-Ne0qj

The Neo4d) Go Driver Manual
vb.0

Table of Contents

QUICKS At . o e e 1
INSEallatioN ..o e 1
Connectto the database oo 1
Query the database e e 2
RUN your oWwn transactions. i e e 2
Close conNectionNs and SESSIONSttt ettt e et et e e e e e 4
AP doCUumMENTatioN. . ..o e 4

GlOSSaANY .« ottt et e e 5

=Basic WorK oW = . e 7
INStallation e 8

Install the driver o e 8
Get a NEOd INSTANCEot e 8
(@0} o1 o T<T oL 4o T o 1 9
Connectto the database. 9
Connectto an AUra INStaNCE. it e e 10
Further connection parameters. i e e 10
Query the database oo 11
Write to the database. e 11
Read fromthe database. e 11
Update the database. e e e e e e 12
Delete from the database. e 13
QUEIY ParamME S ot ittt ettt et e e e e e e e e e 13
QuUeEry CoNfigUIAtioN. 14
Afull eXample. . .o e e 15

SAAVANCEA USAgEm. . . ittt ittt e e e e e e 17

RUN your oWwn transactions i e 18
CrEate @ SESSION . L . ittt e 18
Run amanaged transaction. i e e e 18
Run an explicit transaction. e e e 22
Process qUEry reSURS i e e e 24
SessioN CoONfigUIatioN o 25
Transaction configuration e 26
ClOSE S S ONS o ittt et e e 26

Explore the query execution sUMMary.t e e e e e e 27
Retrieve the execution sUMMmMary e e e e e e e 27
L@ U1 YA ol YU o) (=Y S 27
Query execUtion Plan e 28

NOtIfICAtIONS .« .ot e e e e e e 29

Coordinate parallel transactions i e 31

Bookmarks With ExecuteQUery () ...ttt et e e e e e e 31
Bookmarks within a single session i e e 31
Bookmarks across multiple sessions. e e 32
Mix ExecuteQuery () and SESSIONSt e e e e e e 34
Run concurrent transactions it 35
Concurrent processing of a query result set (Using sessioNs)ttt 35
Concurrent run of multiple queries (using ExecuteQuery())ttt 36
Further query Mmechanisms. e e e e e e 38
Implicit (or auto-commit) transactions e 38
Dynamic values in property keys, relationship types,and labels........... 39

1 e T 1 T T 40
Performance recommendations o it e 42
Always specify the target database i e 42
Be aware of the cost of transactions. e 42
Don'tfetch largeresult setsallatonce. i i i i e 43
Route read queries to clusterreaders i e 46
Create INAEXES . . o ittt e e e 47
Profile QUENIES. . .o e e e 47
Specify Node 1abelso 49
Batch data creation e 49
USE QUENY Parameters.ottt ittt e e e 50
(@] o Tl [=T o Tox Y 50
Use MERGE for creation only when needed i i i e e 51
Filter notifications e e 51
SR OB CE= . L o 52
Advanced connection information e 53
Connection URI oL e 53
Connection protocols and SeCUrity. oot e e 53
Authentication methods. e 53
Custom address reSOIVEro o b4
Further connection parameters. i e e 55
Data types and mapping to Cypher types. i e e 56
(@] ¢ <T8 0Y/ o 1T 56
BT 001 o1 = 1 7 1= 56
SPaAtial By P S . . oot e 58
GraP N By PES. o ot 60
EXCEP IONS . . o e e e 62
APl documentation. e 64
=GrapPhACAdEMY COUMSES= . . .ottt ittt et e et e et e e e e e e 65

Graph Data Modeling Fundamentalsot i i i e e e e e e e 66

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j
https://graphacademy.neo4j.com/courses/modeling-fundamentals/?ref=docs-go

Intermediate Cypher QUEIIESttt e e it et et et ettt et et et e

Building Neo4j Applications With GOot i i i e e e e et et e e e aae e

https://graphacademy.neo4j.com/courses/cypher-intermediate-queries/?ref=docs-go
https://graphacademy.neo4j.com/courses/app-go/?ref=docs-go

Quickstart

The Neo4j Go driver is the official library to interact with a Neo4j instance through a Go application.

At the hearth of Neo4j lies Cypher, the query language to interact with a Neo4j database. While this guide
does not require you to be a seasoned Cypher querier, it is going to be easier to focus on the Go-specific
bits if you already know some Cypher. For this reason, although this guide does also provide a gentle
introduction to Cypher along the way, consider checking out Getting started » Cypher for a more detailed
walkthrough of graph databases modelling and querying if this is your first approach. You may then apply
that knowledge while following this guide to develop your Go application.

Installation

From within a module, use go get to install the Neo4j Go Driver:
go get github.com/neo4j/neo4j-go-driver/v5

More info on installing the driver »

Connect to the database

Connect to a database by creating a Driver\WithContext object and providing a URL and an authentication
token. Once you have a DriverWithContext instance, use the .VerifyConnectivity() method to ensure
that a working connection can be established.

package main

import (
"fmt"
"context"
"github.com/neo4j/neo4j-go-driver/v5/neo4j"
)

func main() {
ctx := context.Background()
// URI examples: "neo4j://localhost", "neo4j+s://xxx.databases.neo4j.io"
dbUri := "<URI for Neo4j database>"
dbUser := "<Username>"
dbPassword := "<Password>"
driver, err := neo4j.NewDriverWithContext(
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""))
defer driver.Close(ctx)

err = driver.VerifyConnectivity(ctx)
if err != nil {
panic(err)
3
fmt.Println("Connection established.")

More info on connecting to a database »

https://neo4j.com/docs/pdf/neo4j-getting-started-cypher-intro.pdf
https://neo4j.com/docs/pdf/neo4j-getting-started-cypher-intro.pdf
https://neo4j.com/docs/pdf/neo4j-getting-started-cypher-intro.pdf
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/

Query the database

Execute a Cypher statement with the function ExecuteQuery(). Do not hardcode or concatenate
parameters: use placeholders and specify the parameters as keyword arguments.

// Get the name of all 42 year-olds
result, _ := neo4j.ExecuteQuery(ctx, driver,
"MATCH (p:Person {age: $age}) RETURN p.name AS name",
map[stringJlany{
"age": "42",
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

// Loop through results and do something with them

for _, record := range result.Records {
fmt.Println(record.AsMap())

3

// Summary information

fmt.Printf("The query "%v' returned %v records in %+v.\n",
result.Summary.Query().Text(), len(result.Records),
result.Summary.ResultAvailableAfter())

More info on querying the database »

Run your own transactions

For more advanced use-cases, you can run transactions. Use the methods Session.ExecuteRead() and
Session.ExecuteWrite() to run managed transactions.

A transaction with multiple queries, client logic, and potential roll backs

package main

import (
"fmt"
"context"
"strconv"
"errors"
"github.com/neo4j/neo4j-go-driver/v5/neo4j"
)

func main() {
ctx := context.Background()
var employeeThreshold int64 = 10 // Neo4j's integer maps to Go's int64

// Connection to database
dbUri := "<URI for Neo4j database>"
dbUser := "<Username>"
dbPassword := "<Password>"
driver, err := neo4j.NewDriverWithContext(
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""))
if err != nil {
panic(err)
3
defer driver.Close(ctx)
err = driver.VerifyConnectivity(ctx)

if err !'= nil {
panic(err)
3
session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})

defer session.Close(ctx)

// Create 100 people and assign them to various organizations

for i :=0; i < 100; i++ {
name := "Thor" + strconv.Itoa(i)
orgld, err := session.ExecuteWrite(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {
var orgld string

// Create new Person node with given name, if not exists already
_, err := tx.Run(
ctx,
"MERGE (p:Person {name: $namel})",
map[stringJany{
"name": name,
»

if err != nil {
return nil, err

}

// Obtain most recent organization ID and the number of people linked to it
result, err := tx.Run(
ctx,
MATCH (o:Organization)
RETURN o.id AS id, COUNT{(p:Person)-[r:WORKS_FOR]->(0)} AS employeesN
ORDER BY o.createdDate DESC
LIMIT 1
', nil)
if err != nil {
return nil, err
3

org, err := result.Single(ctx)

// If no organization exists, create one and add Person to it
if org == nil {
orgld, _ = createOrganization(ctx, tx)
fmt.Println("No orgs available, created", orgId)
err = addPersonToOrganization(ctx, tx, name, orgld)
if err != nil {
return nil, errors.New("Failed to add person to new org")
// Transaction will roll back
// -> not even Person and/or Organization is created!
3
} else {
orgld = org.AsMap()["id"]. (string)
if employeesN := org.AsMap()["employeesN"].(int64);
employeesN == 0 {
return nil, errors.New("Most recent organization is empty")
// Transaction will roll back
// -> not even Person is created!

}

// If org does not have too many employees, add this Person to it
if employeesN := org.AsMap()["employeesN"].(int64);
employeesN < employeeThreshold {
err = addPersonToOrganization(ctx, tx, name, orgld)
if err != nil {
return nil, err
// Transaction will roll back
// -> not even Person is created!
3
// Otherwise, create a new Organization and link Person to it
} else {
orgld, err = createOrganization(ctx, tx)
if err != nil {
return nil, err
// Transaction will roll back
// -> not even Person is created!
3
fmt.Println("Latest org is full, created", orgld)
err = addPersonToOrganization(ctx, tx, name, orgld)
if err != nil {
return nil, err
// Transaction will roll back
// -> not even Person and/or Organization is created!

3
3
// Return the Organization ID to which the new Person ends up in
return orgld, nil

»
if err !'= nil {
fmt.Println(err)
} else {
fmt.Println("User", name, "added to organization", orgId)

}
}

func createOrganization(ctx context.Context, tx neo4j.ManagedTransaction) (string, error) {
result, err := tx.Run(
ctx,
CREATE (o:0Organization {id: randomuuid(), createdDate: datetime()})
RETURN o.id AS id
', nil)
if err !'= nil {
return "", err
3
org, err := result.Single(ctx)
if err != nil {
return "", err
3
orgld, _ := org.AsMap()["id"]
return orgld.(string), err

}

func addPersonToOrganization(ctx context.Context, tx neo4j.ManagedTransaction, personName string, orgId
string) (error) {
_, err := tx.Run(
ctx,
MATCH (o:Organization {id: $orgId})
MATCH (p:Person {name: $name})
MERGE (p)-[:WORKS_FOR]->(0)
', map[stringlany{
"orgId": orgld,
"name": personName,
B

return err

More info on running transactions -~

Close connections and sessions

Call the .close() method on all DriverWithContext and SessionWithContext instances to release any
resources still held by them. The best practice is to call the methods with the defer keyword as soon as

you create new objects.

driver, err := neo4j.NewDriverWithContext(dbUri, neo4j.BasicAuth(dbUser, dbPassword, ""))
defer driver.Close(ctx)

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)

APl documentation

For in-depth information about driver features, check out the AP| documentation.

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j

Glossary

LTS

A Long Term Support release is one guaranteed to be supported for a number of years. Neo4j 4.4 is
LTS, and Neo4j 5 will also have an LTS version.

Aura

Aura is Neo4j's fully managed cloud service. It comes with both free and paid plans.

Cypher

Cypher is Neo4j's graph query language that lets you retrieve data from the database. It is like SQL, but
for graphs.

APOC

Awesome Procedures On Cypher (APOC) is a library of (many) functions that can not be easily
expressed in Cypher itself.

Bolt

Bolt is the protocol used for interaction between Neo4j instances and drivers. It listens on port 7687 by
default.

ACID

Atomicity, Consistency, Isolation, Durability (ACID) are properties guaranteeing that database
transactions are processed reliably. An ACID-compliant DBMS ensures that the data in the database
remains accurate and consistent despite failures.

eventual consistency

A database is eventually consistent if it provides the guarantee that all cluster members will, at some
point in time, store the latest version of the data.

causal consistency

A database is causally consistent if read and write queries are seen by every member of the cluster in
the same order. This is stronger than eventual consistency.

NULL

The null marker is not a type but a placeholder for absence of value. For more information, see Cypher »
Working with null.

transaction

A transaction is a unit of work that is either committed in its entirety or rolled back on failure. An
example is a bank transfer: it involves multiple steps, but they must all succeed or be reverted, to avoid
money being subtracted from one account but not added to the other.

backpressure

Backpressure is a force opposing the flow of data. It ensures that the client is not being overwhelmed
by data faster than it can handle.

https://neo4j.com/cloud/platform/aura-graph-database/
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#cypher_overview
https://neo4j.com/docs/pdf/neo4j-apoc-current.pdf
https://neo4j.com/docs/pdf/neo4j-bolt-current.pdf
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#working_with_null
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#working_with_null
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#working_with_null
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#working_with_null

transaction function

A transaction function is a callback executed by an ExecuteRead or ExecuteWrite call. The driver
automatically re-executes the callback in case of server failure.

DriverWithContext

A DriverWithContext object holds the details required to establish connections with a Neo4j database.

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#DriverWithContext

=Basic workflow=

Installation

To start creating a Neo4j Go application, you first need to install the Go Driver and get a Neo4j database
instance to connect to.

Install the driver

If you are starting from scratch, the first step is to initialize a Go module. You can do so by creating a
directory, entering it, and using go mod init:

mkdir neo4j-app
cd neo4j-app
go mod init neo4j-app

From within a module, use go get to install the Neo4j Go Driver:
go get github.com/neo4j/neod4j-go-driver/v5

Always use the latest version of the driver, as it will always work both with the previous Neo4j LTS release
and with the current and next major releases. The latest 5. x driver supports connection to any Neo4j 5 and
4.4 instance, and will also be compatible with Neo4j 6. For a detailed list of changes across versions, see
the driver’s changelog.

o The Neo4j Go Driver is compatible (and requires) any officially maintained Go version.

Get a Neo4j instance

You need a running Neo4j database in order to use the driver with it. The easiest way to spin up a local
instance is through a Docker container (requires docker.io). The command below runs the latest Neo4j
version in Docker, setting the admin username to neo4j and password to secretgraph:

docker run \

-p7474:7474 \ # forward port 7474 (HTTP)
-p7687:7687 \ # forward port 7687 (Bolt)
-d \ # run in background

-e NEO4J_AUTH=neo4j/secretgraph \ # set login credentials
neo4j:latest

Alternatively, you can obtain a free cloud instance through Aura.

You can also install Neo4j on your system, or use Neo4j Desktop to create a local development
environment (not for production).

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/
https://github.com/neo4j/neo4j-go-driver/wiki/5.x-changelog
https://go.dev/doc/devel/release#policy
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#introduction
https://neo4j.com/download-center/#community
https://neo4j.com/download-center/#desktop

Connection

Once you have installed the driver and have a running Neo4j instance, you are ready to connect your
application to the database.

Connect to the database

You connect to a Neo4j database by creating a DriverWithContext object and providing a URL and an
authentication token.

package main

import (
"context"
"fmt"
"github.com/neo4j/neo4j-go-driver/v5/neo4j"
)

func main() {

ctx := context.Background() @

dbUri := "<URI for Neo4j database>"

dbUser := "<Username>"

dbPassword := "<Password>"

driver, err := neo4j.NewDriverWithContext(@
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""))

if err !'= nil {
panic(err)

3

defer driver.Close(ctx) @

err = driver.VerifyConnectivity(ctx) @
if err !'= nil {

panic(err)
3

fmt.Println("Connection established.")

@ Creating a DriverWithContext instance only provides information on how to access the database, but
does not actually establish a connection. Connection is instead deferred to when the first query is
executed.

@ Most driver functions require a context.Context parameter, see the context package.

® To verify immediately that the driver can connect to the database (valid credentials, compatible
versions, etc), use the .VerifyConnectivity(ctx) method after initializing the driver.

@ Always close DriverWithContext objects to free up all allocated resources, even upon unsuccessful
connection or runtime errors in subsequent querying. The safest practice is to defer the call to
DriverWithContext.Close(ctx) after the object is successfully created. Note that there are corner cases
in which .Close() might return an error, so you may want to catch that as well.

Driver objects are immutable, thread-safe, and expensive to create, so your application should create
only one instance and pass it around (you may share Driver instances across threads). If you need to
query the database through several different users, use impersonation without creating a new
DriverWithContext instance. If you want to alter a DriverWithContext configuration, you need to create a
new object.

https://pkg.go.dev/context

Connect to an Aura instance

When you create an Aura instance, you may download a text file (a so-called Dotenv file) containing the
connection information to the database in the form of environment variables. The file has a name of the
form Neo4j-a0a2fald-Created-2023-11-06. txt.

You can either manually extract the URI and the credentials from that file, or use a third party-module to
load them. We recommend the module package godotenv for that purpose.

package main

import (
"context"
I|OSII
n fmt”
"github.com/joho/godotenv"
"github.com/neo4j/neo4j-go-driver/v5/neo4j"

)
func main() {
ctx := context.Background()
err := godotenv.Load("Neo4j-a0a2fald-Created-2023-11-06.txt")
if err != nil {
panic(err)
3

dbUri := os.Getenv("NEO4J_URI")
dbUser := os.Getenv("NEO4J_USERNAME")
dbPassword := os.Getenv("NEO4J_PASSWORD")
driver, err := neo4j.NewDriverWithContext(
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""))
if err != nil {
panic(err)

defer driver.Close(ctx)

err = driver.VerifyConnectivity(ctx)
if err !'= nil {
panic(err)

3

fmt.Println("Connection established.")

An Aura instance is not conceptually different from any other Neo4j instance, as Aura is
(r) simply a deployment mode for Neo4j. When interacting with a Neo4j database through
- the driver, it doesn’t make a difference whether it is an Aura instance it is working with
or a different deployment.

Further connection parameters

For more DriverWithContext configuration parameters and further connection settings, see Advanced
connection information.

10

https://pkg.go.dev/github.com/joho/godotenv

Query the database

Once you have connected to the database, you can run queries using Cypher and the function

ExecuteQuery().
(r) ExecuteQuery() was introduced with the version 5.8 of the driver.
- For queries with earlier versions, use sessions and transactions.

Write to the database

To create a node representing a person named Alice, use the Cypher clause CREATE:

Create a node representing a person named Alice

result, err := neo4j.ExecuteQuery(ctx, driver,
"CREATE (p:Person {name: $name}) RETURN p", @
map[stringlany{ @
"name": "Alice",
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j")) @&

if err !'= nil {
panic(err)
3
summary := result.Summary @

fmt.Printf("Created %v nodes in %+v.\n",
summary .Counters().NodesCreated(),
summary.ResultAvailableAfter())

@ The Cypher query
@ A map of query parameters
3 Which database the query should be run against

@ The summary of execution returned by the server

Read from the database

To retrieve information from the database, use the Cypher clause MATCH:

11

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ExecuteQuery
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#create
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#match

Retrieve all Person nodes

result, err := neo4j.ExecuteQuery(ctx, driver,
"MATCH (p:Person) RETURN p.name AS name",
nil,

neo4j.EagerResultTransformer,

neo4j.ExecuteQueryWithDatabase("neo4j"))
if err != nil {

panic(err)

}

// Loop through results and do something with them
for _, record := range result.Records { @
name, _ := record.Get("name") // .Get() 2nd return is whether key is present
fmt.Println(name)
// or
// fmt.Println(record.AsMap()) // get Record as a map
3

// Summary information @

fmt.Printf("The query "%v' returned %v records in %+v.\n",
result.Summary.Query().Text(), len(result.Records),
result.Summary.ResultAvailableAfter())

@ result.Records contains the result as an array of Record objects

@ result.Summary contains the summary of execution returned by the server

When accessing a record’s content, all its properties are of type any. This means that
you have to cast them to the relevant Go type if you want to use methods/features
O defined on such types. For example, if the name property coming from the database is a
- string, record.AsMap()["name" 1[1] would result in an invalid operation error at
compilation time. For it to work, cast the value to string before using it as a string: name
:= record.AsMap()["name"]. (string) and then name[1].

Update the database

To update a node’s information in the database, use the Cypher clauses SET:

Update node Alice to add an age property

result, err := neo4j.ExecuteQuery(ctx, driver,
MATCH (p:Person {name: $name})
SET p.age = $age
*, map[stringJany{
"name": "Alice",
"age": 42,
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))
if err !'= nil {
panic(err)
3
fmt.Println("Query updated the database?",
result.Summary.Counters().ContainsUpdates())

To create a new relationship, linking it to two already existing node, use a combination of the Cypher
clauses MATCH and CREATE:

12

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#set

Create a relationship :KNOWS between Alice and Bob

result, err := neo4j.ExecuteQuery(ctx, driver, '
MATCH (alice:Person {name: $name}) @
MATCH (bob:Person {name: $friend}) @
CREATE (alice)-[:KNOWSI->(bob) ®

', map[stringlany{
"name": "Alice",
"friend": "Bob",

}, neo4j.EagerResultTransformer,

neo4j.ExecuteQueryWithDatabase("neo4j"))
if err !'= nil {

panic(err)

3
fmt.Println("Query updated the database?",
result.Summary.Counters().ContainsUpdates())

@ Retrieve the person node named Alice and bind it to a variable alice
@ Retrieve the person node named Bob and bind it to a variable bob

3 Create a new :KNOWS relationship outgoing from the node bound to alice and attach to it the Person

node named Bob

Delete from the database
To remove a node and any relationship attached to it, use the Cypher clause DETACH DELETE:

Remove the Alice node and all its relationships

// This does not delete _only_ p, but also all its relationships!
result, err := neo4j.ExecuteQuery(ctx, driver, '

MATCH (p:Person {name: $name})

DETACH DELETE p

', map[stringlany{

"name": "Alice",

}, neo4j.EagerResultTransformer,

neo4j.ExecuteQueryWithDatabase("neo4j"))
if err != nil {

panic(err)

}
fmt.Println("Query updated the database?",
result.Summary.Counters().ContainsUpdates())

Query parameters

Do not hardcode or concatenate parameters directly into queries. Instead, always use placeholders and
specify the Cypher parameters, as shown in the previous examples. This is for:

1. performance benefits: Neo4j compiles and caches queries, but can only do so if the query structure is

unchanged;

2. security reasons: see Protecting against Cypher Injection.

Query parameters should get grouped into a map and passed as second parameter to ExecuteQuery(). If a

query has no parameters, you can pass nil instead of an empty map.

13

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#delete
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#parameters
https://neo4j.com/developer/kb/protecting-against-cypher-injection/

parameters := map[stringJlany{
"name": "Alice",
"age": 42,

3

neo4j.ExecuteQuery(ctx, driver,
"MERGE (:Person {name: $name, age: $age})",
parameters,
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

There can be circumstances where your query structure prevents the usage of
o parameters in all its parts. For those rare use cases, see Dynamic values in property keys,
relationship types, and labels.

Query configuration

You can supply further configuration parameters to alter the default behavior of ExecuteQuery(). These are
provided as an arbitrary number of callbacks from the 4th function argument onward.

Database selection

It is recommended to always specify the database explicitly with the
neo4j.ExecuteQueryWithDatabase("<dbName>") callback, even on single-database instances. This allows
the driver to work more efficiently, as it saves a network round-trip to the server to resolve the home
database. If no database is given, the user’'s home database is used.

neo4j.ExecuteQuery(ctx, driver,
"MATCH (p:Person) RETURN p.name",
nil,
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

Specifying the database through the configuration method is preferred over the USE

Cypher clause. If the server runs on a cluster, queries with USE require server-side
@ routing to be enabled. Queries may also take longer to execute as they may not reach
the right cluster member at the first attempt, and need to be routed to one containing

the requested database.

Request routing

In a cluster environment, all queries are directed to the leader node by default. To improve performance on
read queries, you can use the callback neo4j.ExecuteQueryWithReadersRouting() to route a query to the

read nodes.

neo4j.ExecuteQuery(ctx, driver,
"MATCH (p:Person) RETURN p.name",
nil,
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"),
neo4j.ExecuteQueryWithReadersRouting())

14

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ExecuteQuery
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#manage-databases-default
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#use

Although executing a write query in read mode likely results in a runtime error, you
should not rely on this for access control. The difference between the two modes is that

o read transactions will be routed to any node of a cluster, whereas write ones will be
directed to the leader. In other words, there is no guarantee that a write query submitted
in read mode will be rejected.

Run gqueries as a different user

You can execute a query under the security context of a different user with the callback
neo4j.ExecuteQueryWithImpersonatedUser("<somebodyElse>"), specifying the name of the user to
impersonate. For this to work, the user under which the DriverWithContext object was created needs to

have the appropriate permissions. Impersonating a user is cheaper than creating a new DriverWithContext

object.

neo4j.ExecuteQuery(ctx, driver,
"MATCH (p:Person) RETURN p.name",
nil,
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"),
neo4j.ExecuteQueryWithImpersonatedUser("<somebodyElse>"))

When impersonating a user, the query is run within the complete security context of the impersonated
user and not the authenticated user (i.e. home database, permissions, etc.).

A full example

package main

import (
"fmt"
"context"
"github.com/neo4j/neo4j-go-driver/v5/neo4j"
)

func main() {
ctx := context.Background()

// Connection to database
dbUri := "<URI for Neo4j database>"
dbUser := "<Username>"
dbPassword := "<Password>"
driver, err := neo4j.NewDriverWithContext(
dburi,
neo4j.BasicAuth(dbUser, dbPassword, ""))
if err !'= nil {
panic(err)
3
defer driver.Close(ctx)
err = driver.VerifyConnectivity(ctx)
if err != nil {
panic(err)

}

// Prepare data
people := [Imap[stringlany {
"name": "Alice", "age": 42, "friends": [JIstring{"Bob", "Peter", "Anna"},},
"name": "Bob", "age": 19,3},
{"name": "Peter", "age": 50,3},
{"name": "Anna", "age": 30,3},

15

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#access-control-dbms-administration-impersonation

// Create some nodes
for _, person := range people {
_, err := neo4j.ExecuteQuery(ctx, driver,
"MERGE (p:Person {name: $person.name, age: $person.age})",
map[stringJlany{
"person": person,

}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

if err !'= nil {
panic(err)
3
3
// Create some relationships
for _, person := range people {
if person["friends"] !'= "" {
_, err := neo4j.ExecuteQuery(ctx, driver,

MATCH (p:Person {name: $person.name})

UNWIND $person.friends AS friend_name

MATCH (friend:Person {name: friend_name})

MERGE (p)-[:KNOWSJ->(friend)

', map[stringlany{

"person": person,

}, neo4j.EagerResultTransformer,

neo4j.ExecuteQueryWithDatabase("neo4j"))
if err != nil {

panic(err)

}

// Retrieve Alice's friends who are under 40

result, err := neo4j.ExecuteQuery(ctx, driver,
MATCH (p:Person {name: $name})-[:KNOWS]-(friend:Person)
WHERE friend.age < $age
RETURN friend

', map[stringlany{
"name": "Alice",
"age": 40,

}, neo4j.EagerResultTransformer,

neo4j.ExecuteQueryWithDatabase("neo4j"))
if err != nil {

panic(err)

// Loop through results and do something with them

for _, record := range result.Records {
person, _ := record.Get("friend")
fmt.Println(person)
// or

// fmt.Println(record.AsMap())
3

// Summary information

fmt.Printf("\nThe query ‘%v' returned %v records in %+v.\n",
result.Summary.Query().Text(), len(result.Records),
result.Summary.ResultAvailableAfter())

For more information see API documentation » ExecuteQuery().

16

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ExecuteQuery
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ExecuteQuery
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ExecuteQuery

=Advanced usage=

Run your own transactions

When querying the database with ExecuteQuery(), the driver automatically creates a transaction. A
transaction is a unit of work that is either committed in its entirety or rolled back on failure. You can include
multiple Cypher statements in a single query, as for example when using MATCH and CREATE in sequence to
update the database, but you cannot have multiple queries and interleave some client-logic in between
them.

For these more advanced use-cases, the driver provides functions to take full control over the transaction
lifecycle. These are called managed transactions, and you can think of them as a way of unwrapping the
flow of executableQuery() and being able to specify its desired behavior in more places.

Create a session

Before running a transaction, you need to obtain a session. Sessions act as concrete query channels
between the driver and the server, and ensure causal consistency is enforced.

Sessions are created with the method DriverWithContext.NewSession(). Use the second argument to alter
the session’s configuration, among which for example the target database. For further configuration
parameters, see Session configuration.

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)

Session creation is a lightweight operation, so sessions can be created and destroyed without significant
cost. Always close sessions when you are done with them.

Sessions are not thread safe: you can share the main DriverWithContext object across threads, but make
sure each routine creates its own sessions.

Run a managed transaction

A transaction can contain any number of queries. As Neo4j is ACID compliant, queries within a transaction
will either be executed as a whole or not at all: you cannot get a part of the transaction succeeding and
another failing. Use transactions to group together related queries which work together to achieve a single
logical database operation.

A managed transaction is created with the methods SessionWithContext.ExecuteRead() and
SessionWithContext.ExecuteWrite(), depending on whether you want to retrieve data from the database
or alter it. Both methods take a transaction function callback, which is responsible for actually carrying out
the queries and processing the result.

18

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#SessionWithContext
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#SessionWithContext

Retrieve people whose name starts with Al

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"}) @
defer session.Close(ctx)
people, err := session.ExecuteRead(ctx, @
func(tx neo4j.ManagedTransaction) (any, error) { ®
result, err := tx.Run(ctx, ' @
MATCH (p:Person) WHERE p.name STARTS WITH $filter
RETURN p.name AS name ORDER BY name
*, map[stringlany{
"filter": "ALl",
B
if err != nil {
return nil, err

3
records, err := result.Collect(ctx) ®
if err != nil {
return nil, err
3
return records, nil
B
for _, person := range people.([J*neo4j.Record) {

fmt.Println(person.AsMap())
3

@ Create a session. A single session can be the container for multiple queries. Remember to close it when
done (here we defer its closure just after opening).

@ The .ExecuteRead() (or .ExecuteWrite()) method is the entry point into a transaction.
® The transaction function callback is responsible of running queries.

@ Use the method ManagedTransaction.Run() to run queries. Each query run returns a ResultWithContext

object.

® Process the result using any of the methods on ResultWithContext. The method .Collect() retrieves

all records into a list.

Do not hardcode or concatenate parameters directly into the query. Use query parameters instead, both

for performance and security reasons.

Transaction functions should never return the result object directly. Instead, always process the result in
some way. Within a transaction function, a return statement where error is nil results in the transaction
being committed, while the transaction is automatically rolled back if the returned error value is not nil.

The methods .ExecuteRead() and .ExecuteWrite() have replaced .ReadTransaction()
é and .WriteTransaction(), which are deprecated in version 5.x and will be removed in

version 6.0.

A transaction with multiple queries, client logic, and potential roll backs

package main

import (
"fmt"
"context"
"strconv"
"errors"
"github.com/neo4j/neo4j-go-driver/v5/neo4j

)

func main() {
ctx := context.Background()
var employeeThreshold int64 = 10 // Neo4j's integer maps to Go's int64

19

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ManagedTransaction
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ResultWithContext

// Connection to database
dbUri := "<URI for Neo4j database>"
dbUser := "<Username>"
dbPassword := "<Password>"
driver, err := neo4j.NewDriverWithContext(
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""))
if err != nil {
panic(err)

defer driver.Close(ctx)
err = driver.VerifyConnectivity(ctx)

if err != nil {
panic(err)
session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})

defer session.Close(ctx)

// Create 100 people and assign them to various organizations
for i :=0; i < 100; i++ {
name := "Thor" + strconv.Itoa(i)
orgld, err := session.ExecuteWrite(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {
var orgld string

// Create new Person node with given name, if not exists already
_, err := tx.Run(

ctx,

"MERGE (p:Person {name: $name})",

map[stringJlany{

"name": name,

»
if err != nil {

return nil, err

3
// Obtain most recent organization ID and the number of people linked to it
result, err := tx.Run(

ctx, °

MATCH (o:Organization)
RETURN o.id AS id, COUNT{(p:Person)-[r:WORKS_FOR]->(0)} AS employeesN
ORDER BY o.createdDate DESC

LIMIT 1
', nil)
if err != nil {
return nil, err
3
org, err := result.Single(ctx)

// If no organization exists, create one and add Person to it
if org == nil {
orgld, _ = createOrganization(ctx, tx)
fmt.Println("No orgs available, created", orgId)
err = addPersonToOrganization(ctx, tx, name, orgId)
if err != nil {
return nil, errors.New("Failed to add person to new org")
// Transaction will roll back
// -> not even Person and/or Organization is created!
3
} else {
orgld = org.AsMap()["id"].(string)
if employeesN := org.AsMap()["employeesN"].(int64);
employeesN == 0 {
return nil, errors.New("Most recent organization is empty")
// Transaction will roll back
// -> not even Person is created!

}

// If org does not have too many employees, add this Person to it
if employeesN := org.AsMap()["employeesN"].(int64);
employeesN < employeeThreshold {
err = addPersonToOrganization(ctx, tx, name, orgId)
if err != nil {
return nil, err
// Transaction will roll back
// -> not even Person is created!

}

// Otherwise, create a new Organization and link Person to it

} else {
orgld, err = createOrganization(ctx, tx)
if err != nil {

return nil, err
// Transaction will roll back
// -> not even Person is created!
3
fmt.Println("Latest org is full, created", orgld)
err = addPersonToOrganization(ctx, tx, name, orgId)
if err != nil {
return nil, err
// Transaction will roll back
// -> not even Person and/or Organization is created!

3
3

// Return the Organization ID to which the new Person ends up in
return orgld, nil

»
if err != nil {
fmt.Println(err)
} else {
fmt.Println("User", name, "added to organization", orgId)
3
3
3
func createOrganization(ctx context.Context, tx neo4j.ManagedTransaction) (string, error) {
result, err := tx.Run(
ctx, °

CREATE (o:Organization {id: randomuuid(), createdDate: datetime()})
RETURN o.id AS id
" nil)
if err != nil {
return "", err
3
org, err := result.Single(ctx)
if err !'= nil {
return "", err
3
orgld, _ := org.AsMap()["id"]
return orgld.(string), err

}

func addPersonToOrganization(ctx context.Context, tx neo4j.ManagedTransaction, personName string, orgld

string) (error) {

err := tx.Run(

ctx,

MATCH (o:Organization {id: $orgId})

MATCH (p:Person {name: $name})

MERGE (p)-[:WORKS_FOR]->(0)

', map[stringlany{

"orgId": orgld,
"name": personName,

-

b

return err

Should a transaction fail for a reason that the driver deems transient, it automatically retries to run the
transaction function (with an exponentially increasing delay). For this reason, transaction functions must
be idempotent (i.e., they should produce the same effect when run several times), because you do not
know upfront how many times they are going to be executed. In practice, this means that you should not
edit nor rely on globals, for example. Note that although transactions functions might be executed multiple

times, the queries inside it will always run only once.

A session can chain multiple transactions, but only one single transaction can be active within a session at
any given time. To maintain multiple concurrent transactions, use multiple concurrent sessions.

21

Run an explicit transaction

You can achieve full control over transactions by manually beginning one with the method
SessionWithContext.BeginTransaction(). You run queries inside an explicit transaction with the method
ExplicitTransaction.Run().

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
tx, err := session.BeginTransaction(ctx)
if err != nil {
panic(err)
3
// use tx.Run() to run queries
// tx.Commit() to commit the transaction
// tx.Rollback() to rollback the transaction

An explicit transaction can be committed with ExplicitTransaction.Commit() or rolled back with
ExplicitTransaction.Rollback(). If no explicit action is taken, the driver automatically rolls back the
transaction at the end of its lifetime.

Explicit transactions are most useful for applications that need to distribute Cypher execution across
multiple functions for the same transaction, or for applications that need to run multiple queries within a
single transaction but without the automatic retries provided by managed transactions.

A sketch of an explicit transaction interacting with external APIs

package main

"context"
"github.com/neo4j/neo4j-go-driver/v5/neo4j"
)

func main() {
ctx := context.Background()

// Connection to database
dbUri := "<URI for Neo4j database>"
dbUser := "<Username>"
dbPassword := "<Password>"
driver, err := neo4j.NewDriverWithContext(
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""))
if err != nil {
panic(err)

defer driver.Close(ctx)
err = driver.VerifyConnectivity(ctx)
if err != nil {

panic(err)

customerId, err := createCustomer(ctx, driver)
if err !'= nil {
panic(err)
3
otherBankId := 42
transferToOtherBank(ctx, driver, customerId, otherBankId, 999)
}

func createCustomer(ctx context.Context, driver neo4j.DriverWithContext) (string, error) {
result, err := neo4j.ExecuteQuery(ctx, driver,
MERGE (c:Customer {id: randomUUID()})
RETURN c.id AS id
' onil,
neo4j.EagerResultTransformer,

22

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#SessionWithContext
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ExplicitTransaction
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ExplicitTransaction
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ExplicitTransaction

neo4j.ExecuteQueryWithDatabase("neo4j"))

if err !'= nil {
return "", err
3
customerId, _ := result.Records[0].Get("id")

return customerId.(string), err

}

func transferToOtherBank(ctx context.Context, driver neo4j.DriverWithContext, customerId string,
otherBankId int, amount float32) {

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
tx, err := session.BeginTransaction(ctx)
if err != nil {
panic(err)

if ! customerBalanceCheck(ctx, tx, customerId, amount) {
// give up
return

}

otherBankTransferApi(ctx, customerId, otherBankId, amount)
// Now the money has been transferred => can't rollback anymore
// (cannot rollback external services interactions)

err = decreaseCustomerBalance(ctx, tx, customerId, amount)
if err !'= nil {
requestInspection(ctx, customerId, otherBankId, amount, err)

3
err = tx.Commit(ctx)
if err != nil {
requestInspection(ctx, customerId, otherBankId, amount, err)
3

}

func customerBalanceCheck(ctx context.Context, tx neo4j.ExplicitTransaction, customerId string, amount
float32) (bool) {
result, err := tx.Run(ctx,
MATCH (c:Customer {id: $id})
RETURN c.balance >= $amount AS sufficient
', map[stringlany{
"id": customerld,
"amount": amount,

»
if err == nil {
return false
3
record, err := result.Single(ctx)
if err == nil {
return false
3
sufficient := record.AsMap()["sufficient"]

return sufficient.(bool)

}

func otherBankTransferApi(ctx context.Context, customerId string, otherBankId int, amount float32) {
// make some API call to other bank
3

func decreaseCustomerBalance(ctx context.Context, tx neo4j.ExplicitTransaction, customerId string, amount
float32) (error) {
_, err := tx.Run(ctx,
MATCH (c:Customer {id: $id})
SET c.balance = c.balance - $amount
', map[stringlany{
"id": customerld,
"amount": amount,
B
return err

3

func requestInspection(ctx context.Context, customerId string, otherBankId int, amount float32, err error)
{

// manual cleanup required; log this or similar

fmt.Println("WARNING: transaction rolled back due to exception:", err)

fmt.Println("customerId:", customerId, "otherBankId:", otherBankId, "amount:", amount)

23

Process query results

The driver’s output of a query is a ResultWithContext object, which does not directly contain the result
records. Rather, it encapsulates the Cypher result in a rich data structure that requires some parsing on the
client side. There are two main points to be aware of:

e The result records are not immediately and entirely fetched and returned by the server. Instead,
results come as a lazy stream. In particular, when the driver receives some records from the server,
they are initially buffered in a background queue. Records stay in the buffer until they are consumed by
the application, at which point they are removed from the buffer. When no more records are available,
the result is exhausted.

e The result acts as a cursor. This means that there is no way to retrieve a previous record from the
stream, unless you saved it in an auxiliary data structure.

The animation below follows the path of a single query: it shows how the driver works with result records
and how the application should handle results.

<video
class="rounded-corners"
controls
width="100%"
src="../../../common-content/5/_images/result.mp4"
poster="../../../common-content/5/_images/result-poster. jpg"
type="video/mp4"></video>

The easiest way of processing a result is by calling .Collect(ctx) on it, which yields an array of Record
objects. Otherwise, a Resul tWithContext object implements a number of methods for processing records.
The most commonly needed ones are listed below.

Name Description
Collect(ctx) ([J*Record, error) Return the remainder of the result as a list.
Single(ctx) (*Record, error) Return the next and only remaining record, or nil. Calling

this method always exhausts the result.

If more (or less) than one record is available, a non-nil
error is returned.

Record() *Record Return the current record.

Next(ctx) bool Return true if there is a record to be processed after the
current one. In that case, it also advances the result iterator.

Consume(ctx) (ResultSummary, error) Return the query result summary. It exhausts the result, so should only
be called when data processing is over.

For a complete list of ResultWithContext methods, see APl documentation » ResultWithContext.

24

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ResultWithContext
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/db#Record
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ResultWithContext
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ResultWithContext
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ResultWithContext

Session configuration

Database selection

It is recommended to always specify the database explicitly with the configuration parameter
DatabaseName upon session creation, even on single-database instances. This allows the driver to work
more efficiently, as it saves a network round-trip to the server to resolve the home database. If no
database is given, the default database set in the Neo4j instance settings is used.

session := driver.NewSession(ctx, neo4j.SessionConfig{
DatabaseName: "neo4j",

b

Specifying the database through the configuration method is preferred over the USE

Cypher clause. If the server runs on a cluster, queries with USE require server-side
O routing to be enabled. Queries may also take longer to execute as they may not reach
the right cluster member at the first attempt, and need to be routed to one containing
the requested database.

Request routing

In a cluster environment, all sessions are opened in write mode, routing them to the leader. You can
change this by explicitly setting the configuration parameter AccessMode to either neo4j.AccessModeRead or
neo4j.AccessModeWrite. Note that .ExecuteRead() and .ExecuteWrite() automatically override the

session’s default access mode.

session := driver.NewSession(ctx, neo4j.SessionConfig{
DatabaseName: "neo4j",
AccessMode: neo4j.AccessModeRead,

b

Although executing a write query in read mode likely results in a runtime error, you
should not rely on this for access control. The difference between the two modes is that
read transactions will be routed to any node of a cluster, whereas write ones will be

o directed to the leader. In other words, there is no guarantee that a write query submitted
in read mode will be rejected.

Similar remarks hold for the .ExecuteRead() and .ExecuteWrite() methods.

Run queries as a different user (impersonation)

You can execute a query under the security context of a different user with the configuration parameter
ImpersonatedUser, specifying the name of the user to impersonate. For this to work, the user under which
the DriverWithContext was created needs to have the appropriate permissions. Impersonating a user is

cheaper than creating a new DriverWithContext object.

25

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#manage-databases-default
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#use
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#access-control-dbms-administration-impersonation

session := driver.NewSession(ctx, neo4j.SessionConfig{
DatabaseName: "neo4j",
ImpersonatedUser: "<somebodyElse>",

b

When impersonating a user, the query is run within the complete security context of the impersonated
user and not the authenticated user (i.e. home database, permissions, etc.).

Transaction configuration

You can exert further control on transactions by providing configuration callbacks to .ExecuteRead(),
.ExecuteWrite(), and .BeginTransaction(). Use them to specify:

e A transaction timeout (in seconds). Transactions that run longer will be terminated by the server. The
default value is set on the server side. The minimum value is one millisecond.

e A map of metadata that gets attached to the transaction. These metadata get logged in the server
query.log, and are visible in the output of the SHOW TRANSACTIONS Cypher command. Use this to tag
transactions.

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
people, err := session.ExecuteRead(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {
result, _ := tx.Run(ctx, "MATCH (:Person) RETURN count(x) AS n", nil)

return result.Collect(ctx)

}’
neo4j.WithTxTimeout(5*time.Second), // remember to import 'time’
neo4j.WithTxMetadata(map[stringJlany{"appName": "peopleTracker"}))

Close sessions

Each connection pool has a finite number of sessions, so if you open sessions without ever closing them,
your application could run out of them. It is thus recommended to call session.Close() with the defer
keyword as soon as you create a new session, to be sure it will be closed in all cases. When a session is
closed, it is returned to the connection pool to be later reused.

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
// session usage

There are corner-cases in which session closure might return an error, so you may want to catch those
cases as well.

26

Explore the query execution summary

After all results coming from a query have been processed, the server ends the transaction by returning a
summary of execution. It comes as a ResultSummary object, and it contains information among which:

e Query counters — What changes the query triggered on the server
e Query execution plan — How the database would execute (or executed) the query
e Notifications — Extra information raised by the server while running the query

e Timing information and query request summary

Retrieve the execution summary

When running queries with ExecuteQuery (), the execution summary is part of the default return object,
under the Summary key.

result, _ := neo4j.ExecuteQuery(ctx, driver, '
UNWIND ["Alice", "Bob"] AS name
MERGE (p:Person {name: name})
Y, nil,
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))
summary := result.Summary

If you are using transaction functions, you can retrieve the query execution summary with the method
Result.Consume(). Notice that once you ask for the execution summary, the result stream is exhausted.
This means that any record which has not yet been processed is discarded.

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
summary, _ := session.ExecuteWrite(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {
result, err := tx.Run(ctx, °
UNWIND ["Alice", "Bob"] AS name
MERGE (p:Person {name: name})
Y, nil)
summary, _ := result.Consume(ctx)
return summary, err

b

Query counters

The method ResultSummary.Counters() returns counters for the operations that a query triggered (as a
Counters object).

27

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#ResultSummary
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#Counters

Insert some data and display the query counters

result, _ := neo4j.ExecuteQuery(ctx, driver, '
MERGE (p:Person {name: $name})
MERGE (p)-[:KNOWS]->(:Person {name: $friend})
', map[stringlany{
"name": "Mark",
"friend": "Bob",
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))
summary := result.Summary
counters := summary.Counters()
fmt.Println("Nodes created:", counters.NodesCreated())
fmt.Println("Labels added:", counters.LabelsAdded())
fmt.Println("Properties set:", counters.PropertiesSet())
fmt.Println("Relationships created:", counters.RelationshipsCreated())

// Nodes created: 2

// Labels added: 2

// Properties set: 2

// Relationships created: 1

There are two additional boolean methods which act as meta-counters:

e .ContainsUpdates() — whether the query triggered any write operation on the database on which it

ran

e .ContainsSystemUpdates() — whether the query updated the system database

Query execution plan

If you prefix a query with EXPLAIN, the server will return the plan it would use to run the query, but will not
actually run it. You can retrieve the plan by calling ResultSummary.Plan(), which contains the list of Cypher
operators that would be used to retrieve the result set. You may use this information to locate potential
bottlenecks or room for performance improvements (for example through the creation of indexes).

result, _ := neo4j.ExecuteQuery(ctx, driver,
"EXPLAIN MATCH (p {name: $name}) RETURN p",
map[stringJlany{
"name": "Alice",
}’
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))
fmt.Println(result.Summary.Plan().Arguments()["string-representation"])
/*
Planner COST
Runtime PIPELINED
Runtime version 5.0
Batch size 128

e LT e e e e Fommmm e e L E LT P T +
| Operator | Details | Estimated Rows | Pipeline

B e T e i R e R i T +
+ProduceResults	p	1]	
	e e +		
+Filter	p.name = $name	1	
] R e L e E LTt +			
+AllNodesScan	p	10	Fused in Pipeline 0
e LT e e e e Fommmm e e L E LT P T +

Total database accesses: ?
*/

If you instead prefix a query with the keyword PROFILE, the server will return the execution plan it has used

28

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#operators
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#operators

to run the query, together with profiler statistics. This includes the list of operators that were used and
additional profiling information about each intermediate step. You can access the plan by calling
ResultSummary.Profile(). Notice that the query is also run, so the result object also contains any result
records.

result, _ := neo4j.ExecuteQuery(ctx, driver,
"PROFILE MATCH (p {name: $name}) RETURN p",
map[stringJany{
"name": "Alice",
}7
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))
fmt.Println(result.Summary.Profile().Arguments()["string-representation"])
/*
Planner COST
Runtime PIPELINED
Runtime version 5.0
Batch size 128

e e T e e T R e T +------ e B T
e L L E TP e B e +

| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |

B e B Fom e e B Fommm e m o m

e e e T T +---m - - - e e +

| +ProduceResults | p | 1] 1 3

| | |

|] L T T e T +------ +---mm - L e e T +

| | |

| +Filter | p.name = $name | 1| 1 4 |

| | |

| | e R e L +------ e B e +

| | |

| +Al1NodesScan | p | 10 | 4 | 5 | 120 |

9160/0 | 108.923 | Fused in Pipeline 0 |

Fmmmmm e Fommmmmm e Fommmmmm e - Fommmm oo Fommmm e
B P B B T T +

Total database accesses: 12, total allocated memory: 184
*/

For more information and examples, see Basic query tuning.

Notifications

After executing a query, the server can return notifications alongside the query result. Notifications contain
recommendations for performance improvements, warnings about the usage of deprecated features, and
other hints about sub-optimal usage of Neo4,.

For driver version >= 5.25 and server version >= 5.23, two forms of notifications are
(r) available (Neo4j status codes and GQL status codes). For earlier versions, only Neo4;j
- status codes are available.

GQL status codes are planned to supersede Neo4j status codes.

Example 1. An unbounded shortest path raises a performance notification

Filter notifications

By default, the server analyses each query for all categories and severity of notifications. Starting from

29

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#_profile_query
https://neo4j.com/docs/pdf/neo4j-status-codes-current.pdf#notifications

version 5.7, you can use the parameters NotificationsMinSeverity and/or
NotificationsDisabledCategories/NotificationsDisabledClassifications to restrict the severity and/or
category/classification of notifications that you are interested into. There is a slight performance gain in
restricting the amount of notifications the server is allowed to raise.

The severity filter applies to both Neo4j and GQL notifications. Category and classification filters exist
separately only due to the discrepancy in lexicon between GQL and Neo4j; both filters affect either form of
notification though, so you should use only one of them. You can use any of those parameters either when
creating a Driver instance, or when creating a session.

You can disable notifications altogether by setting the minimum severity to "OFF".

Allow only Warning notifications, but not of Hint or Generic category

// import (

// "github.com/neo4j/neo4j-go-driver/v5/neo4j/notifications"
// "github.com/neo4j/neo4j-go-driver/v5/neo4j/config"

/1)

// At driver level
driverNot, _ := neo4j.NewDriverWithContext(
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""),
func (conf *config.Config) {
conf.NotificationsMinSeverity = notifications.WarninglLevel // or "OFF" to disable entirely
conf.NotificationsDisabledClassifications = notifications.DisableClassifications(notifications
.Hint, notifications.Generic) // filters categories as well

b

// At session level
sessionNot := driver.NewSession(ctx, neo4j.SessionConfig{
NotificationsMinSeverity: notifications.WarninglLevel, // or "OFF" to disable entirely
NotificationsDisabledClassifications: notifications.DisableClassifications(notifications.Hint,
notifications.Generic), // filters categories as well
DatabaseName: "neo4j", // always provide the database name

b

30

Coordinate parallel transactions

When working with a Neo4j cluster, causal consistency is enforced by default in most cases, which
guarantees that a query is able to read changes made by previous queries. The same does not happen by
default for multiple transactions running in parallel though. In that case, you can use bookmarks to have
one transaction wait for the result of another to be propagated across the cluster before running its own
work. This is not a requirement, and you should only use bookmarks if you need casual consistency
across different transactions, as waiting for bookmarks can have a negative performance impact.

A bookmark is a token that represents some state of the database. By passing one or multiple bookmarks
along with a query, the server will make sure that the query does not get executed before the represented
state(s) have been established.

Bookmarks with ExecuteQuery()

When querying the database with ExecuteQuery (), the driver manages bookmarks for you. In this case,
you have the guarantee that subsequent queries can read previous changes without taking further action.

neo4j.ExecuteQuery(ctx, driver, "<QUERY 1>", nil,
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

// subsequent ExecuteQuery calls will be causally chained

neo4j.ExecuteQuery(ctx, driver, "<QUERY 2>", nil, // can read result of <QUERY 1>
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

neo4j.ExecuteQuery(ctx, driver, "<QUERY 3>", nil, // can read result of <QUERY 2>
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

To disable bookmark management and causal consistency, use the configuration callback
neo4j.ExecuteQueryWithoutBookmarkManager() in ExecuteQuery() calls.

neo4j.ExecuteQuery(
ctx, driver, "<QUERY>", nil, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"),
neo4j.ExecuteQueryWithoutBookmarkManager())

Bookmarks within a single session

Bookmark management happens automatically for queries run within a single session, so that you can
trust that queries inside one session are causally chained.

31

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
session.ExecuteWrite(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {
return tx.Run(ctx, "<QUERY 1>", nil)
1))
session.ExecuteWrite(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {
return tx.Run(ctx, "<QUERY 2>", nil) // can read QUERY 1
»
session.ExecuteWrite(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {
return tx.Run(ctx, "<QUERY 3>", nil) // can read QUERY 1 and 2
»

Bookmarks across multiple sessions

If your application uses multiple sessions, you may need to ensure that one session has completed all its
transactions before another session is allowed to run its queries.

In the example below, sessionA and sessionB are allowed to run concurrently, while sessionC waits until
their results have been propagated. This guarantees the Person nodes sessionC wants to act on actually
exist.

Coordinate multiple sessions using bookmarks

package main

import (
"fmt"
"context"
"github.com/neo4j/neo4j-go-driver/v5/neo4j"
)

func main() {
ctx := context.Background()

// Connection to database
dbUri := "<URI for Neo4j database>"
dbUser := "<Username>"
dbPassword := "<Password>"
driver, err := neo4j.NewDriverWithContext(
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""))
if err !'= nil {
panic(err)
3
defer driver.Close(ctx)
err = driver.VerifyConnectivity(ctx)
if err != nil {
panic(err)

}

// Bookmarks holder
var savedBookmarks neo4j.Bookmarks

// All function calls below may return errors,
// we don't catch them here for simplicity.

// Create the first person and employment relationship

sessionA := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
createPerson(ctx, sessionA, "Alice")

employ(ctx, sessionA, "Alice", "Wayne Enterprises")

savedBookmarks = neo4j.CombineBookmarks(savedBookmarks, sessionA.LastBookmarks()) @
sessionA.Close(ctx)

// Create the second person and employment relationship
sessionB := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})

32

createPerson(ctx, sessionB, "Bob")

employ(ctx, sessionB, "Bob", "LexCorp")

savedBookmarks = neo4j.CombineBookmarks(savedBookmarks, sessionB.LastBookmarks()) @
sessionB.Close(ctx)

// Create a friendship between the two people created above
sessionC := driver.NewSession(ctx, neo4j.SessionConfig{
DatabaseName: "neo4j",
Bookmarks: savedBookmarks, @
1))
createFriendship(ctx, sessionC, "Alice", "Bob")
printFriendships(ctx, sessionC)

}

// Create a Person node
func createPerson(ctx context.Context, session neo4j.SessionWithContext, name string) (any, error) {
return session.ExecuteWrite(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {
return tx.Run(ctx,
"MERGE (:Person {name: $name})",
map[stringJany{"name": name})
»
3

// Create an employment relationship to a pre-existing company node
// This relies on the person first having been created
func employ(ctx context.Context, session neo4j.SessionWithContext, personName string, companyName string)
(any, error) {
return session.ExecuteWrite(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {
return session.Run(ctx,
MATCH (person:Person {name: $person_name})
MATCH (company:Company {name: $company_name})
MERGE (person)-[:WORKS_FOR]->(company)
*, map[stringlany{
"personName": personName,
"companyName": companyName,
1))
B
3

// Create a friendship between two people
func createFriendship(ctx context.Context, session neo4j.SessionWithContext, nameA string, nameB string)
(any, error) {
return session.ExecuteWrite(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {
return session.Run(ctx,
MATCH (a:Person {name: $nameA})
MATCH (b:Person {name: $nameB})
MERGE (a)-[:KNOWS1->(b)
', map[stringlany{
"nameA": nameA,
"nameB": nameB,
»
»
3

// Retrieve and display all friendships
func printFriendships(ctx context.Context, session neo4j.SessionWithContext) (any, error) {
return session.ExecuteRead(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {

result, err := session.Run(ctx,
"MATCH (a)-[:KNOWS]->(b) RETURN a.name, b.name",
nil)

if err != nil {
return nil, err
3

records, _ := result.Collect(ctx)

for _, record := range records {
nameA, _ := record.Get("a.name")
nameB, _ := record.Get("b.name")
fmt.Println(nameA, "knows", nameB)

}

return nil, nil

b

33

@ Collect and combine bookmarks from different sessions using SessionWithContext.LastBookmarks()
and neo4j.CombineBookmarks(), storing them in a Bookmarks object.

@ Use them to initialize another session with the Bookmarks config parameter.

Session A
I]:]] Bookmark automatically Last bookmark
Transaction passed within session Transaction from Session A
@ > o r——
Al A2 Session C
ﬂ]] Bookmark automatically
Transaction passed within session Transaction
Session B ¢ > c1 ® > Cc2
ﬂ]] Bookmark automatically
Transaction passed within session Transaction
® P> —
B1 B2
Last bookmark
from Session B

The use of bookmarks can negatively impact performance, since all queries are forced to

(;) wait for the latest changes to be propagated across the cluster. For simple use-cases, try

to group queries within a single transaction, or within a single session.

Mix ExecuteQuery() and sessions

To ensure causal consistency among transactions executed partly with ExecuteQuery () and partly with
sessions, you can use the parameter BookmarkManager upon session creation, setting it to
driver.ExecuteQueryBookmarkManager(). Since that is the default bookmark manager for ExecuteQuery ()
calls, this will ensure that all work is executed under the same bookmark manager and thus causally

consistent.

neo4j.ExecuteQuery(ctx, driver, "<QUERY 1>", nil,
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

session := driver.NewSession(ctx, neo4j.SessionConfig{

DatabaseName: "neo4j",

BookmarkManager: driver.ExecuteQueryBookmarkManager(),
»
// every query inside this session will be causally chained
// (i.e., can read what was written by <QUERY 1>)
session.ExecuteWrite(ctx,

func(tx neo4j.ManagedTransaction) (any, error) {

return tx.Run(ctx, "<QUERY 2>", nil)

»

session.Close(ctx)

// subsequent ExecuteQuery calls will be causally chained

// (i.e., can read what was written by <QUERY 2>)

neo4j.ExecuteQuery(ctx, driver, "<QUERY 3>", nil,
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

34

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#Bookmarks

Run concurrent transactions

You may leverage Goroutines and channels to run concurrent queries, or to delegate the processing of a
query’s result to multiple threads. The examples below also use the Go sync package to coordinate
different routines. If you are not familiar with concurrency in Go, checkout The Go Programming Language
2> Go Concurrency Patterns: Pipelines and cancellation.

If you need causal consistency across different transactions, use bookmarks.

Concurrent processing of a query result set (using sessions)

The following example shows how you can stream a query result to a channel, and have its records
concurrently processed by several consumers.

package main

import (
n fmt n
"context"
"time"
n SynC n
"github.com/neo4j/neo4j-go-driver/v5/neo4j"
)

func main() {
ctx := context.Background()

// Connection to database
dbUri := "<URI for Neo4j database>"
dbUser := "<Username>"
dbPassword := "<Password>"
driver, err := neo4j.NewDriverWithContext(
dburi,
neo4j.BasicAuth(dbUser, dbPassword, ""))
if err !'= nil {
panic(err)
3
defer driver.Close(ctx)
err = driver.VerifyConnectivity(ctx)
if err != nil {
panic(err)

}

// Run a query and get results in a channel
recordsC := queryToChannel(ctx, driver) @

// Spawn some consumers that will process records
// They communicate back on the log channel
// WaitGroup allows to keep track of progress and close channel when all are done
log := make(chan string) @
wg := &sync.WaitGroup{} ®
for i :=1; i <10; i++ { // i starts from 1 because 0th receiver would process too fast
wg.Add(1)
go consumer(wg, recordsC, log, i) ®
3
// When all consumers are done, close log channel
go func() {
wg.Wait()
close(log)
3O
// Print log as it comes
for v := range log {
fmt.Println(v)
}

35

https://go.dev/tour/concurrency/1
https://pkg.go.dev/sync
https://pkg.go.dev/sync
https://go.dev/blog/pipelines
https://go.dev/blog/pipelines
https://go.dev/blog/pipelines

func queryToChannel(ctx context.Context, driver neo4j.DriverWithContext) chan *neo4j.Record {
recordsC := make(chan *neo4j.Record, 10) @
session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
go session.ExecuteWrite(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {
// Neo4j query to create and retrieve some nodes
result, err := tx.Run(ctx,
UNWIND range(1,25) AS id
MERGE (p:Person {id: id})
RETURN p
', nil)
if err != nil {
panic(err)

// Stream results to channel as they come from the server
for result.Next(ctx) { ®
record := result.Record()
recordsC <- record
3
close(recordsC)
return nil, err

b

return recordsC

}

func consumer(wg *sync.WaitGroup, records <-chan *neo4j.Record, log chan string, n int) {
defer wg.Done() // will communicate that routine is done
for record := range records {
log <- fmt.Sprintf("Receiver %v processed %v", n, record)
time.Sleep(time.Duration(n) * time.Second) // proxy for a time-consuming processing

@ A Goroutine runs the query to the Neo4j server with a managed transaction. Notice that the driver
session is created inside the routine, as sessions are not thread-safe.

@ The channel recordsC is where the query result records get streamed to. The transaction function from
.ExecuteWrite() writes to it, and the various consumers read from it. It is buffered so that the driver
does not retrieve records faster than what the consumers can handle.

® Each result record coming from the server is sent over the recordsC channel. The streaming continues
so long as there are records to be processed, after which the channel gets closed and the routine exits.

@ The channel log is where the consumers comunicate on.

® A sync.WaitGroup is needed to know when all consumers are done, and thus the log channel can be

closed.

® A number of consumers get started in separate Goroutines. Each consumer reads and processes
records from the recordsC channel. Each consumer simulates a lengthy operation with a sleeping timer.

Concurrent run of multiple queries (using ExecuteQuery())

The following example shows how you can run multiple queries concurrently.

36

package main

import (
"fmt"
"context"
"sync"
"github.com/neo4j/neo4j-go-driver/v5/neo4j"
)

func main() {
ctx := context.Background()

// Connection to database
dbUri := "<URI for Neo4j database>"
dbUser := "<Username>"
dbPassword := "<Password>"
driver, err := neo4j.NewDriverWithContext(
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""))
if err !'= nil {
panic(err)

defer driver.Close(ctx)
err = driver.VerifyConnectivity(ctx)
if err != nil {

panic(err)

log := make(chan string) @
wg := &sync.WaitGroup{} @
// Spawn 10 concurrent queries
for i :=0; i <10; i++ {
wg.Add(1)
go runQuery(wg, ctx, driver, log) @

// Wait for all runner routines to be done before closing log
go func() {

wg.Wait()

close(log)
110)

// Print log
for msg := range log {
fmt.Println(msg)
3
3

// Run Neo4j query with random sleep time, returning the sleep time in ms

func runQuery(wg *sync.WaitGroup, ctx context.Context, driver neo4j.DriverWithContext, log chan string) {

defer wg.Done() // will communicate that routine is done

result, err := neo4j.ExecuteQuery(ctx, driver,
WITH round(rand()*2000) AS waitTime
CALL apoc.util.sleep(toInteger(waitTime)) RETURN waitTime AS time
*, nil, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

if err != nil {
log <- fmt.Sprintf("ERROR: %v", err)
} else {
neo, _ := result.Records[@].Get("time")

log <- fmt.Sprintf("Query returned %v", neo)

@ The log channel is where all query routine communicate to.

@ A sync.WaitGroup is needed to know when all query routines are done, and thus the log channel can be

closed.

3 Ten different queries are run, each in its own Go routine. They run independently and concurrently,

reporting to the shared log channel.

37

Further query mechanisms

Implicit (or auto-commit) transactions

This is the most basic and limited form with which to run a Cypher query. The driver will not automatically
retry implicit transactions, as it does instead for queries run with ExecuteQuery() and with managed
transactions. Implicit transactions should only be used when the other driver query interfaces do not fit the

purpose, or for quick prototyping.

You run an implicit transaction with the method SessionWithContext.Run(). It returns a ResultWithContext

object that needs to be processed accordingly.

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
result, err := session.Run(

ctx,

"CREATE (p:Person {name: $name}) RETURN p",

map[stringJlany{

"name": "Lucia",
»

An implicit transaction gets committed at the latest when the session is destroyed, or before another
transaction is executed within the same session. Other than that, there is no clear guarantee on when
exactly an implicit transaction will be committed during the lifetime of a session. To ensure an implicit
transaction is committed, you can call the .Consume(ctx) method on its result.

Since the driver cannot figure out whether the query in a SessionWithContext.Run() call requires a read or
write session with the database, it defaults to write. If your implicit transaction contains read queries only,
there is a performance gain in making the driver aware by setting the session config AccessMode:
neo4j.AccessModeRead when creating the session.

O Implicit transactions are the only ones that can be used for CALL { .. } IN
- TRANSACTIONS queries.

Import CSV files

The most common use case for using SessionWithContext.Run() is for importing large CSV files into the
database with the LOAD CSV Cypher clause, and preventing timeout errors due to the size of the

transaction.

38

https://neo4j.com/docs/pdf/neo4j-cypher-manual-5.pdf#subqueries_in_transactions
https://neo4j.com/docs/pdf/neo4j-cypher-manual-5.pdf#subqueries_in_transactions
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv

Import CSV data into a Neo4j database

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
result, err := session.Run(
ctx, °
LOAD CSV FROM 'https://data.neo4j.com/bands/artists.csv' AS line
CALL {
WITH line
MERGE (:Artist {name: line[1], age: toInteger(line[21)})
} IN TRANSACTIONS OF 2 ROWS
', nil)
summary, _ := result.Consume(ctx)
fmt.Println("Query updated the database?",
summary.Counters().ContainsUpdates())

While LOAD CSV can be a convenience, there is nothing wrong in deferring the parsing of
the CSV file to your Go application and avoiding LOAD CSV. In fact, moving the parsing

o logic to the application can give you more control over the importing process. For
efficient bulk data insertion, see Performance » Batch data creation.

For more information, see Cypher » Clauses » Load CSV.

Transaction configuration

You can exert further control on implicit transactions by providing configuration callbacks after the third
argument in SessionWithContext.Run() calls. The configuration callbacks allow to specify a query timeout
and to attach metadata to the transaction. For more information, see Transactions — Transaction
configuration.

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
people, err := session.Run(ctx,
"MATCH (:Person) RETURN count(*) AS n",
nil,
neo4j.WithTxTimeout(5*time.Second), // remember to import ' time’
neo4j.WithTxMetadata(map[stringJany{"appName": "peopleTracker"}))

Dynamic values in property keys, relationship types, and labels

In general, you should not concatenate parameters directly into a query, but rather use query parameters.
There can however be circumstances where your query structure prevents the usage of parameters in all
its parts. In fact, although parameters can be used for literals and expressions as well as node and
relationship ids, they cannot be used for the following constructs:

e property keys, so MATCH (n) WHERE n.$param = 'something' is invalid;

e relationship types, so MATCH (n)-[:$param]>(m) is invalid;

e labels, so MATCH (n:$param) is invalid.
For those queries, you are forced to use string concatenation. To protect against Cypher injections, you

should enclose the dynamic values in backticks and escape them yourself. Notice that Cypher processes
Unicode, so take care of the Unicode literal \u0060 as well.

39

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://neo4j.com/developer/kb/protecting-against-cypher-injection/

Manually escaping dynamic labels before concatenation

dangerouslLabel := "Person\\u0060n"
// convert \u@060 to literal backtick and then escape backticks
// remember to import ‘strings’

escapedLabel := strings.ReplaceAll(dangerouslLabel, "\\u0o60", "'")
escapedLabel = strings.ReplaceAll(escapedLabel, """, "' ")
result, err := neo4j.ExecuteQuery(ctx, driver,
"MATCH (p: " + escapedLabel + "' WHERE p.name = $name) RETURN p.name",
map[stringJlany{
"name": "Alice",
}’

neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

Another workaround, which avoids string concatenation, is using the APOC procedure apoc.merge.node. It
supports dynamic labels and property keys, but only for node merging.

Using apoc.merge.node to create a node with dynamic labels/property keys

propertyKey := "name"
label := "Person"

result, err := neo4j.ExecuteQuery(ctx, driver,

"CALL apoc.merge.node($labels, $properties)",
map[stringJlany{

"labels": [J]string{label},

"properties": map[stringJany{propertyKey: "Alice"},
}’
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

0 If you are running Neo4j in Docker, APOC needs to be enabled when starting the
container. See APOC -~ Installation » Docker.

Logging

The driver splits logging between driver events and Bolt events. To enable driver logging, use the
Config.Log option when instantiating the driver:

// import "github.com/neo4j/neo4j-go-driver/v5/neo4j/config"

driver, err := neo4j.NewDriverWithContext(
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""),
func(conf *config.Config) {

conf.Log = neo4j.ConsoleLogger(neo4j.DEBUG)
»

40

https://neo4j.com/docs/pdf/neo4j-apoc-current.pdf#apoc.merge.node
https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/apoc/current/installation/#docker
https://neo4j.com/docs/apoc/current/installation/#docker

Example of log output upon driver connection

2023-07-03 08:07:19.316 INFO [pool 1] Created

2023-07-03 08:07:19.316 INFO [router 1] Created {context: map[address:localhost:76871}
2023-07-03 08:07:19.316 INFO [driver 1] Created { target: localhost:7687 }

2023-07-03 08:07:19.316 DEBUG [session 2] Created

2023-07-03 08:07:19.316 INFO [router 1] Reading routing table from initial router: localhost:7687
2023-07-03 08:07:19.316 DEBUG [pool 1] Trying to borrow connection from [localhost:7687]
2023-07-03 08:07:19.316 INFO [pool 1] Connecting to localhost:7687

2023-07-03 08:07:19.320 INFO [bolt5 bolt-58@localhost:7687] Connected

2023-07-03 08:07:19.320 INFO [bolt5 bolt-58@localhost:7687] Retrieving routing table

2023-07-03 08:07:19.320 DEBUG [pool 1] Returning connection to localhost:7687 {alive:true}
2023-07-03 08:07:19.320 DEBUG [bolt5 bolt-58@localhost:7687] Resetting connection internal state
2023-07-03 08:07:19.320 DEBUG [router 1] New routing table for 'neo4j', TTL 300

2023-07-03 08:07:19.320 DEBUG [session 2] Resolved home database, uses db 'neo4j'

2023-07-03 08:07:19.320 DEBUG [pool 1] Trying to borrow connection from [localhost:7687]
2023-07-03 08:07:19.321 DEBUG [pool 1] Returning connection to localhost:7687 {alive:true}
2023-07-03 08:07:19.321 DEBUG [bolt5 bolt-58@localhost:7687] Resetting connection internal state
2023-07-03 08:07:19.321 DEBUG [router 1] Cleaning up

2023-07-03 08:07:19.321 DEBUG [session 2] Closed

Bolt logging can be enabled either:

e per-query, with the configuration callback neo4j.ExecuteQueryBoltLogger (). This applies to individual
queries run using ExecuteQuery ().

e per-session, with the configuration option BoltLogger. This applies to all queries within a session.

Enable logging for a query run with ExecuteQuery

result, err := neo4j.ExecuteQuery(ctx, driver,
"RETURN 42 AS n", nil, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"),
neo4j.ExecuteQueryWithBoltLogger(neo4j.ConsoleBoltLogger()))

Enable logging for a session

session := driver.NewSession(ctx, neo4j.SessionConfig{
DatabaseName: "neo4j",
BoltLogger: neo4j.ConsoleBoltLogger(),

»

defer session.Close(ctx)

session.Run(ctx, "RETURN 42 AS n", nil)

Example of Bolt logging output

2023-07-03 07:57:09.929 BOLT [bolt-53@localhost:7687]
2023-07-03 07:57:09.930 BOLT [bolt-53@localhost:7687]
2023-07-03 07:57:09.930 BOLT [bolt-53@localhost:7687]
2023-07-03 07:57:09.930 BOLT [bolt-53@localhost:7687]
2023-07-03 07:57:09.936 BOLT [bolt-53@localhost:7687]
2023-07-03 07:57:09.937 BOLT [bolt-53@localhost:7687]
2023-07-03 07:57:09.937 BOLT [bolt-53@localhost:7687]
2023-07-03 07:57:09.937 BOLT [bolt-53@localhost:7687]
2023-07-03 07:57:09.938 BOLT [bolt-53@localhost:7687]
{"bookmark" : "FB:kcwQhRyDJPONRxudy+QyzPSuSAaQ" }

BEGIN {"db":"neo4j"}

SUCCESS {3}

RUN "RETURN 42 AS n" null null

PULL {"n":1000}

SUCCESS {"fields":["n"],"t_first":5}
RECORD [42]

SUCCESS {"t_first":1,"db": "neo4j"}
COMMIT

SUCCESS

nNoOunmMmmooOomon

41

Performance recommendations

Always specify the target database

Specify the target database on all queries, either with the ExecuteQueryWithDatabase() configuration
callback in ExecuteQuery() or with the DatabaseName configuration parameter when creating new sessions.
If no database is provided, the driver has to send an extra request to the server to figure out what the
default database is. The overhead is minimal for a single query, but becomes significant over hundreds of

queries.

Good practices

result, err := neo4j.ExecuteQuery(ctx, driver, "<QUERY>", nil,
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

session := driver.NewSession(ctx, neo4j.SessionConfig{
DatabaseName: "neo4j",
»

Bad practices

result, err := neo4j.ExecuteQuery(ctx, driver, "<QUERY>", nil,
neo4j.EagerResultTransformer)

session := driver.NewSession(ctx, neo4j.SessionConfig{})

Be aware of the cost of transactions

When submitting queries through ExecuteQuery() or through .ExecuteRead/Write(), the server
automatically wraps them into a transaction. This behavior ensures that the database always ends up in a
consistent state, regardless of what happens during the execution of a transaction (power outages,
software crashes, etc).

Creating a safe execution context around a number of queries yields an overhead that is not present if the
driver just shoots queries at the server and hopes they will get through. The overhead is small, but can add
up as the number of queries increases. For this reason, if your use case values throughput more than data
integrity, you may extract further performance by running all queries within a single (auto-commit)
transaction. You do this by creating a session and using Session.Run() to run as many queries as needed.

Privilege throughput over data integrity

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
for i := 0; i < 10000; i++ {

session.Run(ctx, "<QUERY>", nil)

}

42

Privilege data integrity over throughput

for i :=0; i < 10000; i++ {
neo4j.ExecuteQuery(ctx, driver, "<QUERY>", nil, neo4j.EagerResultTransformer)
// or session.executeRead/Write() calls

Don’t fetch large result sets all at once

When submitting queries that may result in a lot of records, don’t retrieve them all at once. The Neo4;j
server can retrieve records in batches and stream the to the driver as they become available. Lazy-loading
a result spreads out network traffic and memory usage.

For convenience, .ExecuteQuery() always retrieves all result records at once (it is what the Eager in
EagerResult stands for). To lazy-load a result, you have to use .ExecuteRead/Write() (or other forms of
manually-handled transactions) and not call .Collect(ctx) on the result; iterate on it instead.

43

Example 2. Comparison between eager and lazy loading

Eager loading Lazy loading
e The server has to read all 250 records from e The server reads the first record and sends it
the storage before it can send even the first to the driver.

one to the driver (i.e. it takes more time for .
e The application can process records as soon

the client to receive the first record). as the first record is transferred

* Before any record is available to the e Waiting time and resource consumption for

application, the driver has to receive all 250 the remaining records is deferred to when

records. .
the application requests more records.

* The client has to hold in memory all 250 e The server's fetch time can be used for client-

records. . .
side processing.

¢ Resource consumption is bounded by the
driver’s fetch size.

Time and memory comparison between eager and lazy loading

package main

import (
"context"
"time"
"fmt"
"github.com/neo4j/neo4j-go-driver/v5/neo4j"
)

// Returns 250 records, each with properties

// - ‘output' (an expensive computation, to slow down retrieval)

// - ‘dummyData' (a list of 10000 ints, about 8 KB).

var slowQuery = °

UNWIND range(1, 250) AS s

RETURN reduce(s=s, x in range(1,1000000) | s + sin(toFloat(x))+cos(toFloat(x))) AS output,
range(1, 10000) AS dummyData

// Delay for each processed record
var sleepTime = "0.5s"

func main() {

ctx := context.Background()

dbUri := "<URI for Neo4j database>"

dbUser := "<Username>"

dbPassword := "<Password>"

driver, err := neo4j.NewDriverWithContext(
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""))

if err != nil {
panic(err)

3

defer driver.Close(ctx)
err = driver.VerifyConnectivity(ctx)

if err != nil {
panic(err)

log("LAZY LOADING (executeRead)")
lazyloading(ctx, driver)

log("EAGER LOADING (executeQuery)")
eagerLoading(ctx, driver)

44

func lazyloading(ctx context.Context, driver neo4j.DriverWithContext) {
defer timer("lazylLoading")()

sleepTimeParsed, err := time.ParseDuration(sleepTime)
if err != nil {
panic(err)
session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})

defer session.Close(ctx)
session.ExecuteRead(ctx,
func(tx neo4j.ManagedTransaction) (any, error) {
log("Submit query")

result, err := tx.Run(ctx, slowQuery, nil)
if err != nil {
return nil, err
3
for result.Next(ctx) != false {
record := result.Record()
output, _ := record.Get("output")
log(fmt.Sprintf("Processing record %v", output))
time.Sleep(sleepTimeParsed) // proxy for some expensive operation
3

return nil, nil
»
3

func eagerLoading(ctx context.Context, driver neo4j.DriverWithContext) {
defer timer("eagerLoading")()

log("Submit query")
result, err := neo4j.ExecuteQuery(ctx, driver,
slowQuery,
nil,
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))
if err != nil {
panic(err)

sleepTimeParsed, err := time.ParseDuration(sleepTime)
if err != nil {
panic(err)

3

// Loop through results and do something with them

for _, record := range result.Records {
output, _ := record.Get("output")
log(fmt.Sprintf("Processing record %v", output))
time.Sleep(sleepTimeParsed) // proxy for some expensive operation

3

func log(msg string) {
fmt.Println("[", time.Now().Unix(), "1 ", msg)
3

func timer(name string) func() {
start := time.Now()
return func() {
fmt.Printf("-- %s took %v --\n\n", name, time.Since(start))

}

45

R

Output

[1718802595
[1718802595
[1718802595
[1718802595
[1718802596

LAZY LOADING (executeRead)

Submit query

Processing record 0.5309371354666308
Processing record 1.5309371354662915
Processing record 2.5309371354663197

S Ty T Ny |

[1718802720 1 Processing record 249.53093713547042
-- lazylLoading took 2m5.467064085s --

[1718802720] EAGER LOADING (executeQuery)

[1718802720] Submit query

[1718802744 1 Processing record 0.5309371354666308 @
[1718802744 1 Processing record 1.5309371354662915

[1718802745 1 Processing record 2.5309371354663197

[1718802869 1 Processing record 249.53093713547042
-- eagerlLoading took 2m29.113482541s --

@ With lazy loading, the first record is quickly available.

@ With eager loading, the first record is available ~25 seconds after the query has been submitted
(i.e. after the server has retrieved all 250 records).

® The total running time is lower with lazy loading, because while the client processes records the
server can fetch the next ones. With lazy loading, the client could also stop requesting records
after some condition is met (by calling . Consume(ctx) on the Result), saving time and resources.

The driver’s fetch size affects the behavior of lazy loading. It instructs the server to
stream an amount of records equal to the fetch size, and then wait until the client has
caught up before retrieving and sending more.

The fetch size allows to bound memory consumption on the client side. It doesn’t always

(r) bound memory consumption on the server side though: that depends on the query. For
example, a query with ORDER BY requires the whole result set to be loaded into memory
for sorting, before records can be streamed to the client.

The lower the fetch size, the more messages client and server have to exchange.
Especially if the server’s latency is high, a low fetch size may deteriorate performance.

oute read queries to cluster readers

In a cluster, route read queries to secondary nodes. You do this by:

e using the ExecuteQueryWithReadersRouting() configuration callback in ExecuteQuery() calls

e using ExecuteRead() instead of ExecuteWrite() (for managed transactions)

e setting AccessMode: neo4j.AccessModeRead when creating a new session (for explicit transactions).

Good practices

46

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#SessionConfig
https://neo4j.com/docs/cypher-manual/current/clauses/order-by/
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#clustering-secondary-mode

result, err := neo4j.ExecuteQuery(ctx, driver,
"MATCH (p:Person) RETURN p", nil, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"),
neo4j.ExecuteQueryWithReadersRouting())

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
result, err := session.ExecuteRead(ctx,

func(tx neo4j.ManagedTransaction) (any, error) {
return tx.Run(ctx, "MATCH (p:Person) RETURN p", nil)
B

Bad practices

result, err := neo4j.ExecuteQuery(ctx, driver,
"MATCH (p:Person) RETURN p", nil, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))
// defaults to routing = writers

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
result, err := session.ExecuteWrite(ctx, // don't ask to write on a read-only operation

func(tx neo4j.ManagedTransaction) (any, error) {
return tx.Run(ctx, "MATCH (p:Person) RETURN p", nil)
»

Create indexes

Create indexes for properties that you often filter against. For example, if you often look up Person nodes
by the name property, it is beneficial to create an index on Person.name. You can create indexes with the
CREATE INDEX Cypher clause, for both nodes and relationships.

// Create an index on Person.name

neo4j.ExecuteQuery(ctx, driver,
"CREATE INDEX personName FOR (n:Person) ON (n.name)",
nil, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

For more information, see Indexes for search performance.

Profile queries

Profile your queries to locate queries whose performance can be improved. You can profile queries by
prepending them with PROFILE. The server output is available through the .Profile() method on the

ResultSummary object.

47

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#indexes_for_search_performance
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#_profile_query

result, _ := neo4j.ExecuteQuery(ctx, driver,
"PROFILE MATCH (p {name: $name}) RETURN p",
map[stringJlany{
"name": "Alice",
}’
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))
fmt.Println(result.Summary.Profile().Arguments()["string-representation"])
/*
Planner COST
Runtime PIPELINED
Runtime version 5.0
Batch size 128

B e B B i B B Fommm e m e m o m
B e e B B e T T +

| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |

B T e T +------ Fommm - e e

B e LT R B T +

| +ProduceResults | p | 1| 1| 3|

| | |

| | e B +o--——- B B +

| | |

| +Filter | p.name = $name | 1| 1| 4 |

| | |

| | B e e T +------ e B et +

| | |

| +AllNodesScan | p | 10 | 4 | 5 | 120 |

9160/0 | 108.923 | Fused in Pipeline 0 |

Fommm - et e e T +------ et B
e B e P T +

Total database accesses: 12, total allocated memory: 184
*/

In case some queries are so slow that you are unable to even run them in reasonable times, you can
prepend them with EXPLAIN instead of PROFILE. This will return the plan that the server would use to run
the query, but without executing it. The server output is available through the .P1an() method on the
ResultSummary object.

result, _ := neo4j.ExecuteQuery(ctx, driver,
"EXPLAIN MATCH (p {name: $name}) RETURN p",
map[stringJany{
"name": "Alice",
})
neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))
fmt.Println(result.Summary.Plan().Arguments()["string-representation"])
/*
Planner COST
Runtime PIPELINED
Runtime version 5.0
Batch size 128

B e B B i B ettt +
| Operator | Details | Estimated Rows | Pipeline

B e T Y e Tt Fommm - B e +
| +ProduceResults | p | 1| |
| Fommm e T + |
+Filter	p.name = $name	1]	
	e e LT e L L L +		
+AllNodesScan	p	10	Fused in Pipeline 0
B e B B i B ettt +

Total database accesses: ?
*/

48

Specify node labels

Specify node labels in all queries. This allows the query planner to work much more efficiently, and to
leverage indexes where available. To learn how to combine labels, see Cypher » Label expressions.

Good practices

result, err := neo4j.ExecuteQuery(ctx, driver,
"MATCH (p:Person|Animal {name: $name}) RETURN p",
map[stringJlany{
"name": "Alice",
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
result, err := session.Run(ctx,
"MATCH (p:Person|Animal {name: $name}) RETURN p",
map[stringJlany{
"name": "Alice",
»

Bad practices

result, err := neo4j.ExecuteQuery(ctx, driver,
"MATCH (p {name: $name}) RETURN p",
map[stringJlany{
"name": "Alice",
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})
defer session.Close(ctx)
result, err := session.Run(ctx,
"MATCH (p {name: $name}) RETURN p",
map[stringJlany{
"name": "Alice",

b

Batch data creation

Batch queries when creating a lot of records using the UNWIND Cypher clauses.

Good practice

numbers := make([Jint, 10000)
for i := range numbers { numbers[i] =i }
neo4j.ExecuteQuery(ctx, driver,

WITH $numbers AS batch

UNWIND batch AS value

MERGE (n:Number)

SET n.value = value

', map[stringlany{

"numbers": numbers,
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#query-syntax-label
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#query-syntax-label
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#query-syntax-label
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#unwind

Bad practice

for i :=0; i < 10000; i++ {
neo4j.ExecuteQuery(ctx, driver,
"MERGE (:Number {value: $value})",
map[stringJlany{
"value": i,
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

(r') The most efficient way of performing a first import of large amounts of data into a new
- database is the neo4j-admin database import command.

Use query parameters

Always use query parameters instead of hardcoding or concatenating values into queries. Besides
protecting from Cypher injections, this allows to leverage the database query cache.

Good practices

result, err := neo4j.ExecuteQuery(ctx, driver,
"MATCH (p:Person {name: $name}) RETURN p",
map[stringJlany{
"name": "Alice",
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})

defer session.Close(ctx)

session.Run(ctx, "MATCH (p:Person {name: $name}) RETURN p", map[stringJany{
"name": "Alice",

b

Bad practices

result, err := neo4j.ExecuteQuery(ctx, driver,
"MATCH (p:Person {name: 'Alice'}) RETURN p",
// or "MATCH (p:Person {name: '" + name + "'}) RETURN p"
nil, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

session := driver.NewSession(ctx, neo4j.SessionConfig{DatabaseName: "neo4j"})

defer session.Close(ctx)
session.Run(ctx, "MATCH (p:Person {name: $name}) RETURN p", nil)
// or "MATCH (p:Person {name: '" + name + "'}) RETURN p"

Concurrency

Use concurrency patterns. This is likely to be more impactful on performance if you parallelize complex
and time-consuming queries in your application, but not so much if you run many simple ones.

50

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#neo4j_admin_import

Use MERGE for creation only when needed
The Cypher clause MERGE is convenient for data creation, as it allows to avoid duplicate data when an exact
clone of the given pattern exists. However, it requires the database to run two queries: it first needs to

CREATE it (if needed).

If you know already that the data you are inserting is new, avoid using MERGE and use CREATE directly
instead — this practically halves the number of database queries.

Filter notifications

Filter the category and/or severity of notifications the server should raise.

51

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#merge
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#create

=Reference=

52

Advanced connection information

Connection URI

The driver supports connection to URIs of the form

<SCHEME>: //<HOST>[: <PORT>[?policy=<POLICY-NAME>]]

<SCHEME> is one among neo4j, neo4j+s, neo4j+ssc, bolt, bolt+s, bolt+ssc.

<HOST> is the host name where the Neo4j server is located.

<PORT> is optional, and denotes the port the Bolt protocol is available at.

<POLICY-NAME> is an optional server policy name. Server policies need to be set up prior to usage.

o The driver does not support connection to a nested path, such as example.com/neo4j/.
The server must be reachable from the domain root.

Connection protocols and security

Communication between the driver and the server is mediated by Bolt. The scheme of the server URI
determines whether the connection is encrypted and, if so, what type of certificates are accepted.

URL scheme Encryption Comment

neo4;j X Default for local setups
neo4j+s Vv (only CA-signed certificates) Default for Aura
neo4j+ssc v (CA- and self-signed certificates)

The driver receives a routing table from the server upon successful connection,
regardless of whether the instance is a proper cluster environment or a single-machine
(r') environment. The driver’s routing behavior works in tandem with Neo4j’s clustering by
v directing read/write transactions to appropriate cluster members. If you want to target a

specific machine, use the bolt, bolt+s, or bolt+ssc URI schemes instead.
The connection scheme to use is not your choice, but is rather determined by the server requirements. You

must know the right server scheme upfront, as no metadata is exposed prior to connection. If you are
unsure, ask the database administrator.

Authentication methods

Basic authentication

The basic authentication scheme relies on traditional username and password. These can either be the
credentials for your local installation, or the ones provided with an Aura instance.

53

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#multi_data_center_routing
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#clustering

driver, err := neo4j.NewDriverWithContext(
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""))

The basic authentication scheme can also be used to authenticate against an LDAP server (Enterprise
Edition only).

Kerberos authentication

The Kerberos authentication scheme requires a base64-encoded ticket. It can only be used if the server
has the Kerberos Add-on installed.

1 driver, err := neo4j.NewDriverWithContext(dbUri, neo4j.KerberosAuth(ticket))

Bearer authentication

The bearer authentication scheme requires a base64-encoded token provided by an Identity Provider
through Neo4j’s Single Sign-On feature.

1 driver, err := neo4j.NewDriverWithContext(dbUri, neo4j.BearerAuth(token))
o The bearer authentication scheme requires configuring Single Sign-On on the server.
Once configured, clients can discover Neo4j's configuration through the Discovery API.

Custom authentication

Use the function CustomAuth to log into a server having a custom authentication scheme.
No authentication
Use the function NoAuth to access a server where authentication is disabled.

1 driver, err := neo4j.NewDriverWithContext(dbUri, neo4j.NoAuth())

Custom address resolver

When creating a DriverWithContext object, you can specify a resolver function to resolve the connection
address the driver is initialized with. Note that addresses that the driver receives in routing tables are not
resolved with the custom resolver. Your resolver function is called with a ServerAddress object and should
return a list of ServerAddress objects.

54

https://neo4j.com/docs/pdf/neo4j-kerberos-add-on-current.pdf#deployment
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#sso_integration
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#sso_integration
https://neo4j.com/docs/http-api/current/endpoints/#discovery-api
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#CustomAuth
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#NoAuth
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/config#ServerAddress
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/config#ServerAddress

Connection to example.com on port 9999 is resolved to localhost on port 7687

// import "github.com/neo4j/neo4j-go-driver/v5/neo4j/config"

driver, err := neo4j.NewDriverWithContext(
"neo4j://example.com:9999", neo4j.BasicAuth(dbUser, dbPassword, ""),
func(conf *config.Config) {
conf.AddressResolver = func(address config.ServerAddress) [Jconfig.ServerAddress {
return [Jconfig.ServerAddress{
neo4j.NewServerAddress("localhost", "7687"),
3
3
B

defer driver.Close(ctx)

Further connection parameters

You can find all DriverWithContext configuration parameters in the APl documentation » config package.

55

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/config#Config
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/config#Config
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/config#Config

Data types and mapping to Cypher types

The tables in this section show the mapping between Cypher data types and Go types.

When accessing a record’s content, all its properties are of type any. This means that
you have to cast them to the relevant Go type if you want to use methods/features
@ defined on such types. For example, if the name property coming from the database is a
- string, record.AsMap()["name" 1[1] would result in an invalid operation error at
compilation time. For it to work, cast the value to string before using it as a string: name
:= record.AsMap()["name"]. (string) and then name[11.

Core types

Cypher Type Go Type

NULL nil

LIST [Jany

MAP map[stringlany
BOOLEAN bool

INTEGER int64

FLOAT float64

STRING string
ByteArray [Jbyte

Temporal types

The driver provides a set of temporal data types compliant with ISO-8601 and Cypher. Sub-second values
are measured to nanosecond precision.

The driver’s types rely on Go’s time types. All temporal types, except neo4j.Duration, are in fact time.Date
objects under the hood. This means that:

e if you want to query the database with a temporal type, instantiate a time.Date object and use it as
query parameter (i.e. you don’t need to care about driver’s types)

e if you retrieve a temporal object that you had previously inserted starting from a time.Date object, you
will get back a time.Date object (i.e. you don’t need to care about driver’s types)

¢ if you receive a temporal object using one of Cypher temporal functions, you will get back the
corresponding driver type as displayed in the table below. You may then use .Time() on them to
convert them into Go time.Date objects.

Cypher Type Go Type
DATE neo4j.Date
ZONED TIME neo4j.0ffsetTime

56

https://pkg.go.dev/time
https://neo4j.com/docs/cypher-manual/current/functions/temporal/

Cypher Type Go Type

LOCAL TIME neo4j.LocalTime
ZONED DATETIME neo4j.Time

LOCAL DATETIME neo4j.LocalDateTime
DURATION neo4j.Duration

Using temporal types in queries

package main

import (
"Emtn
"context"
"time"
"github.com/neo4j/neo4j-go-driver/v5/neo4j"
"reflect"

)

func main() {
ctx := context.Background()

// Connection to database

dbUri := "<URI for Neo4j database>"

dbUser := "<Username>"

dbPassword := "<Password>"

driver, _ := neo4j.NewDriverWithContext(
dbUri,

neo4j.BasicAuth(dbUser, dbPassword, ""))
driver.VerifyConnectivity(ctx)

// Define a date, with timezone
location, _ := time.lLoadLocation("Europe/Stockholm")
friendsSince := time.Date(2006, time.December, 16, 13, 59, 59, 999999999, location)

result, err := neo4j.ExecuteQuery(ctx, driver,
MERGE (a:Person {name: $name})
MERGE (b:Person {name: $friend})
MERGE (a)-[friendship:KNOWS {since: $friendsSince}]1->(b)
RETURN friendship.since AS date
*, map[stringlany{
"name": "Alice",
"friend": "Bob",
"friendsSince": friendsSince,
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

if err != nil {
panic(err)
date, _ := result.Records[0].Get("date")

fmt.Println(reflect.TypeOf(date)) // time.Time
fmt.Println(date) // 2006-12-16 13:59:59.999999999 +0200 EET

Using driver’s temporal types

package main

import (
n fmt n
"context"
"time"
"github.com/neo4j/neo4j-go-driver/v5/neo4j"
"reflect"

)

func main() {
ctx := context.Background()

// Connection to database

dbUri := "<URI for Neo4j database>"

dbUser := "<Username>"

dbPassword := "<Password>"

driver, _ := neo4j.NewDriverWithContext(
dbUri,
neo4j.BasicAuth(dbUser, dbPassword, ""))

driver.VerifyConnectivity(ctx)

// Query and return a neo4j.Time object
result, err := neo4j.ExecuteQuery(ctx, driver,
MERGE (a:Person {name: $name})
MERGE (b:Person {name: $friend})
MERGE (a)-[friendship:KNOWS {since: time()}1->(b)
RETURN friendship.since AS time
', map[stringlany{
"name": "Alice",
"friend": "Sofia",
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

if err !'= nil {
panic(err)
3
time, _ := result.Records[0].Get("time")

fmt.Println(reflect.TypeOf(time)) // time.Time

castDate, _ := time.(neo4j.Time) // cast from ‘any' to 'neo4j.Time’
fmt.Println(castDate.Time()) // -0001-11-30 12:18:08.973 +0000 Offset
3
Duration

Represents the difference between two points in time.

duration := neo4j.Duration{
Months: 1,
Days: 2,
Seconds: 3,
Nanos: 4,
3

fmt.Println(duration) // 'P1Y2DT3.000000004S"
For full documentation, see APl documentation » Duration.

Spatial types

Cypher supports spatial values (points), and Neo4j can store these point values as properties on nodes and
relationships.

The object attribute SpatialRefId (short for Spatial Reference Identifier) is a number identifying the
coordinate system the spatial type is to be interpreted in. You can think of it as a unique identifier for each

58

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/dbtype#Duration
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/dbtype#Duration
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/dbtype#Duration
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#spatial

spatial type.

Cypher Type

POINT (2D Cartesian)
POINT (2D WGS-84)
POINT (3D Cartesian)

POINT (3D WGS-84)

Go Type

neo4j.Point2D
neo4j.Point2D
neo4j.Point3D

neo4j.Point3D

SpatialRefld
7203
4326
9157

4979

Spatial types are implemented in the dbtype package, so that the actual types are

dbtype.Point2D/3D. However, they are also imported in the main neo4j package, so that

they can also be used as neo4j.Point2D/3D.

Point2D

The type Point2D can be used to represent either a 2D Cartesian point or a 2D World Geodetic System

(WGS84) point, depending on the value of SpatialRefId.

// A 2D Cartesian Point

cartesian2d := neo4j.Point2D{
X: 1.23,
Y: 4.56,

SpatialRefId: 7203,
3
fmt.Println(cartesian2d)

// Point{srId=7203, x=1.230000, y=4.560000}

// A 2D WGS84 Point

wgs842d := neo4j.Point2D{
X: 1.23,
Y: 4.56,
SpatialRefId: 9157,

3

fmt.Println(wgs842d)

// Point{srId=9157, x=1.230000, y=4.560000}

Point3D

The type Point3D can be used to represent either a 3D Cartesian point or a 3D World Geodetic System

(WGS84) point, depending on the value of SpatialRefId.

59

// A 3D Cartesian Point

cartesian3d := neo4j.Point3D{
X: 1.23,
Y: 4.56,
728 7.89,

SpatialRefId: 9157,
3
fmt.Println(cartesian3d)
// Point{srId=9157, x=1.230000, y=4.560000, z=7.890000}

// A 3D WGS84 Point

wgs843d := neo4j.Point3D{
X: 1.23,
e 4.56,
Z: 7.89,

SpatialRefId: 4979,
3
fmt.Println(wgs843d)
// Point{srId=4979, x=1.230000, y=4.560000, z=7.890000}

Graph types

Graph types are only returned as query results and may not be used as parameters.

Cypher Type Python Type

NODE dbtype.Node
RELATIONSHIP dbtype.Relationship
PATH dbtype.Path

Node

Represents a node in a graph.

The property ElementId contains the database internal identifier for the entity. This should be used with

care, as no guarantees are given about the mapping between id values and elements outside the scope of

a single transaction. In other words, using an ElementId to MATCH an element across different transactions

is risky.

result, err := neo4j.ExecuteQuery(ctx, driver,
MERGE (p:Person {name: $name}) RETURN p AS person, p.name as name
*, map[stringJany{
"name": "Alice",
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))

if err !'= nil {
panic(err)
node, _ := result.Records[0].AsMap()["person"].(neo4j.Node)

fmt.Println("Node ID:", node.ElementId)
fmt.Println("Node labels:", node.Labels)
fmt.Println("Node properties:", node.Props)

// Node ID: 4:2691aa68-87cc-467d-9d09-431df9f5c456:0
// Node labels: [Person]
// Node properties: map[name:Alice]

For full documentation, see APl documentation » Node.

60

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/dbtype#Node
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/dbtype#Node
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/dbtype#Node

Relationship

Represents a relationship in a graph.
The property ElementId contains the database internal identifier for the entity. This should be used with

care, as no guarantees are given about the mapping between id values and elements outside the scope of

a single transaction.

result, err := neo4j.ExecuteQuery(ctx, driver,
MERGE (p:Person {name: $name})
MERGE (p)-L[r:KNOWS {status: $status, since: date()}]->(friend:Person {name: $friendName})
RETURN r AS friendship
', map[stringlany{
"name": "Alice",
"status": "BFF",
"friendName": "Bob",
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))
if err != nil {
panic(err)

relationship, _ := result.Records[0].AsMap()["friendship"].(neo4j.Relationship)
fmt.Println("Relationship ID:", relationship.ElementId)
fmt.Println("Relationship type:", relationship.Type)

fmt.Println("Relationship properties:", relationship.Props)
fmt.Println("Relationship start elID:", relationship.StartElementId)
fmt.Println("Relationship end elID:", relationship.EndElementId)

// Relationship ID: 5:2691aa68-87cc-467d-9d09-431df9f5c456:0
// Relationship type: KNOWS
// Relationship properties: map[since:{0 63824025600 <nil>} status:BFF]

// Relationship start elID: 4:2691aa68-87cc-467d-9d09-431df9f5c456:0
// Relationship end elID: 4:2691aa68-87cc-467d-9d09-431df9f5c456:1

For full documentation, see AP| documentation » Relationship.

Path

Represents a path in a graph.

61

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/dbtype#Relationship
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/dbtype#Relationship
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/dbtype#Relationship

Example of path creation, retrieval, and processing

package main

import (
n f‘mt n
"context"

"github.com/neo4j/neo4j-go-driver/v5/neo4j"
)

func main() {
ctx := context.Background()

// Connection to database

dbUri := "<URI for Neo4j database>"

dbUser := "<Username>"

dbPassword := "<Password>"

driver, _ := neo4j.NewDriverWithContext(
dbUri,

neo4j.BasicAuth(dbUser, dbPassword, ""))
driver.VerifyConnectivity(ctx)

// Create some :Person nodes linked by :KNOWS relationships
addFriend(ctx, driver, "Alice", "BFF", "Bob")
addFriend(ctx, driver, "Bob", "Fiends", "Sofia")
addFriend(ctx, driver, "Sofia", "Acquaintances", "Sofia")

// Follow :KNOWS relationships outgoing from Alice three times, return as path
result, err := neo4j.ExecuteQuery(ctx, driver,
MATCH path=(:Person {name: $name})-[:KNOWS*3]->(:Person)
RETURN path AS friendshipChain
', map[stringlany{
"name": "Alice",
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))
if err !'= nil {
panic(err)
3
path := result.Records[0].AsMap()["friendshipChain"].(neo4j.Path)

fmt.Println("-- Path breakdown --")
for i := range path.Relationships {
name := path.Nodes[i].Props["name"]
status := path.Relationships[i].Props["status"]
friendName := path.Nodes[i+1].Props["name"]
fmt.Printf("%s is friends with %s (%s)\n", name, friendName, status)

}

func addFriend(ctx context.Context, driver neo4j.DriverWithContext, name string, status string, friendName
string) {
_, err := neo4j.ExecuteQuery(ctx, driver,
MERGE (p:Person {name: $name})
MERGE (p)-[r:KNOWS {status: $status, since: date()}]1->(friend:Person {name: $friendName})
*, map[stringlany{
"name": name,
"status": status,
"friendName": friendName,
}, neo4j.EagerResultTransformer,
neo4j.ExecuteQueryWithDatabase("neo4j"))
if err != nil {
panic(err)

}

For full documentation, see APl documentation » Path.

Exceptions

For the most part, the driver simply forwards any error the server may raise. For a list of errors the server
can return, see the Status code page.

62

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/dbtype#Path
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/dbtype#Path
https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j/dbtype#Path
https://neo4j.com/docs/pdf/neo4j-status-codes-5.pdf

Some server errors are marked as safe to retry without need to alter the original request. Examples of such
errors are deadlocks, memory issues, or connectivity issues. When an error is raised, the function
neo4j.IsRetryable(error) gives insights into whether a further attempt might be successful. This is
particular useful when running queries in explicit transactions, to know if a failed query should be run
again. Note that managed transactions already implement a retry mechanism, so you don’t need to
implement your own.

63

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j#IsRetryable

APl documentation

https://pkg.go.dev/github.com/neo4j/neo4j-go-driver/v5/neo4j

=GraphAcademy courses=

Graph Data Modeling
Fundamentals

https://graphacademy.neo4j.com/courses/modeling-fundamentals/?ref=docs-go
https://graphacademy.neo4j.com/courses/modeling-fundamentals/?ref=docs-go

Intermediate Cypher Queries

https://graphacademy.neo4j.com/courses/cypher-intermediate-queries/?ref=docs-go

Building Neo4) Applications
with Go

https://graphacademy.neo4j.com/courses/app-go/?ref=docs-go
https://graphacademy.neo4j.com/courses/app-go/?ref=docs-go

License

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

You are free to
Share

copy and redistribute the material in any medium or format

Adapt

remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial

You may not use the material for commercial purposes.

ShareAlike

If you remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

Notices

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for further details. The full license text is available
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

69

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

	The Neo4j Go Driver Manual v5.0
	Table of Contents
	Quickstart
	Installation
	Connect to the database
	Query the database
	Run your own transactions
	Close connections and sessions
	API documentation

	Glossary
	=Basic workflow=
	Installation
	Install the driver
	Get a Neo4j instance

	Connection
	Connect to the database
	Connect to an Aura instance
	Further connection parameters

	Query the database
	Write to the database
	Read from the database
	Update the database
	Delete from the database
	Query parameters
	Query configuration
	A full example

	=Advanced usage=
	Run your own transactions
	Create a session
	Run a managed transaction
	Run an explicit transaction
	Process query results
	Session configuration
	Transaction configuration
	Close sessions

	Explore the query execution summary
	Retrieve the execution summary
	Query counters
	Query execution plan
	Notifications

	Coordinate parallel transactions
	Bookmarks with ExecuteQuery()
	Bookmarks within a single session
	Bookmarks across multiple sessions
	Mix ExecuteQuery() and sessions

	Run concurrent transactions
	Concurrent processing of a query result set (using sessions)
	Concurrent run of multiple queries (using ExecuteQuery())

	Further query mechanisms
	Implicit (or auto-commit) transactions
	Dynamic values in property keys, relationship types, and labels
	Logging

	Performance recommendations
	Always specify the target database
	Be aware of the cost of transactions
	Don’t fetch large result sets all at once
	Route read queries to cluster readers
	Create indexes
	Profile queries
	Specify node labels
	Batch data creation
	Use query parameters
	Concurrency
	Use MERGE for creation only when needed
	Filter notifications

	=Reference=
	Advanced connection information
	Connection URI
	Connection protocols and security
	Authentication methods
	Custom address resolver
	Further connection parameters

	Data types and mapping to Cypher types
	Core types
	Temporal types
	Spatial types
	Graph types
	Exceptions

	API documentation
	=GraphAcademy courses=
	Graph Data Modeling Fundamentals
	Intermediate Cypher Queries
	Building Neo4j Applications with Go

