-Ne0qj

The Neodj Java Driver Manual
vH.0

Table of Contents

QUICKS At . o e e 1
INSEallatioN ..o e 1
Connectto the database oo 1
Query the database e e 2
RUN your oWwn transactions. i e e 2
Close conNectionNs and SESSIONSttt ettt e et et e e e e e 4
AP doCUumMENTatioN. . ..o e 4

GlOSSaANY .« ottt et e e 5

=Regular WorkfloW= e e e 7
INStallation e 8

Install the driver o e 8
Get a NEOd INSTANCEot e 8
@0 o1 o T<T oL 4 o T o 10
Connectto the database 10
Connectto an AUra INStaNCE. it e e 10
CloSE CONNECHIONS . . ottt et e e e e e e e e e e e e e e e e e e 11
Further connection parameters. i e e e e 11
Query the database oo e 12
Wirite to the database. oo 12
Read from the database. e 12
Update the database. e e e e 13
Delete from the database. e 14
QUEIY ParamME S .« oo ittt ettt e et e e e e e e e e e 14
Error handling. oo e 14
QuUeEry CoNfigUIatioN. 15
AUl eXamPle. .o e 16

SAAVANCEA USAgBm. . . ottt ittt et e e e e 18

RUN your own transactions e 19
Create @ SESSION . L . ottt e e 19
Run amanaged transaction. ot e 19
Run an explicit transaction. e e e 22
Process qUEry reSURSo e e 24
Session configuration e e 25
Transaction configuration e e 26
ClOSE S ONS oottt ittt e 27

Explore the query execution SUMMary.ttt e e ettt et e 28
Retrieve the execution sSUMMary e e e et et e 28

(@ T 1T Vot YU g =Y -3 28

QuUery eXecUtioN Plan e 29

NOtfICatiONS . ..o e e e 30
Run non-blocking asynchronous qUErEs e e e e et e 33
Asynchronous managed transactions.o ittt i e e 33
Coordinate parallel transactions i e e 35
Bookmarks with .executableQuery ()ttt 35
Bookmarks within a single session e 35
Bookmarks across multiple SeSSioNSt e e 35
Mix .executableQuery() and SESSIONSttt e e e e 37
Further query mechanisms. i e e e e e 39
Implicit (or auto-commit) transactions e 39
Dynamic values in property keys, relationship types,and labels............ 40
Control results flow with reactive streams 42
Install dEPENAENCIESot e e 42
Reactive query eXamples e e e 42
Always defer session creation i e e 44
Performance recommendations it 46
Always specify the target database e e 46
Be aware of the cost of transactions. i e 46
Route read queries to cluster readerst e 47
CrEate INOEXES . . . ittt ettt e e 48
Profile QUEIIES. . .o e e 48
Specify node labels e 49
Batch data creation e 49
USE QUENY ParamEters. . . oottt ettt e et e e e e e e e 50
(@0 ool U 5 =T o Tox Y2 51
Use MERGE for creation only whenneeded i i et 51
Filter notifications e 51
SREfErENCE=. L . e 52
Advanced connection information e 53
Connection URI ... e 53
Connection protocols and SeCUritY. it e e 53
Authentication methods. e 53
LOggiNg .ot e e 54
Custom address reSolVEr o 56

O CS P StapliNg . oo oot e 57
Further connection parameters.t e e e e e e e 58
Data types and mapping to Cypher types.ot e e 59
(@] S 1Y o 1= 59

T emMPOral By PES. . . oo e 59

Spatial Y PES . . .o 61

Grap N LY PES. . ot 62

EXCEPHIONS . . oo 67

AP dOCUMENTAtION . . oo e 68
Related Projects o e 69
G =T o] oY AN or=Teo [T 0 VAN olo TU] =Y = P 70
Graph Data Modeling Fundamentals i e e e e e e e 71
Intermediate Cypher QUEIESttt e e et et ettt ettt et ettt ettt aaeas 72

Building Neo4j Applications With Javat e e i e e e e e e 73

https://neo4j.com/docs/api/java-driver/current/
https://graphacademy.neo4j.com/courses/modeling-fundamentals/?ref=docs-java
https://graphacademy.neo4j.com/courses/cypher-intermediate-queries/?ref=docs-java
https://graphacademy.neo4j.com/courses/app-java/?ref=docs-java

Quickstart

The Neod4j Java driver is the official library to interact with a Neo4j instance through a Java application.

At the hearth of Neo4j lies Cypher, the query language to interact with a Neo4j database. While this guide
does not require you to be a seasoned Cypher querier, it is going to be easier to focus on the Java-specific
bits if you already know some Cypher. For this reason, although this guide does also provide a gentle
introduction to Cypher along the way, consider checking out Getting started » Cypher for a more detailed
walkthrough of graph databases modelling and querying if this is your first approach. You may then apply
that knowledge while following this guide to develop your Java application.

Installation

Add the Neo4j Java driver to the list of dependencies in the pom. xml of your Maven project:

<dependency>
<groupId>org.neo4j.driver</groupId>
<artifactId>neo4j-java-driver</artifactId>
<version>5.0</version>

</dependency>

More info on installing the driver »

Connect to the database

Connect to a database by creating a Driver object and providing a URL and an authentication token. Once
you have a Driver instance, use the .verifyConnectivity() method to ensure that a working connection

can be established.

package demo;

import org.neo4j.driver.AuthTokens;
import org.neo4j.driver.GraphDatabase;

public class App {

public static void main(String... args) {

// URI examples: "neo4j://localhost", "neo4j+s://xxx.databases.neo4j.io"
final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";

final String dbPassword = "<Password>";
try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {

driver.verifyConnectivity();
System.out.println("Connection established.");

More info on connecting to a database »

https://neo4j.com/docs/pdf/neo4j-getting-started-cypher-intro.pdf
https://neo4j.com/docs/pdf/neo4j-getting-started-cypher-intro.pdf
https://neo4j.com/docs/pdf/neo4j-getting-started-cypher-intro.pdf

Query the database

Execute a Cypher statement with the method Driver.executableQuery(). Do not hardcode or concatenate
parameters: use placeholders and specify the parameters as a map through the .withParameters()
method.

// import java.util.Map;
// import org.neo4j.driver.QueryConfig;

// Get all 42-year-olds

var result = driver.executableQuery("MATCH (p:Person {age: $age}) RETURN p.name AS name")
.withParameters(Map.of("age", 42))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

// Loop through results and do something with them
var records = result.records();
records. forEach(r -> {
System.out.println(r); // or r.get("name").asString()
s

// Summary information

var summary = result.summary();

System.out.printf("The query %s returned %d records in %d ms.%n",
summary.query(), records.size(),
summary.resultAvailableAfter(TimeUnit.MILLISECONDS));

More info on querying the database »

Run your own transactions

For more advanced use-cases, you can run transactions. Use the methods Session.executeRead() and
Session.executeWrite() to run managed transactions.

A transaction with multiple queries, client logic, and potential roll backs

package demo;

import java.util.Map;

import java.util.List;

import java.util.Arrays;

import java.util.concurrent.TimeUnit;

import org.neo4j.driver.AuthTokens;

import org.neo4j.driver.GraphDatabase;

import org.neo4j.driver.QueryConfig;

import org.neo4j.driver.Record;

import org.neo4j.driver.RoutingControl;

import org.neo4j.driver.SessionConfig;

import org.neo4j.driver.TransactionContext;

import org.neo4j.driver.exceptions.NoSuchRecordException;

public class App {

// Create & employ 100 people to 10 different organizations
public static void main(String... args) {

final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";
final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {
try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
for (int i=0; i<100; i++) {
String name = String.format("Thor%d", i);

try {
String orgld = session.executeWrite(tx -> employPersonTx(tx, name));
System.out.printf("User %s added to organization %s.%n", name, orgld);
} catch (Exception e) {
System.out.println(e.getMessage());
3

}

static String employPersonTx(TransactionContext tx, String name) {
final int employeeThreshold = 10;

// Create new Person node with given name, if not exists already
tx.run("MERGE (p:Person {name: $name})", Map.of("name", name));

// Obtain most recent organization ID and the number of people linked to it
var result = tx.run("""
MATCH (o:Organization)
RETURN o.id AS id, COUNT{(p:Person)-[r:WORKS_FOR]->(0)} AS employeesN
ORDER BY o.createdDate DESC
LIMIT 1
llllll);

Record org = null;
String orgld = null;
int employeesN = 0;
try {
org = result.single();
orgld = org.get("id").asString();
employeesN = org.get("employeesN").asInt();
} catch (NoSuchRecordException e) {
// The query is guaranteed to return <= 1 results, so if.single() throws, it means there's

none.

// If no organization exists, create one and add Person to it
orgld = createOrganization(tx);
System.out.printf("No orgs available, created %s.%n", orgld);

3

// If org does not have too many employees, add this Person to it

if (employeesN < employeeThreshold) {
addPersonToOrganization(tx, name, orgld);
// If the above throws, the transaction will roll back
// -> not even Person is created!

// Otherwise, create a new Organization and link Person to it

} else {
orgld = createOrganization(tx);
System.out.printf("Latest org is full, created %s.%n", orgld);
addPersonToOrganization(tx, name, orgld);
// If any of the above throws, the transaction will roll back
// -> not even Person is created!

3

return orgld; // Organization ID to which the new Person ends up in

3

static String createOrganization(TransactionContext tx) {

var result = tx.run("""
CREATE (o:0Organization {id: randomuuid(), createdDate: datetime()})
RETURN o.id AS id

"

var org = result.single();

var orgld = org.get("id").asString();

return orgld;

}

static void addPersonToOrganization(TransactionContext tx, String personName, String orgId) {
tX . run(nnn
MATCH (o:Organization {id: $orgId})
MATCH (p:Person {name: $name})
MERGE (p)-[:WORKS_FORI->(0)
" Map.of("orgId", orgld, "name", personName)

More info onrunning transactions =

Close connections and sessions

Unless you created them with try-with-resources statements, call the .close() method on all Driver and
Session instances to release any resources still held by them.

1 session.close();
2 driver.close();

APl documentation

For in-depth information about driver features, check out the AP| documentation.

https://neo4j.com/docs/api/java-driver/current/

Glossary

LTS

A Long Term Support release is one guaranteed to be supported for a number of years. Neo4j 4.4 is
LTS, and Neo4j 5 will also have an LTS version.

Aura

Aura is Neo4j's fully managed cloud service. It comes with both free and paid plans.

Cypher

Cypher is Neo4j's graph query language that lets you retrieve data from the database. It is like SQL, but
for graphs.

APOC

Awesome Procedures On Cypher (APOC) is a library of (many) functions that can not be easily
expressed in Cypher itself.

Bolt

Bolt is the protocol used for interaction between Neo4j instances and drivers. It listens on port 7687 by
default.

ACID

Atomicity, Consistency, Isolation, Durability (ACID) are properties guaranteeing that database
transactions are processed reliably. An ACID-compliant DBMS ensures that the data in the database
remains accurate and consistent despite failures.

eventual consistency

A database is eventually consistent if it provides the guarantee that all cluster members will, at some
point in time, store the latest version of the data.

causal consistency

A database is causally consistent if read and write queries are seen by every member of the cluster in
the same order. This is stronger than eventual consistency.

NULL

The null marker is not a type but a placeholder for absence of value. For more information, see Cypher »
Working with null.

transaction

A transaction is a unit of work that is either committed in its entirety or rolled back on failure. An
example is a bank transfer: it involves multiple steps, but they must all succeed or be reverted, to avoid
money being subtracted from one account but not added to the other.

backpressure

Backpressure is a force opposing the flow of data. It ensures that the client is not being overwhelmed
by data faster than it can handle.

https://neo4j.com/cloud/platform/aura-graph-database/
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#cypher_overview
https://neo4j.com/docs/pdf/neo4j-apoc-current.pdf
https://neo4j.com/docs/pdf/neo4j-bolt-current.pdf
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#working_with_null
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#working_with_null
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#working_with_null
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#working_with_null

transaction function

A transaction function is a callback executed by an executeRead or executeWrite call. The driver
automatically re-executes the callback in case of server failure.

Driver

A Driver object holds the details required to establish connections with a Neo4j database.

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Driver.html

=Regular workflow=

Installation

To start creating a Neo4j Java application, you first need to install the Java driver and get a Neo4j database

instance to connect to.

o The driver requires Java 17 or higher.

Install the driver

If you already have a Maven project, you may add the driver as a dependency in your pom. xml file:

<dependency>
<groupId>org.neo4j.driver</groupIld>
<artifactId>neo4j-java-driver</artifactId>
<version>5.0</version>

</dependency>

How to create a Maven project for a Neo4j Java application?

If you are new to Maven, you may download the Neo4] demo app example project and use it as a
base to experiment with the driver and build your application.

The file App. java provides a skeleton application. You may compile and run the project with the

commands:

mvn install
java -jar target/neo4j-demo-app-1.0-SNAPSHOT-jar-with-dependencies. jar

For other dependency management systems, refer to the driver’'s package page.

Always use the latest version of the driver, as it will always work both with the previous Neo4j LTS release
and with the current and next major releases. The latest 5. x driver supports connection to any Neo4j 5 and
4.4 instance, and will also be compatible with Neo4j 6. For a detailed list of changes across versions, see

the driver’'s changelog.

Get a Neo4j instance

You need a running Neo4j database in order to use the driver with it. The easiest way to spin up a local
instance is through a Docker container (requires docker.io). The command below runs the latest Neo4;j
version in Docker, setting the admin username to neo4j and password to secretgraph:

docker run \

-p7474:7474 \ # forward port 7474 (HTTP)
-p7687:7687 \ # forward port 7687 (Bolt)
-d \ # run in background

-e NEO4J_AUTH=neo4j/secretgraph \ # set login credentials
neo4j:latest

Alternatively, you can obtain a free cloud instance through Aura.

attachment$neo4j-demo-app.zip
https://central.sonatype.com/artifact/org.neo4j.driver/neo4j-java-driver
https://github.com/neo4j/neo4j-java-driver/wiki/5.x-changelog
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#introduction

You can also install Neo4j on your system, or use Neo4j Desktop to create a local development
environment (not for production).

https://neo4j.com/download-center/#community
https://neo4j.com/download-center/#desktop

Connection

Once you have installed the driver and have a running Neo4j instance, you are ready to connect your

application to the database.

Connect to the database

You connect to a database by creating a Driver object and providing a URL and an authentication token.

package demo;

import org.neo4j.driver.AuthTokens;
import org.neo4j.driver.GraphDatabase;

public class App {
public static void main(String... args) {

// URI examples: "neo4j://localhost", "neo4j+s://xxx.databases.neo4j.io"
final String dbUri = "<URI for Neo4j database>";

final String dbUser = "<Username>";

final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) { @

driver.verifyConnectivity(); @
System.out.println("Connection established.");

@ Creating a Driver instance only provides information on how to access the database, but does not
actually establish a connection. Connection is instead deferred to when the first query is executed.

@ To verify immediately that the driver can connect to the database (valid credentials, compatible
versions, etc), use the .verifyConnectivity() method after initializing the driver.

Both the creation of a Driver object and the connection verification can raise a number of different
exceptions. Since a connection error is a blocker for any subsequent task, the most common choice is to let

the program crash should an exception occur while estabilishing a connection.

Driver objects are immutable, thread-safe, and expensive to create, so your application should create
only one instance and pass it around (you may share Driver instances across threads). If you need to
query the database through several different users, use impersonation without creating a new Driver
instance. If you want to alter a Driver configuration, you need to create a new object.

Connect to an Aura instance

When you create an Aura instance, you may download a text file (a so-called Dotenv file) containing the
connection information to the database in the form of environment variables. The file has a name of the
form Neo4j-a0a2fald-Created-2023-11-06. txt.

You can either manually extract the URI and the credentials from that file, or use a third party-module to

load them. We recommend the module dotenv-java for that purpose.

10

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/exceptions/package-summary.html
https://github.com/cdimascio/dotenv-java/

Using dotenv-java to extract credentials from a Dotenv file

package demo;
import io.github.cdimascio.dotenv.Dotenv;

import org.neo4j.driver.AuthTokens;
import org.neo4j.driver.GraphDatabase;

public class App {
public static void main(String... args) {

var dotenv = Dotenv.configure()
//.directory("/path/to/env/file")
.filename("Neo4j-a0a2fald-Created-2023-11-06.txt")
.load(Q);

final String dbUri = dotenv.get("NEO4J_URI");
final String dbUser = dotenv.get("NEO4J_USERNAME");
final String dbPassword = dotenv.get("NEO4J_PASSWORD");

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {
driver.verifyConnectivity();
System.out.println("Connection established.");

3
3
3
An Aura instance is not conceptually different from any other Neo4j instance, as Aura is
(r) simply a deployment mode for Neo4j. When interacting with a Neo4j database through
- the driver, it doesn’t make a difference whether it is an Aura instance it is working with

or a different deployment.

Close connections

Always close Driver objects to free up all allocated resources, even upon unsuccessful connection or
runtime errors. Either create the Driver object using the try-with-resources statement, or call the
Driver.close() method explicitly.

Further connection parameters

For more Driver configuration parameters and further connection settings, see Advanced connection

information.

11

Query the database

Once you have connected to the database, you can execute Cypher queries through the method

Driver.executableQuery().

(r) Driver.executableQuery() was introduced with the version 5.8 of the driver.
- For queries with earlier versions, use sessions and transactions.

Write to the database

To create a node representing a person named Alice, use the Cypher clause CREATE:

Create a node representing a person named Alice

// import java.util.Map;
// import java.util.concurrent.TimeUnit;
// import org.neo4j.driver.QueryConfig;

var result = driver.executableQuery("CREATE (:Person {name: $name})") @
.withParameters(Map.of("name", "Alice")) @
.withConfig(QueryConfig.builder().withDatabase("neo4j").build()) ®
.execute();

var summary = result.summary(); @

System.out.printf("Created %d records in %d ms.%n",
summary . counters().nodesCreated(),
summary.resultAvailableAfter(TimeUnit.MILLISECONDS));

@ The Cypher query
@ A map of query parameters
3 Which database the query should be run against

@ The summary of execution returned by the server

Read from the database
To retrieve information from the database, use the Cypher clause MATCH:

Retrieve all Person nodes

// import java.util.concurrent.TimeUnit;
// import org.neo4j.driver.QueryConfig;

var result = driver.executableQuery("MATCH (p:Person) RETURN p.name AS name")
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

// Loop through results and do something with them
var records = result.records(); @
records. forEach(r -> {
System.out.println(r); // or r.get("name").asString()
s

// Summary information

var summary = result.summary(); @

System.out.printf("The query %s returned %d records in %d ms.%n",
summary.query(), records.size(),
summary.resultAvailableAfter(TimeUnit .MILLISECONDS));

12

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#create
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#match

@ records contains the result as a list of Record objects

@ summary contains the summary of execution returned by the server

Properties inside a Record object are embedded within Value objects. To extract and cast
them to the corresponding Java types, use .as<type>() (eg. .asString(), asInt(), etc).
(r) For example, if the name property coming from the database is a string,
- record.get("name").asString() will yield the property value as a String object.

For more information, see Data types and mapping to Cypher types.

Update the database

To update a node’s information in the database, use the Cypher clauses SET:

Update node Alice to add an age property

// import java.util.Map;
// import org.neo4j.driver.QueryConfig;

var result = driver.executableQuery("""
MATCH (p:Person {name: $name})
SET p.age = $age
AR
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.withParameters(Map.of("name", "Alice", "age", 42))
.execute();
var summary = result.summary();
System.out.println("Query updated the database?");
System.out.println(summary.counters().containsUpdates());

To create a new relationship, linking it to two already existing node, use a combination of the Cypher
clauses MATCH and CREATE:

Create a relationship :KNOWS between Alice and Bob

// import java.util.Map;
// import org.neo4j.driver.QueryConfig;
var result = driver.executableQuery("""
MATCH (alice:Person {name: $name}) @
MATCH (bob:Person {name: $friend}) @
CREATE (alice)-[:KNOWS]->(bob) @
"y
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.withParameters(Map.of("name", "Alice", "friend", "Bob"))
.execute();
var summary = result.summary();
System.out.println("Query updated the database?");
System.out.println(summary.counters().containsUpdates());

@ Retrieve the person node named Alice and bind it to a variable alice
@ Retrieve the person node named Bob and bind it to a variable bob

® Create a new :KNOWS relationship outgoing from the node bound to alice and attach to it the Person

node named Bob

13

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Record.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Record.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Value.html
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#set

Delete from the database
To remove a node and any relationship attached to it, use the Cypher clause DETACH DELETE:

Remove the Alice node and all its relationships

// import java.util.Map;
// import org.neo4j.driver.QueryConfig;

// This does not delete _only_ p, but also all its relationships!
var result = driver.executableQuery("""

MATCH (p:Person {name: $name})

DETACH DELETE p

nn |l)
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.withParameters(Map.of("name", "Alice"))

.execute();

var summary = result.summary();
System.out.println("Query updated the database?");
System.out.println(summary.counters().containsUpdates());

Query parameters

Do not hardcode or concatenate parameters directly into queries. Instead, always use placeholders and
specify the Cypher parameters, as shown in the previous examples. This is for:

1. performance benefits: Neo4j compiles and caches queries, but can only do so if the query structure is

unchanged;

2. security reasons: see protecting against Cypher injection.

You may provide query parameters as a map through the .withParameters() method.

var result = driver.executableQuery("MATCH (p:Person {name: $name}) RETURN p")

.withParameters(Map.of("name", "Alice"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

There can be circumstances where your query structure prevents the usage of
o parameters in all its parts. For those rare use cases, see Dynamic values in property keys,

relationship types, and labels.

Error handling

A query run may fail for a number of reasons, with different exceptions being raised. Some of them are due
to Cypher syntax errors, permission issues, or other forms of misconfiguration/misusage. The choice of
how to handle those exceptions is up to your application: whether you want to be defensive (for example
check if there are records to process to avoid NoSuchRecordException), or whether you want to catch and

handle the exceptions as they arise.
The driver automatically retries to run a failed query, if the failure is deemed to be

(r) transient (for example due to temporary server unavailability). An exception will be
d raised if the operation keeps failing after a number of attempts.

14

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#delete
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#parameters
https://neo4j.com/developer/kb/protecting-against-cypher-injection/
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/exceptions/package-summary.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/exceptions/NoSuchRecordException.html

Query configuration

You can supply further configuration parameters to alter the default behavior of .executableQuery(). You
do so through the method .withConfig(), which takes a QueryConfig object.

Database selection

It is recommended to always specify the database explicitly with the .withDatabase("<dbName>") method,
even on single-database instances. This allows the driver to work more efficiently, as it saves a network
round-trip to the server to resolve the home database. If no database is given, the user's home database is
used.

// import org.neo4j.driver.QueryConfig;

var result = driver.executableQuery("MATCH (p:Person) RETURN p.name")
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

Specifying the database through the configuration method is preferred over the USE

Cypher clause. If the server runs on a cluster, queries with USE require server-side
o routing to be enabled. Queries may also take longer to execute as they may not reach
the right cluster member at the first attempt, and need to be routed to one containing

the requested database.

Request routing

In a cluster environment, all queries are directed to the leader node by default. To improve performance on
read queries, you can use the method .withRouting(RoutingControl.READ) to route a query to the read
nodes.

// import org.neo4j.driver.QueryConfig;
// import org.neo4j.driver.RoutingControl;

var result = driver.executableQuery("MATCH (p:Person) RETURN p.name")
.withConfig(QueryConfig.builder()
.withDatabase("neo4j")
.withRouting(RoutingControl.READ)
.build())
.execute();

Although executing a write query in read mode likely results in a runtime error, you
should not rely on this for access control. The difference between the two modes is that

o read transactions will be routed to any node of a cluster, whereas write ones will be
directed to the leader. In other words, there is no guarantee that a write query submitted
in read mode will be rejected.

Run queries as a different user

You can execute a query under the security context of a different user with the method
.withImpersonatedUser("<username>"), specifying the name of the user to impersonate. For this to work,

15

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/QueryConfig.html
https://neo4j.com/docs/operations-manual/current/database-administration/#manage-databases-default
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#use

the user under which the Driver was created needs to have the appropriate permissions. Impersonating a
user is cheaper than creating a new Driver object.

// import org.neo4j.driver.QueryConfig;

1

2

3 var result = driver.executableQuery("MATCH (p:Person) RETURN p.name")
4 .withConfig(QueryConfig.builder()

5 .withDatabase("neo4j")

6 .withImpersonatedUser("somebodyElse")

7 .build())

8 .execute();

When impersonating a user, the query is run within the complete security context of the impersonated
user and not the authenticated user (i.e. home database, permissions, etc.).

A full example

package demo;

import java.util.Map;
import java.util.List;
import java.util.concurrent.TimeUnit;

import org.neo4j.driver.AuthTokens;
import org.neo4j.driver.GraphDatabase;
import org.neo4j.driver.Record;

import org.neo4j.driver.QueryConfig;
import org.neo4j.driver.RoutingControl;

public class App {

public static void main(String... args) {
final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";
final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {

List<Map> people = List.of(
Map.of("name", "Alice", "age", 42, "friends", List.of("Bob", "Peter", "Anna")),
Map.of("name", "Bob", "age", 19),
Map.of("name", "Peter", "age", 50),
Map.of("name", "Anna", "age", 30)

try {

//Create some nodes
people.forEach(person -> {
var result = driver.executableQuery("CREATE (p:Person {name: $person.name, age:
$person.age})")
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.withParameters(Map.of("person", person))
.execute();

»;

// Create some relationships
people.forEach(person -> {
if(person.containsKey("friends")) {
var result = driver.executableQuery(

MATCH (p:Person {name: $person.name})

UNWIND $person.friends AS friend_name

MATCH (friend:Person {name: friend_name})

CREATE (p)-[:KNOWS]->(friend)

"
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.withParameters(Map.of("person", person))

.execute();

16

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#access-control-dbms-administration-impersonation

»;

// Retrieve Alice's friends who are under 40
var result = driver.executableQuery("""

MATCH (p:Person {name: $name})-[:KNOWS]-(friend:Person)

WHERE friend.age < $age

RETURN friend

"

.withConfig(QueryConfig.builder()
.withDatabase("neo4j")
.withRouting(RoutingControl.READ)

Lbuild())
.withParameters(Map.of("name", "Alice", "age", 40))
.execute();

// Loop through results and do something with them

result.records().forEach(r -> {
System.out.println(r);

1;

// Summary information
System.out.printf("The query %s returned %d records in %d ms.%n",

result.summary().query(), result.records().size(),
result.summary().resultAvailableAfter(TimeUnit.MILLISECONDS));

} catch (Exception e) {
System.out.println(e.getMessage());
System.exit(1);

For more information see API documentation » Driver.executableQuery().

17

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/ExecutableQuery.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/ExecutableQuery.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/ExecutableQuery.html

=Advanced usage=

Run your own transactions

When querying the database with executableQuery(), the driver automatically creates a transaction. A
transaction is a unit of work that is either committed in its entirety or rolled back on failure. You can include
multiple Cypher statements in a single query, as for example when using MATCH and CREATE in sequence to
update the database, but you cannot have multiple queries and interleave some client-logic in between
them.

For these more advanced use-cases, the driver provides functions to take full control over the transaction
lifecycle. These are called managed transactions, and you can think of them as a way of unwrapping the
flow of executableQuery() and being able to specify its desired behavior in more places.

Create a session

Before running a transaction, you need to obtain a session. Sessions act as concrete query channels
between the driver and the server, and ensure causal consistency is enforced.

Sessions are created with the method Driver.session(). Use the optional argument to alter the session’s
configuration, among which for example the target database. For further configuration parameters, see

Session configuration.

// import org.neo4j.driver.SessionConfig

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
// session usage

}

Session creation is a lightweight operation, so sessions can be created and destroyed without significant
cost. Always close sessions when you are done with them.

Sessions are not thread safe: you can share the main Driver object across threads, but make sure each
thread creates its own sessions.

Run a managed transaction

A transaction can contain any number of queries. As Neo4j is ACID compliant, queries within a transaction
will either be executed as a whole or not at all: you cannot get a part of the transaction succeeding and
another failing. Use transactions to group together related queries which work together to achieve a single
logical database operation.

A managed transaction is created with the methods Session.executeRead() and Session.executeWrite(),
depending on whether you want to retrieve data from the database or alter it. Both methods take a
transaction function callback, which is responsible for actually carrying out the queries and processing the
result.

19

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Driver.html#session()
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Session.html#executeRead(org.neo4j.driver.TransactionCallback,org.neo4j.driver.TransactionConfig)
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Session.html#executeWrite(org.neo4j.driver.TransactionCallback,org.neo4j.driver.TransactionConfig)

Retrieve people whose name starts with Al.

// import java.util.Map
// import org.neo4j.driver.SessionConfig

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) { @
var people = session.executeRead(tx -> { @
var result = tx.run("""
MATCH (p:Person) WHERE p.name STARTS WITH $filter @
RETURN p.name AS name ORDER BY name
", Map.of("filter", "Al"));
return result.list(); // return a list of Record objects @
s

people.forEach(person -> {
System.out.println(person);
s

// further tx.run() calls will execute within the same transaction

@ Create a session. A single session can be the container for multiple queries. Unless created as a
resource using the try construct, remember to close it when done.

@ The .executeRead() (or .executeWrite()) method is the entry point into a transaction. It takes a
callback to a transaction function, which is responsible of running queries.

3 Use the method tx. run() to execute queries. You can provide a map of query parameters as second
argument. Each query run returns a Result object.

@ Process the result using any of the methods on Result. The method .1ist() retrieves all records into a
list.

Do not hardcode or concatenate parameters directly into the query. Use query parameters instead, both
for performance and security reasons.

Transaction functions should never return the Result object directly. Instead, always process the result in
some way. Within a transaction function, a return statement results in the transaction being committed,
while the transaction is automatically rolled back if an exception is raised.

The methods .executeRead() and .executeWrite() have replaced .readTransaction()
o and .writeTransaction(), which are deprecated in version 5.x and will be removed in
version 6.0.

A transaction with multiple queries, client logic, and potential roll backs

package demo;

import java.util.Map;

import java.util.List;

import java.util.Arrays;

import java.util.concurrent.TimeUnit;

import org.neo4j.driver.AuthTokens;

import org.neo4j.driver.GraphDatabase;

import org.neo4j.driver.QueryConfig;

import org.neo4j.driver.Record;

import org.neo4j.driver.RoutingControl;

import org.neo4j.driver.SessionConfig;

import org.neo4j.driver.TransactionContext;

import org.neo4j.driver.exceptions.NoSuchRecordException;

public class App {

// Create & employ 100 people to 10 different organizations
public static void main(String... args) {

20

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/SimpleQueryRunner.html#run(java.lang.String,java.util.Map)
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Result.html

final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";
final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {
try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
for (int i=0; i<100; i++) {
String name = String.format("Thor%d", i);

try {
String orgld = session.executeWrite(tx -> employPersonTx(tx, name));
System.out.printf("User %s added to organization %s.%n", name, orgld);
} catch (Exception e) {
System.out.println(e.getMessage());
3

}

static String employPersonTx(TransactionContext tx, String name) {
final int employeeThreshold = 10;

// Create new Person node with given name, if not exists already
tx.run("MERGE (p:Person {name: $name})", Map.of("name", name));

// Obtain most recent organization ID and the number of people linked to it
var result = tx.run("""
MATCH (o:Organization)
RETURN o.id AS id, COUNT{(p:Person)-[r:WORKS_FOR]->(0)} AS employeesN
ORDER BY o.createdDate DESC
LIMIT 1
l||l|l);

Record org = null;
String orgld = null;
int employeesN = 0;
try {
org = result.single();
orgld = org.get("id").asString();
employeesN = org.get("employeesN").asInt();
} catch (NoSuchRecordException e) {
// The query is guaranteed to return <= 1 results, so if.single() throws, it means there's

none.

// If no organization exists, create one and add Person to it
orgld = createOrganization(tx);
System.out.printf("No orgs available, created %s.%n", orgld);

3

// If org does not have too many employees, add this Person to it

if (employeesN < employeeThreshold) {
addPersonToOrganization(tx, name, orgld);
// If the above throws, the transaction will roll back
// -> not even Person is created!

// Otherwise, create a new Organization and link Person to it

} else {
orgld = createOrganization(tx);
System.out.printf("Latest org is full, created %s.%n", orgld);
addPersonToOrganization(tx, name, orgld);
// If any of the above throws, the transaction will roll back
// -> not even Person is created!

3

return orgld; // Organization ID to which the new Person ends up in

3

static String createOrganization(TransactionContext tx) {

var result = tx.run("""
CREATE (o0:0rganization {id: randomuuid(), createdDate: datetime()})
RETURN o.id AS id

"ty

var org = result.single();

var orgld = org.get("id").asString();

return orgld;

21

static void addPersonToOrganization(TransactionContext tx, String personName, String orgId) {
tx.run("""
MATCH (o:Organization {id: $orgId})
MATCH (p:Person {name: $name})
MERGE (p)-[:WORKS_FOR]->(0)
" Map.of("orgId", orgld, "name", personName)

Should a transaction fail for a reason that the driver deems transient, it automatically retries to run the
transaction function (with an exponentially increasing delay). For this reason, transaction functions must
be idempotent (i.e., they should produce the same effect when run several times), because you do not
know upfront how many times they are going to be executed. In practice, this means that you should not
edit nor rely on globals, for example. Note that although transactions functions might be executed multiple
times, the queries inside it will always run only once.

A session can chain multiple transactions, but only one single transaction can be active within a session at
any given time. To maintain multiple concurrent transactions, use multiple concurrent sessions.

The transaction functions callback passed to .executeRead() and .executeWrite() may
return anything, as the return type is a Java Generic. That also means they may not
return void, as that is not an instance of Object.
(,') If you are not interested in returning anything out of a transaction function, you may
- either:

1. use .executeWriteWithoutResult(), which supports returning void (and void only);

2. use .executeRead()/.executeWrite() and return null in the transaction function.

Run an explicit transaction

You can achieve full control over transactions by manually beginning one with the method
Session.beginTransaction(), which returns a Transaction object. You may then run queries inside an
explicit transaction with the method Transaction.run().

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
try (Transaction tx = session.beginTransaction()) {
// use tx.run() to run queries
// tx.commit() to commit the transaction
// tx.rollback() to rollback the transaction

An explicit transaction can be committed with Transaction.commit() or rolled back with
Transaction.rollback(). If no explicit action is taken, the driver will automatically roll back the transaction
at the end of its lifetime.

Explicit transactions are most useful for applications that need to distribute Cypher execution across
multiple functions for the same transaction, or for applications that need to run multiple queries within a
single transaction but without the automatic retries provided by managed transactions.

An explicit transaction example involving an external API

22

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Session.html#beginTransaction(org.neo4j.driver.TransactionConfig)
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Transaction.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Transaction.html#commit()
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Transaction.html#rollback

package demo;

import
import
import

import
import
import
import
import
import
import

public

java.util.
java.util.
java.util.

org.
.neo4j
org.
org.
.neo4j
org.
org.

org

org

neo4j

neo4j
neo4j

neo4j
neo4j

class App

Map;
List;
Arrays;

.driver.AuthTokens;
.driver.Driver;
.driver.GraphDatabase;
.driver.QueryConfig;
.driver.Record;
.driver.SessionConfig;
.driver.Transaction;

{

public static void main(String... args) {

final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";

final String dbPassword = "<Password>";

}

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {

driv
Stri
int

tran

er.verifyConnectivity();

ng customerId = createCustomer(driver);
otherBankId = 42;
sferToOtherBank(driver, customerId, otherBankId, 999);

static String createCustomer(Driver driver) {
var result = driver.executableQuery("""

}

static void transferToOtherBank(Driver driver, String customerId, int otherBankId, float amount) {

}

MERG
RETU
nn ll)
.wit
.exe

E (c:Customer {id: randomUUID(), balance: 10003})
RN c.id AS id

hConfig(QueryConfig.builder().withDatabase("neo4j").build())
cute();

return result.records().get(0).get("id").asString();

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {

try

(var tx = session.beginTransaction()) {

if (! customerBalanceCheck(tx, customerId, amount)) {
System.out.printf("Customer %s doesn't have enough funds.%n", customerId);
return; // give up

}

otherBankTransferApi(customerId, otherBankId, amount);
// Now the money has been transferred => can't rollback anymore
// (cannot rollback external services interactions)

try {

decreaseCustomerBalance(tx, customerId, amount);

tx.commit();

System.out.printf("Transferred %f to %s.%n", amount, customerId);
} catch (Exception e) {

requestInspection(customerId, otherBankId, amount, e);

throw new RuntimeException(e.getMessage());

static boolean customerBalanceCheck(Transaction tx, String customerId, float amount) {
var result = tx.run("""

}

MATC
RETU

H (c:Customer {id: $id})
RN c.balance >= $amount AS sufficient

, Map.of("id", customerId, "amount", amount));

var record = result.single();
return record.get("sufficient").asBoolean();

static void otherBankTransferApi(String customerId, int otherBankId, float amount) {
// make some API call to other bank

}

23

static void decreaseCustomerBalance(Transaction tx, String customerId, float amount) {
tx.run("""
MATCH (c:Customer {id: $id})
SET c.balance = c.balance - $amount
"' Map.of("id", customerId, "amount", amount));

}

static void requestInspection(String customerId, int otherBankId, float amount, Exception e) {
// manual cleanup required; log this or similar
System.out.printf("WARNING: transaction rolled back due to exception: %s.%n", e.getMessage());
System.out.printf("customerId: %s, otherBankId: %d, amount: %f.%n", customerId, otherBankId,
amount);
3
3

Process query results

The driver’s output of a query is a Result object, which encapsulates the Cypher result in a rich data
structure that requires some parsing on the client side. There are two main points to be aware of:

e The result records are not immediately and entirely fetched and returned by the server. Instead,
results come as a lazy stream. In particular, when the driver receives some records from the server,
they are initially buffered in a background queue. Records stay in the buffer until they are consumed by
the application, at which point they are removed from the buffer. When no more records are available,
the result is exhausted.

e The result acts as a cursor. This means that there is no way to retrieve a previous record from the
stream, unless you saved it in an auxiliary data structure.

The animation below follows the path of a single query: it shows how the driver works with result records
and how the application should handle results.

<video
class="rounded-corners"
controls
width="100%"
src="../../../common-content/5/_images/result.mp4"
poster="../../../common-content/5/_images/result-poster. jpg"
type="video/mp4"></video>

The easiest way of processing a result is by calling .1ist() on it, which yields a list of Record objects.
Otherwise, a Result object implements a number of methods for processing records. The most commonly
needed ones are listed below.

Method Description

list() List<Record> Return the remainder of the result as a list.

single() Record Return the next and only remaining record. Calling this method

always exhausts the result. If more (or less) than one record is
available, a NoSuchRecordException is raised.

next() Record Return the next record in the result. Throws

NoSuchRecordException if no further records are available.

24

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Result.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Record.html

Method Description
hasNext() boolean Whether the result iterator has a next record to move to.

peek() Record Return the next record from the result without consuming it. This leaves
the record in the buffer for further processing.

consume() ResultSummary Return the query result summary. It exhausts the result, so should only be
called when data processing is over.

For a complete list of Result methods, see APl documentation » Result.

Properties inside a Record object are embedded within Value objects. To extract and cast
them to the corresponding Java types, use .as<type>() (eg. .asString(), asInt(), etc).
(r') For example, if the name property coming from the database is a string,
- record.get("name").asString() will yield the property value as a String object.

For more information, see Data types and mapping to Cypher types.

Session configuration

Database selection

It is recommended to always specify the database explicitly through the .withDatabase("<dbName>")
method, even on single-database instances. This allows the driver to work more efficiently, as it saves a
network round-trip to the server to resolve the home database. If no database is given, the default

database set in the Neo4j instance settings is used.

// import org.neo4j.driver.SessionConfig;

var session = driver.session(SessionConfig.builder()
.withDatabase("neo4j").build());

Specifying the database through the configuration method is preferred over the USE

Cypher clause. If the server runs on a cluster, queries with USE require server-side
(r) routing to be enabled. Queries may also take longer to execute as they may not reach
the right cluster member at the first attempt, and need to be routed to one containing
the requested database.

Request routing

In a cluster environment, all sessions are opened in write mode, routing them to the leader. You can
change this by calling the method .withRouting(RoutingControl.READ). Note that .executeRead() and
.executeWrite() automatically override the session’s default access mode.

25

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Result.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Result.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Result.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Record.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Value.html
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#manage-databases-default
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#manage-databases-default
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#use

// import org.neo4j.driver.SessionConfig;
// import org.neo4j.driver.AccessMode;

var session = driver.session(SessionConfig.builder()
.withDatabase("neo4j")
.withDefaultAccessMode(AccessMode.READ)
.build());

Although executing a write query in read mode likely results in a runtime error, you
should not rely on this for access control. The difference between the two modes is that
read transactions are routed to any node of a cluster, whereas write ones are directed to

0 the leader. In other words, there is no guarantee that a write query submitted in read
mode will be rejected.

Similar remarks hold for the .executeRead() and .executeWrite() methods.

Run gueries as a different user (impersonation)

You can execute a query under the security context of a different user with the method
.withImpersonatedUser("<username>"), specifying the name of the user to impersonate. For this to work,
the user under which the Driver was created needs to have the appropriate permissions. Impersonating a

user is cheaper than creating a new Driver object.

// import org.neo4j.driver.SessionConfig;
// import org.neo4j.driver.RoutingControl;

var session = driver.session(SessionConfig.builder()
.withDatabase("neo4j")

.withImpersonatedUser("somebodyElse")
.build());

When impersonating a user, the query is run within the complete security context of the impersonated
user and not the authenticated user (i.e. home database, permissions, etc.).

Transaction configuration

You can exert further control on transactions by providing a TransactionConfig object as (optional) second
parameter to .executeRead(), .executeWrite(), and .beginTransaction(). Use it to specify:

e A transaction timeout. Transactions that run longer will be terminated by the server. The default value
is set on the server side. The minimum value is one millisecond.

e A map of metadata that gets attached to the transaction. These metadata get logged in the server
query.log, and are visible in the output of the SHOW TRANSACTIONS Cypher command. Use this to tag

transactions.

26

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#access-control-dbms-administration-impersonation
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/TransactionConfig.html

// import java.time.Duration
// import org.neo4j.driver.SessionConfig
// import org.neo4j.driver.TransactionConfig

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
var people = session.executeRead(tx -> {
var result = tx.run("MATCH (p:Person) RETURN p");
return result.list(); // return a list of Record objects
}, TransactionConfig.builder()
.withTimeout(Duration.ofSeconds(5))
.withMetadata(Map.of ("appName", "peopleTracker"))
.build()
).

people.forEach(person -> System.out.println(person));

Close sessions

Each connection pool has a finite number of sessions, so if you open sessions without ever closing them,
your application could run out of them. It is thus recommended to create sessions using the try-with-
resources statement, which automatically closes them when the application is done with them. When a

session is closed, it is returned to the connection pool to be later reused.

If you do not open sessions as resources with try, remember to call the . close() method when you have

finished using them.

var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build());

// session usage

session.close();

27

Explore the query execution summary

After all results coming from a query have been processed, the server ends the transaction by returning a
summary of execution. It comes as a ResultSummary object, and it contains information among which:

e Query counters — What changes the query triggered on the server
e Query execution plan — How the database would execute (or executed) the query
e Notifications — Extra information raised by the server while running the query

e Timing information and query request summary

Retrieve the execution summary

When running queries with Driver.executableQuery(), the execution summary is part of the default
return object, retrievable through the . summary () method.

var result = driver.executableQuery("""
UNWIND ['Alice', 'Bob'] AS name
MERGE (p:Person {name: name})

nn |l)
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

var resultSummary = result.summary();

If you are using transaction functions, you can retrieve the query execution summary with the method
Result.consume(). Notice that once you ask for the execution summary, the result stream is exhausted.
This means that any record which has not yet been processed is discarded.

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
var resultSummary = session.executeWrite(tx -> {
var result = tx.run("""
UNWIND ['Alice', 'Bob'] AS name
MERGE (p:Person {name: name})
|||l|l);

return result.consume();

»;

Query counters

The method ResultSummary.counters() returns counters for the operations that a query triggered (as a
SummaryCounters object).

28

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/summary/ResultSummary.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/summary/SummaryCounters.html

Insert some data and display the query counters

var result = driver.executableQuery("""
MERGE (p:Person {name: $name})
MERGE (p)-[:KNOWS]->(:Person {name: $friend})
""") . withParameters(Map.of("name", "Mark", "friend", "Bob"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();
var queryCounters = result.summary().counters();
System.out.println(queryCounters);

/*

InternalSummaryCounters{nodesCreated=2, nodesDeleted=0, relationshipsCreated=1, relationshipsDeleted=0,
propertiesSet=2, labelsAdded=2, labelsRemoved=0, indexesAdded=0, indexesRemoved=0, constraintsAdded=0,
constraintsRemoved=0, systemUpdates=0}

*x/

There are two additional boolean methods which act as meta-counters:
e .containsUpdates() — Whether the query triggered any write operation on the database on which it
ran

e .containsSystemUpdates() — Whether the query updated the system database

Query execution plan

If you prefix a query with EXPLAIN, the server will return the plan it would use to run the query, but will not
actually run it. The plan is then available as a P1an object through the method ResultSummary.plan(), and
contains the list of Cypher operators that would be used to retrieve the result set. You may use this
information to locate potential bottlenecks or room for performance improvements (for example through
the creation of indexes).

var result = driver.executableQuery("EXPLAIN MATCH (p {name: $name}) RETURN p")

.withParameters(Map.of("name", "Alice"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

var queryPlan = result.summary().plan().arguments().get("string-representation");
System.out.println(queryPlan);

/*

Planner COST
Runtime PIPELINED
Runtime version 5.0
Batch size 128

Fommm o e e oo B il R e it T +
| Operator | Details | Estimated Rows | Pipeline

B e e T e e e B e +
| +ProduceResults | p | 1] |
|] e T Fommmm e e - ¥ |
| +Filter | p.name = $name | 1] |
|] L EEE T L LT LTI L EEE T L LT E T LI + |
| +Al1lNodesScan | p | 10 | Fused in Pipeline 0 |
Fommm o e e oo B il R e it T +

Total database accesses: ?
*/

If you instead prefix a query with the keyword PROFILE, the server will return the execution plan it has used
to run the query, together with profiler statistics. This includes the list of operators that were used and
additional profiling information about each intermediate step. The plan is available as a P1an object through
the method ResultSummary.profile(). Notice that the query is also run, so the result object also contains

29

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/summary/Plan.html
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#operators
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/summary/Plan.html

any result records.

var result = driver.executableQuery("PROFILE MATCH (p {name: $name}) RETURN p")
.withParameters(Map.of("name", "Alice"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())

.execute();
var queryPlan = result.summary().profile().arguments().get("string-representation");
System.out.println(queryPlan);

/*

Planner COST
Runtime PIPELINED
Runtime version 5.0
Batch size 128

B e e i +------ B T
e e B e e TP T +

| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |

tommemmmem e e e e LT R T T t------ Fommmmmm- L
B e B B T T +

| +ProduceResults | p | 1 1 3

| | |

| | B B +---=--- B B +

| | |

| +Filter | p.name = $name | 1| 1 4 |

| | |

|] R e R +------ o et e e - +

| | |

| +AllNodesScan | p | 10 | 4 | 5 120 |

9160/0 | 108.923 | Fused in Pipeline 0 |

e e T I Tt Fommm - +------ et B
L L PP TP L e P T +

Total database accesses: 12, total allocated memory: 184
*/

For more information and examples, see Basic query tuning.

Notifications

After executing a query, the server can return notifications alongside the query result. Notifications contain
recommendations for performance improvements, warnings about the usage of deprecated features, and
other hints about sub-optimal usage of Neo4,.

For driver version >=5.25 and server version >= 5.23, two forms of notifications are
O available (Neo4j status codes and GQL status codes). For earlier versions, only Neo4j
- status codes are available.
GQL status codes are planned to supersede Neo4j status codes.

Example 1. An unbounded shortest path raises a performance notification

Filter notifications

By default, the server analyses each query for all categories and severity of notifications. Starting from
version 5.22, you can use the configuration methods .withMinimumNotificationSeverity() and
.withDisabledNotificationClassification() to tweak the severity and/or category/classification of
notifications that you are interested into, or to disable them altogether. There is a slight performance gain
in restricting the amount of notifications the server is allowed to raise.

30

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#_profile_query
https://neo4j.com/docs/pdf/neo4j-status-codes-current.pdf#notifications
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Config.ConfigBuilder.html#withMinimumNotificationSeverity(org.neo4j.driver.NotificationSeverity)
https://neo4j.com/docs/api/java-driver/5.24/org.neo4j.driver/org/neo4j/driver/Config.ConfigBuilder.html#withDisabledNotificationClassifications(java.util.Set)

The severity filter applies to both Neo4j and GQL notifications. The category filter acts on both categories

and classifications.

You can call the methods both on a Config object when creating a Driver instance, and on a
SessionConfig object when creating a session.

Allow only WARNING notifications, but not of HINT or GENERIC classifications

// import java.util.Set

// import org.neo4j.driver.Config;

// import org.neo4j.driver.NotificationClassification;
// import org.neo4j.driver.NotificationConfig;

// import org.neo4j.driver.NotificationSeverity;

// import org.neo4j.driver.SessionConfig;

// at ‘Driver’ level
var driver = GraphDatabase.driver(

dbUri, AuthTokens.basic(dbUser, dbPassword),

Config.builder()

.withMinimumNotificationSeverity(NotificationSeverity.WARNING) // NotificationSeverity.OFF to disable
entirely

.withDisabledNotificationClassifications(Set.of(NotificationClassification.PERFORMANCE,
NotificationClassification.GENERIC)) // filters categories as well

.build()
);

// at “Session’ level
var session = driver.session(

SessionConfig.builder()

.withDatabase("neo4j")

.withMinimumNotificationSeverity(NotificationSeverity.WARNING) // NotificationSeverity.OFF to disable
entirely

.withDisabledNotificationClassifications(Set.of(NotificationClassification.PERFORMANCE,
NotificationClassification.GENERIC)) // filters categories as well

.build()
DE

31

Notifications filtering on versions earlier than 5.22

For versions earlier than 5.22, notification filtering is done via the configuration method
.withNotificationConfig() (versions 5.7+).

The NotificationConfig interface provides the methods .enableMinimumSeverity(),
.disableCategories(), and .disableAllConfig() to set the configuration.

Allow only WARNING notifications, but not of HINT or GENERIC category

// import java.util.Set

// import org.neo4j.driver.Config;

// import org.neo4j.driver.NotificationCategory;
// import org.neo4j.driver.NotificationConfig;
// import org.neo4j.driver.NotificationSeverity;
// import org.neo4j.driver.SessionConfig;

// at ‘Driver’ level
var driver = GraphDatabase.driver(
dbUri, AuthTokens.basic(dbUser, dbPassword),
Config.builder()
.withNotificationConfig(NotificationConfig.defaultConfig()
.enableMinimumSeverity(NotificationSeverity.WARNING)
.disableCategories(Set.of (NotificationCategory.HINT, NotificationCategory.GENERIC))
).build()
Dg

// at “Session’ level
var session = driver.session(
SessionConfig.builder()
.withDatabase("neo4j")
.withNotificationConfig(NotificationConfig.defaultConfig()
.enableMinimumSeverity(NotificationSeverity.WARNING)
.disableCategories(Set.of (NotificationCategory.HINT, NotificationCategory.GENERIC))
).build()
DE

Disable all notifications

// import org.neo4j.driver.Config;
// import org.neo4j.driver.NotificationConfig;
// import org.neo4j.driver.SessionConfig;

// at ‘Driver’ level

var driver = GraphDatabase.driver(
dbUri, AuthTokens.basic(dbUser, dbPassword),
Config.builder()
.withNotificationConfig(NotificationConfig.disableAllConfig())
Lbuild()

);

// at "Session’ level

var session = driver.session(
SessionConfig.builder()
.withDatabase("neo4j")
.withNotificationConfig(NotificationConfig.disableAllConfig())
Lbuild()

);

32

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Config.ConfigBuilder.html#withNotificationConfig(org.neo4j.driver.NotificationConfig)

Run non-blocking asynchronous queries

The examples in Query the database and Run your own transactions use the driver in its synchronous
form. This means that, when running a query against the database, your application waits for the server to
retrieve all the results and transmit them to the driver. This is not a problem for most use cases, but for
queries that have a long processing time or a large result set, asynchronous handling may speed up your
application.

Asynchronous managed transactions

You run an asynchronous transaction through an AsyncSession. The flow is similar to that of regular
transactions, except that async transaction functions return a CompletionStage object (which may be
further converted into CompletableFuture).

package demo;

import java.util.Map;

import java.util.concurrent.CompletionStage;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;

import org.neo4j.driver.async.AsyncSession;
import org.neo4j.driver.AuthTokens;

import org.neo4j.driver.Driver;

import org.neo4j.driver.GraphDatabase;

import org.neo4j.driver.summary.ResultSummary;
import org.neo4j.driver.SessionConfig;

public class App {

public static void main(String... args) throws ExecutionException, InterruptedException {
final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";
final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) { @
driver.verifyConnectivity();

var summary = printAllPeople(driver);
// Block as long as necessary (for demonstration purposes)
System.out.println(summary.get());

}

public static CompletableFuture<ResultSummary> printAllPeople(Driver driver) {
var session = driver.session(AsyncSession.class, SessionConfig.builder().withDatabase("neo4j

).build()); @

var query =
UNWIND ['Alice', 'Bob', 'Sofia', 'Charles'] AS name
MERGE (p:Person {name: name}) RETURN p.name

wun,
’

var summary = session.executeWriteAsync(tx -> tx.runAsync(query) @
.thenCompose(resCursor -> resCursor.forEachAsync(record -> { @
System.out.println(record.get(0).asString());
DN

.whenComplete((result, error) -> { ®
session.closeAsync();

»

.toCompletableFuture(); ®

return summary; @

33

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/async/AsyncSession.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/CompletionStage.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/CompletableFuture.html

@ Driver creation is the same in the synchronous and asynchronous versions.

@ An asynchronous session is created by providing AsyncSession.class as first parameter to
Driver.session(), which returns an AsyncSession object. Note that async sessions may not be opened
as resources with try statements, as the driver can’t know when it is safe to close them.

® As for regular transactions, .executeWriteAsync() (and executeReadAsync()) take a transaction
function callback. Inside the transaction function, run queries with . runAsync(). Each query run returns
a CompletionStage.

@ Optionally use methods on CompletionStage to process the result in the asynchronous runner. The
query’s result set is available as an AsyncResultCursor, which implements a similar set of methods for
processing the result to those of synchronous transactions (see Transactions » Process query results).
Inner object types are the same as the synchronous case (i.e. Record, Resul tSummary).

® Optionally run operations once the query has completed, such as closing the driver session.
® CompletableFuture is a convenient type to return back to the caller.

@ Contrary to synchronous transactions, .executeWriteAsync() and executeReadAsync() return the result
summary only. Result processing and handling must be done inside the asynchronous runner.

.get() waits as long as necessary for the future to complete, and then returns its result.
The methods .executeReadAsync() and .executeWriteAsync() have replaced

é .readTransactionAsync() and .writeTransactionAsync(), which are deprecated in
version 5.x and will be removed in version 6.0.

34

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Driver.html#session(java.lang.Class,org.neo4j.driver.SessionConfig)
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/async/AsyncSession.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/async/AsyncQueryRunner.html#runAsync(org.neo4j.driver.Query)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/CompletionStage.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/cursor/AsyncResultCursor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/CompletableFuture.html#get()

Coordinate parallel transactions

When working with a Neo4j cluster, causal consistency is enforced by default in most cases, which
guarantees that a query is able to read changes made by previous queries. The same does not happen by
default for multiple transactions running in parallel though. In that case, you can use bookmarks to have
one transaction wait for the result of another to be propagated across the cluster before running its own
work. This is not a requirement, and you should only use bookmarks if you need casual consistency
across different transactions, as waiting for bookmarks can have a negative performance impact.

A bookmark is a token that represents some state of the database. By passing one or multiple bookmarks
along with a query, the server will make sure that the query does not get executed before the represented
state(s) have been established.

Bookmarks with .executableQuery()

When querying the database with .executableQuery(), the driver manages bookmarks for you. In this
case, you have the guarantee that subsequent queries can read previous changes with no further action.

driver.executableQuery("<QUERY 1>").execute();
// subsequent .executableQuery() calls will be causally chained

driver.executableQuery("<QUERY 2>").execute(); // can read result of <QUERY 1>
driver.executableQuery("<QUERY 3>").execute(); // can read result of <QUERY 2>

To disable bookmark management and causal consistency, use .withBookmarkManager(null) in the query
configuration.

driver.executableQuery("<QUERY>")
.withConfig(QueryConfig.builder().withBookmarkManager(null).build())
.execute();

Bookmarks within a single session

Bookmark management happens automatically for queries run within a single session, so that you can
trust that queries inside one session are causally chained.

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
session.executeWriteWithoutResult(tx -> tx.run("<QUERY 1>"));
session.executeWriteWithoutResult(tx -> tx.run("<QUERY 2>")); // can read QUERY 1
session.executeWriteWithoutResult(tx -> tx.run("<QUERY 3>")); // can read QUERY 1,2

Bookmarks across multiple sessions

If your application uses multiple sessions, you may need to ensure that one session has completed all its
transactions before another session is allowed to run its queries.

In the example below, sessionA and sessionB are allowed to run concurrently, while sessionC waits until

35

their results have been propagated. This guarantees the Person nodes sessionC wants to act on actually
exist.

Coordinate multiple sessions using bookmarks

package demo;

import java.util.Map;
import java.util.List;
import java.util.ArraylList;

import org.neo4j.driver.AuthTokens;

import org.neo4j.driver.Bookmark;

import org.neo4j.driver.Driver;

import org.neo4j.driver.GraphDatabase;
import org.neo4j.driver.SessionConfig;
import org.neo4j.driver.TransactionContext;

public class App {
private static final int employeeThreshold = 10;

public static void main(String... args) {
final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";
final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {
createSomeFriends(driver);
3
3

public static void createSomeFriends(Driver driver) {
List<Bookmark> savedBookmarks = new ArrayList<>(); // to collect the sessions' bookmarks

// Create the first person and employment relationship

try (var sessionA = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
sessionA.executeWriteWithoutResult(tx -> createPerson(tx, "Alice"));
sessionA.executeWriteWithoutResult(tx -> employ(tx, "Alice", "Wayne Enterprises"));
savedBookmarks.addAll(sessionA.lastBookmarks());

}

// Create the second person and employment relationship

try (var sessionB = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
sessionB.executeWriteWithoutResult(tx -> createPerson(tx, "Bob"));
sessionB.executeWriteWithoutResult(tx -> employ(tx, "Bob", "LexCorp"));
savedBookmarks.addAll(sessionB.lastBookmarks()); @

}

// Create a friendship between the two people created above
try (var sessionC = driver.session(SessionConfig.builder()
.withDatabase("neo4j")
.withBookmarks(savedBookmarks) @
Lbuild())) {
sessionC.executeWriteWithoutResult(tx -> createFriendship(tx, "Alice", "Bob"));
sessionC.executeWriteWithoutResult(tx -> printFriendships(tx));

}

// Create a person node

static void createPerson(TransactionContext tx, String name) {
tx.run("MERGE (:Person {name: $name})", Map.of("name", name));

}

// Create an employment relationship to a pre-existing company node
// This relies on the person first having been created.
static void employ(TransactionContext tx, String personName, String companyName) {
tx.run("""
MATCH (person:Person {name: $personName})
MATCH (company:Company {name: $companyName})
CREATE (person)-[:WORKS_FOR]->(company)
"' Map.of("personName", personName, "companyName", companyName)

36

// Create a friendship between two people
static void createFriendship(TransactionContext tx, String nameA, String nameB) {
tx.run("""
MATCH (a:Person {name: $nameA})
MATCH (b:Person {name: $nameB})
MERGE (a)-[:KNOWSJ->(b)
" Map.of("nameA", nameA, "nameB", nameB)
)g
3

// Retrieve and display all friendships
static void printFriendships(TransactionContext tx) {
var result = tx.run("MATCH (a)-[:KNOWSJ->(b) RETURN a.name, b.name");

while (result.hasNext()) {

var record = result.next();
System.out.println(record.get("a.name").asString() + " knows " + record.get("b.name").

asString());
3
3

@ Collect and combine bookmarks from different sessions using Session.lastBookmarks(), storing them
in a Bookmark object.

@ Use them to initialize another session with the .withBookmarks() config method.

Session A

Last bookmark

Bookmark automatically
ﬂ] from Session A

Transaction passed within session Transaction

[> -

Al A2 Session C
ﬂ]] Bookmark automatically
Transaction passed within session Transaction
Session B > Cc1 P - C2
l]:l] Bookmark automatically

Transaction passed within session Transaction

® > o —

>

B1 1 B2
Last bookmark

from Session B

The use of bookmarks can negatively impact performance, since all queries are forced to
r . .
O wait for the latest changes to be propagated across the cluster. For simple use-cases, try

to group queries within a single transaction, or within a single session.

Mix .executableQuery() and sessions

To ensure causal consistency among transactions executed partly with .executableQuery() and partly
with sessions, you can retrieve the default bookmark manager for ExecutableQuery instances through

driver.executableQueryBookmarkManager() and pass it to new sessions through the
.withBookmarkManager () config method. This will ensure that all work is executed under the same

bookmark manager and thus causally consistent.

37

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Bookmark.html

// import org.neo4j.driver.Driver;
// import org.neo4j.driver.SessionConfig;

driver.executableQuery("<QUERY 1>").execute();

try (var session = driver.session(SessionConfig.builder()
.withBookmarkManager(driver.executableQueryBookmarkManager())

.build(O))) {

// every query inside this session will be causally chained
// (i.e., can read what was written by <QUERY 1>)
session.executeWriteWithoutResult(tx -> tx.run("<QUERY 2>"));

}

// subsequent executableQuery calls will also be causally chained
// (i.e., can read what was written by <QUERY 2>)
driver.executableQuery("<QUERY 3>").execute();

38

Further query mechanisms

Implicit (or auto-commit) transactions

This is the most basic and limited form with which to run a Cypher query. The driver will not automatically
retry implicit transactions, as it does instead for queries run with .executableQuery() and with managed
transactions. Implicit transactions should only be used when the other driver query interfaces do not fit the

purpose, or for quick prototyping.

You run an implicit transaction with the method Session. run(). It returns a Result object that needs to be

processed accordingly.

// import java.util.Map
// import org.neo4j.driver.SessionConfig

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
session.run("CREATE (a:Person {name: $name})", Map.of("name", "Licia"));

}

An implicit transaction gets committed at the latest when the session is destroyed, or before another
transaction is executed within the same session. Other than that, there is no clear guarantee on when
exactly an implicit transaction will be committed during the lifetime of a session. To ensure an implicit
transaction is committed, you can call the . consume () method on its result.

Since the driver cannot figure out whether the query in a Session. run() call requires a read or write
session with the database, it defaults to write. If your implicit transaction contains read queries only, there
is a performance gain in making the driver aware through the config method
.withRouting(RoutingControl.READ) when creating the session.

(r') Implicit transactions are the only ones that can be used for CALL { .. } IN
- TRANSACTIONS queries.

Import CSV files

The most common use case for using Session. run() is for importing large CSV files into the database with
the LOAD CSV Cypher clause, and preventing timeout errors due to the size of the transaction.

Import CSV data into a Neo4j database

// import java.util.Map
// import org.neo4j.driver.SessionConfig

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
var result = session.run("""
LOAD CSV FROM 'https://data.neo4j.com/bands/artists.csv' AS line
CALL {
WITH line
MERGE (:Artist {name: line[1], age: toInteger(line[2]1)})
} IN TRANSACTIONS OF 2 ROWS
DK
var summary = result.consume();
System.out.println(summary.counters());

39

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Result.html
https://neo4j.com/docs/pdf/neo4j-cypher-manual-5.pdf#subqueries_in_transactions
https://neo4j.com/docs/pdf/neo4j-cypher-manual-5.pdf#subqueries_in_transactions
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv

While LOAD CSV can be a convenience, there is nothing wrong in deferring the parsing of
the CSV file to your Java application and avoiding LOAD CSV. In fact, moving the parsing

0 logic to the application can give you more control over the importing process. For
efficient bulk data insertion, see Performance » Batch data creation.

For more information, see Cypher » Clauses » LOAD CSV.

Transaction configuration

You can exert further control on implicit transactions by providing a TransactionConfig object as optional
last parameter to Session.run() calls. The configuration callbacks allow to specify a query timeout and to
attach metadata to the transaction. For more information, see Transactions » Transaction configuration.

// import java.util.Map

// import java.time.Duration

// import org.neo4j.driver.SessionConfig

// import org.neo4j.driver.TransactionConfig

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
var result = session.run("CREATE (a:Person {name: $name})", Map.of("name", "John"),
TransactionConfig.builder()
.withTimeout(Duration.ofSeconds(5))
.withMetadata(Map.of ("appName", "peopleTracker"))
.build()

Dynamic values in property keys, relationship types, and labels

In general, you should not concatenate parameters directly into a query, but rather use query parameters.
There can however be circumstances where your query structure prevents the usage of parameters in all
its parts. In fact, although parameters can be used for literals and expressions as well as node and
relationship ids, they cannot be used for the following constructs:

e property keys, so MATCH (n) WHERE n.$param = 'something' is invalid;
e relationship types, so MATCH (n)-[:$param]+>(m) is invalid;
e labels, so MATCH (n:$param) is invalid.
For those queries, you are forced to use string concatenation. To protect against Cypher injections, you

should enclose the dynamic values in backticks and escape them yourself. Notice that Cypher processes
Unicode, so take care of the Unicode literal \uoo60 as well.

Manually escaping dynamic labels before concatenation.

// import org.neo4j.driver.QueryConfig;

var label = "Person\\u@060n";

// convert \u@060 to literal backtick and then escape backticks

var escapedlLabel = label.replace("\\u0060", "'").replace("'", ""'");

var result = driver.executableQuery("MATCH (p:'" + escapedLabel + "' {name: $name}) RETURN p.name")

.withParameters(Map.of("name", "Alice"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

40

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/TransactionConfig.html
https://neo4j.com/developer/kb/protecting-against-cypher-injection/

Another workaround, which avoids string concatenation, is using APOC procedures, such as
apoc.merge.node, which supports dynamic labels and property keys.

Using apoc.merge.node to create a node with dynamic labels/property keys.

// import org.neo4j.driver.QueryConfig;

String propertyKey = "name";
String label = "Person";

var result = driver.executableQuery("CALL apoc.merge.node($labels, $properties)")
.withParameters(Map.of("labels", List.of(label), "properties", Map.of(propertyKey, "Alice")))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

o If you are running Neo4j in Docker, APOC needs to be enabled when starting the
container. See APOC » Installation » Docker.

41

https://neo4j.com/docs/pdf/neo4j-apoc-current.pdf#apoc.merge.node
https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/apoc/current/installation/#docker

Control results flow with reactive streams

In a reactive flow, consumers dictate the rate at which they consume records from queries, and the driver
in turn manages the rate at which records are requested from the server.

An example use-case is an application fetching records from a Neo4j server and doing some very time-
consuming post-processing on each one. If the server were allowed to push records to the client as soon
as it has them available, the client may be overflown with a lot of entries while its processing is still lagging
behind. The Reactive API ensures that the receiving side is not forced to buffer arbitrary amounts of data.

The driver’s reactive implementation lives in the reactivestreams sub-package and relies on the reactor-

core package from Project Reactor.

The Reactive APl is recommended for applications that already work in a reactive
o programming style, and which have needs that only Reactive workflows can address.
For all other cases, the sync and async APls are recommended.

Install dependencies

To use reactive features, you need to add the relevant dependencies to your project first (refer to Reactor »

Reference » Getting reactor).

1. Add Reactor’'s BOM to your pom. xml in a dependencyManagement section. Notice that this is in addition
to the regular dependencies section. If a dependencyManagement section already exists in your pom, add
only the contents.

<dependencyManagement>
<dependencies>
<dependency>
<groupId>io.projectreactor</groupId>
<artifactId>reactor-bom</artifactId>
<version>2023.0.2</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

2. Add the reactor-core dependency to the dependencies section. Notice that the version tag is omitted
(it is picked up from Reactor's BOM).

<dependency>
<groupId>io.projectreactor</groupId>
<artifactId>reactor-core</artifactId>
</dependency>

Reactive query examples

The basic driver’'s concepts are the same as the synchronous case, but queries are run through a
ReactiveSession, and the objects related to querying have a reactive counterpart and prefix.

42

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/reactivestreams/package-summary.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/reactivestreams/package-summary.html
https://projectreactor.io/docs/core/release/reference/
https://projectreactor.io/docs/core/release/reference/
https://projectreactor.io/docs/core/release/reference/
https://projectreactor.io/
https://projectreactor.io/docs/core/release/reference/#getting
https://projectreactor.io/docs/core/release/reference/#getting
https://projectreactor.io/docs/core/release/reference/#getting
https://projectreactor.io/docs/core/release/reference/#getting
https://projectreactor.io/docs/core/release/reference/#getting
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/reactivestreams/ReactiveSession.html

Managed transaction with reactive sessions

A managed transaction .executeRead() example

package demo;
import java.util.List;

import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

import org.neo4j.driver.AuthTokens;

import org.neo4j.driver.Driver;

import org.neo4j.driver.GraphDatabase;

import org.neo4j.driver.Record;

import org.neo4j.driver.SessionConfig;

import org.neo4j.driver.Value;

import org.neo4j.driver.reactivestreams.ReactiveResult;
import org.neo4j.driver.reactivestreams.ReactiveSession;

public class App {

public static void main(String... args) {
final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";
final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {
driver.verifyConnectivity();

Flux<Record> records = Flux.usingWhen(@
Mono. just(driver.session(
ReactiveSession.class, ®
SessionConfig.builder().withDatabase("neo4j").build()

),
rxSession -> Mono.fromDirect(rxSession.executeRead(@
tx -> Mono
.fromDirect(tx.run("UNWIND range (1, 5) AS x RETURN x")) ®
.flatMapMany(ReactiveResult: :records) ®
),

ReactiveSession::close @

);

// block for demonstration purposes
List<Value> values = records.map(record -> record.get("x")).collectList().block(); ®
System.out.println(values);

@ Flux.usingWhen(resourceSupplier, workerClosure, cleanupFunction) is used to create a new
session, run queries using it, and finally close it. It will ensure the resource is alive for the time it is
needed, and allows to specify the cleanup operation to undertake at the end.

@ .usingWhen() takes a resource supplier in the form of a Publisher, hence why session creation is
wrapped in a Mono. just() call, which spawns a Mono from any value.

® The session creation is similar to the async case, and the same configuration methods apply. The
difference is that the first argument must be ReactiveSession.class, and the return value is a

ReactiveSession object.

@ The method ReactiveSession.executeRead() runs a read transaction and returns a Publisher with the
callee’s return, which Mono. fromDirect() converts into a Mono.

® The method tx.run() returns a Publisher<ReactiveResult>, which Mono.fromDirect() converts into a
Mono.

® Before the final result is returned, Mono. flatMapMany () retrieves the records from the result and returns

43

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#usingWhen-org.reactivestreams.Publisher-java.util.function.Function-java.util.function.Function-
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#just-T-
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/reactivestreams/ReactiveSession.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/reactive/ReactiveSession.html#executeRead(org.neo4j.driver.reactive.ReactiveTransactionCallback)
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#fromDirect-org.reactivestreams.Publisher-
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/reactivestreams/ReactiveQueryRunner.html#method-summary)
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/reactivestreams/ReactiveResult.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#fromDirect-org.reactivestreams.Publisher-
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#flatMapMany-java.util.function.Function-

them as a new Flux.

@ The final cleanup closes the session.

To show the result of the reactive workflow, .block() waits for the flow to complete so that values can
be printed. In a real application you wouldn’t block but rather forward the records publisher to your

framework of choice, which would process them in a meaningful way.

Implicit transaction with reactive sessions

You may run several queries within the same reactive session through several calls to

executeRead/Write() within the workerClosure.

The following example is very similar to the previous one, except it uses an implicit transaction.

An implicit transaction . run() example

package demo;

import

import
import

import
import
import
import
import
import
import
import

java.util.List;

reactor.core.publisher.Flux;
reactor.core.publisher.Mono;

org.
org.
org.
org.
.neo4j.driver.SessionConfig;
org.
org.
org.

org

neo4j.driver.AuthTokens;
neo4j.driver.Driver;
neo4j.driver.GraphDatabase;
neo4j.driver.Record;

neo4j.driver.Value;
neo4j.driver.reactivestreams.ReactiveResult;
neo4j.driver.reactivestreams.ReactiveSession;

public class App {

public static void main(String... args) {
final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";

final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {

driver.verifyConnectivity();

Flux<Record> records = Flux.usingWhen(

Mono. just(driver.session(
ReactiveSession.class,
SessionConfig.builder().withDatabase("neo4j").build()

),

rxSession -> Mono
.fromDirect(rxSession.run("UNWIND range (1, 5) AS x RETURN x"))
.flatMapMany(ReactiveResult: :records),

ReactiveSession: :close

);

// block for demonstration purposes
List<Value> values = records.map(record -> record.get("x")).collectlList().block();
System.out.println(values);

Always defer session creation

It's important to remember that in reactive programming a Publisher doesn’t come to life until a

44

Subscriber attaches to it. A Publisher is just an abstract description of your asynchronous process, but it's
only the act of subscribing that triggers the flow of data in the whole chain.

For this reason, always be mindful to make session creation/destruction part of this chain, and not to
create sessions separately from the query Publisher chain. Doing so may result in many open sessions,
none doing work and all waiting for a Publisher to use them, potentially exhausting the number of
available sessions for your application. The previous examples use Flux.usingWhen() to address this.

Bad practice example — session is created but nobody uses it

ReactiveSession rxSession = driver.session(ReactiveSession.class);
Mono<ReactiveResult> rxResult = Mono.fromDirect(rxSession.run("UNWIND range (1, 5) AS x RETURN x"));
// until somebody subscribes to "rxResult’, the Publisher doesn't materialize, but the session is busy!

45

Performance recommendations

Always specify the target database

Specify the target database on all queries with the .withDatabase() method, either in
Driver.executableQuery() calls or when creating new sessions. If no database is provided, the driver has
to send an extra request to the server to figure out what the default database is. The overhead is minimal

for a single query, but becomes significant over hundreds of queries.

Good practices

driver.executableQuery("<QUERY>")
.withConfig(QueryConfig.builder().withDatabase("<DB NAME>").build())
.execute();

driver.session(SessionConfig.builder().withDatabase("<DB NAME>").build());

Bad practices

driver.executableQuery("<QUERY>")
.execute();

driver.session();

Be aware of the cost of transactions

When submitting queries through .executableQuery() or through .executeRead/Write(), the server
automatically wraps them into a transaction. This behavior ensures that the database always ends up in a
consistent state, regardless of what happens during the execution of a transaction (power outages,

software crashes, etc).

Creating a safe execution context around a number of queries yields an overhead that is not present if the
driver just shoots queries at the server and hopes they will get through. The overhead is small, but can add
up as the number of queries increases. For this reason, if your use case values throughput more than data
integrity, you may extract further performance by running all queries within a single (auto-commit)
transaction. You do this by creating a session and using session. run() to run as many queries as needed.

Privilege throughput over data integrity

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
for (int i=0; i<1000; i++) {
session.run("<QUERY>");

}

46

Privilege data integrity over throughput

for (int i=0; i<1000; i++) {
driver.executableQuery("<QUERY>").execute();
// or session.executeRead/Write() calls

Route read queries to cluster readers

In a cluster, route read queries to secondary nodes. You do this by:

e using the method .withRouting(RoutingControl.READ) in Driver.executableQuery() calls
e using Session.executeRead() instead of Session.executeWrite() (for managed transactions)

e using the method .withRouting(RoutingControl.READ) when creating a new session (for explicit
transactions).

Good practices

// import org.neo4j.driver.RoutingControl;

driver.executableQuery("MATCH (p:Person) RETURN p")
.withConfig(QueryConfig.builder()
.withDatabase("neo4j")
.withRouting(RoutingControl.READ)
.build())
.execute();

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
session.executeRead(tx -> {
var result = tx.run("MATCH (p:Person) RETURN p");
return result.list();

1

Bad practices

// defaults to routing = writers
driver.executableQuery("MATCH (p:Person) RETURN p")
.withConfig(QueryConfig.builder()
.withDatabase("neo4j")
.build())
.execute();

// don't ask to write on a read-only operation
try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
session.executeWrite(tx -> {
var result = tx.run("MATCH (p:Person) RETURN p");
return result.list();

»;

47

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#clustering-secondary-mode

Create indexes

Create indexes for properties that you often filter against. For example, if you often look up Person nodes
by the name property, it is beneficial to create an index on Person.name. You can create indexes with the
CREATE INDEX Cypher clause, for both nodes and relationships.

Create an index on Person.name

driver.executableQuery("CREATE INDEX person_name FOR (n:Person) ON (n.name)").execute();

For more information, see Indexes for search performance.

Profile queries

Profile your queries to locate queries whose performance can be improved. You can profile queries by
prepending them with PROFILE. The server output is available through the .profile() method of the
ResultSummary object.

var result = driver.executableQuery("PROFILE MATCH (p {name: $name}) RETURN p")

.withParameters(Map.of("name", "Alice"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

var queryPlan = result.summary().profile().arguments().get("string-representation");
System.out.println(queryPlan);

/*

Planner COST
Runtime PIPELINED
Runtime version 5.0
Batch size 128

B B R e +------ Tt tommmmmm e -
B e it B s R e T +

| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |

Fom e e e +------ Fommm - TP E

E R e T R B +

| +ProduceResults | p | 1] 1 3|

| | |

| | Fomm e B e Ho--——- B R +

| | |

| +Filter | p.name = $name | 1] 1 4 |

| | |

|] T Fo-mmm e e +------ t---mm oo Fommmmmm e e +

| | |

| +Al1NodesScan | p | 10 | 4 | 5 | 120 |

9160/0 | 108.923 | Fused in Pipeline 0 |

B e e t------ Fomm e e

E R e tomm e B it +

Total database accesses: 12, total allocated memory: 184
*/

In case some queries are so slow that you are unable to even run them in reasonable times, you can
prepend them with EXPLAIN instead of PROFILE. This will return the plan that the server would use to run
the query, but without executing it. The server output is available through the .plan() method of the
ResultSummary object.

48

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#indexes_for_search_performance
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#_profile_query

var result = driver.executableQuery("EXPLAIN MATCH (p {name: $name}) RETURN p")

.withParameters(Map.of("name", "Alice"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

var queryPlan = result.summary().plan().arguments().get("string-representation");
System.out.println(queryPlan);

/*

Planner COST
Runtime PIPELINED
Runtime version 5.0
Batch size 128

B e T T Y e e R e +
| Operator | Details | Estimated Rows | Pipeline

L e e e e e e Fommmm e L e e e +
+ProduceResults	p	1]	
	R B +		
+Filter	p.name = $name	1	
	e e +		
+Al1NodesScan	p	10	Fused in Pipeline 0
B e T T Y e e R e +

Total database accesses: ?
*/

Specify node labels

Specify node labels in all queries. This allows the query planner to work much more efficiently, and to
leverage indexes where available. To learn how to combine labels, see Cypher » Label expressions.

Good practices

driver.executableQuery("MATCH (p:Person|Animal {name: $name}) RETURN p")

.withParameters(Map.of("name", "Alice"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
session.run("MATCH (p:Person|Animal {name: $name}) RETURN p", Map.of("name", "Alice"));
3

Bad practices

driver.executableQuery("MATCH (p {name: $name}) RETURN p")

.withParameters(Map.of("name", "Alice"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
session.run("MATCH (p {name: $name}) RETURN p", Map.of("name", "Alice"));
3

Batch data creation

Batch queries when creating a lot of records using the UNWIND Cypher clauses.

49

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#query-syntax-label
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#query-syntax-label
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#query-syntax-label
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#unwind

Good practice

Submit one single queries with all values inside

// Generate a sequence of numbers
int start = 1;
int end = 10000;
List<Map> numbers = new ArrayList<>(end - start + 1);
for (int i=start; i<=end; i++) {
numbers.add(Map.of ("value", i));
3

driver.executableQuery("""
UNWIND $numbers AS node
CREATE (:Number {value: node.value})
"
.withParameters(Map.of ("numbers", numbers))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

Bad practice

Submit a lot of single queries, one for each value

for (int i=1; i<=10000; i++) {

driver.executableQuery("CREATE (:Number {value: $value})")
.withParameters(Map.of("value", 1))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())

.execute();
3
O The most efficient way of performing a first import of large amounts of data into a new
- database is the neo4j-admin database import command.

Use query parameters

Always use query parameters instead of hardcoding or concatenating values into queries. Besides
protecting from Cypher injections, this allows to better leverage the database query cache.

Good practices

driver.executableQuery("MATCH (p:Person {name: $name}) RETURN p")

.withParameters(Map.of("name", "Alice"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
session.run("MATCH (p:Person {name: $name}) RETURN p", Map.of("name", "Alice"));
3

Bad practices

50

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#neo4j_admin_import

driver.executableQuery("MATCH (p:Person {name: 'Alice'}) RETURN p")
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())

.execute();

// or

String name = "Alice";

driver.executableQuery("MATCH (p:Person {name: '" + name + "'}) RETURN p")
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

try (var session = driver.session(SessionConfig.builder().withDatabase("neo4j").build())) {
session.run("MATCH (p:Person {name: 'Alice'}) RETURN p");

// or
String name = "Alice";
session.run("MATCH (p:Person {name: '" + name + "'}) RETURN p");
3
Concurrency

Use asynchronous querying. This is likely to be more impactful on performance if you parallelize complex
and time-consuming queries in your application, but not so much if you run many simple ones.

Use MERGE for creation only when needed

The Cypher clause MERGE is convenient for data creation, as it allows to avoid duplicate data when an exact
clone of the given pattern exists. However, it requires the database to run two queries: it first needs to
CREATE it (if needed).

If you know already that the data you are inserting is new, avoid using MERGE and use CREATE directly
instead — this practically halves the number of database queries.

Filter notifications

Filter the category and/or severity of notifications the server should raise.

51

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#merge
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#create

=Reference=

52

Advanced connection information

Connection URI

The driver supports connection to URIs of the form

<SCHEME>: //<HOST>[: <PORT>[?policy=<POLICY-NAME>]]

<SCHEME> is one among neo4j, neo4j+s, neo4j+ssc, bolt, bolt+s, bolt+ssc.

<HOST> is the host name where the Neo4j server is located.

<PORT> is optional, and denotes the port the Bolt protocol is available at.

<POLICY-NAME> is an optional server policy name. Server policies need to be set up prior to usage.

o The driver does not support connection to a nested path, such as example.com/neo4j/.
The server must be reachable from the domain root.

Connection protocols and security

Communication between the driver and the server is mediated by Bolt. The scheme of the server URI
determines whether the connection is encrypted and, if so, what type of certificates are accepted.

URL scheme Encryption Comment

neo4;j X Default for local setups
neo4j+s Vv (only CA-signed certificates) Default for Aura
neo4j+ssc v (CA- and self-signed certificates)

The driver receives a routing table from the server upon successful connection,
regardless of whether the instance is a proper cluster environment or a single-machine
(r') environment. The driver’s routing behavior works in tandem with Neo4j’s clustering by
v directing read/write transactions to appropriate cluster members. If you want to target a

specific machine, use the bolt, bolt+s, or bolt+ssc URI schemes instead.
The connection scheme to use is not your choice, but is rather determined by the server requirements. You

must know the right server scheme upfront, as no metadata is exposed prior to connection. If you are
unsure, ask the database administrator.

Authentication methods

Basic authentication (default)

The basic authentication scheme relies on traditional username and password. These can either be the
credentials for your local installation, or the ones provided with an Aura instance.

53

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#multi_data_center_routing
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#clustering

// import org.neo4j.driver.AuthTokens;
// import org.neo4j.driver.GraphDatabase;

GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword));

The basic authentication scheme can also be used to authenticate against an LDAP server (Enterprise
Edition only).

Kerberos authentication

The Kerberos authentication scheme requires a base64-encoded ticket. It can only be used if the server
has the Kerberos Add-on installed.

1 // import org.neo4j.driver.AuthTokens;

2 // import org.neo4j.driver.GraphDatabase;

3

4 GraphDatabase.driver(dbUri, AuthTokens.kerberos(ticket));

Bearer authentication

The bearer authentication scheme requires a base64-encoded token provided by an Identity Provider
through Neo4j’s Single Sign-On feature.

1 // import org.neo4j.driver.AuthTokens;

2 // import org.neo4j.driver.GraphDatabase;

3

4 GraphDatabase.driver(dbUri, AuthTokens.bearer(ticket));

o The bearer authentication scheme requires configuring Single Sign-On on the server.
Once configured, clients can discover Neo4j's configuration through the Discovery API.

Custom authentication

Use AuthTokens.custom() to log into a server having a custom authentication scheme.

1 // import org.neo4j.driver.AuthTokens;
2 // import org.neo4j.driver.GraphDatabase;
3

4 GraphDatabase.driver(dbUri, AuthTokens.custom(principal, credentials, realm, scheme, parameters));

No authentication

If authentication is disabled on the server, the authentication parameter can be omitted entirely.

Logging

By default, the driver logs INFO messages through the Java logging framework java.util.logging. To
change the driver’s logging behavior, use the .withLogging() method when creating a Driver object.

54

https://neo4j.com/docs/pdf/neo4j-kerberos-add-on-current.pdf#deployment
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#sso_integration
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#sso_integration
https://neo4j.com/docs/http-api/current/endpoints/#discovery-api
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/AuthTokens.html#custom(java.lang.String,java.lang.String,java.lang.String,java.lang.String,java.util.Map)
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Config.ConfigBuilder.html#withLogging(org.neo4j.driver.Logging)

// import java.util.logging.Level;

// import org.neo4j.driver.AuthTokens;

// import org.neo4j.driver.Config;

// import org.neo4j.driver.GraphDatabase;
// import org.neo4j.driver.Logging;

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword),
Config.builder().withLogging(Logging.console(Level .FINE)).build())) {
driver.verifyConnectivity();

Example of log output upon driver connection

2023-12-22T10:36:39.997882867 INFO org.neo4j.driver.internal.DriverFactory - Routing driver instance
1651855867 created for server address localhost:7687

2023-12-22T10:36:40.03430944 FINE io.netty.channel.DefaultChannelId - -Dio.netty.processId: 23665 (auto-
detected)

2023-12-22T10:36:40.036871656 FINE io.netty.util.NetUtil - -Djava.net.preferIPv4Stack: false
2023-12-22T10:36:40.037023871 FINE io.netty.util.NetUtil - -Djava.net.preferIPv6Addresses: false
2023-12-22T10:36:40.03827624 FINE io.netty.util.NetUtilInitializations - Loopback interface: lo (lo,
0:0:0:0:0:0:0:1%10)

2023-12-22T10:36:40.038877108 FINE io.netty.util.NetUtil - /proc/sys/net/core/somaxconn: 4096
2023-12-22T10:36:40.03958947 FINE io.netty.channel.DefaultChannelld - -Dio.netty.machineld:
04:cf:4b:ff:fe:0e:ee:99 (auto-detected)

2023-12-22T10:36:40.04531968 FINE io.netty.util.ResourcelLeakDetector - -Dio.netty.leakDetection.level:
simple

2023-12-22T10:36:40.045471749 FINE io.netty.util.ResourcelLeakDetector -

-Dio.netty.leakDetection. targetRecords: 4

2023-12-22T10:36:40.059848221 FINE io.netty.buffer.PooledByteBufAllocator -
-Dio.netty.allocator.numHeapArenas: 40

2023-12-22T10:36:40.060000842 FINE io.netty.buffer.PooledByteBufAllocator -
-Dio.netty.allocator.numDirectArenas: 40

2023-12-22T10:36:40.060113675 FINE io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.pageSize:
8192

2023-12-22T10:36:40.060219802 FINE io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.maxOrder:
9

2023-12-22T10:36:40.060324679 FINE io.netty.buffer.PooledByteBufAllocator -
-Dio.netty.allocator.chunkSize: 4194304

2023-12-22T10:36:40.060442554 FINE io.netty.buffer.PooledByteBufAllocator -
-Dio.netty.allocator.smallCacheSize: 256

2023-12-22T10:36:40.060547232 FINE io.netty.buffer.PooledByteBufAllocator -
-Dio.netty.allocator.normalCacheSize: 64

2023-12-22T10:36:40.060648929 FINE io.netty.buffer.PooledByteBufAllocator -
-Dio.netty.allocator.maxCachedBufferCapacity: 32768

2023-12-22T10:36:40.060750268 FINE io.netty.buffer.PooledByteBufAllocator -
-Dio.netty.allocator.cacheTrimInterval: 8192

2023-12-22T10:36:40.060858214 FINE io.netty.buffer.PooledByteBufAllocator -
-Dio.netty.allocator.cacheTrimIntervalMillis: @

2023-12-22T10:36:40.060965492 FINE io.netty.buffer.PooledByteBufAllocator -
-Dio.netty.allocator.useCacheForAllThreads: false

2023-12-22T10:36:40.061068878 FINE io.netty.buffer.PooledByteBufAllocator -
-Dio.netty.allocator.maxCachedByteBuffersPerChunk: 1023

2023-12-22T10:36:40.069792775 FINE io.netty.buffer.ByteBufUtil - -Dio.netty.allocator.type: pooled
2023-12-22T10:36:40.069957048 FINE io.netty.buffer.ByteBufUtil - -Dio.netty.threadLocalDirectBufferSize: 0
2023-12-22T10:36:40.070070891 FINE io.netty.buffer.ByteBufUtil - -Dio.netty.maxThreadlLocalCharBufferSize:
16384

2023-12-22T10:36:40.102235419 FINE io.netty.buffer.AbstractByteBuf - -Dio.netty.buffer.checkAccessible:
true

2023-12-22T10:36:40.102408774 FINE io.netty.buffer.AbstractByteBuf - -Dio.netty.buffer.checkBounds: true
2023-12-22T10:36:40.103026138 FINE io.netty.util.ResourcelLeakDetectorFactory - Loaded default
ResourceleakDetector: io.netty.util.ResourcelLeakDetector@1a67b908

2023-12-22T10:36:40.104721387 FINE org.neo4dj.driver.internal.async.connection.ChannelConnectedListener -
[0xb354eed2][localhost(127.0.0.1):7687][] C: [Bolt Handshake] [0x6060b@17, 263173, 132100, 260, 3]
2023-12-22T10:36:40.106645202 FINE io.netty.util.Recycler - -Dio.netty.recycler.maxCapacityPerThread: 4096
2023-12-22T10:36:40.106785483 FINE io.netty.util.Recycler - -Dio.netty.recycler.ratio: 8
2023-12-22T10:36:40.106887674 FINE io.netty.util.Recycler - -Dio.netty.recycler.chunkSize: 32
2023-12-22T10:36:40.106993748 FINE io.netty.util.Recycler - -Dio.netty.recycler.blocking: false
2023-12-22T10:36:40.107096042 FINE io.netty.util.Recycler - -Dio.netty.recycler.batchFastThreadLocalOnly:
true

2023-12-22T10:36:40.11603651 FINE org.neo4j.driver.internal.async.connection.HandshakeHandler -
[0xb354eed2][localhost(127.0.0.1):7687][] S: [Bolt Handshake] 5.4

2023-12-22T10:36:40.128082306 FINE org.neo4j.driver.internal.async.outbound.OutboundMessageHandler -
[0xb354eed2]1[1ocalhost(127.0.0.1):7687]1[] C: HELLO {routing={address: "localhost:7687"},
bolt_agent={product: "neo4j-java/dev", language: "Java/17.0.9", language_details: "Optional[Eclipse
Adoptium; OpenJDK 64-Bit Server VM; 17.0.9+9]1", platform: "Linux; 5.15.0-91-generic; amd64"},

55

user_agent="neo4j-java/dev"}

2023-12-22T10:36:40.130350166 FINE org.neo4j.driver.internal.async.pool.NettyChannelTracker - Channel
[0xb354eed2] created. Local address: /127.0.0.1:32794, remote address: /127.0.0.1:7687
2023-12-22T10:36:40.130746872 FINE org.neo4dj.driver.internal.async.pool.NettyChannelTracker - Channel
[0xb354eed2] acquired from the pool. Local address: /127.0.0.1:32794, remote address: /127.0.0.1:7687
2023-12-22T10:36:40.133652153 FINE org.neo4j.driver.internal.async.outbound.OutboundMessageHandler -
[0xb354eed2]1[1localhost(127.0.0.1):7687]1[1 C: LOGON {principal="neo4j", scheme="basic",
credentials="#x*x*x"}

2023-12-22T10:36:40.140017819 FINE org.neo4j.driver.internal.async.inbound.InboundMessageDispatcher -
[0xb354eed2][1localhost(127.0.0.1):76871[]1 S: SUCCESS {server="Neo4j/5.16.0", connection_id="bolt-5",
hints={connection.recv_timeout_seconds: 120}}

2023-12-22T10:36:40.142229689 FINE org.neo4j.driver.internal.async.inbound.InboundMessageDispatcher -
[0xb354eed2][1localhost(127.0.0.1):7687]1[bolt-5] S: SUCCESS {3}

2023-12-22T10:36:40.14568667 FINE org.neo4j.driver.internal.async.outbound.OutboundMessageHandler -
[0xb354eed2][localhost(127.0.0.1):76871[bolt-5] C: RESET

2023-12-22T10:36:40.146897982 FINE org.neo4j.driver.internal.async.NetworkConnection - Added
ConnectionReadTimeoutHandler

2023-12-22T10:36:40.14753571 FINE org.neo4j.driver.internal.async.inbound.InboundMessageDispatcher -
[0xb354eed2][localhost(127.0.0.1):7687]1[bolt-5] S: SUCCESS {3}

2023-12-22T10:36:40.147813446 FINE org.neo4j.driver.internal.async.NetworkConnection - Removed
ConnectionReadTimeoutHandler

2023-12-22T10:36:40.14895232 FINE org.neo4j.driver.internal.async.pool.NettyChannelTracker - Channel
[0xb354eed2] released back to the pool

2023-12-22T10:36:40.15199869 FINE org.neo4j.driver.internal.cluster.RoutingTableRegistryImpl - Routing
table handler for database 'system' is added.

2023-12-22T10:36:40.152613749 FINE org.neo4j.driver.internal.cluster.RoutingTableHandlerImpl - Routing
table for database 'system' is stale. Ttl 1703237800150, currentTime 1703237800152, routers [], writers
[1, readers [], database 'system'

2023-12-22T10:36:40.159510973 FINE org.neo4j.driver.internal.async.pool.NettyChannelTracker - Channel
[0xb354eed2] acquired from the pool. Local address: /127.0.0.1:32794, remote address: /127.0.0.1:7687
2023-12-22T10:36:40.165704119 FINE org.neo4j.driver.internal.async.outbound.OutboundMessageHandler -
[0xb354eed2][localhost(127.0.0.1):7687]1[bolt-5] C: ROUTE {address="localhost:7687"} [] system null
2023-12-22T10:36:40.168929698 FINE org.neo4j.driver.internal.async.NetworkConnection - Added
ConnectionReadTimeoutHandler

2023-12-22T10:36:40.171700427 FINE org.neo4j.driver.internal.async.inbound.InboundMessageDispatcher -
[0xb354eed2][localhost(127.0.0.1):76871[bolt-5] S: SUCCESS {rt={servers: [{addresses: ["localhost:7687"7,
role: "WRITE"}, {addresses: ["localhost:7687"1, role: "READ"}, {addresses: ["localhost:7687"1], role:
"ROUTE"}], ttl: 300, db: "system"}}

2023-12-22T10:36:40.17187084 FINE org.neo4j.driver.internal.async.NetworkConnection - Removed
ConnectionReadTimeoutHandler

2023-12-22T10:36:40.173921853 FINE org.neo4j.driver.internal.async.outbound.OutboundMessageHandler -
[0xb354eed2][localhost(127.0.0.1):76871[bolt-5] C: RESET

2023-12-22T10:36:40.174473474 FINE org.neo4j.driver.internal.async.NetworkConnection - Added
ConnectionReadTimeoutHandler

2023-12-22T10:36:40.175516332 FINE org.neo4j.driver.internal.async.inbound.InboundMessageDispatcher -
[0xb354eed2][1localhost(127.0.0.1):7687]1[bolt-5] S: SUCCESS {3}

2023-12-22T10:36:40.175679271 FINE org.neo4dj.driver.internal.async.NetworkConnection - Removed
ConnectionReadTimeoutHandler

2023-12-22T10:36:40.175849144 FINE org.neo4dj.driver.internal.async.pool.NettyChannelTracker - Channel
[0xb354eed2] released back to the pool

2023-12-22T10:36:40.182085603 FINE org.neo4j.driver.internal.cluster.RoutingTableHandlerImpl - Fetched
cluster composition for database 'system'. ClusterComposition{readers=[localhost:76871],
writers=[localhost:7687], routers=[localhost:7687], expirationTimestamp=1703238100176,
databaseName=system}

2023-12-22T10:36:40.185015699 FINE org.neo4j.driver.internal.cluster.RoutingTableHandlerImpl - Updated
routing table for database 'system'. Ttl 1703238100176, currentTime 1703237800184, routers
[localhost:7687], writers [localhost:7687], readers [localhost:7687], database 'system'
2023-12-22T10:36:40.18530819 INFO org.neo4j.driver.internal.InternalDriver - Closing driver instance
1651855867

2023-12-22T10:36:40.186508052 FINE org.neo4j.driver.internal.async.outbound.QOutboundMessageHandler -
[0xb354eed2][localhost(127.0.0.1):7687]1[bolt-5] C: GOODBYE

2023-12-22T10:36:40.187291369 INFO org.neo4dj.driver.internal.async.pool.ConnectionPoolImpl - Closing
connection pool towards localhost(127.0.0.1):7687

2023-12-22T10:36:40.189599992 FINE org.neo4j.driver.internal.async.inbound.ChannelErrorHandler -
[0xb354eed2][1localhost(127.0.0.1):7687][bolt-5] Channel is inactive

2023-12-22T10:36:40.395356347 FINE io.netty.buffer.PoolThreadCache - Freed 6 thread-local buffer(s) from
thread: Neo4jDriverI0-2-2

Custom address resolver

When creating a Driver object, you can specify a resolver function to resolve the connection address the
driver is initialized with. Note that addresses that the driver receives in routing tables are not resolved with
the custom resolver.

56

You specify a resolver through the .withResolver() config method, which works with ServerAddress
objects.

Connection to example.com on port 9999 is resolved to localhost on port 7687

// import java.util.Set;

// import org.neo4j.driver.AuthTokens;

// import org.neo4j.driver.Config;

// import org.neo4j.driver.GraphDatabase;

// import org.neo4j.driver.net.ServerAddress;

var addresses = Set.of(
ServerAddress.of("localhost", 7687) // omit the scheme; provide only host
).

var config = Config.builder()
.withResolver(address -> addresses)
buildQ);
try (var driver = GraphDatabase.driver("neo4j://example.com:9999", AuthTokens.basic(dbUser, dbPassword),

config)) {
driver.verifyConnectivity();
3

OCSP stapling

If OCSP stapling is enabled on the server, the driver can be configured to check for certificate revocations
during SSL handshakes. OCSP stapling improves both security and performance when using CA-signed
certificates.

There are two methods implementing this feature:

e .withVerifyIfPresentRevocationChecks() — validate a certificate’s stapling if available, but don’t fail
verification if no stapling is found.

e .withStrictRevocationChecks() — validate a certificate’s stapling, and fail verification if no stapling is
found.

Both methods act on a Config.TrustStrategy object, so you have to be explicit about what certificates you
want to trust and cannot rely on the driver to infer it from the connection URI scheme. This means that you
have to chain these methods to Config.TrustStrategy.trustSystemCertificates(). To avoid
configuration clashes, the connection URI scheme must also be set to neo4j (i.e. not neo4j+s nor

neo4j+ssc).

Validate certificate stapling, but don’t fail if no stapling is found

// import org.neo4j.driver.Config;

1
2
3 Config config = Config.builder()

4 .withEncryption()

5 .withTrustStrategy(Config.TrustStrategy

6 .trustSystemCertificates()

7 .withVerifyIfPresentRevocationChecks())

8 .build(Q);

9 try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword), config)) {
10 driver.verifyConnectivity();

11 3

57

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Config.ConfigBuilder.html#withResolver(org.neo4j.driver.net.ServerAddressResolver)
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/net/ServerAddress.html
https://en.wikipedia.org/wiki/OCSP_stapling
https://neo4j.com/docs/operations-manual/4.2/reference/configuration-settings/#config_dbms.connector.bolt.ocsp_stapling_enabled
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Config.TrustStrategy.html#withStrictRevocationChecks()
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Config.TrustStrategy.html#withStrictRevocationChecks()

Further connection parameters

You can find all Driver configuration parameters in the AP| documentation » driver.GraphDatabase.

58

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/GraphDatabase.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/GraphDatabase.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/GraphDatabase.html

Data types and mapping to Cypher types

The tables in this section show the mapping between Cypher data types and Java types.

Regardless of their type, all values in query results are embedded within Value objects. To extract and cast
them to the corresponding Java types, use .as<type>() (eg. .asString(), asInt(), etc). For example, if the

name property coming from the database is a string, record.get("name").asString() will yield the property
value as a String object.

On the other hand, you don’t need to use the driver types when submitting query parameters. The driver
will automatically serialize objects of native Java types passed as parameters.

For a complete list of the value types the driver serializes data into, see the AP| documentation.

Core types

Cypher type Driver type
NULL NullValue
LIST ListValue
MAP MapValue
BOOLEAN BooleanValue
INTEGER IntegerValue
FLOAT FloatValue
STRING StringValue
ByteArray BytesValue

Temporal types

The driver provides a set of temporal data types compliant with ISO-8601 and Cypher. Sub-second values
are measured to nanosecond precision.

The driver’s types rely on Java’s time types. All temporal types, except DurationValue, are in fact java.time
objects under the hood. This means that:

¢ if you want to query the database with a temporal type, instantiate a java. time object and use it as
query parameter (i.e. you don’t need to care about driver’s types).

e if you retrieve a temporal object from the database (including through one of Cypher temporal
functions), you will get back the corresponding driver type as displayed in the table below. The driver
implements methods to convert driver time types into Java ones (ex. .asZonedDateTime(),
.asOffsetTime(), etc).

Cypher type Driver type
DATE DateValue
ZONED TIME TimeValue

59

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Value.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/package-summary.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/NullValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/ListValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/MapValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/BooleanValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/IntegerValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/FloatValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/StringValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/BytesValue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/package-summary.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/DurationValue.html
https://neo4j.com/docs/cypher-manual/current/functions/temporal/
https://neo4j.com/docs/cypher-manual/current/functions/temporal/
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/DateValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/TimeValue.html

Cypher type Driver type

LOCAL TIME LocalTimeValue
ZONED DATETIME DateTimeValue
LOCAL DATETIME LocalDateTimeValue
DURATION DurationValue

How to use temporal types in queries

package demo;

import java.util.Map;
import java.time.ZonedDateTime;
import java.time.Zoneld;

import org.neo4j.driver.AuthTokens;
import org.neo4j.driver.Driver;

import org.neo4j.driver.GraphDatabase;
import org.neo4j.driver.QueryConfig;

public class App {

public static void main(String... args) {
final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";

final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {
driver.verifyConnectivity();

// Define a date, with timezone, and use it to set a relationship property
var friendsSince = ZonedDateTime.of (2016, 12, 16, 13, 59, 59, 9999999, Zoneld.of
("Europe/Stockholm"));

var result = driver.executableQuery(
MERGE (a:Person {name: $name})
MERGE (b:Person {name: $friend})
MERGE (a)-[friendship:KNOWS {since: $friendsSince}]->(b)
RETURN friendship.since AS date

nn ll)

.withParameters(Map.of("name", "Alice", "friend", "Bob", "friendsSince", friendsSince))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())

.execute();

var date = result.records().get(0).get("date");

System.out.println(date.getClass().getName()); //
org.neo4j.driver.internal.value.DateTimeValue

System.out.println(date); // 2016-12-16T13:59:59.009999999+01:00[Europe/Stockholm]

var nativeDate = date.asZonedDateTime();
System.out.println(nativeDate.getClass().getName()); // java.time.ZonedDateTime

DurationValue

Represents the difference between two points in time (expressed in months, days, seconds, nanoseconds).

// import org.neo4j.driver.Values;

var duration = Values.isoDuration(1, 2, 3, 4); // months, days, seconds, nanoseconds
System.out.println(duration); // P1M2DT3.000000004S

For full documentation, see AP| documentation » DurationValue.

60

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/LocalTimeValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/DateTimeValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/LocalDateTimeValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/DurationValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/DurationValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/DurationValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/DurationValue.html

Spatial types

Cypher supports spatial values (points), and Neo4j can store these point values as properties on nodes and

relationships.

The attribute SRID (short for Spatial Reference Identifier) is a number identifying the coordinate system the

spatial type is to be interpreted in. You can think of it as a unique identifier for each spatial type.

Cypher type

POINT (2D Cartesian)
POINT (2D WGS-84)
POINT (3D Cartesian)

POINT (3D WGS-84)

Driver type

PointValue
PointValue
PointValue

PointValue

SRID

7203

4326

9157

4979

You create a point value through Values.point(srid, x, y[, z1) (the third coordinate is optional). Points

returned from database queries are of type PointValue, and can be converted to Point objects through the
method .asPoint().

Receive a Point value from the database

package demo;
import java.util.

import org.neo4j
import org.neo4j
import org.neo4j.
import org.neo4j
import org.neo4j

public class App

public static void main(String...
final String dbUri = "<URI for Neo4j database>";

Map;

.driver
.driver

driver

.driver
.driver

{

.AuthTokens;
.Driver;

.GraphDatabase;

.QueryConfig;
.Values;

args) {

final String dbUser = "<Username>";

final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {
driver.verifyConnectivity();

var result = driver.executableQuery("RETURN point({x: 2.3, y: 4.5, z:
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())

.execute();
var point =

System.out.println(point);
System.out.println(point.asPoint().x());

result.records().get(0).get("point");
// Point{srid=9157, x=2.3, y=4.5, z=2.0}

2}) AS point")

61

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/Values.html#point(int,double,double)
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/PointValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/types/Point.html

Create a Point value and use it as property value

package demo;
import java.util.Map;

import org.neo4j.driver.AuthTokens;
import org.neo4j.driver.Driver;

import org.neo4j.driver.GraphDatabase;
import org.neo4j.driver.QueryConfig;
import org.neo4j.driver.Values;

public class App {

public static void main(String... args) {
final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";
final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {
driver.verifyConnectivity();

var location = Values.point(4326, 67.28775180193841, 17.734163823312397); // 4326 = 2D
geodetic point
var result = driver.executableQuery("CREATE (p:PlaceOfInterest {location: $location}) RETURN
p")
.withParameters(Map.of("location", location))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();
var place = result.records().get(0).get("p").get("location");
System.out.println(place); // Point{srid=4326, x=67.28775180193841, y=17.734163823312397}
System.out.println(place.asPoint().y()); // 17.734163823312397

Graph types

Graph types are only passed as results and may not be used as parameters.

Cypher Type Driver type

NODE NodeValue
RELATIONSHIP RelationshipValue
PATH PathValue
NodeValue

Represents a node in a graph.

Table 1. Essential methods on node objects

Method Return

.labels() Node labels, as a list.
.asMap() Node properties, as a map.
.get("<propertyName>") Value for the given property.

62

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/NodeValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/RelationshipValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/NodeValue.html

Method Return

.elementId() String identifier for the relationship. This should be used with care, as no
guarantees are given about the mapping between id values and elements outsid
the scope of a single transaction. In other words, using an elementId to MATCH an
element across different transactions is risky.

Retrieve a node and display its details

package demo;
import java.util.Map;

import org.neo4j.driver.AuthTokens;
import org.neo4j.driver.Driver;

import org.neo4j.driver.GraphDatabase;
import org.neo4j.driver.QueryConfig;

public class App {

public static void main(String... args) {
final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";
final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {
driver.verifyConnectivity();

// Get a node from the database
var result = driver.executableQuery("MERGE (p:Person:Actor {name: $name, age: 59}) RETURN p")

.withParameters(Map.of("name", "Alice"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

// Extract node from result
var nodeVal = result.records().get(0).get("p");
var node = nodeVal.asNode(); // .asNode() -> type org.neo4j.driver.types.Node

System.out.printf("Labels: %s %n", node.labels());
System.out.printf("Properties: %s %n", node.asMap());
System.out.printf("Name property: %s %n", node.get("name"));
System.out.printf("Element ID: %s %n", node.elementId());

/*

Labels: [Person, Actor]

Properties: {name=Alice, age=59}

Name property: "Alice"

Element ID: 4:549a0567-2015-4bb6-a40c-8536bf7227b0:5

*/

For full documentation, see APl documentation » NodeValue.

RelationshipValue

Represents a relationship in a graph.

Table 2. Essential methods on relationsip objects

Method Return

.type() Relationship type.

.asMap() Relationship properties, as a map.
.get("<propertyName>") Value for the given property.

e

63

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/NodeValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/NodeValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/NodeValue.html

Method Return

.startNodeElementId() elementId of starting node.

.endNodeElementId() elementId of ending node.

.elementId() String identifier for the relationship. This should be used with care, as no

guarantees are given about the mapping between id values and elements outside

the scope of a single transaction. In other words, using an elementId to MATCH an
element across different transactions is risky.

Retrieve a relationship and display its details

package demo;

import java.util.Map;

import org.neo4j.driver.AuthTokens;
import org.neo4j.driver.Driver;

import org.neo4j.driver.GraphDatabase;
import org.neo4j.driver.QueryConfig;

public class App {

public static void main(String... args) {
final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";
final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {

driver.verifyConnectivity();

// Get a relationship from the database
var result = driver.executableQuery("""
MERGE (p:Person {name: $name})
MERGE (p)-Lr:KNOWS {status: $status, since: date()}]1->(friend:Person {name: $friendName})
RETURN r AS friendship
"y
.withParameters(Map.of("name", "Alice", "status", "BFF", "friendName", "Bob"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

// Extract relationship from result
var relationshipVal = result.records().get(0).get("friendship");
var relationship = relationshipVal.asRelationship(); // .asRelationship() -> type

org.neo4j.driver.types.Relationship

System.out.printf("Type: %s %n", relationship.type());
System.out.printf("Properties: %s %n", relationship.asMap());
System.out.printf("Status property: %s %n", relationship.get("status"));
System.out.printf("Start node: %s %n", relationship.startNodeElementId());
System.out.printf("End node: %s %n", relationship.endNodeElementId());
System.out.printf("Element ID: %s %n", relationship.elementId());

/*

Type: KNOWS

Properties: {since=2024-01-12, status=BFF}

Status property: "BFF"

Start node: 4:549a0567-2015-4bb6-a40c-8536bf7227b0:0

End node: 4:549a0567-2015-4bb6-a40c-8536bf7227b0:6

Element ID: 5:549a0567-2015-4bb6-a40c-8536bf7227b0:1

*/

For full documentation, see AP| documentation » RelationshipValue.

64

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/RelationshipValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/RelationshipValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/RelationshipValue.html

PathValue

Represents a path in a graph.

The driver breaks paths into (iterable) segments, consisting of a start node, one relationship, and an end
node. Segments entities may be retrieved, in order, via the methods .start(), .relationship(), and
.end().

65

Retrieve a path and walk it, listing nodes and relationship

package demo;
import java.util.Map;

import org.neo4j.driver.AuthTokens;
import org.neo4j.driver.Driver;

import org.neo4j.driver.GraphDatabase;
import org.neo4j.driver.types.Path;
import org.neo4j.driver.QueryConfig;

public class App {

public static void main(String... args) {
final String dbUri = "<URI for Neo4j database>";
final String dbUser = "<Username>";
final String dbPassword = "<Password>";

try (var driver = GraphDatabase.driver(dbUri, AuthTokens.basic(dbUser, dbPassword))) {
driver.verifyConnectivity();

// Create some :Person nodes linked by :KNOWS relationships
addFriend(driver, "Alice", "BFF", "Bob");

addFriend(driver, "Bob", "Fiends", "Sofia");
addFriend(driver, "Sofia", "Acquaintances", "Sofia");

// Follow :KNOWS relationships outgoing from Alice three times, return as path
var result = driver.executableQuery("""

MATCH path=(:Person {name: $name})-[:KNOWS*3]->(:Person)

RETURN path AS friendshipChain

nn u)

.withParameters(Map.of("name", "Alice"))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

// Extract path from result
var pathVal = result.records().get(@).get("friendshipChain");
var path = pathval.asPath(); // .asPath() -> type org.neo4j.driver.types.Path

System.out.println("-- Path breakdown --");
for (Path.Segment segment : path) {
System.out.printf(

"%s is friends with %s (%s).%n",
segment.start().get("name").asString(),
segment.end().get("name").asString(),
segment.relationship().get("status").asString());

3

/*

-- Path breakdown --

Alice is friends with Bob (BFF).

Bob is friends with Sofia (Fiends).

Sofia is friends with Sofia (Acquaintances).

*/

}

public static void addFriend(Driver driver, String name, String status, String friendName) {
driver.executableQuery("""

MERGE (p:Person {name: $name})
MERGE (p)-L[r:KNOWS {status: $status, since: date()}]->(friend:Person {name: $friendName})
"
.withParameters(Map.of("name", name, "status", status, "friendName", friendName))
.withConfig(QueryConfig.builder().withDatabase("neo4j").build())
.execute();

For full documentation, see APl documentation » PathValue.

66

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/PathValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/PathValue.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/internal/value/PathValue.html

Exceptions

The driver can raise a number of different exceptions, see AP| documentation » Exceptions. For a list of

errors the server can return, see Status codes.

Some server errors are marked as safe to retry without need to alter the original request. Examples of such
errors are deadlocks, memory issues, or connectivity issues. Driver's exceptions implementing
RetryableException are such that a further attempt at the operation that caused it might be successful.
This is particular useful when running queries in explicit transactions, to know if a failed query is worth re-

running.

67

https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/exceptions/package-summary.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/exceptions/package-summary.html
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/exceptions/package-summary.html
https://neo4j.com/docs/pdf/neo4j-status-codes-5.pdf
https://neo4j.com/docs/api/java-driver/current/org.neo4j.driver/org/neo4j/driver/exceptions/RetryableException.html

APl documentation

https://neo4j.com/docs/api/java-driver/current/

Related projects

True to its name (the j stands for java), Neo4j has a wide Java-ecosystem surrounding it. This page lists
the other officially supported Java projects that help you work with a Neo4j database.

e Neo4j OGM — An Object Graph Mapping (OGM) library abstracts the database and provides a
convenient way to query it without having to use low level drivers directly.
e Spring Data Neo4j (SDN) — An Object Graph Mapping (OGM) library, as a Spring Data module.

e Spring Boot integration — Spring Boot offers several conveniences for working with Neo4j, including
the spring-boot-starter-data-neo4j "Starter".

e Quarkus Neo4j— The Quarkus Neo4j extension provides an instance of the Neo4j driver configured for
usage in a Quarkus application.

e Neo4j-Migrations — A database migration and refactoring tool that allows running Cypher scripts and
programmatic refactorings in a controlled and repeatable fashion against one or more Neo4j
databases.

e Cypher-DSL — A Cypher generator, to dynamically create Cypher queries without doing string
concatenation.

69

https://neo4j.com/docs/ogm-manual/current/
https://docs.spring.io/spring-data/neo4j/reference/
https://docs.spring.io/spring-boot/docs/current/reference/html/data.html#data.nosql.neo4j
https://docs.quarkiverse.io/quarkus-neo4j/dev/index.html
https://github.com/michael-simons/neo4j-migrations
http://neo4j-contrib.github.io/cypher-dsl

=GraphAcademy courses=

Graph Data Modeling
Fundamentals

https://graphacademy.neo4j.com/courses/modeling-fundamentals/?ref=docs-java
https://graphacademy.neo4j.com/courses/modeling-fundamentals/?ref=docs-java

Intermediate Cypher Queries

https://graphacademy.neo4j.com/courses/cypher-intermediate-queries/?ref=docs-java

Building Neo4) Applications
with Java

https://graphacademy.neo4j.com/courses/app-java/?ref=docs-java
https://graphacademy.neo4j.com/courses/app-java/?ref=docs-java

License

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

You are free to
Share

copy and redistribute the material in any medium or format

Adapt

remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial

You may not use the material for commercial purposes.

ShareAlike

If you remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

Notices

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for further details. The full license text is available
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

74

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

	The Neo4j Java Driver Manual v5.0
	Table of Contents
	Quickstart
	Installation
	Connect to the database
	Query the database
	Run your own transactions
	Close connections and sessions
	API documentation

	Glossary
	=Regular workflow=
	Installation
	Install the driver
	Get a Neo4j instance

	Connection
	Connect to the database
	Connect to an Aura instance
	Close connections
	Further connection parameters

	Query the database
	Write to the database
	Read from the database
	Update the database
	Delete from the database
	Query parameters
	Error handling
	Query configuration
	A full example

	=Advanced usage=
	Run your own transactions
	Create a session
	Run a managed transaction
	Run an explicit transaction
	Process query results
	Session configuration
	Transaction configuration
	Close sessions

	Explore the query execution summary
	Retrieve the execution summary
	Query counters
	Query execution plan
	Notifications

	Run non-blocking asynchronous queries
	Asynchronous managed transactions

	Coordinate parallel transactions
	Bookmarks with .executableQuery()
	Bookmarks within a single session
	Bookmarks across multiple sessions
	Mix .executableQuery() and sessions

	Further query mechanisms
	Implicit (or auto-commit) transactions
	Dynamic values in property keys, relationship types, and labels

	Control results flow with reactive streams
	Install dependencies
	Reactive query examples
	Always defer session creation

	Performance recommendations
	Always specify the target database
	Be aware of the cost of transactions
	Route read queries to cluster readers
	Create indexes
	Profile queries
	Specify node labels
	Batch data creation
	Use query parameters
	Concurrency
	Use MERGE for creation only when needed
	Filter notifications

	=Reference=
	Advanced connection information
	Connection URI
	Connection protocols and security
	Authentication methods
	Logging
	Custom address resolver
	OCSP stapling
	Further connection parameters

	Data types and mapping to Cypher types
	Core types
	Temporal types
	Spatial types
	Graph types
	Exceptions

	API documentation
	Related projects

	=GraphAcademy courses=
	Graph Data Modeling Fundamentals
	Intermediate Cypher Queries
	Building Neo4j Applications with Java

