
The Neo4j Drivers Manual v1.7
for Java

Table of Contents
Get started . 2

About the official drivers . 2

Driver versions and installation . 2

A "Hello World" example . 4

Driver API docs . 5

Client applications . 6

The driver object . 6

Connection URIs, encryption and trust. 7

Authentication. 14

Configuration. 16

Service unavailable. 18

Sessions and transactions. 19

Sessions . 19

Transactions . 19

Causal chaining. 22

Access modes . 26

Asynchronous programming . 27

Working with Cypher values . 31

The Cypher type system . 31

Statement results . 33

Statement result summaries . 36

Appendix A: Driver terminology. 37

Copyright © 2022 Neo4j, Inc.

License: Creative Commons 4.0

This is the driver manual for Neo4j official drivers version 1.7, and the Go driver version 1.8,

authored by the Neo4j Team.

This manual covers the following areas:

• Get started — An overview of the official Neo4j drivers and how to connect to a Neo4j database.

• Client applications — How to manage database connections within an application.

• Sessions and transactions — How to create units of work and provide a logical context for that work.

• Working with Cypher values — How the types and values used by Cypher map to native language
types.

• Driver terminology — Terminology for drivers.

Who should read this?

This manual is written for the developer of a Neo4j client application.

1

Get started
This section gives an overview of the official Neo4j drivers and how to connect to a Neo4j

database with a "Hello World" example.

About the official drivers
Neo4j provides official drivers for many popular programming languages. These drivers are supported by
Neo4j and come with full cluster routing support.

Community drivers also exist for many languages, but vary greatly in terms of feature sets, maturity, and
support. To find out more about community drivers, visit https://neo4j.com/developer/language-guides/.

The following languages and frameworks are officially supported by Neo4j:

Table 1. Supported languages and frameworks for the 1.x driver series

Language/framework Versions supported

Java Java 8+ (latest patch releases).

Python CPython 2.7, 3.4, 3.5, 3.6 and 3.7 (latest patch releases).

Note that Python 2 support is deprecated and will be
discontinued in the 2.x series drivers.

JavaScript All LTS versions of Node.JS, specifically the 4.x and 6.x series
runtimes (https://github.com/nodejs/LTS).

.NET .NET standard 1.3 (https://github.com/dotnet/standard/blob/
master/docs/versions.md) and .NET 4.5.2 and above.

Go Go 1.10+

The driver API is intended to be topologically agnostic. This means that the underlying database
topology — single instance, Causal Cluster, etc. — can be altered without requiring a corresponding
alteration to application code. In the general case, only the connection URI needs to be modified when
changes are made to the topology.


The official drivers do not support HTTP communication. If you need an HTTP driver,
choose one of the community drivers. See also the HTTP API documentation.

Driver versions and installation
The driver major.minor version number describes the feature set available within that driver. Across
languages, drivers are generally released at similar times, although patches are driver-dependent. The 1.x
series drivers have been built for Neo4j 3.x.

2

https://neo4j.com/developer/language-guides/
https://github.com/nodejs/LTS
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://neo4j.com/docs/pdf/neo4j-http-api-3.5.pdf#http-api



Drivers 1.7 do not support multiple databases and Neo4j Fabric, features introduced in
Neo4j 4.0. To be able to run multiple databases online concurrently and to do distributed
queries over them, you must upgrade to Drivers 4.0. For information, see Upgrade and
Migration Guide → Drivers changes.

 The Go 1.8 driver does support multiple databases.

It is recommended to always use the latest driver release available. This will ensure that all server
functionality is made available to client applications. To install a driver or to find out more about which
driver versions are available, use the relevant language distribution system, described below.

3

https://neo4j.com/docs/upgrade-migration-guide/current/migration/drivers/drivers-changes/
https://neo4j.com/docs/upgrade-migration-guide/current/migration/drivers/drivers-changes/
https://neo4j.com/docs/upgrade-migration-guide/current/migration/drivers/drivers-changes/
https://neo4j.com/docs/upgrade-migration-guide/current/migration/drivers/drivers-changes/

Example 3. Acquire the driver

To find out the latest version of the driver, visit the maven repository.

Example 1. Install the Java driver using Maven

When using Maven, add the following block to your pom.xml file. Note the placeholder for
the driver version. You will have to find out the exact patch version that you wish to install.

<dependencies>
 <dependency>
 <groupId>org.neo4j.driver</groupId>
 <artifactId>neo4j-java-driver</artifactId>
 <version>$JAVA_DRIVER_VERSION</version>
 </dependency>
</dependencies>

In the following example we are adding driver version 1.7.5.

<dependencies>
 <dependency>
 <groupId>org.neo4j.driver</groupId>
 <artifactId>neo4j-java-driver</artifactId>
 <version>1.7.5</version>
 </dependency>
</dependencies>

Example 2. Add the dependency for the Java driver for Gradle or Grails

For Gradle or Grails, this is how to add the dependency. Again, note the placeholder for the
driver version. You will have to find out the exact patch version that you wish to install.

compile 'org.neo4j.driver:neo4j-java-driver:$JAVA_DRIVER_VERSION'

In the following example we are adding driver version 1.7.5.

compile 'org.neo4j.driver:neo4j-java-driver:1.7.5'

You can review the release notes for this driver here.

A "Hello World" example
The example below shows the minimal configuration necessary to interact with Neo4j through a driver.

4

https://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j.driver%22%20AND%20a%3A%22neo4j-java-driver%22
https://github.com/neo4j/neo4j-java-driver/releases

Example 4. Hello World

public class HelloWorldExample implements AutoCloseable
{
 private final Driver driver;

 public HelloWorldExample(String uri, String user, String password)
 {
 driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password));
 }

 @Override
 public void close() throws Exception
 {
 driver.close();
 }

 public void printGreeting(final String message)
 {
 try (Session session = driver.session())
 {
 String greeting = session.writeTransaction(new TransactionWork<String>()
 {
 @Override
 public String execute(Transaction tx)
 {
 StatementResult result = tx.run("CREATE (a:Greeting) " +
 "SET a.message = $message " +
 "RETURN a.message + ', from node ' +
id(a)",
 parameters("message", message));
 return result.single().get(0).asString();
 }
 });
 System.out.println(greeting);
 }
 }

 public static void main(String... args) throws Exception
 {
 try (HelloWorldExample greeter = new HelloWorldExample("bolt://localhost:7687",
"neo4j", "password"))
 {
 greeter.printGreeting("hello, world");
 }
 }
}

Driver API docs
For a comprehensive listing of all driver functionality, refer to the API documentation for the specific driver
language.

Example 5. API docs

https://neo4j.com/docs/api/java-driver/1.7/

5

https://neo4j.com/docs/api/java-driver/1.7/

Client applications
This section describes how to manage database connections within an application.

This section contains the following:

• The driver object

• Connection URIs, encryption and trust

◦ Connection URIs

◦ Encryption

◦ Trust

◦ Examples

• Authentication

◦ Basic authentication

◦ Kerberos authentication

◦ Custom authentication

• Configuration

◦ Connection pool management

◦ Connection timeout

◦ Max retry time

• Service unavailable

The driver object
A Neo4j client application will require a driver instance in order to provide access to the database. This
driver should be made available to all parts of the application that need to interact with Neo4j. In
languages where thread safety is an issue, the driver can be considered thread-safe.



A note on lifecycle

Applications will typically construct a driver instance on startup and destroy it on exit.
Destroying a driver instance will immediately shut down any connections previously
opened via that driver; for drivers that contain a connection pool, the entire pool will be
shut down.

To construct a driver instance, a connection URI and authentication information must be supplied.
Additional configuration details can be supplied if required. All of these details are immutable for the
lifetime of the driver. Therefore, if multiple configurations are required (such as when working with
multiple database users) then multiple driver instances must be used.

An example of driver construction and destruction can be seen below:

6

Example 6. The driver lifecycle

public class DriverLifecycleExample implements AutoCloseable
{
 private final Driver driver;

 public DriverLifecycleExample(String uri, String user, String password)
 {
 driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password));
 }

 @Override
 public void close() throws Exception
 {
 driver.close();
 }
}

Connection URIs, encryption and trust
A connection URI identifies a graph database and how to connect to it. The encryption and trust settings
provide detail to how that connection should be secured.

Connection URIs

The official Neo4j drivers currently support the following URI schemes and driver object types:

Table 2. Available URI schemes

URI Scheme Driver object type

bolt Direct driver

bolt+routing Routing driver

Direct drivers (bolt)

A direct driver is created via a bolt URI, for example: bolt://localhost:7687. This kind of driver is used to
maintain connections to a single database server and is typically used when working with a single Neo4j
instance or when targeting a specific member of a cluster. Note that a routing driver is generally preferable
when working with a Causal Cluster.

Routing drivers (bolt+routing)

A routing driver is created via a bolt+routing URI, for example: bolt+routing://graph.example.com:7687.
The address in the URI must be that of a Core Server. This kind of driver uses the Bolt Routing Protocol
and works in tandem with the cluster to route transactions to available cluster members.

Routing drivers with routing context

Routing drivers with routing context are an available option when using drivers of version 1.3 or above

7

together with a Neo4j Causal Cluster of version 3.2 or above. In such a setup, a routing driver can include a
preferred routing context via the query part of the bolt+routing URI.

In the standard Neo4j configuration, routing contexts are defined on the server side by means of server
policies. Thus the driver communicates the routing context to the cluster in the form of a server policy. It
then obtains refined routing information back from the cluster, based on the server policy.

The address in the URI of a routing driver with routing context must be that of a Core Server.

Example 7. Configure a routing driver with routing context

This example will assume that Neo4j has been configured for server policies as described in Neo4j
Operations Manual → Load balancing for multi-data center systems. In particular, a server policy called
europe has been defined. Additionally, we have a server neo01.graph.example.com to which we wish
to direct the driver.

This URI will use the server policy europe:

bolt+routing://neo01.graph.example.com?policy=europe



Server-side configuration to enable Routing drivers with routing context

A prerequisite for using a Routing driver with routing context is that the Neo4j database
is operated on a Causal Cluster with the Multi-data center licensing option enabled.
Additionally, the routing contexts must be defined within the cluster as routing policies.
For details on how to configure multi-data center routing policies for a Causal Cluster,
please refer to Operations Manual → Causal Clustering.

Cluster bootstrap address resolution

Drivers have the ability to intercept cluster bootstrap address resolution. This is generally performed by a
routing driver on construction or after complete contact has been lost with a cluster. This hook can be
useful to augment regular DNS resolution and can be used to initialize a routing driver with multiple server
addresses.

The intercept hook is provided as a driver configuration option and takes the form of a callback function
that accepts a single input address and yields or returns multiple output addresses. This function may hard
code the output addresses or may draw them from another configuration source, as required. Output
addresses can contain host names or IP addresses and are forwarded to the connection pool as initial
routers.

8

https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf

Figure 1. Cluster bootstrap address resolution

The example below shows how to expand a single address into multiple (hard coded) output addresses:

Example 8. Custom Address Resolver

private Driver createDriver(String virtualUri, String user, String password, ServerAddress...
addresses)
{
 Config config = Config.builder()
 .withResolver(address -> new HashSet<>(Arrays.asList(addresses)))
 .build();

 return GraphDatabase.driver(virtualUri, AuthTokens.basic(user, password), config);
}

private void addPerson(String name)
{
 String username = "neo4j";
 String password = "some password";

 try (Driver driver = createDriver("bolt+routing://x.acme.com", username, password,
ServerAddress.of("a.acme.com", 7676),
 ServerAddress.of("b.acme.com", 8787), ServerAddress.of("c.acme.com", 9898)))
 {
 try (Session session = driver.session(AccessMode.WRITE))
 {
 session.run("CREATE (a:Person {name: $name})", parameters("name", name));
 }
 }
}

Encryption

TLS encryption is enabled for all connections by default. This can be disabled through configuration as
follows:

9

Example 9. Unencrypted

public ConfigUnencryptedExample(String uri, String user, String password)
{
 Config config = Config.builder()
 .withoutEncryption()
 .build();

 driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password), config);
}

The server can be modified to require encryption for all connections. Please see the Operations Manual →
Configure Neo4j connectors for more information.

An attempt to connect to a server using an encryption setting not allowed by that server will result in a
Service unavailable status.

Trust

During a TLS handshake, the server provides a certificate to the client application. The application can
choose to accept or reject this certificate based on one of the following trust strategies:

Table 3. Trust strategies

Trust strategy Description

TRUST_ALL_CERTIFICATES (default) Accept any certificate provided by the server, regardless of
CA chain.

TRUST_CUSTOM_CA_SIGNED_CERTIFICATES Accept any certificate that can be verified against a custom
CA.

TRUST_SYSTEM_CA_SIGNED_CERTIFICATES Accept any certificate that can be verified against the system
store.

Server Name Indication (SNI) is enabled by default, allowing proxy middleware to route encrypted Bolt
connections to the correct backend server.

Example 10. Trust

public ConfigTrustExample(String uri, String user, String password)
{
 Config config = Config.builder()
 .withTrustStrategy(Config.TrustStrategy.trustAllCertificates())
 .build();

 driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password), config);
}

10

https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://en.wikipedia.org/wiki/Server_Name_Indication

Examples

The table below provides example code snippets for different deployment configurations. Each snippet
expects an auth variable to have been previously defined, containing the authentication details for that
connection.

11

Example 11. Connecting to a service

12

The table below illustrates examples of how to connect to a service with routing.

Product Security Code snippet Comments

Neo4j Aura Secured with full
certificate

String uri =
"bolt+routing://gra
ph.example.com:7687
";
Config config =
Config.build()

.withTrustStrategy(
trustSystemCertific
ates())

.build();

This is the default (and
only option) for Neo4j
Aura

Neo4j 4.x Unsecured String uri =
"bolt+routing://gra
ph.example.com:7687
";
Config config =
Config.build()

.withoutEncryption(
)

.build();

GraphDatabase.drive
r(uri, auth,
config);

This is the default for
Neo4j 4.x series

Neo4j 4.x Secured with full
certificate

String uri =
"bolt+routing://gra
ph.example.com:7687
";
Config config =
Config.build()

.withTrustStrategy(
trustSystemCertific
ates())

.build();

Neo4j 4.x Secured with self-
signed certificate

GraphDatabase.drive
r("bolt+routing://g
raph.example.com:76
87", auth)

13

Product Security Code snippet Comments

Neo4j 3.x Secured with full
certificate

String uri =
"bolt+routing://gra
ph.example.com:7687
";
Config config =
Config.build()

.withTrustStrategy(
trustSystemCertific
ates())

.build();

Neo4j 3.x Secured with self-
signed certificate

GraphDatabase.drive
r("bolt+routing://g
raph.example.com:76
87", auth)

This is the default for
Neo4j 3.x series

Neo4j 3.x Unsecured String uri =
"bolt+routing://gra
ph.example.com:7687
";
Config config =
Config.build()

.withoutEncryption(
)

.build();

GraphDatabase.drive
r(uri, auth,
config);


To connect to a service without routing, you can replace bolt+routing with
bolt.

Authentication
Authentication details are provided as an auth token which contains the user names, passwords or other
credentials required to access the database. Neo4j supports multiple authentication standards but uses
basic authentication by default.

Basic authentication

The basic authentication scheme is backed by a password file stored within the server and requires
applications to provide a user name and password. For this, use the basic auth helper:

14

Example 12. Basic authentication

public BasicAuthExample(String uri, String user, String password)
{
 driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password));
}


The basic authentication scheme can also be used to authenticate against an LDAP
server.

Kerberos authentication

The Kerberos authentication scheme provides a simple way to create a Kerberos authentication token with
a base64 encoded server authentication ticket. The best way to create a Kerberos authentication token is
shown below:

Example 13. Kerberos authentication

public KerberosAuthExample(String uri, String ticket)
{
 driver = GraphDatabase.driver(uri, AuthTokens.kerberos(ticket));
}


The Kerberos authentication token can only be understood by the server if the server has
the Kerberos Add-on installed.

Custom authentication

For advanced deployments, where a custom security provider has been built, the custom authentication
helper can be used.

Example 14. Custom authentication

public CustomAuthExample(String uri, String principal, String credentials, String realm, String
scheme,
 Map<String,Object> parameters)
{
 driver = GraphDatabase.driver(uri, AuthTokens.custom(principal, credentials, realm,
scheme, parameters));
}

15

https://neo4j.com/docs/kerberos-add-on/null

Configuration

Connection pool management

The driver maintains a pool of connections. The pooled connections are reused by sessions and
transactions to avoid the overhead added by establishing new connections for every query. The
connection pool always starts up empty. New connections are created on demand by sessions and
transactions. When a session or a transaction is done with its execution, the connection will be returned to
the pool to be reused.

Application users can tune connection pool settings to configure the driver for different use cases based on
client performance requirements and database resource consumption limits.

Detailed descriptions of connection pool settings available via driver configuration are listed below:

MaxConnectionLifetime

Pooled connections older than this threshold will be closed and removed from the pool. The actual
removal happens during connection acquisition so that the new session returned is never backed by an
old connection. Setting this option to a low value will cause a high connection churn, and can result in a
performance drop. It is recommended to pick a value smaller than the maximum lifetime exposed by the
surrounding system infrastructure (such as operating system, router, load balancer, proxy and firewall).
Negative values result in lifetime not being checked.

Default value: 1h.

MaxConnectionPoolSize

This setting defines the maximum total number of connections allowed, per host, to be managed by the
connection pool. In other words, for a direct driver, this sets the maximum number of connections
towards a single database server. For a routing driver this sets the maximum amount of connections
per cluster member. If a session or transaction tries to acquire a connection at a time when the pool size
is at its full capacity, it must wait until a free connection is available in the pool or the request to acquire
a new connection times out. The connection acquiring timeout is configured via
ConnectionAcquisitionTimeout.

Default value: This is different for different drivers, but is a number in the order of 100.

ConnectionAcquisitionTimeout

This setting limits the amount of time a session or transaction can spend waiting for a free connection
to appear in the pool before throwing an exception. The exception thrown in this case is
ClientException. Timeout only applies when connection pool is at its max capacity.

Default value: 1m.

16

Example 15. Connection pool management

public ConfigConnectionPoolExample(String uri, String user, String password)
{
 Config config = Config.builder()
 .withMaxConnectionLifetime(30, TimeUnit.MINUTES)
 .withMaxConnectionPoolSize(50)
 .withConnectionAcquisitionTimeout(2, TimeUnit.MINUTES)
 .build();

 driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password), config);
}

Connection timeout

To configure the maximum time allowed to establish a connection, pass a duration value to the driver
configuration. For example:

Example 16. Connection timeout

public ConfigConnectionTimeoutExample(String uri, String user, String password)
{
 Config config = Config.builder()
 .withConnectionTimeout(15, SECONDS)
 .build();

 driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password), config);
}

Max retry time

To configure retry behavior, supply a value for the maximum time in which to keep attempting retries of
transaction functions. For example:

Example 17. Max retry time

public ConfigMaxRetryTimeExample(String uri, String user, String password)
{
 Config config = Config.builder()
 .withMaxTransactionRetryTime(15, SECONDS)
 .build();

 driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password), config);
}

Note that the time specified here does not take into account the running time of the unit of work itself,
merely a limit after which retries will no longer be attempted.

17

Service unavailable
A Service unavailable status will be signalled when the driver is no longer able to establish communication
with the server, even after retries. Encountering this condition usually indicates a fundamental networking
or database problem. Applications should be designed to cater for this eventuality.

Example 18. Service unavailable

public boolean addItem()
{
 try (Session session = driver.session())
 {
 return session.writeTransaction(new TransactionWork<Boolean>()
 {
 @Override
 public Boolean execute(Transaction tx)
 {
 tx.run("CREATE (a:Item)");
 return true;
 }
 });
 }
 catch (ServiceUnavailableException ex)
 {
 return false;
 }
}

18

Sessions and transactions
This section describes how to create units of work and provide a logical context for that

work.

Sessions
A session is a container for a sequence of transactions. Sessions borrow connections from a pool as
required and so should be considered lightweight and disposable. In languages where thread safety is an
issue, a session should not be considered thread-safe.

In languages that support them, sessions are usually scoped within a context block. This ensures that they
are properly closed and that any underlying connections are released and not leaked.

Example 19. Session

public void addPerson(String name)
{
 try (Session session = driver.session())
 {
 session.run("CREATE (a:Person {name: $name})", parameters("name", name));
 }
}

Transactions
Transactions are atomic units of work consisting of one or more Cypher statement executions. A
transaction is executed within a session.

To execute a Cypher statement, two pieces of information are required: the statement template and a
keyed set of parameters. The template is a string containing placeholders that are substituted with
parameter values at runtime. While it is possible to run non-parameterized Cypher, good programming
practice is to use parameters in Cypher statements. This allows for caching of statements within the
Cypher engine, which is beneficial for performance. Parameter values should adhere to Working with
Cypher values.

The Neo4j driver API provides for three forms of transaction:

• Auto-commit transactions

• Transaction functions

• Explicit transactions

Of these, only transaction function can be automatically replayed on failure.

19

Auto-commit Transactions

An auto-commit transaction is a simple but limited form of transaction. Such a transaction consists of only
one Cypher statement, cannot be automatically replayed on failure, and cannot take part in a causal chain.

An auto-commit transaction is invoked using the session.run method:

Example 20. Auto-commit transaction

public void addPerson(String name)
{
 try (Session session = driver.session())
 {
 session.run("CREATE (a:Person {name: $name})", parameters("name", name));
 }
}

Auto-commit transactions are sent to the network and acknowledged immediately. This means that
multiple transactions cannot share network packets, thereby exhibiting a lesser network efficiency than
other forms of transaction.

Auto-commit transactions are intended to be used for simple use cases such as when learning Cypher or
writing one-off scripts. It is not recommended to use auto-commit transactions in production environments
or when performance or resilience are a primary concern.

However, Auto-commit transactions are the only way to execute USING PERIODIC COMMIT Cypher
statements.

Transaction functions

Transaction functions are the recommended form for containing transactional units of work. This form
requires minimal boilerplate code and allows for a clear separation of database queries and application
logic.

20

https://neo4j.com/docs/pdf/neo4j-cypher-manual-3.5.pdf#query-using-periodic-commit-hint

Example 21. Transaction function

public void addPerson(final String name)
{
 try (Session session = driver.session())
 {
 session.writeTransaction(new TransactionWork<Integer>()
 {
 @Override
 public Integer execute(Transaction tx)
 {
 return createPersonNode(tx, name);
 }
 });
 }
}

private static int createPersonNode(Transaction tx, String name)
{
 tx.run("CREATE (a:Person {name: $name})", parameters("name", name));
 return 1;
}

Transaction functions are also able to handle connection problems and transient errors using an automatic
retry mechanism. This retry capability can be configured on Driver construction.

Any query results obtained within a transaction function should be consumed within that function.
Transaction functions can return values but these should be derived values rather than raw results.

Explicit transactions

Explicit transactions are the longhand form of transaction functions, providing access to explicit BEGIN,
COMMIT and ROLLBACK operations. While this form is useful for a handful of use cases, it is recommended to
use transaction functions wherever possible.

Transaction configuration

Both auto-commit and explicit transactions can be assigned metadata, and a timeout.

Metadata is a map of arbitrary values that will be attached to the executing transaction. It will be visible in
the output of the procedures dbms.listQueries and dbms.listTransactions. It will also get logged to the
query.log.

A timeout will cause the related transaction to be terminated by the database if its execution time is longer
than the provided value. This functionality allows to limit query/transaction execution time. A specified
timeout overrides the default timeout defined by the configuration setting
config_dbms.transaction.timeout.

For usage patterns, please refer to the API documentation for your specific language.

21

https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf#query-management-list-queries
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf#transaction-management-list-transactions
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-operations-manual-3.5.pdf#config_dbms.transaction.timeout

Cypher errors

When executing Cypher, it is possible for an exception to be thrown by the Cypher engine. Each such
exception is associated with a status code that describes the nature of the error and a message that
provides more detail.

The error classifications are listed in the table below.

Table 4. Error classifications

Classification Description

ClientError The client application has caused an error. The application
should amend and retry the operation.

DatabaseError The server has caused an error. Retrying the operation will
generally be unsuccessful.

TransientError A temporary error has occurred. The application should retry
the operation.

Causal chaining
When working with a Causal Cluster, transactions can be chained to ensure causal consistency. This
means that for any two transactions, it is guaranteed that the second transaction will begin only after the
first has been successfully committed. This is true even if the transactions are carried out on different
physical cluster members.

Causal chaining is carried out by passing bookmarks between transactions. Each bookmark records a point
in transactional history and can be used to inform cluster members to carry out units of work in a particular
sequence. Internally, a bookmark is passed from server to client on successful completion of a transaction
and back from client to server on start of a new transaction, even if the transaction is an auto-commit
transaction. On receipt of one or more bookmarks, the transaction will block until the server has fast
forwarded to catch up with the latest of these.


If you use the 1.7 driver to connect to a Neo4j database that is version 3.4 or earlier,
auto-commit transactions cannot take part in the causal chain. In that configuration,
session.run calls should be avoided in places where causal consistency is important.

Within a session, bookmark propagation is carried out automatically and does not require any explicit
signal or setting from the application. To opt out of this mechanism for unrelated units of work,
applications can use multiple sessions. This avoids the small latency overhead of the causal chain.
Propagation between sessions can be achieved by extracting the last bookmarks from one or more
sessions and passing these into the construction of another. This is generally the only case in which an
application will need to work with bookmarks directly.

22

https://neo4j.com/docs/pdf/neo4j-status-codes-3.5.pdf#status-codes

Transaction
B1

Transaction
B2

Session B

Last bookmark
from Session A

Last bookmark
from Session B

Session A

Session C
Transaction

A1

Transaction
C1

Transaction
A2

Transaction
C2

Bookmark automatically
passed within session

Bookmark automatically
passed within session

Bookmark automatically
passed within session

Figure 2. Passing bookmarks

The following example illustrates the passing of bookmarks between sessions. First consider the code:

23

Example 22. Passing bookmarks between sessions

24

// Create a company node
private StatementResult addCompany(final Transaction tx, final String name)
{
 return tx.run("CREATE (:Company {name: $name})", parameters("name", name));
}

// Create a person node
private StatementResult addPerson(final Transaction tx, final String name)
{
 return tx.run("CREATE (:Person {name: $name})", parameters("name", name));
}

// Create an employment relationship to a pre-existing company node.
// This relies on the person first having been created.
private StatementResult employ(final Transaction tx, final String person, final String company
)
{
 return tx.run("MATCH (person:Person {name: $person_name}) " +
 "MATCH (company:Company {name: $company_name}) " +
 "CREATE (person)-[:WORKS_FOR]->(company)",
 parameters("person_name", person, "company_name", company));
}

// Create a friendship between two people.
private StatementResult makeFriends(final Transaction tx, final String person1, final String
person2)
{
 return tx.run("MATCH (a:Person {name: $person_1}) " +
 "MATCH (b:Person {name: $person_2}) " +
 "MERGE (a)-[:KNOWS]->(b)",
 parameters("person_1", person1, "person_2", person2));
}

// Match and display all friendships.
private StatementResult printFriends(final Transaction tx)
{
 StatementResult result = tx.run("MATCH (a)-[:KNOWS]->(b) RETURN a.name, b.name");
 while (result.hasNext())
 {
 Record record = result.next();
 System.out.println(String.format("%s knows %s", record.get("a.name").asString(),
record.get("b.name").toString()));
 }
 return result;
}

public void addEmployAndMakeFriends()
{
 // To collect the session bookmarks
 List<String> savedBookmarks = new ArrayList<>();

 // Create the first person and employment relationship.
 try (Session session1 = driver.session(AccessMode.WRITE))
 {
 session1.writeTransaction(tx -> addCompany(tx, "Wayne Enterprises"));
 session1.writeTransaction(tx -> addPerson(tx, "Alice"));
 session1.writeTransaction(tx -> employ(tx, "Alice", "Wayne Enterprises"));

 savedBookmarks.add(session1.lastBookmark());
 }

 // Create the second person and employment relationship.
 try (Session session2 = driver.session(AccessMode.WRITE))
 {
 session2.writeTransaction(tx -> addCompany(tx, "LexCorp"));
 session2.writeTransaction(tx -> addPerson(tx, "Bob"));
 session2.writeTransaction(tx -> employ(tx, "Bob", "LexCorp"));

 savedBookmarks.add(session2.lastBookmark());
 }

 // Create a friendship between the two people created above.
 try (Session session3 = driver.session(AccessMode.WRITE, savedBookmarks))
 {
 session3.writeTransaction(tx -> makeFriends(tx, "Alice", "Bob"));

25

 session3.readTransaction(this::printFriends);
 }
}

We are using three separate sessions: A, B and C. In Session A we run two separate transactions. In the
first one we create the person Alice, and in the second one we record that she works at Wayne
Enterprises. The bookmark being passed between the two transactions is handled by the session. The
bookmark from the last transaction is saved into an array for future use.

In Session B we also run two separate transactions. In the first one we create the person Bob, and in the
second one we record that he works at LexCorp. Again, the bookmark being passed between the two
transactions is handled by the session. The bookmark from the last transaction is saved into an array for
future use.

In the last session, Session C, we wish to create a friendship between Alice and Bob. This can only be
done if both Alice and Bob have been created first. In order to ensure this, we pass the bookmarks from
the last transactions in Session A and Session B, respectively.


If you try to extract a bookmark from a database which is not running in Causal Cluster
mode, you will receive a null result.

Access modes
Transactions can be executed in either read or write mode. In a Causal Cluster, each transaction will be
routed to an appropriate server based on the mode. When using a single instance, all transactions will be
passed to that one server. Routing Cypher by identifying reads and writes can improve the utilization of
available cluster resources: as read servers are typically more plentiful than write servers, it is beneficial to
direct as much as possible of read transactions to read servers. Doing so helps keeping write servers
available for write transactions.

Access modes can be supplied in two ways: per transaction or per session. An access mode specified at
session creation can be overridden by the access mode of a transaction within that session. In the general
case, access mode should always be specified at transaction level, using transaction functions. The
session-level setting is only necessary for explicit and auto-commit transactions.

Note that the driver does not parse Cypher and cannot determine whether a transaction is intended to
carry out read or write operations. As a result of this, a write transaction tagged for read will be sent to a
read server, but will fail on execution.

26

Example 23. Read-write transaction

public long addPerson(final String name)
{
 try (Session session = driver.session())
 {
 session.writeTransaction(new TransactionWork<Void>()
 {
 @Override
 public Void execute(Transaction tx)
 {
 return createPersonNode(tx, name);
 }
 });
 return session.readTransaction(new TransactionWork<Long>()
 {
 @Override
 public Long execute(Transaction tx)
 {
 return matchPersonNode(tx, name);
 }
 });
 }
}

private static Void createPersonNode(Transaction tx, String name)
{
 tx.run("CREATE (a:Person {name: $name})", parameters("name", name));
 return null;
}

private static long matchPersonNode(Transaction tx, String name)
{
 StatementResult result = tx.run("MATCH (a:Person {name: $name}) RETURN id(a)", parameters(
"name", name));
 return result.single().get(0).asLong();
}

Asynchronous programming


Java, .NET and JavaScript all support asynchronous programming. The examples here
highlight specifically how Java and .NET provide for this programming model alongside
their blocking API.

In addition to the methods listed in the previous sections, there also exist several asynchronous methods
which allow for better integration with applications written in an asynchronous style. Asynchronous
methods are named as their synchronous counterparts but with an additional async prefix.

27

Example 24. Asynchronous programming examples

28

Auto-commit transactions

String query = "MATCH (p:Product) WHERE p.id = $id RETURN p.title";
Map<String,Object> parameters = Collections.singletonMap("id", 0);

Session session = driver.session();

return session.runAsync(query, parameters)
 .thenCompose(cursor -> cursor.listAsync(record -> record.get(0).asString()))
 .exceptionally(error ->
 {
 // query execution failed, print error and fallback to empty list of titles
 error.printStackTrace();
 return Collections.emptyList();
 })
 .thenCompose(titles -> session.closeAsync().thenApply(ignore -> titles));

Transaction functions

String query = "MATCH (p:Product) WHERE p.id = $id RETURN p.title";
Map<String,Object> parameters = Collections.singletonMap("id", 0);

Session session = driver.session();

return session.readTransactionAsync(tx ->
 tx.runAsync(query, parameters)
 .thenCompose(cursor -> cursor.forEachAsync(record ->
 // asynchronously print every record
 System.out.println(record.get(0).asString())))
);

Explicit transactions

String query = "MATCH (p:Product) WHERE p.id = $id RETURN p.title";
Map<String,Object> parameters = Collections.singletonMap("id", 0);

Session session = driver.session();

Function<Transaction,CompletionStage<Void>> printSingleTitle = tx ->
 tx.runAsync(query, parameters)
 .thenCompose(StatementResultCursor::singleAsync)
 .thenApply(record -> record.get(0).asString())
 .thenApply(title ->
 {
 // single title fetched successfully
 System.out.println(title);
 return true; // signal to commit the transaction
 })
 .exceptionally(error ->
 {
 // query execution failed
 error.printStackTrace();
 return false; // signal to rollback the transaction
 })
 .thenCompose(commit -> commit ? tx.commitAsync() : tx.rollbackAsync());

return session.beginTransactionAsync()
 .thenCompose(printSingleTitle)
 .exceptionally(error ->
 {
 // either commit or rollback failed
 error.printStackTrace();
 return null;
 })
 .thenCompose(ignore -> session.closeAsync());

29



It is important to close the session object to make sure all resources (such as
network connections) obtained by the session are cleaned up properly. It is
therefore suggested to always do Session#closeAsync() at the end of the
whole CompletionStage chain. Sessions should be closed regardless of
whether the completes normally or exceptionally. Closing the session also
enforces the rollback of the last uncommitted or failed transaction in the
session. Thus it is optional to roll back the transaction using
Transaction#rollbackAsync(), as long as the session is closed at the end of
the full chain.

30

Working with Cypher values
This section describes the types and values used by Cypher and how they map to native

language types.

The Cypher type system
Drivers translate between application language types and the Cypher type system. To pass parameters
and process results, it is important to know the basics of how Cypher works with types and to understand
how the Cypher types are mapped in the driver.

The table below shows the available data types. All can be potentially found in results although not all can
be used as parameters.

31

Cypher Type Parameter Result

null* ✔ ✔

List ✔ ✔

Map ✔ ✔

Boolean ✔ ✔

Integer ✔ ✔

Float ✔ ✔

String ✔ ✔

ByteArray ✔ ✔

Date ✔ ✔

Time ✔ ✔

LocalTime ✔ ✔

DateTime ✔ ✔

LocalDateTime ✔ ✔

Duration ✔ ✔

Point ✔ ✔

Node** ✔

Relationship** ✔

Path** ✔

* The null marker is not a type but a placeholder for absence of value. For information on how to work
with null in Cypher, please refer to Cypher Manual → Working with null.

** Nodes, relationships and paths are passed in results as snapshots of the original graph entities.
While the original entity IDs are included in these snapshots, no permanent link is retained back to
the underlying server-side entities, which may be deleted or otherwise altered independently of the
client copies. Graph structures may not be used as parameters because it depends on application
context whether such a parameter would be passed by reference or by value, and Cypher provides no
mechanism to denote this. Equivalent functionality is available by simply passing either the ID for
pass-by-reference, or an extracted map of properties for pass-by-value.

The Neo4j driver maps Cypher types to and from native language types as depicted in the table below.
Custom types (those not available in the language or standard library) are highlighted in bold.

32

https://neo4j.com/docs/pdf/neo4j-cypher-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-cypher-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-cypher-manual-3.5.pdf
https://neo4j.com/docs/pdf/neo4j-cypher-manual-3.5.pdf

Example 25. Map Neo4j types to native language types

Neo4j type Java type

null null

List List<Object>

Map Map<String, Object>

Boolean boolean

Integer long

Float double

String String

ByteArray byte[]

Date LocalDate

Time OffsetTime

LocalTime LocalTime

DateTime ZonedDateTime

LocalDateTime LocalDateTime

Duration IsoDuration*

Point Point

Node Node

Relationship Relationship

Path Path

* A Duration or Period passed as a parameter will always be implicitly converted to
IsoDuration.

Statement results
A statement result is comprised of a stream of records. The result is typically handled by the receiving
application as it arrives, although it is also possible to retain all or part of a result for future consumption.

33

name: Alice, age: 33

name: Bob, age: 44

name: Claudia, age: 27

name: Dave, age: 19

name: Eve, age: 32

name: Zebedee, age: 99

Figure 3. Result stream

Records

A record provides an immutable view of part of a result. It is an ordered map of keys and values. As values
within a record are both keyed and ordered, that value can be accessed either by position (0-based
integer) or by key (string).

The buffer

name: Frank

name: Greta

name: Harry

name: Irene

name: Jim

Network

name: Dave

name: Eve

Buffer

name: Alice

name: Bob

name: Claudia

Application

fetch consume

Figure 4. Result buffer

Most drivers contain a result buffer. This provides a staging point for results, and divides result handling
into fetching (moving from the network to the buffer) and consuming (moving from the buffer to the
application).

34

If results are consumed in the same order as they are produced, records merely pass through the buffer; if
they are consumed out of order, the buffer will be utilized to retain records until they are consumed by the
application. For large results, this may require a significant amount of memory and impact performance.
For this reason, it is recommended to consume results in order wherever possible.

Consuming the stream

Query results will often be consumed as a stream. Drivers provide a language-idiomatic way to iterate
through a result stream.

Example 26. Consuming the stream

public List<String> getPeople()
{
 try (Session session = driver.session())
 {
 return session.readTransaction(new TransactionWork<List<String>>()
 {
 @Override
 public List<String> execute(Transaction tx)
 {
 return matchPersonNodes(tx);
 }
 });
 }
}

private static List<String> matchPersonNodes(Transaction tx)
{
 List<String> names = new ArrayList<>();
 StatementResult result = tx.run("MATCH (a:Person) RETURN a.name ORDER BY a.name");
 while (result.hasNext())
 {
 names.add(result.next().get(0).asString());
 }
 return names;
}

Retaining results

The result record stream is available until another statement is run in the session, or until the current
transaction is closed. To hold on to the results beyond this scope, the results need to be explicitly retained.
For retaining results, each driver offers methods that collect the result stream and translate it into standard
data structures for that language. Retained results can be processed while the session is free to take on
the next workload. The saved results can also be used directly to run a new statement.

35

Example 27. Retain results for further processing

public int addEmployees(final String companyName)
{
 try (Session session = driver.session())
 {
 int employees = 0;
 List<Record> persons = session.readTransaction(new TransactionWork<List<Record>>()
 {
 @Override
 public List<Record> execute(Transaction tx)
 {
 return matchPersonNodes(tx);
 }
 });
 for (final Record person : persons)
 {
 employees += session.writeTransaction(new TransactionWork<Integer>()
 {
 @Override
 public Integer execute(Transaction tx)
 {
 tx.run("MATCH (emp:Person {name: $person_name}) " +
 "MERGE (com:Company {name: $company_name}) " +
 "MERGE (emp)-[:WORKS_FOR]->(com)",
 parameters("person_name", person.get("name").asString(),
"company_name",
 companyName));
 return 1;
 }
 });
 }
 return employees;
 }
}

private static List<Record> matchPersonNodes(Transaction tx)
{
 return tx.run("MATCH (a:Person) RETURN a.name AS name").list();
}

Statement result summaries
Supplementary information such as query statistics, timings and server information can be obtained from
the statement result summary. If this detail is accessed before the entire result has been consumed, the
remainder of the result will be buffered.

See also the language-specific driver API documentation.

36

Appendix A: Driver terminology
This section lists the relevant terminology related to Neo4j drivers.

acquire (connection)

To borrow a driver connection that is not currently in use from a connection pool.

Bolt

Bolt is a Neo4j proprietary, binary protocol used for communication between client applications and
database servers. Bolt is versioned independently from the database and the drivers.

Bolt Routing Protocol

The steps required for a driver to obtain a routing table from a cluster member.

Bolt server

A Neo4j instance that can accept incoming Bolt connections.

bookmark

A marker for a point in the transactional history of Neo4j.

client application

A piece of software that interacts with a database server via a driver.

connection

A persistent communication channel between a client application and a database server.

connection pool

A set of connections maintained for quick access, that can be acquired and released as required.

direct driver

A driver that can connect to a single server address.

driver (object)

A globally accessible controller for all database access.

driver (package)

A software library that provides access to Neo4j from a particular programming language. The Neo4j
drivers implement the Bolt protocol.

release (connection)

To return a connection back into a connection pool after use.

routing driver

A driver that can route traffic to multiple members of a cluster using the routing protocol.

37

routing table

A set of server addresses that identify cluster members associated with roles.

server address

A combination of host name and port or IP address and port that targets a server.

session

A causally linked sequence of transactions.

statement result

The stream of records that are returned on execution of a statement.

thread safety

See https://en.wikipedia.org/wiki/Thread_safety.

transaction

A transaction comprises a unit of work performed against a database. It is treated in a coherent and
reliable way, independent of other transactions. A transaction, by definition, must be atomic, consistent,
isolated, and durable.

38

https://en.wikipedia.org/wiki/Thread_safety

License
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

You are free to

Share

copy and redistribute the material in any medium or format

Adapt

remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial

You may not use the material for commercial purposes.

ShareAlike

If you remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

Notices

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for further details. The full license text is available
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

39

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

	The Neo4j Drivers Manual v1.7 for Java
	Table of Contents
	Get started
	About the official drivers
	Driver versions and installation
	A "Hello World" example
	Driver API docs

	Client applications
	The driver object
	Connection URIs, encryption and trust
	Authentication
	Configuration
	Service unavailable

	Sessions and transactions
	Sessions
	Transactions
	Causal chaining
	Access modes
	Asynchronous programming

	Working with Cypher values
	The Cypher type system
	Statement results
	Statement result summaries

	Appendix A: Driver terminology

