target database. For further parameters, see Session configuration.

with driver.session(database="neo4j") as session:
 ...

Session creation is a lightweight operation, so sessions can be created and destroyed without significant
cost. Always close sessions when you are done with them.

Sessions are not thread safe: you can share the main Driver object across threads, but make sure each
thread creates its own sessions.

Run a managed transaction
A transaction can contain any number of queries. As Neo4j is ACID compliant, queries within a transaction
will either be executed as a whole or not at all: you cannot get a part of the transaction succeeding and
another failing. Use transactions to group together related queries which work together to achieve a single
logical database operation.

A managed transaction is created with the methods Session.execute_write(), depending on whether you
want to retrieve data from the database or alter it. Both methods take a transaction function callback,
which is responsible for actually carrying out the queries and processing the result.

22

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#session
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Session.execute_write

Retrieve people whose name starts with Al.

def match_person_nodes(tx, name_filter): ③
 result = tx.run(""" ④
 MATCH (p:Person) WHERE p.name STARTS WITH $filter
 RETURN p.name AS name ORDER BY name
 """, filter=name_filter)
 return list(result) # return a list of Record objects ⑤

with driver.session(database="neo4j") as session: ①
 people = session.execute_read(②
 match_person_nodes,
 "Al",
)
 for person in people:
 print(person.data()) # obtain dict representation

① Create a session. A single session can be the container for multiple queries. Unless created using the
with construct, remember to close it when done.

② The .execute_read() (or .execute_write()) method is the entry point into a transaction. It takes a
callback to a transaction function and an arbitrary number of positional and keyword arguments which
are handed down to the transaction function.

③ The transaction function callback is responsible of running queries.

④ Use the method Result object.

⑤ Process the result using any of the methods on Result.

Do not hardcode or concatenate parameters directly into the query. Use query parameters instead, both
for performance and security reasons.

Transaction functions should never return the Result object directly. Instead, always process the result in
some way; at minimum, cast it to list. Within a transaction function, a return statement results in the
transaction being committed, while the transaction is automatically rolled back if an exception is raised.


The methods .execute_read() and .execute_write() have replaced
.read_transaction() and .write_transaction(), which are deprecated in version 5.x
and will be removed in version 6.0.

23

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Result

A transaction with multiple queries, client logic, and potential roll backs

from neo4j import GraphDatabase

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")
employee_threshold=10

def main():
 with GraphDatabase.driver(URI, auth=AUTH) as driver:
 with driver.session(database="neo4j") as session:
 for i in range(100):
 name = f"Thor{i}"
 org_id = session.execute_write(employ_person_tx, name)
 print(f"User {name} added to organization {org_id}")

def employ_person_tx(tx, name):
 # Create new Person node with given name, if not exists already
 result = tx.run("""
 MERGE (p:Person {name: $name})
 RETURN p.name AS name
 """, name=name
)

 # Obtain most recent organization ID and the number of people linked to it
 result = tx.run("""
 MATCH (o:Organization)
 RETURN o.id AS id, COUNT{(p:Person)-[r:WORKS_FOR]->(o)} AS employees_n
 ORDER BY o.created_date DESC
 LIMIT 1
 """)
 org = result.single()

 if org is not None and org["employees_n"] == 0:
 raise Exception("Most recent organization is empty.")
 # Transaction will roll back -> not even Person is created!

 # If org does not have too many employees, add this Person to that
 if org is not None and org.get("employees_n") < employee_threshold:
 result = tx.run("""
 MATCH (o:Organization {id: $org_id})
 MATCH (p:Person {name: $name})
 MERGE (p)-[r:WORKS_FOR]->(o)
 RETURN $org_id AS id
 """, org_id=org["id"], name=name
)

 # Otherwise, create a new Organization and link Person to it
 else:
 result = tx.run("""
 MATCH (p:Person {name: $name})
 CREATE (o:Organization {id: randomuuid(), created_date: datetime()})
 MERGE (p)-[r:WORKS_FOR]->(o)
 RETURN o.id AS id
 """, name=name
)

 # Return the Organization ID to which the new Person ends up in
 return result.single()["id"]

if __name__ == "__main__":
 main()

Should a transaction fail for a reason that the driver deems transient, it automatically retries to run the
transaction function (with an exponentially increasing delay). For this reason, transaction functions must
be idempotent (i.e., they should produce the same effect when run several times), because you do not
know upfront how many times they are going to be executed. In practice, this means that you should not
edit nor rely on globals, for example. Note that although transactions functions might be executed multiple

24

times, the queries inside it will always run only once.

A session can chain multiple transactions, but only one single transaction can be active within a session at
any given time. To maintain multiple concurrent transactions, use multiple concurrent sessions.

Transaction function configuration

The decorator unit_of_work() allows to exert further control on transaction functions. It allows to specify:

• a transaction timeout (in seconds). Transactions that run longer will be terminated by the server. The
default value is set on the server side. The minimum value is one millisecond (0.001).

• a dictionary of metadata that gets attached to the transaction. These metadata get logged in the server
query.log, and are visible in the output of the SHOW TRANSACTIONS Cypher command. Use this to tag
transactions.

from neo4j import unit_of_work

@unit_of_work(timeout=5, metadata={"app_name": "people_tracker"})
def count_people(tx):
 result = tx.run("MATCH (a:Person) RETURN count(a) AS people")
 record = result.single()
 return record["people"]

with driver.session(database="neo4j") as session:
 people_n = session.execute_read(count_people)

Run an explicit transaction
You can achieve full control over transactions by manually beginning one with the method
Session.begin_transaction(). You may then run queries inside an explicit transaction with the method
Transaction.run().

with driver.session(database="neo4j") as session:
 with session.begin_transaction() as tx:
 # use tx.run() to run queries and tx.commit() when done
 tx.run("<QUERY 1>")
 tx.run("<QUERY 2>")

 tx.commit()

An explicit transaction can be committed with Transaction.commit() or rolled back with
Transaction.rollback(). If no explicit action is taken, the driver will automatically roll back the transaction
at the end of its lifetime.

Explicit transactions are most useful for applications that need to distribute Cypher execution across
multiple functions for the same transaction, or for applications that need to run multiple queries within a
single transaction but without the automatic retries provided by managed transactions.

25

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.unit_of_work
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Session.begin_transaction
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Transaction.run
https://neo4j.com/docs/api/python-driver/current/api.html#neo4j.Transaction.commit
https://neo4j.com/docs/api/python-driver/current/api.html#neo4j.Transaction.rollback

An explicit transaction example involving an external API

import neo4j

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

def main():
 with neo4j.GraphDatabase.driver(URI, auth=AUTH) as driver:
 customer_id = create_customer(driver)
 other_bank_id = 42
 transfer_to_other_bank(driver, customer_id, other_bank_id, 999)

def create_customer(driver):
 result, _, _ = driver.execute_query("""
 MERGE (c:Customer {id: rand()})
 RETURN c.id AS id
 """, database_ = "neo4j")
 return result[0]["id"]

def transfer_to_other_bank(driver, customer_id, other_bank_id, amount):
 with driver.session(database="neo4j") as session:
 with session.begin_transaction() as tx:
 if not customer_balance_check(tx, customer_id, amount):
 # give up
 return

 other_bank_transfer_api(customer_id, other_bank_id, amount)
 # Now the money has been transferred => can't rollback anymore
 # (cannot rollback external services interactions)

 try:
 decrease_customer_balance(tx, customer_id, amount)
 tx.commit()
 except Exception as e:
 request_inspection(customer_id, other_bank_id, amount, e)
 raise # roll back

def customer_balance_check(tx, customer_id, amount):
 query = ("""
 MATCH (c:Customer {id: $id})
 RETURN c.balance >= $amount AS sufficient
 """)
 result = tx.run(query, id=customer_id, amount=amount)
 record = result.single(strict=True)
 return record["sufficient"]

def other_bank_transfer_api(customer_id, other_bank_id, amount):
 # make some API call to other bank
 pass

def decrease_customer_balance(tx, customer_id, amount):
 query = ("""
 MATCH (c:Customer {id: $id})
 SET c.balance = c.balance - $amount
 """)
 result = tx.run(query, id=customer_id, amount=amount)
 result.consume()

def request_inspection(customer_id, other_bank_id, amount, e):
 # manual cleanup required; log this or similar
 print("WARNING: transaction rolled back due to exception:", repr(e))
 print("customer_id:", customer_id, "other_bank_id:", other_bank_id,
 "amount:", amount)

if __name__ == "__main__":
 main()

26

Process query results
The driver’s output of a query is a Result object, which encapsulates the Cypher result in a rich data
structure that requires some parsing on the client side. There are two main points to be aware of:

• The result records are not immediately and entirely fetched and returned by the server. Instead,
results come as a lazy stream. In particular, when the driver receives some records from the server,
they are initially buffered in a background queue. Records stay in the buffer until they are consumed by
the application, at which point they are removed from the buffer. When no more records are available,
the result is exhausted.

• The result acts as a cursor. This means that there is no way to retrieve a previous record from the
stream, unless you saved it in an auxiliary data structure.

The animation below follows the path of a single query: it shows how the driver works with result records
and how the application should handle results.

<video
 class="rounded-corners"
 controls
 width="100%"
 src="../../../common-content/5/_images/result.mp4"
 poster="../../../common-content/5/_images/result-poster.jpg"
 type="video/mp4"></video>

The easiest way of processing a result is by casting it to list, which yields a list of Record objects.
Otherwise, a Result object implements a number of methods for processing records. The most commonly
needed ones are listed below.

Name Description

value(key=0, default=None) Return the remainder of the result as a list. If key is specified, only the
given property is included, while default allows to specify a value for
nodes lacking that property.

fetch(n) Return up to n records from the result.

single(strict=False) Return the next and only remaining record, or None. Calling this
method always exhausts the result.

If more (or less) than one record is available,

• strict==False — a warning is generated and the first of
these is returned (if any);

• strict==True — a ResultNotSingleError is raised.

peek() Return the next record from the result without consuming it. This leaves
the record in the buffer for further processing.

data(*keys) Return a JSON-like dump of the raw result. Only use it for
debugging/prototyping purposes.

consume() Return the query result summary. It exhausts the result, so should only be
called when data processing is over.

27

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Result
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Record

Name Description

graph() Transform result into a collection of graph objects. See Transform to
graph.

to_df(expand, parse_dates) Transform result into a Pandas Dataframe. See Transform to Pandas
Dataframe.

For a complete list of Result methods, see API documentation — Result.

Session configuration

Database selection

You should always specify the database explicitly with the database parameter, even on single-database
instances. This allows the driver to work more efficiently, as it saves a network round-trip to the server to
resolve the home database. If no database is given, the default database set in the Neo4j instance settings
is used.

with driver.session(
 database="neo4j"
) as session:
 ...



Specifying the database through the configuration method is preferred over the USE
Cypher clause. If the server runs on a cluster, queries with USE require server-side
routing to be enabled. Queries may also take longer to execute as they may not reach
the right cluster member at the first attempt, and need to be routed to one containing
the requested database.

Request routing

In a cluster environment, all sessions are opened in write mode, routing them to the leader. You can
change this by explicitly setting the default_access_mode parameter to either neo4j.READ_ACCESS or
neo4j.WRITE_ACCESS. Note that .execute_read() and .execute_write() automatically override the
session’s default access mode.

import neo4j

with driver.session(
 database="neo4j",
 default_access_mode=neo4j.READ_ACCESS
) as session:
 ...

28

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#result
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#manage-databases-default
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#use



Although executing a write query in read mode likely results in a runtime error, you
should not rely on this for access control. The difference between the two modes is that
read transactions are routed to any node of a cluster, whereas write ones are directed to
the leader. In other words, there is no guarantee that a write query submitted in read
mode will be rejected.

Similar remarks hold for the .executeRead() and .executeWrite() methods.

Run queries as a different user (impersonation)

You can execute a query under the security context of a different user with the parameter
impersonated_user, specifying the name of the user to impersonate. For this to work, the user under which
the Driver was created needs to have the appropriate permissions. Impersonating a user is cheaper than
creating a new Driver object.

with driver.session(
 database="neo4j",
 impersonated_user="somebody_else"
) as session:
 ...

When impersonating a user, the query is run within the complete security context of the impersonated
user and not the authenticated user (i.e., home database, permissions, etc.).

Close sessions
Each connection pool has a finite number of sessions, so if you open sessions without ever closing them,
your application could run out of them. It is thus recommended to create sessions using the with
statement, which automatically closes them when the application is done with them. When a session is
closed, it is returned to the connection pool to be later reused.

If you do not use with, remember to call the .close() method when you have finished using a session.

session = driver.session(database="neo4j")

session usage

session.close()

29

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#access-control-dbms-administration-impersonation

Explore the query execution summary
After all results coming from a query have been processed, the server ends the transaction by returning a
summary of execution. It comes as a ResultSummary object, and it contains information among which:

• Query counters — What changes the query triggered on the server

• Query execution plan — How the database would execute (or executed) the query

• Notifications — Extra information raised by the server while running the query

• Timing information and query request summary

Retrieve the execution summary
When running queries with Driver.execute_query(), the execution summary is part of the default return
object, under the summary key.

records, result_summary, keys = driver.execute_query("""
 UNWIND ["Alice", "Bob"] AS name
 MERGE (p:Person {name: name})
 """, database_="neo4j",
)
or result_summary = driver.execute_query('<QUERY>').summary

If you are using transaction functions, or a custom transformer with Driver.execute_query(), you can
retrieve the query execution summary with the method Result.consume(). Notice that once you ask for
the execution summary, the result stream is exhausted. This means that any record which has not yet
been processed is not available any longer.

def create_people(tx):
 result = tx.run("""
 UNWIND ["Alice", "Bob"] AS name
 MERGE (p:Person {name: name})
 """)
 return result.consume()

with driver.session(database="neo4j") as session:
 result_summary = session.execute_write(create_people)

Query counters
The property ResultSummary.counters contains counters for the operations that a query triggered (as a
SummaryCounters object).

30

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#resultsummary
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#summarycounters

Insert some data and display the query counters

summary = driver.execute_query("""
 MERGE (p:Person {name: $name})
 MERGE (p)-[:KNOWS]->(:Person {name: $friend})
 """, name="Mark", friend="Bob",
 database_="neo4j",
).summary
print(summary.counters)
"""
{'_contains_updates': True, 'labels_added': 2, 'relationships_created': 1,
 'nodes_created': 2, 'properties_set': 2}
"""

There are two additional boolean properties which act as meta-counters:

• contains_updates — whether the query triggered any write operation on the database on which it ran

• contains_system_updates — whether the query updated the system database

Query execution plan
If you prefix a query with EXPLAIN, the server will return the plan it would use to run the query, but will not
actually run it. The plan is then available under the property ResultSummary.plan, and contains the list of
Cypher operators that would be used to retrieve the result set. You may use this information to locate
potential bottlenecks or room for performance improvements (for example through the creation of
indexes).

_, summary, _ = driver.execute_query("EXPLAIN MATCH (p {name: $name}) RETURN p", name="Alice")
print(summary.plan['args']['string-representation'])

"""
Planner COST
Runtime PIPELINED
Runtime version 5.0
Batch size 128

+-----------------+----------------+----------------+---------------------+
| Operator | Details | Estimated Rows | Pipeline |
+-----------------+----------------+----------------+---------------------+
+ProduceResults	p	1	
	+----------------+----------------+		
+Filter	p.name = $name	1	
	+----------------+----------------+		
+AllNodesScan	p	10	Fused in Pipeline 0
+-----------------+----------------+----------------+---------------------+

Total database accesses: ?
"""

If you instead prefix a query with the keyword PROFILE, the server will return the execution plan it has used
to run the query, together with profiler statistics. This includes the list of operators that were used and
additional profiling information about each intermediate step. The plan is available under the property
ResultSummary.profile. Notice that the query is also run, so the result object also contains any result
records.

31

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#operators

records, summary, _ = driver.execute_query("PROFILE MATCH (p {name: $name}) RETURN p", name="Alice")
print(summary.profile['args']['string-representation'])

"""
Planner COST
Runtime PIPELINED
Runtime version 5.0
Batch size 128

+-----------------+----------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+-----------------+----------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | p | 1 | 1 | 3 | |
| | |
| | +----------------+----------------+------+---------+----------------+
+Filter	p.name = $name	1	1	4	
	+----------------+----------------+------+---------+----------------+				
+AllNodesScan	p	10	4	5	120
9160/0 | 108.923 | Fused in Pipeline 0 |
+-----------------+----------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 12, total allocated memory: 184
"""

For more information and examples, see Basic query tuning.

Notifications
After executing a query, the server can return notifications alongside the query result. Notifications contain
recommendations for performance improvements, warnings about the usage of deprecated features, and
other hints about sub-optimal usage of Neo4j.



For driver version >= 5.25 and server version >= 5.23, two forms of notifications are
available (Neo4j status codes and GQL status codes). For earlier versions, only Neo4j
status codes are available.
GQL status codes are planned to supersede Neo4j status codes.

Example 1. An unbounded shortest path raises a performance notification

Filter notifications

By default, the server analyses each query for all categories and severity of notifications. Starting from
version 5.7, you can use the parameters notifications_min_severity and/or
notifications_disabled_categories/notifications_disabled_classifications to restrict the severity
and/or category/classification of notifications that you are interested into. There is a slight performance
gain in restricting the amount of notifications the server is allowed to raise.

The severity filter applies to both Neo4j and GQL notifications. Category and classification filters exist
separately only due to the discrepancy in lexicon between GQL and Neo4j; both filters affect either form of
notification though, so you should use only one of them. If you provide both a category and a classification

32

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#_profile_query
https://neo4j.com/docs/pdf/neo4j-status-codes-current.pdf#notifications

filter, their contents will be merged. You can use any of those parameters either when creating a Driver
instance, or when creating a session.

You can disable notifications altogether by setting the minimum severity to 'OFF'.

Allow only WARNING notifications, but not of HINT or GENERIC category

at driver level
driver = neo4j.GraphDatabase.driver(
 URI, auth=AUTH,
 notifications_min_severity='WARNING', # or 'OFF' to disable entirely
 notifications_disabled_classifications=['HINT', 'GENERIC'], # filters categories as well
)

at session level
session = driver.session(
 database="neo4j",
 notifications_min_severity='INFORMATION', # or 'OFF' to disable entirely
 notifications_disabled_classifications=['HINT'] # filters categories as well
)

33

Coordinate parallel transactions
When working with a Neo4j cluster, causal consistency is enforced by default in most cases, which
guarantees that a query is able to read changes made by previous queries. The same does not happen by
default for multiple transactions running in parallel though. In that case, you can use bookmarks to have
one transaction wait for the result of another to be propagated across the cluster before running its own
work. This is not a requirement, and you should only use bookmarks if you need casual consistency
across different transactions, as waiting for bookmarks can have a negative performance impact.

A bookmark is a token that represents some state of the database. By passing one or multiple bookmarks
along with a query, the server will make sure that the query does not get executed before the represented
state(s) have been established.

Bookmarks with .execute_query()
When querying the database with .execute_query(), the driver manages bookmarks for you. In this case,
you have the guarantee that subsequent queries can read previous changes without taking further action.

driver.execute_query("<QUERY 1>")

subsequent execute_query calls will be causally chained

driver.execute_query("<QUERY 2>") # can read result of <QUERY 1>
driver.execute_query("<QUERY 3>") # can read result of <QUERY 2>

To disable bookmark management and causal consistency, set bookmark_manager_=None in
.execute_query() calls.

driver.execute_query(
 "<QUERY>",
 bookmark_manager_=None,
)

Bookmarks within a single session
Bookmark management happens automatically for queries run within a single session, so that you can
trust that queries inside one session are causally chained.

with driver.session() as session:
 session.execute_write(lambda tx: tx.run("<QUERY 1>"))
 session.execute_write(lambda tx: tx.run("<QUERY 2>")) # can read QUERY 1
 session.execute_write(lambda tx: tx.run("<QUERY 3>")) # can read QUERY 1,2

Bookmarks across multiple sessions
If your application uses multiple sessions, you may need to ensure that one session has completed all its
transactions before another session is allowed to run its queries.

In the example below, session_a and session_b are allowed to run concurrently, while session_c waits

34

until their results have been propagated. This guarantees the Person nodes session_c wants to act on
actually exist.

35

Coordinate multiple sessions using bookmarks

from neo4j import GraphDatabase, Bookmarks

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

def main():
 with GraphDatabase.driver(URI, auth=AUTH) as driver:
 driver.verify_connectivity()
 create_some_friends(driver)

def create_some_friends(driver):
 saved_bookmarks = Bookmarks() # To collect the sessions' bookmarks

 # Create the first person and employment relationship
 with driver.session(database="neo4j") as session_a:
 session_a.execute_write(create_person, "Alice")
 session_a.execute_write(employ, "Alice", "Wayne Enterprises")
 saved_bookmarks += session_a.last_bookmarks() ①

 # Create the second person and employment relationship
 with driver.session(database="neo4j") as session_b:
 session_b.execute_write(create_person, "Bob")
 session_b.execute_write(employ, "Bob", "LexCorp")
 saved_bookmarks += session_b.last_bookmarks() ①

 # Create a friendship between the two people created above
 with driver.session(
 database="neo4j", bookmarks=saved_bookmarks
) as session_c: ②
 session_c.execute_write(create_friendship, "Alice", "Bob")
 session_c.execute_read(print_friendships)

Create a person node
def create_person(tx, name):
 tx.run("MERGE (:Person {name: $name})", name=name)

Create an employment relationship to a pre-existing company node
This relies on the person first having been created.
def employ(tx, person_name, company_name):
 tx.run("""
 MATCH (person:Person {name: $person_name})
 MATCH (company:Company {name: $company_name})
 CREATE (person)-[:WORKS_FOR]->(company)
 """, person_name=person_name, company_name=company_name
)

Create a friendship between two people
def create_friendship(tx, name_a, name_b):
 tx.run("""
 MATCH (a:Person {name: $name_a})
 MATCH (b:Person {name: $name_b})
 MERGE (a)-[:KNOWS]->(b)
 """, name_a=name_a, name_b=name_b
)

Retrieve and display all friendships
def print_friendships(tx):
 result = tx.run("MATCH (a)-[:KNOWS]->(b) RETURN a.name, b.name")
 for record in result:
 print("{} knows {}".format(record["a.name"], record["b.name"]))

if __name__ == "__main__":
 main()

① Collect and combine bookmarks from different sessions using Session.last_bookmarks(), storing them

36

in a Bookmarks object.

② Use them to initialize another session with the bookmarks parameter.

Transaction
B1

Transaction
B2

Session B

Last bookmark
from Session A

Last bookmark
from Session B

Session A

Session C
Transaction

A1

Transaction
C1

Transaction
A2

Transaction
C2

Bookmark automatically
passed within session

Bookmark automatically
passed within session

Bookmark automatically
passed within session


The use of bookmarks can negatively impact performance, since all queries are forced to
wait for the latest changes to be propagated across the cluster. For simple use-cases, try
to group queries within a single transaction, or within a single session.

Mix .execute_query() and sessions
To ensure causal consistency among transactions executed partly with .execute_query() and partly with
sessions, you can use the parameter bookmark_manager upon session creation, setting it to
driver.execute_query_bookmark_manager. Since that is the default bookmark manager for
.execute_query() calls, this will ensure that all work is executed under the same bookmark manager and
thus causally consistent.

driver.execute_query("<QUERY 1>")

with driver.session(
 bookmark_manager=driver.execute_query_bookmark_manager
) as session:
 # every query inside this session will be causally chained
 # (i.e., can read what was written by <QUERY 1>)
 session.execute_write(lambda tx: tx.run("<QUERY 2>"))

subsequent execute_query calls will be causally chained
(i.e., can read what was written by <QUERY 2>)
driver.execute_query("<QUERY 3>")

Implement a custom BookmarkManager
The bookmark manager is an interface used by the driver for keeping track of the bookmarks and keeping
sessions automatically consistent.

You can subclass the GraphDatabase.bookmark_manager(). When implementing a bookmark manager, keep
in mind that all methods must be concurrency safe.

The details of the interface can be found in the API documentation.

37

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.GraphDatabase.bookmark_manager
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.api.BookmarkManager

Run concurrent transactions
The driver is compatible with Python’s asyncio, which allows implementing concurrent workflows. To
interact with the database in an asynchronous way, create an AsyncDriver with
AsyncGraphDatabase.driver(). The workflow is very similar to the synchronous version, except that you
must use await on all async calls, and define as async all functions that should be awaited. If you need
causal consistency across different transactions, use bookmarks.

An async driver example with execute_query

import asyncio
from neo4j import AsyncGraphDatabase

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

async def main():
 async with AsyncGraphDatabase.driver(URI, auth=AUTH) as driver:
 records, summary, keys = await driver.execute_query(
 "MATCH (a:Person) RETURN a.name AS name",
 database_="neo4j"
)
 names = [record["name"] for record in records]
 print(names)

if __name__ == "__main__":
 asyncio.run(main())

An async driver example with transaction functions

import asyncio
from neo4j import AsyncGraphDatabase

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

async def main():
 async with AsyncGraphDatabase.driver(URI, auth=AUTH) as driver:
 async with driver.session(database="neo4j") as session:
 records = await session.execute_read(get_people)
 print(records)

async def get_people(tx):
 result = await tx.run("MATCH (a:Person) RETURN a.name AS name")
 records = await result.values()
 return records

if __name__ == "__main__":
 asyncio.run(main())


Async implements a concurrency model, but it is not the only possible one.
Multithreading is also possible, although asyncio is often easier to implement in an
application.

38


There is a known issue with Python 3.8 and the async driver where it gradually slows
down. It is generally recommended to use the latest supported version of Python for the
best performance, stability, and security.

39

Further query mechanisms

Implicit (or auto-commit) transactions
This is the most basic and limited form with which to run a Cypher query. The driver will not automatically
retry implicit transactions, as it does instead for queries run with execute_query() and with managed
transactions. Implicit transactions should only be used when the other driver query interfaces do not fit the
purpose, or for quick prototyping.

You run an implicit transaction with the method Session.run(). It returns a Result object that needs to be
processed accordingly.

with driver.session(database="neo4j") as session:
 session.run("CREATE (a:Person {name: $name})", name="Licia")

An implicit transaction gets committed at the latest when the session is destroyed, or before another
transaction is executed within the same session. Other than that, there is no clear guarantee on when
exactly an implicit transaction will be committed during the lifetime of a session. To ensure an implicit
transaction is committed, you can call the .consume() method on its result.

Since the driver cannot figure out whether the query in a session.run() call requires a read or write
session with the database, it defaults to write. If your implicit transaction contains read queries only, there
is a performance gain in making the driver aware by setting the keyword argument
default_access_mode=neo4j.READ_ACCESS when creating the session.


Implicit transactions are the only ones that can be used for CALL { … } IN
TRANSACTIONS queries.

Import CSV files

The most common use case for using Session.run() is for importing large CSV files into the database with
the LOAD CSV Cypher clause, and preventing timeout errors due to the size of the transaction.

Import CSV data into a Neo4j database

with driver.session(database="neo4j") as session:
 result = session.run("""
 LOAD CSV FROM 'https://data.neo4j.com/bands/artists.csv' AS line
 CALL {
 WITH line
 MERGE (:Artist {name: line[1], age: toInteger(line[2])})
 } IN TRANSACTIONS OF 2 ROWS
 """)
 print(result.consume().counters)



While LOAD CSV can be a convenience, there is nothing wrong in deferring the parsing of
the CSV file to your Python application and avoiding LOAD CSV. In fact, moving the
parsing logic to the application can give you more control over the importing process. For
efficient bulk data insertion, see Performance → Batch data creation.

40

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Session.run
https://neo4j.com/docs/pdf/neo4j-cypher-manual-5.pdf#subqueries_in_transactions
https://neo4j.com/docs/pdf/neo4j-cypher-manual-5.pdf#subqueries_in_transactions
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv

For more information, see Cypher → Clauses → Load CSV.

Transaction configuration

The Query object allows to specify a query timeout and to attach metadata to the transaction. The
metadata is visible in the server logs (as described for the unit_of_work decorator).

from neo4j import Query

with driver.session(database="neo4j") as session:
 query = Query("CREATE (a:Person {name: $name})",
 timeout=1.0,
 metadata={"app_name": "people"})
 result = session.run(query, name="John")

Dynamic values in property keys, relationship types, and labels
In general, you should not concatenate parameters directly into a query, but rather use query parameters.
There can however be circumstances where your query structure prevents the usage of parameters in all
its parts. In fact, although parameters can be used for literals and expressions as well as node and
relationship ids, they cannot be used for the following constructs:

• property keys, so MATCH (n) WHERE n.$param = 'something' is invalid;

• relationship types, so MATCH (n)-[:$param]→(m) is invalid;

• labels, so MATCH (n:$param) is invalid.

For those queries, you are forced to use string concatenation. To protect against link:Cypher injections, you
should enclose the dynamic values in backticks and escape them yourself. Notice that Cypher processes
Unicode, so take care of the Unicode literal \u0060 as well.

Manually escaping dynamic labels before concatenation.

label = "Person\\u0060n"
convert \u0060 to literal backtick and then escape backticks
escaped_label = label.replace("\\u0060", "`").replace("`", "``")

driver.execute_query(
 f"MATCH (p:`{escaped_label}` {{name: $name}}) RETURN p.name",
 name="Alice",
 database_="neo4j"
)

Another workaround, which avoids string concatenation, is using APOC procedures, such as
apoc.merge.node, which supports dynamic labels and property keys.

Using apoc.merge.node to create a node with dynamic labels/property keys.

property_key = "name"
label = "Person"

driver.execute_query(
 "CALL apoc.merge.node($labels, $properties)",
 labels=[label], properties={property_key: "Alice"},
 database_="neo4j"
)

41

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Query
https://neo4j.com/developer/kb/protecting-against-cypher-injection/
https://neo4j.com/docs/pdf/neo4j-apoc-current.pdf#apoc.merge.node


If you are running Neo4j in Docker, APOC needs to be enabled when starting the
container. See APOC → Installation → Docker.

Logging
The driver logs messages through the native logging library to a logger named neo4j. To redirect log
messages to standard output, use the watch function:

import sys
from neo4j.debug import watch

watch("neo4j", out=sys.stdout)

Example of log output upon driver connection

[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,616 [#0000] _: <POOL>
created, routing address IPv4Address(('localhost', 7687))
[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,616 [#0000] _: <POOL>
acquire routing connection, access_mode='WRITE', database='neo4j'
[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,616 [#0000] _: <ROUTING>
checking table freshness (readonly=False): table expired=True, has_server_for_mode=False, table
routers={IPv4Address(('localhost', 7687))} => False
[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,616 [#0000] _: <POOL>
attempting to update routing table from IPv4Address(('localhost', 7687))
[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,616 [#0000] _: <RESOLVE>
in: localhost:7687
[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,617 [#0000] _: <RESOLVE>
dns resolver out: 127.0.0.1:7687
[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,617 [#0000] _: <POOL>
_acquire router connection, database='neo4j', address=ResolvedIPv4Address(('127.0.0.1', 7687))
[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,617 [#0000] _: <POOL>
trying to hand out new connection
[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,617 [#0000] C: <OPEN>
127.0.0.1:7687
[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,619 [#AF18] C: <MAGIC>
0x6060B017
[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,619 [#AF18] C:
<HANDSHAKE> 0x00000005 0x00020404 0x00000104 0x00000003
[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,620 [#AF18] S:
<HANDSHAKE> 0x00000005
[DEBUG] [Thread 139807941394432] [Task None] 2023-03-31 09:31:39,620 [#AF18] C: HELLO
{'user_agent': 'neo4j-python/5.6.0 Python/3.10.6-final-0 (linux)', 'routing': {'address':
'localhost:7687'}, 'scheme': 'basic', 'principal': 'neo4j', 'credentials': '*******'}

42

https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.debug.watch

Performance recommendations

Always specify the target database
Specify the target database on all queries, either with the database_ parameter in
Driver.execute_query() or with the database parameter when creating new sessions. If no database is
provided, the driver has to send an extra request to the server to figure out what the default database is.
The overhead is minimal for a single query, but becomes significant over hundreds of queries.

Good practices

driver.execute_query("<QUERY>", database_="<DB NAME>")

driver.session(database="<DB NAME>")

Bad practices

driver.execute_query("<QUERY>")

driver.session()

Be aware of the cost of transactions
When submitting queries through .execute_query() or through .execute_read/write(), the server
automatically wraps them into a transaction. This behavior ensures that the database always ends up in a
consistent state, regardless of what happens during the execution of a transaction (power outages,
software crashes, etc).

Creating a safe execution context around a number of queries yields an overhead that is not present if the
driver just shoots queries at the server and hopes they will get through. The overhead is small, but can add
up as the number of queries increases. For this reason, if your use case values throughput more than data
integrity, you may extract further performance by running all queries within a single (auto-commit)
transaction. You do this by creating a session and using session.run() to run as many queries as needed.

Privilege throughput over data integrity

with driver.session(database="neo4j") as session:
 for i in range(1000):
 session.run("<QUERY>")

Privilege data integrity over throughput

for i in range(1000):
 driver.execute_query("<QUERY>")
 # or session.execute_read/write() calls

43

Don’t fetch large result sets all at once
When submitting queries that may result in a lot of records, don’t retrieve them all at once. The Neo4j
server can retrieve records in batches and stream them to the driver as they become available. Lazy-
loading a result spreads out network traffic and memory usage (both client- and server-side).

For convenience, .execute_query() always retrieves all result records at once (it is what the Eager in
EagerResult stands for). To lazy-load a result, you have to use .execute_read/write() (or other forms of
manually-handled transactions) and not cast the Result object to list when processing the result; iterate
on it instead.

44

Example 2. Comparison between eager and lazy loading

Eager loading Lazy loading

• The server has to read all 250 records from
the storage before it can send even the first
one to the driver (i.e. it takes more time for
the client to receive the first record).

• Before any record is available to the
application, the driver has to receive all 250
records.

• The client has to hold in memory all 250
records.

• The server reads the first record and sends it
to the driver.

• The application can process records as soon
as the first record is transferred.

• Waiting time and resource consumption for
the remaining records is deferred to when
the application requests more records.

• The server’s fetch time can be used for client-
side processing.

• Resource consumption is bounded by the
driver’s fetch size.

45

Time and memory comparison between eager and lazy loading

import neo4j
from time import sleep, time
import tracemalloc

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

Returns 250 records, each with properties
- `output` (an expensive computation, to slow down retrieval)
- `dummyData` (a list of 10000 ints, about 8 KB).
slow_query = '''
UNWIND range(1, 250) AS s
RETURN reduce(s=s, x in range(1,1000000) | s + sin(toFloat(x))+cos(toFloat(x))) AS output,
 range(1, 10000) AS dummyData
'''
Delay for each processed record
sleep_time = 0.5

def main():
 with neo4j.GraphDatabase.driver(URI, auth=AUTH) as driver:
 driver.verify_connectivity()

 start_time = time()
 log('LAZY LOADING (execute_read)')
 tracemalloc.start()
 lazy_loading(driver)
 log(f'Peak memory usage: {tracemalloc.get_traced_memory()[1]} bytes')
 tracemalloc.stop()
 log('--- %s seconds ---' % (time() - start_time))

 start_time = time()
 log('EAGER LOADING (execute_query)')
 tracemalloc.start()
 eager_loading(driver)
 log(f'Peak memory usage: {tracemalloc.get_traced_memory()[1]} bytes')
 tracemalloc.stop()
 log('--- %s seconds ---' % (time() - start_time))

def lazy_loading(driver):

 def process_records(tx):
 log('Submit query')
 result = tx.run(slow_query)

 for record in result:
 log(f'Processing record {int(record.get("output"))}')
 sleep(sleep_time) # proxy for some expensive operation

 with driver.session(database='neo4j') as session:
 processed_result = session.execute_read(process_records)

def eager_loading(driver):
 log('Submit query')
 records, _, _ = driver.execute_query(slow_query, database_='neo4j')

 for record in records:
 log(f'Processing record {int(record.get("output"))}')
 sleep(sleep_time) # proxy for some expensive operation

def log(msg):
 print(f'[{round(time(), 2)}] {msg}')

if __name__ == '__main__':
 main()

46

Output

[1718014256.98] LAZY LOADING (execute_read)
[1718014256.98] Submit query
[1718014256.21] Processing record 0 ①
[1718014256.71] Processing record 1
[1718014257.21] Processing record 2
...
[1718014395.42] Processing record 249
[1718014395.92] Peak memory usage: 786254 bytes
[1719984711.39] --- 135.9284942150116 seconds ---

[1718014395.92] EAGER LOADING (execute_query)
[1718014395.92] Submit query
[1718014419.82] Processing record 0 ②
[1718014420.33] Processing record 1
[1718014420.83] Processing record 2
...
[1718014544.52] Processing record 249
[1718014545.02] Peak memory usage: 89587150 bytes ③
[1719984861.09] --- 149.70468592643738 seconds --- ④

① With lazy loading, the first record is quickly available.

② With eager loading, the first record is available ~25 seconds after the query has been submitted
(i.e. after the server has retrieved all 250 records).

③ Memory usage is larger with eager loading than with lazy loading, because the application
materializes a list of 250 records.

④ The total running time is lower with lazy loading, because while the client processes records the
server can fetch the next ones. With lazy loading, the client could also stop requesting records
after some condition is met (by calling .consume() on the Result), saving time and resources.



The driver’s fetch size affects the behavior of lazy loading. It instructs the server to
stream an amount of records equal to the fetch size, and then wait until the client has
caught up before retrieving and sending more.

The fetch size allows to bound memory consumption on the client side. It doesn’t always
bound memory consumption on the server side though: that depends on the query. For
example, a query with ORDER BY requires the whole result set to be loaded into memory
for sorting, before records can be streamed to the client.

The lower the fetch size, the more messages client and server have to exchange.
Especially if the server’s latency is high, a low fetch size may deteriorate performance.

Route read queries to cluster readers
In a cluster, route read queries to secondary nodes. You do this by:

• specifying routing_="r" in a Driver.execute_query() call

• using Session.execute_read() instead of Session.execute_write() (for managed transactions)

• setting default_access_mode=neo4j.READ_ACCESS when creating a new session (for explicit
transactions).

47

https://neo4j.com/docs/api/python-driver/current/api.html#fetch-size-ref
https://neo4j.com/docs/cypher-manual/current/clauses/order-by/
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#clustering-secondary-mode

Good practices

driver.execute_query("MATCH (p:Person) RETURN p", routing_="r")

session.execute_read(lambda tx: tx.run("MATCH (p:Person) RETURN p"))

Bad practices

driver.execute_query("MATCH (p:Person) RETURN p")
defaults to routing = writers

session.execute_write(lambda tx: tx.run("MATCH (p:Person) RETURN p"))
don't ask to write on a read-only operation

Create indexes
Create indexes for properties that you often filter against. For example, if you often look up Person nodes
by the name property, it is beneficial to create an index on Person.name. You can create indexes with the
CREATE INDEX Cypher clause, for both nodes and relationships.

Create an index on Person.name
driver.execute_query("CREATE INDEX person_name FOR (n:Person) ON (n.name)")

For more information, see Indexes for search performance.

Profile queries
Profile your queries to locate queries whose performance can be improved. You can profile queries by
prepending them with PROFILE. The server output is available in the profile property of the ResultSummary
object.

48

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#indexes_for_search_performance
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#_profile_query

_, summary, _ = driver.execute_query("PROFILE MATCH (p {name: $name}) RETURN p", name="Alice")
print(summary.profile['args']['string-representation'])
"""
Planner COST
Runtime PIPELINED
Runtime version 5.0
Batch size 128

+-----------------+----------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+-----------------+----------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | p | 1 | 1 | 3 | |
| | |
| | +----------------+----------------+------+---------+----------------+
+Filter	p.name = $name	1	1	4	
	+----------------+----------------+------+---------+----------------+				
+AllNodesScan	p	10	4	5	120
9160/0 | 108.923 | Fused in Pipeline 0 |
+-----------------+----------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 12, total allocated memory: 184
"""

In case some queries are so slow that you are unable to even run them in reasonable times, you can
prepend them with EXPLAIN instead of PROFILE. This will return the plan that the server would use to run
the query, but without executing it. The server output is available in the plan property of the
ResultSummary object.

_, summary, _ = driver.execute_query("EXPLAIN MATCH (p {name: $name}) RETURN p", name="Alice")
print(summary.plan['args']['string-representation'])
"""
Planner COST
Runtime PIPELINED
Runtime version 5.0
Batch size 128

+-----------------+----------------+----------------+---------------------+
| Operator | Details | Estimated Rows | Pipeline |
+-----------------+----------------+----------------+---------------------+
+ProduceResults	p	1	
	+----------------+----------------+		
+Filter	p.name = $name	1	
	+----------------+----------------+		
+AllNodesScan	p	10	Fused in Pipeline 0
+-----------------+----------------+----------------+---------------------+

Total database accesses: ?
"""

Specify node labels
Specify node labels in all queries. This allows the query planner to work much more efficiently, and to
leverage indexes where available. To learn how to combine labels, see Cypher → Label expressions.

Good practices

49

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#query-syntax-label
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#query-syntax-label
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#query-syntax-label

driver.execute_query("MATCH (p:Person|Animal {name: $name}) RETURN p", name="Alice")

with driver.session(database="<DB NAME>") as session:
 session.run("MATCH (p:Person|Animal {name: $name}) RETURN p", name="Alice")

Bad practices

driver.execute_query("MATCH (p {name: $name}) RETURN p", name="Alice")

with driver.session(database="<DB NAME>") as session:
 session.run("MATCH (p {name: $name}) RETURN p", name="Alice")

Batch data creation
Batch queries when creating a lot of records using the UNWIND Cypher clauses.

Good practice

Submit one single queries with all values inside

numbers = [{"value": random()} for _ in range(10000)]
driver.execute_query("""
 WITH $numbers AS batch
 UNWIND batch AS node
 MERGE (n:Number)
 SET n.value = node.value
 """, numbers=numbers,
)

Bad practice

Submit a lot of single queries, one for each value

for _ in range(10000):
 driver.execute_query("MERGE (:Number {value: $value})", value=random())


The most efficient way of performing a first import of large amounts of data into a new
database is the neo4j-admin database import command.

Use query parameters
Always use query parameters instead of hardcoding or concatenating values into queries. Besides
protecting from Cypher injections, this allows to better leverage the database query cache.

Good practices

driver.execute_query("MATCH (p:Person {name: $name}) RETURN p", name="Alice")

50

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#unwind
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#neo4j_admin_import

with driver.session(database="<DB NAME>") as session:
 session.run("MATCH (p:Person {name: $name}) RETURN p", name="Alice")

Bad practices

driver.execute_query("MATCH (p:Person {name: 'Alice'}) RETURN p")
or
name = "Alice"
driver.execute_query("MATCH (p:Person {name: '" + name + "'}) RETURN p")

with driver.session(database="<DB NAME>") as session:
 session.run("MATCH (p:Person {name: 'Alice'}) RETURN p")
 # or
 name = "Alice"
 session.run("MATCH (p:Person {name: '" + name + "'}) RETURN p")

Concurrency
Use concurrency, either in the form of multithreading or with the async version of the driver. This is likely
to be more impactful on performance if you parallelize complex and time-consuming queries in your
application, but not so much if you run many simple ones.

Use MERGE for creation only when needed
The Cypher clause MERGE is convenient for data creation, as it allows to avoid duplicate data when an exact
clone of the given pattern exists. However, it requires the database to run two queries: it first needs to
CREATE it (if needed).

If you know already that the data you are inserting is new, avoid using MERGE and use CREATE directly
instead — this practically halves the number of database queries.

Filter notifications
Filter the category and/or severity of notifications the server should raise.

51

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#merge
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#create

=Reference=

52

Advanced connection information

Connection URI
The driver supports connection to URIs of the form

<SCHEME>://<HOST>[:<PORT>[?policy=<POLICY-NAME>]]

• <SCHEME> is one among neo4j, neo4j+s, neo4j+ssc, bolt, bolt+s, bolt+ssc.

• <HOST> is the host name where the Neo4j server is located.

• <PORT> is optional, and denotes the port the Bolt protocol is available at.

• <POLICY-NAME> is an optional server policy name. Server policies need to be set up prior to usage.


The driver does not support connection to a nested path, such as example.com/neo4j/.
The server must be reachable from the domain root.

Connection protocols and security
Communication between the driver and the server is mediated by Bolt. The scheme of the server URI
determines whether the connection is encrypted and, if so, what type of certificates are accepted.

URL scheme Encryption Comment

neo4j  Default for local setups

neo4j+s  (only CA-signed certificates) Default for Aura

neo4j+ssc  (CA- and self-signed certificates)



The driver receives a routing table from the server upon successful connection,
regardless of whether the instance is a proper cluster environment or a single-machine
environment. The driver’s routing behavior works in tandem with Neo4j’s clustering by
directing read/write transactions to appropriate cluster members. If you want to target a
specific machine, use the bolt, bolt+s, or bolt+ssc URI schemes instead.

The connection scheme to use is not your choice, but is rather determined by the server requirements. You
must know the right server scheme upfront, as no metadata is exposed prior to connection. If you are
unsure, ask the database administrator.

Authentication methods

Basic authentication (default)

The basic authentication scheme relies on traditional username and password. These can either be the
credentials for your local installation, or the ones provided with an Aura instance.

53

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#multi_data_center_routing
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#clustering

from neo4j import GraphDatabase

driver = GraphDatabase.driver(URI, auth=(USERNAME, PASSWORD))

The basic authentication scheme can also be used to authenticate against an LDAP server (Enterprise
Edition only).

Kerberos authentication

The Kerberos authentication scheme requires a base64-encoded ticket. It can only be used if the server
has the Kerberos Add-on installed.

1 from neo4j import GraphDatabase, kerberos_auth
2
3 driver = GraphDatabase.driver(URI, auth=kerberos_auth(ticket))

Bearer authentication

The bearer authentication scheme requires a base64-encoded token provided by an Identity Provider
through Neo4j’s Single Sign-On feature.

1 from neo4j import GraphDatabase, bearer_auth
2
3 driver = GraphDatabase.driver(URI, auth=bearer_auth(token))


The bearer authentication scheme requires configuring Single Sign-On on the server.
Once configured, clients can discover Neo4j’s configuration through the Discovery API.

Custom authentication

Use the function custom_auth to log into a server having a custom authentication scheme.

No authentication

If authentication is disabled on the server, the authentication parameter can be omitted entirely.

Custom address resolver
When creating a Driver object, you can specify a resolver function to resolve any addresses the driver
receives ahead of DNS resolution. Your resolver function is called with an Address objects (or values that
can be used to construct Address objects)

54

https://neo4j.com/docs/pdf/neo4j-kerberos-add-on-current.pdf#deployment
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#sso_integration
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#sso_integration
https://neo4j.com/docs/http-api/current/endpoints/#discovery-api
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.custom_auth
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.Address

Connection to example.com on port 9999 is resolved to localhost on port 7687

import neo4j

def custom_resolver(socket_address):
 # assert isinstance(socket_address, neo4j.Address)
 if socket_address != ("example.com", 9999):
 raise OSError(f"Unexpected socket address {socket_address!r}")

 # You can return any neo4j.Address object
 yield neo4j.Address(("localhost", 7687)) # IPv4
 yield neo4j.Address(("::1", 7687, 0, 0)) # IPv6
 yield neo4j.Address.parse("localhost:7687")
 yield neo4j.Address.parse("[::1]:7687")

 # or any tuple that can be passed to neo4j.Address().
 # This will initially be interpreted as IPv4, but DNS resolution
 # will turn it into IPv6 if appropriate.
 yield "::1", 7687
 # This will be interpreted as IPv6 directly, but DNS resolution will
 # still happen.
 yield "::1", 7687, 0, 0
 yield "127.0.0.1", 7687

driver = neo4j.GraphDatabase.driver("neo4j://example.com:9999",
 auth=(USERNAME, PASSWORD),
 resolver=custom_resolver)

Further connection parameters
You can find all Driver configuration parameters in the API documentation.

55

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#driver-configuration

Data types and mapping to Cypher types
The tables in this section show the mapping between Cypher data types and Python types.

Core types
Cypher Type Python Type

NULL None

LIST list

MAP dict

BOOLEAN bool

INTEGER int

FLOAT float

STRING str

ByteArray bytearray

For full documentation, see API documentation — Core data types.

Temporal types
Temporal data types are implemented by the neo4j.time module. It provides a set of types compliant with
ISO-8601 and Cypher, which are similar to those found in Python’s native datetime module. To convert
between driver and native types, use the methods .from_native() and .to_native() (does not apply to
Duration).

Sub-second values are measured to nanosecond precision and the types are mostly compatible with pytz.
Some timezones (e.g., pytz.utc) work exclusively with the built-in datetime.datetime.

For a list of time zone abbreviations, see List of tz database time zones.

Cypher Type Python Type

DATE neo4j.time.Date

ZONED TIME neo4j.time.Time†

LOCAL TIME neo4j.time.Time††

ZONED DATETIME neo4j.time.DateTime†

LOCAL DATETIME neo4j.time.DateTime††

DURATION neo4j.time.Duration

† Where tzinfo is not None.
†† Where tzinfo is None.

56

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#core-data-types
https://pypi.org/project/pytz/
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones#List

How to use temporal types in queries

from datetime import datetime
import pytz
from neo4j import GraphDatabase
from neo4j.time import DateTime

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

friends_since = DateTime(year=1999, month=11, day=23,
 hour=7, minute=47, nanosecond=4123)
friends_since = pytz.timezone("US/Eastern").localize(friends_since)

Python's native datetimes work as well.
They don't support the full feature-set of Neo4j's type though.
py_friends_since = datetime(year=1999, month=11, day=23, hour=7, minute=47)
py_friends_since = pytz.timezone("US/Eastern").localize(py_friends_since)

Create a friendship with the given DateTime, and return the DateTime
with GraphDatabase.driver(URI, auth=AUTH) as driver:
 records, summary, keys = driver.execute_query("""
 MERGE (a:Person {name: $name})
 MERGE (b:Person {name: $friend})
 MERGE (a)-[friendship:KNOWS {since: $friends_since}]->(b)
 RETURN friendship.since
 """, name="Alice", friend="Bob",
 friends_since=friends_since # or friends_since=py_friends_since
)
 out_datetime = records[0]["friendship.since"]
 print(out_datetime) # 1999-11-23T07:47:00.000004123-05:00

 # Converting DateTime to native datetime (lossy)
 py_out_datetime = out_datetime.to_native() # type: datetime
 print(py_out_datetime) # 1999-11-23 07:47:00.000004-05:00

For full documentation, see API documentation — Temporal data types.

Date

Represents an instant capturing the date, but not the time, nor the timezone.

from neo4j.time import Date

d = Date(year=2021, month=11, day=2)
print(d) # '2021-11-02'

For full documentation, see API documentation — Temporal data types — Date.

Time

Represents an instant capturing the time, and the timezone offset in seconds, but not the date.

from neo4j.time import Time
import pytz

t = Time(hour=7, minute=47, nanosecond=4123, tzinfo=pytz.FixedOffset(-240))
print(t) # '07:47:00.000004123-04:00'

For full documentation, see API documentation — Temporal data types — Time.

57

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#temporal-data-types
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#date
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#time

LocalTime

Represents an instant capturing the time of day, but not the date, nor the timezone.

from neo4j.time import Time

t = Time(hour=7, minute=47, nanosecond=4123)
print(t) # '07:47:00.000004123'

For full documentation, see API documentation — Temporal data types — Time.

DateTime

Represents an instant capturing the date, the time, and the timezone identifier.

from neo4j.time import DateTime
import pytz

dt = DateTime(year=2021, month=11, day=2, hour=7, minute=47, nanosecond=4123)
dt = pytz.timezone("US/Eastern").localize(dt) # time zone localization (optional)
print(dt) # '2021-11-02T07:47:00.000004123-04:00'

For full documentation, see API documentation — Temporal data types — DateTime.

LocalDateTime

Represents an instant capturing the date and the time, but not the timezone.

from neo4j.time import DateTime

dt = DateTime(year=2021, month=11, day=2, hour=7, minute=47, nanosecond=4123)
print(dt) # '2021-11-02T07:47:00.000004123'

For full documentation, see API documentation — Temporal data types — DateTime.

Duration

Represents the difference between two points in time. A datetime.timedelta object passed as a
parameter will always be implicitly converted to neo4j.time.Duration. It is not possible to convert from
neo4j.time.Duration to datetime.timedelta (because datetime.timedelta lacks month support).

from neo4j.time import Duration

duration = Duration(years=1, days=2, seconds=3, nanoseconds=4)
print(duration) # 'P1Y2DT3.000000004S'

For full documentation, see API documentation — Temporal data types — Duration.

Spatial types
Cypher supports spatial values (points), and Neo4j can store these point values as properties on nodes and
relationships.

58

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#time
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#datetime
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#datetime
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#duration

The object attribute srid (short for Spatial Reference Identifier) is a number identifying the coordinate
system the spatial type is to be interpreted in. You can think of it as a unique identifier for each spatial
type.

Cypher Type Python Type

POINT neo4j.spatial.Point

POINT (Cartesian) neo4j.spatial.CartesianPoint

POINT (WGS-84) neo4j.spatial.WGS84Point

For full documentation, see API documentation — Spatial types.

CartesianPoint

Represents a point in 2D/3D Cartesian space.
Exposes properties x, y, z (the latter for 3D points only).

from neo4j.spatial import CartesianPoint

A 2D CartesianPoint
point = CartesianPoint((1.23, 4.56))
print(point.x, point.y, point.srid)
1.23 4.56 7203

A 3D CartesianPoint
point = CartesianPoint((1.23, 4.56, 7.89))
print(point.x, point.y, point.z, point.srid)
1.23 4.56 7.8 9157

For full documentation, see API documentation — Spatial types — CartesianPoint.

WGS84Point

Represents a point in the World Geodetic System (WGS84).
Exposes properties longitude, latitude, height (the latter for 3D points only), which are aliases for x, y, z.

from neo4j.spatial import WGS84Point

A 2D WGS84Point
point = WGS84Point((1.23, 4.56))
print(point.longitude, point.latitude, point.srid)
or print(point.x, point.y, point.srid)
1.23 4.56 4326

A 3D WGS84Point
point = WGS84Point((1.23, 4.56, 7.89))
print(point.longitude, point.latitude, point.height, point.srid)
or print(point.x, point.y, point.z, point.srid)
1.23 4.56 7.89 4979

For full documentation, see API documentation — Spatial types — WSG84Point.

Graph types
Graph types are only passed as results and may not be used as parameters. The section Manipulate query
results — Transform to graph contains an example with graph types.

59

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#spatial.html
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#cartesianpoint
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#wgs84point

Cypher Type Python Type

NODE neo4j.graph.Node

RELATIONSHIP neo4j.graph.Relationship

PATH neo4j.graph.Path

For full documentation, see API documentation — Graph types.

Node

Represents a node in a graph.
The property element_id provides an identifier for the entity. This should be used with care, as no
guarantees are given about the mapping between id values and elements outside the scope of a single
transaction. In other words, using an element_id to MATCH an element across different transactions is risky.

from neo4j import GraphDatabase

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

with GraphDatabase.driver(URI, auth=AUTH) as driver:
 records, _, _ = driver.execute_query(
 "MERGE (p:Person {name: $name}) RETURN p AS person",
 name="Alice",
 database_="neo4j",
)
 for record in records:
 node = record["person"]
 print(f"Node ID: {node.element_id}\n"
 f"Labels: {node.labels}\n"
 f"Properties: {node.items()}\n"
)

Node ID: 4:73e9a61b-b501-476d-ad6f-8d7edf459251:0
Labels: frozenset({'Person'})
Properties: dict_items([('name', 'Alice')])

For full documentation, see API documentation — Graph types — Node.

Relationship

Represents a relationship in a graph.
The property element_id provides an identifier for the entity. This should be used with care, as no
guarantees are given about the mapping between id values and elements outside the scope of a single
transaction.

60

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#graph-data-types
https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.graph.Node

from neo4j import GraphDatabase

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

with GraphDatabase.driver(URI, auth=AUTH) as driver:
 records, _, _ = driver.execute_query("""
 MERGE (p:Person {name: $name})
 MERGE (p)-[r:KNOWS {status: $status, since: date()}]->(friend:Person {name: $friend_name})
 RETURN r AS friendship
 """, name="Alice", status="BFF", friend_name="Bob",
)
 for record in records:
 relationship = record["friendship"]
 print(f"Relationship ID: {relationship.element_id}\n"
 f"Start node: {relationship.start_node}\n"
 f"End node: {relationship.end_node}\n"
 f"Type: {relationship.type}\n"
 f"Friends since: {relationship.get('since')}\n"
 f"All properties: {relationship.items()}\n"
)

Relationship ID: 5:73e9a61b-b501-476d-ad6f-8d7edf459251:1
Start node: <Node element_id='4:73e9a61b-b501-476d-ad6f-8d7edf459251:0' labels=frozenset({'Person'})
properties={'name': 'Alice'}>
End node: <Node element_id='4:73e9a61b-b501-476d-ad6f-8d7edf459251:2' labels=frozenset({'Person'})
properties={'name': 'Bob'}>
Type: KNOWS
Friends since: 2022-11-07
All properties: dict_items([('since', neo4j.time.Date(2022, 11, 7)), ('status', 'BFF')])

For full documentation, see API documentation — Graph types — Relationship.

Path

Represents a path in a graph.

61

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.graph.Relationship

from neo4j import GraphDatabase
from neo4j.time import Date

URI = "<URI for Neo4j database>"
AUTH = ("<Username>", "<Password>")

def add_friend(driver, name, status, date, friend_name):
 driver.execute_query("""
 MERGE (p:Person {name: $name})
 MERGE (p)-[r:KNOWS {status: $status, since: $date}]->(friend:Person {name: $friend_name})
 """, name=name, status=status, date=date, friend_name=friend_name,
 database_="neo4j",
)

with GraphDatabase.driver(URI, auth=AUTH) as driver:
 # Create some :Person nodes linked by :KNOWS relationships
 add_friend(driver, name="Alice", status="BFF", date=Date.today(), friend_name="Bob")
 add_friend(driver, name="Bob", status="Fiends", date=Date.today(), friend_name="Sofia")
 add_friend(driver, name="Sofia", status="Acquaintances", date=Date.today(), friend_name="Sofia")

 # Follow :KNOWS relationships outgoing from Alice three times, return as path
 records, _, _ = driver.execute_query("""
 MATCH path=(:Person {name: $name})-[:KNOWS*3]->(:Person)
 RETURN path AS friendship_chain
 """, name="Alice",
 database_="neo4j",
)
 path = records[0]["friendship_chain"]

 print("-- Path breakdown --")
 for friendship in path:
 print("{name} is friends with {friend} ({status})".format(
 name=friendship.start_node.get("name"),
 friend=friendship.end_node.get("name"),
 status=friendship.get("status"),
))

For full documentation, see API documentation — Graph types — Path.

Extended types
The driver supports more types as query parameters, which get automatically mapped to one of the core
types. Because of this conversion, and because the server does not know anything about the extended
types, the driver will never return these types in results, but always their corresponding mapping.

Parameter Type Mapped Python Type

tuple list

bytearray bytes

numpy ndarray list (nested)

pandas DataFrame dict

pandas Series list

pandas Array list

In general, if you are unsure about the type conversion that would happen on a given parameter, you can
test it as in the following example:

62

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#neo4j.graph.Path

import neo4j

with neo4j.GraphDatabase.driver(URI, auth=AUTH) as driver:
 type_in = ("foo", "bar")
 records, _, _ = driver.execute_query("RETURN $x AS type_out", x=type_in)
 type_out = records[0].get("type_out")
 print(type(type_out)) # <class 'list'>
 print(type_out) # ['foo', 'bar']

Exceptions
The driver can raise a number of different exceptions. A full list is available in the API documentation. For a
list of errors the server can return, see the Status code page.

Table 1. Root exception types

Classification Description

Neo4jError Errors reported by the Neo4j server (e.g., wrong Cypher syntax, bad
connection, wrong credentials, …)

DriverError Errors reported by the driver (e.g., bad usage of parameters or transactions,
improper handling of results, …)

Some server errors are marked as safe to retry without need to alter the original request. Examples of such
errors are deadlocks, memory issues, or connectivity issues. All driver’s exception types implement the
method .is_retryable(), which gives insights into whether a further attempt might be successful. This is
particular useful when running queries in explicit transactions, to know if a failed query is worth re-
running.

63

https://neo4j.com/docs/pdf/neo4j-api-python-driver.pdf#errors
https://neo4j.com/docs/pdf/neo4j-status-codes-5.pdf

API documentation

64

https://neo4j.com/docs/api/python-driver/current/

=GraphAcademy courses=

65

Graph Data Modeling
Fundamentals

66

https://graphacademy.neo4j.com/courses/modeling-fundamentals/?ref=docs-python
https://graphacademy.neo4j.com/courses/modeling-fundamentals/?ref=docs-python

Intermediate Cypher Queries

67

https://graphacademy.neo4j.com/courses/cypher-intermediate-queries/?ref=docs-python

Building Neo4j Applications
with Python

68

https://graphacademy.neo4j.com/courses/app-python/?ref=docs-python
https://graphacademy.neo4j.com/courses/app-python/?ref=docs-python

License
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

You are free to

Share

copy and redistribute the material in any medium or format

Adapt

remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial

You may not use the material for commercial purposes.

ShareAlike

If you remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

Notices

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for further details. The full license text is available
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

69

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

	The Neo4j Python Driver Manual v5.0
	Table of Contents
	Quickstart
	Installation
	Connect to the database
	Query the database
	Run your own transactions
	Close connections and sessions
	API documentation

	Glossary
	=Regular workflow=
	Installation
	Install the driver
	Get a Neo4j instance

	Connection
	Connect to the database
	Connect to an Aura instance
	Close connections
	Further connection parameters

	Query the database
	Write to the database
	Read from the database
	Update the database
	Delete from the database
	Query parameters
	Error handling
	Query configuration
	A full example

	Manipulate query results
	Result as a list
	Transform to Pandas DataFrame
	Transform to graph
	Custom transformers

	=Advanced usage=
	Run your own transactions
	Create a session
	Run a managed transaction
	Run an explicit transaction
	Process query results
	Session configuration
	Close sessions

	Explore the query execution summary
	Retrieve the execution summary
	Query counters
	Query execution plan
	Notifications

	Coordinate parallel transactions
	Bookmarks with .execute_query()
	Bookmarks within a single session
	Bookmarks across multiple sessions
	Mix .execute_query() and sessions
	Implement a custom BookmarkManager

	Run concurrent transactions
	Further query mechanisms
	Implicit (or auto-commit) transactions
	Dynamic values in property keys, relationship types, and labels
	Logging

	Performance recommendations
	Always specify the target database
	Be aware of the cost of transactions
	Don’t fetch large result sets all at once
	Route read queries to cluster readers
	Create indexes
	Profile queries
	Specify node labels
	Batch data creation
	Use query parameters
	Concurrency
	Use MERGE for creation only when needed
	Filter notifications

	=Reference=
	Advanced connection information
	Connection URI
	Connection protocols and security
	Authentication methods
	Custom address resolver
	Further connection parameters

	Data types and mapping to Cypher types
	Core types
	Temporal types
	Spatial types
	Graph types
	Extended types
	Exceptions

	API documentation
	=GraphAcademy courses=
	Graph Data Modeling Fundamentals
	Intermediate Cypher Queries
	Building Neo4j Applications with Python

