
Neo4j Cypher Refcard 4.0

(�) Functionality available in Neo4j Enterprise Edition. by Neo4j, Inc..

LegendLegend

Read

Write

General

Functions

Schema

Performance

Multidatabase

Security

SyntaxSyntax

Read Query Structure

[MATCH WHERE]

[OPTIONAL MATCH WHERE]

[WITH [ORDER BY] [SKIP] [LIMIT]]

RETURN [ORDER BY] [SKIP] [LIMIT]

MATCH !!

MATCH (n:Person)-[:KNOWS]->(m:Person)

WHERE n.name = 'Alice'

Node patterns can contain labels and properties.

MATCH (n)-->(m)

Any pattern can be used in MATCH.

MATCH (n {name: 'Alice'})-->(m)

Patterns with node properties.

MATCH p = (n)-->(m)

Assign a path to p.

OPTIONAL MATCH (n)-[r]->(m)

Optional pattern: nulls will be used for missing parts.

WHERE !!

WHERE n.property <> $value

Use a predicate to filter. Note that WHERE is always part of
a MATCH, OPTIONAL MATCH or WITH clause. Putting it after a
different clause in a query will alter what it does.

WHERE EXISTS {

 MATCH (n)-->(m) WHERE n.age = m.age

}

Use an existential subquery to filter.

Write-Only Query Structure

(CREATE | MERGE)*

[SET|DELETE|REMOVE|FOREACH]*

[RETURN [ORDER BY] [SKIP] [LIMIT]]

Read-Write Query Structure

[MATCH WHERE]

[OPTIONAL MATCH WHERE]

[WITH [ORDER BY] [SKIP] [LIMIT]]

(CREATE | MERGE)*

[SET|DELETE|REMOVE|FOREACH]*

[RETURN [ORDER BY] [SKIP] [LIMIT]]

CREATE !!

CREATE (n {name: $value})

Create a node with the given properties.

CREATE (n $map)

Create a node with the given properties.

UNWIND $listOfMaps AS properties

CREATE (n) SET n = properties

Create nodes with the given properties.

CREATE (n)-[r:KNOWS]->(m)

Create a relationship with the given type and direction;
bind a variable to it.

CREATE (n)-[:LOVES {since: $value}]->(m)

Create a relationship with the given type, direction, and
properties.

SET !!

SET n.property1 = $value1,

 n.property2 = $value2

Update or create a property.

SET n = $map

Set all properties. This will remove any existing
properties.

SET n += $map

Add and update properties, while keeping existing ones.

SET n:Person

Adds a label Person to a node.

DATABASE MANAGEMENT !!

CREATE OR REPLACE DATABASE myDatabase

(�) Create a database named myDatabase. If a database
with that name exists, then the existing database is
deleted and a new one created.

STOP DATABASE myDatabase

(�) Stop the database myDatabase.

START DATABASE myDatabase

(�) Start the database myDatabase.

SHOW DATABASES

List all databases in the system and information about
them.

SHOW DATABASE myDatabase

List information about the database myDatabase.

SHOW DEFAULT DATABASE

List information about the default database.

DROP DATABASE myDatabase IF EXISTS

(�) Delete the database myDatabase, if it exists.

RETURN !!

RETURN *

Return the value of all variables.

RETURN n AS columnName

Use alias for result column name.

RETURN DISTINCT n

Return unique rows.

ORDER BY n.property

Sort the result.

ORDER BY n.property DESC

Sort the result in descending order.

SKIP $skipNumber

Skip a number of results.

LIMIT $limitNumber

Limit the number of results.

SKIP $skipNumber LIMIT $limitNumber

Skip results at the top and limit the number of results.

RETURN count(*)

The number of matching rows. See Aggregating
Functions for more.

WITH !!

MATCH (user)-[:FRIEND]-(friend)

WHERE user.name = $name

WITH user, count(friend) AS friends

WHERE friends > 10

RETURN user

The WITH syntax is similar to RETURN. It separates query
parts explicitly, allowing you to declare which variables
to carry over to the next part.

MATCH (user)-[:FRIEND]-(friend)

WITH user, count(friend) AS friends

ORDER BY friends DESC

 SKIP 1

 LIMIT 3

RETURN user

ORDER BY, SKIP, and LIMIT can also be used with WITH.

UNION !!

MATCH (a)-[:KNOWS]->(b)

RETURN b.name

UNION

MATCH (a)-[:LOVES]->(b)

RETURN b.name

Returns the distinct union of all query results. Result
column types and names have to match.

MATCH (a)-[:KNOWS]->(b)

RETURN b.name

UNION ALL

MATCH (a)-[:LOVES]->(b)

RETURN b.name

Returns the union of all query results, including
duplicated rows.

MERGE !!

MERGE (n:Person {name: $value})

 ON CREATE SET n.created = timestamp()

 ON MATCH SET

 n.counter = coalesce(n.counter, 0) + 1,

 n.accessTime = timestamp()

Match a pattern or create it if it does not exist. Use ON
CREATE and ON MATCH for conditional updates.

MATCH (a:Person {name: $value1}),

 (b:Person {name: $value2})

MERGE (a)-[r:LOVES]->(b)

MERGE finds or creates a relationship between the nodes.

MATCH (a:Person {name: $value1})

MERGE

 (a)-[r:KNOWS]->(b:Person {name: $value3})

MERGE finds or creates subgraphs attached to the node.

REMOVE !!

REMOVE n:Person

Remove a label from n.

REMOVE n.property

Remove a property.

USER MANAGEMENT !!

CREATE USER alice SET PASSWORD $password

Create a new user and a password. This password must
be changed on the first login.

ALTER USER alice SET PASSWORD $password CHANGE NOT

REQUIRED

(�) Set a new password for a user. This user will not be
required to change this password on the next login.

ALTER USER alice SET STATUS SUSPENDED

(�) Change the user status to suspended. Use SET STATUS
ACTIVE to reactivate the user.

ALTER CURRENT USER SET PASSWORD FROM $old TO $new

Change the password of the logged-in user. The user will
not be required to change this password on the next
login.

SHOW USERS

List all users in the system, their status, roles and if they
need to change their password.
(�) Status and roles are Enterprise Edition only.

DROP USER alice

Delete the user.

DELETE !!

DELETE n, r

Delete a node and a relationship.

DETACH DELETE n

Delete a node and all relationships connected to it.

MATCH (n)

DETACH DELETE n

Delete all nodes and relationships from the database.

FOREACH !!

FOREACH (r IN relationships(path) |

 SET r.marked = true)

Execute a mutating operation for each relationship in a
path.

FOREACH (value IN coll |

 CREATE (:Person {name: value}))

Execute a mutating operation for each element in a list.

CALL subquery !!

CALL {

 MATCH (p:Person)-[:FRIEND_OF]->(other:Person) RETURN p,

other

 UNION

 MATCH (p:Child)-[:CHILD_OF]->(other:Parent) RETURN p,

other

}

This calls a subquery with two union parts. The result of
the subquery can afterwards be post-processed.

CALL procedure !!

CALL db.labels() YIELD label

This shows a standalone call to the built-in procedure
db.labels to list all labels used in the database. Note that
required procedure arguments are given explicitly in
brackets after the procedure name.

CALL java.stored.procedureWithArgs

Standalone calls may omit YIELD and also provide
arguments implicitly via statement parameters, e.g. a
standalone call requiring one argument input may be run
by passing the parameter map {input: 'foo'}.

CALL db.labels() YIELD label

RETURN count(label) AS count

Calls the built-in procedure db.labels inside a larger
query to count all labels used in the database. Calls
inside a larger query always requires passing arguments
and naming results explicitly with YIELD.

Import !!

LOAD CSV FROM

'https://neo4j.com/docs/cypher-

refcard/4.0/csv/artists.csv' AS line

CREATE (:Artist {name: line[1], year: toInteger(line[2])})

Load data from a CSV file and create nodes.

LOAD CSV WITH HEADERS FROM

'https://neo4j.com/docs/cypher-refcard/4.0/csv/artists-

with-headers.csv' AS line

CREATE (:Artist {name: line.Name, year:

toInteger(line.Year)})

Load CSV data which has headers.

USING PERIODIC COMMIT 500

LOAD CSV WITH HEADERS FROM

'https://neo4j.com/docs/cypher-refcard/4.0/csv/artists-

with-headers.csv' AS line

CREATE (:Artist {name: line.Name, year:

toInteger(line.Year)})

Commit the current transaction after every 500 rows
when importing large amounts of data.

LOAD CSV FROM

'https://neo4j.com/docs/cypher-refcard/4.0/csv/artists-

fieldterminator.csv'

AS line FIELDTERMINATOR ';'

CREATE (:Artist {name: line[1], year: toInteger(line[2])})

Use a different field terminator, not the default which is
a comma (with no whitespace around it).

LOAD CSV FROM

'https://neo4j.com/docs/cypher-

refcard/4.0/csv/artists.csv' AS line

RETURN DISTINCT file()

Returns the absolute path of the file that LOAD CSV is
processing, returns null if called outside of LOAD CSV
context.

LOAD CSV FROM

'https://neo4j.com/docs/cypher-

refcard/4.0/csv/artists.csv' AS line

RETURN linenumber()

Returns the line number that LOAD CSV is currently
processing, returns null if called outside of LOAD CSV
context.

Performance !!

Use parameters instead of literals when possible. This
allows Cypher to re-use your queries instead of having
to parse and build new execution plans.

Always set an upper limit for your variable length
patterns. It’s possible to have a query go wild and
touch all nodes in a graph by mistake.

Return only the data you need. Avoid returning whole
nodes and relationships — instead, pick the data you
need and return only that.

Use PROFILE / EXPLAIN to analyze the performance of
your queries. See Query Tuning for more information
on these and other topics, such as planner hints.

(̣) ROLE MANAGEMENT !!

CREATE ROLE my_role

Create a role.

CREATE ROLE my_second_role IF NOT EXISTS AS COPY OF

my_role

Create a role named my_second_role, unless it already
exists, as a copy of the existing my_role.

GRANT ROLE my_role, my_second_role TO alice

Assign roles to a user.

REVOKE ROLE my_second_role FROM alice

Remove a specified role from a user.

SHOW ROLES

List all roles in the system.

SHOW POPULATED ROLES WITH USERS

List all roles that are assigned to at least one user in the
system, and the users assigned to those roles.

DROP ROLE my_role

Delete a role.

Operators !!

General DISTINCT, ., []

Mathematical +, -, *, /, %, ^

Comparison =, <>, <, >, <=, >=, IS NULL, IS
NOT NULL

Boolean AND, OR, XOR, NOT

String +

List +, IN, [x], [x .. y]

Regular Expression =~

String matching STARTS WITH, ENDS WITH,
CONTAINS

null !!

null is used to represent missing/undefined values.

null is not equal to null. Not knowing two values does
not imply that they are the same value. So the
expression null = null yields null and not true. To
check if an expression is null, use IS NULL.

Arithmetic expressions, comparisons and function
calls (except coalesce) will return null if any argument
is null.

An attempt to access a missing element in a list or a
property that doesn’t exist yields null.

In OPTIONAL MATCH clauses, nulls will be used for missing
parts of the pattern.

Predicates !!

n.property <> $value

Use comparison operators.

exists(n.property)

Use functions.

n.number >= 1 AND n.number <= 10

Use boolean operators to combine predicates.

1 <= n.number <= 10

Use chained operators to combine predicates.

n:Person

Check for node labels.

variable IS NULL

Check if something is null.

NOT exists(n.property) OR n.property = $value

Either the property does not exist or the predicate is true.

n.property = $value

Non-existing property returns null, which is not equal to
anything.

n["property"] = $value

Properties may also be accessed using a dynamically
computed property name.

n.property STARTS WITH 'Tim' OR

n.property ENDS WITH 'n' OR

n.property CONTAINS 'goodie'

String matching.

n.property =~ 'Tim.*'

String regular expression matching.

(n)-[:KNOWS]->(m)

Ensure the pattern has at least one match.

NOT (n)-[:KNOWS]->(m)

Exclude matches to (n)-[:KNOWS]->(m) from the result.

n.property IN [$value1, $value2]

Check if an element exists in a list.

CASE !!

CASE n.eyes

 WHEN 'blue' THEN 1

 WHEN 'brown' THEN 2

 ELSE 3

END

Return THEN value from the matching WHEN value. The ELSE
value is optional, and substituted for null if missing.

CASE

 WHEN n.eyes = 'blue' THEN 1

 WHEN n.age < 40 THEN 2

 ELSE 3

END

Return THEN value from the first WHEN predicate evaluating
to true. Predicates are evaluated in order.

(̣) SHOW PRIVILEGES !!

SHOW PRIVILEGES

List all privileges in the system, and the roles that they
are assigned to.

SHOW ROLE my_role PRIVILEGES

List all privileges assigned to a role.

SHOW USER alice PRIVILEGES

List all privileges of a user, and the role that they are
assigned to.

Patterns !!

(n:Person)

Node with Person label.

(n:Person:Swedish)

Node with both Person and Swedish labels.

(n:Person {name: $value})

Node with the declared properties.

()-[r {name: $value}]-()

Matches relationships with the declared properties.

(n)-->(m)

Relationship from n to m.

(n)--(m)

Relationship in any direction between n and m.

(n:Person)-->(m)

Node n labeled Person with relationship to m.

(m)<-[:KNOWS]-(n)

Relationship of type KNOWS from n to m.

(n)-[:KNOWS|:LOVES]->(m)

Relationship of type KNOWS or of type LOVES from n to m.

(n)-[r]->(m)

Bind the relationship to variable r.

(n)-[*1..5]->(m)

Variable length path of between 1 and 5 relationships
from n to m.

(n)-[*]->(m)

Variable length path of any number of relationships from
n to m. (See Performance section.)

(n)-[:KNOWS]->(m {property: $value})

A relationship of type KNOWS from a node n to a node m
with the declared property.

shortestPath((n1:Person)-[*..6]-(n2:Person))

Find a single shortest path.

allShortestPaths((n1:Person)-[*..6]->(n2:Person))

Find all shortest paths.

size((n)-->()-->())

Count the paths matching the pattern.

Labels

CREATE (n:Person {name: $value})

Create a node with label and property.

MERGE (n:Person {name: $value})

Matches or creates unique node(s) with the label and
property.

SET n:Spouse:Parent:Employee

Add label(s) to a node.

MATCH (n:Person)

Matches nodes labeled Person.

MATCH (n:Person)

WHERE n.name = $value

Matches nodes labeled Person with the given name.

WHERE (n:Person)

Checks the existence of the label on the node.

labels(n)

Labels of the node.

REMOVE n:Person

Remove the label from the node.

Maps !!

{name: 'Alice', age: 38,

 address: {city: 'London', residential: true}}

Literal maps are declared in curly braces much like
property maps. Lists are supported.

WITH {person: {name: 'Anne', age: 25}} AS p

RETURN p.person.name

Access the property of a nested map.

MERGE (p:Person {name: $map.name})

 ON CREATE SET p = $map

Maps can be passed in as parameters and used either as
a map or by accessing keys.

MATCH (matchedNode:Person)

RETURN matchedNode

Nodes and relationships are returned as maps of their
data.

map.name, map.age, map.children[0]

Map entries can be accessed by their keys. Invalid keys
result in an error.

(̣) GRAPH PRIVILEGES !!

GRANT TRAVERSE ON GRAPH * NODES * TO my_role

Grant traverse privilege on all nodes and all graphs to a
role.

DENY READ {prop} ON GRAPH foo RELATIONSHIP Type TO my_role

Deny read privilege on a specified property, on all
relationships with a specified type in a specified graph,
to a role.

GRANT MATCH {*} ON GRAPH foo ELEMENTS Label TO my_role

Grant read privilege on all properties and traverse
privilege to a role. Here, both privileges apply to all
nodes with a specified label in the graph.

REVOKE WRITE ON GRAPH * FROM my_role

Revoke write privilege on all graphs from a role.

Lists !!

['a', 'b', 'c'] AS list

Literal lists are declared in square brackets.

size($list) AS len, $list[0] AS value

Lists can be passed in as parameters.

range($firstNum, $lastNum, $step) AS list

range() creates a list of numbers (step is optional), other
functions returning lists are: labels(), nodes(),
relationships().

MATCH p = (a)-[:KNOWS*]->()

RETURN relationships(p) AS r

The list of relationships comprising a variable length
path can be returned using named paths and
relationships().

RETURN matchedNode.list[0] AS value,

 size(matchedNode.list) AS len

Properties can be lists of strings, numbers or booleans.

list[$idx] AS value,

list[$startIdx..$endIdx] AS slice

List elements can be accessed with idx subscripts in
square brackets. Invalid indexes return null. Slices can
be retrieved with intervals from start_idx to end_idx, each
of which can be omitted or negative. Out of range
elements are ignored.

UNWIND $names AS name

MATCH (n {name: name})

RETURN avg(n.age)

With UNWIND, any list can be transformed back into
individual rows. The example matches all names from a
list of names.

MATCH (a)

RETURN [(a)-->(b) WHERE b.name = 'Bob' | b.age]

Pattern comprehensions may be used to do a custom
projection from a match directly into a list.

MATCH (person)

RETURN person { .name, .age}

Map projections may be easily constructed from nodes,
relationships and other map values.

List Predicates !!

all(x IN coll WHERE exists(x.property))

Returns true if the predicate is true for all elements in the
list.

any(x IN coll WHERE exists(x.property))

Returns true if the predicate is true for at least one
element in the list.

none(x IN coll WHERE exists(x.property))

Returns true if the predicate is false for all elements in
the list.

single(x IN coll WHERE exists(x.property))

Returns true if the predicate is true for exactly one
element in the list.

List Expressions !!

size($list)

Number of elements in the list.

reverse($list)

Reverse the order of the elements in the list.

head($list), last($list), tail($list)

head() returns the first, last() the last element of the list.
tail() returns all but the first element. All return null for
an empty list.

[x IN list | x.prop]

A list of the value of the expression for each element in
the original list.

[x IN list WHERE x.prop <> $value]

A filtered list of the elements where the predicate is true.

[x IN list WHERE x.prop <> $value | x.prop]

A list comprehension that filters a list and extracts the
value of the expression for each element in that list.

reduce(s = "", x IN list | s + x.prop)

Evaluate expression for each element in the list,
accumulate the results.

(̣) DATABASE PRIVILEGES !!

GRANT ACCESS ON DATABASE * TO my_role

Grant privilege to access and run queries against all
databases to a role.

GRANT START ON DATABASE * TO my_role

Grant privilege to start all databases to a role.

GRANT STOP ON DATABASE * TO my_role

Grant privilege to stop all databases to a role.

GRANT CREATE INDEX ON DATABASE foo TO my_role

Grant privilege to create indexes on a specified database
to a role.

GRANT DROP INDEX ON DATABASE foo TO my_role

Grant privilege to drop indexes on a specified database
to a role.

DENY INDEX MANAGEMENT ON DATABASE bar TO my_role

Deny privilege to create and drop indexes on a specified
database to a role.

GRANT CREATE CONSTRAINT ON DATABASE * TO my_role

Grant privilege to create constraints on all databases to a
role.

DENY DROP CONSTRAINT ON DATABASE * TO my_role

Deny privilege to drop constraints on all databases to a
role.

REVOKE CONSTRAINT ON DATABASE * FROM my_role

Revoke granted and denied privileges to create and drop
constraints on all databases from a role.

GRANT CREATE NEW LABELS ON DATABASE * TO my_role

Grant privilege to create new labels on all databases to a
role.

DENY CREATE NEW TYPES ON DATABASE foo TO my_role

Deny privilege to create new relationship types on a
specified database to a role.

REVOKE GRANT CREATE NEW PROPERTY NAMES ON DATABASE bar

FROM my_role

Revoke the grant privilege to create new property names
on a specified database from a role.

GRANT NAME MANAGEMENT ON DATABASE * TO my_role

Grant privilege to create labels, relationship types, and
property names on all databases to a role.

GRANT ALL ON DATABASE baz TO my_role

Grant all database privileges on a specified database to a
role.

Functions !!

coalesce(n.property, $defaultValue)

The first non-null expression.

timestamp()

Milliseconds since midnight, January 1, 1970 UTC.

id(nodeOrRelationship)

The internal id of the relationship or node.

toInteger($expr)

Converts the given input into an integer if possible;
otherwise it returns null.

toFloat($expr)

Converts the given input into a floating point number if
possible; otherwise it returns null.

toBoolean($expr)

Converts the given input into a boolean if possible;
otherwise it returns null.

keys($expr)

Returns a list of string representations for the property
names of a node, relationship, or map.

properties($expr)

Returns a map containing all the properties of a node or
relationship.

Temporal Functions !!

date("2018-04-05")

Returns a date parsed from a string.

localtime("12:45:30.25")

Returns a time with no time zone.

time("12:45:30.25+01:00")

Returns a time in a specified time zone.

localdatetime("2018-04-05T12:34:00")

Returns a datetime with no time zone.

datetime("2018-04-05T12:34:00[Europe/Berlin]")

Returns a datetime in the specified time zone.

datetime({epochMillis: 3360000})

Transforms 3360000 as a UNIX Epoch time into a normal
datetime.

date({year: $year, month: $month, day: $day})

All of the temporal functions can also be called with a
map of named components. This example returns a date
from year, month and day components. Each function
supports a different set of possible components.

datetime({date: $date, time: $time})

Temporal types can be created by combining other types.
This example creates a datetime from a date and a time.

date({date: $datetime, day: 5})

Temporal types can be created by selecting from more
complex types, as well as overriding individual
components. This example creates a date by selecting
from a datetime, as well as overriding the day component.

WITH date("2018-04-05") AS d

RETURN d.year, d.month, d.day, d.week, d.dayOfWeek

Accessors allow extracting components of temporal
types.

Mathematical Functions !!

abs($expr)

The absolute value.

rand()

Returns a random number in the range from 0
(inclusive) to 1 (exclusive), [0,1). Returns a new value for
each call. Also useful for selecting a subset or random
ordering.

round($expr)

Round to the nearest integer; ceil() and floor() find the
next integer up or down.

sqrt($expr)

The square root.

sign($expr)

0 if zero, -1 if negative, 1 if positive.

sin($expr)

Trigonometric functions also include cos(), tan(), cot(),
asin(), acos(), atan(), atan2(), and haversin(). All
arguments for the trigonometric functions should be in
radians, if not otherwise specified.

degrees($expr), radians($expr), pi()

Converts radians into degrees; use radians() for the
reverse, and pi() for π.

log10($expr), log($expr), exp($expr), e()

Logarithm base 10, natural logarithm, e to the power of
the parameter, and the value of e.

(̣) ROLE MANAGEMENT PRIVILEGES !!

GRANT CREATE ROLE ON DBMS TO my_role

Grant the privilege to create roles to a role.

GRANT DROP ROLE ON DBMS TO my_role

Grant the privilege to delete roles to a role.

DENY ASSIGN ROLE ON DBMS TO my_role

Deny the privilege to assign roles to users to a role.

DENY REMOVE ROLE ON DBMS TO my_role

Deny the privilege to remove roles from users to a role.

REVOKE DENY SHOW ROLE ON DBMS FROM my_role

Revoke the denied privilege to show roles from a role.

GRANT ROLE MANAGEMENT ON DBMS TO my_role

Grant all privileges to manage roles to a role.

Spatial Functions !!

point({x: $x, y: $y})

Returns a point in a 2D cartesian coordinate system.

point({latitude: $y, longitude: $x})

Returns a point in a 2D geographic coordinate system,
with coordinates specified in decimal degrees.

point({x: $x, y: $y, z: $z})

Returns a point in a 3D cartesian coordinate system.

point({latitude: $y, longitude: $x, height: $z})

Returns a point in a 3D geographic coordinate system,
with latitude and longitude in decimal degrees, and
height in meters.

distance(point({x: $x1, y: $y1}), point({x: $x2, y: $y2}))

Returns a floating point number representing the linear
distance between two points. The returned units will be
the same as those of the point coordinates, and it will
work for both 2D and 3D cartesian points.

distance(point({latitude: $y1, longitude: $x1}),

point({latitude: $y2, longitude: $x2}))

Returns the geodesic distance between two points in
meters. It can be used for 3D geographic points as well.

Duration Functions !!

duration("P1Y2M10DT12H45M30.25S")

Returns a duration of 1 year, 2 months, 10 days, 12 hours,
45 minutes and 30.25 seconds.

duration.between($date1,$date2)

Returns a duration between two temporal instances.

WITH duration("P1Y2M10DT12H45M") AS d

RETURN d.years, d.months, d.days, d.hours, d.minutes

Returns 1 year, 14 months, 10 days, 12 hours and 765
minutes.

WITH duration("P1Y2M10DT12H45M") AS d

RETURN d.years, d.monthsOfYear, d.days, d.hours,

d.minutesOfHour

Returns 1 year, 2 months, 10 days, 12 hours and 45
minutes.

date("2015-01-01") + duration("P1Y1M1D")

Returns a date of 2016-02-02. It is also possible to subtract
durations from temporal instances.

duration("PT30S") * 10

Returns a duration of 5 minutes. It is also possible to
divide a duration by a number.

String Functions !!

toString($expression)

String representation of the expression.

replace($original, $search, $replacement)

Replace all occurrences of search with replacement. All
arguments must be expressions.

substring($original, $begin, $subLength)

Get part of a string. The subLength argument is optional.

left($original, $subLength),

 right($original, $subLength)

The first part of a string. The last part of the string.

trim($original), lTrim($original),

 rTrim($original)

Trim all whitespace, or on the left or right side.

toUpper($original), toLower($original)

UPPERCASE and lowercase.

split($original, $delimiter)

Split a string into a list of strings.

reverse($original)

Reverse a string.

size($string)

Calculate the number of characters in the string.

Aggregating Functions !!

count(*)

The number of matching rows.

count(variable)

The number of non-null values.

count(DISTINCT variable)

All aggregating functions also take the DISTINCT operator,
which removes duplicates from the values.

collect(n.property)

List from the values, ignores null.

sum(n.property)

Sum numerical values. Similar functions are avg(), min(),
max().

percentileDisc(n.property, $percentile)

Discrete percentile. Continuous percentile is
percentileCont(). The percentile argument is from 0.0 to
1.0.

stDev(n.property)

Standard deviation for a sample of a population. For an
entire population use stDevP().

Path Functions !!

length(path)

The number of relationships in the path.

nodes(path)

The nodes in the path as a list.

relationships(path)

The relationships in the path as a list.

[x IN nodes(path) | x.prop]

Extract properties from the nodes in a path.

Relationship Functions !!

type(a_relationship)

String representation of the relationship type.

startNode(a_relationship)

Start node of the relationship.

endNode(a_relationship)

End node of the relationship.

id(a_relationship)

The internal id of the relationship.

INDEX !!

CREATE INDEX FOR (p:Person) ON (p.name)

Create an index on the label Person and property name.

CREATE INDEX index_name FOR (p:Person) ON (p.age)

Create an index on the label Person and property age with
the name index_name.

CREATE INDEX FOR (p:Person) ON (p.name, p.age)

Create a composite index on the label Person and the
properties name and age.

MATCH (n:Person) WHERE n.name = $value

An index can be automatically used for the equality
comparison. Note that for example toLower(n.name) =
$value will not use an index.

MATCH (n:Person)

WHERE n.name IN [$value]

An index can automatically be used for the IN list checks.

MATCH (n:Person)

WHERE n.name = $value and n.age = $value2

A composite index can be automatically used for equality
comparison of both properties. Note that there needs to
be predicates on all properties of the composite index for
it to be used.

MATCH (n:Person)

USING INDEX n:Person(name)

WHERE n.name = $value

Index usage can be enforced when Cypher uses a
suboptimal index, or more than one index should be
used.

DROP INDEX index_name

Drop the index named index_name.

CONSTRAINT !!

CREATE CONSTRAINT ON (p:Person)

 ASSERT p.name IS UNIQUE

Create a unique property constraint on the label Person
and property name. If any other node with that label is
updated or created with a name that already exists, the
write operation will fail. This constraint will create an
accompanying index.

CREATE CONSTRAINT uniqueness ON (p:Person)

 ASSERT p.age IS UNIQUE

Create a unique property constraint on the label Person
and property age with the name uniqueness. If any other
node with that label is updated or created with a age that
already exists, the write operation will fail. This
constraint will create an accompanying index.

CREATE CONSTRAINT ON (p:Person)

 ASSERT exists(p.name)

(�) Create a node property existence constraint on the
label Person and property name. If a node with that label is
created without a name, or if the name property is removed
from an existing node with the Person label, the write
operation will fail.

CREATE CONSTRAINT node_exists ON (p:Person)

 ASSERT exists(p.surname)

(�) Create a node property existence constraint on the
label Person and property surname with the name
node_exists. If a node with that label is created without a
surname, or if the surname property is removed from an
existing node with the Person label, the write operation
will fail.

CREATE CONSTRAINT ON ()-[l:LIKED]-()

 ASSERT exists(l.when)

(�) Create a relationship property existence constraint
on the type LIKED and property when. If a relationship with
that type is created without a when, or if the when property
is removed from an existing relationship with the LIKED
type, the write operation will fail.

CREATE CONSTRAINT relationship_exists ON ()-[l:LIKED]-()

 ASSERT exists(l.since)

(�) Create a relationship property existence constraint
on the type LIKED and property since with the name
relationship_exists. If a relationship with that type is
created without a since, or if the since property is
removed from an existing relationship with the LIKED
type, the write operation will fail.

CREATE CONSTRAINT ON (p:Person)

 ASSERT (p.firstname, p.surname) IS NODE KEY

(�) Create a node key constraint on the label Person and
properties firstname and surname. If a node with that label
is created without both firstname and surname or if the
combination of the two is not unique, or if the firstname
and/or surname labels on an existing node with the Person
label is modified to violate these constraints, the write
operation will fail.

CREATE CONSTRAINT node_key ON (p:Person)

 ASSERT (p.name, p.surname) IS NODE KEY

(�) Create a node key constraint on the label Person and
properties name and surname with the name node_key. If a
node with that label is created without both name and
surname or if the combination of the two is not unique, or
if the name and/or surname labels on an existing node with
the Person label is modified to violate these constraints,
the write operation will fail.

DROP CONSTRAINT uniqueness

Drop the constraint with the name uniqueness.

https://github.com/neo4j/neo4j
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.neo4j.com/
https://neo4j.com/docs/cypher-manual/4.0/clauses/match
https://neo4j.com/docs/cypher-manual/4.0/clauses/where
https://neo4j.com/docs/cypher-manual/4.0/clauses/create
https://neo4j.com/docs/cypher-manual/4.0/clauses/set
https://neo4j.com/docs/cypher-manual/4.0/administration/databases
https://neo4j.com/docs/cypher-manual/4.0/clauses/return
https://neo4j.com/docs/cypher-manual/4.0/clauses/with
https://neo4j.com/docs/cypher-manual/4.0/clauses/union
https://neo4j.com/docs/cypher-manual/4.0/clauses/merge
https://neo4j.com/docs/cypher-manual/4.0/clauses/remove
https://neo4j.com/docs/cypher-manual/4.0/administration/security/users-and-roles/%23administration-security-users
https://neo4j.com/docs/cypher-manual/4.0/clauses/delete
https://neo4j.com/docs/cypher-manual/4.0/clauses/foreach
https://neo4j.com/docs/cypher-manual/4.0/clauses/call-subquery
https://neo4j.com/docs/cypher-manual/4.0/clauses/call
https://neo4j.com/docs/cypher-manual/4.0/clauses/load-csv
https://neo4j.com/docs/cypher-manual/4.0/query-tuning
https://neo4j.com/docs/cypher-manual/4.0/query-tuning
https://neo4j.com/docs/cypher-manual/4.0/administration/security/users-and-roles/%23administration-security-roles
https://neo4j.com/docs/cypher-manual/4.0/syntax/operators/
https://neo4j.com/docs/cypher-manual/4.0/syntax/working-with-null/
https://neo4j.com/docs/cypher-manual/4.0/clauses/where
https://neo4j.com/docs/cypher-manual/4.0/syntax/expressions
https://neo4j.com/docs/cypher-manual/4.0/administration/security/subgraph/%23administration-security-subgraph-show
https://neo4j.com/docs/cypher-manual/4.0/syntax/patterns
https://neo4j.com/docs/cypher-manual/4.0/syntax/maps
https://neo4j.com/docs/cypher-manual/4.0/administration/security/subgraph
https://neo4j.com/docs/cypher-manual/4.0/syntax/lists
https://neo4j.com/docs/cypher-manual/4.0/functions/predicate
https://neo4j.com/docs/cypher-manual/4.0/functions/list
https://neo4j.com/docs/cypher-manual/4.0/administration/security/administration/%23administration-security-administration-database-privileges
https://neo4j.com/docs/cypher-manual/4.0/functions
https://neo4j.com/docs/cypher-manual/4.0/functions/temporal
https://neo4j.com/docs/cypher-manual/4.0/functions
https://neo4j.com/docs/cypher-manual/4.0/administration/security/administration/%23administration-security-administration-dbms-privileges-role-management
https://neo4j.com/docs/cypher-manual/4.0/functions/spatial
https://neo4j.com/docs/cypher-manual/4.0/functions/temporal/duration/
https://neo4j.com/docs/cypher-manual/4.0/functions/string
https://neo4j.com/docs/cypher-manual/4.0/functions/aggregating
https://neo4j.com/docs/cypher-manual/4.0/functions/list
https://neo4j.com/docs/cypher-manual/4.0/functions/scalar
https://neo4j.com/docs/cypher-manual/4.0/administration/indexes-for-search-performance
https://neo4j.com/docs/cypher-manual/4.0/administration/constraints

Neo4j Cypher Refcard 4.0

(�) Functionality available in Neo4j Enterprise Edition. by Neo4j, Inc..

LegendLegend

Read

Write

General

Functions

Schema

Performance

Multidatabase

Security

SyntaxSyntax

Read Query Structure

[MATCH WHERE]

[OPTIONAL MATCH WHERE]

[WITH [ORDER BY] [SKIP] [LIMIT]]

RETURN [ORDER BY] [SKIP] [LIMIT]

MATCH !!

MATCH (n:Person)-[:KNOWS]->(m:Person)

WHERE n.name = 'Alice'

Node patterns can contain labels and properties.

MATCH (n)-->(m)

Any pattern can be used in MATCH.

MATCH (n {name: 'Alice'})-->(m)

Patterns with node properties.

MATCH p = (n)-->(m)

Assign a path to p.

OPTIONAL MATCH (n)-[r]->(m)

Optional pattern: nulls will be used for missing parts.

WHERE !!

WHERE n.property <> $value

Use a predicate to filter. Note that WHERE is always part of
a MATCH, OPTIONAL MATCH or WITH clause. Putting it after a
different clause in a query will alter what it does.

WHERE EXISTS {

 MATCH (n)-->(m) WHERE n.age = m.age

}

Use an existential subquery to filter.

Write-Only Query Structure

(CREATE | MERGE)*

[SET|DELETE|REMOVE|FOREACH]*

[RETURN [ORDER BY] [SKIP] [LIMIT]]

Read-Write Query Structure

[MATCH WHERE]

[OPTIONAL MATCH WHERE]

[WITH [ORDER BY] [SKIP] [LIMIT]]

(CREATE | MERGE)*

[SET|DELETE|REMOVE|FOREACH]*

[RETURN [ORDER BY] [SKIP] [LIMIT]]

CREATE !!

CREATE (n {name: $value})

Create a node with the given properties.

CREATE (n $map)

Create a node with the given properties.

UNWIND $listOfMaps AS properties

CREATE (n) SET n = properties

Create nodes with the given properties.

CREATE (n)-[r:KNOWS]->(m)

Create a relationship with the given type and direction;
bind a variable to it.

CREATE (n)-[:LOVES {since: $value}]->(m)

Create a relationship with the given type, direction, and
properties.

SET !!

SET n.property1 = $value1,

 n.property2 = $value2

Update or create a property.

SET n = $map

Set all properties. This will remove any existing
properties.

SET n += $map

Add and update properties, while keeping existing ones.

SET n:Person

Adds a label Person to a node.

DATABASE MANAGEMENT !!

CREATE OR REPLACE DATABASE myDatabase

(�) Create a database named myDatabase. If a database
with that name exists, then the existing database is
deleted and a new one created.

STOP DATABASE myDatabase

(�) Stop the database myDatabase.

START DATABASE myDatabase

(�) Start the database myDatabase.

SHOW DATABASES

List all databases in the system and information about
them.

SHOW DATABASE myDatabase

List information about the database myDatabase.

SHOW DEFAULT DATABASE

List information about the default database.

DROP DATABASE myDatabase IF EXISTS

(�) Delete the database myDatabase, if it exists.

RETURN !!

RETURN *

Return the value of all variables.

RETURN n AS columnName

Use alias for result column name.

RETURN DISTINCT n

Return unique rows.

ORDER BY n.property

Sort the result.

ORDER BY n.property DESC

Sort the result in descending order.

SKIP $skipNumber

Skip a number of results.

LIMIT $limitNumber

Limit the number of results.

SKIP $skipNumber LIMIT $limitNumber

Skip results at the top and limit the number of results.

RETURN count(*)

The number of matching rows. See Aggregating
Functions for more.

WITH !!

MATCH (user)-[:FRIEND]-(friend)

WHERE user.name = $name

WITH user, count(friend) AS friends

WHERE friends > 10

RETURN user

The WITH syntax is similar to RETURN. It separates query
parts explicitly, allowing you to declare which variables
to carry over to the next part.

MATCH (user)-[:FRIEND]-(friend)

WITH user, count(friend) AS friends

ORDER BY friends DESC

 SKIP 1

 LIMIT 3

RETURN user

ORDER BY, SKIP, and LIMIT can also be used with WITH.

UNION !!

MATCH (a)-[:KNOWS]->(b)

RETURN b.name

UNION

MATCH (a)-[:LOVES]->(b)

RETURN b.name

Returns the distinct union of all query results. Result
column types and names have to match.

MATCH (a)-[:KNOWS]->(b)

RETURN b.name

UNION ALL

MATCH (a)-[:LOVES]->(b)

RETURN b.name

Returns the union of all query results, including
duplicated rows.

MERGE !!

MERGE (n:Person {name: $value})

 ON CREATE SET n.created = timestamp()

 ON MATCH SET

 n.counter = coalesce(n.counter, 0) + 1,

 n.accessTime = timestamp()

Match a pattern or create it if it does not exist. Use ON
CREATE and ON MATCH for conditional updates.

MATCH (a:Person {name: $value1}),

 (b:Person {name: $value2})

MERGE (a)-[r:LOVES]->(b)

MERGE finds or creates a relationship between the nodes.

MATCH (a:Person {name: $value1})

MERGE

 (a)-[r:KNOWS]->(b:Person {name: $value3})

MERGE finds or creates subgraphs attached to the node.

REMOVE !!

REMOVE n:Person

Remove a label from n.

REMOVE n.property

Remove a property.

USER MANAGEMENT !!

CREATE USER alice SET PASSWORD $password

Create a new user and a password. This password must
be changed on the first login.

ALTER USER alice SET PASSWORD $password CHANGE NOT

REQUIRED

(�) Set a new password for a user. This user will not be
required to change this password on the next login.

ALTER USER alice SET STATUS SUSPENDED

(�) Change the user status to suspended. Use SET STATUS
ACTIVE to reactivate the user.

ALTER CURRENT USER SET PASSWORD FROM $old TO $new

Change the password of the logged-in user. The user will
not be required to change this password on the next
login.

SHOW USERS

List all users in the system, their status, roles and if they
need to change their password.
(�) Status and roles are Enterprise Edition only.

DROP USER alice

Delete the user.

DELETE !!

DELETE n, r

Delete a node and a relationship.

DETACH DELETE n

Delete a node and all relationships connected to it.

MATCH (n)

DETACH DELETE n

Delete all nodes and relationships from the database.

FOREACH !!

FOREACH (r IN relationships(path) |

 SET r.marked = true)

Execute a mutating operation for each relationship in a
path.

FOREACH (value IN coll |

 CREATE (:Person {name: value}))

Execute a mutating operation for each element in a list.

CALL subquery !!

CALL {

 MATCH (p:Person)-[:FRIEND_OF]->(other:Person) RETURN p,

other

 UNION

 MATCH (p:Child)-[:CHILD_OF]->(other:Parent) RETURN p,

other

}

This calls a subquery with two union parts. The result of
the subquery can afterwards be post-processed.

CALL procedure !!

CALL db.labels() YIELD label

This shows a standalone call to the built-in procedure
db.labels to list all labels used in the database. Note that
required procedure arguments are given explicitly in
brackets after the procedure name.

CALL java.stored.procedureWithArgs

Standalone calls may omit YIELD and also provide
arguments implicitly via statement parameters, e.g. a
standalone call requiring one argument input may be run
by passing the parameter map {input: 'foo'}.

CALL db.labels() YIELD label

RETURN count(label) AS count

Calls the built-in procedure db.labels inside a larger
query to count all labels used in the database. Calls
inside a larger query always requires passing arguments
and naming results explicitly with YIELD.

Import !!

LOAD CSV FROM

'https://neo4j.com/docs/cypher-

refcard/4.0/csv/artists.csv' AS line

CREATE (:Artist {name: line[1], year: toInteger(line[2])})

Load data from a CSV file and create nodes.

LOAD CSV WITH HEADERS FROM

'https://neo4j.com/docs/cypher-refcard/4.0/csv/artists-

with-headers.csv' AS line

CREATE (:Artist {name: line.Name, year:

toInteger(line.Year)})

Load CSV data which has headers.

USING PERIODIC COMMIT 500

LOAD CSV WITH HEADERS FROM

'https://neo4j.com/docs/cypher-refcard/4.0/csv/artists-

with-headers.csv' AS line

CREATE (:Artist {name: line.Name, year:

toInteger(line.Year)})

Commit the current transaction after every 500 rows
when importing large amounts of data.

LOAD CSV FROM

'https://neo4j.com/docs/cypher-refcard/4.0/csv/artists-

fieldterminator.csv'

AS line FIELDTERMINATOR ';'

CREATE (:Artist {name: line[1], year: toInteger(line[2])})

Use a different field terminator, not the default which is
a comma (with no whitespace around it).

LOAD CSV FROM

'https://neo4j.com/docs/cypher-

refcard/4.0/csv/artists.csv' AS line

RETURN DISTINCT file()

Returns the absolute path of the file that LOAD CSV is
processing, returns null if called outside of LOAD CSV
context.

LOAD CSV FROM

'https://neo4j.com/docs/cypher-

refcard/4.0/csv/artists.csv' AS line

RETURN linenumber()

Returns the line number that LOAD CSV is currently
processing, returns null if called outside of LOAD CSV
context.

Performance !!

Use parameters instead of literals when possible. This
allows Cypher to re-use your queries instead of having
to parse and build new execution plans.

Always set an upper limit for your variable length
patterns. It’s possible to have a query go wild and
touch all nodes in a graph by mistake.

Return only the data you need. Avoid returning whole
nodes and relationships — instead, pick the data you
need and return only that.

Use PROFILE / EXPLAIN to analyze the performance of
your queries. See Query Tuning for more information
on these and other topics, such as planner hints.

(̣) ROLE MANAGEMENT !!

CREATE ROLE my_role

Create a role.

CREATE ROLE my_second_role IF NOT EXISTS AS COPY OF

my_role

Create a role named my_second_role, unless it already
exists, as a copy of the existing my_role.

GRANT ROLE my_role, my_second_role TO alice

Assign roles to a user.

REVOKE ROLE my_second_role FROM alice

Remove a specified role from a user.

SHOW ROLES

List all roles in the system.

SHOW POPULATED ROLES WITH USERS

List all roles that are assigned to at least one user in the
system, and the users assigned to those roles.

DROP ROLE my_role

Delete a role.

Operators !!

General DISTINCT, ., []

Mathematical +, -, *, /, %, ^

Comparison =, <>, <, >, <=, >=, IS NULL, IS
NOT NULL

Boolean AND, OR, XOR, NOT

String +

List +, IN, [x], [x .. y]

Regular Expression =~

String matching STARTS WITH, ENDS WITH,
CONTAINS

null !!

null is used to represent missing/undefined values.

null is not equal to null. Not knowing two values does
not imply that they are the same value. So the
expression null = null yields null and not true. To
check if an expression is null, use IS NULL.

Arithmetic expressions, comparisons and function
calls (except coalesce) will return null if any argument
is null.

An attempt to access a missing element in a list or a
property that doesn’t exist yields null.

In OPTIONAL MATCH clauses, nulls will be used for missing
parts of the pattern.

Predicates !!

n.property <> $value

Use comparison operators.

exists(n.property)

Use functions.

n.number >= 1 AND n.number <= 10

Use boolean operators to combine predicates.

1 <= n.number <= 10

Use chained operators to combine predicates.

n:Person

Check for node labels.

variable IS NULL

Check if something is null.

NOT exists(n.property) OR n.property = $value

Either the property does not exist or the predicate is true.

n.property = $value

Non-existing property returns null, which is not equal to
anything.

n["property"] = $value

Properties may also be accessed using a dynamically
computed property name.

n.property STARTS WITH 'Tim' OR

n.property ENDS WITH 'n' OR

n.property CONTAINS 'goodie'

String matching.

n.property =~ 'Tim.*'

String regular expression matching.

(n)-[:KNOWS]->(m)

Ensure the pattern has at least one match.

NOT (n)-[:KNOWS]->(m)

Exclude matches to (n)-[:KNOWS]->(m) from the result.

n.property IN [$value1, $value2]

Check if an element exists in a list.

CASE !!

CASE n.eyes

 WHEN 'blue' THEN 1

 WHEN 'brown' THEN 2

 ELSE 3

END

Return THEN value from the matching WHEN value. The ELSE
value is optional, and substituted for null if missing.

CASE

 WHEN n.eyes = 'blue' THEN 1

 WHEN n.age < 40 THEN 2

 ELSE 3

END

Return THEN value from the first WHEN predicate evaluating
to true. Predicates are evaluated in order.

(̣) SHOW PRIVILEGES !!

SHOW PRIVILEGES

List all privileges in the system, and the roles that they
are assigned to.

SHOW ROLE my_role PRIVILEGES

List all privileges assigned to a role.

SHOW USER alice PRIVILEGES

List all privileges of a user, and the role that they are
assigned to.

Patterns !!

(n:Person)

Node with Person label.

(n:Person:Swedish)

Node with both Person and Swedish labels.

(n:Person {name: $value})

Node with the declared properties.

()-[r {name: $value}]-()

Matches relationships with the declared properties.

(n)-->(m)

Relationship from n to m.

(n)--(m)

Relationship in any direction between n and m.

(n:Person)-->(m)

Node n labeled Person with relationship to m.

(m)<-[:KNOWS]-(n)

Relationship of type KNOWS from n to m.

(n)-[:KNOWS|:LOVES]->(m)

Relationship of type KNOWS or of type LOVES from n to m.

(n)-[r]->(m)

Bind the relationship to variable r.

(n)-[*1..5]->(m)

Variable length path of between 1 and 5 relationships
from n to m.

(n)-[*]->(m)

Variable length path of any number of relationships from
n to m. (See Performance section.)

(n)-[:KNOWS]->(m {property: $value})

A relationship of type KNOWS from a node n to a node m
with the declared property.

shortestPath((n1:Person)-[*..6]-(n2:Person))

Find a single shortest path.

allShortestPaths((n1:Person)-[*..6]->(n2:Person))

Find all shortest paths.

size((n)-->()-->())

Count the paths matching the pattern.

Labels

CREATE (n:Person {name: $value})

Create a node with label and property.

MERGE (n:Person {name: $value})

Matches or creates unique node(s) with the label and
property.

SET n:Spouse:Parent:Employee

Add label(s) to a node.

MATCH (n:Person)

Matches nodes labeled Person.

MATCH (n:Person)

WHERE n.name = $value

Matches nodes labeled Person with the given name.

WHERE (n:Person)

Checks the existence of the label on the node.

labels(n)

Labels of the node.

REMOVE n:Person

Remove the label from the node.

Maps !!

{name: 'Alice', age: 38,

 address: {city: 'London', residential: true}}

Literal maps are declared in curly braces much like
property maps. Lists are supported.

WITH {person: {name: 'Anne', age: 25}} AS p

RETURN p.person.name

Access the property of a nested map.

MERGE (p:Person {name: $map.name})

 ON CREATE SET p = $map

Maps can be passed in as parameters and used either as
a map or by accessing keys.

MATCH (matchedNode:Person)

RETURN matchedNode

Nodes and relationships are returned as maps of their
data.

map.name, map.age, map.children[0]

Map entries can be accessed by their keys. Invalid keys
result in an error.

(̣) GRAPH PRIVILEGES !!

GRANT TRAVERSE ON GRAPH * NODES * TO my_role

Grant traverse privilege on all nodes and all graphs to a
role.

DENY READ {prop} ON GRAPH foo RELATIONSHIP Type TO my_role

Deny read privilege on a specified property, on all
relationships with a specified type in a specified graph,
to a role.

GRANT MATCH {*} ON GRAPH foo ELEMENTS Label TO my_role

Grant read privilege on all properties and traverse
privilege to a role. Here, both privileges apply to all
nodes with a specified label in the graph.

REVOKE WRITE ON GRAPH * FROM my_role

Revoke write privilege on all graphs from a role.

Lists !!

['a', 'b', 'c'] AS list

Literal lists are declared in square brackets.

size($list) AS len, $list[0] AS value

Lists can be passed in as parameters.

range($firstNum, $lastNum, $step) AS list

range() creates a list of numbers (step is optional), other
functions returning lists are: labels(), nodes(),
relationships().

MATCH p = (a)-[:KNOWS*]->()

RETURN relationships(p) AS r

The list of relationships comprising a variable length
path can be returned using named paths and
relationships().

RETURN matchedNode.list[0] AS value,

 size(matchedNode.list) AS len

Properties can be lists of strings, numbers or booleans.

list[$idx] AS value,

list[$startIdx..$endIdx] AS slice

List elements can be accessed with idx subscripts in
square brackets. Invalid indexes return null. Slices can
be retrieved with intervals from start_idx to end_idx, each
of which can be omitted or negative. Out of range
elements are ignored.

UNWIND $names AS name

MATCH (n {name: name})

RETURN avg(n.age)

With UNWIND, any list can be transformed back into
individual rows. The example matches all names from a
list of names.

MATCH (a)

RETURN [(a)-->(b) WHERE b.name = 'Bob' | b.age]

Pattern comprehensions may be used to do a custom
projection from a match directly into a list.

MATCH (person)

RETURN person { .name, .age}

Map projections may be easily constructed from nodes,
relationships and other map values.

List Predicates !!

all(x IN coll WHERE exists(x.property))

Returns true if the predicate is true for all elements in the
list.

any(x IN coll WHERE exists(x.property))

Returns true if the predicate is true for at least one
element in the list.

none(x IN coll WHERE exists(x.property))

Returns true if the predicate is false for all elements in
the list.

single(x IN coll WHERE exists(x.property))

Returns true if the predicate is true for exactly one
element in the list.

List Expressions !!

size($list)

Number of elements in the list.

reverse($list)

Reverse the order of the elements in the list.

head($list), last($list), tail($list)

head() returns the first, last() the last element of the list.
tail() returns all but the first element. All return null for
an empty list.

[x IN list | x.prop]

A list of the value of the expression for each element in
the original list.

[x IN list WHERE x.prop <> $value]

A filtered list of the elements where the predicate is true.

[x IN list WHERE x.prop <> $value | x.prop]

A list comprehension that filters a list and extracts the
value of the expression for each element in that list.

reduce(s = "", x IN list | s + x.prop)

Evaluate expression for each element in the list,
accumulate the results.

(̣) DATABASE PRIVILEGES !!

GRANT ACCESS ON DATABASE * TO my_role

Grant privilege to access and run queries against all
databases to a role.

GRANT START ON DATABASE * TO my_role

Grant privilege to start all databases to a role.

GRANT STOP ON DATABASE * TO my_role

Grant privilege to stop all databases to a role.

GRANT CREATE INDEX ON DATABASE foo TO my_role

Grant privilege to create indexes on a specified database
to a role.

GRANT DROP INDEX ON DATABASE foo TO my_role

Grant privilege to drop indexes on a specified database
to a role.

DENY INDEX MANAGEMENT ON DATABASE bar TO my_role

Deny privilege to create and drop indexes on a specified
database to a role.

GRANT CREATE CONSTRAINT ON DATABASE * TO my_role

Grant privilege to create constraints on all databases to a
role.

DENY DROP CONSTRAINT ON DATABASE * TO my_role

Deny privilege to drop constraints on all databases to a
role.

REVOKE CONSTRAINT ON DATABASE * FROM my_role

Revoke granted and denied privileges to create and drop
constraints on all databases from a role.

GRANT CREATE NEW LABELS ON DATABASE * TO my_role

Grant privilege to create new labels on all databases to a
role.

DENY CREATE NEW TYPES ON DATABASE foo TO my_role

Deny privilege to create new relationship types on a
specified database to a role.

REVOKE GRANT CREATE NEW PROPERTY NAMES ON DATABASE bar

FROM my_role

Revoke the grant privilege to create new property names
on a specified database from a role.

GRANT NAME MANAGEMENT ON DATABASE * TO my_role

Grant privilege to create labels, relationship types, and
property names on all databases to a role.

GRANT ALL ON DATABASE baz TO my_role

Grant all database privileges on a specified database to a
role.

Functions !!

coalesce(n.property, $defaultValue)

The first non-null expression.

timestamp()

Milliseconds since midnight, January 1, 1970 UTC.

id(nodeOrRelationship)

The internal id of the relationship or node.

toInteger($expr)

Converts the given input into an integer if possible;
otherwise it returns null.

toFloat($expr)

Converts the given input into a floating point number if
possible; otherwise it returns null.

toBoolean($expr)

Converts the given input into a boolean if possible;
otherwise it returns null.

keys($expr)

Returns a list of string representations for the property
names of a node, relationship, or map.

properties($expr)

Returns a map containing all the properties of a node or
relationship.

Temporal Functions !!

date("2018-04-05")

Returns a date parsed from a string.

localtime("12:45:30.25")

Returns a time with no time zone.

time("12:45:30.25+01:00")

Returns a time in a specified time zone.

localdatetime("2018-04-05T12:34:00")

Returns a datetime with no time zone.

datetime("2018-04-05T12:34:00[Europe/Berlin]")

Returns a datetime in the specified time zone.

datetime({epochMillis: 3360000})

Transforms 3360000 as a UNIX Epoch time into a normal
datetime.

date({year: $year, month: $month, day: $day})

All of the temporal functions can also be called with a
map of named components. This example returns a date
from year, month and day components. Each function
supports a different set of possible components.

datetime({date: $date, time: $time})

Temporal types can be created by combining other types.
This example creates a datetime from a date and a time.

date({date: $datetime, day: 5})

Temporal types can be created by selecting from more
complex types, as well as overriding individual
components. This example creates a date by selecting
from a datetime, as well as overriding the day component.

WITH date("2018-04-05") AS d

RETURN d.year, d.month, d.day, d.week, d.dayOfWeek

Accessors allow extracting components of temporal
types.

Mathematical Functions !!

abs($expr)

The absolute value.

rand()

Returns a random number in the range from 0
(inclusive) to 1 (exclusive), [0,1). Returns a new value for
each call. Also useful for selecting a subset or random
ordering.

round($expr)

Round to the nearest integer; ceil() and floor() find the
next integer up or down.

sqrt($expr)

The square root.

sign($expr)

0 if zero, -1 if negative, 1 if positive.

sin($expr)

Trigonometric functions also include cos(), tan(), cot(),
asin(), acos(), atan(), atan2(), and haversin(). All
arguments for the trigonometric functions should be in
radians, if not otherwise specified.

degrees($expr), radians($expr), pi()

Converts radians into degrees; use radians() for the
reverse, and pi() for π.

log10($expr), log($expr), exp($expr), e()

Logarithm base 10, natural logarithm, e to the power of
the parameter, and the value of e.

(̣) ROLE MANAGEMENT PRIVILEGES !!

GRANT CREATE ROLE ON DBMS TO my_role

Grant the privilege to create roles to a role.

GRANT DROP ROLE ON DBMS TO my_role

Grant the privilege to delete roles to a role.

DENY ASSIGN ROLE ON DBMS TO my_role

Deny the privilege to assign roles to users to a role.

DENY REMOVE ROLE ON DBMS TO my_role

Deny the privilege to remove roles from users to a role.

REVOKE DENY SHOW ROLE ON DBMS FROM my_role

Revoke the denied privilege to show roles from a role.

GRANT ROLE MANAGEMENT ON DBMS TO my_role

Grant all privileges to manage roles to a role.

Spatial Functions !!

point({x: $x, y: $y})

Returns a point in a 2D cartesian coordinate system.

point({latitude: $y, longitude: $x})

Returns a point in a 2D geographic coordinate system,
with coordinates specified in decimal degrees.

point({x: $x, y: $y, z: $z})

Returns a point in a 3D cartesian coordinate system.

point({latitude: $y, longitude: $x, height: $z})

Returns a point in a 3D geographic coordinate system,
with latitude and longitude in decimal degrees, and
height in meters.

distance(point({x: $x1, y: $y1}), point({x: $x2, y: $y2}))

Returns a floating point number representing the linear
distance between two points. The returned units will be
the same as those of the point coordinates, and it will
work for both 2D and 3D cartesian points.

distance(point({latitude: $y1, longitude: $x1}),

point({latitude: $y2, longitude: $x2}))

Returns the geodesic distance between two points in
meters. It can be used for 3D geographic points as well.

Duration Functions !!

duration("P1Y2M10DT12H45M30.25S")

Returns a duration of 1 year, 2 months, 10 days, 12 hours,
45 minutes and 30.25 seconds.

duration.between($date1,$date2)

Returns a duration between two temporal instances.

WITH duration("P1Y2M10DT12H45M") AS d

RETURN d.years, d.months, d.days, d.hours, d.minutes

Returns 1 year, 14 months, 10 days, 12 hours and 765
minutes.

WITH duration("P1Y2M10DT12H45M") AS d

RETURN d.years, d.monthsOfYear, d.days, d.hours,

d.minutesOfHour

Returns 1 year, 2 months, 10 days, 12 hours and 45
minutes.

date("2015-01-01") + duration("P1Y1M1D")

Returns a date of 2016-02-02. It is also possible to subtract
durations from temporal instances.

duration("PT30S") * 10

Returns a duration of 5 minutes. It is also possible to
divide a duration by a number.

String Functions !!

toString($expression)

String representation of the expression.

replace($original, $search, $replacement)

Replace all occurrences of search with replacement. All
arguments must be expressions.

substring($original, $begin, $subLength)

Get part of a string. The subLength argument is optional.

left($original, $subLength),

 right($original, $subLength)

The first part of a string. The last part of the string.

trim($original), lTrim($original),

 rTrim($original)

Trim all whitespace, or on the left or right side.

toUpper($original), toLower($original)

UPPERCASE and lowercase.

split($original, $delimiter)

Split a string into a list of strings.

reverse($original)

Reverse a string.

size($string)

Calculate the number of characters in the string.

Aggregating Functions !!

count(*)

The number of matching rows.

count(variable)

The number of non-null values.

count(DISTINCT variable)

All aggregating functions also take the DISTINCT operator,
which removes duplicates from the values.

collect(n.property)

List from the values, ignores null.

sum(n.property)

Sum numerical values. Similar functions are avg(), min(),
max().

percentileDisc(n.property, $percentile)

Discrete percentile. Continuous percentile is
percentileCont(). The percentile argument is from 0.0 to
1.0.

stDev(n.property)

Standard deviation for a sample of a population. For an
entire population use stDevP().

Path Functions !!

length(path)

The number of relationships in the path.

nodes(path)

The nodes in the path as a list.

relationships(path)

The relationships in the path as a list.

[x IN nodes(path) | x.prop]

Extract properties from the nodes in a path.

Relationship Functions !!

type(a_relationship)

String representation of the relationship type.

startNode(a_relationship)

Start node of the relationship.

endNode(a_relationship)

End node of the relationship.

id(a_relationship)

The internal id of the relationship.

INDEX !!

CREATE INDEX FOR (p:Person) ON (p.name)

Create an index on the label Person and property name.

CREATE INDEX index_name FOR (p:Person) ON (p.age)

Create an index on the label Person and property age with
the name index_name.

CREATE INDEX FOR (p:Person) ON (p.name, p.age)

Create a composite index on the label Person and the
properties name and age.

MATCH (n:Person) WHERE n.name = $value

An index can be automatically used for the equality
comparison. Note that for example toLower(n.name) =
$value will not use an index.

MATCH (n:Person)

WHERE n.name IN [$value]

An index can automatically be used for the IN list checks.

MATCH (n:Person)

WHERE n.name = $value and n.age = $value2

A composite index can be automatically used for equality
comparison of both properties. Note that there needs to
be predicates on all properties of the composite index for
it to be used.

MATCH (n:Person)

USING INDEX n:Person(name)

WHERE n.name = $value

Index usage can be enforced when Cypher uses a
suboptimal index, or more than one index should be
used.

DROP INDEX index_name

Drop the index named index_name.

CONSTRAINT !!

CREATE CONSTRAINT ON (p:Person)

 ASSERT p.name IS UNIQUE

Create a unique property constraint on the label Person
and property name. If any other node with that label is
updated or created with a name that already exists, the
write operation will fail. This constraint will create an
accompanying index.

CREATE CONSTRAINT uniqueness ON (p:Person)

 ASSERT p.age IS UNIQUE

Create a unique property constraint on the label Person
and property age with the name uniqueness. If any other
node with that label is updated or created with a age that
already exists, the write operation will fail. This
constraint will create an accompanying index.

CREATE CONSTRAINT ON (p:Person)

 ASSERT exists(p.name)

(�) Create a node property existence constraint on the
label Person and property name. If a node with that label is
created without a name, or if the name property is removed
from an existing node with the Person label, the write
operation will fail.

CREATE CONSTRAINT node_exists ON (p:Person)

 ASSERT exists(p.surname)

(�) Create a node property existence constraint on the
label Person and property surname with the name
node_exists. If a node with that label is created without a
surname, or if the surname property is removed from an
existing node with the Person label, the write operation
will fail.

CREATE CONSTRAINT ON ()-[l:LIKED]-()

 ASSERT exists(l.when)

(�) Create a relationship property existence constraint
on the type LIKED and property when. If a relationship with
that type is created without a when, or if the when property
is removed from an existing relationship with the LIKED
type, the write operation will fail.

CREATE CONSTRAINT relationship_exists ON ()-[l:LIKED]-()

 ASSERT exists(l.since)

(�) Create a relationship property existence constraint
on the type LIKED and property since with the name
relationship_exists. If a relationship with that type is
created without a since, or if the since property is
removed from an existing relationship with the LIKED
type, the write operation will fail.

CREATE CONSTRAINT ON (p:Person)

 ASSERT (p.firstname, p.surname) IS NODE KEY

(�) Create a node key constraint on the label Person and
properties firstname and surname. If a node with that label
is created without both firstname and surname or if the
combination of the two is not unique, or if the firstname
and/or surname labels on an existing node with the Person
label is modified to violate these constraints, the write
operation will fail.

CREATE CONSTRAINT node_key ON (p:Person)

 ASSERT (p.name, p.surname) IS NODE KEY

(�) Create a node key constraint on the label Person and
properties name and surname with the name node_key. If a
node with that label is created without both name and
surname or if the combination of the two is not unique, or
if the name and/or surname labels on an existing node with
the Person label is modified to violate these constraints,
the write operation will fail.

DROP CONSTRAINT uniqueness

Drop the constraint with the name uniqueness.

https://github.com/neo4j/neo4j
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.neo4j.com/
https://neo4j.com/docs/cypher-manual/4.0/clauses/match
https://neo4j.com/docs/cypher-manual/4.0/clauses/where
https://neo4j.com/docs/cypher-manual/4.0/clauses/create
https://neo4j.com/docs/cypher-manual/4.0/clauses/set
https://neo4j.com/docs/cypher-manual/4.0/administration/databases
https://neo4j.com/docs/cypher-manual/4.0/clauses/return
https://neo4j.com/docs/cypher-manual/4.0/clauses/with
https://neo4j.com/docs/cypher-manual/4.0/clauses/union
https://neo4j.com/docs/cypher-manual/4.0/clauses/merge
https://neo4j.com/docs/cypher-manual/4.0/clauses/remove
https://neo4j.com/docs/cypher-manual/4.0/administration/security/users-and-roles/%23administration-security-users
https://neo4j.com/docs/cypher-manual/4.0/clauses/delete
https://neo4j.com/docs/cypher-manual/4.0/clauses/foreach
https://neo4j.com/docs/cypher-manual/4.0/clauses/call-subquery
https://neo4j.com/docs/cypher-manual/4.0/clauses/call
https://neo4j.com/docs/cypher-manual/4.0/clauses/load-csv
https://neo4j.com/docs/cypher-manual/4.0/query-tuning
https://neo4j.com/docs/cypher-manual/4.0/query-tuning
https://neo4j.com/docs/cypher-manual/4.0/administration/security/users-and-roles/%23administration-security-roles
https://neo4j.com/docs/cypher-manual/4.0/syntax/operators/
https://neo4j.com/docs/cypher-manual/4.0/syntax/working-with-null/
https://neo4j.com/docs/cypher-manual/4.0/clauses/where
https://neo4j.com/docs/cypher-manual/4.0/syntax/expressions
https://neo4j.com/docs/cypher-manual/4.0/administration/security/subgraph/%23administration-security-subgraph-show
https://neo4j.com/docs/cypher-manual/4.0/syntax/patterns
https://neo4j.com/docs/cypher-manual/4.0/syntax/maps
https://neo4j.com/docs/cypher-manual/4.0/administration/security/subgraph
https://neo4j.com/docs/cypher-manual/4.0/syntax/lists
https://neo4j.com/docs/cypher-manual/4.0/functions/predicate
https://neo4j.com/docs/cypher-manual/4.0/functions/list
https://neo4j.com/docs/cypher-manual/4.0/administration/security/administration/%23administration-security-administration-database-privileges
https://neo4j.com/docs/cypher-manual/4.0/functions
https://neo4j.com/docs/cypher-manual/4.0/functions/temporal
https://neo4j.com/docs/cypher-manual/4.0/functions
https://neo4j.com/docs/cypher-manual/4.0/administration/security/administration/%23administration-security-administration-dbms-privileges-role-management
https://neo4j.com/docs/cypher-manual/4.0/functions/spatial
https://neo4j.com/docs/cypher-manual/4.0/functions/temporal/duration/
https://neo4j.com/docs/cypher-manual/4.0/functions/string
https://neo4j.com/docs/cypher-manual/4.0/functions/aggregating
https://neo4j.com/docs/cypher-manual/4.0/functions/list
https://neo4j.com/docs/cypher-manual/4.0/functions/scalar
https://neo4j.com/docs/cypher-manual/4.0/administration/indexes-for-search-performance
https://neo4j.com/docs/cypher-manual/4.0/administration/constraints

Neo4j Cypher Refcard 4.0

(�) Functionality available in Neo4j Enterprise Edition. by Neo4j, Inc..

LegendLegend

Read

Write

General

Functions

Schema

Performance

Multidatabase

Security

SyntaxSyntax

Read Query Structure

[MATCH WHERE]

[OPTIONAL MATCH WHERE]

[WITH [ORDER BY] [SKIP] [LIMIT]]

RETURN [ORDER BY] [SKIP] [LIMIT]

MATCH !!

MATCH (n:Person)-[:KNOWS]->(m:Person)

WHERE n.name = 'Alice'

Node patterns can contain labels and properties.

MATCH (n)-->(m)

Any pattern can be used in MATCH.

MATCH (n {name: 'Alice'})-->(m)

Patterns with node properties.

MATCH p = (n)-->(m)

Assign a path to p.

OPTIONAL MATCH (n)-[r]->(m)

Optional pattern: nulls will be used for missing parts.

WHERE !!

WHERE n.property <> $value

Use a predicate to filter. Note that WHERE is always part of
a MATCH, OPTIONAL MATCH or WITH clause. Putting it after a
different clause in a query will alter what it does.

WHERE EXISTS {

 MATCH (n)-->(m) WHERE n.age = m.age

}

Use an existential subquery to filter.

Write-Only Query Structure

(CREATE | MERGE)*

[SET|DELETE|REMOVE|FOREACH]*

[RETURN [ORDER BY] [SKIP] [LIMIT]]

Read-Write Query Structure

[MATCH WHERE]

[OPTIONAL MATCH WHERE]

[WITH [ORDER BY] [SKIP] [LIMIT]]

(CREATE | MERGE)*

[SET|DELETE|REMOVE|FOREACH]*

[RETURN [ORDER BY] [SKIP] [LIMIT]]

CREATE !!

CREATE (n {name: $value})

Create a node with the given properties.

CREATE (n $map)

Create a node with the given properties.

UNWIND $listOfMaps AS properties

CREATE (n) SET n = properties

Create nodes with the given properties.

CREATE (n)-[r:KNOWS]->(m)

Create a relationship with the given type and direction;
bind a variable to it.

CREATE (n)-[:LOVES {since: $value}]->(m)

Create a relationship with the given type, direction, and
properties.

SET !!

SET n.property1 = $value1,

 n.property2 = $value2

Update or create a property.

SET n = $map

Set all properties. This will remove any existing
properties.

SET n += $map

Add and update properties, while keeping existing ones.

SET n:Person

Adds a label Person to a node.

DATABASE MANAGEMENT !!

CREATE OR REPLACE DATABASE myDatabase

(�) Create a database named myDatabase. If a database
with that name exists, then the existing database is
deleted and a new one created.

STOP DATABASE myDatabase

(�) Stop the database myDatabase.

START DATABASE myDatabase

(�) Start the database myDatabase.

SHOW DATABASES

List all databases in the system and information about
them.

SHOW DATABASE myDatabase

List information about the database myDatabase.

SHOW DEFAULT DATABASE

List information about the default database.

DROP DATABASE myDatabase IF EXISTS

(�) Delete the database myDatabase, if it exists.

RETURN !!

RETURN *

Return the value of all variables.

RETURN n AS columnName

Use alias for result column name.

RETURN DISTINCT n

Return unique rows.

ORDER BY n.property

Sort the result.

ORDER BY n.property DESC

Sort the result in descending order.

SKIP $skipNumber

Skip a number of results.

LIMIT $limitNumber

Limit the number of results.

SKIP $skipNumber LIMIT $limitNumber

Skip results at the top and limit the number of results.

RETURN count(*)

The number of matching rows. See Aggregating
Functions for more.

WITH !!

MATCH (user)-[:FRIEND]-(friend)

WHERE user.name = $name

WITH user, count(friend) AS friends

WHERE friends > 10

RETURN user

The WITH syntax is similar to RETURN. It separates query
parts explicitly, allowing you to declare which variables
to carry over to the next part.

MATCH (user)-[:FRIEND]-(friend)

WITH user, count(friend) AS friends

ORDER BY friends DESC

 SKIP 1

 LIMIT 3

RETURN user

ORDER BY, SKIP, and LIMIT can also be used with WITH.

UNION !!

MATCH (a)-[:KNOWS]->(b)

RETURN b.name

UNION

MATCH (a)-[:LOVES]->(b)

RETURN b.name

Returns the distinct union of all query results. Result
column types and names have to match.

MATCH (a)-[:KNOWS]->(b)

RETURN b.name

UNION ALL

MATCH (a)-[:LOVES]->(b)

RETURN b.name

Returns the union of all query results, including
duplicated rows.

MERGE !!

MERGE (n:Person {name: $value})

 ON CREATE SET n.created = timestamp()

 ON MATCH SET

 n.counter = coalesce(n.counter, 0) + 1,

 n.accessTime = timestamp()

Match a pattern or create it if it does not exist. Use ON
CREATE and ON MATCH for conditional updates.

MATCH (a:Person {name: $value1}),

 (b:Person {name: $value2})

MERGE (a)-[r:LOVES]->(b)

MERGE finds or creates a relationship between the nodes.

MATCH (a:Person {name: $value1})

MERGE

 (a)-[r:KNOWS]->(b:Person {name: $value3})

MERGE finds or creates subgraphs attached to the node.

REMOVE !!

REMOVE n:Person

Remove a label from n.

REMOVE n.property

Remove a property.

USER MANAGEMENT !!

CREATE USER alice SET PASSWORD $password

Create a new user and a password. This password must
be changed on the first login.

ALTER USER alice SET PASSWORD $password CHANGE NOT

REQUIRED

(�) Set a new password for a user. This user will not be
required to change this password on the next login.

ALTER USER alice SET STATUS SUSPENDED

(�) Change the user status to suspended. Use SET STATUS
ACTIVE to reactivate the user.

ALTER CURRENT USER SET PASSWORD FROM $old TO $new

Change the password of the logged-in user. The user will
not be required to change this password on the next
login.

SHOW USERS

List all users in the system, their status, roles and if they
need to change their password.
(�) Status and roles are Enterprise Edition only.

DROP USER alice

Delete the user.

DELETE !!

DELETE n, r

Delete a node and a relationship.

DETACH DELETE n

Delete a node and all relationships connected to it.

MATCH (n)

DETACH DELETE n

Delete all nodes and relationships from the database.

FOREACH !!

FOREACH (r IN relationships(path) |

 SET r.marked = true)

Execute a mutating operation for each relationship in a
path.

FOREACH (value IN coll |

 CREATE (:Person {name: value}))

Execute a mutating operation for each element in a list.

CALL subquery !!

CALL {

 MATCH (p:Person)-[:FRIEND_OF]->(other:Person) RETURN p,

other

 UNION

 MATCH (p:Child)-[:CHILD_OF]->(other:Parent) RETURN p,

other

}

This calls a subquery with two union parts. The result of
the subquery can afterwards be post-processed.

CALL procedure !!

CALL db.labels() YIELD label

This shows a standalone call to the built-in procedure
db.labels to list all labels used in the database. Note that
required procedure arguments are given explicitly in
brackets after the procedure name.

CALL java.stored.procedureWithArgs

Standalone calls may omit YIELD and also provide
arguments implicitly via statement parameters, e.g. a
standalone call requiring one argument input may be run
by passing the parameter map {input: 'foo'}.

CALL db.labels() YIELD label

RETURN count(label) AS count

Calls the built-in procedure db.labels inside a larger
query to count all labels used in the database. Calls
inside a larger query always requires passing arguments
and naming results explicitly with YIELD.

Import !!

LOAD CSV FROM

'https://neo4j.com/docs/cypher-

refcard/4.0/csv/artists.csv' AS line

CREATE (:Artist {name: line[1], year: toInteger(line[2])})

Load data from a CSV file and create nodes.

LOAD CSV WITH HEADERS FROM

'https://neo4j.com/docs/cypher-refcard/4.0/csv/artists-

with-headers.csv' AS line

CREATE (:Artist {name: line.Name, year:

toInteger(line.Year)})

Load CSV data which has headers.

USING PERIODIC COMMIT 500

LOAD CSV WITH HEADERS FROM

'https://neo4j.com/docs/cypher-refcard/4.0/csv/artists-

with-headers.csv' AS line

CREATE (:Artist {name: line.Name, year:

toInteger(line.Year)})

Commit the current transaction after every 500 rows
when importing large amounts of data.

LOAD CSV FROM

'https://neo4j.com/docs/cypher-refcard/4.0/csv/artists-

fieldterminator.csv'

AS line FIELDTERMINATOR ';'

CREATE (:Artist {name: line[1], year: toInteger(line[2])})

Use a different field terminator, not the default which is
a comma (with no whitespace around it).

LOAD CSV FROM

'https://neo4j.com/docs/cypher-

refcard/4.0/csv/artists.csv' AS line

RETURN DISTINCT file()

Returns the absolute path of the file that LOAD CSV is
processing, returns null if called outside of LOAD CSV
context.

LOAD CSV FROM

'https://neo4j.com/docs/cypher-

refcard/4.0/csv/artists.csv' AS line

RETURN linenumber()

Returns the line number that LOAD CSV is currently
processing, returns null if called outside of LOAD CSV
context.

Performance !!

Use parameters instead of literals when possible. This
allows Cypher to re-use your queries instead of having
to parse and build new execution plans.

Always set an upper limit for your variable length
patterns. It’s possible to have a query go wild and
touch all nodes in a graph by mistake.

Return only the data you need. Avoid returning whole
nodes and relationships — instead, pick the data you
need and return only that.

Use PROFILE / EXPLAIN to analyze the performance of
your queries. See Query Tuning for more information
on these and other topics, such as planner hints.

(̣) ROLE MANAGEMENT !!

CREATE ROLE my_role

Create a role.

CREATE ROLE my_second_role IF NOT EXISTS AS COPY OF

my_role

Create a role named my_second_role, unless it already
exists, as a copy of the existing my_role.

GRANT ROLE my_role, my_second_role TO alice

Assign roles to a user.

REVOKE ROLE my_second_role FROM alice

Remove a specified role from a user.

SHOW ROLES

List all roles in the system.

SHOW POPULATED ROLES WITH USERS

List all roles that are assigned to at least one user in the
system, and the users assigned to those roles.

DROP ROLE my_role

Delete a role.

Operators !!

General DISTINCT, ., []

Mathematical +, -, *, /, %, ^

Comparison =, <>, <, >, <=, >=, IS NULL, IS
NOT NULL

Boolean AND, OR, XOR, NOT

String +

List +, IN, [x], [x .. y]

Regular Expression =~

String matching STARTS WITH, ENDS WITH,
CONTAINS

null !!

null is used to represent missing/undefined values.

null is not equal to null. Not knowing two values does
not imply that they are the same value. So the
expression null = null yields null and not true. To
check if an expression is null, use IS NULL.

Arithmetic expressions, comparisons and function
calls (except coalesce) will return null if any argument
is null.

An attempt to access a missing element in a list or a
property that doesn’t exist yields null.

In OPTIONAL MATCH clauses, nulls will be used for missing
parts of the pattern.

Predicates !!

n.property <> $value

Use comparison operators.

exists(n.property)

Use functions.

n.number >= 1 AND n.number <= 10

Use boolean operators to combine predicates.

1 <= n.number <= 10

Use chained operators to combine predicates.

n:Person

Check for node labels.

variable IS NULL

Check if something is null.

NOT exists(n.property) OR n.property = $value

Either the property does not exist or the predicate is true.

n.property = $value

Non-existing property returns null, which is not equal to
anything.

n["property"] = $value

Properties may also be accessed using a dynamically
computed property name.

n.property STARTS WITH 'Tim' OR

n.property ENDS WITH 'n' OR

n.property CONTAINS 'goodie'

String matching.

n.property =~ 'Tim.*'

String regular expression matching.

(n)-[:KNOWS]->(m)

Ensure the pattern has at least one match.

NOT (n)-[:KNOWS]->(m)

Exclude matches to (n)-[:KNOWS]->(m) from the result.

n.property IN [$value1, $value2]

Check if an element exists in a list.

CASE !!

CASE n.eyes

 WHEN 'blue' THEN 1

 WHEN 'brown' THEN 2

 ELSE 3

END

Return THEN value from the matching WHEN value. The ELSE
value is optional, and substituted for null if missing.

CASE

 WHEN n.eyes = 'blue' THEN 1

 WHEN n.age < 40 THEN 2

 ELSE 3

END

Return THEN value from the first WHEN predicate evaluating
to true. Predicates are evaluated in order.

(̣) SHOW PRIVILEGES !!

SHOW PRIVILEGES

List all privileges in the system, and the roles that they
are assigned to.

SHOW ROLE my_role PRIVILEGES

List all privileges assigned to a role.

SHOW USER alice PRIVILEGES

List all privileges of a user, and the role that they are
assigned to.

Patterns !!

(n:Person)

Node with Person label.

(n:Person:Swedish)

Node with both Person and Swedish labels.

(n:Person {name: $value})

Node with the declared properties.

()-[r {name: $value}]-()

Matches relationships with the declared properties.

(n)-->(m)

Relationship from n to m.

(n)--(m)

Relationship in any direction between n and m.

(n:Person)-->(m)

Node n labeled Person with relationship to m.

(m)<-[:KNOWS]-(n)

Relationship of type KNOWS from n to m.

(n)-[:KNOWS|:LOVES]->(m)

Relationship of type KNOWS or of type LOVES from n to m.

(n)-[r]->(m)

Bind the relationship to variable r.

(n)-[*1..5]->(m)

Variable length path of between 1 and 5 relationships
from n to m.

(n)-[*]->(m)

Variable length path of any number of relationships from
n to m. (See Performance section.)

(n)-[:KNOWS]->(m {property: $value})

A relationship of type KNOWS from a node n to a node m
with the declared property.

shortestPath((n1:Person)-[*..6]-(n2:Person))

Find a single shortest path.

allShortestPaths((n1:Person)-[*..6]->(n2:Person))

Find all shortest paths.

size((n)-->()-->())

Count the paths matching the pattern.

Labels

CREATE (n:Person {name: $value})

Create a node with label and property.

MERGE (n:Person {name: $value})

Matches or creates unique node(s) with the label and
property.

SET n:Spouse:Parent:Employee

Add label(s) to a node.

MATCH (n:Person)

Matches nodes labeled Person.

MATCH (n:Person)

WHERE n.name = $value

Matches nodes labeled Person with the given name.

WHERE (n:Person)

Checks the existence of the label on the node.

labels(n)

Labels of the node.

REMOVE n:Person

Remove the label from the node.

Maps !!

{name: 'Alice', age: 38,

 address: {city: 'London', residential: true}}

Literal maps are declared in curly braces much like
property maps. Lists are supported.

WITH {person: {name: 'Anne', age: 25}} AS p

RETURN p.person.name

Access the property of a nested map.

MERGE (p:Person {name: $map.name})

 ON CREATE SET p = $map

Maps can be passed in as parameters and used either as
a map or by accessing keys.

MATCH (matchedNode:Person)

RETURN matchedNode

Nodes and relationships are returned as maps of their
data.

map.name, map.age, map.children[0]

Map entries can be accessed by their keys. Invalid keys
result in an error.

(̣) GRAPH PRIVILEGES !!

GRANT TRAVERSE ON GRAPH * NODES * TO my_role

Grant traverse privilege on all nodes and all graphs to a
role.

DENY READ {prop} ON GRAPH foo RELATIONSHIP Type TO my_role

Deny read privilege on a specified property, on all
relationships with a specified type in a specified graph,
to a role.

GRANT MATCH {*} ON GRAPH foo ELEMENTS Label TO my_role

Grant read privilege on all properties and traverse
privilege to a role. Here, both privileges apply to all
nodes with a specified label in the graph.

REVOKE WRITE ON GRAPH * FROM my_role

Revoke write privilege on all graphs from a role.

Lists !!

['a', 'b', 'c'] AS list

Literal lists are declared in square brackets.

size($list) AS len, $list[0] AS value

Lists can be passed in as parameters.

range($firstNum, $lastNum, $step) AS list

range() creates a list of numbers (step is optional), other
functions returning lists are: labels(), nodes(),
relationships().

MATCH p = (a)-[:KNOWS*]->()

RETURN relationships(p) AS r

The list of relationships comprising a variable length
path can be returned using named paths and
relationships().

RETURN matchedNode.list[0] AS value,

 size(matchedNode.list) AS len

Properties can be lists of strings, numbers or booleans.

list[$idx] AS value,

list[$startIdx..$endIdx] AS slice

List elements can be accessed with idx subscripts in
square brackets. Invalid indexes return null. Slices can
be retrieved with intervals from start_idx to end_idx, each
of which can be omitted or negative. Out of range
elements are ignored.

UNWIND $names AS name

MATCH (n {name: name})

RETURN avg(n.age)

With UNWIND, any list can be transformed back into
individual rows. The example matches all names from a
list of names.

MATCH (a)

RETURN [(a)-->(b) WHERE b.name = 'Bob' | b.age]

Pattern comprehensions may be used to do a custom
projection from a match directly into a list.

MATCH (person)

RETURN person { .name, .age}

Map projections may be easily constructed from nodes,
relationships and other map values.

List Predicates !!

all(x IN coll WHERE exists(x.property))

Returns true if the predicate is true for all elements in the
list.

any(x IN coll WHERE exists(x.property))

Returns true if the predicate is true for at least one
element in the list.

none(x IN coll WHERE exists(x.property))

Returns true if the predicate is false for all elements in
the list.

single(x IN coll WHERE exists(x.property))

Returns true if the predicate is true for exactly one
element in the list.

List Expressions !!

size($list)

Number of elements in the list.

reverse($list)

Reverse the order of the elements in the list.

head($list), last($list), tail($list)

head() returns the first, last() the last element of the list.
tail() returns all but the first element. All return null for
an empty list.

[x IN list | x.prop]

A list of the value of the expression for each element in
the original list.

[x IN list WHERE x.prop <> $value]

A filtered list of the elements where the predicate is true.

[x IN list WHERE x.prop <> $value | x.prop]

A list comprehension that filters a list and extracts the
value of the expression for each element in that list.

reduce(s = "", x IN list | s + x.prop)

Evaluate expression for each element in the list,
accumulate the results.

(̣) DATABASE PRIVILEGES !!

GRANT ACCESS ON DATABASE * TO my_role

Grant privilege to access and run queries against all
databases to a role.

GRANT START ON DATABASE * TO my_role

Grant privilege to start all databases to a role.

GRANT STOP ON DATABASE * TO my_role

Grant privilege to stop all databases to a role.

GRANT CREATE INDEX ON DATABASE foo TO my_role

Grant privilege to create indexes on a specified database
to a role.

GRANT DROP INDEX ON DATABASE foo TO my_role

Grant privilege to drop indexes on a specified database
to a role.

DENY INDEX MANAGEMENT ON DATABASE bar TO my_role

Deny privilege to create and drop indexes on a specified
database to a role.

GRANT CREATE CONSTRAINT ON DATABASE * TO my_role

Grant privilege to create constraints on all databases to a
role.

DENY DROP CONSTRAINT ON DATABASE * TO my_role

Deny privilege to drop constraints on all databases to a
role.

REVOKE CONSTRAINT ON DATABASE * FROM my_role

Revoke granted and denied privileges to create and drop
constraints on all databases from a role.

GRANT CREATE NEW LABELS ON DATABASE * TO my_role

Grant privilege to create new labels on all databases to a
role.

DENY CREATE NEW TYPES ON DATABASE foo TO my_role

Deny privilege to create new relationship types on a
specified database to a role.

REVOKE GRANT CREATE NEW PROPERTY NAMES ON DATABASE bar

FROM my_role

Revoke the grant privilege to create new property names
on a specified database from a role.

GRANT NAME MANAGEMENT ON DATABASE * TO my_role

Grant privilege to create labels, relationship types, and
property names on all databases to a role.

GRANT ALL ON DATABASE baz TO my_role

Grant all database privileges on a specified database to a
role.

Functions !!

coalesce(n.property, $defaultValue)

The first non-null expression.

timestamp()

Milliseconds since midnight, January 1, 1970 UTC.

id(nodeOrRelationship)

The internal id of the relationship or node.

toInteger($expr)

Converts the given input into an integer if possible;
otherwise it returns null.

toFloat($expr)

Converts the given input into a floating point number if
possible; otherwise it returns null.

toBoolean($expr)

Converts the given input into a boolean if possible;
otherwise it returns null.

keys($expr)

Returns a list of string representations for the property
names of a node, relationship, or map.

properties($expr)

Returns a map containing all the properties of a node or
relationship.

Temporal Functions !!

date("2018-04-05")

Returns a date parsed from a string.

localtime("12:45:30.25")

Returns a time with no time zone.

time("12:45:30.25+01:00")

Returns a time in a specified time zone.

localdatetime("2018-04-05T12:34:00")

Returns a datetime with no time zone.

datetime("2018-04-05T12:34:00[Europe/Berlin]")

Returns a datetime in the specified time zone.

datetime({epochMillis: 3360000})

Transforms 3360000 as a UNIX Epoch time into a normal
datetime.

date({year: $year, month: $month, day: $day})

All of the temporal functions can also be called with a
map of named components. This example returns a date
from year, month and day components. Each function
supports a different set of possible components.

datetime({date: $date, time: $time})

Temporal types can be created by combining other types.
This example creates a datetime from a date and a time.

date({date: $datetime, day: 5})

Temporal types can be created by selecting from more
complex types, as well as overriding individual
components. This example creates a date by selecting
from a datetime, as well as overriding the day component.

WITH date("2018-04-05") AS d

RETURN d.year, d.month, d.day, d.week, d.dayOfWeek

Accessors allow extracting components of temporal
types.

Mathematical Functions !!

abs($expr)

The absolute value.

rand()

Returns a random number in the range from 0
(inclusive) to 1 (exclusive), [0,1). Returns a new value for
each call. Also useful for selecting a subset or random
ordering.

round($expr)

Round to the nearest integer; ceil() and floor() find the
next integer up or down.

sqrt($expr)

The square root.

sign($expr)

0 if zero, -1 if negative, 1 if positive.

sin($expr)

Trigonometric functions also include cos(), tan(), cot(),
asin(), acos(), atan(), atan2(), and haversin(). All
arguments for the trigonometric functions should be in
radians, if not otherwise specified.

degrees($expr), radians($expr), pi()

Converts radians into degrees; use radians() for the
reverse, and pi() for π.

log10($expr), log($expr), exp($expr), e()

Logarithm base 10, natural logarithm, e to the power of
the parameter, and the value of e.

(̣) ROLE MANAGEMENT PRIVILEGES !!

GRANT CREATE ROLE ON DBMS TO my_role

Grant the privilege to create roles to a role.

GRANT DROP ROLE ON DBMS TO my_role

Grant the privilege to delete roles to a role.

DENY ASSIGN ROLE ON DBMS TO my_role

Deny the privilege to assign roles to users to a role.

DENY REMOVE ROLE ON DBMS TO my_role

Deny the privilege to remove roles from users to a role.

REVOKE DENY SHOW ROLE ON DBMS FROM my_role

Revoke the denied privilege to show roles from a role.

GRANT ROLE MANAGEMENT ON DBMS TO my_role

Grant all privileges to manage roles to a role.

Spatial Functions !!

point({x: $x, y: $y})

Returns a point in a 2D cartesian coordinate system.

point({latitude: $y, longitude: $x})

Returns a point in a 2D geographic coordinate system,
with coordinates specified in decimal degrees.

point({x: $x, y: $y, z: $z})

Returns a point in a 3D cartesian coordinate system.

point({latitude: $y, longitude: $x, height: $z})

Returns a point in a 3D geographic coordinate system,
with latitude and longitude in decimal degrees, and
height in meters.

distance(point({x: $x1, y: $y1}), point({x: $x2, y: $y2}))

Returns a floating point number representing the linear
distance between two points. The returned units will be
the same as those of the point coordinates, and it will
work for both 2D and 3D cartesian points.

distance(point({latitude: $y1, longitude: $x1}),

point({latitude: $y2, longitude: $x2}))

Returns the geodesic distance between two points in
meters. It can be used for 3D geographic points as well.

Duration Functions !!

duration("P1Y2M10DT12H45M30.25S")

Returns a duration of 1 year, 2 months, 10 days, 12 hours,
45 minutes and 30.25 seconds.

duration.between($date1,$date2)

Returns a duration between two temporal instances.

WITH duration("P1Y2M10DT12H45M") AS d

RETURN d.years, d.months, d.days, d.hours, d.minutes

Returns 1 year, 14 months, 10 days, 12 hours and 765
minutes.

WITH duration("P1Y2M10DT12H45M") AS d

RETURN d.years, d.monthsOfYear, d.days, d.hours,

d.minutesOfHour

Returns 1 year, 2 months, 10 days, 12 hours and 45
minutes.

date("2015-01-01") + duration("P1Y1M1D")

Returns a date of 2016-02-02. It is also possible to subtract
durations from temporal instances.

duration("PT30S") * 10

Returns a duration of 5 minutes. It is also possible to
divide a duration by a number.

String Functions !!

toString($expression)

String representation of the expression.

replace($original, $search, $replacement)

Replace all occurrences of search with replacement. All
arguments must be expressions.

substring($original, $begin, $subLength)

Get part of a string. The subLength argument is optional.

left($original, $subLength),

 right($original, $subLength)

The first part of a string. The last part of the string.

trim($original), lTrim($original),

 rTrim($original)

Trim all whitespace, or on the left or right side.

toUpper($original), toLower($original)

UPPERCASE and lowercase.

split($original, $delimiter)

Split a string into a list of strings.

reverse($original)

Reverse a string.

size($string)

Calculate the number of characters in the string.

Aggregating Functions !!

count(*)

The number of matching rows.

count(variable)

The number of non-null values.

count(DISTINCT variable)

All aggregating functions also take the DISTINCT operator,
which removes duplicates from the values.

collect(n.property)

List from the values, ignores null.

sum(n.property)

Sum numerical values. Similar functions are avg(), min(),
max().

percentileDisc(n.property, $percentile)

Discrete percentile. Continuous percentile is
percentileCont(). The percentile argument is from 0.0 to
1.0.

stDev(n.property)

Standard deviation for a sample of a population. For an
entire population use stDevP().

Path Functions !!

length(path)

The number of relationships in the path.

nodes(path)

The nodes in the path as a list.

relationships(path)

The relationships in the path as a list.

[x IN nodes(path) | x.prop]

Extract properties from the nodes in a path.

Relationship Functions !!

type(a_relationship)

String representation of the relationship type.

startNode(a_relationship)

Start node of the relationship.

endNode(a_relationship)

End node of the relationship.

id(a_relationship)

The internal id of the relationship.

INDEX !!

CREATE INDEX FOR (p:Person) ON (p.name)

Create an index on the label Person and property name.

CREATE INDEX index_name FOR (p:Person) ON (p.age)

Create an index on the label Person and property age with
the name index_name.

CREATE INDEX FOR (p:Person) ON (p.name, p.age)

Create a composite index on the label Person and the
properties name and age.

MATCH (n:Person) WHERE n.name = $value

An index can be automatically used for the equality
comparison. Note that for example toLower(n.name) =
$value will not use an index.

MATCH (n:Person)

WHERE n.name IN [$value]

An index can automatically be used for the IN list checks.

MATCH (n:Person)

WHERE n.name = $value and n.age = $value2

A composite index can be automatically used for equality
comparison of both properties. Note that there needs to
be predicates on all properties of the composite index for
it to be used.

MATCH (n:Person)

USING INDEX n:Person(name)

WHERE n.name = $value

Index usage can be enforced when Cypher uses a
suboptimal index, or more than one index should be
used.

DROP INDEX index_name

Drop the index named index_name.

CONSTRAINT !!

CREATE CONSTRAINT ON (p:Person)

 ASSERT p.name IS UNIQUE

Create a unique property constraint on the label Person
and property name. If any other node with that label is
updated or created with a name that already exists, the
write operation will fail. This constraint will create an
accompanying index.

CREATE CONSTRAINT uniqueness ON (p:Person)

 ASSERT p.age IS UNIQUE

Create a unique property constraint on the label Person
and property age with the name uniqueness. If any other
node with that label is updated or created with a age that
already exists, the write operation will fail. This
constraint will create an accompanying index.

CREATE CONSTRAINT ON (p:Person)

 ASSERT exists(p.name)

(�) Create a node property existence constraint on the
label Person and property name. If a node with that label is
created without a name, or if the name property is removed
from an existing node with the Person label, the write
operation will fail.

CREATE CONSTRAINT node_exists ON (p:Person)

 ASSERT exists(p.surname)

(�) Create a node property existence constraint on the
label Person and property surname with the name
node_exists. If a node with that label is created without a
surname, or if the surname property is removed from an
existing node with the Person label, the write operation
will fail.

CREATE CONSTRAINT ON ()-[l:LIKED]-()

 ASSERT exists(l.when)

(�) Create a relationship property existence constraint
on the type LIKED and property when. If a relationship with
that type is created without a when, or if the when property
is removed from an existing relationship with the LIKED
type, the write operation will fail.

CREATE CONSTRAINT relationship_exists ON ()-[l:LIKED]-()

 ASSERT exists(l.since)

(�) Create a relationship property existence constraint
on the type LIKED and property since with the name
relationship_exists. If a relationship with that type is
created without a since, or if the since property is
removed from an existing relationship with the LIKED
type, the write operation will fail.

CREATE CONSTRAINT ON (p:Person)

 ASSERT (p.firstname, p.surname) IS NODE KEY

(�) Create a node key constraint on the label Person and
properties firstname and surname. If a node with that label
is created without both firstname and surname or if the
combination of the two is not unique, or if the firstname
and/or surname labels on an existing node with the Person
label is modified to violate these constraints, the write
operation will fail.

CREATE CONSTRAINT node_key ON (p:Person)

 ASSERT (p.name, p.surname) IS NODE KEY

(�) Create a node key constraint on the label Person and
properties name and surname with the name node_key. If a
node with that label is created without both name and
surname or if the combination of the two is not unique, or
if the name and/or surname labels on an existing node with
the Person label is modified to violate these constraints,
the write operation will fail.

DROP CONSTRAINT uniqueness

Drop the constraint with the name uniqueness.

https://github.com/neo4j/neo4j
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.neo4j.com/
https://neo4j.com/docs/cypher-manual/4.0/clauses/match
https://neo4j.com/docs/cypher-manual/4.0/clauses/where
https://neo4j.com/docs/cypher-manual/4.0/clauses/create
https://neo4j.com/docs/cypher-manual/4.0/clauses/set
https://neo4j.com/docs/cypher-manual/4.0/administration/databases
https://neo4j.com/docs/cypher-manual/4.0/clauses/return
https://neo4j.com/docs/cypher-manual/4.0/clauses/with
https://neo4j.com/docs/cypher-manual/4.0/clauses/union
https://neo4j.com/docs/cypher-manual/4.0/clauses/merge
https://neo4j.com/docs/cypher-manual/4.0/clauses/remove
https://neo4j.com/docs/cypher-manual/4.0/administration/security/users-and-roles/%23administration-security-users
https://neo4j.com/docs/cypher-manual/4.0/clauses/delete
https://neo4j.com/docs/cypher-manual/4.0/clauses/foreach
https://neo4j.com/docs/cypher-manual/4.0/clauses/call-subquery
https://neo4j.com/docs/cypher-manual/4.0/clauses/call
https://neo4j.com/docs/cypher-manual/4.0/clauses/load-csv
https://neo4j.com/docs/cypher-manual/4.0/query-tuning
https://neo4j.com/docs/cypher-manual/4.0/query-tuning
https://neo4j.com/docs/cypher-manual/4.0/administration/security/users-and-roles/%23administration-security-roles
https://neo4j.com/docs/cypher-manual/4.0/syntax/operators/
https://neo4j.com/docs/cypher-manual/4.0/syntax/working-with-null/
https://neo4j.com/docs/cypher-manual/4.0/clauses/where
https://neo4j.com/docs/cypher-manual/4.0/syntax/expressions
https://neo4j.com/docs/cypher-manual/4.0/administration/security/subgraph/%23administration-security-subgraph-show
https://neo4j.com/docs/cypher-manual/4.0/syntax/patterns
https://neo4j.com/docs/cypher-manual/4.0/syntax/maps
https://neo4j.com/docs/cypher-manual/4.0/administration/security/subgraph
https://neo4j.com/docs/cypher-manual/4.0/syntax/lists
https://neo4j.com/docs/cypher-manual/4.0/functions/predicate
https://neo4j.com/docs/cypher-manual/4.0/functions/list
https://neo4j.com/docs/cypher-manual/4.0/administration/security/administration/%23administration-security-administration-database-privileges
https://neo4j.com/docs/cypher-manual/4.0/functions
https://neo4j.com/docs/cypher-manual/4.0/functions/temporal
https://neo4j.com/docs/cypher-manual/4.0/functions
https://neo4j.com/docs/cypher-manual/4.0/administration/security/administration/%23administration-security-administration-dbms-privileges-role-management
https://neo4j.com/docs/cypher-manual/4.0/functions/spatial
https://neo4j.com/docs/cypher-manual/4.0/functions/temporal/duration/
https://neo4j.com/docs/cypher-manual/4.0/functions/string
https://neo4j.com/docs/cypher-manual/4.0/functions/aggregating
https://neo4j.com/docs/cypher-manual/4.0/functions/list
https://neo4j.com/docs/cypher-manual/4.0/functions/scalar
https://neo4j.com/docs/cypher-manual/4.0/administration/indexes-for-search-performance
https://neo4j.com/docs/cypher-manual/4.0/administration/constraints

