
The Neo4j Cypher Manual v5

Table of Contents
Documentation updates for Neo4j 5 . 2

Introduction. 5

What is Cypher? . 5

Neo4j databases and graphs . 7

Querying, updating and administering . 9

Transactions . 10

Cypher path matching . 12

Clause composition . 15

Syntax . 33

Values and types . 35

Naming rules and recommendations . 37

Expressions . 39

Variables. 65

Reserved keywords . 66

Parameters. 69

Operators . 73

Comments . 90

Patterns . 91

Temporal (Date/Time) values . 96

Spatial values . 117

Lists. 123

Maps . 127

Working with null. 129

Clauses . 132

Administration clauses . 132

Importing data . 132

Listing functions and procedures . 132

Multiple graphs. 132

Projecting clauses . 133

Reading clauses . 133

Reading hints . 133

Reading sub-clauses . 133

Reading/Writing clauses . 134

Set operations. 134

Subquery clauses . 134

Transaction Commands . 135

Writing clauses. 135

MATCH . 135

OPTIONAL MATCH. 153

RETURN. 155

WITH . 159

UNWIND . 163

WHERE . 167

ORDER BY. 183

SKIP . 187

LIMIT . 188

CREATE . 191

DELETE . 195

SET . 198

REMOVE . 205

FOREACH . 206

MERGE . 207

CALL {} (subquery) . 218

CALL procedure . 229

UNION . 235

USE . 236

LOAD CSV. 238

SHOW FUNCTIONS . 245

SHOW PROCEDURES . 250

Functions . 258

Predicate functions . 270

Scalar functions . 278

Aggregating functions . 299

List functions. 318

Mathematical functions - numeric . 329

Mathematical functions - logarithmic . 341

Mathematical functions - trigonometric . 346

String functions . 358

Temporal functions - instant types . 370

Temporal functions - duration. 440

Spatial functions. 449

LOAD CSV functions. 460

Graph functions . 461

User-defined functions . 463

Indexes for search performance . 466

Indexes (types and limitations) . 466

Syntax. 467

Composite index limitations. 470

CREATE INDEX . 471

SHOW INDEXES . 485

SHOW INDEXES . 486

DROP INDEX . 487

DROP INDEX . 487

Full-text search index . 489

Full-text search procedures . 490

Create and configure full-text indexes . 490

Query full-text indexes . 493

Handling of Text Array properties . 495

Drop full-text indexes . 496

Constraints. 498

Types of constraint . 498

Implications on indexes . 499

Syntax. 499

Examples . 503

Database management . 522

Listing databases . 523

Creating databases Enterprise edition . 530

Altering databases Enterprise edition . 534

Stopping databases Enterprise edition . 536

Starting databases Enterprise edition . 537

Deleting databases Enterprise edition . 538

Wait options Enterprise edition . 540

Database alias management . 542

Listing database aliases Enterprise edition . 545

Creating database aliases Enterprise edition . 548

Create database aliases in composite databases Enterprise edition . 555

Altering database aliases . 557

Deleting database aliases Enterprise edition . 561

Access control . 565

Syntax summaries . 565

Managing users . 566

Managing roles . 578

Managing privileges . 587

Managing servers. 603

Built-in roles and privileges . 609

Read privileges . 616

Write privileges . 619

Database administration . 624

DBMS administration . 636

Limitations . 672

Immutable privileges . 677

Query tuning . 679

Cypher query options . 679

Profile a query. 684

The use of indexes. 685

Basic query tuning example. 709

Advanced query tuning example . 721

Planner hints and the USING keyword . 739

Execution plans . 757

Database hits . 759

Execution plan operators . 760

Execution plan operators in detail . 770

Shortest path planning . 883

Deprecations, additions, and compatibility . 889

Version 5.3 . 889

Version 5.2 . 889

Version 5.1 . 890

Version 5.0 . 891

Version 4.4 . 904

Version 4.3 . 911

Version 4.2 . 917

Version 4.1.3. 920

Version 4.1 . 920

Version 4.0 . 922

Version 3.5 . 927

Version 3.4 . 927

Version 3.3 . 928

Version 3.2 . 929

Version 3.1 . 930

Version 3.0 . 930

Glossary of keywords . 931

Clauses. 931

Operators. 935

Functions . 936

Expressions . 944

Cypher query options . 944

Administrative commands . 944

Privilege Actions . 947

Appendix A: Cypher styleguide . 952

General recommendations . 952

Indentation and line breaks . 952

Casing. 954

Spacing . 955

Patterns . 957

Meta-characters . 958

Cypher is Neo4j’s graph query language that allows users to store and retrieve data
from the graph database. It is a declarative, SQL-inspired language for describing
visual patterns in graphs. The syntax provides a visual and logical way to match
patterns of nodes and relationships in the graph.

1

Documentation updates for Neo4j 5
Neo4j 5 includes a number of new features and updates. A highlight of these include:

• Cypher syntax improvements with Graph Pattern Matching (relationships and labels):

◦ In MATCH clauses, WHERE can be placed inside a relationship pattern to filter relationships.

◦ In MATCH clauses, nodes and relationships can be filtered using more sophisticated label (type)
expressions.

◦ Simpler alternative syntax to navigate and traverse graphs using the following operators:

▪ &: logical AND

▪ |: logical OR

▪ !: logical NOT

▪ %: a "wildcard", meaning "any label" (in Cypher this translates to size(labels(n)) > 0).

For more information, see the section on Label expressions and in the WHERE clause.

• New elementID for graph objects:

New IDs are introduced to uniquely identify graph elements in Neo4j databases. Node ID will exist
with each release of Neo4j 5.

For more information, see elementId().

• Composite databases.

Composite databases allow queries that access multiple graphs at once. You can create, update, and
remove configurations without a restart, whether the database is within the same cluster, or hosted
remotely.

For more information on composite databases, and how to create composite databases, see
Operations Manual → Composite databases, and Creating composite databases.

• Immutable privileges.

Immutable privileges are useful for restricting the actions of users who themselves are able to
administer privileges.
For more information, see Immutable privileges.

• Execute and ExecuteBoosted privilege.

The permissions for the execution of admin procedures have been refreshed; these two privileges are
now hierarchically related.

For more information, see the EXECUTE PROCEDURE privilege and the EXECUTE BOOSTED PROCEDURE
privilege.

• EXISTS and COUNT are now both expressions.

2

https://neo4j.com/docs/operations-manual/current/composite-databases/
https://neo4j.com/docs/operations-manual/current/composite-databases/
https://neo4j.com/docs/operations-manual/current/composite-databases/

For more information, see Subquery expressions.

• SHOW and TERMINATE TRANSACTIONS improvements.

You can now combine these two commands in the same query. The ability to yield and filter the output
from TERMINATE TRANSACTIONS has been added.

For more information, see Updated features list.

• Changes to Neo4j indexes:

◦ The B-tree index type has been removed.

◦ New Range and Point index types are available now.

◦ Faster Text index provider for ENDS WITH and CONTAINS queries is introduced.

◦ Full-text indexes can now index lists of strings.

For more information, see new index types.

© 2023 Neo4j, Inc.

Documentation license: Creative Commons 4.0

License
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

You are free to

Share

copy and redistribute the material in any medium or format

Adapt

remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial

You may not use the material for commercial purposes.

ShareAlike

If you remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original.

3

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

Notices

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for further details. The full license text is available
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

4

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Introduction

What is Cypher?
Cypher is a declarative graph query language that allows for expressive and efficient querying, updating
and administering of the graph. It is designed to be suitable for both developers and operations
professionals. Cypher is designed to be simple, yet powerful; highly complicated database queries can be
easily expressed, enabling you to focus on your domain, instead of getting lost in database access.

Cypher is inspired by a number of different approaches and builds on established practices for expressive
querying. Many of the keywords, such as WHERE and ORDER BY, are inspired by SQL. Pattern matching
borrows expression approaches from SPARQL. Some of the list semantics are borrowed from languages
such as Haskell and Python. Cypher’s constructs, based on English prose and neat iconography, make
queries easy, both to write and to read.



• Cypher keywords are not case-sensitive.

• Cypher is case-sensitive for variables.

• There are special naming rules for database names.

• There are special naming rules for database aliases.

Structure

Cypher borrows its structure from SQL — queries are built up using various clauses.

Clauses are chained together, and they feed intermediate result sets between each other. For example, the
matching variables from one MATCH clause will be the context that the next clause exists in.

The query language is comprised of several distinct clauses. These are discussed in more detail in the
chapter on Clauses.

The following are a few examples of clauses used to read from the graph:

• MATCH: The graph pattern to match. This is the most common way to get data from the graph.

• WHERE: Not a clause in its own right, but rather part of MATCH, OPTIONAL MATCH and WITH. Adds
constraints to a pattern, or filters the intermediate result passing through WITH.

• RETURN: What to return.

And these are examples of clauses that are used to update the graph:

• CREATE (and DELETE): Create (and delete) nodes and relationships.

• SET (and REMOVE): Set values to properties and add labels on nodes using SET and use REMOVE to remove
them.

• MERGE: Match existing or create new nodes and patterns. This is especially useful together with
property uniqueness constraints.

5

https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SPARQL

Example 1. Cypher Query

Let’s see MATCH and RETURN in action.

Let’s create a simple example graph with the following query:

CREATE (john:Person {name: 'John'})
CREATE (joe:Person {name: 'Joe'})
CREATE (steve:Person {name: 'Steve'})
CREATE (sara:Person {name: 'Sara'})
CREATE (maria:Person {name: 'Maria'})
CREATE (john)-[:FRIEND]->(joe)-[:FRIEND]->(steve)
CREATE (john)-[:FRIEND]->(sara)-[:FRIEND]->(maria)

Person

name = 'John'

Person

name = 'Sara'

FRIEND

Person

name = 'Joe'

FRIEND

Person

name = 'Maria'

FRIEND

Person

name = 'Steve'

FRIEND

For example, here is a query which finds a user called 'John' and 'John’s' friends (though not his direct
friends) before returning both 'John' and any friends-of-friends that are found.

MATCH (john {name: 'John'})-[:FRIEND]->()-[:FRIEND]->(fof)
RETURN john.name, fof.name

Resulting in:

Rows: 2

+----------------------+
| john.name | fof.name |
+----------------------+
| 'John' | 'Maria' |
| 'John' | 'Steve' |
+----------------------+

Next up we will add filtering to set more parts in motion:

We take a list of user names and find all nodes with names from this list, match their friends and
return only those followed users who have a 'name' property starting with 'S'.

MATCH (user)-[:FRIEND]->(follower)
WHERE user.name IN ['Joe', 'John', 'Sara', 'Maria', 'Steve'] AND follower.name =~ 'S.*'
RETURN user.name, follower.name

6

Resulting in:

Rows: 2

+---------------------------+
| user.name | follower.name |
+---------------------------+
| 'John' | 'Sara' |
| 'Joe' | 'Steve' |
+---------------------------+

Neo4j databases and graphs

This section describes databases and graphs in Neo4j.

Cypher queries are executed against a Neo4j database, but normally apply to specific graphs. It is
important to understand the meaning of these terms and exactly when a graph is not a database.

DBMS

A Neo4j Database Management System is capable of containing and managing multiple graphs
contained in databases. Client applications will connect to the DBMS and open sessions against it. A
client session provides access to any graph in the DBMS.

Graph

This is a data model within a database. Normally there is only one graph within each database, and
many administrative commands that refer to a specific graph do so using the database name.

Cypher queries executed in a session may declare which graph they apply to, or use a default, given by
the session.

Composite databases can contain multiple graphs, by means of aliases to other databases. Queries
submitted to composite databases may refer to multiple graphs within the same query.

For more information, see Operations manual → Composite databases.

Database

A database is a storage and retrieval mechanism for collecting data in a defined space on disk and in
memory.

Most of the time Cypher queries are reading or updating queries, which are run against a graph. There are
also administrative commands that apply to a database, or to the entire DBMS. Administrative commands
cannot be run in a session connected to a normal user database, but instead need to be run within a
session connected to the system database. Administrative commands execute on the system database. If
an administrative command is submitted to a user database, it is rerouted to the system database.

The system database and the default database

All Neo4j servers contain a built-in database called system, which behaves differently than all other
databases. The system database stores system data and you can not perform graph queries against it.

7

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#composite_databases
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#composite_databases
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#composite_databases

A fresh installation of Neo4j includes two databases:

• system - the system database described above, containing meta-data on the DBMS and security
configuration.

• neo4j - the default database, named using the config option dbms.default_database=neo4j.

For more information about the system database, see the sections on Database management and Access
control.

Different editions of Neo4j

Neo4j has two editions, a commercial Enterprise Edition with additional performance and administrative
features, and an open-source Community Edition. Cypher works almost identically between the two
editions, and as such most of this manual will not differentiate between them. In the few cases where
there is a difference in Cypher language support or behaviour between editions, these are highlighted as
described below in Limited Support Features.

However, it is worth listing up-front the key areas that are not supported in the open-source edition:

Feature Enterprise Community

Multi-database Any number of user databases. Only system and one user
database.

Role-based security User, role, and privilege
management for flexible access
control and sub-graph access
control.

Multi-user management. All users
have full access rights.

Constraints All constraints: node existence
constraints, relationship existence
constraints, node property
uniqueness constraints, and node
key constraints.

Only node property uniqueness
constraints.

Limited Support Features

Some elements of Cypher do not work in all deployments of Neo4j.

Specific labels are added to the documentation to highlight these cases.

Description Label

This feature has been deprecated and will be removed or
replaced in the future.

Deprecated

This feature only works in the enterprise edition of Neo4j. Enterprise edition

8

Querying, updating and administering

This section describes using Cypher for both querying and updating your graph, as well as

administering graphs and databases.

In the introduction we described the common case of using Cypher to perform read-only queries of the
graph. However, it is also possible to use Cypher to perform updates to the graph, import data into the
graph, and perform administrative actions on graphs, databases and the entire DBMS.

All these various options are described in more detail in later sections, but it is worth summarizing a few
key points first.

The structure of administrative queries

Cypher administrative queries cannot be combined with normal reading and writing queries. Each
administrative query will perform either an update action to the system or a read of status information from
the system. Some administrative commands make changes to a specific database, and will therefore be
possible to run only when connected to the database of interest. Others make changes to the state of the
entire DBMS and can only be run against the special system database.

The structure of update queries

If you read from the graph and then update the graph, your query implicitly has two parts — the reading is
the first part, and the writing is the second part.


A Cypher query part can either read and match on the graph, or make updates on it, not
both simultaneously.

If your query only performs reads, Cypher will not actually match the pattern until you ask for the results. In
an updating query, the semantics are that all the reading will be done before any writing is performed.

The only pattern where the query parts are implicit is when you first read and then write — any other order
and you have to be explicit about your query parts. The parts are separated using the WITH statement. WITH
is like an event horizon — it’s a barrier between a plan and the finished execution of that plan.

When you want to filter using aggregated data, you have to chain together two reading query parts — the
first one does the aggregating, and the second filters on the results coming from the first one.

MATCH (n {name: 'John'})-[:FRIEND]-(friend)
WITH n, count(friend) AS friendsCount
WHERE friendsCount > 3
RETURN n, friendsCount

Using WITH, you specify how you want the aggregation to happen, and that the aggregation has to be
finished before Cypher can start filtering.

Here’s an example of updating the graph, writing the aggregated data to the graph:

9

MATCH (n {name: 'John'})-[:FRIEND]-(friend)
WITH n, count(friend) AS friendsCount
SET n.friendsCount = friendsCount
RETURN n.friendsCount

You can chain together as many query parts as the available memory permits.

Returning data

Any query can return data. If a query only reads, it has to return data. If a read-query doesn’t return any
data, it serves no purpose, and is therefore not a valid Cypher query. Queries that update the graph don’t
have to return anything, but they can.

After all the parts of the query comes one final RETURN clause. RETURN is not part of any query part — it is a
period symbol at the end of a query. The RETURN clause has three sub-clauses that come with it: SKIP/LIMIT
and ORDER BY.

If you return nodes or relationships from a query that has just deleted them — beware, you are holding a
pointer that is no longer valid.

Transactions

This section describes how Cypher queries work with database transactions.

All Cypher queries run within transactions. Modifications done by updating queries are held in memory by
the transaction until it is committed, at which point the changes are persisted to disk and become visible to
other transactions. If an error occurs - either during query evaluation, such as division by zero, or during
commit, such as constraint violations - the transaction is automatically rolled back, and no changes are
persisted in the graph.

In short, an updating query always either fully succeeds, or does not succeed at all.


A query that makes a large number of updates consequently uses large amounts of
memory since the transaction holds changes in memory. For memory configuration in
Neo4j, see the Neo4j Operations Manual → Memory configuration.

Transactions can be either explicit or implicit.

• Explicit transactions:

◦ Are opened by the user.

◦ Can execute multiple Cypher queries in sequence.

◦ Are committed, or rolled back, by the user.

• Implicit transactions, sometimes called auto-commit transactions or :auto transactions:

◦ Are opened automatically.

◦ Can execute a single Cypher query.

10

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#memory_configuration
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#memory_configuration
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#memory_configuration

◦ Are committed automatically when the query finishes successfully.

Queries that start separate transactions themselves, such as queries using CALL { ... } IN TRANSACTIONS,
are only allowed in implicit mode. Explicit transactions cannot be managed directly from queries, they must
be managed via APIs or tools.

For examples of the API, or the commands used to start and commit transactions, refer to the API or tool-
specific documentation:

• For information on using transactions with a Neo4j driver, see The session API in the Neo4j Driver
manuals.

• For information on using transactions over the HTTP API, see the HTTP API documentation → Using
the HTTP API.

• For information on using transactions within the embedded Core API, see the Java Reference →
Executing Cypher queries from Java.

• For information on using transactions within the Neo4j Browser or Cypher-shell, see the Cypher-shell
documentation.

When writing procedures or using Neo4j embedded, remember that all iterators returned from an
execution result should be either fully exhausted or closed. This ensures that the resources bound to them
are properly released.

DBMS Transactions

Beginning a transaction while connected to a DBMS will start a DBMS-level transaction. A DBMS-level
transaction is a container for database transactions.

A database transaction is started when the first query to a specific database is issued. Database
transactions opened inside a DBMS-level transaction are committed or rolled back when the DBMS-level
transaction is committed or rolled back.

For an example of how queries to multiple databases can be issued in one transaction, see Databases and
execution context in the Neo4j Driver manuals.

DBMS transactions have the following limitations:

• Only one database can be written to in a DBMS transaction

• Cypher operations fall into the following main categories:

◦ Operations on graphs.

◦ Schema commands.

◦ Administration commands.

It is not possible to combine any of these workloads in a single DBMS transaction.

11

https://neo4j.com/docs
https://neo4j.com/docs
https://neo4j.com/docs/pdf/neo4j-http-api-5.pdf#http-api-actions
https://neo4j.com/docs/pdf/neo4j-http-api-5.pdf#http-api-actions
https://neo4j.com/docs/pdf/neo4j-http-api-5.pdf#http-api-actions
https://neo4j.com/docs/pdf/neo4j-http-api-5.pdf#http-api-actions
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#cypher-java
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#cypher-java
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#cypher-java
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#cypher-java
https://neo4j.com/docs/pdf/neo4j-browser-manual-current.pdf#cypher-shell-commands
https://neo4j.com/docs/pdf/neo4j-browser-manual-current.pdf#cypher-shell-commands
https://neo4j.com/docs

Cypher path matching

Cypher path matching uses relationship isomorphism, the same relationship cannot be

returned more than once in the same result record.

Neo4j Cypher makes use of relationship isomorphism for path matching and is a very effective way of
reducing the result set size and preventing infinite traversals.


In Neo4j, all relationships have a direction. However, you can have the notion of
undirected relationships at query time.

In the case of variable length pattern expressions, it is particularly important to have a constraint check, or
an infinite number of result records could be found.

To understand this better, let us consider a few alternative options:

Homomorphism

No constraints for path matching.

Node isomorphism

The same node cannot be returned more than once for each path matching record.

Relationship isomorphism

The same relationship cannot be returned more than once for each path matching record. Cypher
makes use of relationship isomorphism for path matching.

Homomorphism

Constraints: No constraints for path matching.

Example 2. Homomorphism

The graph is composed of only two nodes (a) and (b), connected by one relationship, (a:Node)-
[r:R]->(b:Node).

If the query is looking for paths of length n and do not care about the direction, a path of length n will
be returned repeating the two nodes over and over.

For example, find all paths with 5 relationships and do not care about the relationship direction:

MATCH p = ()-[*5]-()
RETURN nodes(p)

This will return the two resulting records if homomorphism was used, [a,b,a,b,a,b], as well as
[b,a,b,a,b,a].

12

Node isomorphism

Constraints: The same node cannot be returned more than once for each path matching record.

In another two-node example, such as (a:Node)-[r:R]->(b:Node); only paths of length 1 can be found
with the node isomorphism constraint.

Example 3. Node isomorphism

The graph is composed of only two nodes (a) and (b), connected by one relationship, (a:Node)-
[r:R]->(b:Node).

MATCH p = ()-[*1]-()
RETURN nodes(p)

This will return the two resulting records if node isomorphism was used, [a, b], as well as [b, a].

Relationship isomorphism

Constraints: The same relationship cannot be returned more than once for each path matching record.

In another two-node example, such as (a:Node)-[r:R]->(b:Node); only paths of length 1 can be found
with the relationship isomorphism constraint.

Example 4. Relationship isomorphism

The graph is composed of only two nodes (a) and (b), connected by one relationship, (a:Node)-
[r:R]->(b:Node).

MATCH p = ()-[*1]-()
RETURN nodes(p)

This will return the two resulting records [a, b], as well as [b, a].

Cypher path matching example

Cypher makes use of relationship isomorphism for path matching.

13

Example 5. Friend of friends

Looking for a user’s friends of friends should not return said user.

To demonstrate this, let’s create a few nodes and relationships:

Query 1, create data.

CREATE
 (adam:User {name: 'Adam'}),
 (pernilla:User {name: 'Pernilla'}),
 (david:User {name: 'David'}),
 (adam)-[:FRIEND]->(pernilla),
 (pernilla)-[:FRIEND]->(david)

Nodes created: 3
Relationships created: 2
Properties set: 3

Which gives us the following graph:

User

name = 'Adam'

User

name = 'Pernilla'

FRIEND

User

name = 'David'

FRIEND

Now let’s look for friends of friends of Adam:

Query 2, friend of friends of Adam.

MATCH (user:User {name: 'Adam'})-[r1:FRIEND]-()-[r2:FRIEND]-(friend_of_a_friend)
RETURN friend_of_a_friend.name AS fofName

Rows: 1

+---------+
| fofName |
+---------+
| "David" |
+---------+

In this query, Cypher makes sure to not return matches where the pattern relationships r1 and r2
point to the same graph relationship.

This is however not always desired. If the query should return the user, it is possible to spread the

14

matching over multiple MATCH clauses, like so:

Query 3, multiple MATCH clauses.

MATCH (user:User {name: 'Adam'})-[r1:FRIEND]-(friend)
MATCH (friend)-[r2:FRIEND]-(friend_of_a_friend)
RETURN friend_of_a_friend.name AS fofName

Rows: 2

+---------+
| fofName |
+---------+
| "David" |
| "Adam" |
+---------+

Note that while the following Query 4 looks similar to Query 3, it is actually equivalent to Query 2.

Query 4, equivalent to query 2.

MATCH
 (user:User {name: 'Adam'})-[r1:FRIEND]-(friend),
 (friend)-[r2:FRIEND]-(friend_of_a_friend)
RETURN friend_of_a_friend.name AS fofName

Here, the MATCH clause has a single pattern with two paths, while the previous query has two distinct
patterns.

Rows: 1

+---------+
| fofName |
+---------+
| "David" |
+---------+

Clause composition

This section describes the semantics of Cypher when composing different read and write

clauses.

A query is made up from several clauses chained together. These are discussed in more detail in the
chapter on Clauses.

The semantics of a whole query is defined by the semantics of its clauses. Each clause has as input the
state of the graph and a table of intermediate results consisting of the current variables. The output of a
clause is a new state of the graph and a new table of intermediate results, serving as input to the next
clause. The first clause takes as input the state of the graph before the query and an empty table of
intermediate results. The output of the last clause is the result of the query.

15

Example 6. Table of intermediate results between read clauses

The following example graph is used throughout this section.

digraph L { node [shape=record style=rounded];
 N0 [
 label = "{Person|name = \'John\'\l}"
]
 N0 -> N3 [
 color = "#2e3436"
 fontcolor = "#2e3436"
 label = "FRIEND\n"
]
 N0 -> N1 [
 color = "#2e3436"
 fontcolor = "#2e3436"
 label = "FRIEND\n"
]
 N1 [
 label = "{Person|name = \'Joe\'\l}"
]
 N1 -> N2 [
 color = "#2e3436"
 fontcolor = "#2e3436"
 label = "FRIEND\n"
]
 N2 [
 label = "{Person|name = \'Steve\'\l}"
]
 N3 [
 label = "{Person|name = \'Sara\'\l}"
]
 N3 -> N4 [
 color = "#2e3436"
 fontcolor = "#2e3436"
 label = "FRIEND\n"
]
 N4 [
 label = "{Person|name = \'Maria\'\l}"
]
}

Now follows the table of intermediate results and the state of the graph after each clause for the
following query:

MATCH (john:Person {name: 'John'})
MATCH (john)-[:FRIEND]->(friend)
RETURN friend.name AS friendName

The query only has read clauses, so the state of the graph remains unchanged and is therefore
omitted below.

Table 1. The table of intermediate results after each clause

Clause Table of intermediate results after the clause

MATCH (john:Person {name: 'John'}) john

({name: 'John'})

16

Clause Table of intermediate results after the clause

MATCH (john)-[:FRIEND]->(friend) john friend

({name: 'John'}) ({name: 'Sara'})

({name: 'John'}) ({name: 'Joe'})

RETURN friend.name AS friendName friendName

'Sara'

'Joe'

The above example only looked at clauses that allow linear composition and omitted write clauses. The
next section will explore these non-linear composition and write clauses.

Read-write queries

In a Cypher query, read and write clauses can take turns. The most important aspect of read-write queries
is that the state of the graph also changes between clauses.

 A clause can never observe writes made by a later clause.

17

Example 7. Table of intermediate results and state of the graph between read and write clauses

Using the same example graph as above, this example shows the table of intermediate results and
the state of the graph after each clause for the following query:

MATCH (j:Person) WHERE j.name STARTS WITH "J"
CREATE (j)-[:FRIEND]->(jj:Person {name: "Jay-jay"})

The query finds all nodes where the name property starts with "J" and for each such node it creates
another node with the name property set to "Jay-jay".

Table 2. The table of intermediate results and the state of the graph after each clause

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

MATCH (j:Person) WHERE
j.name STARTS WITH "J"

j

({name: 'John'})

({name: 'Joe'})

digraph L { node [shape=record
style=rounded];
N0 [
label = "{Person|name =
\'John\'\l}"
]
N0 -> N3 [
color = "grey"
fontcolor = "grey"
label = "FRIEND\n"
]
N0 -> N1 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N1 [
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
color = "grey"
fontcolor = "grey"
label = "FRIEND\n"
]
N2 [
color = "grey"
fontcolor = "grey"
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
color = "grey"
fontcolor = "grey"
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
color = "grey"
fontcolor = "grey"
label = "FRIEND\n"
]
N4 [
color = "grey"
fontcolor = "grey"
label = "{Person|name =
\'Maria\'\l}"
]
}

18

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

CREATE (j)-[:FRIEND]-
>(jj:Person {name:
"Jay-jay"})

j jj

({name: 'John'}) ({name: 'Jay-jay'})

({name: 'Joe'}) ({name: 'Jay-jay'})

digraph L { node [shape=record
style=rounded];
N0 [
label = "{Person|name =
\'John\'\l}"
]
N0 -> N3 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N0 -> N1 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N1 [
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N2 [
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N4 [
label = "{Person|name =
\'Maria\'\l}"
]
N0 -> N5 [
color = "red"
fontcolor = "red"
label = "FRIEND\n"
]
N5 [
color = "red"
fontcolor = "red"
label = "{Person|name = \'Jay-
jay\'\l}"
]
N1 -> N6 [
color = "red"
fontcolor = "red"
label = "FRIEND\n"
]
N6 [
color = "red"
fontcolor = "red"
label = "{Person|name = \'Jay-
jay\'\l}"
]
}

It is important to note that the MATCH clause does not find the Person nodes that are created by the
CREATE clause, even though the name "Jay-jay" starts with "J". This is because the CREATE clause

19

comes after the MATCH clause and thus the MATCH can not observe any changes to the graph made by
the CREATE.

Queries with UNION

UNION queries are slightly different because the results of two or more queries are put together, but each
query starts with an empty table of intermediate results.

In a query with a UNION clause, any clause before the UNION cannot observe writes made by a clause after
the UNION. Any clause after UNION can observe all writes made by a clause before the UNION. This means
that the rule that a clause can never observe writes made by a later clause still applies in queries using
UNION.

20

Example 8. Table of intermediate results and state of the graph in a query with UNION

Using the same example graph as above, this example shows the table of intermediate results and
the state of the graph after each clause for the following query:

CREATE (jj:Person {name: "Jay-jay"})
RETURN count(*) AS count
 UNION
MATCH (j:Person) WHERE j.name STARTS WITH "J"
RETURN count(*) AS count

Table 3. The table of intermediate results and the state of the graph after each clause

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

CREATE (jj:Person
{name: "Jay-jay"})

jj

({name: 'Jay-jay'})

digraph L { node [shape=record
style=rounded];
N0 [
label = "{Person|name =
\'John\'\l}"
]
N0 -> N3 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N0 -> N1 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N1 [
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N2 [
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N4 [
label = "{Person|name =
\'Maria\'\l}"
]
N5 [
color = "red"
fontcolor = "red"
label = "{Person|name = \'Jay-
jay\'\l}"
]
}

21

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

RETURN count(*) AS
count

count

1

digraph L { node [shape=record
style=rounded];
N0 [
label = "{Person|name =
\'John\'\l}"
]
N0 -> N3 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N0 -> N1 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N1 [
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N2 [
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N4 [
label = "{Person|name =
\'Maria\'\l}"
]
N5 [
label = "{Person|name = \'Jay-
jay\'\l}"
]
}

22

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

MATCH (j:Person) WHERE
j.name STARTS WITH "J"

j

({name: 'John'})

({name: 'Joe'})

({name: 'Jay-jay'})

digraph L { node [shape=record
style=rounded];
N0 [
label = "{Person|name =
\'John\'\l}"
]
N0 -> N3 [
color = "grey"
fontcolor = "grey"
label = "FRIEND\n"
]
N0 -> N1 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N1 [
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
color = "grey"
fontcolor = "grey"
label = "FRIEND\n"
]
N2 [
color = "grey"
fontcolor = "grey"
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
color = "grey"
fontcolor = "grey"
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
color = "grey"
fontcolor = "grey"
label = "FRIEND\n"
]
N4 [
color = "grey"
fontcolor = "grey"
label = "{Person|name =
\'Maria\'\l}"
]
N5 [
label = "{Person|name = \'Jay-
jay\'\l}"
]
}

23

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

RETURN count(*) AS
count

count

3

digraph L { node [shape=record
style=rounded];
N0 [
label = "{Person|name =
\'John\'\l}"
]
N0 -> N3 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N0 -> N1 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N1 [
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N2 [
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N4 [
label = "{Person|name =
\'Maria\'\l}"
]
N5 [
label = "{Person|name = \'Jay-
jay\'\l}"
]
}

It is important to note that the MATCH clause finds the Person node that is created by the CREATE
clause. This is because the CREATE clause comes before the MATCH clause and thus the MATCH can
observe any changes to the graph made by the CREATE.

Queries with CALL {} subqueries

Subqueries inside a CALL {} clause are evaluated for each incoming input row. This means that write
clauses inside a subquery can get executed more than once. The different invocations of the subquery are
executed in turn, in the order of the incoming input rows.

Later invocations of the subquery can observe writes made by earlier invocations of the subquery.

24

Example 9. Table of intermediate results and state of the graph in a query qith CALL {}

Using the same example graph as above, this example shows the table of intermediate results and
the state of the graph after each clause for the following query:

MATCH (john:Person {name: 'John'})
SET john.friends = []
WITH john
MATCH (john)-[:FRIEND]->(friend)
WITH john, friend
CALL {
 WITH john, friend
 WITH *, john.friends AS friends
 SET john.friends = friends + friend.name
}

Table 4. The table of intermediate results and the state of the graph after each clause

25

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

MATCH (john:Person
{name: 'John'})

john ({name: 'John'}) digraph L { node [shape=record
style=rounded];
N0 [
label = "{Person|name =
\'John\'\l}"
]
N0 -> N3 [
color = "grey"
fontcolor = "grey"
label = "FRIEND\n"
]
N0 -> N1 [
color = "grey"
fontcolor = "grey"
label = "FRIEND\n"
]
N1 [

color = "grey"
fontcolor = "grey"
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
color = "grey"
fontcolor = "grey"
label = "FRIEND\n"
]
N2 [
color = "grey"
fontcolor = "grey"
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
color = "grey"
fontcolor = "grey"
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
color = "grey"
fontcolor = "grey"
label = "FRIEND\n"
]
N4 [
color = "grey"
fontcolor = "grey"
label = "{Person|name =
\'Maria\'\l}"
]
}

26

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

SET john.friends = [] john ({name: 'John',
friends: []})

digraph L { node [shape=record
style=rounded];
N0 [
color = "red"
fontcolor = "red"
label = "{Person|name =
\'John\'\l|friends = []\l}"
]
N0 -> N3 [
label = "FRIEND\n"
]
N0 -> N1 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N1 [
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
label = "FRIEND\n"
]
N2 [
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
label = "FRIEND\n"
]
N4 [
label = "{Person|name =
\'Maria\'\l}"
]
}

27

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

MATCH (john)-[:FRIEND]-
>(friend)

john friend

({name: 'John',
friends: []})

({name: 'Sara'})

({name: 'John',
friends: []})

({name: 'Joe'})

digraph L { node [shape=record
style=rounded];
N0 [
label = "{Person|name =
\'John\'\l|friends = []\l}"
]
N0 -> N3 [
label = "FRIEND\n"
]
N0 -> N1 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N1 [
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
color = "grey"
fontcolor = "grey"
label = "FRIEND\n"
]
N2 [
color = "grey"
fontcolor = "grey"
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
color = "grey"
fontcolor = "grey"
label = "FRIEND\n"
]
N4 [
color = "grey"
fontcolor = "grey"
label = "{Person|name =
\'Maria\'\l}"
]
}

28

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

First invocation of

WITH *, john.friends AS
friends

john friend friends

({name: 'John',
friends: []})

({name:
'Sara'})

[]

digraph L { node [shape=record
style=rounded];
N0 [
label = "{Person|name =
\'John\'\l|friends = []\l}"
]
N0 -> N3 [
label = "FRIEND\n"
]
N0 -> N1 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N1 [
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
label = "FRIEND\n"
]
N2 [
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
label = "FRIEND\n"
]
N4 [
label = "{Person|name =
\'Maria\'\l}"
]
}

29

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

First invocation of

SET john.friends =
friends + friend.name

john friend friends

({name: 'John',
friends: ['Sara']})

({name:
'Sara'})

[]

digraph L { node [shape=record
style=rounded];
N0 [
color = "red"
fontcolor = "red"
label = "{Person|name =
\'John\'\l|friends = ['Sara']\l}"
]
N0 -> N3 [
label = "FRIEND\n"
]
N0 -> N1 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N1 [
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
label = "FRIEND\n"
]
N2 [
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
label = "FRIEND\n"
]
N4 [
label = "{Person|name =
\'Maria\'\l}"
]
}

30

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

Second invocation of

WITH *, john.friends AS
friends

john friend friends

({name: 'John',
friends: ['Sara']})

({name:
'Joe'})

['Sara']

digraph L { node [shape=record
style=rounded];
N0 [
label = "{Person|name =
\'John\'\l|friends = ['Sara']\l}"
]
N0 -> N3 [
label = "FRIEND\n"
]
N0 -> N1 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N1 [
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
label = "FRIEND\n"
]
N2 [
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
label = "FRIEND\n"
]
N4 [
label = "{Person|name =
\'Maria\'\l}"
]
}

31

Clause Table of intermediate results after the
clause

State of the graph after the clause,
changes in red

Second invocation of

SET john.friends =
friends + friend.name

john friend friends

({name: 'John',
friends: ['Sara',
'Joe']})

({name:
'Joe'})

['Sara']

digraph L { node [shape=record
style=rounded];
N0 [
color = "red"
fontcolor = "red"
label = "{Person|name =
\'John\'\l|friends = ['Sara',
'Joe']\l}"
]
N0 -> N3 [
label = "FRIEND\n"
]
N0 -> N1 [
color = "#2e3436"
fontcolor = "#2e3436"
label = "FRIEND\n"
]
N1 [
label = "{Person|name =
\'Joe\'\l}"
]
N1 -> N2 [
label = "FRIEND\n"
]
N2 [
label = "{Person|name =
\'Steve\'\l}"
]
N3 [
label = "{Person|name =
\'Sara\'\l}"
]
N3 -> N4 [
label = "FRIEND\n"
]
N4 [
label = "{Person|name =
\'Maria\'\l}"
]
}

It is important to note that, in the subquery, the second invocation of the WITH clause could observe
the writes made by the first invocation of the SET clause.

Notes on the implementation

An easy way to implement the semantics outlined above is to fully execute each clause and materialize the
table of intermediate results before executing the next clause. This approach would consume a lot of
memory for materializing the tables of intermediate results and would generally not perform well.

Instead, Cypher will in general try to interleave the execution of clauses. This is called lazy evaluation. It
only materializes intermediate results when needed. In many read-write queries it is unproblematic to
execute clauses interleaved, but when it is not, Cypher must ensure that the table of intermediate results
gets materialized at the right time(s). This is done by inserting an Eager operator into the execution plan.

32

Syntax
• Values and types

• Naming rules and recommendations

• Expressions

◦ Expressions in general

◦ Note on string literals

◦ Note on number literals

◦ CASE Expressions

◦ Subquery expressions

▪ EXISTS subqueries

▪ COUNT subqueries

◦ Label expressions

◦ Relationship type expressions

• Variables

• Reserved keywords

• Parameters

◦ String literal

◦ Regular expression

◦ Case-sensitive string pattern matching

◦ Create node with properties

◦ Create multiple nodes with properties

◦ Setting all properties on a node

◦ SKIP and LIMIT

◦ Node id

◦ Multiple node ids

◦ Calling procedures

• Operators

◦ Operators at a glance

◦ Aggregation operators

◦ Property operators

◦ Mathematical operators

◦ Comparison operators

◦ Boolean operators

◦ String operators

33

◦ Temporal operators

◦ Map operators

◦ List operators

• Comments

• Patterns

◦ Patterns for nodes

◦ Patterns for related nodes

◦ Patterns for labels

◦ Specifying properties

◦ Patterns for relationships

◦ Variable-length pattern matching

◦ Assigning to path variables

• Temporal (Date/Time) values

◦ Time zones

◦ Temporal instants

▪ Specifying temporal instants

▪ Specifying dates

▪ Specifying times

▪ Specifying time zones

▪ Examples

▪ Accessing components of temporal instants

◦ Durations

▪ Specifying durations

▪ Examples

▪ Accessing components of durations

◦ Examples

◦ Temporal indexing

• Spatial values

◦ Introduction

◦ Coordinate Reference Systems

▪ Geographic coordinate reference systems

▪ Cartesian coordinate reference systems

◦ Spatial instants

▪ Creating points

▪ Accessing components of points

34

◦ Point index

• Lists

◦ Lists in general

◦ List comprehension

◦ Pattern comprehension

• Maps

◦ Literal maps

◦ Map projection

• Working with null

◦ Introduction to null in Cypher

◦ Logical operations with null

◦ The [\ operator and null]

◦ The IN operator and null

◦ Expressions that return null

Values and types

This section provides an overview of data types in Cypher.

Cypher provides first class support for a number of data types. These fall into the following three
categories: property, structural, and composite. This chapter will first provide a brief overview of each
type, and then go into more detail about the property data type.

Property types

The following data types are included in the property types category: Integer, Float, String, Boolean,
Point, Date, Time, LocalTime, DateTime, LocalDateTime, and Duration.

• Property types can be returned from Cypher queries

• Property types can be used as parameters

• Property types can be stored as properties

• Property types can be constructed with Cypher literals

Homogeneous lists of simple types can also be stored as properties, although lists in general (see
Composite types) cannot be stored.

Cypher also provides pass-through support for byte arrays, which can be stored as property values. Byte
arrays are supported for performance reasons, since using Cypher’s generic language type, List of Integer
(where each Integer has a 64-bit representation), would be too costly. However, byte arrays are not
considered a first class data type by Cypher, so they do not have a literal representation.

35

Structural types

The following data types are included in the structural types category: Node, Relationship, and Path.

• Structural types can be returned from Cypher queries

• Structural types cannot be used as parameters

• Structural types cannot be stored as properties

• Structural types cannot be constructed with Cypher literals

The Node data type includes: Id, Label(s), and Map (of properties). Note that labels are not values, but a
form of pattern syntax.

The Relationship data type includes: Id, Type, Map (of properties), Id of start node, and Id of end node.

The Path data type is an alternating sequence of nodes and relationships.


Nodes, relationships, and paths are returned as a result of pattern matching. In Neo4j, all
relationships have a direction. However, you can have the notion of undirected
relationships at query time.

Composite types

The following data types are included in the composite types category: List and Map.

• Composite types can be returned from Cypher queries

• Composite types can be used as parameters

• Composite types cannot be stored as properties

• Composite types can be constructed with Cypher literals

The List data type is a heterogeneous, ordered collection of values, each of which can have any property,
structural or composite type.

As noted above, homogeneous lists of simple types can be stored as properties.

The Map data type is a heterogeneous, unordered collection of (Key, Value) pairs, where Key is a string and
Value can have any property, structural, or composite type.

Composite values can also contain null. For more details, see working with null.

Property type details

The below table provides more detailed information about the various property types that Cypher
supports. Note that Cypher types are implemented using Java, and that below table references Java value
constants.

36

Type Min. value Max. value Precision

Boolean False True -

Date -999_999_999-01-01 +999_999_999-12-31 Days

DateTime -999_999_999-01
-01T00:00:00+18:00

+999_999_999-12-
31T23:59:59.999999999-18:00

Nanoseconds

Duration P-292471208677Y-6M-15DT-15H-
36M-32S

P292471208677Y6M15DT15H36M32.9
99999999S

Nanoseconds

Float Double.MIN_VALUE [1] Double.MAX_VALUE 64 bit

Integer Long.MIN_VALUE Long.MAX_VALUE 64 bit

LocalDateTime -999_999_999-01-01T00:00:00 +999_999_999-12-
31T23:59:59.999999999

Nanoseconds

LocalTime 00:00:00 23:59:59.999999999 Nanoseconds

Point Cartesian: (-Double.MAX_VALUE,
-Double.MAX_VALUE)

Cartesian_3D: (
-Double.MAX_VALUE,
-Double.MAX_VALUE,
-Double.MAX_VALUE)

WGS_84: (-180, -90)

WGS_84_3D: (-180, -90,
-Double.MAX_VALUE)

Cartesian: (Double.MAX_VALUE,
Double.MAX_VALUE)

Cartesian_3D: (Double.MAX_VALUE,
Double.MAX_VALUE,
Double.MAX_VALUE)

WGS_84: (180, 90)

WGS_84_3D: (180, 90,
Double.MAX_VALUE)

The precision of
each coordinate
of the Point is
64 bit as they
are floats.

String - - -

Time 00:00:00+18:00 23:59:59.999999999-18:00` Nanoseconds

Java value details

Name Value

Double.MAX_VALUE 1.7976931348623157e+308

Double.MIN_VALUE 4.9e-324

Long.MAX_VALUE 2^63-1

Long.MIN_VALUE -2^63

Naming rules and recommendations

This section describes rules and recommendations for the naming of node labels,

relationship types, property names, variables, indexes, and constraints.

37

Naming rules

• Alphabetic characters:

◦ Names should begin with an alphabetic character.

◦ This includes "non-English" characters, such as å, ä, ö, ü etc.

• Numbers:

◦ Names should not begin with a number.

◦ To illustrate, 1first is not allowed, whereas first1 is allowed.

• Symbols:

◦ Names should not contain symbols, except for underscore, as in my_variable, or $ as the first
character to denote a parameter, as given by $myParam.

• Length:

◦ Can be very long, up to 65535 (2^16 - 1) or 65534 characters, depending on the version of Neo4j.

• Case-sensitive:

◦ Names are case-sensitive and thus, :PERSON, :Person and :person are three different labels, and n
and N are two different variables.

• Whitespace characters:

◦ Leading and trailing whitespace characters will be removed automatically. For example, MATCH (a
) RETURN a is equivalent to MATCH (a) RETURN a.

Using special characters in names

Non-alphabetic characters, including numbers, symbols and whitespace characters, can be used in names,
but must be escaped using backticks. For example: `^n`, `1first`, `$$n`, and `my variable has spaces`.
Database names are an exception and may include dots without the need for escaping. For example:
naming a database foo.bar.baz is perfectly valid.

Within an escaped name, the following escaping sequences are allowed:

Escape sequence Character

`` Backtick

\uxxxx Unicode UTF-16 code point (4 hex digits must follow the \u)



Using escaped names with unsanitized user input makes you vulnerable to Cypher
injection. Some techniques to mitigate this are:

• sanitizing (and validating) the user input.

• remodeling your data model to avoid this data access pattern.

38

Scoping and namespace rules

• Node labels, relationship types and property names may re-use names.

◦ The following query — with a for the label, type and property name — is valid: CREATE (a:a {a:
'a'})-[r:a]->(b:a {a: 'a'}).

• Variables for nodes and relationships must not re-use names within the same query scope.

◦ The following query is not valid as the node and relationship both have the name a: CREATE (a)-
[a]->(b).

Recommendations

Here are the recommended naming conventions:

Node labels Camel-case, beginning with an upper-
case character

:VehicleOwner rather than
:vehicle_owner etc.

Relationship types Upper-case, using underscore to
separate words

:OWNS_VEHICLE rather than :ownsVehicle
etc.

Expressions

This section contains an overview of expressions in Cypher with examples.

Expressions in general


Most expressions in Cypher evaluate to null if any of their inner expressions are null.
Notable exceptions are the operators IS NULL and IS NOT NULL.

An expression in Cypher can be:

• A decimal (integer or float) literal: 13, -40000, 3.14.

• A decimal (integer or float) literal in scientific notation: 6.022E23.

• A hexadecimal integer literal (starting with 0x): 0x13af, 0xFC3A9, -0x66eff.

• An octal integer literal (starting with 0o): 0o1372, -0o5671.

• A string literal: 'Hello', "World".

• A float literal: Inf, Infinity, NaN

• A boolean literal: true, false.

• A variable: n, x, rel, myFancyVariable, `A name with weird stuff in it[]!`.

• A property: n.prop, x.prop, rel.thisProperty, myFancyVariable.`(weird property name)`.

• A dynamic property: n["prop"], rel[n.city + n.zip], map[coll[0]].

• A parameter: $param, $0.

39

• A list of expressions: ['a', 'b'], [1, 2, 3], ['a', 2, n.property, $param], [].

• A function call: length(p), nodes(p).

• An aggregate function: avg(x.prop), count(*).

• A path-pattern: (a)-[r]->(b), (a)-[r]-(b), (a)--(b), (a)-->()<--(b).

• An operator application: 1 + 2, 3 < 4.

• A predicate expression is an expression that returns true or false: a.prop = 'Hello', length(p) > 10,
a.name IS NOT NULL.

• A special case of predicates are label and relationship type expressions: (n:A|B), ()-[r:R1|R2]→().

• A subquery expression. For example: EXISTS { MATCH (n)-[r]→(p) WHERE p.name = 'Sven' }.

• A regular expression: a.name =~ 'Tim.*'.

• A case-sensitive string matching expression: a.surname STARTS WITH 'Sven', a.surname ENDS WITH
'son' or a.surname CONTAINS 'son'.

• A CASE expression.

Note on string literals

String literals can contain the following escape sequences:

Escape sequence Character

\t Tab

\b Backspace

\n Newline

\r Carriage return

\f Form feed

\' Single quote

\" Double quote

\\ Backslash

\uxxxx Unicode UTF-16 code point (4 hex digits must follow the \u)


Using regular expressions with unsanitized user input makes you vulnerable to Cypher
injection. Consider using parameters instead.

Note on number literals

Any number literal may contain an underscore _ between digits. There may be an underscore between the
0x or 0o and the digits for hexadecimal and octal literals.

40

CASE expressions

Generic conditional expressions may be expressed using the CASE construct. Two variants of CASE exist
within Cypher: the simple form, which allows an expression to be compared against multiple values, and
the generic form, which allows multiple conditional statements to be expressed.


CASE can only be used as part of RETURN or WITH if you want to use the result in the
succeeding clause or statement.

The following graph is used for the examples below:

A

name = 'Alice'
age = 38
eyes = 'brown'

C

name = 'Charlie'
age = 53
eyes = 'green'

KNOWS

B

name = 'Bob'
age = 25
eyes = 'blue'

KNOWS

D

name = 'Daniel'
eyes = 'brown'

KNOWS KNOWS

E

eyes = 'blue'
array = ['one', 'two', 'three']
name = 'Eskil'
age = 41

MARRIED

Simple CASE form: comparing an expression against multiple values

The expression is calculated, and compared in order with the WHEN clauses until a match is found. If no
match is found, the expression in the ELSE clause is returned. However, if there is no ELSE case and no
match is found, null will be returned.

Syntax:

CASE test
 WHEN value THEN result
 [WHEN ...]
 [ELSE default]
END

Arguments:

Name Description

test A valid expression.

value An expression whose result will be compared to test.

41

Name Description

result This is the expression returned as output if value matches
test.

default If no match is found, default is returned.

Query

MATCH (n)
RETURN
CASE n.eyes
 WHEN 'blue' THEN 1
 WHEN 'brown' THEN 2
 ELSE 3
END AS result

Table 5. Result

result

2

1

3

2

1

Rows: 5

Generic CASE form: allowing for multiple conditionals to be expressed

The predicates are evaluated in order until a true value is found, and the result value is used. If no match is
found, the expression in the ELSE clause is returned. However, if there is no ELSE case and no match is
found, null will be returned.

Syntax:

CASE
 WHEN predicate THEN result
 [WHEN ...]
 [ELSE default]
END

Arguments:

Name Description

predicate A predicate that is tested to find a valid alternative.

result This is the expression returned as output if predicate
evaluates to true.

default If no match is found, default is returned.

42

Query

MATCH (n)
RETURN
CASE
 WHEN n.eyes = 'blue' THEN 1
 WHEN n.age < 40 THEN 2
 ELSE 3
END AS result

Table 6. Result

result

2

1

3

3

1

Rows: 5

Distinguishing between when to use the simple and generic CASE forms

Owing to the close similarity between the syntax of the two forms, sometimes it may not be clear at the
outset as to which form to use. We illustrate this scenario by means of the following query, in which there
is an expectation that age_10_years_ago is -1 if n.age is null:

Query

MATCH (n)
RETURN n.name,
CASE n.age
 WHEN n.age IS NULL THEN -1
 ELSE n.age - 10
END AS age_10_years_ago

However, as this query is written using the simple CASE form, instead of age_10_years_ago being -1 for the
node named Daniel, it is null. This is because a comparison is made between n.age and n.age IS NULL.
As n.age IS NULL is a boolean value, and n.age is an integer value, the WHEN n.age IS NULL THEN -1
branch is never taken. This results in the ELSE n.age - 10 branch being taken instead, returning null.

Table 7. Result

n.name age_10_years_ago

"Alice" 28

"Bob" 15

"Charlie" 43

"Daniel" <null>

"Eskil" 31

Rows: 5

43

The corrected query, behaving as expected, is given by the following generic CASE form:

Query

MATCH (n)
RETURN n.name,
CASE
 WHEN n.age IS NULL THEN -1
 ELSE n.age - 10
END AS age_10_years_ago

We now see that the age_10_years_ago correctly returns -1 for the node named Daniel.

Table 8. Result

n.name age_10_years_ago

"Alice" 28

"Bob" 15

"Charlie" 43

"Daniel" -1

"Eskil" 31

Rows: 5

Using the result of CASE in the succeeding clause or statement

You can use the result of CASE to set properties on a node or relationship. For example, instead of
specifying the node directly, you can set a property for a node selected by an expression:

Query

MATCH (n)
WITH n,
CASE n.eyes
 WHEN 'blue' THEN 1
 WHEN 'brown' THEN 2
 ELSE 3
END AS colourCode
SET n.colourCode = colourCode

For more information about using the SET clause, see SET.

Table 9. Result

(empty result)

Rows: 0
Properties set: 5

Using CASE with null values

When using the simple CASE form, it is useful to remember that in Cypher null = null yields null.

44

Example 10. CASE

For example, you might expect age_10_years_ago to be -1 for the node named Daniel:

Query

MATCH (n)
RETURN n.name,
CASE n.age
 WHEN null THEN -1
 ELSE n.age - 10
END AS age_10_years_ago

However, as null = null does not yield true, the WHEN null THEN -1 branch is never taken, resulting
in the ELSE n.age - 10 branch being taken instead, returning null.

Table 10. Result

n.name age_10_years_ago

"Alice" 28

"Bob" 15

"Charlie" 43

"Daniel" <null>

"Eskil" 31

Rows: 5

Subquery expressions

Subquery expressions can appear anywhere that an expression is valid. A subquery has a scope, as
indicated by the opening and closing braces, { and }. Any variable that is defined in the outside scope can
be referenced inside the subquery’s own scope. Variables introduced inside the subquery are not part of
the outside scope and therefore can’t be accessed on the outside.

The following graph is used for the examples below:

Swedish, Person
age = 36

name = 'Andy'

Dog
name = 'Andy'

 HAS_DOG
since = 2016

Person
age = 25

name = 'Timothy'

Cat
name = 'Mittens'

 HAS_CAT
since = 2019

Person
age = 35

name = 'Peter'

Dog
name = 'Ozzy'

 HAS_DOG
since = 2018

Dog
name = 'Fido'

 HAS_DOG
since = 2010

Toy
name = 'Banana'

 HAS_TOY

45

EXISTS subqueries

An EXISTS subquery can be used to find out if a specified pattern exists at least once in the data. It serves
the same purpose as a path pattern but is more powerful because it allows you to use MATCH and WHERE
clauses internally. Moreover, it can appear in any expression position, unlike path patterns. If the subquery
evaluates to at least one row, the whole expression will become true. This also means that the system
only needs to evaluate if there is at least one row and can skip the rest of the work.

Any non-writing query is allowed. EXISTS subqueries differ from regular queries in that the final RETURN
clause may be omitted, as any variable defined within the subquery will not be available outside of the
expression, even if a final RETURN clause is used.

It is worth noting that the MATCH keyword can be omitted in subqueries in cases where the EXISTS consists
of only a pattern and an optional WHERE clause.

Simple EXISTS subquery

Variables introduced by the outside scope can be used in the EXISTS subquery without importing them. In
this regard, EXISTS subqueries are different from CALL subqueries, which do require importing. The
following example shows this:

Query

MATCH (person:Person)
WHERE EXISTS {
 (person)-[:HAS_DOG]->(:Dog)
}
RETURN person.name AS name

Table 11. Result

name

"Andy"

"Peter"

Rows: 2

EXISTS subquery with WHERE clause

A WHERE clause can be used in conjunction to the MATCH. Variables introduced by the MATCH clause and the
outside scope can be used in this scope.

Query

MATCH (person:Person)
WHERE EXISTS {
 MATCH (person)-[:HAS_DOG]->(dog:Dog)
 WHERE person.name = dog.name
}
RETURN person.name AS name

46

Table 12. Result

name

"Andy"

Rows: 1

Nesting EXISTS subqueries

EXISTS subqueries can be nested like the following example shows. The nesting also affects the scopes.
That means that it is possible to access all variables from inside the subquery which are either from the
outside scope or defined in the very same subquery.

Query

MATCH (person:Person)
WHERE EXISTS {
 MATCH (person)-[:HAS_DOG]->(dog:Dog)
 WHERE EXISTS {
 MATCH (dog)-[:HAS_TOY]->(toy:Toy)
 WHERE toy.name = 'Banana'
 }
}
RETURN person.name AS name

Table 13. Result

name

"Peter"

Rows: 1

EXISTS subquery outside of a WHERE clause

EXISTS subquery expressions can appear anywhere that an expression is valid. Here the result is a boolean
that shows whether the subquery can find the given pattern.

Query

MATCH (person:Person)
RETURN person.name AS name, EXISTS {
 MATCH (person)-[:HAS_DOG]->(:Dog)
} AS hasDog

Table 14. Result

name hasDog

"Andy" true

"Timothy" false

"Peter" true

Rows: 3

47

EXISTS subquery with a UNION

Exists can be used with a UNION clause, and the RETURN clauses are not required. It is worth noting that if
one branch has a RETURN clause, then all branches require one. The below example demonstrates that if
one of the UNION branches was to return at least one row, the entire EXISTS expression will evaluate to
true.

Query

MATCH (person:Person)
RETURN
 person.name AS name,
 EXISTS {
 MATCH (person)-[:HAS_DOG]->(:Dog)
 UNION
 MATCH (person)-[:HAS_CAT]->(:Cat)
 } AS hasPet

Table 15. Result

name hasPet

"Andy" true

"Timothy" true

"Peter" true

Rows: 3

EXISTS subquery with WITH

Variables from the outside scope are visible for the entire subquery, even when using a WITH clause. This
means that shadowing of these variables is not allowed. An outside scope variable is shadowed when a
newly introduced variable within the inner scope is defined with the same variable. In the below example,
a WITH clause introduces a new variable. Note that the outer scope variable person referenced in the main
query is still available after the WITH clause.

Query

MATCH (person:Person)
WHERE EXISTS {
 WITH "Ozzy" AS dogName
 MATCH (person)-[:HAS_DOG]->(d:Dog)
 WHERE d.name = dogName
}
RETURN person.name AS name

Table 16. Result

name

"Peter"

Rows: 1

48

EXISTS subquery with RETURN

EXISTS subqueries do not require a RETURN clause at the end of the subquery. If one is present, it does not
need to be aliased, which is different compared to CALL subqueries. Any variables returned in an EXISTS
subquery will not be available after the subquery.

Query

MATCH (person:Person)
WHERE EXISTS {
 MATCH (person)-[:HAS_DOG]->(:Dog)
 RETURN person.name
}
RETURN person.name AS name

Table 17. Result

name

"Andy"

"Peter"

Rows: 2

COUNT subqueries

A COUNT subquery expression can be used to count the number of rows returned by the subquery.

Any non-writing query is allowed. COUNT subqueries differ from regular queries in that the final RETURN
clause may be omitted, as any variable defined within the subquery will not be available outside of the
expression, even if a final RETURN clause is used. One exception to this is that for a DISTINCT UNION clause,
the RETURN clause is still mandatory.

It is worth noting that the MATCH keyword can be omitted in subqueries in cases where the COUNT consists
of only a pattern and an optional WHERE clause.

Simple COUNT subquery

Variables introduced by the outside scope can be used in the COUNT subquery without importing them. In
this regard, COUNT subqueries are different from CALL subqueries, which do require importing. The following
query exemplifies this and outputs the owners of more than one dog:

Query

MATCH (person:Person)
WHERE COUNT { (person)-[:HAS_DOG]->(:Dog) } > 1
RETURN person.name AS name

Table 18. Result

name

"Peter"

49

name

Rows: 1

COUNT subquery with WHERE clause

A WHERE clause can be used inside the COUNT pattern. Variables introduced by the MATCH clause and the
outside scope can be used in this scope.

Query

MATCH (person:Person)
WHERE COUNT {
 (person)-[:HAS_DOG]->(dog:Dog)
 WHERE person.name = dog.name
} = 1
RETURN person.name AS name

Table 19. Result

name

"Andy"

Rows: 1

COUNT subquery with a UNION

COUNT can be used with a UNION clause. If the UNION clause is distinct, the RETURN clause is required. UNION
ALL clauses do not require the RETURN clause. However, it is worth noting that if one branch has a RETURN
clause, then all require one. The below example shows the count of pets each person has by using a UNION
clause:

Query

MATCH (person:Person)
RETURN
 person.name AS name,
 COUNT {
 MATCH (person)-[:HAS_DOG]->(dog:Dog)
 RETURN dog.name AS petName
 UNION
 MATCH (person)-[:HAS_CAT]->(cat:Cat)
 RETURN cat.name AS petName
 } AS numPets

Table 20. Result

name numPets

"Andy" 1

"Timothy" 1

"Peter" 2

Rows: 3

50

COUNT subquery with WITH

Variables from the outside scope are visible for the entire subquery, even when using a WITH clause. This
means that shadowing of these variables is not allowed. An outside scope variable is shadowed when a
newly introduced variable within the inner scope is defined with the same variable. In the below example,
a WITH clause introduces a new variable. Note that the outer scope variable person referenced in the main
query is still available after the WITH clause.

Query

MATCH (person:Person)
WHERE COUNT {
 WITH "Ozzy" AS dogName
 MATCH (person)-[:HAS_DOG]->(d:Dog)
 WHERE d.name = dogName
} = 1
RETURN person.name AS name

Table 21. Result

name

"Peter"

Rows: 1

Using COUNT subqueries inside other clauses

COUNT can be used in any position in a query, with the exception of administration commands, where it is
restricted. See a few examples below:

Using COUNT in RETURN

Query

MATCH (person:Person)
RETURN person.name, COUNT { (person)-[:HAS_DOG]->(:Dog) } as howManyDogs

Table 22. Result

person.name howManyDogs

"Andy" 1

"Timothy" 0

"Peter" 2

Rows: 3

Using COUNT in SET

51

Query

MATCH (person:Person) WHERE person.name ="Andy"
SET person.howManyDogs = COUNT { (person)-[:HAS_DOG]->(:Dog) }
RETURN person.howManyDogs as howManyDogs

Table 23. Result

howManyDogs

1

Rows: 1
Properties set: 1

Using COUNT in CASE

Query

MATCH (person:Person)
RETURN
 CASE
 WHEN COUNT { (person)-[:HAS_DOG]->(:Dog) } > 1 THEN "Doglover " + person.name
 ELSE person.name
 END AS result

Table 24. Result

result

"Andy"

"Timothy"

"Doglover Peter"

Rows: 3

Using COUNT as a grouping key

The following query groups all persons by how many dogs they own, and then calculates the average age
for each group.

Query

MATCH (person:Person)
RETURN COUNT { (person)-[:HAS_DOG]->(:Dog) } AS numDogs,
 avg(person.age) AS averageAge
 ORDER BY numDogs

Table 25. Result

numDogs averageAge

0 25.0

1 36.0

52

numDogs averageAge

2 35.0

Rows: 3

COUNT subquery with RETURN

COUNT subqueries do not require a RETURN clause at the end of the subquery. If one is present, it does not
need to be aliased. This is a difference compared to from CALL subqueries. Any variables returned in a
COUNT subquery will not be available after the subquery.

Query

MATCH (person:Person)
WHERE COUNT {
 MATCH (person)-[:HAS_DOG]->(:Dog)
 RETURN person.name
} = 1
RETURN person.name AS name

Table 26. Result

name

"Andy"

Rows: 1

Label expressions

In earlier versions of Neo4j, label expressions for nodes had a single colon operator that represented the
AND operator. With the release of version 5, a new label expression with an extended set of logical
operators is being introduced, in addition to the single colon operator. It is important to note that you
cannot mix these different types of label expression syntax. For more information, see Restrictions on
using the different types of label expression syntax.

Label expressions evaluate to true or false when applied to the set of labels for a node.

Assuming no other filters are applied, then a label expression evaluating to true means the node is
matched.

The following table displays whether the label expression matches the relationship:

Table 27. Label expression matches

Node

Label expression () (:A) (:B) (:C) (:A:B) (:A:C) (:B:C) (:A:B:C)

()        

(:A)    

(:A&B)  

53

(:A|B)      

(:!A)    

(:!!A)    

(:A&!A)

(:A|!A)        

(:%)       

(:!%) 

(:%|!%)        

(:%&!%)

(:A&%)    

(:A|%)       

(:(A&B)&!(B&C)) 

(:!(A&%)&%)   

Restrictions on using the different types of label expression syntax

Neo4j version 5 introduces an ampersand operator, which is equivalent to the colon conjunction operator.
Mixing the colon conjunction operator with any of the new label expression operators in the same clause
will raise a syntax error.

For example, each of the following clauses will raise syntax errors:

• MATCH (n:A|B:C)

• MATCH (n:A:B)-[]-(m:(A&B)|C)

• MATCH (n:A:B)--(m), (n)-→(o:(A&B)|C)

• RETURN n:A&B, n:A:B

• MATCH (n:A:B)-[]-(m) WHERE m:(A&B)|C

In earlier versions of Neo4j (version 4.4 and earlier), relationship type expressions only had the pipe
operator. As the pipe operator will continue to act as an OR operator, it can continue to be used alongside
the new operators.

To make it easier to use the new syntax when extending existing queries, using the different syntax types
in separate clauses will be supported.

For example, the following query will not raise a syntax error:

MATCH (m:A:B:C)-[]->()
MATCH (n:(A&B)|C)-[]->(m)
RETURN m,n

Queries that exclusively use syntax from earlier versions of Neo4j (version 4.4 and earlier) will continue to
be supported.

For example, the following will not raise a syntax error:

54

MATCH (m:A:B:C)-[:S|T]->()
RETURN
 CASE
 WHEN m:D:E THEN m.p
 ELSE null
 END AS result

Examples

The following graph is used for the examples below:

A

name = 'Alice'

B

name = 'Bob'

C

name = 'Charlie'

A, B

name = 'Daniel'

A, C

name = 'Eskil'

B, C

name = 'Frank'

A, B, C

name = 'George'
name = 'Henry'

• Node pattern without label expressions

• Node pattern with a single node label

• Node pattern with an AND expression for the node labels

• Node pattern with an OR expression for the node labels

• Node pattern with NOT expressions for the node labels

• Node pattern with a Wildcard expression for the node labels

• Node pattern with nested label expressions

• WHERE clause with label expressions as a predicate

• Label expressions in the WITH and RETURN clauses

Node pattern without label expressions

A node pattern without a label expression returns all nodes in the graph, including nodes without labels.

55

Example 11. Label expression

Query

MATCH (n)
RETURN n.name AS name

Table 28. Result

name

"Alice"

"Bob"

"Charlie"

"Daniel"

"Eskil"

"Frank"

"George"

"Henry"

Rows: 8

Node pattern with a single node label

A node pattern with a single label returns the nodes that contain the specified label.

Example 12. Label expression

Query

MATCH (n:A)
RETURN n.name AS name

Table 29. Result

name

"Alice"

"Daniel"

"Eskil"

"George"

Rows: 4

Node pattern with an AND expression for the node labels

A node pattern with an AND expression for the node label returns the nodes that contain both of the
specified labels.

56

Example 13. Label expression

Query

MATCH (n:A&B)
RETURN n.name AS name

Table 30. Result

name

"Daniel"

"George"

Rows: 2

Node pattern with an OR expression for the node labels

A match with OR expressions for the node label returns the nodes that contain either of the specified labels.

Example 14. Label expression

Query

MATCH (n:A|B)
RETURN n.name AS name

Table 31. Result

name

"Alice"

"Bob"

"Daniel"

"Eskil"

"Frank"

"George"

Rows: 6

Node pattern with NOT expressions for the node labels

A node pattern with a NOT expression for the node label returns the nodes that do not contain the specified
label.

57

Example 15. Label expression

Query

MATCH (n:!A)
RETURN n.name AS name

Table 32. Result

name

"Bob"

"Charlie"

"Frank"

"Henry"

Rows: 4

Node pattern with a Wildcard expression for the node labels

A node pattern with a Wildcard expression for the node label returns all the nodes that contain at least one
label.

Example 16. Label expression

Query

MATCH (n:%)
RETURN n.name AS name

Table 33. Result

name

"Alice"

"Bob"

"Charlie"

"Daniel"

"Eskil"

"Frank"

"George"

Rows: 7

Node pattern with nested label expressions

A node pattern with nested label expressions returns the nodes for which the full expression is true.

58

Example 17. Label expression

Query

MATCH (n:(!A&!B)|C)
RETURN n.name AS name

Table 34. Result

name

"Charlie"

"Eskil"

"Frank"

"George"

"Henry"

Rows: 5

WHERE clause with label expressions as a predicate

A label expression can also be used as a predicate in the WHERE clause.

Example 18. Label expression

Query

MATCH (n)
WHERE n:A|B
RETURN n.name AS name

Table 35. Result

name

"Alice"

"Bob"

"Daniel"

"Eskil"

"Frank"

"George"

Rows: 6

Label expressions in the WITH and RETURN clauses

A label expression can also be used in a WITH or a RETURN clause.

59

Example 19. Label expression

Query

MATCH (n)
RETURN n:A&B

Table 36. Result

n:A&B

false

false

false

true

false

false

true

false

Rows: 8

Relationship type expressions

Relationship type expressions evaluate to true or false when applied to the type of a relationship.

Assuming no other filters are applied, then a relationship type expression evaluating to true means the
relationship is matched.


Relationships must have exactly one type. So for example the expressions: (a)-[r:R&Q]-
(b) or (a)-[r:!%]-(b) will never return any results.


Variable length relationships may only have relationship type expressions consisting of
|. That means that ()-[r:!R*]-() is not allowed, whereas ()-[r:Q|R*]-() is allowed.


Relationships must have exactly one type. For example (a)-[r:R&Q]-(b) or (a)-[r:!%]-
(b) will never return any results.

The following table displays whether the relationship type expression matches the relationship:

Relationship

Relationship type expression [:A] [:B] [:C]

[]   

[:A] 

[:A&B]

60

[:A|B]  

[:!A]  

[:!!A] 

[:A&!A]

[:A|!A]   

[:%]   

[:!%]

[:%|!%]   

[:%&!%]

[:A&%]

[:A|%]   

Label expressions cannot be combined with label syntax. For example, :A:B&C will throw an error. Instead,
use either :A&B&C or :A:B:C.

Examples:

• Relationship pattern without relationship type expression

• Relationship pattern with a single relationship type

• Relationship pattern with an OR expression for the relationship types

• Relationship pattern with a NOT expression for the relationship types

• Relationship pattern with a nested relationship type expression

• WHERE clause with a relationship type expression in the predicate

• WITH and RETURN clauses with a relationship type expression

• CASE expression with relationship type and label expressions

The following graph is used for the examples below:

A, B

B

R1
name = 'Teaches'

C

D

R2
name = 'Studies'

E

F

R3
name = 'Parents'

Relationship pattern without relationship type expression

A relationship pattern without a relationship type expression returns all relationships in the graph.

61

Example 20. Relationship type expressions

Query

MATCH ()-[r]->()
RETURN r.name as name

Table 37. Result

name

"Teaches"

"Studies"

"Parents"

Rows: 3

Relationship pattern with a single relationship type

A relationship pattern with a single relationship type returns the relationships that contain the specified
type.

Example 21. Relationship type expression

Query

MATCH ()-[r:R1]->()
RETURN r.name AS name

Table 38. Result

name

"Teaches"

Rows: 1

Relationship pattern with an OR expression for the relationship types

A relationship pattern with an OR expression for the relationship type returns all relationships that contain
either of the specified types.

62

Example 22. Relationship type expression

Query

MATCH ()-[r:R1|R2]->()
RETURN r.name AS name

Table 39. Result

name

"Teaches"

"Studies"

Rows: 2

Relationship pattern with a NOT expression for the relationship types

A relationship pattern with a NOT expression for the relationship type returns all relationships that do not
contain the specified type.

Example 23. Relationship type expression

Query

MATCH ()-[r:!R1]->()
RETURN r.name AS name

Table 40. Result

name

"Studies"

"Parents"

Rows: 2

Relationship pattern with a nested relationship type expression

A relationship pattern with a nested relationship type expression returns all relationships for which the full
expression is true.

63

Example 24. Relationship type expression

Query

MATCH ()-[r:(!R1&!R2)|R3]->()
RETURN r.name as name

Table 41. Result

name

"Parents"

Rows: 1

WHERE clause with a relationship type expression in the predicate

A relationship type expression can also be used as a predicate in the WHERE clause.

Example 25. Relationship type expression

Query

MATCH (n)-[r]->(m)
WHERE r:R1|R2
RETURN r.name AS name

Table 42. Result

name

"Teaches"

"Studies"

Rows: 2

WITH and RETURN clauses with a relationship type expression

A relationship type expression can also be used in the WITH or RETURN clauses.

64

Example 26. Relationship type expression

Query

MATCH (n)-[r]->(m)
RETURN r:R1|R2 AS result

Table 43. Result

result

true

true

false

Rows: 3

CASE expression with relationship type and label expressions

A relationship type expression and a label expression can also be used in CASE expressions.

Example 27. Relationship type expression

Query

MATCH (n)-[r]->(m)
RETURN
CASE
 WHEN n:A&B THEN 1
 WHEN r:!R1&!R2 THEN 2
 ELSE -1
END AS result

Table 44. Result

result

1

-1

2

Rows: 3

Variables

This section provides an overview of variables in Cypher.

When you reference parts of a pattern or a query, you do so by naming them. The names you give the
different parts are called variables.

In this example:

65

MATCH (n)-->(b)
RETURN b

The variables are n and b.

Information regarding the naming of variables may be found here.



Variables are only visible in the same query part

Variables are not carried over to subsequent queries. If multiple query parts are chained
together using WITH, variables have to be listed in the WITH clause to be carried over to
the next part. For more information see WITH.

Reserved keywords

This section contains a list of reserved keywords in Cypher.

Reserved keywords are words that have a special meaning in Cypher. The listing of the reserved keywords
are grouped by the categories from which they are drawn. In addition to this, there are a number of
keywords that are reserved for future use.

The reserved keywords are not permitted to be used as identifiers in the following contexts:

• Variables

• Function names

• Parameters

If any reserved keyword is escaped — i.e. is encapsulated by backticks `, such as `AND` — it would become
a valid identifier in the above contexts.

Clauses

• CALL

• CREATE

• DELETE

• DETACH

• FOREACH

• LOAD

• MATCH

• MERGE

• OPTIONAL

• REMOVE

• RETURN

66

• SET

• START

• UNION

• UNWIND

• WITH

Subclauses

• LIMIT

• ORDER

• SKIP

• WHERE

• YIELD

Modifiers

• ASC

• ASCENDING

• ASSERT

• BY

• CSV

• DESC

• DESCENDING

• ON

Expressions

• ALL

• CASE

• COUNT

• ELSE

• END

• EXISTS

• THEN

• WHEN

67

Operators

• AND

• AS

• CONTAINS

• DISTINCT

• ENDS

• IN

• IS

• NOT

• OR

• STARTS

• XOR

Schema

• CONSTRAINT

• CREATE

• DROP

• EXISTS

• INDEX

• NODE

• KEY

• UNIQUE

Hints

• INDEX

• JOIN

• SCAN

• USING

Literals

• false

• null

• true

68

Reserved for future use

• ADD

• DO

• FOR

• MANDATORY

• OF

• REQUIRE

• SCALAR

Parameters

This section describes parameterized querying.

Introduction

Cypher supports querying with parameters. A parameterized query is a query in which placeholders are
used for parameters and the parameter values are supplied at execution time. This means developers do
not have to resort to string building to create a query. Additionally, parameters make caching of execution
plans much easier for Cypher, thus leading to faster query execution times.

Parameters can be used for:

• literals and expressions

• node and relationship ids

Parameters cannot be used for the following constructs, as these form part of the query structure that is
compiled into a query plan:

• property keys; so MATCH (n) WHERE n.$param = 'something' is invalid

• relationship types; so MATCH (n)-[:$param]→(m) is invalid

• labels; so MATCH (n:$param) is invalid

Parameters may consist of letters and numbers, and any combination of these, but cannot start with a
number or a currency symbol.

Setting parameters when running a query is dependent on the client environment. For example:

• To set a parameter in Cypher Shell use :param name => 'Joe'. For more information refer to
Operations Manual → Cypher Shell - Query Parameters.

• For Neo4j Browser use the same syntax as Cypher Shell, :param name => 'Joe'.

• When using drivers, the syntax is dependent on the language choice. See the examples in
Transactions in the Neo4j Driver manuals.

69

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#cypher-shell-parameters
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#cypher-shell-parameters
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#cypher-shell-parameters
https://neo4j.com/docs

• For usage via the Neo4j HTTP API, see the HTTP API documentation.

We provide below a comprehensive list of examples of parameter usage. In these examples, parameters
are given in JSON; the exact manner in which they are to be submitted depends upon the driver being
used.

Auto-parameterization

From version 5 onwards, even when a query is partially parameterized, Cypher will try to infer parameters
anyway. Each literal in the query is replaced with a parameter. This increases the re-usability of the
computed plan for queries that are identical except for the literals. It is not recommended to rely on this
behavior - users should rather use parameters where they think it is appropriate.

String literal

Parameters

{
 "name": "Johan"
}

Query

MATCH (n:Person)
WHERE n.name = $name
RETURN n

You can use parameters in this syntax as well:

Parameters

{
 "name": "Johan"
}

Query

MATCH (n:Person {name: $name})
RETURN n

Regular expression

Parameters

{
 "regex": ".*h.*"
}

Query

MATCH (n:Person)
WHERE n.name =~ $regex
RETURN n.name

70

https://neo4j.com/docs/pdf/neo4j-http-api-5.pdf#http-api

Case-sensitive string pattern matching

Parameters

{
 "name": "Michael"
}

Query

MATCH (n:Person)
WHERE n.name STARTS WITH $name
RETURN n.name

Create node with properties

Parameters

{
 "props": {
 "name": "Andy",
 "position": "Developer"
 }
}

Query

CREATE ($props)

Create multiple nodes with properties

Parameters

{
 "props": [{
 "awesome": true,
 "name": "Andy",
 "position": "Developer"
 }, {
 "children": 3,
 "name": "Michael",
 "position": "Developer"
 }]
}

Query

UNWIND $props AS properties
CREATE (n:Person)
SET n = properties
RETURN n

Setting all properties on a node

Note that this will replace all the current properties.

71

Parameters

{
 "props": {
 "name": "Andy",
 "position": "Developer"
 }
}

Query

MATCH (n:Person)
WHERE n.name = 'Michaela'
SET n = $props

SKIP and LIMIT

Parameters

{
 "s": 1,
 "l": 1
}

Query

MATCH (n:Person)
RETURN n.name
SKIP $s
LIMIT $l

Node id

Parameters

{
 "id" : 0
}

Query

MATCH (n)
WHERE elementId(n) = $id
RETURN n.name

Multiple node ids

Parameters

{
 "ids" : [0, 1, 2]
}

72

Query

MATCH (n)
WHERE elementId(n) IN $ids
RETURN n.name

Calling procedures

Parameters

{
 "indexname" : "My index"
}

Query

CALL db.resampleIndex($indexname)

Operators

This section contains an overview of operators.

• Operators at a glance

• Aggregation operators

◦ Using the DISTINCT operator

• Property operators

◦ Statically accessing a property of a node or relationship using the . operator

◦ Filtering on a dynamically-computed property key using the [\ operator]

◦ Replacing all properties of a node or relationship using the = operator

◦ Mutating specific properties of a node or relationship using the += operator

• Mathematical operators

◦ Using the exponentiation operator ^

◦ Using the unary minus operator -

• Comparison operators

◦ Comparing two numbers

◦ Using STARTS WITH to filter names

◦ Equality and comparison of values

◦ Ordering and comparison of values

◦ Chaining comparison operations

◦ Using a regular expression with =~ to filter words

• Boolean operators

73

◦ Using boolean operators to filter numbers

• String operators

◦ Concatenating two strings using +

• Temporal operators

◦ Adding and subtracting a Duration to or from a temporal instant

◦ Adding and subtracting a Duration to or from another Duration

◦ Multiplying and dividing a Duration with or by a number

• Map operators

◦ Statically accessing the value of a nested map by key using the . operator"

◦ Dynamically accessing the value of a map by key using the [\ operator and a parameter]

• List operators

◦ Concatenating two lists using +

◦ Using IN to check if a number is in a list

◦ Using IN for more complex list membership operations

◦ Accessing elements in a list using the [\ operator]

◦ Dynamically accessing an element in a list using the [\ operator and a parameter]

◦ Using IN with [\ on a nested list]

Operators at a glance

Aggregation operators DISTINCT

Property operators . for static property access, [] for dynamic property access, =
for replacing all properties, += for mutating specific properties

Mathematical operators +, -, *, /, %, ^

Comparison operators =, <>, <, >, <=, >=, IS NULL, IS NOT NULL

String-specific comparison operators STARTS WITH, ENDS WITH, CONTAINS, =~ (regex matching)

Boolean operators AND, OR, XOR, NOT

String operators + (string concatenation)

Temporal operators + and - for operations between durations and temporal
instants/durations, * and / for operations between durations
and numbers

Map operators . for static value access by key, [] for dynamic value access
by key

List operators + (list concatenation), IN to check existence of an element in a
list, [] for accessing element(s) dynamically

74

Aggregation operators

The aggregation operators comprise:

• remove duplicates values: DISTINCT

Using the DISTINCT operator

Retrieve the unique eye colors from Person nodes.

Query

CREATE
 (a:Person {name: 'Anne', eyeColor: 'blue'}),
 (b:Person {name: 'Bill', eyeColor: 'brown'}),
 (c:Person {name: 'Carol', eyeColor: 'blue'})
WITH [a, b, c] AS ps
UNWIND ps AS p
RETURN DISTINCT p.eyeColor

Even though both 'Anne' and 'Carol' have blue eyes, 'blue' is only returned once.

Table 45. Result

p.eyeColor

"blue"

"brown"

Rows: 2
Nodes created: 3
Properties set: 6
Labels added: 3

DISTINCT is commonly used in conjunction with aggregating functions.

Property operators

The property operators pertain to a node or a relationship, and comprise:

• statically access the property of a node or relationship using the dot operator: .

• dynamically access the property of a node or relationship using the subscript operator: []

• property replacement = for replacing all properties of a node or relationship

• property mutation operator += for setting specific properties of a node or relationship

Statically accessing a property of a node or relationship using the . operator

75

Query

CREATE
 (a:Person {name: 'Jane', livesIn: 'London'}),
 (b:Person {name: 'Tom', livesIn: 'Copenhagen'})
WITH a, b
MATCH (p:Person)
RETURN p.name

Table 46. Result

p.name

"Jane"

"Tom"

Rows: 2
Nodes created: 2
Properties set: 4
Labels added: 2

Filtering on a dynamically-computed property key using the [] operator

Query

CREATE
 (a:Restaurant {name: 'Hungry Jo', rating_hygiene: 10, rating_food: 7}),
 (b:Restaurant {name: 'Buttercup Tea Rooms', rating_hygiene: 5, rating_food: 6}),
 (c1:Category {name: 'hygiene'}),
 (c2:Category {name: 'food'})
WITH a, b, c1, c2
MATCH (restaurant:Restaurant), (category:Category)
WHERE restaurant["rating_" + category.name] > 6
RETURN DISTINCT restaurant.name

Table 47. Result

restaurant.name

"Hungry Jo"

Rows: 1
Nodes created: 4
Properties set: 8
Labels added: 4

See Basic usage for more details on dynamic property access.

 The behavior of the [] operator with respect to null is detailed here.

Replacing all properties of a node or relationship using the = operator

Query

CREATE (a:Person {name: 'Jane', age: 20})
WITH a
MATCH (p:Person {name: 'Jane'})
SET p = {name: 'Ellen', livesIn: 'London'}
RETURN p.name, p.age, p.livesIn

76

All the existing properties on the node are replaced by those provided in the map; i.e. the name property is
updated from Jane to Ellen, the age property is deleted, and the livesIn property is added.

Table 48. Result

p.name p.age p.livesIn

"Ellen" <null> "London"

Rows: 1
Nodes created: 1
Properties set: 5
Labels added: 1

See Replace all properties using a map and = for more details on using the property replacement operator
=.

Mutating specific properties of a node or relationship using the += operator

Query

CREATE (a:Person {name: 'Jane', age: 20})
WITH a
MATCH (p:Person {name: 'Jane'})
SET p += {name: 'Ellen', livesIn: 'London'}
RETURN p.name, p.age, p.livesIn

The properties on the node are updated as follows by those provided in the map: the name property is
updated from Jane to Ellen, the age property is left untouched, and the livesIn property is added.

Table 49. Result

p.name p.age p.livesIn

"Ellen" 20 "London"

Rows: 1
Nodes created: 1
Properties set: 4
Labels added: 1

See Mutate specific properties using a map and += for more details on using the property mutation
operator +=.

Mathematical operators

The mathematical operators comprise:

• addition: +

• subtraction or unary minus: -

• multiplication: *

• division: /

• modulo division: %

77

• exponentiation: ^

Using the exponentiation operator ^

Query

WITH 2 AS number, 3 AS exponent
RETURN number ^ exponent AS result

Table 50. Result

result

8.0

Rows: 1

Using the unary minus operator -

Query

WITH -3 AS a, 4 AS b
RETURN b - a AS result

Table 51. Result

result

7

Rows: 1

Comparison operators

The comparison operators comprise:

• equality: =

• inequality: <>

• less than: <

• greater than: >

• less than or equal to: <=

• greater than or equal to: >=

• IS NULL

• IS NOT NULL

String-specific comparison operators comprise:

• STARTS WITH: perform case-sensitive prefix searching on strings

• ENDS WITH: perform case-sensitive suffix searching on strings

78

• CONTAINS: perform case-sensitive inclusion searching in strings

• =~: regular expression for matching a pattern

Comparing two numbers

Query

WITH 4 AS one, 3 AS two
RETURN one > two AS result

Table 52. Result

result

true

Rows: 1

See Equality and comparison of values for more details on the behavior of comparison operators, and
Using ranges for more examples showing how these may be used.

Using STARTS WITH to filter names

Query

WITH ['John', 'Mark', 'Jonathan', 'Bill'] AS somenames
UNWIND somenames AS names
WITH names AS candidate
WHERE candidate STARTS WITH 'Jo'
RETURN candidate

Table 53. Result

candidate

"John"

"Jonathan"

Rows: 2

String matching contains more information regarding the string-specific comparison operators as well as
additional examples illustrating the usage thereof.

Equality and comparison of values

Equality

Cypher supports comparing values (see Values and types) by equality using the = and <> operators.

Values of the same type are only equal if they are the same identical value (e.g. 3 = 3 and "x" <> "xy").

Maps are only equal if they map exactly the same keys to equal values and lists are only equal if they
contain the same sequence of equal values (e.g. [3, 4] = [1+2, 8/2]).

79

Values of different types are considered as equal according to the following rules:

• Paths are treated as lists of alternating nodes and relationships and are equal to all lists that contain
that very same sequence of nodes and relationships.

• Testing any value against null with both the = and the <> operators always evaluates to null. This
includes null = null and null <> null. The only way to reliably test if a value v is null is by using the
special v IS NULL, or v IS NOT NULL, equality operators. v IS NOT NULL is equivalent to NOT(v IS
NULL).

All other combinations of types of values cannot be compared with each other. Especially, nodes,
relationships, and literal maps are incomparable with each other.

It is an error to compare values that cannot be compared.

Ordering and comparison of values

The comparison operators <=, < (for ascending) and >=, > (for descending) are used to compare values for
ordering. The following points give some details on how the comparison is performed.

• Numerical values are compared for ordering using numerical order (e.g. 3 < 4 is true).

• All comparability tests (<, <=, >, >=) with java.lang.Double.NaN evaluate as false. For example, 1 > b
and 1 < b are both false when b is NaN.

• String values are compared for ordering using lexicographic order (e.g. "x" < "xy").

• Boolean values are compared for ordering such that false < true.

• Comparison of spatial values:

◦ Point values can only be compared within the same Coordinate Reference System
(CRS) — otherwise, the result will be null.

◦ For two points a and b within the same CRS, a is considered to be greater than b if a.x > b.x and
a.y > b.y (and a.z > b.z for 3D points).

◦ a is considered less than b if a.x < b.x and a.y < b.y (and a.z < b.z for 3D points).

◦ If none if the above is true, the points are considered incomparable and any comparison operator
between them will return null.

• Ordering of spatial values:

◦ ORDER BY requires all values to be orderable.

◦ Points are ordered after arrays and before temporal types.

◦ Points of different CRS are ordered by the CRS code (the value of SRID field). For the currently
supported set of Coordinate Reference Systems this means the order: 4326, 4979, 7302, 9157

◦ Points of the same CRS are ordered by each coordinate value in turn, x first, then y and finally z.

◦ Note that this order is different to the order returned by the spatial index, which will be the order of
the space filling curve.

• Comparison of temporal values:

◦ Temporal instant values are comparable within the same type. An instant is considered less than

80

another instant if it occurs before that instant in time, and it is considered greater than if it occurs
after.

◦ Instant values that occur at the same point in time — but that have a different time zone — are not
considered equal, and must therefore be ordered in some predictable way. Cypher prescribes that,
after the primary order of point in time, instant values be ordered by effective time zone offset,
from west (negative offset from UTC) to east (positive offset from UTC). This has the effect that
times that represent the same point in time will be ordered with the time with the earliest local time
first. If two instant values represent the same point in time, and have the same time zone offset,
but a different named time zone (this is possible for DateTime only, since Time only has an offset),
these values are not considered equal, and ordered by the time zone identifier, alphabetically, as its
third ordering component. If the type, point in time, offset, and time zone name are all equal, then
the values are equal, and any difference in order is impossible to observe.

◦ Duration values cannot be compared, since the length of a day, month or year is not known
without knowing which day, month or year it is. Since Duration values are not comparable, the
result of applying a comparison operator between two Duration values is null.

• Ordering of temporal values:

◦ ORDER BY requires all values to be orderable.

◦ Temporal instances are ordered after spatial instances and before strings.

◦ Comparable values should be ordered in the same order as implied by their comparison order.

◦ Temporal instant values are first ordered by type, and then by comparison order within the type.

◦ Since no complete comparison order can be defined for Duration values, we define an order for
ORDER BY specifically for Duration:

▪ Duration values are ordered by normalising all components as if all years were 365.2425 days
long (PT8765H49M12S), all months were 30.436875 (1/12 year) days long (PT730H29M06S), and all
days were 24 hours long [2].

• Comparing for ordering when one argument is null (e.g. null < 3 is null).

• Ordering of values with different types:

◦ The ordering is, in ascending order, defined according to the following list:

▪ Map

▪ Node

▪ Relationship

▪ List

▪ Path

▪ DateTime

▪ LocalDateTime

▪ Date

▪ Time

▪ LocalTime

▪ Duration

81

▪ String

▪ Boolean

▪ Number

◦ The value null is considered larger than any value.

• Ordering of composite type values:

◦ For the composite types (e.g. maps and lists), elements of the containers are compared pairwise for
ordering and thus determine the ordering of two container types. For example, [1, 'foo', 3] is
ordered before [1, 2, 'bar'] since 'foo' is ordered before 2.

Chaining comparison operations

Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y AND y <= z.

Formally, if a, b, c, ..., y, z are expressions and op1, op2, ..., opN are comparison operators, then a
op1 b op2 c ... y opN z is equivalent to a op1 b and b op2 c and ... y opN z.

Note that a op1 b op2 c does not imply any kind of comparison between a and c, so that, e.g., x < y > z
is perfectly legal (although perhaps not elegant).

The example:

MATCH (n) WHERE 21 < n.age <= 30 RETURN n

is equivalent to

MATCH (n) WHERE 21 < n.age AND n.age <= 30 RETURN n

Thus, it matches all nodes where the age is between 21 and 30.

This syntax extends to all equality = and inequality <> comparisons, as well as to chains longer than three.



Chains of = and <> are treated in a special way in Cypher.

This means that 1=1=true is equivalent to 1=1 AND 1=true and not to (1=1)=true or
1=(1=true).

For example:

a < b = c <= d <> e

Is equivalent to:

a < b AND b = c AND c <= d AND d <> e

82

Using a regular expression with =~ to filter words

Query

WITH ['mouse', 'chair', 'door', 'house'] AS wordlist
UNWIND wordlist AS word
WITH word
WHERE word =~ '.*ous.*'
RETURN word

Table 54. Result

word

"mouse"

"house"

Rows: 2

Further information and examples regarding the use of regular expressions in filtering can be found in
Regular expressions.

Boolean operators

The boolean operators — also known as logical operators — comprise:

• conjunction: AND

• disjunction: OR,

• exclusive disjunction: XOR

• negation: NOT

Here is the truth table for AND, OR, XOR and NOT.

a b a AND b a OR b a XOR b NOT a

false false false false false true

false null false null null true

false true false true true true

true false false true true false

true null null true null false

true true true true false false

null false false null null null

null null null null null null

null true null true null null

Using boolean operators to filter numbers

83

Query

WITH [2, 4, 7, 9, 12] AS numberlist
UNWIND numberlist AS number
WITH number
WHERE number = 4 OR (number > 6 AND number < 10)
RETURN number

Table 55. Result

number

4

7

9

Rows: 3

String operators

The string operators comprise:

• concatenating strings: +

Concatenating two strings with +

Query

RETURN 'neo' + '4j' AS result

Table 56. Result

result

"neo4j"

Rows: 1

Temporal operators

Temporal operators comprise:

• adding a Duration to either a temporal instant or another Duration: +

• subtracting a Duration from either a temporal instant or another Duration: -

• multiplying a Duration with a number: *

• dividing a Duration by a number: /

The following table shows — for each combination of operation and operand type — the type of the value
returned from the application of each temporal operator:

84

Operator Left-hand operand Right-hand operand Type of result

+ Temporal instant Duration The type of the temporal
instant

+ Duration Temporal instant The type of the temporal
instant

- Temporal instant Duration The type of the temporal
instant

+ Duration Duration Duration

- Duration Duration Duration

* Duration Number Duration

* Number Duration Duration

/ Duration Number Duration

Adding and subtracting a Duration to or from a temporal instant

Query

WITH
 localdatetime({year:1984, month:10, day:11, hour:12, minute:31, second:14}) AS aDateTime,
 duration({years: 12, nanoseconds: 2}) AS aDuration
RETURN aDateTime + aDuration, aDateTime - aDuration

Table 57. Result

aDateTime + aDuration aDateTime - aDuration

1996-10-11T12:31:14.000000002 1972-10-11T12:31:13.999999998

Rows: 1

Components of a Duration that do not apply to the temporal instant are ignored. For example, when
adding a Duration to a Date, the hours, minutes, seconds and nanoseconds of the Duration are ignored
(Time behaves in an analogous manner):

Query

WITH
 date({year:1984, month:10, day:11}) AS aDate,
 duration({years: 12, nanoseconds: 2}) AS aDuration
RETURN aDate + aDuration, aDate - aDuration

Table 58. Result

aDate + aDuration aDate - aDuration

1996-10-11 1972-10-11

Rows: 1

Adding two durations to a temporal instant is not an associative operation. This is because non-existing
dates are truncated to the nearest existing date:

85

Query

RETURN
 (date("2011-01-31") + duration("P1M")) + duration("P12M") AS date1,
 date("2011-01-31") + (duration("P1M") + duration("P12M")) AS date2

Table 59. Result

date1 date2

2012-02-28 2012-02-29

Rows: 1

Adding and subtracting a Duration to or from another Duration

Query

WITH
 duration({years: 12, months: 5, days: 14, hours: 16, minutes: 12, seconds: 70, nanoseconds: 1}) as
duration1,
 duration({months:1, days: -14, hours: 16, minutes: -12, seconds: 70}) AS duration2
RETURN duration1, duration2, duration1 + duration2, duration1 - duration2

Table 60. Result

duration1 duration2 duration1 + duration2 duration1 - duration2

P12Y5M14DT16H13M10.0000000
01S

P1M-14DT15H49M10S P12Y6MT32H2M20.000000001S P12Y4M28DT24M0.000000001S

Rows: 1

Multiplying and dividing a Duration with or by a number

These operations are interpreted simply as component-wise operations with overflow to smaller units
based on an average length of units in the case of division (and multiplication with fractions).

Query

WITH duration({days: 14, minutes: 12, seconds: 70, nanoseconds: 1}) AS aDuration
RETURN aDuration, aDuration * 2, aDuration / 3

Table 61. Result

aDuration aDuration * 2 aDuration / 3

P14DT13M10.000000001S P28DT26M20.000000002S P4DT16H4M23.333333333S

Rows: 1

Map operators

The map operators comprise:

• statically access the value of a map by key using the dot operator: .

86

• dynamically access the value of a map by key using the subscript operator: []


The behavior of the [] operator with respect to null is detailed in The [] operator and
null.

Statically accessing the value of a nested map by key using the . operator

Query

WITH {person: {name: 'Anne', age: 25}} AS p
RETURN p.person.name

Table 62. Result

p.person.name

"Anne"

Rows: 1

Dynamically accessing the value of a map by key using the [] operator and a
parameter

A parameter may be used to specify the key of the value to access:

Parameters

{
 "myKey" : "name"
}

Query

WITH {name: 'Anne', age: 25} AS a
RETURN a[$myKey] AS result

Table 63. Result

result

"Anne"

Rows: 1

More details on maps can be found in Maps.

List operators

The list operators comprise:

• concatenating lists l1 and l2: [l1] + [l2]

• checking if an element e exists in a list l: e IN [l]

• dynamically accessing an element(s) in a list using the subscript operator: []

87

 The behavior of the IN and [] operators with respect to null is detailed here.

Concatenating two lists using +

Query

RETURN [1,2,3,4,5] + [6,7] AS myList

Table 64. Result

myList

[1,2,3,4,5,6,7]

Rows: 1

Using IN to check if a number is in a list

Query

WITH [2, 3, 4, 5] AS numberlist
UNWIND numberlist AS number
WITH number
WHERE number IN [2, 3, 8]
RETURN number

Table 65. Result

number

2

3

Rows: 2

Using IN for more complex list membership operations

The general rule is that the IN operator will evaluate to true if the list given as the right-hand operand
contains an element which has the same type and contents (or value) as the left-hand operand. Lists are
only comparable to other lists, and elements of a list innerList are compared pairwise in ascending order
from the first element in innerList to the last element in innerList.

The following query checks whether or not the list [2, 1] is an element of the list [1, [2, 1], 3]:

Query

RETURN [2, 1] IN [1, [2, 1], 3] AS inList

The query evaluates to true as the right-hand list contains, as an element, the list [1, 2] which is of the
same type (a list) and contains the same contents (the numbers 2 and 1 in the given order) as the left-hand
operand. If the left-hand operator had been [1, 2] instead of [2, 1], the query would have returned
false.

88

Table 66. Result

inList

true

Rows: 1

At first glance, the contents of the left-hand operand and the right-hand operand appear to be the same in
the following query:

Query

RETURN [1, 2] IN [1, 2] AS inList

However, IN evaluates to false as the right-hand operand does not contain an element that is of the same
type — i.e. a list — as the left-hand-operand.

Table 67. Result

inList

false

Rows: 1

The following query can be used to ascertain whether or not a list — obtained from, say, the labels()
function — contains at least one element that is also present in another list:

MATCH (n)
WHERE size([label IN labels(n) WHERE label IN ['Person', 'Employee'] | 1]) > 0
RETURN count(n)

As long as labels(n) returns either Person or Employee (or both), the query will return a value greater than
zero.

Accessing elements in a list using the [] operator

Query

WITH ['Anne', 'John', 'Bill', 'Diane', 'Eve'] AS names
RETURN names[1..3] AS result

The square brackets will extract the elements from the start index 1, and up to (but excluding) the end
index 3.

Table 68. Result

result

["John","Bill"]

Rows: 1

89

Dynamically accessing an element in a list using the [] operator and a parameter

A parameter may be used to specify the index of the element to access:

Parameters

{
 "myIndex" : 1
}

Query

WITH ['Anne', 'John', 'Bill', 'Diane', 'Eve'] AS names
RETURN names[$myIndex] AS result

Table 69. Result

result

"John"

Rows: 1

Using IN with [] on a nested list

IN can be used in conjunction with [] to test whether an element exists in a nested list:

Parameters

{
 "myIndex" : 1
}

Query

WITH [[1, 2, 3]] AS l
RETURN 3 IN l[0] AS result

Table 70. Result

result

true

Rows: 1

More details on lists can be found in Lists in general.

Comments

This section describes how how to use comments in Cypher.

A comment begin with double slash (//) and continue to the end of the line. Comments do not execute,
they are for humans to read.

90

Examples:

MATCH (n) RETURN n //This is an end of line comment

MATCH (n)
//This is a whole line comment
RETURN n

MATCH (n) WHERE n.property = '//This is NOT a comment' RETURN n

Patterns

This section contains an overview of data patterns in Cypher.

Introduction

Patterns and pattern-matching are at the very heart of Cypher, so being effective with Cypher requires a
good understanding of patterns.

Using patterns, you describe the shape of the data you are looking for. For example, in the MATCH clause
you describe the shape with a pattern, and Cypher will figure out how to get that data for you.

The pattern describes the data using a form that is very similar to how one typically draws the shape of
property graph data on a whiteboard: usually as circles (representing nodes) and arrows between them to
represent relationships.

Patterns appear in multiple places in Cypher: in MATCH, CREATE, and MERGE clauses, and in pattern
expressions.

Each of these is described in more detail in:

• MATCH

• OPTIONAL MATCH

• CREATE

• MERGE

• Using path patterns in WHERE

Patterns for nodes

The very simplest 'shape' that can be described in a pattern is a node. A node is described using a pair of
parentheses, and is typically given a name.

For example:

(a)

91

This simple pattern describes a single node, and names that node using the variable a.

You can specify additional constraints by introducing node pattern predicates.

Patterns for related nodes

A more powerful construct is a pattern that describes multiple nodes and relationships between them.
Cypher patterns describe relationships by employing an arrow between two nodes. For example:

(a)-->(b)

This pattern describes a very simple data shape: two nodes, and a single relationship from one to the
other. In this example, the two nodes are both named as a and b respectively, and the relationship is
'directed': it goes from a to b.

This manner of describing nodes and relationships can be extended to cover an arbitrary number of nodes
and the relationships between them, for example:

(a)-->(b)<--(c)

Such a series of connected nodes and relationships is called a "path".

Note that the naming of the nodes in these patterns is only necessary should one need to refer to the same
node again, either later in the pattern or elsewhere in the Cypher query. If this is not necessary, then the
name may be omitted, as follows:

(a)-->()<--(c)

Patterns for labels

In addition to simply describing the shape of a node in the pattern, one can also describe attributes. The
most simple attribute that can be described in the pattern is a label that the node must have. For example:

(a:User)-->(b)

One can also describe a node that has multiple labels:

(a:User&Admin)-->(b)

Specifying properties

Nodes and relationships are the fundamental structures in a graph. Neo4j uses properties on both of these
to allow for far richer models.

Properties can be expressed in patterns using a map-construct: curly brackets surrounding a number of
key-expression pairs, separated by commas. E.g. a node with two properties on it would look like:

92

(a {name: 'Andy', sport: 'Brazilian Ju-Jitsu'})

A relationship with expectations on it is given by:

(a)-[{blocked: false}]->(b)

When properties appear in patterns, they add an additional constraint to the shape of the data. In the case
of a CREATE clause, the properties will be set in the newly-created nodes and relationships. In the case of a
MERGE clause, the properties will be used as additional constraints on the shape any existing data must
have (the specified properties must exactly match any existing data in the graph). If no matching data is
found, then MERGE behaves like CREATE and the properties will be set in the newly created nodes and
relationships.

Note that patterns supplied to CREATE may use a single parameter to specify properties, e.g: CREATE (node
$paramName). This is not possible with patterns used in other clauses, as Cypher needs to know the
property names at the time the query is compiled, so that matching can be done effectively.

Patterns for relationships

The simplest way to describe a relationship is by using the arrow between two nodes, as in the previous
examples. Using this technique, you can describe that the relationship should exist and the directionality of
it. If you don’t care about the direction of the relationship, the arrow head can be omitted, as exemplified
by:

(a)--(b)

As with nodes, relationships may also be given names. In this case, a pair of square brackets is used to
break up the arrow and the variable is placed between. For example:

(a)-[r]->(b)

Much like labels on nodes, relationships can have types. To describe a relationship with a specific type, you
can specify this as follows:

(a)-[r:REL_TYPE]->(b)

Unlike labels, relationships can only have one type. But if we’d like to describe some data such that the
relationship could have any one of a set of types, then they can all be listed in the pattern, separating them
with the pipe symbol | like this:

(a)-[r:TYPE1|TYPE2]->(b)

Note that this form of pattern can only be used to describe existing data (ie. when using a pattern with
MATCH or as an expression). It will not work with CREATE or MERGE, since it’s not possible to create a
relationship with multiple types.

93

For more information on how to use relationship type expressions, see Relationship type expressions.

As with nodes, the name of the relationship can always be omitted, as exemplified by:

(a)-[:REL_TYPE]->(b)

It is not possible to use the same name for a relationship multiple times within a pattern due to relationship
isomorphism.

Example 28. Relationship isomorphism

Using the same variable name for relationships multiple times within a pattern is not allowed.

The following example is therefore not allowed.

()-[r:REL_TYPE]-()-[r:REL_TYPE]-()

You can specify additional constraints by introducing a relationship pattern predicate.

Variable-length pattern matching

Rather than describing a long path using a sequence of many node and relationship descriptions in a
pattern, many relationships (and the intermediate nodes) can be described by specifying a length in the
relationship description of a pattern. For example:

(a)-[*2]->(b)

This describes a graph of three nodes and two relationships, all in one path (a path of length 2). This is
equivalent to:

(a)-->()-->(b)

A range of lengths can also be specified: such relationship patterns are called 'variable length
relationships'. For example:

(a)-[*3..5]->(b)

This is a minimum length of 3, and a maximum of 5. It describes a graph of either 4 nodes and 3
relationships, 5 nodes and 4 relationships or 6 nodes and 5 relationships, all connected together in a single
path.

Either bound can be omitted. For example, to describe paths of length 3 or more, use:

(a)-[*3..]->(b)

To describe paths of length 5 or less, use:

94

(a)-[*..5]->(b)

Omitting both bounds is equivalent to specifying a minimum of 1, allowing paths of any positive length to
be described:

(a)-[*]->(b)

As a simple example, let’s take the graph and query below:

name = 'Anders'

name = 'Dilshad'

KNOWS

name = 'Cesar'

KNOWS

name = 'Becky'

KNOWS

name = 'Filipa'

KNOWS

name = 'George'

KNOWS KNOWS

Query

MATCH (me)-[:KNOWS*1..2]-(remote_friend)
WHERE me.name = 'Filipa'
RETURN remote_friend.name

Table 71. Result

remote_friend.name

"Dilshad"

"Anders"

Rows: 2

This query finds data in the graph with a shape that fits the pattern: specifically a node (with the name
property 'Filipa') and then the KNOWS related nodes, one or two hops away. This is a typical example of
finding first and second degree friends.

Note that variable length relationships cannot be used with CREATE and MERGE.

Under certain circumstances variable length relationships can be planned with an optimisation, see
VarLength Expand Pruning query plan.

Assigning to path variables

As described above, a series of connected nodes and relationships is called a "path". Cypher allows paths
to be named using an identifer, as exemplified by:

95

p = (a)-[*3..5]->(b)

You can do this in MATCH, CREATE and MERGE, but not when using patterns as expressions.

Temporal (Date/Time) values

Cypher has built-in support for handling temporal values, and the underlying database

supports storing these temporal values as properties on nodes and relationships.



• Refer to Temporal functions - instant types for information regarding temporal
functions allowing for the creation and manipulation of temporal values.

• Refer to Temporal operators for information regarding temporal operators.

• Refer to Ordering and comparison of values for information regarding the
comparison and ordering of temporal values.

The following table lists the temporal value types and supported components:

Type Date support Time support Time zone support

Date 

Time  

LocalTime 

DateTime   

LocalDateTime  

Duration - - -

Date, Time, LocalTime, DateTime, and LocalDateTime are temporal instant types. A temporal instant value
expresses a point in time with varying degrees of precision.

By contrast, Duration is not a temporal instant type. A Duration represents a temporal amount, capturing
the difference in time between two instants, and can be negative. Duration captures the amount of time
between two instants, it does not capture a start time and end time.

Time zones

Time zones are represented either as an offset from UTC, or as a logical identifier of a named time zone
(these are based on the IANA time zone database). In either case the time is stored as UTC internally, and
the time zone offset is only applied when the time is presented. This means that temporal instants can be
ordered without taking time zone into account. If, however, two times are identical in UTC, then they are
ordered by timezone.

When creating a time using a named time zone, the offset from UTC is computed from the rules in the time
zone database to create a time instant in UTC, and to ensure the named time zone is a valid one.

It is possible for time zone rules to change in the IANA time zone database. For example, there could be

96

https://www.iana.org/time-zones

alterations to the rules for daylight savings time in a certain area. If this occurs after the creation of a
temporal instant, the presented time could differ from the originally-entered time, insofar as the local
timezone is concerned. However, the absolute time in UTC would remain the same.

There are three ways of specifying a time zone in Cypher:

• Specifying the offset from UTC in hours and minutes (ISO 8601).

• Specifying a named time zone.

• Specifying both the offset and the time zone name (with the requirement that these match).

See Specifying time zones for examples.

The named time zone form uses the rules of the IANA time zone database to manage daylight savings
time (DST).

The default time zone of the database can be configured using the configuration option
db.temporal.timezone. This configuration option influences the creation of temporal types for the
following functions:

• Getting the current date and time without specifying a time zone.

• Creating a temporal type from its components without specifying a time zone.

• Creating a temporal type by parsing a string without specifying a time zone.

• Creating a temporal type by combining or selecting values that do not have a time zone component,
and without specifying a time zone.

• Truncating a temporal value that does not have a time zone component, and without specifying a time
zone.

Temporal instants

Specifying temporal instants

A temporal instant consists of three parts; the date, the time, and the timezone. These parts can be
combined to produce the various temporal value types. The character T is a literal character.

Temporal instant type Composition of parts

Date <date>

Time <time><timezone> or T<time><timezone>

LocalTime <time> or T<time>

DateTime* <date>T<time><timezone>

LocalDateTime* <date>T<time>

*When date and time are combined, date must be complete; i.e. fully identify a particular day.

97

https://en.wikipedia.org/wiki/ISO_8601
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_db.temporal.timezone

Specifying dates

Component Format Description

Year YYYY Specified with at least four digits
(special rules apply in certain cases).

Month MM Specified with a double digit number
from 01 to 12.

Week ww Always prefixed with W and specified
with a double digit number from 01 to
53.

Quarter q Always prefixed with Q and specified
with a single digit number from 1 to 4.

Day of the month DD Specified with a double digit number
from 01 to 31.

Day of the week D Specified with a single digit number
from 1 to 7.

Day of the quarter DD Specified with a double digit number
from 01 to 92.

Ordinal day of the year DDD Specified with a triple digit number from
001 to 366.

If the year is before 0000 or after 9999, the following additional rules apply:

• Minus sign, - must prefix any year before 0000, (e.g. -3000-01-01).

• Plus sign, + must prefix any year after 9999, (e.g. +11000-01-01).

• The year must be separated with - from the next component:

◦ if the next component is month, (e.g. +11000-01).

◦ if the next component is day of the year, (e.g. +11000-123).

If the year component is prefixed with either - or +, and is separated from the next component, Year is
allowed to contain up to nine digits. Thus, the allowed range of years is between -999,999,999 and
+999,999,999. For all other cases, i.e. the year is between 0000 and 9999 (inclusive), Year must have
exactly four digits (the year component is interpreted as a year of the Common Era (CE)).

The following formats are supported for specifying dates:

Format Description Example Interpretation of example

YYYY-MM-DD Calendar date: Year-Month-
Day

2015-07-21 2015-07-21

YYYYMMDD Calendar date: Year-Month-
Day

20150721 2015-07-21

YYYY-MM Calendar date: Year-Month 2015-07 2015-07-01

YYYYMM Calendar date: Year-Month 201507 2015-07-01

98

Format Description Example Interpretation of example

YYYY-Www-D Week date: Year-Week-Day 2015-W30-2 2015-07-21

YYYYWwwD Week date: Year-Week-Day 2015W302 2015-07-21

YYYY-Www Week date: Year-Week 2015-W30 2015-07-20

YYYYWww Week date: Year-Week 2015W30 2015-07-20

YYYY-Qq-DD Quarter date: Year-Quarter-
Day

2015-Q2-60 2015-05-30

YYYYQqDD Quarter date: Year-Quarter-
Day

2015Q260 2015-05-30

YYYY-Qq Quarter date: Year-Quarter 2015-Q2 2015-04-01

YYYYQq Quarter date: Year-Quarter 2015Q2 2015-04-01

YYYY-DDD Ordinal date: Year-Day 2015-202 2015-07-21

YYYYDDD Ordinal date: Year-Day 2015202 2015-07-21

YYYY Year 2015 2015-01-01

The least significant components can be omitted. Cypher will assume omitted components to have their
lowest possible value. For example, 2013-06 will be interpreted as being the same date as 2013-06-01.

Specifying times

Component Format Description

Hour HH Specified with a double digit number
from 00 to 23.

Minute MM Specified with a double digit number
from 00 to 59.

Second SS Specified with a double digit number
from 00 to 59.

fraction sssssssss Specified with a number from 0 to
999999999. It is not required to specify
trailing zeros. fraction is an optional,
sub-second component of Second. This
can be separated from Second using
either a full stop (.) or a comma (,). The
fraction is in addition to the two digits
of Second.

Cypher does not support leap seconds; UTC-SLS (UTC with Smoothed Leap Seconds) is used to manage
the difference in time between UTC and TAI (International Atomic Time).

The following formats are supported for specifying times:

99

https://www.cl.cam.ac.uk/~mgk25/time/utc-sls/

Format Description Example Interpretation of example

HH:MM:SS.sssssssss Hour:Minute:Second.fractio
n

21:40:32.142 21:40:32.142

HHMMSS.sssssssss Hour:Minute:Second.fractio
n

214032.142 21:40:32.142

HH:MM:SS Hour:Minute:Second 21:40:32 21:40:32.000

HHMMSS Hour:Minute:Second 214032 21:40:32.000

HH:MM Hour:Minute 21:40 21:40:00.000

HHMM Hour:Minute 2140 21:40:00.000

HH Hour 21 21:00:00.000

The least significant components can be omitted. For example, a time may be specified with Hour and
Minute, leaving out Second and fraction. On the other hand, specifying a time with Hour and Second, while
leaving out Minute, is not possible.

Specifying time zones

The time zone is specified in one of the following ways:

• As an offset from UTC.

• Using the Z shorthand for the UTC (±00:00) time zone.

When specifying a time zone as an offset from UTC, the rules below apply:

• The time zone always starts with either a plus (+) or minus (-) sign.

◦ Positive offsets, i.e. time zones beginning with +, denote time zones east of UTC.

◦ Negative offsets, i.e. time zones beginning with -, denote time zones west of UTC.

• A double-digit hour offset follows the +/- sign.

• An optional double-digit minute offset follows the hour offset, optionally separated by a colon (:).

• The time zone of the International Date Line is denoted either by +12:00 or -12:00, depending on
country.

When creating values of the DateTime temporal instant type, the time zone may also be specified using a
named time zone, using the names from the IANA time zone database. This may be provided either in
addition to, or in place of the offset. The named time zone is given last and is enclosed in square brackets
([]). Should both the offset and the named time zone be provided, the offset must match the named time
zone.

The following formats are supported for specifying time zones:

Format Description Example Supported for
DateTime

Supported for
Time

Z UTC Z  

±HH:MM Hour:Minute +09:30  

100

Format Description Example Supported for
DateTime

Supported for
Time

±HH:MM[ZoneName] Hour:Minute[ZoneName] +08:45[Australia/Eucla] 

±HHMM Hour:Minute +0100  

±HHMM[ZoneName] Hour:Minute[ZoneName] +0200[Africa/Johannesburg] 

±HH Hour -08  

±HH[ZoneName] Hour[ZoneName] +08[Asia/Singapore] 

[ZoneName] [ZoneName] [America/Regina] 

Examples

Here are examples of parsing temporal instant values using various formats.

For more details, refer to An overview of temporal instant type creation.

Example 29. datetime

Parsing a DateTime using the calendar date format:

Query

RETURN datetime('2015-06-24T12:50:35.556+0100') AS theDateTime

Table 72. Result

theDateTime

2015-06-24T12:50:35.556+01:00

Rows: 1

Example 30. localdatetime

Parsing a LocalDateTime using the ordinal date format:

Query

RETURN localdatetime('2015185T19:32:24') AS theLocalDateTime

Table 73. Result

theLocalDateTime

2015-07-04T19:32:24

Rows: 1

101

Example 31. date

Parsing a Date using the week date format:

Query

RETURN date('+2015-W13-4') AS theDate

Table 74. Result

theDate

2015-03-26

Rows: 1

Example 32. time

Parsing a Time:

Query

RETURN time('125035.556+0100') AS theTime

Table 75. Result

theTime

12:50:35.556+01:00

Rows: 1

Example 33. localtime

Parsing a LocalTime:

Query

RETURN localtime('12:50:35.556') AS theLocalTime

Table 76. Result

theLocalTime

12:50:35.556

Rows: 1

Accessing components of temporal instants

Components of temporal instant values can be accessed as properties.

102

Table 77. Components of temporal instant values and where they are supported

Component Description Type Range/Format Date DateTim
e

LocalDat
eTime

Time LocalTim
e

instant.year The year
component
represents the
astronomical year
number of the
instant.[3]

Integer At least 4 digits.
For more
information, see
the rules for
using the Year
component.

  

instant.quarter The quarter-of-
the-year
component.

Integer 1 to 4.   

instant.month The month-of-the-
year component.

Integer 1 to 12.   

instant.week The week-of-the-
year component.[4]

Integer 1 to 53.   

instant.weekYear The year that the
week-of-year
component
belongs to.[5]

Integer At least 4 digits.
For more
information, see
the rules for
using the Year
component.

  

instant.dayOfQuar
ter

The day-of-the-
quarter
component.

Integer 1 to 92.   

instant.quarterDa
y

The day-of-the-
quarter component
(alias for
instant.dayOfQuar
ter).

Integer 1 to 92.   

instant.day The day-of-the-
month component.

Integer 1 to 31.   

instant.ordinalDa
y

The day-of-the-
year component.

Integer 1 to 366.   

instant.dayOfWeek The day-of-the-
week component
(the first day of the
week is Monday).

Integer 1 to 7.   

instant.weekDay The day-of-the-
week component
(alias for
instant.dayOfWeek
).

Integer 1 to 7.   

103

https://en.wikipedia.org/wiki/Astronomical_year_numbering
https://en.wikipedia.org/wiki/Astronomical_year_numbering

Component Description Type Range/Format Date DateTim
e

LocalDat
eTime

Time LocalTim
e

instant.hour The hour
component.

Integer 0 to 23.    

instant.minute The minute
component.

Integer 0 to 59.    

instant.second The second
component.[6]

Integer 0 to 59.    

instant.milliseco
nd

The millisecond
component.

Integer 0 to 999.    

instant.microseco
nd

The microsecond
component.

Integer 0 to 999999.    

instant.nanosecon
d

The nanosecond
component.

Integer 0 to 999999999.    

instant.timezone The timezone
component.

String Depending on how
the time zone was
specified, this is
either a time zone
name or an offset
from UTC in the
format ±HHMM.

 

instant.offset The timezone
offset.

String In the format ±HHMM.  

instant.offsetMin
utes

The timezone
offset in minutes.

Integer -1080 to +1080.  

instant.offsetSec
onds

The timezone
offset in seconds.

Integer -64800 to +64800.  

instant.epochMill
is

The number of
milliseconds
between 1970-01-
01T00:00:00+0000
and the instant.[7]

Integer Positive for
instants after and
negative for
instants before
1970-01-
01T00:00:00+0000.



instant.epochSeco
nds

The number of
seconds between
1970-01-
01T00:00:00+0000
and the instant.[8]

Integer Positive for
instants after and
negative for
instants before
1970-01-
01T00:00:00+0000.



104

Example 34. date

The following query shows how to extract the components of a Date value:

Query

WITH date({year: 1984, month: 10, day: 11}) AS d
RETURN d.year, d.quarter, d.month, d.week, d.weekYear, d.day, d.ordinalDay, d.dayOfWeek,
d.dayOfQuarter

Table 78. Result

d.year d.quarter d.month d.week d.weekYear d.day d.ordinalDa
y

d.dayOfWe
ek

d.dayOfQu
arter

1984 4 10 41 1984 11 285 4 11

Rows: 1

Example 35. datetime

The following query shows how to extract the date related components of a DateTime value:

Query

WITH datetime({
 year: 1984, month: 11, day: 11,
 hour: 12, minute: 31, second: 14, nanosecond: 645876123,
 timezone: 'Europe/Stockholm'
}) AS d
RETURN d.year, d.quarter, d.month, d.week, d.weekYear, d.day, d.ordinalDay, d.dayOfWeek,
d.dayOfQuarter

Table 79. Result

d.year d.quarter d.month d.week d.weekYear d.day d.ordinalDa
y

d.dayOfWe
ek

d.dayOfQu
arter

1984 4 11 45 1984 11 316 7 42

Rows: 1

105

Example 36. datetime

The following query shows how to extract the time related components of a DateTime value:

Query

WITH datetime({
 year: 1984, month: 11, day: 11,
 hour: 12, minute: 31, second: 14, nanosecond: 645876123,
 timezone: 'Europe/Stockholm'
}) AS d
RETURN d.hour, d.minute, d.second, d.millisecond, d.microsecond, d.nanosecond

Table 80. Result

d.hour d.minute d.second d.millisecond d.microsecond d.nanosecond

12 31 14 645 645876 645876123

Rows: 1

Example 37. datetime

The following query shows how to extract the epoch time and timezone related components of a
DateTime value:

Query

WITH datetime({
 year: 1984, month: 11, day: 11,
 hour: 12, minute: 31, second: 14, nanosecond: 645876123,
 timezone: 'Europe/Stockholm'
}) AS d
RETURN d.timezone, d.offset, d.offsetMinutes, d.epochSeconds, d.epochMillis

Table 81. Result

d.timezone d.offset d.offsetMinutes d.epochSeconds d.epochMillis

"Europe/Stockholm" "+01:00" 60 469020674 469020674645

Rows: 1

Durations

Specifying durations

A Duration represents a temporal amount, capturing the difference in time between two instants, and can
be negative.

The specification of a Duration is prefixed with a P, and can use either a unit-based form or a date-and-
time-based form:

• Unit-based form: P[nY][nM][nW][nD][T[nH][nM][nS]]

106

◦ The square brackets ([]) denote an optional component (components with a zero value may be
omitted).

◦ The n denotes a numeric value within the bounds of a 64-bit integer.

◦ The value of the last — and least significant — component may contain a decimal fraction.

◦ Each component must be suffixed by a component identifier denoting the unit.

◦ The unit-based form uses M as a suffix for both months and minutes. Therefore, time parts must
always be preceded with T, even when no components of the date part are given.

◦ The maximum total length of a Duration is bounded by the number of seconds that can be held in a
64-bit integer.

• Date-and-time-based form: P<date>T<time>.

◦ Unlike the unit-based form, this form requires each component to be within the bounds of a valid
LocalDateTime.

The following table lists the component identifiers for the unit-based form:

Component identifier Description Comments

Y Years

M Months Must be specified before T.

W Weeks

D Days

H Hours

M Minutes Must be specified after T.

S Seconds

Examples

The following examples demonstrate various methods of parsing Duration values.

For more details, refer to Creating a Duration from a string.

107

Example 38. duration

Return a Duration of 14 days, 16 hours, and 12 minutes:

Query

RETURN duration('P14DT16H12M') AS theDuration

Table 82. Result

theDuration

P14DT16H12M

Rows: 1

Example 39. duration

Return a Duration of 5 months, 1 day, and 12 hours:

Query

RETURN duration('P5M1.5D') AS theDuration

Table 83. Result

theDuration

P5M1DT12H

Rows: 1

Example 40. duration

Return a Duration of 45 seconds:

Query

RETURN duration('PT0.75M') AS theDuration

Table 84. Result

theDuration

PT45S

Rows: 1

108

Example 41. duration

Return a Duration of 2 weeks, 3 days, and 12 hours:

Query

RETURN duration('P2.5W') AS theDuration

Table 85. Result

theDuration

P17DT12H

Rows: 1

Accessing components of durations

A Duration can have several components, each categorized into Months, Days, and Seconds groups.

Components of Duration values are truncated within their component groups as follows:

Component Group Component Description Type Details

Months duration.years The total number of
years.

Integer Each set of 4 quarters is counted
as 1 year; each set of 12 months
is counted as 1 year.

duration.quarters The total number of
quarters.

Integer Each year is counted as 4
quarters; each set of 3 months is
counted as 1 quarter.

duration.months The total number of
months.

Integer Each year is counted as 12
months; each_quarter_ is
counted as 3 months.

Days duration.weeks The total number of
weeks.

Integer Each set of 7 days is counted as
1 week.

duration.days The total number of
days.

Integer Each week is counted as 7 days.

109

Component Group Component Description Type Details

Seconds duration.hours The total number of
hours.

Integer Each set of 60 minutes is
counted as 1 hour; each set of
3600 seconds is counted as 1
hour.

duration.minutes The total number of
minutes.

Integer Each hour is counted as 60
minutes; each set of 60 seconds
is counted as 1 minute.

duration.seconds The total number of
seconds.

Integer Each hour is counted as 3600
seconds; each minute is counted
as 60 seconds.

duration.milliseconds The total number of
milliseconds

Integer Each set of 1000 milliseconds is
counted as 1 second.

duration.microseconds The total number of
microseconds.

Integer Each millisecond is counted as
1000 microseconds.

duration.nanoseconds The total number of
nanoseconds.

Integer Each microsecond is counted as
1000 nanoseconds.



Please note that:

• Cypher uses UTC-SLS when handling leap seconds.

• There are not always 24 hours in 1 day; when switching to/from daylight savings
time, a day can have 23 or 25 hours.

• There are not always the same number of days in a month.

• Due to leap years, there are not always the same number of days in a year.

It is also possible to access the smaller (less significant) components of a component group bounded by
the largest (most significant) component of the group:

Component Component Group Description Type

duration.quartersOfYear Months The number of quarters in the group
that do not make a whole year.

Integer

duration.monthsOfYear Months The number of months in the group that
do not make a whole year.

Integer

duration.monthsOfQuarter Months The number of months in the group that
do not make a whole quarter.

Integer

duration.daysOfWeek Days The number of days in the group that do
not make a whole week.

Integer

duration.minutesOfHour Seconds The number of minutes in the group that
do not make a whole hour.

Integer

duration.secondsOfMinute Seconds The number of seconds in the group
that do not make a whole minute.

Integer

110

https://www.cl.cam.ac.uk/~mgk25/time/utc-sls/

Component Component Group Description Type

duration.millisecondsOfSecond Seconds The number of milliseconds in the group
that do not make a whole second.

Integer

duration.microsecondsOfSecond Seconds The number of microseconds in the
group that do not make a whole second.

Integer

duration.nanosecondsOfSecond Seconds The number of nanoseconds in the
group that do not make a whole second

Integer

Example 42. duration

The following query shows how to extract the month based components of a Duration value:

Query

WITH duration({years: 1, months: 5, days: 111, minutes: 42}) AS d
RETURN d.years, d.quarters, d.quartersOfYear, d.months, d.monthsOfYear, d.monthsOfQuarter

Table 86. Result

d.years d.quarters d.quartersOfYear d.months d.monthsOfYear d.monthsOfQuart
er

1 5 1 17 5 2

Rows: 1

Example 43. duration

The following query shows how to extract the day based components of a Duration value:

Query

WITH duration({months: 5, days: 25, hours: 1}) AS d
RETURN d.weeks, d.days, d.daysOfWeek

Table 87. Result

d.weeks d.days d.daysOfWeek

3 25 4

Rows: 1

111

Example 44. duration

The following query shows how to extract the most significant second based components of a
Duration value:

Query

WITH duration({
 years: 1, months:1, days:1, hours: 1,
 minutes: 1, seconds: 1, nanoseconds: 111111111
}) AS d
RETURN d.hours, d.minutes, d.seconds, d.milliseconds, d.microseconds, d.nanoseconds

Table 88. Result

d.hours d.minutes d.seconds d.milliseconds d.microseconds d.nanoseconds

1 61 3661 3661111 3661111111 3661111111111

Rows: 1

Example 45. duration

The following query shows how to extract the less significant second based components of a
Duration value:

Query

WITH duration({
 years: 1, months:1, days:1,
 hours: 1, minutes: 1, seconds: 1, nanoseconds: 111111111
}) AS d
RETURN d.minutesOfHour, d.secondsOfMinute, d.millisecondsOfSecond, d.microsecondsOfSecond,
d.nanosecondsOfSecond

Table 89. Result

d.minutesOfHour d.secondsOfMinute d.millisecondsOfSeco
nd

d.microsecondsOfSec
ond

d.nanosecondsOfSec
ond

1 1 111 111111 111111111

Rows: 1

Examples

The following examples illustrate the use of some of the temporal functions and operators.

Refer to Temporal functions - instant types and Temporal operators for more details.

112

Example 46. duration

Create a Duration representing 1.5 days:

Query

RETURN duration({days: 1, hours: 12}) AS theDuration

Table 90. Result

theDuration

P1DT12H

Rows: 1

Example 47. duration.between

Compute the Duration between two temporal instants:

Query

RETURN duration.between(date('1984-10-11'), date('2015-06-24')) AS theDuration

Table 91. Result

theDuration

P30Y8M13D

Rows: 1

Example 48. duration.inDays

Compute the number of days between two Date values:

Query

RETURN duration.inDays(date('2014-10-11'), date('2015-08-06')) AS theDuration

Table 92. Result

theDuration

P299D

Rows: 1

113

Example 49. date.truncate

Get the first Date of the current year:

Query

RETURN date.truncate('year') AS day

Table 93. Result

day

2022-01-01

Rows: 1

Example 50. date.truncate

Get the Date of the Thursday in the week of a specific date:

Query

RETURN date.truncate('week', date('2019-10-01'), {dayOfWeek: 4}) AS thursday

Table 94. Result

thursday

2019-10-03

Rows: 1

Example 51. date.truncate

Get the Date of the last day of the next month:

Query

RETURN date.truncate('month', date() + duration('P2M')) - duration('P1D') AS lastDay

Table 95. Result

lastDay

2022-07-31

Rows: 1

114

Example 52. time

Add a Duration to a Date:

Query

RETURN time('13:42:19') + duration({days: 1, hours: 12}) AS theTime

Table 96. Result

theTime

01:42:19Z

Rows: 1

Example 53. duration

Add two Duration values:

Query

RETURN duration({days: 2, hours: 7}) + duration({months: 1, hours: 18}) AS theDuration

Table 97. Result

theDuration

P1M2DT25H

Rows: 1

Example 54. duration

Multiply a Duration by a number:

Query

RETURN duration({hours: 5, minutes: 21}) * 14 AS theDuration

Table 98. Result

theDuration

PT74H54M

Rows: 1

115

Example 55. duration

Divide a Duration by a number:

Query

RETURN duration({hours: 3, minutes: 16}) / 2 AS theDuration

Table 99. Result

theDuration

PT1H38M

Rows: 1

Example 56. datetime

Examine whether two instants are less than one day apart:

Query

WITH
 datetime('2015-07-21T21:40:32.142+0100') AS date1,
 datetime('2015-07-21T17:12:56.333+0100') AS date2
RETURN
CASE
 WHEN date1 < date2 THEN date1 + duration("P1D") > date2
 ELSE date2 + duration("P1D") > date1
END AS lessThanOneDayApart

Table 100. Result

lessThanOneDayApart

true

Rows: 1

Example 57. date

Return the abbreviated name of the current month:

Query

RETURN ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"][date
().month-1] AS month

Table 101. Result

month

"Jun"

Rows: 1

116

Temporal indexing

All temporal types can be indexed, and thereby support exact lookups for equality predicates. Indexes for
temporal instant types additionally support range lookups.

Spatial values

Cypher has built-in support for handling spatial values (points), and the underlying

database supports storing these point values as properties on nodes and relationships.



Refer to Spatial functions for information regarding spatial functions allowing for the
creation and manipulation of spatial values.

Refer to Ordering and comparison of values for information regarding the comparison
and ordering of spatial values.

Introduction

Neo4j supports only one type of spatial geometry, the Point with the following characteristics:

• Each point can have either 2 or 3 dimensions. This means it contains either 2 or 3 64-bit floating point
values, which together are called the Coordinate.

• Each point will also be associated with a specific Coordinate Reference System (CRS) that determines
the meaning of the values in the Coordinate.

• Instances of Point and lists of Point can be assigned to node and relationship properties.

• Nodes with Point or List(Point) properties can be indexed using a point index. This is true for all CRS
(and for both 2D and 3D).

• The distance function will work on points in all CRS and in both 2D and 3D but only if the two points
have the same CRS (and therefore also same dimension).

Coordinate Reference Systems

Four Coordinate Reference Systems (CRS) are supported, each of which falls within one of two types:
geographic coordinates modeling points on the earth, or cartesian coordinates modeling points in
euclidean space:

• Geographic coordinate reference systems

◦ WGS-84: longitude, latitude (x, y)

◦ WGS-84-3D: longitude, latitude, height (x, y, z)

• Cartesian coordinate reference systems

◦ Cartesian: x, y

◦ Cartesian 3D: x, y, z

117

Data within different coordinate systems are entirely incomparable, and cannot be implicitly converted
from one to the other. This is true even if they are both cartesian or both geographic. For example, if you
search for 3D points using a 2D range, you will get no results. However, they can be ordered, as discussed
in more detail in Ordering and comparison of values.

Geographic coordinate reference systems

Two Geographic Coordinate Reference Systems (CRS) are supported, modeling points on the earth:

• WGS 84 2D

◦ A 2D geographic point in the WGS 84 CRS is specified in one of two ways:

▪ longitude and latitude (if these are specified, and the crs is not, then the crs is assumed to
be WGS-84)

▪ x and y (in this case the crs must be specified, or will be assumed to be Cartesian)

◦ Specifying this CRS can be done using either the name 'wgs-84' or the SRID 4326 as described in
Point(WGS-84)

• WGS 84 3D

◦ A 3D geographic point in the WGS 84 CRS is specified one of in two ways:

▪ longitude, latitude and either height or z (if these are specified, and the crs is not, then the
crs is assumed to be WGS-84-3D)

▪ x, y and z (in this case the crs must be specified, or will be assumed to be Cartesian-3D)

◦ Specifying this CRS can be done using either the name 'wgs-84-3d' or the SRID 4979 as
described in Point(WGS-84-3D)

The units of the latitude and longitude fields are in decimal degrees, and need to be specified as floating
point numbers using Cypher literals. It is not possible to use any other format, like 'degrees, minutes,
seconds'. The units of the height field are in meters. When geographic points are passed to the distance
function, the result will always be in meters. If the coordinates are in any other format or unit than
supported, it is necessary to explicitly convert them. For example, if the incoming $height is a string field in
kilometers, you would need to type height: toFloat($height) * 1000. Likewise if the results of the
distance function are expected to be returned in kilometers, an explicit conversion is required. For
example: RETURN point.distance(a,b) / 1000 AS km. An example demonstrating conversion on incoming
and outgoing values is:

Query

WITH
 point({latitude:toFloat('13.43'), longitude:toFloat('56.21')}) AS p1,
 point({latitude:toFloat('13.10'), longitude:toFloat('56.41')}) AS p2
RETURN toInteger(point.distance(p1, p2)/1000) AS km

Table 102. Result

km

42

Rows: 1

118

https://spatialreference.org/ref/epsg/4326/
https://spatialreference.org/ref/epsg/4979/

Cartesian coordinate reference systems

Two Cartesian Coordinate Reference Systems (CRS) are supported, modeling points in euclidean space:

• Cartesian 2D

◦ A 2D point in the Cartesian CRS is specified with a map containing x and y coordinate values

◦ Specifying this CRS can be done using either the name 'cartesian' or the SRID 7203 as described
in Point(Cartesian)

• Cartesian 3D

◦ A 3D point in the Cartesian CRS is specified with a map containing x, y and z coordinate values

◦ Specifying this CRS can be done using either the name 'cartesian-3d' or the SRID 9157 as
described in Point(Cartesian-3D)

The units of the x, y and z fields are unspecified and can mean anything the user intends them to mean.
This also means that when two cartesian points are passed to the distance function, the resulting value
will be in the same units as the original coordinates. This is true for both 2D and 3D points, as the
pythagoras equation used is generalized to any number of dimensions. However, just as you cannot
compare geographic points to cartesian points, you cannot calculate the distance between a 2D point and
a 3D point. If you need to do that, explicitly transform the one type into the other. For example:

Query

WITH
 point({x: 3, y: 0}) AS p2d,
 point({x: 0, y: 4, z: 1}) AS p3d
RETURN
 point.distance(p2d, p3d) AS bad,
 point.distance(p2d, point({x: p3d.x, y: p3d.y})) AS good

Table 103. Result

bad good

<null> 5.0

Rows: 1

Spatial instants

Creating points

All point types are created from two components:

• The Coordinate containing either 2 or 3 floating point values (64-bit)

• The Coordinate Reference System (or CRS) defining the meaning (and possibly units) of the values in
the Coordinate

For most use cases it is not necessary to specify the CRS explicitly as it will be deduced from the keys used
to specify the coordinate. Two rules are applied to deduce the CRS from the coordinate:

119

https://spatialreference.org/ref/sr-org/7203/
https://spatialreference.org/ref/sr-org/9157/

• Choice of keys:

◦ If the coordinate is specified using the keys latitude and longitude the CRS will be assumed to be
Geographic and therefor either WGS-84 or WGS-84-3D.

◦ If instead x and y are used, then the default CRS would be Cartesian or Cartesian-3D

• Number of dimensions:

◦ If there are 2 dimensions in the coordinate, x & y or longitude & latitude the CRS will be a 2D
CRS

◦ If there is a third dimensions in the coordinate, z or height the CRS will be a 3D CRS

All fields are provided to the point function in the form of a map of explicitly named arguments. We
specifically do not support an ordered list of coordinate fields because of the contradictory conventions
between geographic and cartesian coordinates, where geographic coordinates normally list y before x
(latitude before longitude). See for example the following query which returns points created in each of
the four supported CRS. Take particular note of the order and keys of the coordinates in the original point
function calls, and how those values are displayed in the results:

Query

RETURN
 point({x: 3, y: 0}) AS cartesian_2d,
 point({x: 0, y: 4, z: 1}) AS cartesian_3d,
 point({latitude: 12, longitude: 56}) AS geo_2d,
 point({latitude: 12, longitude: 56, height: 1000}) AS geo_3d

Table 104. Result

cartesian_2d cartesian_3d geo_2d geo_3d

point({x: 3.0, y: 0.0,
crs: 'cartesian'})

point({x: 0.0, y: 4.0, z:
1.0, crs: 'cartesian-3d'})

point({x: 56.0, y: 12.0,
crs: 'wgs-84'})

point({x: 56.0, y: 12.0,
z: 1000.0, crs: 'wgs-84-
3d'})

Rows: 1

For the geographic coordinates, it is important to note that the latitude value should always lie in the
interval [-90, 90] and any other value outside this range will throw an exception. The longitude value
should always lie in the interval [-180, 180] and any other value outside this range will be wrapped
around to fit in this range. The height value and any cartesian coordinates are not explicitly restricted, and
any value within the allowed range of the signed 64-bit floating point type will be accepted.

Accessing components of points

Just as we construct points using a map syntax, we can also access components as properties of the
instance.

Table 105. Components of point instances and where they are supported

120

Component Description Type Range/Forma
t

WGS-84 WGS-84-3D Cartesian Cartesian-3D

instant.x The first
element of the
Coordinate

Float Number
literal, range
depends on
CRS

   

instant.y The second
element of the
Coordinate

Float Number
literal, range
depends on
CRS

   

instant.z The third
element of the
Coordinate

Float Number
literal, range
depends on
CRS

 

instant.lati
tude

The second
element of the
Coordinate for
geographic
CRS, degrees
North of the
equator

Float Number
literal, -90.0
to 90.0

 

instant.long
itude

The first
element of the
Coordinate for
geographic
CRS, degrees
East of the
prime
meridian

Float Number
literal, -180.0
to 180.0

 

instant.heig
ht

The third
element of the
Coordinate for
geographic
CRS, meters
above the
ellipsoid
defined by the
datum (WGS-
84)

Float Number
literal, range
limited only
by the
underlying
64-bit floating
point type



instant.crs The name of
the CRS

String One of wgs-
84, wgs-84-3d,
cartesian,
cartesian-3d

   

instant.srid The internal
Neo4j ID for
the CRS

Integer One of 4326,
4979, 7203,
9157

   

The following query shows how to extract the components of a Cartesian 2D point value:

121

Query

WITH point({x: 3, y: 4}) AS p
RETURN
 p.x AS x,
 p.y AS y,
 p.crs AS crs,
 p.srid AS srid

Table 106. Result

x y crs srid

3.0 4.0 "cartesian" 7203

Rows: 1

The following query shows how to extract the components of a WGS-84 3D point value:

Query

WITH point({latitude: 3, longitude: 4, height: 4321}) AS p
RETURN
 p.latitude AS latitude,
 p.longitude AS longitude,
 p.height AS height,
 p.x AS x,
 p.y AS y,
 p.z AS z,
 p.crs AS crs,
 p.srid AS srid

Table 107. Result

latitude longitude height x y z crs srid

3.0 4.0 4321.0 4.0 3.0 4321.0 "wgs-84-3d" 4979

Rows: 1

Point index

If there is a index on a particular :Label(property) combination, and a spatial point is assigned to that
property on a node with that label, the node will be indexed in a point index.

For point indexing, Neo4j uses space filling curves in 2D or 3D over an underlying generalized B+Tree.
Points will be stored in up to four different trees, one for each of the four coordinate reference systems.
This allows for both equality and range queries using exactly the same syntax and behaviour as for other
property types. If two range predicates are used, which define minimum and maximum points, this will
effectively result in a bounding box query. In addition, queries using the distance function can, under the
right conditions, also use the index, as described in the section 'Spatial distance searches'.

Comparability and orderability

This means that queries that rely on the comparison of two points using the inequality operators, <, <=, >,
and >=, or the specific order of an ORDER BY n.point query will need to be rewritten.

122

The most efficient way to do this is to explicitly specify the ordering. For example, by using point.x,
point.y in cartesian coordinates, or point.longitude and point.latitude in geographic coordinates.

Lists

Cypher has comprehensive support for lists.


Information regarding operators, such as list concatenation (+), element existence
checking (IN), and access ([]) can be found here. The behavior of the IN and []
operators with respect to null is detailed here.

Lists in general

A literal list is created by using brackets and separating the elements in the list with commas.

Query

RETURN [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] AS list

Table 108. Result

list

[0,1,2,3,4,5,6,7,8,9]

Rows: 1

In the examples, you use the range function. It gives you a list containing all numbers between given start
and end numbers. Range is inclusive in both ends.

To access individual elements in the list, you can use the square brackets again. This extracts from the
start index and up to, but not including, the end index.

Query

RETURN range(0, 10)[3]

Table 109. Result

range(0, 10)[3]

3

Rows: 1

You can also use negative numbers, to start from the end of the list instead.

Query

RETURN range(0, 10)[-3]

123

Table 110. Result

range(0, 10)[-3]

8

Rows: 1

Finally, you can use ranges inside the brackets to return ranges of the list.

Query

RETURN range(0, 10)[0..3]

Table 111. Result

range(0, 10)[0..3]

[0,1,2]

Rows: 1

Query

RETURN range(0, 10)[0..-5]

Table 112. Result

range(0, 10)[0..-5]

[0,1,2,3,4,5]

Rows: 1

Query

RETURN range(0, 10)[-5..]

Table 113. Result

range(0, 10)[-5..]

[6,7,8,9,10]

Rows: 1

Query

RETURN range(0, 10)[..4]

Table 114. Result

range(0, 10)[..4]

[0,1,2,3]

Rows: 1

124

 Out-of-bound slices are simply truncated, but out-of-bound single elements return null.

Query

RETURN range(0, 10)[15]

Table 115. Result

range(0, 10)[15]

<null>

Rows: 1

Query

RETURN range(0, 10)[5..15]

Table 116. Result

range(0, 10)[5..15]

[5,6,7,8,9,10]

Rows: 1

You can get the size of a list as follows:

Query

RETURN size(range(0, 10)[0..3])

Table 117. Result

size(range(0, 10)[0..3])

3

Rows: 1

List comprehension

List comprehension is a syntactic construct available in Cypher for creating a list based on existing lists. It
follows the form of the mathematical set-builder notation (set comprehension) instead of the use of map
and filter functions.

Query

RETURN [x IN range(0,10) WHERE x % 2 = 0 | x^3] AS result

Table 118. Result

result

[0.0,8.0,64.0,216.0,512.0,1000.0]

125

result

Rows: 1

Either the WHERE part, or the expression, can be omitted, if you only want to filter or map respectively.

Query

RETURN [x IN range(0,10) WHERE x % 2 = 0] AS result

Table 119. Result

result

[0,2,4,6,8,10]

Rows: 1

Query

RETURN [x IN range(0,10) | x^3] AS result

Table 120. Result

result

[0.0,1.0,8.0,27.0,64.0,125.0,216.0,343.0,512.0,729.0,1000.0]

Rows: 1

Pattern comprehension

Pattern comprehension is a syntactic construct available in Cypher for creating a list based on matchings
of a pattern. A pattern comprehension matches the specified pattern like a normal MATCH clause, with
predicates like a normal WHERE clause, but yields a custom projection as specified.

The following graph is used for the pattern comprehension examples:

Person

name = 'Keanu Reeves'

Movie

title = 'The Matrix Resurrections'
released = 2021

ACTED_IN

Movie

title = 'The Devils Advocate'
released = 1997

ACTED_IN

Movie

title = 'The Matrix Reloaded'
released = 2003

ACTED_IN

Movie

title = 'The Matrix Revolutions'
released = 2003

ACTED_IN

Movie

title = 'The Replacements'
released = 2000

ACTED_IN

Movie

title = 'The Matrix'
released = 1999

ACTED_IN

Movie

title = 'Somethings Gotta Give'
released = 2003

ACTED_IN

Movie

title = 'Johnny Mnemonic'
released = 1995

ACTED_IN

This example returns a list that contains the year when the movies was released. The pattern matching in
the pattern comprehension looks for Matrix in the movie title and that the node a (Person node with the
name Keanu Reeves) has a relationship with the movie.

Query

MATCH (a:Person {name: 'Keanu Reeves'})
RETURN [(a)-->(b:Movie) WHERE b.title CONTAINS 'Matrix' | b.released] AS years

Table 121. Result

126

years

[2021,2003,2003,1999]

Rows: 1

The whole predicate, including the WHERE keyword, is optional and may be omitted.

This example returns a sorted list that contains years. The pattern matching in the pattern comprehension
looks for movie nodes that has a relationship with the node a (Person node with the name Keanu Reeves).

Query

MATCH (a:Person {name: 'Keanu Reeves'})
WITH [(a)-->(b:Movie) | b.released] AS years
UNWIND years AS year
WITH year ORDER BY year
RETURN COLLECT(year) AS sorted_years

Table 122. Result

sorted_years

[1995,1997,1999,2000,2003,2003,2003,2021]

Rows: 1

Maps

This section describes how to use maps in Cyphers.

The following graph is used for the examples below:

Person

realName = 'Carlos Irwin Estévez'
name = 'Charlie Sheen'

Movie

year = 1979
title = 'Apocalypse Now'

ACTED_IN

Movie

year = 1984
title = 'Red Dawn'

ACTED_IN

Movie

year = 1987
title = 'Wall Street'

ACTED_IN

Person

name = 'Martin Sheen'

ACTED_INACTED_IN


Information regarding property access operators such as . and [] can be found here.
The behavior of the [] operator with respect to null is detailed here.

Literal maps

Cypher supports construction of maps. The key names in a map must be of type String. If returned
through an HTTP API call, a JSON object will be returned. If returned in Java, an object of type
java.util.Map<String,Object> will be returned.

127

https://neo4j.com/docs/pdf/neo4j-http-api-5.pdf#http-api

Query

RETURN {key: 'Value', listKey: [{inner: 'Map1'}, {inner: 'Map2'}]}

Table 123. Result

{key: 'Value', listKey: [{inner: 'Map1'}, {inner: 'Map2'}]}

{listKey -> [{inner -> "Map1"},{inner -> "Map2"}], key -> "Value"}

Rows: 1

Map projection

Cypher supports a concept called "map projections". It allows for easily constructing map projections from
nodes, relationships and other map values.

A map projection begins with the variable bound to the graph entity to be projected from, and contains a
body of comma-separated map elements, enclosed by { and }.

map_variable {map_element, [, ...n]}

A map element projects one or more key-value pairs to the map projection. There exist four different types
of map projection elements:

• Property selector - Projects the property name as the key, and the value from the map_variable as the
value for the projection.

• Literal entry - This is a key-value pair, with the value being arbitrary expression key: <expression>.

• Variable selector - Projects a variable, with the variable name as the key, and the value the variable is
pointing to as the value of the projection. Its syntax is just the variable.

• All-properties selector - projects all key-value pairs from the map_variable value.

The following conditions apply:

• If the map_variable points to a null value, the whole map projection will evaluate to null.

• The key names in a map must be of type String.

Examples of map projections

Find 'Charlie Sheen' and return data about him and the movies he has acted in. This example shows an
example of map projection with a literal entry, which in turn also uses map projection inside the
aggregating collect().

Query

MATCH (actor:Person {name: 'Charlie Sheen'})-[:ACTED_IN]->(movie:Movie)
WITH actor, collect(movie{.title, .year}) AS movies
RETURN actor{.name, .realName, movies: movies}

Table 124. Result

128

actor

{movies -> [{year -> 1979, title -> "Apocalypse Now"},{year -> 1984, title -> "Red Dawn"},{year -> 1987, title
-> "Wall Street"}], realName -> "Carlos Irwin Estévez", name -> "Charlie Sheen"}

Rows: 1

Find all persons that have acted in movies, and show number for each. This example introduces an variable
with the count, and uses a variable selector to project the value.

Query

MATCH (actor:Person)-[:ACTED_IN]->(movie:Movie)
WITH actor, count(movie) AS nbrOfMovies
RETURN actor{.name, nbrOfMovies}

Table 125. Result

actor

{nbrOfMovies -> 2, name -> "Martin Sheen"}

{nbrOfMovies -> 3, name -> "Charlie Sheen"}

Rows: 2

Again, focusing on 'Charlie Sheen', this time returning all properties from the node. Here we use an all-
properties selector to project all the node properties, and additionally, explicitly project the property age.
Since this property does not exist on the node, a null value is projected instead.

Query

MATCH (actor:Person {name: 'Charlie Sheen'})
RETURN actor{.*, .age}

Table 126. Result

actor

{realName -> "Carlos Irwin Estévez", name -> "Charlie Sheen", age -> <null>}

Rows: 1

Working with null

This section describes working with the null value.

Introduction to null in Cypher

In Cypher, null is used to represent missing or undefined values. Conceptually, null means a missing
unknown value and it is treated somewhat differently from other values. For example getting a property
from a node that does not have said property produces null. Most expressions that take null as input will
produce null. This includes boolean expressions that are used as predicates in the WHERE clause. In this
case, anything that is not true is interpreted as being false.

129

null is not equal to null. Not knowing two values does not imply that they are the same value. So the
expression null = null yields null and not true.

Logical operations with null

The logical operators (AND, OR, XOR, NOT) treat null as the unknown value of three-valued logic.

Here is the truth table for AND, OR, XOR, and NOT.

a b a AND b a OR b a XOR b NOT a

false false false false false true

false null false null null true

false true false true true true

true false false true true false

true null null true null false

true true true true false false

null false false null null null

null null null null null null

null true null true null null

The IN operator and null

The IN operator follows similar logic. If Cypher knows that something exists in a list, the result will be true.
Any list that contains a null and doesn’t have a matching element will return null. Otherwise, the result
will be false. Here is a table with examples:

Expression Result

2 IN [1, 2, 3] true

2 IN [1, null, 3] null

2 IN [1, 2, null] true

2 IN [1] false

2 IN [] false

null IN [1, 2, 3] null

null IN [1, null, 3] null

null IN [] false

Using all, any, none, and single follows a similar rule. If the result can be calculated definitely, true or
false is returned. Otherwise null is produced.

130

The [] operator and null

Accessing a list or a map with null will result in null:

Expression Result

[1, 2, 3][null] null

[1, 2, 3, 4][null..2] null

[1, 2, 3][1..null] null

{age: 25}[null] null

Using parameters to pass in the bounds, such as a[$lower..$upper], may result in a null for the lower or
upper bound (or both). The following workaround will prevent this from happening by setting the absolute
minimum and maximum bound values:

a[coalesce($lower,0)..coalesce($upper,size(a))]

Expressions that return null

• Getting a missing element from a list: [][0], head([])

• Trying to access a property that does not exist on a node or relationship: n.missingProperty

• Comparisons when either side is null: 1 < null

• Arithmetic expressions containing null: 1 + null

• Function calls where any arguments are null: sin(null)

Using IS NULL and IS NOT NULL

Testing any value against null, either with the = operator or with the <> operator, always evaluates to
null. Therefore, use the special equality operators IS NULL or IS NOT NULL instead (see Equality and
comparison of values).

[1] The minimum value represents the minimum positive value of a Float, i.e. the closest value to zero. It is also possible to
have a negative Float.
[2] The 365.2425 days per year comes from the frequency of leap years. A leap year occurs on a year with an ordinal number
divisible by 4, that is not divisible by 100, unless it divisible by 400. This means that over 400 years there are ((365 * 4 + 1)
* 25 - 1) * 4 + 1 = 146097 days, which means an average of 365.2425 days per year.
[3] This is in accordance with the Gregorian calendar; i.e. years AD/CE start at year 1, and the year before that (year 1
BC/BCE) is 0, while year 2 BCE is -1 etc.
[4] The first week of any year is the week that contains the first Thursday of the year, and thus always contains January 4.
[5] For dates from December 29, this could be the next year, and for dates until January 3 this could be the previous year,
depending on how week 1 begins.
[6] Cypher does not support leap seconds; UTC-SLS (UTC with Smoothed Leap Seconds) is used to manage the difference
in time between UTC and TAI (International Atomic Time).
[7] The expression datetime().epochMillis returns the equivalent value of the timestamp() function.
[8] For the nanosecond part of the epoch offset, the regular nanosecond component (instant.nanosecond) can be used.

131

https://en.wikipedia.org/wiki/Gregorian_calendar
https://en.wikipedia.org/wiki/ISO_week_date#First_week

Clauses
This section contains information on all the clauses in the Cypher query language.

Administration clauses
These comprise clauses used to manage databases, schema and security; further details can found in
Database management and Access control.

Clause Description

CREATE | DROP | START | STOP DATABASE Create, drop, start or stop a database.

CREATE | DROP INDEX Create or drop an index on all nodes with a particular label
and property.

CREATE | DROP CONSTRAINT Create or drop a constraint pertaining to either a node label
or relationship type, and a property.

Access control Manage users, roles, and privileges for database, graph and
sub-graph access control.

Importing data
Clause Description

LOAD CSV Use when importing data from CSV files.

CALL { ... } IN TRANSACTIONS This clause may be used to prevent an out-of-memory error
from occurring when importing large amounts of data using
LOAD CSV.

Listing functions and procedures
Clause Description

SHOW FUNCTIONS List the available functions.

SHOW PROCEDURES List the available procedures.

Multiple graphs
Clause Description

USE Determines which graph a query, or query part, is executed
against. Fabric

132

Projecting clauses
These comprise clauses that define which expressions to return in the result set. The returned expressions
may all be aliased using AS.

Clause Description

<<RETURN, RETURN ... [AS>>] Defines what to include in the query result set.

<<WITH, WITH ... [AS>>] Allows query parts to be chained together, piping the results
from one to be used as starting points or criteria in the next.

<<UNWIND, UNWIND ... [AS>>] Expands a list into a sequence of rows.

Reading clauses
These comprise clauses that read data from the database.

The flow of data within a Cypher query is an unordered sequence of maps with key-value pairs — a set of
possible bindings between the variables in the query and values derived from the database. This set is
refined and augmented by subsequent parts of the query.

Clause Description

MATCH Specify the patterns to search for in the database.

OPTIONAL MATCH Specify the patterns to search for in the database while using
nulls for missing parts of the pattern.

Reading hints
These comprise clauses used to specify planner hints when tuning a query. More details regarding the
usage of these — and query tuning in general — can be found in Planner hints and the USING keyword.

Hint Description

USING INDEX Index hints are used to specify which index, if any, the
planner should use as a starting point.

USING INDEX SEEK Index seek hint instructs the planner to use an index seek for
this clause.

USING SCAN Scan hints are used to force the planner to do a label scan
(followed by a filtering operation) instead of using an index.

USING JOIN Join hints are used to enforce a join operation at specified
points.

Reading sub-clauses
These comprise sub-clauses that must operate as part of reading clauses.

133

Sub-clause Description

WHERE Adds constraints to the patterns in a MATCH or OPTIONAL
MATCH clause or filters the results of a WITH clause.

<<ORDERBY, ORDER BY [ASC[ENDING>> | DESC[ENDING]]] A sub-clause following RETURN or WITH, specifying that the
output should be sorted in either ascending (the default) or
descending order.

SKIP Defines from which row to start including the rows in the
output.

LIMIT Constrains the number of rows in the output.

Reading/Writing clauses
These comprise clauses that both read data from and write data to the database.

Clause Description

MERGE Ensures that a pattern exists in the graph. Either the pattern
already exists, or it needs to be created.

--- ON CREATE Used in conjunction with MERGE, this write sub-clause
specifies the actions to take if the pattern needs to be
created.

--- ON MATCH Used in conjunction with MERGE, this write sub-clause
specifies the actions to take if the pattern already exists.

<<CALLprocedure, CALL ... [YIELD ... >>] Invokes a procedure deployed in the database and return any
results.

Set operations
Clause Description

UNION Combines the result of multiple queries into a single
result set. Duplicates are removed.

UNION ALL Combines the result of multiple queries into a single
result set. Duplicates are retained.

Subquery clauses
Clause Description

CALL { ... } Evaluates a subquery, typically used for post-union
processing or aggregations.

134

Clause Description

CALL { ... } IN TRANSACTIONS Evaluates a subquery in separate transactions.
Typically used when modifying or importing large
amounts of data.

Transaction Commands
Clause Description

SHOW TRANSACTIONS List the available transactions.

TERMINATE TRANSACTIONS Terminate transactions by their IDs.

Writing clauses
These comprise clauses that write the data to the database.

Clause Description

CREATE Create nodes and relationships.

DELETE Delete nodes, relationships or paths. Any node to
be deleted must also have all associated
relationships explicitly deleted.

DETACH DELETE Delete a node or set of nodes. All associated
relationships will automatically be deleted.

SET Update labels on nodes and properties on nodes and
relationships.

REMOVE Remove properties and labels from nodes and relationships.

FOREACH Update data within a list, whether components of a path, or
the result of aggregation.

MATCH

The MATCH clause is used to search for the pattern described in it.

• Introduction

• Basic node finding

◦ Get all nodes

◦ Get all nodes with a label

◦ Related nodes

135

◦ Match with labels

◦ Match with a label expression for the node labels

• Relationship basics

◦ Outgoing relationships

◦ Directed relationships and variable

◦ Match on relationship type

◦ Match on multiple relationship types

◦ Match on relationship type and use a variable

• Relationships in depth

◦ Relationship types with uncommon characters

◦ Multiple relationships

◦ Variable length relationships

◦ Variable length relationships with multiple relationship types

◦ Relationship variable in variable length relationships

◦ Match with properties on a variable length path

◦ Zero length paths

◦ Named paths

◦ Matching on a bound relationship

• Shortest path

◦ Single shortest path

◦ Single shortest path with predicates

◦ All shortest paths

• Get node or relationship by elementId

◦ Node by elementId

◦ Relationship by elementId

◦ Multiple nodes by elementId

Introduction

The MATCH clause allows you to specify the patterns Neo4j will search for in the database. This is the
primary way of getting data into the current set of bindings. It is worth reading up more on the
specification of the patterns themselves in Patterns.

MATCH is often coupled to a WHERE part which adds restrictions, or predicates, to the MATCH patterns, making
them more specific. The predicates are part of the pattern description, and should not be considered a filter
applied only after the matching is done. This means that WHERE should always be put together with the
MATCH clause it belongs to.

136

MATCH can occur at the beginning of the query or later, possibly after a WITH. If it is the first clause, nothing
will have been bound yet, and Neo4j will design a search to find the results matching the clause and any
associated predicates specified in any WHERE part. This could involve a scan of the database, a search for
nodes having a certain label, or a search of an index to find starting points for the pattern matching. Nodes
and relationships found by this search are available as bound pattern elements, and can be used for
pattern matching of paths. They can also be used in any further MATCH clauses, where Neo4j will use the
known elements, and from there find further unknown elements.

Cypher is declarative, and so usually the query itself does not specify the algorithm to use to perform the
search. Neo4j will automatically work out the best approach to finding start nodes and matching patterns.
Predicates in WHERE parts can be evaluated before pattern matching, during pattern matching, or after
finding matches. However, there are cases where you can influence the decisions taken by the query
compiler. Read more about indexes in Indexes for search performance, and more about specifying hints to
force Neo4j to solve a query in a specific way in Planner hints and the USING keyword.


To understand more about the patterns used in the MATCH clause, read the chapter on
Patterns.

The following graph is used for the examples below:

DIRECTED

A
C

T
E

D
_I

N
ro

le
:'

G
or

do
n

G
ek

ko
'

A
C

T
E

D
_I

N
ro

le
: '

C
ar

l F
ox

'

ACTED_IN
role: 'President Andrew Shepherd'

ACTED_IN

role: 'A.J. M
acInerney'

ACTED_IN

role: 'Bud Fox'

D
IR

E
C

T
E

D

FATHER_OF

Person

name: 'Oliver Stone'

Movie

title: 'Wall Street'

Person

name: 'Michael Douglas'

Person

name: 'Martin Sheen'

Movie

title: 'The American President'

Person

name: 'Charlie Sheen'

Person

name: 'Rob Reiner'

137

To recreate the graph, run the following query in an empty Neo4j database:

CREATE
 (charlie:Person {name: 'Charlie Sheen'}),
 (martin:Person {name: 'Martin Sheen'}),
 (michael:Person {name: 'Michael Douglas'}),
 (oliver:Person {name: 'Oliver Stone'}),
 (rob:Person {name: 'Rob Reiner'}),
 (wallStreet:Movie {title: 'Wall Street'}),
 (charlie)-[:ACTED_IN {role: 'Bud Fox'}]->(wallStreet),
 (martin)-[:ACTED_IN {role: 'Carl Fox'}]->(wallStreet),
 (michael)-[:ACTED_IN {role: 'Gordon Gekko'}]->(wallStreet),
 (oliver)-[:DIRECTED]->(wallStreet),
 (thePresident:Movie {title: 'The American President'}),
 (martin)-[:ACTED_IN {role: 'A.J. MacInerney'}]->(thePresident),
 (michael)-[:ACTED_IN {role: 'President Andrew Shepherd'}]->(thePresident),
 (rob)-[:DIRECTED]->(thePresident),
 (martin)-[:FATHER_OF]->(charlie)

Basic node finding

Get all nodes

By specifying a pattern with a single node and no labels, all nodes in the graph will be returned.

Query

MATCH (n)
RETURN n

Returns all the nodes in the database.

Table 127. Result

n

{"name":"Charlie Sheen"}

{"name":"Martin Sheen"}

{"name":"Michael Douglas"}

{"name":"Oliver Stone"}

{"name":"Rob Reiner"}

{"title":"Wall Street"}

{"title":"The American President"}

Rows: 7

Get all nodes with a label

Find all nodes with a specific label:

Query

MATCH (movie:Movie)
RETURN movie.title

138

Returns all the nodes with the Movie label in the database.

Table 128. Result

movie.title

"Wall Street"

"The American President"

Rows: 2

Related nodes

The symbol -- means related to, without regard to type or direction of the relationship.

Query

MATCH (director {name: 'Oliver Stone'})--(movie)
RETURN movie.title

Returns all the movies directed by Oliver Stone.

Table 129. Result

movie.title

"Wall Street"

Rows: 1

Match with labels

To constrain a pattern with labels on nodes, add the labels to the nodes in the pattern.

Query

MATCH (:Person {name: 'Oliver Stone'})--(movie:Movie)
RETURN movie.title

Returns any nodes with the Movie label connected to Oliver Stone.

Table 130. Result

movie.title

"Wall Street"

Rows: 1

Match with a label expression for the node labels

A match with an OR expression for the node label returns the nodes that contains both the specified labels.

139

Query

MATCH (n:Movie|Person)
RETURN n.name AS name, n.title AS title

Table 131. Result

name title

"Charlie Sheen" <null>

"Martin Sheen" <null>

"Michael Douglas" <null>

"Oliver Stone" <null>

"Rob Reiner" <null>

<null> "Wall Street"

<null> "The American President"

Rows: 7

Relationship basics

Outgoing relationships

When the direction of a relationship is of interest, it is shown by using --> or <--. For example:

Query

MATCH (:Person {name: 'Oliver Stone'})-->(movie)
RETURN movie.title

Returns any nodes connected by an outgoing relationship to the Person node with the name property set to
Oliver Stone.

Table 132. Result

movie.title

"Wall Street"

Rows: 1

Directed relationships and variable

It is possible to introduce a variable to a pattern, either for filtering on relationship properties or to return a
relationship.

For example: .Query

MATCH (:Person {name: 'Oliver Stone'})-[r]->(movie)
RETURN type(r)

140

Returns the type of each outgoing relationship from Oliver Stone.

Table 133. Result

type(r)

"DIRECTED"

Rows: 1

Match on relationship type

When the relationship type to match on is known, it is possible to specify it by using a colon (:) before the
relationship type.

Query

MATCH (wallstreet:Movie {title: 'Wall Street'})<-[:ACTED_IN]-(actor)
RETURN actor.name

Returns all actors who ACTED_IN the movie Wall Street.

Table 134. Result

actor.name

"Michael Douglas"

"Martin Sheen"

"Charlie Sheen"

Rows: 3

Read more about relationship type expressions.

Match on multiple relationship types

It is possible to match on multiple relationship types by using the pipe symbol (|). For example:

Query

MATCH (wallstreet {title: 'Wall Street'})<-[:ACTED_IN|DIRECTED]-(person)
RETURN person.name

Returns nodes with an ACTED_IN or DIRECTED relationship to the movie Wall Street. .Result

person.name

"Oliver Stone"

"Michael Douglas"

"Martin Sheen"

"Charlie Sheen"

Rows: 4

141

Match on relationship type and use a variable

Variables and specific relationship types can be included in the same pattern. For example:

Query

MATCH (wallstreet {title: 'Wall Street'})<-[r:ACTED_IN]-(actor)
RETURN r.role

Returns the ACTED_IN roles for the movie Wall Street.

Table 135. Result

r.role

"Gordon Gekko"

"Carl Fox"

"Bud Fox"

Rows: 3

Relationships in depth


Relationships will only be matched once inside a single pattern. Read more about this in
the section on uniqueness.

Relationship types with uncommon characters

Databases occasionally contain relationship types including non-alphanumerical characters, or with spaces
in them. These are created using backticks (`).

For example, the following query creates a relationship which contains a space (OLD FRIENDS) between
Martin Sheen and Rob Reiner.

Query

MATCH
 (charlie:Person {name: 'Martin Sheen'}),
 (rob:Person {name: 'Rob Reiner'})
CREATE (rob)-[:`OLD FRIENDS`]->(martin)

This leads to the following graph:

142

DIRECTED

A
C

T
E

D
_I

N
ro

le
:'

G
or

do
n

G
ek

ko
'

A
C

T
E

D
_I

N
ro

le
: '

C
ar

l F
ox

'

ACTED_IN
role: 'President Andrew Shepherd'

ACTED_IN

role: 'A.J. M
acInerney'

ACTED_IN

role: 'Bud Fox'

D
IR

E
C

T
E

D

FATHER_OF

OLD FRIENDS

Person

name: 'Oliver Stone'

Movie

title: 'Wall Street'

Person

name: 'Michael Douglas'

Person

name: 'Martin Sheen'

Movie

title: 'The American President'

Person

name: 'Charlie Sheen'

Person

name: 'Rob Reiner'

Query

MATCH (n {name: 'Rob Reiner'})-[r:`OLD FRIENDS`]->()
RETURN type(r)

Table 136. Result

type(r)

"OLD FRIENDS"

Rows: 1

Multiple relationships

Relationships can be expressed by using multiple statements in the form of ()--(), or they can be strung
together. For example:

Query

MATCH (charlie {name: 'Charlie Sheen'})-[:ACTED_IN]->(movie)<-[:DIRECTED]-(director)
RETURN movie.title, director.name

143

Returns the movie in which Charlie Sheen acted and its director.

Table 137. Result

movie.title director.name

"Wall Street" "Oliver Stone"

Rows: 1

Variable length relationships

Nodes that are a variable number of relationship->node hops away can be found using the following
syntax: -[:TYPE*minHops..maxHops]->. minHops and maxHops are optional and default to 1 and infinity
respectively. When no bounds are given the dots may be omitted. The dots may also be omitted when
setting only one bound as this implies a fixed length pattern.


Variable length relationships can be planned with an optimisation under certain
circumstances, see VarLength Expand Pruning query plan.

Query

MATCH (charlie {name: 'Charlie Sheen'})-[:ACTED_IN*1..3]-(movie:Movie)
RETURN movie.title

Returns all movies related to Charlie Sheen by 1 to 3 hops:

• Wall Street is found through the direct connection, whereas the other two results are found via
Michael Douglas and Martin Sheen respectively.

• As this example demonstrates, variable length relationships do not impose any requirements on the
intermediate nodes.

Table 138. Result

movie.title

"Wall Street"

"The American President"

"The American President"

Rows: 3

Variable length relationships with multiple relationship types

Variable length relationships can be combined with multiple relationship types. In this case,
*minHops..maxHops applies to all relationship types as well as any combination of them.

Query

MATCH (charlie {name: 'Charlie Sheen'})-[:ACTED_IN|DIRECTED*2]-(person:Person)
RETURN person.name

144

Returns all people related to Charlie Sheen by 2 hops with any combination of the relationship types
ACTED_IN and DIRECTED.

Table 139. Result

person.name

"Oliver Stone"

"Michael Douglas"

"Martin Sheen"

Rows: 3

Relationship variable in variable length relationships

When the connection between two nodes is of variable length, the list of relationships comprising the
connection can be returned using the following syntax:

Query

MATCH p = (actor {name: 'Charlie Sheen'})-[:ACTED_IN*2]-(co_actor)
RETURN relationships(p)

Returns a list of relationships.

Table 140. Result

relationships(p)

{role:"Bud Fox"},{role:"Gordon Gekko"}

{role:"Bud Fox"},{role:"Carl Fox"}

Rows: 2

Match with properties on a variable length path

A variable length relationship with properties defined on in it means that all relationships in the path must
have the property set to the given value.

The following query adds two new paths between Charlie Sheen and his father Martin Sheen, where a
lead property is added to the ACTED_IN relationships connecting them to the Movie nodes No Code of
Conduct and Free Money. The query makes evident that both actors had a leading role in the movie No Code
of Conduct, but only Martin Sheen had a leading role in the movie Free Money.

Query

MATCH
 (charlie:Person {name: 'Charlie Sheen'}),
 (martin:Person {name: 'Martin Sheen'})
CREATE (charlie)-[:ACTED_IN {role: 'Bud', lead: true}]->(:Movie {title: 'Free Money'})<-[:ACTED_IN {
role:'New Warden', lead: false}]-(martin),
(charlie)-[:ACTED_IN {role: 'Jake Peterson', lead: true}]->(:Movie {title: 'No Code of Conduct'})<-
[:ACTED_IN {role: 'Bill Peterson', lead: true}]-(martin)

This leads to the following graph:

145

DIRECTED

A
C

T
E

D
_IN

role:'G
ordon G

ekko'

AC
TE

D
_IN

role: 'C
arl Fox'

ACTED_IN
role: 'President Andrew Shepherd'

ACTED_IN

role: 'A.J. MacInerney'

ACTED_IN
role: 'Bud Fox'

DIRECTED

ACTED_IN

role: 'Bud'

lead: true

A
C

TE
D

_I
N

ro
le

: '
N

ew
 W

ar
de

n'

le
ad

: f
al

se

A
C

T
E

D
_I

N
ro

le
:'

B
ill

 P
et

er
so

n'
le

ad
:t

ru
e

ACTED_IN
role: 'Jake Peterson'
lead: true

FA
THER_OF

OLD FRIENDS

Person

name: 'Oliver Stone'

Movie

title: 'Wall Street'

Person

name: 'Michael Douglas'

Person

name: 'Martin Sheen'

Movie

title: 'The American President'

Person

name: 'Charlie Sheen'

Person

name: 'Rob Reiner'

Movie

title: 'Free Money'

Movie

title: 'No Code of Conduct'

Query

MATCH p = (charlie:Person)-[* {lead: true}]-(martin:Person)
WHERE charlie.name = 'Charlie Sheen' AND martin.name = 'Martin Sheen'
RETURN p

The above query returns the paths between Charlie Sheen and Martin Sheen where all relationships have
the lead property set to true. The following graph and text are returned:

146

ACTED_IN

ACTED_IN

Charlie
Sheen

Martin
Sheen

No Code
of

Con…

Table 141. Result

p

[{"name":"Charlie Sheen"},{"role":"Jake Peterson","lead":true},{"title":"No Code of Conduct"},{"title":"No
Code of Conduct"},{"role":"Bill Peterson","lead":true},{"name":"Martin Sheen"}]

Rows: 1

Zero length paths

Using variable length paths that have the lower bound zero means that two variables can point to the
same node. If the path length between two nodes is zero, they are by definition the same node. Note that
when matching zero length paths the result may contain a match even when matching on a relationship
type not in use.

Query

MATCH (wallstreet:Movie {title: 'Wall Street'})-[*0..1]-(x)
RETURN x

Returns the movie itself as well as actors and directors one relationship away

Table 142. Result

x

{title:"Wall Street"}

{name:"Oliver Stone"}

{name:"Michael Douglas"}

{name:"Martin Sheen"}

147

x

{name:"Charlie Sheen"}

Rows: 5

Named paths

It is possible to introduce a named path to return or filter on a path in the pattern graph. For example:

Query

MATCH p = (michael {name: 'Michael Douglas'})-->()
RETURN p

This query returns the following graph and text, showing the two paths starting from Michael Douglas.

ACTED_I
N

ACTED_IN

Michael
Douglas

Wall
Street

The
American

Pre…

Table 143. Result

p

[{"name":"Michael Douglas"},{"role":"Gordon Gekko"},{"title":"Wall Street"}]

[{"name":"Michael Douglas"},{"role":"President Andrew Shepherd"},{"title":"The American President"}]

Rows: 2

Matching on a bound relationship

When a pattern contains a bound relationship, and that relationship pattern does not specify direction,
Cypher will try to match the relationship in both directions. For example:

148

Query

MATCH (a)-[r]-(b)
WHERE split(elementId(r), ":")[2] = "0"
RETURN a, b

This returns the two connected nodes, once as the start node, and once as the end node

Table 144. Result

a b

{name:"Charlie Sheen"} {title:"Wall Street"}

{title:"Wall Street"} {name:"Charlie Sheen"}

Rows: 2

Shortest path

Single shortest path

Finding a single shortest path between two nodes can be done by using the shortestPath function.

Query

MATCH
 (martin:Person {name: 'Martin Sheen'}),
 (oliver:Person {name: 'Oliver Stone'}),
 p = shortestPath((martin)-[*..15]-(oliver))
RETURN p

This query finds the shortest path between two nodes, as long as the path is max 15 relationships long.
The path link (the starting node, the connecting relationships, and the end node) is defined within the
parentheses. Characteristics describing the relationship like relationship type, max hops and direction are
all used when finding the shortest path. If there is a WHERE clause following the match of a shortestPath,
relevant predicates will be included in the shortestPath. If the predicate is a none() or all() on the
relationship elements of the path, it will be used during the search to improve performance (see Shortest
path planning).

The query returns the following graph and text, showing the shortest possible path between the start
node (Martin Sheen) and the end node (Oliver Stone):

149

A
C

TE
D

_IN

DIRECTED

Martin
Sheen

Oliver
StoneWall

Street

Table 145. Result

p

+[{"name":"Martin Sheen"},{"role":"Carl Fox"},{"title":"Wall Street"},{"title":"Wall
Street"},{},{"name":"Oliver Stone"}]

Rows: 1

Single shortest path with predicates

Predicates used in the WHERE clause that apply to the shortest path pattern are evaluated before deciding
what the shortest matching path is.

Query

MATCH
 (charlie:Person {name: 'Charlie Sheen'}),
 (martin:Person {name: 'Martin Sheen'}),
 p = shortestPath((charlie)-[*]-(martin))
WHERE none(r IN relationships(p) WHERE type(r) = 'FATHER_OF')
RETURN p

This query will find the shortest path between Charlie Sheen and Martin Sheen, and the WHERE predicate
will ensure that the FATHER_OF relationship between the two is not considered.

It returns the following graph and text:

150

A
C

TE
D

_IN

ACTED_IN

Charlie
Sheen

Martin
Sheen

Wall
Street

Table 146. Result

p

[{"name":"Charlie Sheen"},{"role":"Bud Fox"},{"title":"Wall Street"},{"title":"Wall Street"},{"role":"Carl
Fox"},{"name":"Martin Sheen"}]

Rows: 1

All shortest paths

Finding all shortest paths between two nodes can be done by using the allShortestPaths function:

Query

MATCH
 (martin:Person {name: 'Martin Sheen'}),
 (michael:Person {name: 'Michael Douglas'}),
 p = allShortestPaths((martin)-[*]-(michael))
RETURN p

This query finds the two shortest paths between Martin Sheen and Michael Douglas. It returns the
following graph and text:

151

ACTED_IN

A
C

T
E

D
_IN

A
C

T
E

D
_IN

ACTED_IN

Martin
Sheen

Michael
Douglas

Wall
Street

The
American

Pre…

Table 147. Result

p

[{"name":"Martin Sheen"},{"role":"Carl Fox"},{"title":"Wall Street"},{"title":"Wall Street"},{"role":"Gordon
Gekko"},{"name":"Michael Douglas"}]

[{"name":"Martin Sheen"},{"role":"A.J. MacInerney"},{"title":"The American President"},{"title":"The American
President"},{"role":"President Andrew Shepherd"},{"name":"Michael Douglas"}]

Rows: 2

Get node or relationship by elementId

Node by elementId

Searching for nodes by ID can be done with the elementId() function in a predicate.


Neo4j reuses its internal IDs when nodes and relationships are deleted. This means that
applications using, and relying on internal Neo4j IDs, are brittle or at risk of making
mistakes. It is therefore recommended to rather use application-generated IDs.

Query

MATCH (n)
WHERE split(elementId(n), ":")[2] = "0"
RETURN n

The corresponding node is returned.

Table 148. Result

152

n

{name:"Charlie Sheen"}

Rows: 1

Relationship by elementId

Search for relationships by ID can be done with the elementId() function in a predicate.

Query

MATCH ()-[r]->()
WHERE split(elementId(r), ":")[2] = "0"
RETURN r

The relationship with the elementId 0 is returned.

Table 149. Result

r

{role:"Bud Fox"}

Rows: 1

Multiple nodes by elementId

Multiple nodes are selected by specifying them in an IN-clause.

Query

MATCH (n)
WHERE split(elementId(n), ":")[2] IN ["0", "3", "5"]
RETURN n

This returns the nodes listed in the IN-expression.

Table 150. Result

n

{name:"Charlie Sheen"}

{name:"Oliver Stone"}

{title:"Wall Street"}

Rows: 3

OPTIONAL MATCH

The OPTIONAL MATCH clause is used to search for the pattern described in it, while using

nulls for missing parts of the pattern.

153

OPTIONAL MATCH matches patterns against your graph database, just like MATCH does. The difference is that
if no matches are found, OPTIONAL MATCH will use a null for missing parts of the pattern. OPTIONAL MATCH
could be considered the Cypher equivalent of the outer join in SQL.

Either the whole pattern is matched, or nothing is matched. Remember that WHERE is part of the pattern
description, and the predicates will be considered while looking for matches, not after. This matters
especially in the case of multiple (OPTIONAL) MATCH clauses, where it is crucial to put WHERE together with the
MATCH it belongs to.

 To understand the patterns used in the OPTIONAL MATCH clause, read Patterns.

The following graph is used for the examples below:

Person

name = 'Charlie Sheen'

Person

name = 'Martin Sheen'

FATHER

Movie

title = 'Wall Street'

ACTED_IN

ACTED_IN

Movie

title = 'The American President'

ACTED_IN

Person

name = 'Michael Douglas'

ACTED_IN ACTED_IN

Person

name = 'Oliver Stone'

DIRECTED

Person

name = 'Rob Reiner'

DIRECTED

Optional relationships

If a relationship is optional, use the OPTIONAL MATCH clause. This is similar to how a SQL outer join works. If
the relationship is there, it is returned. If it is not, null is returned in its place.

Query

MATCH (a:Movie {title: 'Wall Street'})
OPTIONAL MATCH (a)-->(x)
RETURN x

Returns null, since the node has no outgoing relationships.

Table 151. Result

x

<null>

Rows: 1

Properties on optional elements

Returning a property from an optional element that is null will also return null.

154

Query

MATCH (a:Movie {title: 'Wall Street'})
OPTIONAL MATCH (a)-->(x)
RETURN x, x.name

Returns the element x (null in this query), and null as its name.

Table 152. Result

x x.name

<null> <null>

Rows: 1

Optional typed and named relationship

Just as with a normal relationship, you can decide which variable it goes into, and what relationship type
you need.

Query

MATCH (a:Movie {title: 'Wall Street'})
OPTIONAL MATCH (a)-[r:ACTS_IN]->()
RETURN a.title, r

This returns the title of the node, 'Wall Street', and, since the node has no outgoing ACTS_IN relationships,
null is returned for the relationship denoted by r.

Table 153. Result

a.title r

"Wall Street" <null>

Rows: 1

RETURN

The RETURN clause defines what to include in the query result set.

In the RETURN part of your query, you define which parts of the pattern you are interested in. It can be
nodes, relationships, or properties on these.


If what you actually want is the value of a property, make sure to not return the full
node/relationship. This will improve performance.

155

name = 'A'
age = 55
happy = 'Yes!'

name = 'B'

BLOCKSKNOWS

Return nodes

To return a node, list it in the RETURN statement.

Query

MATCH (n {name: 'B'})
RETURN n

The example will return the node.

Table 154. Result

n

Node[1]{name:"B"}

Rows: 1

Return relationships

To return a relationship, just include it in the RETURN list.

Query

MATCH (n {name: 'A'})-[r:KNOWS]->(c)
RETURN r

The relationship is returned by the example.

Table 155. Result

r

:KNOWS[0]{}

Rows: 1

Return property

To return a property, use the dot separator, like this:

156

Query

MATCH (n {name: 'A'})
RETURN n.name

The value of the property name gets returned.

Table 156. Result

n.name

"A"

Rows: 1

Return all elements

When you want to return all nodes, relationships and paths found in a query, you can use the * symbol.

Query

MATCH p = (a {name: 'A'})-[r]->(b)
RETURN *

This returns the two nodes, the relationship and the path used in the query.

Table 157. Result

a b p r

Node[0]{name:"A",age:55,ha
ppy:"Yes!"}

Node[1]{name:"B"} (0)-[BLOCKS,1]->(1) :BLOCKS[1]{}

Node[0]{name:"A",age:55,ha
ppy:"Yes!"}

Node[1]{name:"B"} (0)-[KNOWS,0]->(1) :KNOWS[0]{}

Rows: 2

Variable with uncommon characters

To introduce a placeholder that is made up of characters that are not contained in the English alphabet,
you can use the ` to enclose the variable, like this:

Query

MATCH (`This isn\'t a common variable`)
WHERE `This isn\'t a common variable`.name = 'A'
RETURN `This isn\'t a common variable`.happy

The node with name "A" is returned.

Table 158. Result

`This isn\'t a common variable`.happy

"Yes!"

157

`This isn\'t a common variable`.happy

Rows: 1

Column alias

If the name of the column should be different from the expression used, you can rename it by using AS
<new name>.

Query

MATCH (a {name: 'A'})
RETURN a.age AS SomethingTotallyDifferent

Returns the age property of a node, but renames the column.

Table 159. Result

SomethingTotallyDifferent

55

Rows: 1

Optional properties

If a property might or might not be there, you can still select it as usual. It will be treated as null if it is
missing.

Query

MATCH (n)
RETURN n.age

This example returns the age when the node has that property, or null if the property is not there.

Table 160. Result

n.age

55

<null>

Rows: 2

Other expressions

Any expression can be used as a return item — literals, predicates, properties, functions, and everything
else.

158

Query

MATCH (a {name: 'A'})
RETURN a.age > 30, "I'm a literal", [p=(a)-->() | p] AS `(a)-->()`

Returns a predicate, a literal and function call with a pattern expression parameter.

Table 161. Result

a.age > 30 "I'm a literal" (a)-->()

true "I'm a literal" [(0)-[BLOCKS,1]->(1),(0)-[KNOWS,0]-
>(1)]

Rows: 1

Unique results

DISTINCT retrieves only unique rows depending on the columns that have been selected to output.

Query

MATCH (a {name: 'A'})-->(b)
RETURN DISTINCT b

The node named "B" is returned by the query, but only once.

Table 162. Result

b

Node[1]{name:"B"}

Rows: 1

WITH

The WITH clause allows query parts to be chained together, piping the results from one to

be used as starting points or criteria in the next.


It is important to note that WITH affects variables in scope. Any variables not included in
the WITH clause are not carried over to the rest of the query. The wildcard * can be used
to include all variables that are currently in scope.

Using WITH, you can manipulate the output before it is passed on to the following query parts.
Manipulations can be done to the shape and/or number of entries in the result set.

One common usage of WITH is to limit the number of entries passed on to other MATCH clauses. By
combining ORDER BY and LIMIT, it is possible to get the top X entries by some criteria and then bring in
additional data from the graph.

WITH can also be used to introduce new variables containing the results of expressions for use in the

159

following query parts (see Introducing variables for expressions). For convenience, the wildcard * expands
to all variables that are currently in scope and carries them over to the next query part (see Using the
wildcard to carry over variables).

Another use is to filter on aggregated values. WITH is used to introduce aggregates which can then be used
in predicates in WHERE. These aggregate expressions create new bindings in the results.

WITH is also used to separate reading from updating of the graph. Every part of a query must be either
read-only or write-only. When going from a writing part to a reading part, the switch must be done with a
WITH clause.

name = 'Anders'

name = 'Caesar'

BLOCKS

name = 'Bossman'

KNOWS

name = 'George'

KNOWS KNOWS

name = 'David'

BLOCKS

KNOWS

Introducing variables for expressions

You can introduce new variables for the result of evaluating expressions.

Query

MATCH (george {name: 'George'})<--(otherPerson)
WITH otherPerson, toUpper(otherPerson.name) AS upperCaseName
WHERE upperCaseName STARTS WITH 'C'
RETURN otherPerson.name

This query returns the name of persons connected to 'George' whose name starts with a C, regardless of
capitalization.

Table 163. Result

otherPerson.name

"Caesar"

Rows: 1

Using the wildcard to carry over variables

You can use the wildcard * to carry over all variables that are in scope, in addition to introducing new
variables.

160

Query

MATCH (person)-[r]->(otherPerson)
WITH *, type(r) AS connectionType
RETURN person.name, otherPerson.name, connectionType

This query returns the names of all related persons and the type of relationship between them.

Table 164. Result

person.name otherPerson.name connectionType

"David" "Anders" "KNOWS"

"Anders" "Bossman" "KNOWS"

"Anders" "Caesar" "BLOCKS"

"Bossman" "David" "BLOCKS"

"Bossman" "George" "KNOWS"

"Caesar" "George" "KNOWS"

Rows: 6

Filter on aggregate function results

Aggregated results have to pass through a WITH clause to be able to filter on.

Query

MATCH (david {name: 'David'})--(otherPerson)-->()
WITH otherPerson, count(*) AS foaf
WHERE foaf > 1
RETURN otherPerson.name

The name of the person connected to 'David' with the at least more than one outgoing relationship will be
returned by the query.

Table 165. Result

otherPerson.name

"Anders"

Rows: 1

Sort results before using collect on them

You can sort your results before passing them to collect, thus sorting the resulting list.

Query

MATCH (n)
WITH n
ORDER BY n.name DESC
LIMIT 3
RETURN collect(n.name)

161

A list of the names of people in reverse order, limited to 3, is returned in a list.

Table 166. Result

collect(n.name)

["George","David","Caesar"]

Rows: 1

Limit branching of a path search

You can match paths, limit to a certain number, and then match again using those paths as a base, as well
as any number of similar limited searches.

Query

MATCH (n {name: 'Anders'})--(m)
WITH m
ORDER BY m.name DESC
LIMIT 1
MATCH (m)--(o)
RETURN o.name

Starting at 'Anders', find all matching nodes, order by name descending and get the top result, then find all
the nodes connected to that top result, and return their names.

Table 167. Result

o.name

"Anders"

"Bossman"

Rows: 2

Limit and Filtering

It is possible to limit and filter on the same WITH clause. Note that the LIMIT clause is applied before the
WHERE clause.

Query

UNWIND [1, 2, 3, 4, 5, 6] AS x
WITH x
LIMIT 5
WHERE x > 2
RETURN x

The limit is first applied, reducing the rows to the first 5 items in the list. The filter is then applied, reducing
the final result as seen below:

Table 168. Result

x

3

162

x

4

5

Rows: 3

If the desired outcome is to filter and then limit, the filtering needs to occur in its own step:

Query

UNWIND [1, 2, 3, 4, 5, 6] AS x
WITH x
WHERE x > 2
WITH x
LIMIT 5
RETURN x

This time the filter is applied first, reducing the rows to consist of the list [3, 4, 5, 6]. Then the limit is
applied. As the limit is larger than the total number of remaining rows, all rows are returned.

Table 169. Result

x

3

4

5

6

Rows: 4

UNWIND

UNWIND expands a list into a sequence of rows.

The UNWIND clause makes it possible to transform any list back into individual rows. These lists can be
parameters that were passed in, previously collect-ed result, or other list expressions.

Common usage of the UNWIND clause:

• Create distinct lists.

• Create data from parameter lists that are provided to the query.

 The UNWIND clause requires you to specify a new name for the inner values.

Unwinding a list

We want to transform the literal list into rows named x and return them.

163

Query

UNWIND [1, 2, 3, null] AS x
RETURN x, 'val' AS y

Each value of the original list — including null — is returned as an individual row.

Table 170. Result

x y

1 "val"

2 "val"

3 "val"

<null> "val"

Rows: 4

Creating a distinct list

We want to transform a list of duplicates into a set using DISTINCT.

Query

WITH [1, 1, 2, 2] AS coll
UNWIND coll AS x
WITH DISTINCT x
RETURN collect(x) AS setOfVals

Each value of the original list is unwound and passed through DISTINCT to create a unique set.

Table 171. Result

setOfVals

[1,2]

Rows: 1

Using UNWIND with any expression returning a list

Any expression that returns a list may be used with UNWIND.

Query

WITH
 [1, 2] AS a,
 [3, 4] AS b
UNWIND (a + b) AS x
RETURN x

The two lists — a and b — are concatenated to form a new list, which is then operated upon by UNWIND.

Table 172. Result

164

x

1

2

3

4

Rows: 4

Using UNWIND with a list of lists

Multiple UNWIND clauses can be chained to unwind nested list elements.

Query

WITH [[1, 2], [3, 4], 5] AS nested
UNWIND nested AS x
UNWIND x AS y
RETURN y

The first UNWIND results in three rows for x, each of which contains an element of the original list (two of
which are also lists); namely, [1, 2], [3, 4], and 5. The second UNWIND then operates on each of these
rows in turn, resulting in five rows for y.

Table 173. Result

y

1

2

3

4

5

Rows: 5

Using UNWIND with an empty list

Using an empty list with UNWIND will produce no rows, irrespective of whether or not any rows existed
beforehand, or whether or not other values are being projected.

Essentially, UNWIND [] reduces the number of rows to zero, and thus causes the query to cease its
execution, returning no results. This has value in cases such as UNWIND v, where v is a variable from an
earlier clause that may or may not be an empty list — when it is an empty list, this will behave just as a
MATCH that has no results.

Query

UNWIND [] AS empty
RETURN empty, 'literal_that_is_not_returned'

165

Table 174. Result

(empty result)

Rows: 0

To avoid inadvertently using UNWIND on an empty list, CASE may be used to replace an empty list with a
null:

WITH [] AS list
UNWIND
 CASE
 WHEN list = [] THEN [null]
 ELSE list
 END AS emptylist
RETURN emptylist

Using UNWIND with an expression that is not a list

Using UNWIND on an expression that does not return a list, will return the same result as using UNWIND on a
list that just contains that expression. As an example, UNWIND 5 is effectively equivalent to UNWIND[5]. The
exception to this is when the expression returns null — this will reduce the number of rows to zero,
causing it to cease its execution and return no results.

Query

UNWIND null AS x
RETURN x, 'some_literal'

Table 175. Result

(empty result)

Rows: 0

Creating nodes from a list parameter

Create a number of nodes and relationships from a parameter-list without using FOREACH.

Parameters

{
 "events" : [{
 "year" : 2014,
 "id" : 1
 }, {
 "year" : 2014,
 "id" : 2
 }]
}

Query

UNWIND $events AS event
MERGE (y:Year {year: event.year})
MERGE (y)<-[:IN]-(e:Event {id: event.id})
RETURN e.id AS x ORDER BY x

166

Each value of the original list is unwound and passed through MERGE to find or create the nodes and
relationships.

Table 176. Result

x

1

2

Rows: 2
Nodes created: 3
Relationships created: 2
Properties set: 3
Labels added: 3

WHERE

WHERE adds constraints to the patterns in a MATCH or OPTIONAL MATCH clause or filters the

results of a WITH clause.

• Introduction

• Basic usage

◦ Node pattern predicates

◦ Boolean operations

◦ Filter on node label

◦ Filter on node property

◦ Filter on relationship property

◦ Filter on dynamically-computed property

◦ Property existence checking

• String matching

◦ Prefix string search using STARTS WITH

◦ Suffix string search using ENDS WITH

◦ Substring search using CONTAINS

◦ String matching negation

• Regular expressions

◦ Matching using regular expressions

◦ Escaping in regular expressions

◦ Case-insensitive regular expressions

• Using path patterns in WHERE

◦ Filter on patterns

167

◦ Filter on patterns using NOT

◦ Filter on patterns with properties

◦ Filter on relationship type

• Lists

◦ IN operator

• Missing properties and values

◦ Default to false if property is missing

◦ Default to true if property is missing

◦ Filter on null

• Using ranges

◦ Simple range

◦ Composite range

• Pattern element predicates

◦ Relationship pattern predicates

Introduction

WHERE is not a clause in its own right — rather, it is part of MATCH, OPTIONAL MATCH, and WITH.

In the case of WITH, WHERE simply filters the results.

For MATCH and OPTIONAL MATCH on the other hand, WHERE adds constraints to the patterns described. It
should not be seen as a filter after the matching is finished.


In the case of multiple MATCH / OPTIONAL MATCH clauses, the predicate in WHERE is always a
part of the patterns in the directly preceding MATCH / OPTIONAL MATCH. Both results and
performance may be impacted if the WHERE is put inside the wrong MATCH clause.

 Indexes may be used to optimize queries using WHERE in a variety of cases.

Example graph

The following graph is used for the examples below:

168

Swedish, Person

name = 'Andy'
age = 36
belt = 'white'

Dog

name = 'Andy'

HAS_DOG
since = 2016

Person

name = 'Peter'
email = 'peter_n@example.com'
age = 35

KNOWS
since = 1999

Person

age = 25
address = 'Sweden/Malmo'
name = 'Timothy'

KNOWS
since = 2012

Dog

name = 'Fido'

HAS_DOG
since = 2010

Dog

name = 'Ozzy'

HAS_DOG
since = 2018

Toy

name = 'Banana'

HAS_TOY

To recreate the graph, run the following query in an empty Neo4j database:

CREATE
(andy:Swedish:Person {name: 'Andy', age: 36, belt: 'white'}),
(timothy:Person {name: 'Timothy', age: 25, address: 'Sweden/Malmo'}),
(peter:Person {name: 'Peter', age: 35, email: 'peter_n@example.com'}),
(andy)-[:KNOWS {since: 2012}]->(timothy),
(andy)-[:KNOWS {since: 1999}]->(peter),
(andy)-[:HAS_DOG {since: 2016}]->(:Dog {name:'Andy'}),
(fido:Dog {name:'Fido'})<-[:HAS_DOG {since: 2010}]-(peter)-[:HAS_DOG {since: 2018}]->(:Dog {name:'Ozzy'}),
(fido)-[:HAS_TOY]->(:Toy {name:'Banana'})

Basic usage

Node pattern predicates

WHERE can appear inside a node pattern in a MATCH clause or a pattern comprehension:

169

Example 58. WHERE

Query

WITH 30 AS minAge
MATCH (a:Person WHERE a.name = 'Andy')-[:KNOWS]->(b:Person WHERE b.age > minAge)
RETURN b.name

Table 177. Result

b.name

"Peter"

Rows: 1

When used this way, predicates in WHERE can reference the node variable that the WHERE clause belongs to,
but not other elements of the MATCH pattern.

The same rule applies to pattern comprehensions.

Example 59. WHERE

Query

MATCH (a:Person {name: 'Andy'})
RETURN [(a)-->(b WHERE b:Person) | b.name] AS friends

Table 178. Result

friends

["Peter","Timothy"]

Rows: 1

Boolean operations

You can use the boolean operators AND, OR, XOR and NOT. See Working with null for more information on
how this works with null.

Query

MATCH (n:Person)
WHERE n.name = 'Peter' XOR (n.age < 30 AND n.name = 'Timothy') OR NOT (n.name = 'Timothy' OR n.name =
'Peter')
RETURN
 n.name AS name,
 n.age AS age
ORDER BY name

Table 179. Result

name age

"Andy" 36

170

name age

"Peter" 35

"Timothy" 25

Rows: 3

Filter on node label

To filter nodes by label, write a label predicate after the WHERE keyword using WHERE n:foo.

Query

MATCH (n)
WHERE n:Swedish
RETURN n.name, n.age

The name and age for the 'Andy' node will be returned.

Table 180. Result

n.name n.age

"Andy" 36

Rows: 1

Filter on node property

To filter on a node property, write your clause after the WHERE keyword.

Query

MATCH (n:Person)
WHERE n.age < 30
RETURN n.name, n.age

The name and age values for the 'Timothy' node are returned because he is less than 30 years of age.

Table 181. Result

n.name n.age

"Timothy" 25

Rows: 1

Filter on relationship property

To filter on a relationship property, write your clause after the WHERE keyword.

Query

MATCH (n:Person)-[k:KNOWS]->(f)
WHERE k.since < 2000
RETURN f.name, f.age, f.email

171

The name, age and email values for the 'Peter' node are returned because Andy has known him since
before 2000.

Table 182. Result

f.name f.age f.email

"Peter" 35 "peter_n@example.com"

Rows: 1

Filter on dynamically-computed node property

To filter on a property using a dynamically computed name, use square bracket syntax.

Query

WITH 'AGE' AS propname
MATCH (n:Person)
WHERE n[toLower(propname)] < 30
RETURN n.name, n.age

The name and age values for the 'Timothy' node are returned because he is less than 30 years of age.

Table 183. Result

n.name n.age

"Timothy" 25

Rows: 1

Property existence checking

Use the IS NOT NULL predicate to only include nodes or relationships in which a property exists.

Query

MATCH (n:Person)
WHERE n.belt IS NOT NULL
RETURN n.name, n.belt

The name and belt for the 'Andy' node are returned because he is the only one with a belt property.

Table 184. Result

n.name n.belt

"Andy" "white"

Rows: 1

Usage with WITH

As WHERE is not considered a clause in its own right, its scope is not limited by a WITH directly before it.

172

Query

MATCH (n:Person)
WITH n.name as name
WHERE n.age = 25
RETURN name

Table 185. Result

name

"Timothy"

Rows: 1

The name for the 'Timothy' node is returned because the WHERE clause still acts as a filter on the MATCH. The
WITH reduces the scope for the rest of the query moving forward. In this case 'name' is now the only
variable in scope for the RETURN clause.

String matching

The prefix and suffix of a string can be matched using STARTS WITH and ENDS WITH. To undertake a
substring search - i.e. match regardless of location within a string - use CONTAINS. The matching is case-
sensitive. Attempting to use these operators on values which are not strings will return null.

Prefix string search using STARTS WITH

The STARTS WITH operator is used to perform case-sensitive matching on the beginning of a string.

Query

MATCH (n:Person)
WHERE n.name STARTS WITH 'Pet'
RETURN n.name, n.age

The name and age for the 'Peter' node are returned because his name starts with 'Pet'.

Table 186. Result

n.name n.age

"Peter" 35

Rows: 1

Suffix string search using ENDS WITH

The ENDS WITH operator is used to perform case-sensitive matching on the ending of a string.

Query

MATCH (n:Person)
WHERE n.name ENDS WITH 'ter'
RETURN n.name, n.age

173

The name and age for the 'Peter' node are returned because his name ends with 'ter'.

Table 187. Result

n.name n.age

"Peter" 35

Rows: 1

Substring search using CONTAINS

The CONTAINS operator is used to perform case-sensitive matching regardless of location within a string.

Query

MATCH (n:Person)
WHERE n.name CONTAINS 'ete'
RETURN n.name, n.age

The name and age for the 'Peter' node are returned because his name contains with 'ete'.

Table 188. Result

n.name n.age

"Peter" 35

Rows: 1

String matching negation

Use the NOT keyword to exclude all matches on given string from your result:

Query

MATCH (n:Person)
WHERE NOT n.name ENDS WITH 'y'
RETURN n.name, n.age

The name and age for the 'Peter' node are returned because his name does not end with 'y'.

Table 189. Result

n.name n.age

"Peter" 35

Rows: 1

Regular expressions

Cypher supports filtering using regular expressions. The regular expression syntax is inherited from the
Java regular expressions. This includes support for flags that change how strings are matched, including
case-insensitive (?i), multiline (?m), and dotall (?s).

174

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

Flags are given at the beginning of the regular expression. For an example of a regular expression flag
given at the beginning of a pattern, see the case-insensitive regular expression section.

Matching using regular expressions

You can match on regular expressions by using =~ 'regexp', like this:

Query

MATCH (n:Person)
WHERE n.name =~ 'Tim.*'
RETURN n.name, n.age

The name and age for the 'Timothy' node are returned because his name starts with 'Tim'.

Table 190. Result

n.name n.age

"Timothy" 25

Rows: 1

Escaping in regular expressions

Characters like . or * have special meaning in a regular expression. To use these as ordinary characters,
without special meaning, escape them.

Query

MATCH (n:Person)
WHERE n.email =~ '.*\\.com'
RETURN n.name, n.age, n.email

The name, age and email for the 'Peter' node are returned because his email ends with '.com'.

Table 191. Result

n.name n.age n.email

"Peter" 35 "peter_n@example.com"

Rows: 1

Note that the regular expression constructs in Java regular expressions are applied only after resolving the
escaped character sequences in the given string literal. It is sometimes necessary to add additional
backslashes to express regular expression constructs. This list clarifies the combination of these two
definitions, containing the original escape sequence and the resulting character in the regular expression:

String literal sequence Resulting Regex sequence Regex match

\t Tab Tab

\\t \t Tab

\b Backspace Backspace

175

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

String literal sequence Resulting Regex sequence Regex match

\\b \b Word boundary

\n Newline NewLine

\\n \n Newline

\r Carriage return Carriage return

\\r \r Carriage return

\f Form feed Form feed

\\f \f Form feed

\' Single quote Single quote

\" Double quote Double quote

\\ Backslash Backslash

\\\ \\ Backslash

\uxxxx Unicode UTF-16 code point (4 hex digits must
follow the \u)

Unicode UTF-16 code point (4 hex digits must
follow the \u)

\\uxxxx \uxxxx Unicode UTF-16 code point (4 hex digits must
follow the \u)


Using regular expressions with unsanitized user input makes you vulnerable to Cypher
injection. Consider using parameters instead.

Case-insensitive regular expressions

By pre-pending a regular expression with (?i), the whole expression becomes case-insensitive.

Query

MATCH (n:Person)
WHERE n.name =~ '(?i)AND.*'
RETURN n.name, n.age

The name and age for the 'Andy' node are returned because his name starts with 'AND' irrespective of
casing.

Table 192. Result

n.name n.age

"Andy" 36

Rows: 1

Using path patterns in WHERE

176

Filter on patterns

Patterns are expressions in Cypher, expressions that return a list of paths. List expressions are also
predicates — an empty list represents false, and a non-empty represents true.

So, patterns are not only expressions, they are also predicates. The only limitation to your pattern is that
you must be able to express it in a single path. You cannot use commas between multiple paths like you do
in MATCH. You can achieve the same effect by combining multiple patterns with AND.

Note that you cannot introduce new variables here. Although it might look very similar to the MATCH
patterns, the WHERE clause is all about eliminating matched paths. MATCH (a)-[*]->(b) is very different
from WHERE (a)-[*]->(b). The first will produce a path for every path it can find between a and b, whereas
the latter will eliminate any matched paths where a and b do not have a directed relationship chain
between them.

Query

MATCH
 (timothy:Person {name: 'Timothy'}),
 (other:Person)
WHERE other.name IN ['Andy', 'Peter'] AND (other)-->(timothy)
RETURN other.name, other.age

The name and age for nodes that have an outgoing relationship to the 'Timothy' node are returned.

Table 193. Result

other.name other.age

"Andy" 36

Rows: 1

Filter on patterns using NOT

The NOT operator can be used to exclude a pattern.

Query

MATCH
 (person:Person),
 (peter:Person {name: 'Peter'})
WHERE NOT (person)-->(peter)
RETURN person.name, person.age

Name and age values for nodes that do not have an outgoing relationship to the 'Peter' node are
returned.

Table 194. Result

person.name person.age

"Timothy" 25

"Peter" 35

Rows: 2

177

Filter on patterns with properties

You can also add properties to your patterns:

Query

MATCH (n:Person)
WHERE (n)-[:KNOWS]-({name: 'Timothy'})
RETURN n.name, n.age

Finds all name and age values for nodes that have a relationship with the KNOWS-type, to a node with the
property-key name and value 'Timothy'.

Table 195. Result

n.name n.age

"Andy" 36

Rows: 1

Filter on relationship type

You can put the exact relationship type in the MATCH pattern, but sometimes you want to be able to do
more advanced filtering on the type. You can use the special property type to compare the type with
something else. In this example, the query does a regular expression comparison with the name of the
relationship type.

Query

MATCH (n:Person)-[r]->()
WHERE n.name='Andy' AND type(r) =~ 'K.*'
RETURN type(r), r.since

This returns all relationships having a type whose name starts with 'K'.

Table 196. Result

type(r) r.since

"KNOWS" 1999

"KNOWS" 2012

Rows: 2

Lists

IN operator

To check if an element exists in a list, you can use the IN operator.

178

Query

MATCH (a:Person)
WHERE a.name IN ['Peter', 'Timothy']
RETURN a.name, a.age

This query shows how to check if a property exists in a literal list.

Table 197. Result

a.name a.age

"Timothy" 25

"Peter" 35

Rows: 2

Missing properties and values

Default to false if property is missing

As missing properties evaluate to null, the comparison in the example will evaluate to false for nodes
without the belt property.

Query

MATCH (n:Person)
WHERE n.belt = 'white'
RETURN n.name, n.age, n.belt

Only the name, age, and belt values of nodes with white belts are returned.

Table 198. Result

n.name n.age n.belt

"Andy" 36 "white"

Rows: 1

Default to true if property is missing

If you want to compare a property on a node or relationship, but only if it exists, you can compare the
property against both the value you are looking for and null, like:

Query

MATCH (n:Person)
WHERE n.belt = 'white' OR n.belt IS NULL
RETURN n.name, n.age, n.belt
ORDER BY n.name

This returns all values for all nodes, even those without the belt property.

Table 199. Result

179

n.name n.age n.belt

"Andy" 36 "white"

"Peter" 35 <null>

"Timothy" 25 <null>

Rows: 3

Filter on null

Sometimes you might want to test if a value or a variable is null. This is done just like SQL does it, using
IS NULL. Also like SQL, the negative is IS NOT NULL, although NOT(IS NULL x) also works.

Query

MATCH (person:Person)
WHERE person.name = 'Peter' AND person.belt IS NULL
RETURN person.name, person.age, person.belt

The name and age values for nodes that have name 'Peter' but no belt property are returned.

Table 200. Result

person.name person.age person.belt

"Peter" 35 <null>

Rows: 1

Using ranges

Simple range

To check for an element being inside a specific range, use the inequality operators <, <=, >=, >.

Query

MATCH (a:Person)
WHERE a.name >= 'Peter'
RETURN a.name, a.age

The name and age values of nodes having a name property lexicographically greater than or equal to
'Peter' are returned.

Table 201. Result

a.name a.age

"Timothy" 25

"Peter" 35

Rows: 2

180

Composite range

Several inequalities can be used to construct a range.

Query

MATCH (a:Person)
WHERE a.name > 'Andy' AND a.name < 'Timothy'
RETURN a.name, a.age

The name and age values of nodes having a name property lexicographically between 'Andy' and
'Timothy' are returned.

Table 202. Result

a.name a.age

"Peter" 35

Rows: 1

Pattern element predicates

WHERE clauses can be added to pattern elements in order to specify additional constraints.

Relationship pattern predicates

WHERE can also appear inside a relationship pattern in a MATCH clause.

Example 60. WHERE

Query

WITH 2000 AS minYear
MATCH (a:Person)-[r:KNOWS WHERE r.since < minYear]->(b:Person)
RETURN r.since

Table 203. Result

r.since

1999

Rows: 1

However, it cannot be used inside of variable length relationships, as this would lead to an error.

181

Example 61. WHERE

For example:

Query

WITH 2000 AS minYear
MATCH (a:Person)-[r:KNOWS*1..3 WHERE r.since > b.yearOfBirth]->(b:Person)
RETURN r.since

Error message

Relationship pattern predicates are not supported for variable-length relationships.

Putting predicates inside a relationship pattern can help with readability. Please note that it is strictly
equivalent to using a standalone WHERE sub-clause.

Example 62. WHERE

Query

WITH 2000 AS minYear
MATCH (a:Person)-[r:KNOWS]->(b:Person)
WHERE r.since < minYear
RETURN r.since

Table 204. Result

r.since

1999

Rows: 1

Relationship pattern predicates can also be used inside pattern comprehensions, where the same caveats
apply.

Example 63. WHERE

Query

WITH 2000 AS minYear
MATCH (a:Person {name: 'Andy'})
RETURN [(a)-[r:KNOWS WHERE r.since < minYear]->(b:Person) | r.since] AS years

Table 205. Result

years

[1999]

Rows: 1

182

ORDER BY

ORDER BY is a sub-clause following RETURN or WITH, and it specifies that the output should be

sorted and how.

ORDER BY relies on comparisons to sort the output, see Ordering and comparison of values. You can sort on
many different values, e.g. node/relationship properties, the node/relationship ids, or on most expressions.
If you do not specify what to sort on, there is a risk that the results are arbitrarily sorted and therefore it is
best practice to be specific when using ORDER BY.

In terms of scope of variables, ORDER BY follows special rules, depending on if the projecting RETURN or WITH
clause is either aggregating or DISTINCT. If it is an aggregating or DISTINCT projection, only the variables
available in the projection are available. If the projection does not alter the output cardinality (which
aggregation and DISTINCT do), variables available from before the projecting clause are also available.
When the projection clause shadows already existing variables, only the new variables are available.

Lastly, it is not allowed to use aggregating expressions in the ORDER BY sub-clause if they are not also
listed in the projecting clause. This last rule is to make sure that ORDER BY does not change the results, only
the order of them.

The performance of Cypher queries using ORDER BY on node properties can be influenced by the existence
and use of an index for finding the nodes. If the index can provide the nodes in the order requested in the
query, Cypher can avoid the use of an expensive Sort operation. Read more about this capability in Index-
backed ORDER BY.

The following graph is used for the examples below:

name = 'A'
age = 34
length = 170

name = 'B'
age = 36

KNOWS

name = 'C'
age = 32
length = 185

KNOWS


Strings that contain special characters can have inconsistent or non-deterministic
ordering in Neo4j. For details, see Sorting of special characters.

Order nodes by property

ORDER BY is used to sort the output.

183

Query

MATCH (n)
RETURN n.name, n.age
ORDER BY n.name

The nodes are returned, sorted by their name.

Table 206. Result

n.name n.age

"A" 34

"B" 36

"C" 32

Rows: 3

Order nodes by multiple properties

You can order by multiple properties by stating each variable in the ORDER BY clause. Cypher will sort the
result by the first variable listed, and for equals values, go to the next property in the ORDER BY clause, and
so on.

Query

MATCH (n)
RETURN n.name, n.age
ORDER BY n.age, n.name

This returns the nodes, sorted first by their age, and then by their name.

Table 207. Result

n.name n.age

"C" 32

"A" 34

"B" 36

Rows: 3

Order nodes by ID

ORDER BY is used to sort the output.

Query

MATCH (n)
RETURN n.name, n.age
ORDER BY elementId(n)

The nodes are returned, sorted by their internal ID.

184

Table 208. Result

n.name n.age

"A" 34

"B" 36

"C" 32

Rows: 3



Keep in mind that Neo4j reuses its internal IDs when nodes and relationships are
deleted. This means that applications using, and relying on, internal Neo4j IDs, are brittle
or at risk of making mistakes. It is therefore recommended to use application-generated
IDs instead.

Order nodes by expression

ORDER BY is used to sort the output.

Query

MATCH (n)
RETURN n.name, n.age, n.length
ORDER BY keys(n)

The nodes are returned, sorted by their properties.

Table 209. Result

n.name n.age n.length

"B" 36 <null>

"A" 34 170

"C" 32 185

Rows: 3

Order nodes in descending order

By adding DESC[ENDING] after the variable to sort on, the sort will be done in reverse order.

Query

MATCH (n)
RETURN n.name, n.age
ORDER BY n.name DESC

The example returns the nodes, sorted by their name in reverse order.

Table 210. Result

185

n.name n.age

"C" 32

"B" 36

"A" 34

Rows: 3

Ordering null

When sorting the result set, null will always come at the end of the result set for ascending sorting, and
first when doing descending sort.

Query

MATCH (n)
RETURN n.length, n.name, n.age
ORDER BY n.length

The nodes are returned sorted by the length property, with a node without that property last.

Table 211. Result

n.length n.name n.age

170 "A" 34

185 "C" 32

<null> "B" 36

Rows: 3

Ordering in a WITH clause

When ORDER BY is present on a WITH clause , the immediately following clause will receive records in the
specified order. The order is not guaranteed to be retained after the following clause, unless that also has
an ORDER BY subclause. The ordering guarantee can be useful to exploit by operations which depend on
the order in which they consume values. For example, this can be used to control the order of items in the
list produced by the collect() aggregating function. The MERGE and SET clauses also have ordering
dependencies which can be controlled this way.

Query

MATCH (n)
WITH n ORDER BY n.age
RETURN collect(n.name) AS names

The list of names built from the collect aggregating function contains the names in order of the age
property.

Table 212. Result

186

names

["C","A","B"]

Rows: 1

SKIP

SKIP defines from which row to start including the rows in the output.

By using SKIP, the result set will get trimmed from the top. Please note that no guarantees are made on
the order of the result unless the query specifies the ORDER BY clause. SKIP accepts any expression that
evaluates to a positive integer — however the expression cannot refer to nodes or relationships.

name = 'A'

name = 'E'

KNOWS

name = 'D'

KNOWS

name = 'C'

KNOWS

name = 'B'

KNOWS

Skip first three rows

To return a subset of the result, starting from the fourth result, use the following syntax:

Query

MATCH (n)
RETURN n.name
ORDER BY n.name
SKIP 3

The first three nodes are skipped, and only the last two are returned in the result.

Table 213. Result

n.name

"D"

"E"

Rows: 2

Return middle two rows

To return a subset of the result, starting from somewhere in the middle, use this syntax:

187

Query

MATCH (n)
RETURN n.name
ORDER BY n.name
SKIP 1
LIMIT 2

Two nodes from the middle are returned.

Table 214. Result

n.name

"B"

"C"

Rows: 2

Using an expression with SKIP to return a subset of the rows

Skip accepts any expression that evaluates to a positive integer as long as it is not referring to any external
variables:

Query

MATCH (n)
RETURN n.name
ORDER BY n.name
SKIP 1 + toInteger(3*rand())

Skip the firs row plus randomly 0, 1, or 2. So randomly skip 1, 2, or 3 rows.

Table 215. Result

n.name

"B"

"C"

"D"

"E"

Rows: 4

LIMIT

LIMIT constrains the number of returned rows.

LIMIT accepts any expression that evaluates to a positive integer — however the expression cannot refer
to nodes or relationships.

188

name = 'A'

name = 'E'

KNOWS

name = 'D'

KNOWS

name = 'C'

KNOWS

name = 'B'

KNOWS

Return a limited subset of the rows

To return a limited subset of the rows, use this syntax:

Query

MATCH (n)
RETURN n.name
ORDER BY n.name
LIMIT 3

Limit to 3 rows by the example query.

Table 216. Result

n.name

"A"

"B"

"C"

Rows: 3

Using an expression with LIMIT to return a subset of the rows

Limit accepts any expression that evaluates to a positive integer as long as it is not referring to any
external variables:

Query

MATCH (n)
RETURN n.name
ORDER BY n.name
LIMIT 1 + toInteger(3 * rand())

Limit 1 row plus randomly 0, 1, or 2. So randomly limit to 1, 2, or 3 rows.

Table 217. Result

n.name

"A"

"B"

"C"

Rows: 3

189

LIMIT will not stop side effects

The use of LIMIT in a query will not stop side effects, like CREATE, DELETE, or SET, from happening if the limit
is in the same query part as the side effect. This behaviour was undefined in Neo4j versions before 4.3.

Query

CREATE (n)
RETURN n
LIMIT 0

This query returns nothing, but creates one node:

Table 218. Result

(empty result)

Rows: 0
Nodes created: 1

Query

MATCH (n {name: 'A'})
SET n.age = 60
RETURN n
LIMIT 0

This query returns nothing, but writes one property:

Table 219. Result

(empty result)

Rows: 0
Properties set: 1

If we want to limit the number of updates we can split the query using the WITH clause:

Query

MATCH (n)
WITH n LIMIT 1
SET n.locked = true
RETURN n

Writes locked property on one node and return that node:

Table 220. Result

n

Node[0]{locked:true,name:"A"}

Rows: 1
Properties set: 1

190

CREATE

The CREATE clause is used to create nodes and relationships.

• Create nodes

◦ Create single node

◦ Create multiple nodes

◦ Create a node with a label

◦ Create a node with multiple labels

◦ Create node and add labels and properties

◦ Return created node

• Create relationships

◦ Create a relationship between two nodes

◦ Create a relationship and set properties

• Create a full path

• Use parameters with CREATE

◦ Create node with a parameter for the properties

◦ Create multiple nodes with a parameter for their properties

 In the CREATE clause, patterns are used extensively. Read Patterns for an introduction.

Create nodes

Create single node

Creating a single node is done by issuing the following query:

Query

CREATE (n)

Table 221. Result

(empty result)

Rows: 0
Nodes created: 1

Create multiple nodes

Creating multiple nodes is done by separating them with a comma.

191

Query

CREATE (n), (m)

Table 222. Result

(empty result)

Rows: 0
Nodes created: 2

Create a node with a label

To add a label when creating a node, use the syntax below:

Query

CREATE (n:Person)

Table 223. Result

(empty result)

Rows: 0
Nodes created: 1
Labels added: 1

Create a node with multiple labels

To add labels when creating a node, use the syntax below. In this case, we add two labels.

Query

CREATE (n:Person:Swedish)

Table 224. Result

(empty result)

Rows: 0
Nodes created: 1
Labels added: 2

Create node and add labels and properties

When creating a new node with labels, you can add properties at the same time.

Query

CREATE (n:Person {name: 'Andy', title: 'Developer'})

Table 225. Result

(empty result)

192

Rows: 0
Nodes created: 1
Properties set: 2
Labels added: 1

Return created node

Creating a single node is done by issuing the following query:

Query

CREATE (a {name: 'Andy'})
RETURN a.name

The name of the newly-created node is returned.

Table 226. Result

a.name

"Andy"

Rows: 1
Nodes created: 1
Properties set: 1

Create relationships

Create a relationship between two nodes

To create a relationship between two nodes, we first get the two nodes. Once the nodes are loaded, we
simply create a relationship between them.

Query

MATCH
 (a:Person),
 (b:Person)
WHERE a.name = 'A' AND b.name = 'B'
CREATE (a)-[r:RELTYPE]->(b)
RETURN type(r)

The created relationship is returned by the query.

Table 227. Result

type(r)

"RELTYPE"

Rows: 1
Relationships created: 1

193

Create a relationship and set properties

Setting properties on relationships is done in a similar manner to how it’s done when creating nodes. Note
that the values can be any expression.

Query

MATCH
 (a:Person),
 (b:Person)
WHERE a.name = 'A' AND b.name = 'B'
CREATE (a)-[r:RELTYPE {name: a.name + '<->' + b.name}]->(b)
RETURN type(r), r.name

The type and name of the newly-created relationship is returned by the example query.

Table 228. Result

type(r) r.name

"RELTYPE" "A<->B"

Rows: 1
Relationships created: 1
Properties set: 1

Create a full path

When you use CREATE and a pattern, all parts of the pattern that are not already in scope at this time will
be created.

Query

CREATE p = (andy {name:'Andy'})-[:WORKS_AT]->(neo)<-[:WORKS_AT]-(michael {name: 'Michael'})
RETURN p

This query creates three nodes and two relationships in one go, assigns it to a path variable, and returns it.

Table 229. Result

p

(2)-[WORKS_AT,0]->(3)<-[WORKS_AT,1]-(4)

Rows: 1
Nodes created: 3
Relationships created: 2
Properties set: 2

Use parameters with CREATE

Create node with a parameter for the properties

You can also create a graph entity from a map. All the key/value pairs in the map will be set as properties
on the created relationship or node. In this case we add a Person label to the node as well.

194

Parameters

{
 "props": {
 "name": "Andy",
 "position": "Developer"
 }
}

Query

CREATE (n:Person $props)
RETURN n

Table 230. Result

n

Node[2]{name:"Andy",position:"Developer"}

Rows: 1
Nodes created: 1
Properties set: 2
Labels added: 1

Create multiple nodes with a parameter for their properties

By providing Cypher an array of maps, it will create a node for each map.

Parameters

{
 "props": [{
 "name": "Andy",
 "position": "Developer"
 }, {
 "name": "Michael",
 "position": "Developer"
 }]
}

Query

UNWIND $props AS map
CREATE (n)
SET n = map

Table 231. Result

(empty result)

Rows: 0
Nodes created: 2
Properties set: 4

DELETE

The DELETE clause is used to delete nodes, relationships or paths.

195

For removing properties and labels, see the REMOVE clause.

It is not possible to delete nodes with relationships connected to them without also deleting the
relationships. This can be done by either explicitly deleting specific relationships, or by using the DETACH
DELETE clause.

Example graph

The following graph is used for the examples below. It shows four actors, three of whom ACTED_IN the
Movie The Matrix (Keanu Reeves, Carrie-Anne Moss, and Laurence Fishburne), and one actor who did not
act in it (Tom Hanks).

ACTED_IN

ACTED_IN

ACTED_IN

Person

name: Keanu Reeves

Person

name: Laurence Fishburne

Movie

title: The Matrix

Person

name: Carrie-Anne Moss

Person

name: Tom Hanks

To recreate the graph, run the following query in an empty Neo4j database:

CREATE
 (keanu:Person {name: 'Keanu Reever'}),
 (laurence:Person {name: 'Laurence Fishburne'}),
 (carrie:Person {name: 'Carrie-Anne Moss'}),
 (tom:Person {name: 'Tom Hanks'}),
 (theMatrix:Movie {title: 'The Matrix'}),
 (keanu)-[:ACTED_IN]->(theMatrix),
 (laurence)-[:ACTED_IN]->(theMatrix),
 (carrie)-[:ACTED_IN]->(theMatrix)

Delete single node

To delete a single node, use the DELETE clause:

196

Query

MATCH (n:Person {name: 'Tom Hanks'})
DELETE n

This deletes the Person node Tom Hanks. This query is only possible to run on nodes without any
relationships connected to them.

Result

Deleted 1 node

Delete relationships only

It is possible to delete a relationship while leaving the node(s) connected to that relationship otherwise
unaffected.

Query

MATCH (n:Person {name: 'Laurence Fishburne'})-[r:ACTED_IN]->()
DELETE r

This deletes all outgoing ACTED_IN relationships from the Person node Laurence Fishburne, without
deleting the node.

Result

Deleted 1 relationship

Delete a node with all its relationships

To delete nodes and any relationships connected them, use the DETACH DELETE clause.

Query

MATCH (n:Person {name: 'Carrie-Anne Moss'})
DETACH DELETE n

This deletes the Person node Carrie-Anne Moss and all relationships connected to it.

Result

Deleted 1 node, deleted 1 relationship


The DETACH DELETE clause may not be permitted to users with restricted security
privileges. For more information, see Operations Manual → Fine-grained access control.

Delete all nodes and relationships

It is possible to delete all nodes and relationships in a graph.

197

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#detach-delete-restricted-user

Query

MATCH (n)
DETACH DELETE n

Result

Deleted 3 nodes, deleted 1 relationship


This query is not for deleting large amounts of data, but is useful when experimenting
with small example datasets. When deleting large amounts of data, instead use CALL {
… } IN TRANSACTIONS.

SET

The SET clause is used to update labels on nodes and properties on nodes and

relationships.

The SET clause can be used with a map — provided as a literal or a parameter — to set properties.


Setting labels on a node is an idempotent operation — nothing will occur if an attempt is
made to set a label on a node that already has that label. The query statistics will state
whether any updates actually took place.

The examples use this graph as a starting point:

Swedish

name = 'Andy'
age = 36
hungry = true

name = 'Peter'
age = 34

KNOWS

name = 'Stefan'

KNOWS

name = 'George'

KNOWS

Set a property

Use SET to set a property on a node or relationship:

198

Query

MATCH (n {name: 'Andy'})
SET n.surname = 'Taylor'
RETURN n.name, n.surname

The newly-changed node is returned by the query.

Table 232. Result

n.name n.surname

"Andy" "Taylor"

Rows: 1
Properties set: 1

It is possible to set a property on a node or relationship using more complex expressions. For instance, in
contrast to specifying the node directly, the following query shows how to set a property for a node
selected by an expression:

Query

MATCH (n {name: 'Andy'})
SET (CASE WHEN n.age = 36 THEN n END).worksIn = 'Malmo'
RETURN n.name, n.worksIn

Table 233. Result

n.name n.worksIn

"Andy" "Malmo"

Rows: 1
Properties set: 1

No action will be taken if the node expression evaluates to null, as shown in this example:

Query

MATCH (n {name: 'Andy'})
SET (CASE WHEN n.age = 55 THEN n END).worksIn = 'Malmo'
RETURN n.name, n.worksIn

As no node matches the CASE expression, the expression returns a null. As a consequence, no updates
occur, and therefore no worksIn property is set.

Table 234. Result

n.name n.worksIn

"Andy" <null>

Rows: 1

199

Update a property

SET can be used to update a property on a node or relationship. This query forces a change of type in the
age property:

Query

MATCH (n {name: 'Andy'})
SET n.age = toString(n.age)
RETURN n.name, n.age

The age property has been converted to the string '36'.

Table 235. Result

n.name n.age

"Andy" "36"

Rows: 1
Properties set: 1

Remove a property

Although REMOVE is normally used to remove a property, it is sometimes convenient to do it using the SET
command. A case in point is if the property is provided by a parameter.

Query

MATCH (n {name: 'Andy'})
SET n.name = null
RETURN n.name, n.age

The name property is now missing.

Table 236. Result

n.name n.age

<null> 36

Rows: 1
Properties set: 1

Copy properties between nodes and relationships

SET can be used to copy all properties from one node or relationship to another using the properties()
function. This will remove all other properties on the node or relationship being copied to.

Query

MATCH
 (at {name: 'Andy'}),
 (pn {name: 'Peter'})
SET at = properties(pn)
RETURN at.name, at.age, at.hungry, pn.name, pn.age

200

The 'Andy' node has had all its properties replaced by the properties of the 'Peter' node.

Table 237. Result

at.name at.age at.hungry pn.name pn.age

"Peter" 34 <null> "Peter" 34

Rows: 1
Properties set: 3

Replace all properties using a map and =

The property replacement operator = can be used with SET to replace all existing properties on a node or
relationship with those provided by a map:

Query

MATCH (p {name: 'Peter'})
SET p = {name: 'Peter Smith', position: 'Entrepreneur'}
RETURN p.name, p.age, p.position

This query updated the name property from Peter to Peter Smith, deleted the age property, and added the
position property to the 'Peter' node.

Table 238. Result

p.name p.age p.position

"Peter Smith" <null> "Entrepreneur"

Rows: 1
Properties set: 3

Remove all properties using an empty map and =

All existing properties can be removed from a node or relationship by using SET with = and an empty map
as the right operand:

Query

MATCH (p {name: 'Peter'})
SET p = {}
RETURN p.name, p.age

This query removed all the existing properties — namely, name and age — from the 'Peter' node.

Table 239. Result

p.name p.age

<null> <null>

Rows: 1
Properties set: 2

201

Mutate specific properties using a map and +=

The property mutation operator += can be used with SET to mutate properties from a map in a fine-grained
fashion:

• Any properties in the map that are not on the node or relationship will be added.

• Any properties not in the map that are on the node or relationship will be left as is.

• Any properties that are in both the map and the node or relationship will be replaced in the node or
relationship. However, if any property in the map is null, it will be removed from the node or
relationship.

Query

MATCH (p {name: 'Peter'})
SET p += {age: 38, hungry: true, position: 'Entrepreneur'}
RETURN p.name, p.age, p.hungry, p.position

This query left the name property unchanged, updated the age property from 34 to 38, and added the hungry
and position properties to the 'Peter' node.

Table 240. Result

p.name p.age p.hungry p.position

"Peter" 38 true "Entrepreneur"

Rows: 1
Properties set: 3

In contrast to the property replacement operator =, providing an empty map as the right operand to += will
not remove any existing properties from a node or relationship. In line with the semantics detailed above,
passing in an empty map with += will have no effect:

Query

MATCH (p {name: 'Peter'})
SET p += {}
RETURN p.name, p.age

Table 241. Result

p.name p.age

"Peter" 34

Rows: 1

Set multiple properties using one SET clause

Set multiple properties at once by separating them with a comma:

202

Query

MATCH (n {name: 'Andy'})
SET n.position = 'Developer', n.surname = 'Taylor'

Table 242. Result

(empty result)

Rows: 0
Properties set: 2

Set a property using a parameter

Use a parameter to set the value of a property:

Parameters

{
 "surname": "Taylor"
}

Query

MATCH (n {name: 'Andy'})
SET n.surname = $surname
RETURN n.name, n.surname

A surname property has been added to the 'Andy' node.

Table 243. Result

n.name n.surname

"Andy" "Taylor"

Rows: 1
Properties set: 1

Set all properties using a parameter

This will replace all existing properties on the node with the new set provided by the parameter.

Parameters

{
 "props" : {
 "name": "Andy",
 "position": "Developer"
 }
}

Query

MATCH (n {name: 'Andy'})
SET n = $props
RETURN n.name, n.position, n.age, n.hungry

203

The 'Andy' node has had all its properties replaced by the properties in the props parameter.

Table 244. Result

n.name n.position n.age n.hungry

"Andy" "Developer" <null> <null>

Rows: 1
Properties set: 4

Set a label on a node

Use SET to set a label on a node:

Query

MATCH (n {name: 'Stefan'})
SET n:German
RETURN n.name, labels(n) AS labels

The newly-labeled node is returned by the query.

Table 245. Result

n.name labels

"Stefan" ["German"]

Rows: 1
Labels added: 1

Set multiple labels on a node

Set multiple labels on a node with SET and use : to separate the different labels:

Query

MATCH (n {name: 'George'})
SET n:Swedish:Bossman
RETURN n.name, labels(n) AS labels

The newly-labeled node is returned by the query.

Table 246. Result

n.name labels

"George" ["Swedish","Bossman"]

Rows: 1
Labels added: 2

204

REMOVE

The REMOVE clause is used to remove properties from nodes and relationships, and to

remove labels from nodes.

 For deleting nodes and relationships, see DELETE.


Removing labels from a node is an idempotent operation: if you try to remove a label
from a node that does not have that label on it, nothing happens. The query statistics will
tell you if something needed to be done or not.

The examples use the following database:

Swedish

age = 36
name = 'Andy'

Swedish, German

age = 34
name = 'Peter'

KNOWS

Swedish

age = 25
name = 'Timothy'

KNOWS

Remove a property

Neo4j doesn’t allow storing null in properties. Instead, if no value exists, the property is just not there. So,
REMOVE is used to remove a property value from a node or a relationship.

Query

MATCH (a {name: 'Andy'})
REMOVE a.age
RETURN a.name, a.age

The node is returned, and no property age exists on it.

Table 247. Result

a.name a.age

"Andy" <null>

Rows: 1
Properties set: 1

Remove all properties

REMOVE cannot be used to remove all existing properties from a node or relationship. Instead, using SET
with = and an empty map as the right operand will clear all properties from the node or relationship.

205

Remove a label from a node

To remove labels, you use REMOVE.

Query

MATCH (n {name: 'Peter'})
REMOVE n:German
RETURN n.name, labels(n)

Table 248. Result

n.name labels(n)

"Peter" ["Swedish"]

Rows: 1
Labels removed: 1

Remove multiple labels from a node

To remove multiple labels, you use REMOVE.

Query

MATCH (n {name: 'Peter'})
REMOVE n:German:Swedish
RETURN n.name, labels(n)

Table 249. Result

n.name labels(n)

"Peter" []

Rows: 1
Labels removed: 2

FOREACH

The FOREACH clause is used to update data within a collection whether components of a

path, or result of aggregation.

Lists and paths are key concepts in Cypher. The FOREACH clause can be used to update data, such as
executing update commands on elements in a path, or on a list created by aggregation.

The variable context within the FOREACH parenthesis is separate from the one outside it. This means that if
you CREATE a node variable within a FOREACH, you will not be able to use it outside of the foreach statement,
unless you match to find it.

Within the FOREACH parentheses, you can do any of the updating commands — SET, REMOVE, CREATE, MERGE,
DELETE, and FOREACH.

206


If you want to execute an additional MATCH for each element in a list then the UNWIND
clause would be a more appropriate command.

Person

name = 'A'

Person

name = 'B'

KNOWS

Person

name = 'C'

KNOWS

Person

name = 'D'

KNOWS

Mark all nodes along a path

This query will set the property marked to true on all nodes along a path.

Query

MATCH p=(start)-[*]->(finish)
WHERE start.name = 'A' AND finish.name = 'D'
FOREACH (n IN nodes(p) | SET n.marked = true)

Table 250. Result

(empty result)

Rows: 0
Properties set: 4

MERGE

The MERGE clause ensures that a pattern exists in the graph. Either the pattern already

exists, or it needs to be created.

• Introduction

• Merge nodes

◦ Merge single node with a label

◦ Merge single node with properties

207

◦ Merge single node specifying both label and property

◦ Merge single node derived from an existing node property

• Use ON CREATE and ON MATCH

◦ Merge with ON CREATE

◦ Merge with ON MATCH

◦ Merge with ON CREATE and ON MATCH

◦ Merge with ON MATCH setting multiple properties

• Merge relationships

◦ Merge on a relationship

◦ Merge on multiple relationships

◦ Merge on an undirected relationship

◦ Merge on a relationship between two existing nodes

◦ Merge on a relationship between an existing node and a merged node derived from a node
property

• Using property uniqueness constraints with MERGE

◦ Merge using property uniqueness constraints creates a new node if no node is found

◦ Merge using property uniqueness constraints matches an existing node

◦ Merge with property uniqueness constraints and partial matches

◦ Merge with property uniqueness constraints and conflicting matches

• Using map parameters with MERGE

Introduction

MERGE either matches existing nodes and binds them, or it creates new data and binds that. It’s like a
combination of MATCH and CREATE that additionally allows you to specify what happens if the data was
matched or created.

For example, you can specify that the graph must contain a node for a user with a certain name. If there
isn’t a node with the correct name, a new node will be created and its name property set.


For performance reasons, creating a schema index on the label or property is highly
recommended when using MERGE. See Indexes for search performance for more
information.

When using MERGE on full patterns, the behavior is that either the whole pattern matches, or the whole
pattern is created. MERGE will not partially use existing patterns — it is all or nothing. If partial matches are
needed, this can be accomplished by splitting a pattern up into multiple MERGE clauses.

208



Under concurrent updates, MERGE only guarantees existence of the MERGE pattern, but not
uniqueness. To guarantee uniqueness of nodes with certain properties, a property
uniqueness constraint should be used. See Using property uniqueness constraints with
MERGE to see how MERGE can be used in combination with a property uniqueness
constraint.

As with MATCH, MERGE can match multiple occurrences of a pattern. If there are multiple matches, they will
all be passed on to later stages of the query.

The last part of MERGE is the ON CREATE and ON MATCH. These allow a query to express additional changes to
the properties of a node or relationship, depending on if the element was matched (MATCH) in the database
or if it was created (CREATE).

Example graph

The following graph is used for the examples below:

Person

bornIn = 'New York'
chauffeurName = 'John Brown'
name = 'Charlie Sheen'

Person

bornIn = 'Ohio'
chauffeurName = 'Bob Brown'
name = 'Martin Sheen'

FATHER

Movie

title = 'Wall Street'

ACTED_IN

ACTED_IN

Movie

title = 'The American President'

ACTED_IN

Person

name = 'Michael Douglas'
chauffeurName = 'John Brown'
bornIn = 'New Jersey'

ACTED_IN ACTED_IN

Person

bornIn = 'New York'
chauffeurName = 'Bill White'
name = 'Oliver Stone'

ACTED_IN

Person

bornIn = 'New York'
chauffeurName = 'Ted Green'
name = 'Rob Reiner'

ACTED_IN

To recreate the graph, run the following query in an empty Neo4j database:

CREATE
 (charlie:Person {name: 'Charlie Sheen', bornIn: 'New York', chauffeurName: 'John Brown'}),
 (martin:Person {name: 'Martin Sheen', bornIn: 'Ohio', chauffeurName: 'Bob Brown'}),
 (michael:Person {name: 'Michael Douglas', bornIn: 'New Jersey', chauffeurName: 'John Brown'}),
 (oliver:Person {name: 'Oliver Stone', bornIn: 'New York', chauffeurName: 'Bill White'}),
 (rob:Person {name: 'Rob Reiner', bornIn: 'New York', chauffeurName: 'Ted Green'}),
 (wallStreet:Movie {title: 'Wall Street'}),
 (theAmericanPresident:Movie {title: 'The American President'}),
 (charlie)-[:ACTED_IN]->(wallStreet),
 (martin)-[:ACTED_IN]->(wallStreet),
 (michael)-[:ACTED_IN]->(wallStreet),
 (martin)-[:ACTED_IN]->(theAmericanPresident),
 (michael)-[:ACTED_IN]->(theAmericanPresident),
 (oliver)-[:ACTED_IN]->(wallStreet),
 (rob)-[:ACTED_IN]->(theAmericanPresident),
 (charlie)-[:FATHER]->(martin)

Merge nodes

209

Merge single node with a label

Merging a single node with the given label.

Query

MERGE (robert:Critic)
RETURN robert, labels(robert)

A new node is created because there are no nodes labeled Critic in the database.

Table 251. Result

robert labels(robert)

{} ["Critic"]

Merge single node with properties

Merging a single node with properties where not all properties match any existing node.

Query

MERGE (charlie {name: 'Charlie Sheen', age: 10})
RETURN charlie

A new node with the name 'Charlie Sheen' will be created since not all properties matched the existing
'Charlie Sheen' node.

Table 252. Result

charlie

{"name":"Charlie Sheen","age":10}

Merge single node specifying both label and property

Merging a single node with both label and property matching an existing node.

Query

MERGE (michael:Person {name: 'Michael Douglas'})
RETURN michael.name, michael.bornIn

'Michael Douglas' will be matched and the name and bornIn properties returned.

Table 253. Result

michael.name michael.bornIn

"Michael Douglas" "New Jersey"

210

Merge single node derived from an existing node property

For some property p in each bound node in a set of nodes, a single new node is created for each unique
value for p.

Query

MATCH (person:Person)
MERGE (city:City {name: person.bornIn})
RETURN person.name, person.bornIn, city

Three nodes labeled City are created, each of which contains a name property with the value of 'New
York', 'Ohio', and 'New Jersey', respectively. Note that even though the MATCH clause results in three
bound nodes having the value 'New York' for the bornIn property, only a single 'New York' node (i.e. a
City node with a name of 'New York') is created. As the 'New York' node is not matched for the first
bound node, it is created. However, the newly-created 'New York' node is matched and bound for the
second and third bound nodes.

Table 254. Result

person.name person.bornIn city

"Charlie Sheen" "New York" {name:"New York"}

"Martin Sheen" "Ohio" {name:"Ohio"}

"Michael Douglas" "New Jersey" {name:"New Jersey"}

"Oliver Stone" "New York" {name:"New York"}

"Rob Reiner" "New York" {name:"New York"}

Use ON CREATE and ON MATCH

Merge with ON CREATE

Merge a node and set properties if the node needs to be created.

Query

MERGE (keanu:Person {name: 'Keanu Reeves', bornIn: 'Beirut', chauffeurName: 'Eric Brown'})
ON CREATE
 SET keanu.created = timestamp()
RETURN keanu.name, keanu.created

The query creates the Person node named Keanu Reeves, with a bornIn property set to Beirut and a
chauffeurName property set to Eric Brown. It also sets a timestamp for the created property.

Table 255. Result

keanu.name keanu.created

"Keanu Reeves" 1655200898563

211

Merge with ON MATCH

Merging nodes and setting properties on found nodes.

Query

MERGE (person:Person)
ON MATCH
 SET person.found = true
RETURN person.name, person.found

The query finds all the Person nodes, sets a property on them, and returns them.

Table 256. Result

person.name person.found

"Charlie Sheen" true

"Martin Sheen" true

"Michael Douglas" true

"Oliver Stone" true

"Rob Reiner" true

"Keanu Reeves" true

Merge with ON CREATE and ON MATCH

Query

MERGE (keanu:Person {name: 'Keanu Reeves'})
ON CREATE
 SET keanu.created = timestamp()
ON MATCH
 SET keanu.lastSeen = timestamp()
RETURN keanu.name, keanu.created, keanu.lastSeen

Because the Person node named Keanu Reeves already exists, this query does not create a new node.
Instead, it adds a timestamp on the lastSeen property.

Table 257. Result

keanu.name keanu.created keanu.lastSeen

"Keanu Reeves" 1655200902354 1674655352124

Merge with ON MATCH setting multiple properties

If multiple properties should be set, simply separate them with commas.

212

Query

MERGE (person:Person)
ON MATCH
 SET
 person.found = true,
 person.lastAccessed = timestamp()
RETURN person.name, person.found, person.lastAccessed

Table 258. Result

person.name person.found person.lastAccessed

"Charlie Sheen" true 1655200903558

"Martin Sheen" true 1655200903558

"Michael Douglas" true 1655200903558

"Oliver Stone" true 1655200903558

"Rob Reiner" true 1655200903558

"Keanu Reeves" true 1655200903558

Merge relationships

Merge on a relationship

MERGE can be used to match or create a relationship.

Query

MATCH
 (charlie:Person {name: 'Charlie Sheen'}),
 (wallStreet:Movie {title: 'Wall Street'})
MERGE (charlie)-[r:ACTED_IN]->(wallStreet)
RETURN charlie.name, type(r), wallStreet.title

'Charlie Sheen' had already been marked as acting in 'Wall Street', so the existing relationship is found
and returned. Note that in order to match or create a relationship when using MERGE, at least one bound
node must be specified, which is done via the MATCH clause in the above example.

Table 259. Result

charlie.name type(r) wallStreet.title

"Charlie Sheen" "ACTED_IN" "Wall Street"

Merge on multiple relationships

Query

MATCH
 (oliver:Person {name: 'Oliver Stone'}),
 (reiner:Person {name: 'Rob Reiner'})
MERGE (oliver)-[:DIRECTED]->(movie:Movie)<-[:ACTED_IN]-(reiner)
RETURN movie

213

In our example graph, 'Oliver Stone' and 'Rob Reiner' have never worked together. When we try to
MERGE a "movie between them, Neo4j will not use any of the existing movies already connected to either
person. Instead, a new 'movie' node is created.

Table 260. Result

movie

{}

Merge on an undirected relationship

MERGE can also be used with an undirected relationship. When it needs to create a new one, it will pick a
direction.

Query

MATCH
 (charlie:Person {name: 'Charlie Sheen'}),
 (oliver:Person {name: 'Oliver Stone'})
MERGE (charlie)-[r:KNOWS]-(oliver)
RETURN r

As 'Charlie Sheen' and 'Oliver Stone' do not know each other this MERGE query will create a KNOWS
relationship between them. The direction of the created relationship is arbitrary.

Table 261. Result

r

{}

Merge on a relationship between two existing nodes

MERGE can be used in conjunction with preceding MATCH and MERGE clauses to create a relationship between
two bound nodes m and n, where m is returned by MATCH and n is created or matched by the earlier MERGE.

Query

MATCH (person:Person)
MERGE (city:City {name: person.bornIn})
MERGE (person)-[r:BORN_IN]->(city)
RETURN person.name, person.bornIn, city

This builds on the example from Merge single node derived from an existing node property. The second
MERGE creates a BORN_IN relationship between each person and a city corresponding to the value of the
person’s bornIn property. 'Charlie Sheen', 'Rob Reiner' and 'Oliver Stone' all have a BORN_IN
relationship to the same City node ('New York').

Table 262. Result

person.name person.bornIn city

"Charlie Sheen" "New York" {name:"New York"}

"Martin Sheen" "Ohio" {name:"Ohio"}

214

person.name person.bornIn city

"Michael Douglas" "New Jersey" {name:"New Jersey"}

"Oliver Stone" "New York" {name:"New York"}

"Rob Reiner" "New York" {name:"New York"}

"Keanu Reeves" "Beirut" {name:"Beirut"}

Merge on a relationship between an existing node and a merged node derived
from a node property

MERGE can be used to simultaneously create both a new node n and a relationship between a bound node m
and n.

Query

MATCH (person:Person)
MERGE (person)-[r:HAS_CHAUFFEUR]->(chauffeur:Chauffeur {name: person.chauffeurName})
RETURN person.name, person.chauffeurName, chauffeur

As MERGE found no matches — in our example graph, there are no nodes labeled with Chauffeur and no
HAS_CHAUFFEUR relationships — MERGE creates five nodes labeled with Chauffeur, each of which contains a
name property whose value corresponds to each matched Person node’s chauffeurName property value.
MERGE also creates a HAS_CHAUFFEUR relationship between each Person node and the newly-created
corresponding Chauffeur node. As 'Charlie Sheen' and 'Michael Douglas' both have a chauffeur with
the same name — 'John Brown' — a new node is created in each case, resulting in two Chauffeur nodes
having a name of 'John Brown', correctly denoting the fact that even though the name property may be
identical, these are two separate people. This is in contrast to the example shown above in Merge on a
relationship between two existing nodes, where we used the first MERGE to bind the City nodes to prevent
them from being recreated (and thus duplicated) in the second MERGE.

Table 263. Result

person.name person.chauffeurName chauffeur

"Charlie Sheen" "John Brown" {name:"John Brown"}

"Martin Sheen" "Bob Brown" {name:"Bob Brown"}

"Michael Douglas" "John Brown" {name:"John Brown"}

"Oliver Stone" "Bill White" {name:"Bill White"}

"Rob Reiner" "Ted Green" {name:"Ted Green"}

"Keanu Reeves" "Eric Brown" {name:"Eric Brown"}

Using property uniqueness constraints with MERGE

Cypher prevents getting conflicting results from MERGE when using patterns that involve property
uniqueness constraints. In this case, there must be at most one node that matches that pattern.

For example, given two property uniqueness constraints on :Person(id) and :Person(ssn), a query such
as MERGE (n:Person {id: 12, ssn: 437}) will fail, if there are two different nodes (one with id 12 and one

215

with ssn 437), or if there is only one node with only one of the properties. In other words, there must be
exactly one node that matches the pattern, or no matching nodes.

Note that the following examples assume the existence of property uniqueness constraints that have been
created using:

CREATE CONSTRAINT FOR (n:Person) REQUIRE n.name IS UNIQUE;
CREATE CONSTRAINT FOR (n:Person) REQUIRE n.role IS UNIQUE;

Merge using property uniqueness constraints creates a new node if no node is
found

Merge using property uniqueness constraints creates a new node if no node is found.

Query

MERGE (laurence:Person {name: 'Laurence Fishburne'})
RETURN laurence.name

The query creates the 'laurence' node. If 'laurence' had already existed, MERGE would just match the
existing node.

Table 264. Result

laurence.name

"Laurence Fishburne"

Merge using property uniqueness constraints matches an existing node

Merge using property uniqueness constraints matches an existing node.

Query

MERGE (oliver:Person {name: 'Oliver Stone'})
RETURN oliver.name, oliver.bornIn

The 'oliver' node already exists, so MERGE just matches it.

Table 265. Result

oliver.name oliver.bornIn

"Oliver Stone" "New York"

Merge with property uniqueness constraints and partial matches

Merge using property uniqueness constraints fails when finding partial matches.

Query

MERGE (michael:Person {name: 'Michael Douglas', role: 'Gordon Gekko'})
RETURN michael

216

While there is a matching unique 'michael' node with the name 'Michael Douglas', there is no unique
node with the role of 'Gordon Gekko' and MERGE fails to match.

Error message

Node already exists with label `Person` and property `name` = 'Michael Douglas'

If we want to give Michael Douglas the role of Gordon Gekko, we can use the SET clause instead:

Query

MERGE (michael:Person {name: 'Michael Douglas'})
SET michael.role = 'Gordon Gekko'

Result

Set 1 property

Merge with property uniqueness constraints and conflicting matches

Merge using property uniqueness constraints fails when finding conflicting matches.

Query

MERGE (oliver:Person {name: 'Oliver Stone', role: 'Gordon Gekko'})
RETURN oliver

While there is a matching unique 'oliver' node with the name 'Oliver Stone', there is also another
unique node with the role of 'Gordon Gekko' and MERGE fails to match.

Error message

Node already exists with label `Person` and property `name` = 'Oliver Stone'

Using map parameters with MERGE

MERGE does not support map parameters the same way CREATE does. To use map parameters with MERGE, it
is necessary to explicitly use the expected properties, such as in the following example. For more
information on parameters, see Parameters.

Parameters

{
 "param": {
 "name": "Keanu Reeves",
 "role": "Neo"
 }
}

Query

MERGE (person:Person {name: $param.name, role: $param.role})
RETURN person.name, person.role

217

Table 266. Result

person.name person.role

"Keanu Reeves" "Neo"

CALL {} (subquery)

The CALL {} clause evaluates a subquery that returns some values.

CALL allows to execute subqueries, i.e. queries inside of other queries. Subqueries allow you to compose
queries, which is especially useful when working with UNION or aggregations.


The CALL clause is also used for calling procedures. For descriptions of the CALL clause in
this context, refer to CALL procedure.

Subqueries which end in a RETURN statement are called returning subqueries while subqueries without
such a return statement are called unit subqueries.

A subquery is evaluated for each incoming input row. Every output row of a returning subquery is
combined with the input row to build the result of the subquery. That means that a returning subquery will
influence the number of rows. If the subquery does not return any rows, there will be no rows available
after the subquery.

Unit subqueries on the other hand are called for their side-effects and not for their results and do therefore
not influence the results of the enclosing query.

There are restrictions on how subqueries interact with the enclosing query:

• A subquery can only refer to variables from the enclosing query if they are explicitly imported.

• A subquery cannot return variables with the same names as variables in the enclosing query.

• All variables that are returned from a subquery are afterwards available in the enclosing query.

The following graph is used for the examples below:

Person, Child

age = 20
name = 'Alice'

Person, Parent

age = 65
name = 'Charlie'

CHILD_OF

Person

age = 27
name = 'Bob'

FRIEND_OF

Person

age = 30
name = 'Dora'

Counter

count = 0

Semantics

A CALL clause is executed once for each incoming row.

218

Example 64. Execute for each incomming row

The CALL clause executes three times, one for each row that the UNWIND clause outputs.

Query

UNWIND [0, 1, 2] AS x
CALL {
 RETURN 'hello' AS innerReturn
}
RETURN innerReturn

Result

Rows: 3

+-------------+
| innerReturn |
+-------------+
| 'hello' |
| 'hello' |
| 'hello' |
+-------------+

Each execution of a CALL clause can observe changes from previous executions.

Example 65. Observe changes from previous execution

Query

UNWIND [0, 1, 2] AS x
CALL {
 MATCH (n:Counter)
 SET n.count = n.count + 1
 RETURN n.count AS innerCount
}
WITH innerCount
MATCH (n:Counter)
RETURN
 innerCount,
 n.count AS totalCount

Result

Set Properties: 3
Rows: 3

+------------+------------+
| innerCount | totalCount |
+------------+------------+
1	3
2	3
3	3
+------------+------------+

Importing variables into subqueries

Variables are imported into a subquery using an importing WITH clause. As the subquery is evaluated for
each incoming input row, the imported variables get bound to the corresponding values from the input row

219

in each evaluation.

Query

UNWIND [0, 1, 2] AS x
CALL {
 WITH x
 RETURN x * 10 AS y
}
RETURN x, y

Table 267. Result

x y

0 0

1 10

2 20

Rows: 3

An importing WITH clause must:

• Consist only of simple references to outside variables - e.g. WITH x, y, z. Aliasing or expressions are
not supported in importing WITH clauses - e.g. WITH a AS b or WITH a+1 AS b.

• Be the first clause of a subquery (or the second clause, if directly following a USE clause).


The order in which subqueries are executed is not defined. If a query result depends on
the order of execution of subqueries, an ORDER BY clause should precede the CALL clause.

220

Example 66. The order in which subqueries are executed

This query creates a linked list of all :Person nodes in order of ascending age.

The CALL clause is relying on the incoming row ordering to ensure that a correctly linked list is
created, thus the incoming rows must be ordered with a preceding ORDER BY clause.

Query

MATCH (person:Person)
WITH person ORDER BY person.age ASC LIMIT 1
 SET person:ListHead
WITH *
MATCH (next: Person)
 WHERE NOT next:ListHead
WITH next ORDER BY next.age
CALL {
 WITH next
 MATCH (current:ListHead)
 REMOVE current:ListHead
 SET next:ListHead
 CREATE(current)-[r:IS_YOUNGER_THAN]->(next)
 RETURN current AS from, next AS to
}
RETURN
 from.name AS name,
 from.age AS age,
 to.name AS closestOlderName,
 to.age AS closestOlderAge

Result

Added Labels: 4
Created Relationships: 3
Removed Labels: 3
Rows: 3

+---------+-----+------------------+-----------------+
| name | age | closestOlderName | closestOlderAge |
+---------+-----+------------------+-----------------+
'Alice'	20	'Bob'	27
'Bob'	27	'Dora'	30
'Dora'	30	'Charlie'	65
+---------+-----+------------------+-----------------+

Post-union processing

Subqueries can be used to process the results of a UNION query further. This example query finds the
youngest and the oldest person in the database and orders them by name.

221

Query

CALL {
 MATCH (p:Person)
 RETURN p
 ORDER BY p.age ASC
 LIMIT 1
UNION
 MATCH (p:Person)
 RETURN p
 ORDER BY p.age DESC
 LIMIT 1
}
RETURN p.name, p.age
ORDER BY p.name

Table 268. Result

p.name p.age

"Alice" 20

"Charlie" 65

Rows: 2

If different parts of a result should be matched differently, with some aggregation over the whole results,
subqueries need to be used. This example query finds friends and/or parents for each person.
Subsequently the number of friends and parents are counted together.

Query

MATCH (p:Person)
CALL {
 WITH p
 OPTIONAL MATCH (p)-[:FRIEND_OF]->(other:Person)
 RETURN other
UNION
 WITH p
 OPTIONAL MATCH (p)-[:CHILD_OF]->(other:Parent)
 RETURN other
}
RETURN DISTINCT p.name, count(other)

Table 269. Result

p.name count(other)

"Alice" 2

"Bob" 0

"Charlie" 0

"Dora" 0

Rows: 4

Aggregations

Returning subqueries change the number of results of the query: The result of the CALL clause is the
combined result of evaluating the subquery for each input row.

222

The following example finds the name of each person and the names of their friends:

Query

MATCH (p:Person)
CALL {
 WITH p
 MATCH (p)-[:FRIEND_OF]-(c:Person)
 RETURN c.name AS friend
}
RETURN p.name, friend

Table 270. Result

p.name friend

"Alice" "Bob"

"Bob" "Alice"

Rows: 2

The number of results of the subquery changed the number of results of the enclosing query: Instead of 4
rows, one for each node), there are now 2 rows which were found for Alice and Bob respectively. No rows
are returned for Charlie and Dora since they have no friends in our example graph.

We can also use subqueries to perform isolated aggregations. In this example we count the number of
relationships each person has. As we get one row from each evaluation of the subquery, the number of
rows is the same, before and after the CALL clause:

Query

MATCH (p:Person)
CALL {
 WITH p
 MATCH (p)--(c)
 RETURN count(c) AS numberOfConnections
}
RETURN p.name, numberOfConnections

Table 271. Result

p.name numberOfConnections

"Alice" 2

"Bob" 1

"Charlie" 1

"Dora" 0

Rows: 4

Unit subqueries and side-effects

Unit subqueries do not return any rows and are therefore used for their side effects.

This example query creates five clones of each existing person. As the subquery is a unit subquery, it does
not change the number of rows of the enclosing query.

223

Query

MATCH (p:Person)
CALL {
 WITH p
 UNWIND range (1, 5) AS i
 CREATE (:Person {name: p.name})
}
RETURN count(*)

Table 272. Result

count(*)

4

Rows: 1
Nodes created: 20
Properties set: 20
Labels added: 20

Aggregation on imported variables

Aggregations in subqueries are scoped to the subquery evaluation, also for imported variables. The
following example counts the number of younger persons for each person in the graph:

Query

MATCH (p:Person)
CALL {
 WITH p
 MATCH (other:Person)
 WHERE other.age < p.age
 RETURN count(other) AS youngerPersonsCount
}
RETURN p.name, youngerPersonsCount

Table 273. Result

p.name youngerPersonsCount

"Alice" 0

"Bob" 1

"Charlie" 3

"Dora" 2

Rows: 4

Subqueries in transactions

Subqueries can be made to execute in separate, inner transactions, producing intermediate commits. This
can come in handy when doing large write operations, like batch updates, imports, and deletes. To execute
a subquery in separate transactions, you add the modifier IN TRANSACTIONS after the subquery.

The following example uses a CSV file and the LOAD CSV clause to import more data to the example graph.
It creates nodes in separate transactions using CALL { ... } IN TRANSACTIONS:

224

friends.csv

1,Bill,26
2,Max,27
3,Anna,22
4,Gladys,29
5,Summer,24

Query

LOAD CSV FROM 'file:///friends.csv' AS line
CALL {
 WITH line
 CREATE (:PERSON {name: line[1], age: toInteger(line[2])})
} IN TRANSACTIONS

Table 274. Result

(empty result)

Rows: 0
Nodes created: 5
Properties set: 10
Labels added: 5
Transactions committed: 1

As the size of the CSV file in this example is small, only a single separate transaction is started and
committed.

 CALL { ... } IN TRANSACTIONS is only allowed in implicit transactions.

Deleting a large volume of nodes

Using CALL { ... } IN TRANSACTIONS is the recommended way of deleting a large volume of nodes.

225

Example 67. DETACH DELETE

Query

MATCH (n)
CALL {
 WITH n
 DETACH DELETE n
} IN TRANSACTIONS

Table 275. Result

(empty result)

Rows: 0
Nodes deleted: 5
Relationships deleted: 2
Transactions committed: 1


The CALL { ... } IN TRANSACTIONS subquery is handled by the database so as to
ensure optimal performance. Modifying the subquery may result in OutOfMemory
exceptions for sufficiently large datasets.

Example 68. DETACH DELTE

The CALL { ... } IN TRANSACTIONS subquery should not be modified.

Any necessary filtering can be done before the subquery.

Query

MATCH (n:Label) WHERE n.prop > 100
CALL {
 WITH n
 DETACH DELETE n
} IN TRANSACTIONS

Table 276. Result

(empty result)

Rows: 0

Batching

The amount of work to do in each separate transaction can be specified in terms of how many input rows
to process before committing the current transaction and starting a new one. The number of input rows is
set with the modifier OF n ROWS (or ROW). If omitted, the default batch size is 1000 rows. The following is the
same example but with one transaction every 2 input rows:

226

friends.csv

1,Bill,26
2,Max,27
3,Anna,22
4,Gladys,29
5,Summer,24

Query

LOAD CSV FROM 'file:///friends.csv' AS line
CALL {
 WITH line
 CREATE (:Person {name: line[1], age: toInteger(line[2])})
} IN TRANSACTIONS OF 2 ROWS

Table 277. Result

(empty result)

Rows: 0
Nodes created: 5
Properties set: 10
Labels added: 5
Transactions committed: 3

The query now starts and commits three separate transactions:

1. The first two executions of the subquery (for the first two input rows from LOAD CSV) take place in the
first transaction.

2. The first transaction is then committed before proceeding.

3. The next two executions of the subquery (for the next two input rows) take place in a second
transaction.

4. The second transaction is committed.

5. The last execution of the subquery (for the last input row) takes place in a third transaction.

6. The third transaction is committed.

You can also use CALL { ... } IN TRANSACTIONS OF n ROWS to delete all your data in batches in order to
avoid a huge garbage collection or an OutOfMemory exception. For example:

Query

MATCH (n)
CALL {
 WITH n
 DETACH DELETE n
} IN TRANSACTIONS OF 2 ROWS

Table 278. Result

(empty result)

227

Rows: 0
Nodes deleted: 9
Relationships deleted: 2
Transactions committed: 5


Up to a point, using a larger batch size will be more performant. The batch size of 2 ROWS
is an example given the small data set used here. For larger data sets, you might want to
use larger batch sizes, such as 10000 ROWS.

Errors

If an error occurs in CALL { ... } IN TRANSACTIONS the entire query fails and both the current inner
transaction and the outer transaction are rolled back.


On error, any previously committed inner transactions remain committed, and are not
rolled back.

In the following example, the last subquery execution in the second inner transaction fails due to division
by zero.

Query

UNWIND [4, 2, 1, 0] AS i
CALL {
 WITH i
 CREATE (:Example {num: 100/i})
} IN TRANSACTIONS OF 2 ROWS
RETURN i

Error

/ by zero (Transactions committed: 1)

When the failure occurred, the first transaction had already been committed, so the database contains two
example nodes.

Query

MATCH (e:Example)
RETURN e.num

Table 279. Result

e.num

25

50

Rows: 2

228

Restrictions

These are the restrictions on queries that use CALL { ... } IN TRANSACTIONS:

• A nested CALL { ... } IN TRANSACTIONS inside a CALL { ... } clause is not supported.

• A CALL { ... } IN TRANSACTIONS in a UNION is not supported.

• A CALL { ... } IN TRANSACTIONS after a write clause is not supported, unless that write clause is
inside a CALL { ... } IN TRANSACTIONS.

Additionally, there are some restrictions that apply when using an importing WITH clause in a CALL
subquery:

• Only variables imported with the importing WITH clause can be used.

• No expressions or aliasing are allowed within the importing WITH clause.

• It is not possible to follow an importing WITH clause with any of the following clauses: DISTINCT, ORDER
BY, WHERE, SKIP, and LIMIT.

Attempting any of the above, will throw an error. For example, the following query using a WHERE clause
after an importing WITH clause will throw an error:

Query

UNWIND [[1,2],[1,2,3,4],[1,2,3,4,5]] AS l
CALL {
 WITH l
 WHERE size(l) > 2
 RETURN l AS largeLists
}
RETURN largeLists

Error message

Importing WITH should consist only of simple references to outside variables.
WHERE is not allowed.

A solution to this restriction, necessary for any filtering or ordering of an importing WITH clause, is to
declare a second WITH clause after the importing WITH clause. This second WITH clause will act as a regular
WITH clause. For example, the following query will not throw an error:

Query

UNWIND [[1,2],[1,2,3,4],[1,2,3,4,5]] AS l
CALL {
 WITH l
 WITH size(l) AS size, l AS l
 WHERE size > 2
 RETURN l AS largeLists
}
RETURN largeLists

CALL procedure

The CALL clause is used to call a procedure deployed in the database.

229

Introduction

Procedures are called using the CALL clause.


The CALL clause is also used to evaluate a subquery. For descriptions of the CALL clause
in this context, refer to CALL {} (subquery).

Each procedure call needs to specify all required procedure arguments. This may be done either explicitly,
by using a comma-separated list wrapped in parentheses after the procedure name, or implicitly by using
available query parameters as procedure call arguments. The latter form is available only in a so-called
standalone procedure call, when the whole query consists of a single CALL clause.

Most procedures return a stream of records with a fixed set of result fields, similar to how running a
Cypher query returns a stream of records. The YIELD sub-clause is used to explicitly select which of the
available result fields are returned as newly-bound variables from the procedure call to the user or for
further processing by the remaining query. Thus, in order to be able to use YIELD for explicit columns, the
names (and types) of the output parameters need be known in advance. Each yielded result field may
optionally be renamed using aliasing (i.e., resultFieldName AS newName). All new variables bound by a
procedure call are added to the set of variables already bound in the current scope. It is an error if a
procedure call tries to rebind a previously bound variable (i.e., a procedure call cannot shadow a variable
that was previously bound in the current scope). In a standalone procedure call, YIELD * can be used to
select all columns. In this case, the name of the output parameters does not need to be known in advance.

For more information on how to determine the input parameters for the CALL procedure and the output
parameters for the YIELD procedure, see View the signature for a procedure.

Inside a larger query, the records returned from a procedure call with an explicit YIELD may be further
filtered using a WHERE sub-clause followed by a predicate (similar to WITH ... WHERE ...).

If the called procedure declares at least one result field, YIELD may generally not be omitted. However
YIELD may always be omitted in a standalone procedure call. In this case, all result fields are yielded as
newly-bound variables from the procedure call to the user.

Neo4j supports the notion of VOID procedures. A VOID procedure is a procedure that does not declare any
result fields and returns no result records and that has explicitly been declared as VOID. Calling a VOID
procedure may only have a side effect and thus does neither allow nor require the use of YIELD. Calling a
VOID procedure in the middle of a larger query will simply pass on each input record (i.e., it acts like WITH *
in terms of the record stream).



Neo4j comes with a number of built-in procedures. For a list of these, see Operations
Manual → Procedures.

Users can also develop custom procedures and deploy to the database. See Java
Reference → User-defined procedures for details.

230

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-procedures
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-procedures
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-procedures
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-procedures

Call a procedure using CALL

This calls the built-in procedure db.labels, which lists all labels used in the database.

Query

CALL db.labels()

Table 280. Result

label

"User"

"Administrator"

Rows: 2

Cypher allows the omission of parentheses on procedures of arity-0 (no arguments).

 Best practice is to use parentheses for procedures.

Query

CALL db.labels

Table 281. Result

label

"User"

"Administrator"

Rows: 2

View the signature for a procedure

The SHOW PROCEDURES command can return the name, signature, and description for all procedures.

The default outputs for SHOW PROCEDURES are name, description, mode, and worksOnSystem. To get the
signature, make sure to use the YIELD clause.

231

Example 69. SHOW PROCEDURES

The following query return the signature for a particular procedure:

Query

SHOW PROCEDURES YIELD name, signature
WHERE name = 'dbms.listConfig'
RETURN signature

Table 282. Result

signature

"dbms.listConfig(searchString = :: STRING?) :: (name :: STRING?, description :: STRING?, value ::
STRING?, dynamic :: BOOLEAN?)"

Rows: 1

Call a procedure using a quoted namespace and name

This calls the built-in procedure db.labels, which lists all labels used in the database.

Query

CALL `db`.`labels()`

Query

CALL `db`.`labels`

Call a procedure with literal arguments

This calls the example procedure dbms.security.createUser using literal arguments. The arguments are
written out directly in the statement text.

Query

CALL dbms.security.createUser('example_username', 'example_password', false)

Since our example procedure does not return any result, the result is empty.

Call a procedure with parameter arguments

This calls the example procedure dbms.security.createUser using parameters as arguments. Each
procedure argument is taken to be the value of a corresponding statement parameter with the same name
(or null if no such parameter has been given).

232


Examples that use parameter arguments shows the given parameters in JSON format;
the exact manner in which they are to be submitted depends upon the driver being used.
See Parameters, for more about querying with parameters.

Parameters

{
 "username": "example_username",
 "password": "example_password",
 "requirePasswordChange": false
}

Query

CALL dbms.security.createUser($username, $password, $requirePasswordChange)

Since our example procedure does not return any result, the result is empty.

Cypher allows the omission of parentheses for procedures with arity-n (n arguments), Cypher implicitly
passes the parameter arguments.


Best practice is to use parentheses for procedures. Omission of parantheses is available
only in a so-called standalone procedure call, when the whole query consists of a single
CALL clause.

Parameters

{
 "username": "example_username",
 "password": "example_password",
 "requirePasswordChange": false
}

Query

CALL dbms.security.createUser

Since our example procedure does not return any result, the result is empty.

Call a procedure with mixed literal and parameter arguments

This calls the example procedure dbms.security.createUser using both literal and parameter arguments.

Parameters

{
 "password": "example_password"
}

Query

CALL dbms.security.createUser('example_username', $password, false)

233

Since our example procedure does not return any result, the result is empty.

Call a procedure with literal and default arguments

This calls the example procedure dbms.security.createUser using literal arguments. That is, arguments
that are written out directly in the statement text, and a trailing default argument that is provided by the
procedure itself.

Query

CALL dbms.security.createUser('example_username', 'example_password')

Since our example procedure does not return any result, the result is empty.

Call a procedure using CALL YIELD *

This calls the built-in procedure db.labels to count all labels used in the database.

Query

CALL db.labels() YIELD *

If the procedure has deprecated return columns, those columns are also returned.

Call a procedure within a complex query using CALL YIELD

This calls the built-in procedure db.labels to count all labels used in the database.

Query

CALL db.labels() YIELD label
RETURN count(label) AS numLabels

Since the procedure call is part of a larger query, all outputs must be named explicitly.

Call a procedure and filter its results

This calls the built-in procedure db.labels to count all in-use labels in the database that contain the string
'User'.

Query

CALL db.labels() YIELD label
WHERE label CONTAINS 'User'
RETURN count(label) AS numLabels

Since the procedure call is part of a larger query, all outputs must be named explicitly.

234

Call a procedure within a complex query and rename its outputs

This calls the built-in procedure db.propertyKeys as part of counting the number of nodes per property key
that is currently used in the database.

Query

CALL db.propertyKeys() YIELD propertyKey AS prop
MATCH (n)
WHERE n[prop] IS NOT NULL
RETURN prop, count(n) AS numNodes

Since the procedure call is part of a larger query, all outputs must be named explicitly.

UNION

The UNION clause is used to combine the result of multiple queries.

UNION combines the results of two or more queries into a single result set that includes all the rows that
belong to all queries in the union.

The number and the names of the columns must be identical in all queries combined by using UNION.

To keep all the result rows, use UNION ALL. Using just UNION will combine and remove duplicates from the
result set.



If any of the queries in a UNION contain updates, the order of queries in the UNION is
relevant.

Any clause before the UNION cannot observe writes made by a clause after the UNION.
Any clause after UNION can observe all writes made by a clause before the UNION.

For details see clause composition in queries with UNION for details.

Actor

name = 'Anthony Hopkins'

Movie

title = 'Hitchcock'

ACTS_IN
Actor

name = 'Helen Mirren'

KNOWS

ACTS_IN

Actor

name = 'Hitchcock'

235

Combine two queries and retain duplicates

Combining the results from two queries is done using UNION ALL.

Query

MATCH (n:Actor)
RETURN n.name AS name
UNION ALL
MATCH (n:Movie)
RETURN n.title AS name

The combined result is returned, including duplicates.

Table 283. Result

name

"Anthony Hopkins"

"Helen Mirren"

"Hitchcock"

"Hitchcock"

Rows: 4

Combine two queries and remove duplicates

By not including ALL in the UNION, duplicates are removed from the combined result set.

Query

MATCH (n:Actor)
RETURN n.name AS name
UNION
MATCH (n:Movie)
RETURN n.title AS name

The combined result is returned, without duplicates.

Table 284. Result

name

"Anthony Hopkins"

"Helen Mirren"

"Hitchcock"

Rows: 3

USE
The USE clause determines which graph a query, or query part, is executed against. It is supported for
queries and schema commands.

236

Syntax

The USE clause can only appear as the prefix of schema commands, or as the first clause of queries:

USE <graph>
<other clauses>

Where <graph> refers to the name or alias of a database in the DBMS.

Composite database syntax

When running queries against a composite database, the USE clause can also appear as the first clause of:

• Union parts:

USE <graph>
<other clauses>
 UNION
USE <graph>
<other clauses>

• Subqueries:

CALL {
 USE <graph>
 <other clauses>
}

In subqueries, a USE clause may appear as the second clause, if directly following an importing WITH
clause.

When executing queries against a composite database, the USE clause must only refer to graphs that are
part of the current composite database.

Examples

Query a graph

In this example it is assumed that the DBMS contains a database named myDatabase:

Query

USE myDatabase
MATCH (n) RETURN n

Query a composite database constituent graph

In this example it is assumed that the DBMS contains a composite database named myComposite, which
includes an alias named myConstituent:

237

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#composite_databases

Query

USE myComposite.myConstituent
MATCH (n) RETURN n

Query a composite database constituent graph dynamically

The built-in function graph.byName() can be used in the USE clause to resolve a constituent graph from a
string value containing the qualified name of a constituent.

This example uses a composite database named myComposite that includes an alias named myConstituent:

Query

USE graph.byName('myComposite.myConstituent')
MATCH (n) RETURN n

The argument can be any expression that evaluates to the name of a constituent graph - for example a
parameter:

Query

USE graph.byName($graphName)
MATCH (n) RETURN n

LOAD CSV

LOAD CSV is used to import data from CSV files.

• Introduction

• CSV file format

• Import data from a CSV file

• Import data from a remote CSV file

• Import data from a CSV file containing headers

• Import data from a CSV file with a custom field delimiter

• Importing large amounts of data

• Setting the rate of CALL { ... } IN TRANSACTIONS

• Import data containing escaped characters

• Using linenumber() with LOAD CSV

• Using file() with LOAD CSV

Introduction

• The URL of the CSV file is specified by using FROM followed by an arbitrary expression evaluating to the
URL in question.

238

• It is required to specify a variable for the CSV data using AS.

• CSV files can be stored on the database server and are then accessible using a file:/// URL.
Alternatively, LOAD CSV also supports accessing CSV files via HTTPS, HTTP, and FTP.

• LOAD CSV supports resources compressed with gzip and Deflate. Additionally LOAD CSV supports locally
stored CSV files compressed with ZIP.

• LOAD CSV will follow HTTP redirects but for security reasons it will not follow redirects that changes the
protocol, for example if the redirect is going from HTTPS to HTTP.

• LOAD CSV is often used in conjunction with the query clause CALL { ... } IN TRANSACTIONS, see
:clauses/call-subquery.pdf.

Configuration settings for file URLs

dbms.security.allow_csv_import_from_file_urls

This setting determines if Cypher will allow the use of file:/// URLs when loading data using LOAD
CSV. Such URLs identify files on the filesystem of the database server. Default is true. Setting
dbms.security.allow_csv_import_from_file_urls=false will completely disable access to the file
system for LOAD CSV.

server.directories.import

Sets the root directory for file:/// URLs used with the Cypher LOAD CSV clause. This should be set to a
single directory relative to the Neo4j installation path on the database server. All requests to load from
file:/// URLs will then be relative to the specified directory. The default value set in the config
settings is import. This is a security measure which prevents the database from accessing files outside
the standard import directory, similar to how a Unix chroot operates. Setting this to an empty field will
allow access to all files within the Neo4j installation folder. Commenting out this setting will disable the
security feature, allowing all files in the local system to be imported. This is definitely not recommended.

File URLs will be resolved relative to the server.directories.import directory. For example, a file URL will
typically look like file:///myfile.csv or file:///myproject/myfile.csv.

• When using file:/// URLs, spaces and other non-alphanumeric characters need to be URL encoded.
[9]

• If server.directories.import is set to the default value import, using the above URLs in LOAD CSV
would read from <NEO4J_HOME>/import/myfile.csv and <NEO4J_HOME>/import/myproject/myfile.csv
respectively.

• If it is set to /data/csv, using the above URLs in LOAD CSV would read from
<NEO4J_HOME>/data/csv/myfile.csv and <NEO4J_HOME>/data/csv/myproject/myfile.csv respectively.


The file location is relative to the import. The config setting server.directories.import
only applies to local disc and not to remote URLs.

See the examples below for further details.

CSV file format

The CSV file to use with LOAD CSV must have the following characteristics:

239

:clauses/call-subquery.pdf#subquery-call-in-transactions
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_dbms.security.allow_csv_import_from_file_urls
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_server.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#file_locations

• the character encoding is UTF-8;

• the end line termination is system dependent, e.g., it is \n on unix or \r\n on windows;

• the default field terminator is ,;

• the field terminator character can be change by using the option FIELDTERMINATOR available in the LOAD
CSV command;

• quoted strings are allowed in the CSV file and the quotes are dropped when reading the data;

• the character for string quotation is double quote ";

• if dbms.import.csv.legacy_quote_escaping is set to the default value of true, \ is used as an escape
character;

• a double quote must be in a quoted string and escaped, either with the escape character or a second
double quote.

Import data from a CSV file

To import data from a CSV file into Neo4j, you can use LOAD CSV to get the data into your query. Then you
write it to your database using the normal updating clauses of Cypher.

artists.csv

1,ABBA,1992
2,Roxette,1986
3,Europe,1979
4,The Cardigans,1992

Query

LOAD CSV FROM 'file:///artists.csv' AS line
CREATE (:Artist {name: line[1], year: toInteger(line[2])})

A new node with the Artist label is created for each row in the CSV file. In addition, two columns from the
CSV file are set as properties on the nodes.

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 4
Properties set: 8
Labels added: 4

Import data from a remote CSV file

Accordingly, you can import data from a CSV file in a remote location into Neo4j. Note that this applies to
all variations of CSV files (see examples below for other variations).

240

data.neo4j.com/bands/artists.csv

1,ABBA,1992
2,Roxette,1986
3,Europe,1979
4,The Cardigans,1992

Query

LOAD CSV FROM 'https://data.neo4j.com/bands/artists.csv' AS line
CREATE (:Artist {name: line[1], year: toInteger(line[2])})

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 4
Properties set: 8
Labels added: 4

Import data from a CSV file containing headers

When your CSV file has headers, you can view each row in the file as a map instead of as an array of
strings.

artists-with-headers.csv

Id,Name,Year
1,ABBA,1992
2,Roxette,1986
3,Europe,1979
4,The Cardigans,1992

Query

LOAD CSV WITH HEADERS FROM 'file:///artists-with-headers.csv' AS line
CREATE (:Artist {name: line.Name, year: toInteger(line.Year)})

This time, the file starts with a single row containing column names. Indicate this using WITH HEADERS and
you can access specific fields by their corresponding column name.

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 4
Properties set: 8
Labels added: 4

Import data from a CSV file with a custom field delimiter

Sometimes, your CSV file has other field delimiters than commas. You can specify which delimiter your file
uses, using FIELDTERMINATOR. Hexadecimal representation of the unicode character encoding can be used
if prepended by \u. The encoding must be written with four digits. For example, \u003B is equivalent to ;

241

(SEMICOLON).

artists-fieldterminator.csv

1;ABBA;1992
2;Roxette;1986
3;Europe;1979
4;The Cardigans;1992

Query

LOAD CSV FROM 'file:///artists-fieldterminator.csv' AS line FIELDTERMINATOR ';'
CREATE (:Artist {name: line[1], year: toInteger(line[2])})

As values in this file are separated by a semicolon, a custom FIELDTERMINATOR is specified in the LOAD CSV
clause.

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 4
Properties set: 8
Labels added: 4

Importing large amounts of data

If the CSV file contains a significant number of rows (approaching hundreds of thousands or millions), CALL
{ ... } IN TRANSACTIONS can be used to instruct Neo4j to commit a transaction after a number of rows.
This reduces the memory overhead of the transaction state.


The query clause CALL { ... } IN TRANSACTIONS is only allowed in implicit (auto-commit
or :auto) transactions. For more information, see :clauses/call-subquery.pdf.

artists.csv

1,ABBA,1992
2,Roxette,1986
3,Europe,1979
4,The Cardigans,1992

Query

LOAD CSV FROM 'file:///artists.csv' AS line
CALL {
 WITH line
 CREATE (:Artist {name: line[1], year: toInteger(line[2])})
} IN TRANSACTIONS

242

:clauses/call-subquery.pdf#subquery-call-in-transactions

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 4
Properties set: 8
Labels added: 4
Transactions committed: 1

Setting the rate of CALL IN TRANSACTIONS

You can set the number of rows as in the example, where it is set to 500 rows.

artists.csv

1,ABBA,1992
2,Roxette,1986
3,Europe,1979
4,The Cardigans,1992

Query

LOAD CSV FROM 'file:///artists.csv' AS line
CALL {
 WITH line
 CREATE (:Artist {name: line[1], year: toInteger(line[2])})
} IN TRANSACTIONS OF 500 ROWS

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 4
Properties set: 8
Labels added: 4
Transactions committed: 1

Import data containing escaped characters

In this example, we both have additional quotes around the values, as well as escaped quotes inside one
value.

artists-with-escaped-char.csv

"1","The ""Symbol""","1992"

Query

LOAD CSV FROM 'file:///artists-with-escaped-char.csv' AS line
CREATE (a:Artist {name: line[1], year: toInteger(line[2])})
RETURN
 a.name AS name,
 a.year AS year,
 size(a.name) AS size

Note that strings are wrapped in quotes in the output here. You can see that when comparing to the

243

length of the string in this case!

Result

+------------------------------+
| name | year | size |
+------------------------------+
| "The "Symbol"" | 1992 | 12 |
+------------------------------+
1 row
Nodes created: 1
Properties set: 2
Labels added: 1

Using linenumber() with LOAD CSV

For certain scenarios, like debugging a problem with a csv file, it may be useful to get the current line
number that LOAD CSV is operating on. The linenumber() function provides exactly that or null if called
without a LOAD CSV context.

artists.csv

1,ABBA,1992
2,Roxette,1986
3,Europe,1979
4,The Cardigans,1992

Query

LOAD CSV FROM 'file:///artists.csv' AS line
RETURN linenumber() AS number, line

Result

+---------------------------------------+
| number | line |
+---------------------------------------+
1	["1","ABBA","1992"]
2	["2","Roxette","1986"]
3	["3","Europe","1979"]
4	["4","The Cardigans","1992"]
+---------------------------------------+
4 rows

Using file() with LOAD CSV

For certain scenarios, like debugging a problem with a csv file, it may be useful to get the absolute path of
the file that LOAD CSV is operating on. The file() function provides exactly that or null if called without a
LOAD CSV context.

artists.csv

1,ABBA,1992
2,Roxette,1986
3,Europe,1979
4,The Cardigans,1992

244

Query

LOAD CSV FROM 'file:///artists.csv' AS line
RETURN DISTINCT file() AS path

Since LOAD CSV can temporary download a file to process it, it is important to note that file() will always
return the path on disk. If LOAD CSV is invoked with a file:/// URL that points to your disk file() will
return that same path.

Result

+--+
| path |
+--+
| "/home/example/neo4j/import/artists.csv" |
+--+
1 row

SHOW FUNCTIONS

This section explains the SHOW FUNCTIONS command.

Listing the available functions can be done with SHOW FUNCTIONS.


The command SHOW FUNCTIONS returns only the default output. For a full output use the
optional YIELD command. Full output: SHOW FUNCTIONS YIELD *.

This command will produce a table with the following columns:

Table 285. List functions output

Column Description

name The name of the function. Default output

category The function category, for example scalar or string. Default
output

description The function description. Default output

signature The signature of the function.

isBuiltIn Whether the function is built-in or user-defined.

argumentDescription List of the arguments for the function, as map of strings with
name, type, default, and description.

245

file:///

Column Description

returnDescription The return value type.

aggregating Whether the function is aggregating or not.

rolesExecution List of roles permitted to execute this function. Is null without
the SHOW ROLE privilege.

rolesBoostedExecution List of roles permitted to use boosted mode when executing
this function. Is null without the SHOW ROLE privilege.

Syntax

 The syntax descriptions use the style from access control.

List functions, either all or only built-in or user-defined

SHOW [ALL|BUILT IN|USER DEFINED] FUNCTION[S]
[YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

 When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

List functions that the current user can execute

SHOW [ALL|BUILT IN|USER DEFINED] FUNCTION[S] EXECUTABLE [BY CURRENT USER]
[YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

 When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

List functions that the specified user can execute

SHOW [ALL|BUILT IN|USER DEFINED] FUNCTION[S] EXECUTABLE BY username
[YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Required privilege SHOW USER. This command cannot be used for LDAP users.

 When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

Listing all functions

To list all available functions with the default output columns, the SHOW FUNCTIONS command can be used. If
all columns are required, use SHOW FUNCTIONS YIELD *.

246

Query

SHOW FUNCTIONS

Table 286. Result

name category description

"abs" "Numeric" "Returns the absolute value of an
integer."

"abs" "Numeric" "Returns the absolute value of a
floating point number."

"acos" "Trigonometric" "Returns the arccosine of a number
in radians."

"all" "Predicate" "Returns true if the predicate holds
for all elements in the given list."

"any" "Predicate" "Returns true if the predicate holds
for at least one element in the
given list."

"asin" "Trigonometric" "Returns the arcsine of a number in
radians."

"atan" "Trigonometric" "Returns the arctangent of a number
in radians."

"atan2" "Trigonometric" "Returns the arctangent2 of a set of
coordinates in radians."

"avg" "Aggregating" "Returns the average of a set of
integer values."

"avg" "Aggregating" "Returns the average of a set of
floating point values."

"avg" "Aggregating" "Returns the average of a set of
duration values."

"ceil" "Numeric" "Returns the smallest floating point
number that is greater than or equal
to a number and equal to a
mathematical integer."

"coalesce" "Scalar" "Returns the first non-null value in
a list of expressions."

"collect" "Aggregating" "Returns a list containing the
values returned by an expression."

"cos" "Trigonometric" "Returns the cosine of a number."

"cot" "Trigonometric" "Returns the cotangent of a number."

"count" "Aggregating" "Returns the number of values or
rows."

"date" "Temporal" "Create a Date instant."

"date.realtime" "Temporal" "Get the current Date instant using
the realtime clock."

"date.statement" "Temporal" "Get the current Date instant using
the statement clock."

Rows: 20

247

Listing functions with filtering on output columns

The listed functions can be filtered in multiple ways. One way is through the type keywords, BUILT IN and
USER DEFINED. A more flexible way is to use the WHERE clause. For example, getting the name of all built-in
functions starting with the letter 'a':

Query

SHOW BUILT IN FUNCTIONS YIELD name, isBuiltIn
WHERE name STARTS WITH 'a'

Table 287. Result

name isBuiltIn

"abs" true

"abs" true

"acos" true

"all" true

"any" true

"asin" true

"atan" true

"atan2" true

"avg" true

"avg" true

"avg" true

Rows: 11

Listing functions with other filtering

The listed functions can also be filtered on whether a user can execute them. This filtering is only available
through the EXECUTABLE clause and not through the WHERE clause. This is due to using the user’s privileges
instead of filtering on the available output columns.

There are two options, how to use the EXECUTABLE clause. The first option, is to filter for the current user:

Query

SHOW FUNCTIONS EXECUTABLE BY CURRENT USER YIELD *

Table 288. Result

name category description rolesExecution rolesBoostedExecu
tion

...

"abs" "Numeric" "Returns the
absolute value of
an integer."

<null> <null>

248

name category description rolesExecution rolesBoostedExecu
tion

...

"abs" "Numeric" "Returns the
absolute value of
a floating point
number."

<null> <null>

"acos" "Trigonometric" "Returns the
arccosine of a
number in
radians."

<null> <null>

"all" "Predicate" "Returns true if
the predicate
holds for all
elements in the
given list."

<null> <null>

"any" "Predicate" "Returns true if
the predicate
holds for at
least one element
in the given
list."

<null> <null>

"asin" "Trigonometric" "Returns the
arcsine of a
number in
radians."

<null> <null>

"atan" "Trigonometric" "Returns the
arctangent of a
number in
radians."

<null> <null>

"atan2" "Trigonometric" "Returns the
arctangent2 of a
set of
coordinates in
radians."

<null> <null>

"avg" "Aggregating" "Returns the
average of a set
of integer
values."

<null> <null>

"avg" "Aggregating" "Returns the
average of a set
of floating point
values."

<null> <null>

Rows: 10

Notice that the two roles columns are empty due to missing the SHOW ROLE privilege.

The second option, is to filter for a specific user:

Query

SHOW FUNCTIONS EXECUTABLE BY jake

Table 289. Result

249

name category description

"abs" "Numeric" "Returns the absolute value of an
integer."

"abs" "Numeric" "Returns the absolute value of a
floating point number."

"acos" "Trigonometric" "Returns the arccosine of a number
in radians."

"all" "Predicate" "Returns true if the predicate holds
for all elements in the given list."

"any" "Predicate" "Returns true if the predicate holds
for at least one element in the
given list."

"asin" "Trigonometric" "Returns the arcsine of a number in
radians."

"atan" "Trigonometric" "Returns the arctangent of a number
in radians."

"atan2" "Trigonometric" "Returns the arctangent2 of a set of
coordinates in radians."

"avg" "Aggregating" "Returns the average of a set of
integer values."

"avg" "Aggregating" "Returns the average of a set of
floating point values."

Rows: 10

SHOW PROCEDURES

This section explains the SHOW PROCEDURES command.

Listing the available procedures can be done with SHOW PROCEDURES.


The command SHOW PROCEDURES returns only the default output. For a full output use the
optional YIELD command. Full output: SHOW PROCEDURES YIELD *.

This command will produce a table with the following columns:

Table 290. List procedures output

Column Description

name The name of the procedure. Default output

description The procedure description. Default output

mode The procedure mode, for example READ or WRITE. Default
output

250

Column Description

worksOnSystem Whether the procedure can be run on the system database or
not. Default output

signature The signature of the procedure.

argumentDescription List of the arguments for the procedure, as map of strings with
name, type, default, and description.

returnDescription List of the returned values for the procedure, as map of strings
with name, type, and description.

admin true if this procedure is an admin procedure.

rolesExecution List of roles permitted to execute this procedure. Is null
without the SHOW ROLE privilege.

rolesBoostedExecution List of roles permitted to use boosted mode when executing
this procedure. Is null without the SHOW ROLE privilege.

option Map of extra output, e.g. if the procedure is deprecated.

Syntax

 The syntax descriptions use the style from access control.

List all procedures

SHOW PROCEDURE[S]
[YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

 When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

List procedures that the current user can execute

SHOW PROCEDURE[S] EXECUTABLE [BY CURRENT USER]
[YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

 When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

251

List procedures that the specified user can execute

SHOW PROCEDURE[S] EXECUTABLE BY username
[YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Requires the privilege SHOW USER. This command cannot be used for LDAP users.

 When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

Listing all procedures

To list all available procedures with the default output columns, the SHOW PROCEDURES command can be
used. If all columns are required, use SHOW PROCEDURES YIELD *.

Query

SHOW PROCEDURES

Table 291. Result

name description mode worksOnSystem

"db.awaitIndex" "Wait for an index to come online
(for example: CALL
db.awaitIndex("MyIndex", 300))."

"READ" true

"db.awaitIndexes" "Wait for all indexes to come online
(for example: CALL
db.awaitIndexes(300))."

"READ" true

"db.checkpoint" "Initiate and wait for a new check
point, or wait any already on-going
check point to complete. Note that
this temporarily disables the
`dbms.checkpoint.iops.limit` setting
in order to make the check point
complete faster. This might cause
transaction throughput to degrade
slightly, due to increased IO load."

"DBMS" true

"db.clearQueryCaches" "Clears all query caches." "DBMS" true

"db.createLabel" "Create a label" "WRITE" false

"db.createProperty" "Create a Property" "WRITE" false

"db.createRelationshipType" "Create a RelationshipType" "WRITE" false

"db.index.fulltext.awaitEventuallyCo
nsistentIndexRefresh"

"Wait for the updates from recently
committed transactions to be applied
to any eventually-consistent full-
text indexes."

"READ" true

"db.index.fulltext.listAvailableAnal
yzers"

"List the available analyzers that
the full-text indexes can be
configured with."

"READ" true

252

name description mode worksOnSystem

"db.index.fulltext.queryNodes" "Query the given full-text index.
Returns the matching nodes, and
their Lucene query score, ordered by
score. Valid keys for the options
map are: 'skip' to skip the top N
results; 'limit' to limit the number
of results returned; 'analyzer' to
use the specified analyzer as search
analyzer for this query."

"READ" true

"db.index.fulltext.queryRelationship
s"

"Query the given full-text index.
Returns the matching relationships,
and their Lucene query score,
ordered by score. Valid keys for the
options map are: 'skip' to skip the
top N results; 'limit' to limit the
number of results returned;
'analyzer' to use the specified
analyzer as search analyzer for this
query."

"READ" true

"db.info" "Provides information regarding the
database."

"READ" true

"db.labels" "List all available labels in the
database."

"READ" true

"db.listLocks" "List all locks in the database." "DBMS" true

"db.ping" "This procedure can be used by
client side tooling to test whether
they are correctly connected to a
database. The procedure is available
in all databases and always returns
true. A faulty connection can be
detected by not being able to call
this procedure."

"READ" true

Rows: 15

The above table only displays the first 15 results of the query. For a full list of all built-in procedures in
Neo4j, visit the Operations Manual → List of procedures.

Listing procedures with filtering on output columns

The listed procedures can be filtered in multiple ways, one way is to use the WHERE clause. For example,
returning the names of all admin procedures:

Query

SHOW PROCEDURES YIELD name, admin
WHERE admin

Table 292. Result

name admin

"db.clearQueryCaches" true

"db.listLocks" true

"db.prepareForReplanning" true

253

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#_list_of_procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#_list_of_procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#_list_of_procedures

name admin

"db.stats.clear" true

"db.stats.collect" true

"db.stats.retrieve" true

"db.stats.retrieveAllAnonymized" true

"db.stats.status" true

"db.stats.stop" true

+"dbms.checkConfigValue" true

"dbms.cluster.checkConnectivity" true

"dbms.cluster.cordonServer" true

"dbms.cluster.readReplicaToggle" true

"dbms.cluster.uncordonServer" true

"dbms.listConfig" true

Rows: 15

The above table only displays the first 15 results of the query. For a full list of all procedures which require
admin privileges in Neo4j, visit the Operations Manual → List of procedures.

Listing procedures with other filtering

The listed procedures can also be filtered by whether a user can execute them. This filtering is only
available through the EXECUTABLE clause and not through the WHERE clause. This is due to using the user’s
privileges instead of filtering on the available output columns.

There are two options for using the EXECUTABLE clause. The first option is to filter for the current user:

Query

SHOW PROCEDURES EXECUTABLE BY CURRENT USER YIELD *

Table 293. Result

name description rolesExecution rolesBoostedExecu
tion

"db.awaitIndex" "Wait for an index to come online
(for example: CALL
db.awaitIndex("MyIndex", 300))."

<null> <null>

"db.awaitIndexes" "Wait for all indexes to come online
(for example: CALL
db.awaitIndexes(300))."

<null> <null>

254

https://neo4j.com/docs/operations-manual/5/reference/procedures#/#_list_of_procedures
https://neo4j.com/docs/operations-manual/5/reference/procedures#/#_list_of_procedures
https://neo4j.com/docs/operations-manual/5/reference/procedures#/#_list_of_procedures

name description rolesExecution rolesBoostedExecu
tion

"db.checkpoint" "Initiate and wait for a new check
point, or wait any already on-going
check point to complete. Note that
this temporarily disables the
`dbms.checkpoint.iops.limit` setting
in order to make the check point
complete faster. This might cause
transaction throughput to degrade
slightly, due to increased IO load."

<null> <null>

"db.clearQueryCaches" "Clears all query caches." <null> <null>

"db.createLabel" "Create a label" <null> <null>

"db.createProperty" "Create a Property" <null> <null>

"db.createRelationshipType" "Create a RelationshipType" <null> <null>

"db.index.fulltext.awaitEventuallyCo
nsistentIndexRefresh"

"Wait for the updates from recently
committed transactions to be applied
to any eventually-consistent full-
text indexes."

<null> <null>

"db.index.fulltext.listAvailableAnal
yzers"

"List the available analyzers that
the full-text indexes can be
configured with."

<null> <null>

"db.index.fulltext.queryNodes" "Query the given full-text index.
Returns the matching nodes, and
their Lucene query score, ordered by
score. Valid keys for the options
map are: 'skip' to skip the top N
results; 'limit' to limit the number
of results returned; 'analyzer' to
use the specified analyzer as search
analyzer for this query."

<null> <null>

"db.index.fulltext.queryRelationship
s"

"Query the given full-text index.
Returns the matching relationships,
and their Lucene query score,
ordered by score. Valid keys for the
options map are: 'skip' to skip the
top N results; 'limit' to limit the
number of results returned;
'analyzer' to use the specified
analyzer as search analyzer for this
query."

<null> <null>

"db.info" "Provides information regarding the
database."

<null> <null>

"db.labels" "List all available labels in the
database."

<null> <null>

"db.listLocks" "List all locks in the database." <null> <null>

"db.ping" "This procedure can be used by
client side tooling to test whether
they are correctly connected to a
database. The procedure is available
in all databases and always returns
true. A faulty connection can be
detected by not being able to call
this procedure."

<null> <null>

Rows: 15

The above table only displays the first 15 results of the query. Note that the two roles columns are empty

255

due to missing the SHOW ROLE privilege. Also note that the following columns are not present in the table:
mode, worksOnSystem, signature, argumentDescription, returnDescription, admin, and options.

The second option for using the EXECUTABLE clause is to filter the list to only contain procedures executable
by a specific user. The below example shows the procedures available to the user jake, who has been
granted the EXECUTE PROCEDURE dbms.* privilege by the admin of the database. (More information about
DBMS EXECUTE privilege administration can be found here).

Query

SHOW PROCEDURES EXECUTABLE BY jake

Table 294. Result

name description mode worksOnSystem

"dbms.cluster.protocols" "Overview of installed protocols." "DBMS" true

"dbms.cluster.routing.getRoutingTabl
e"

"Returns the advertised bolt capable
endpoints for a given database,
divided by each endpoint's
capabilities. For example an
endpoint may serve read queries,
write queries and/or future
getRoutingTable requests."

"DBMS" true

"dbms.components" "List DBMS components and their
versions."

"DBMS" true

"dbms.info" "Provides information regarding the
DBMS."

"DBMS" true

"dbms.killConnection "Kill network connection with the
given connection id."

"DBMS" false

"dbms.killConnections" "Kill all network connections with
the given connection ids."

"DBMS" true

"dbms.listActiveLocks" "List the active lock requests
granted for the transaction
executing the query with the given
query id."

"DBMS" true

"dbms.listCapabilities" "List capabilities" "DBMS" true

"dbms.listConnections" "List all accepted network
connections at this instance that
are visible to the user."

"DBMS" true

"dbms.listPools" "List all memory pools, including
sub pools, currently registered at
this instance that are visible to
the user."

"DBMS" true

"dbms.queryJmx" "Query JMX management data by domain
and name. For instance, "*:*""

"DBMS" true

"dbms.routing.getRoutingTable" "Returns the advertised bolt capable
endpoints for a given database,
divided by each endpoint's
capabilities. For example an
endpoint may serve read queries,
write queries and/or future
getRoutingTable requests."

"DBMS" true

"dbms.showCurrentUser" "Shows the current user." "DBMS" true

256

name description mode worksOnSystem

Rows: 13

[9] See https://developer.mozilla.org/en-US/docs/Glossary/percent-encoding

257

https://developer.mozilla.org/en-US/docs/Glossary/percent-encoding

Functions
This section contains information on all functions in the Cypher query language.

• Predicate functions [Summary|Detail]

• Scalar functions [Summary|Detail]

• Aggregating functions [Summary|Detail]

• List functions [Summary|Detail]

• Mathematical functions - numeric [Summary|Detail]

• Mathematical functions - logarithmic [Summary|Detail]

• Mathematical functions - trigonometric [Summary|Detail]

• String functions [Summary|Detail]

• Temporal functions - instant types [Summary|Detail]

• Temporal functions - duration [Summary|Detail]

• Spatial functions [Summary|Detail]

• LOAD CSV functions [Summary|Detail]

• Graph functions [Summary|Detail]

• User-defined functions [Summary|Detail]

Related information may be found in Operators.



• Functions in Cypher return null if an input parameter is null.

• Functions taking a string as input all operate on Unicode characters rather than on a
standard char[]. For example, the size() function applied to any Unicode character
will return 1, even if the character does not fit in the 16 bits of one char.

Example 70. List available functions

To list the available functions, run the following Cypher query:

SHOW FUNCTIONS

Predicate functions

These functions return either true or false for the given arguments.

Function Signature Description

all() all(variable :: VARIABLE IN list ::
LIST OF ANY? WHERE predicate ::
ANY?) :: (BOOLEAN?)

Returns true if the predicate holds for all
elements in the given list.

258

Function Signature Description

any() any(variable :: VARIABLE IN list ::
LIST OF ANY? WHERE predicate ::
ANY?) :: (BOOLEAN?)

Returns true if the predicate holds for at
least one element in the given list.

exists() exists(input :: ANY?) :: (BOOLEAN?) Returns true if a match for the pattern
exists in the graph.

isEmpty() isEmpty(input :: LIST? OF ANY?) ::
(BOOLEAN?)

Checks whether a list is empty.

isEmpty(input :: MAP?) :: (BOOLEAN?) Checks whether a map is empty.

isEmpty(input :: STRING?) ::
(BOOLEAN?)

Checks whether a string is empty.

none() none(variable :: VARIABLE IN list ::
LIST OF ANY? WHERE predicate ::
ANY?) :: (BOOLEAN?)

Returns true if the predicate holds for no
element in the given list.

single() single(variable :: VARIABLE IN list
:: LIST OF ANY? WHERE predicate ::
ANY?) :: (BOOLEAN?)

Returns true if the predicate holds for
exactly one of the elements in the given
list.

Scalar functions

These functions return a single value.

Function Signature Description

coalesce() coalesce(input :: ANY?) :: (ANY?) Returns the first non-null value in a list
of expressions.

endNode() endNode(input :: RELATIONSHIP?) ::
(NODE?)

Returns the end node of a relationship.

head() head(list :: LIST? OF ANY?) ::
(ANY?)

Returns the first element in a list.

id() id(input :: NODE?) :: (INTEGER?) Deprecated Returns the id of a node.
Replaced by elementId()

id(input :: RELATIONSHIP?) ::
(INTEGER?)

Deprecated Returns the id of a
relationship. Replaced by elementId().

last() last(list :: LIST? OF ANY?) ::
(ANY?)

Returns the last element in a list.

length() length(input :: PATH?) :: (INTEGER?) Returns the length of a path.

properties() properties(input :: MAP?) :: (MAP?) Returns a map containing all the
properties of a map.

properties(input :: NODE?) :: (MAP?) Returns a map containing all the
properties of a node.

properties(input :: RELATIONSHIP?)
:: (MAP?)

Returns a map containing all the
properties of a relationship.

randomUUID() randomUUID() :: (STRING?) Generates a random UUID.

259

Function Signature Description

size() size(input :: LIST? OF ANY?) ::
(INTEGER?)

Returns the number of items in a list.

size(input :: STRING?) :: (INTEGER?) Returns the number of Unicode
characters in a string.

startNode() startNode(input :: RELATIONSHIP?) ::
(NODE?)

Returns the start node of a relationship.

toBoolean() toBoolean(input :: STRING?) ::
(BOOLEAN?)

Converts a string value to a boolean
value.

toBoolean(input :: BOOLEAN?) ::
(BOOLEAN?)

Converts a boolean value to a boolean
value.

toBoolean(input :: INTEGER?) ::
(BOOLEAN?)

Converts an integer value to a boolean
value.

toBooleanOrNull() toBooleanOrNull(input :: ANY?) ::
(BOOLEAN?)

Converts a value to a boolean value, or
null if the value cannot be converted.

toFloat() toFloat(input :: NUMBER?) ::
(FLOAT?)

Converts a number value to a floating
point value.

toFloat(input :: STRING?) ::
(FLOAT?)

Converts a string value to a floating
point value.

toFloatOrNull() toFloatOrNull(input :: ANY?) ::
(FLOAT?)

Converts a value to a floating point
value, or null if the value cannot be
converted.

toInteger() toInteger(input :: NUMBER?) ::
(INTEGER?)

Converts a number value to an integer
value.

toInteger(input :: BOOLEAN?) ::
(INTEGER?)

Converts a boolean value to an integer
value.

toInteger(input :: STRING?) ::
(INTEGER?)

Converts a string value to an integer
value.

toIntegerOrNull() toIntegerOrNull(input :: ANY?) ::
(INTEGER?)

Converts a value to an integer value, or
null if the value cannot be converted.

type() type(input :: RELATIONSHIP?) ::
(STRING?)

Returns the string representation of the
relationship type.

Aggregating functions

These functions take multiple values as arguments, and calculate and return an aggregated value from
them.

260

Function Signature Description

avg() avg(input :: DURATION?) ::
(DURATION?)

Returns the average of a set of duration
values.

avg(input :: FLOAT?) :: (FLOAT?) Returns the average of a set of floating
point values.

avg(input :: INTEGER?) :: (INTEGER?) Returns the average of a set of integer
values.

collect() collect(input :: ANY?) :: (LIST? OF
ANY?)

Returns a list containing the values
returned by an expression.

count() count(input :: ANY?) :: (INTEGER?) Returns the number of values or rows.

max() max(input :: ANY?) :: (ANY?) Returns the maximum value in a set of
values.

min() min(input :: ANY?) :: (ANY?) Returns the minimum value in a set of
values.

percentileCont() percentileCont(input :: FLOAT?,
percentile :: FLOAT?) :: (FLOAT?)

Returns the percentile of a value over a
group using linear interpolation.

percentileDisc() percentileDisc(input :: FLOAT?,
percentile :: FLOAT?) :: (FLOAT?)

Returns the nearest floating point value
to the given percentile over a group
using a rounding method.

percentileDisc(input :: INTEGER?,
percentile :: FLOAT?) :: (INTEGER?)

Returns the nearest integer value to the
given percentile over a group using a
rounding method.

stdev() stdev(input :: FLOAT?) :: (FLOAT?) Returns the standard deviation for the
given value over a group for a sample of
a population.

stdevp() stdevp(input :: FLOAT?) :: (FLOAT?) Returns the standard deviation for the
given value over a group for an entire
population.

sum() sum(input :: DURATION?) ::
(DURATION?)

Returns the sum of a set of durations

sum(input :: FLOAT?) :: (FLOAT?) Returns the sum of a set of floats

sum(input :: INTEGER?) :: (INTEGER?) Returns the sum of a set of integers

List functions

These functions return lists of other values. Further details and examples of lists may be found in Lists.

261

Function Signature Description

keys() keys(input :: MAP?) :: (LIST? OF
STRING?)

Returns a list containing the string
representations for all the property
names of a map.

keys(input :: NODE?) :: (LIST? OF
STRING?)

Returns a list containing the string
representations for all the property
names of a node.

keys(input :: RELATIONSHIP?) ::
(LIST? OF STRING?)

Returns a list containing the string
representations for all the property
names of a relationship.

labels() labels(input :: NODE?) :: (LIST? OF
STRING?)

Returns a list containing the string
representations for all the labels of a
node.

nodes() nodes(input :: PATH?) :: (LIST? OF
NODE?)

Returns a list containing all the nodes in
a path.

range() range(start :: INTEGER?, end ::
INTEGER?) :: (LIST? OF INTEGER?)

Returns a list comprising all integer
values within a specified range.

range(start :: INTEGER?, end ::
INTEGER?, step :: INTEGER?) ::
(LIST? OF INTEGER?)

Returns a list comprising all integer
values within a specified range created
with step length.

reduce() reduce(accumulator :: VARIABLE =
initial :: ANY?, variable ::
VARIABLE IN list :: LIST OF ANY? |
expression :: ANY) :: (ANY?)

Runs an expression against individual
elements of a list, storing the result of
the expression in an accumulator.

relationships() relationships(input :: PATH?) ::
(LIST? OF RELATIONSHIP?)

Returns a list containing all the
relationships in a path.

reverse() reverse(input :: LIST? OF ANY?) ::
(LIST? OF ANY?)

Returns a list in which the order of all
elements in the original list have been
reversed.

tail() tail(input :: LIST? OF ANY?) ::
(LIST? OF ANY?)

Returns all but the first element in a list.

toBooleanList() toBooleanList(input :: LIST? OF
ANY?) :: (LIST? OF BOOLEAN?)

Converts a list of values to a list of
boolean values. If any values are
not convertible to boolean they
will be null in the list returned.

toFloatList() toFloatList(input :: LIST? OF ANY?)
:: (LIST? OF FLOAT?)

Converts a list of values to a list of
floating point values. If any values
are not convertible to floating
point they will be null in the list
returned.

262

Function Signature Description

toIntegerList() toIntegerList(input :: LIST? OF
ANY?) :: (LIST? OF INTEGER?)

Converts a list of values to a list of
integer values. If any values are
not convertible to integer they will
be null in the list returned.

toStringList() toStringList(input :: LIST? OF ANY?)
:: (LIST? OF STRING?)

Converts a list of values to a list of
string values. If any values are not
convertible to string they will be
null in the list returned.

Numeric functions

These functions all operate on numerical expressions only, and will return an error if used on any other
values.

Function Signature Description

abs() abs(input :: FLOAT?) :: (FLOAT?) Returns the absolute value of a floating
point number.

abs(input :: INTEGER?) :: (INTEGER?) Returns the absolute value of an integer.

ceil() ceil(input :: FLOAT?) :: (FLOAT?) Returns the smallest floating point
number that is greater than or equal to a
number and equal to a mathematical
integer.

floor() floor(input :: FLOAT?) :: (FLOAT?) Returns the largest floating point
number that is less than or equal to a
number and equal to a mathematical
integer.

isNaN() isNaN(input :: FLOAT?) :: (BOOLEAN?) Returns true if the floating point
number is NaN.

isNaN(input :: INTEGER?) ::
(BOOLEAN?)

Returns true if the integer number is
NaN.

rand() rand() :: (FLOAT?) Returns a random floating point number
in the range from 0 (inclusive) to 1
(exclusive); i.e. [0,1).

round() round(input :: FLOAT?) :: (FLOAT?) Returns the value of a number rounded
to the nearest integer.

round(value :: FLOAT?, precision ::
NUMBER?) :: (FLOAT?)

Returns the value of a number rounded
to the specified precision using rounding
mode HALF_UP.

round(value :: FLOAT?, precision ::
NUMBER?, mode :: STRING?) ::
(FLOAT?)

Returns the value of a number rounded
to the specified precision with the
specified rounding mode.

263

Function Signature Description

sign() sign(input :: FLOAT?) :: (INTEGER?) Returns the signum of a floating point
number: 0 if the number is 0, -1 for any
negative number, and 1 for any positive
number.

sign(input :: INTEGER?) ::
(INTEGER?)

Returns the signum of an integer
number: 0 if the number is 0, -1 for any
negative number, and 1 for any positive
number.

Logarithmic functions

These functions all operate on numerical expressions only, and will return an error if used on any other
values.

Function Signature Description

e() e() :: (FLOAT?) Returns the base of the natural
logarithm, e.

exp() exp(input :: FLOAT?) :: (FLOAT?) Returns en, where e is the base of the
natural logarithm, and n is the value of
the argument expression.

log() log(input :: FLOAT?) :: (FLOAT?) Returns the natural logarithm of a
number.

log10() log10(input :: FLOAT?) :: (FLOAT?) Returns the common logarithm (base
10) of a number.

sqrt() sqrt(input :: FLOAT?) :: (FLOAT?) Returns the square root of a number.

Trigonometric functions

These functions all operate on numerical expressions only, and will return an error if used on any other
values.

All trigonometric functions operate on radians, unless otherwise specified.

Function Signature Description

acos() acos(input :: FLOAT?) :: (FLOAT?) Returns the arccosine of a number in
radians.

asin() asin(input :: FLOAT?) :: (FLOAT?) Returns the arcsine of a number in
radians.

atan() atan(input :: FLOAT?) :: (FLOAT?) Returns the arctangent of a number in
radians.

atan2() atan2(y :: FLOAT?, x :: FLOAT?) ::
(FLOAT?)

Returns the arctangent2 of a set of
coordinates in radians.

cos() cos(input :: FLOAT?) :: (FLOAT?) Returns the cosine of a number.

cot() cot(input :: FLOAT?) :: (FLOAT?) Returns the cotangent of a number.

264

Function Signature Description

degrees() degrees(input :: FLOAT?) :: (FLOAT?) Converts radians to degrees.

haversin() haversin(input :: FLOAT?) ::
(FLOAT?)

Returns half the versine of a number.

pi() pi() :: (FLOAT?) Returns the mathematical constant pi.

radians() radians(input :: FLOAT?) :: (FLOAT?) Converts degrees to radians.

sin() sin(input :: FLOAT?) :: (FLOAT?) Returns the sine of a number.

tan() tan(input :: FLOAT?) :: (FLOAT?) Returns the tangent of a number.

String functions

These functions are used to manipulate strings or to create a string representation of another value.

Function Signature Description

left() left(original :: STRING?, length ::
INTEGER?) :: (STRING?)

Returns a string containing the specified
number of leftmost characters of the
original string.

ltrim() ltrim(input :: STRING?) :: (STRING?) Returns the original string with leading
whitespace removed.

replace() replace(original :: STRING?, search
:: STRING?, replace :: STRING?) ::
(STRING?)

Returns a string in which all occurrences
of a specified search string in the
original string have been replaced by
another (specified) replace string.

reverse() reverse(input :: STRING?) ::
(STRING?)

Returns a string in which the order of all
characters in the original string have
been reversed.

right() right(original :: STRING?, length ::
INTEGER?) :: (STRING?)

Returns a string containing the specified
number of rightmost characters of the
original string.

rtrim() rtrim(input :: STRING?) :: (STRING?) Returns the original string with trailing
whitespace removed.

split() split(original :: STRING?,
splitDelimiter :: STRING?) :: (LIST?
OF STRING?)

Returns a list of strings resulting from
the splitting of the original string around
matches of the given delimiter.

split(original :: STRING?,
splitDelimiters :: LIST? OF STRING?)
:: (LIST? OF STRING?)

Returns a list of strings resulting from
the splitting of the original string around
matches of any of the given delimiters.

substring() substring(original :: STRING?, start
:: INTEGER?) :: (STRING?)

Returns a substring of the original
string, beginning with a 0-based index
start.

substring(original :: STRING?, start
:: INTEGER?, length :: INTEGER?) ::
(STRING?)

Returns a substring of length 'length' of
the original string, beginning with a 0-
based index start.

265

Function Signature Description

toLower() toLower(input :: STRING?) ::
(STRING?)

Returns the original string in lowercase.

toString() toString(input :: ANY?) :: (STRING?) Converts an integer, float, boolean, point
or temporal type (i.e. Date, Time,
LocalTime, DateTime, LocalDateTime or
Duration) value to a string.

toStringOrNull() toStringOrNull(input :: ANY?) ::
(STRING?)

Converts an integer, float, boolean, point
or temporal type (i.e. Date, Time,
LocalTime, DateTime, LocalDateTime or
Duration) value to a string, or null if the
value cannot be converted.

toUpper() toUpper(input :: STRING?) ::
(STRING?)

Returns the original string in uppercase.

trim() trim(input :: STRING?) :: (STRING?) Returns the original string with leading
and trailing whitespace removed.

Temporal instant types functions

Values of the temporal types — Date, Time, LocalTime, DateTime, and LocalDateTime — can be created
manipulated using the following functions:

Function Signature Description

date() date(input =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATE?)

Create a Date instant.

date.realtime() date.realtime(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATE?)

Get the current Date instant using the
realtime clock.

date.statement() date.statement(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATE?)

Get the current Date instant using the
statement clock.

date.transaction() date.transaction(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATE?)

Get the current Date instant using the
transaction clock.

date.truncate() date.truncate(unit :: STRING?, input
= DEFAULT_TEMPORAL_ARGUMENT :: ANY?,
fields = null :: MAP?) :: (DATE?)

Truncate the input temporal value to a
Date instant using the specified unit.

datetime() datetime(input =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATETIME?)

Create a DateTime instant.

datetime.fromepoch() datetime.fromepoch(seconds ::
NUMBER?, nanoseconds :: NUMBER?) ::
(DATETIME?)

Create a DateTime given the seconds
and nanoseconds since the start of the
epoch.

datetime.fromepochmillis() datetime.fromepochmillis(millisecond
s :: NUMBER?) :: (DATETIME?)

Create a DateTime given the
milliseconds since the start of the epoch.

datetime.realtime() datetime.realtime(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATETIME?)

Get the current DateTime instant using
the realtime clock.

266

Function Signature Description

datetime.statement() datetime.statement(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATETIME?)

Get the current DateTime instant using
the statement clock.

datetime.transaction() datetime.transaction(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATETIME?)

Get the current DateTime instant using
the transaction clock.

datetime.truncate() datetime.truncate(unit :: STRING?,
input = DEFAULT_TEMPORAL_ARGUMENT ::
ANY?, fields = null :: MAP?) ::
(DATETIME?)

Truncate the input temporal value to a
DateTime instant using the specified
unit.

localdatetime() localdatetime(input =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALDATETIME?)

Create a LocalDateTime instant.

localdatetime.realtime() localdatetime.realtime(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALDATETIME?)

Get the current LocalDateTime instant
using the realtime clock.

localdatetime.statement() localdatetime.statement(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALDATETIME?)

Get the current LocalDateTime instant
using the statement clock.

localdatetime.transaction() localdatetime.transaction(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALDATETIME?)

Get the current LocalDateTime instant
using the transaction clock.

localdatetime.truncate() localdatetime.truncate(unit ::
STRING?, input =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?,
fields = null :: MAP?) ::
(LOCALDATETIME?)

Truncate the input temporal value to a
LocalDateTime instant using the
specified unit.

localtime() localtime(input =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALTIME?)

Create a LocalTime instant.

localtime.realtime() localtime.realtime(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALTIME?)

Get the current LocalTime instant using
the realtime clock.

localtime.statement() localtime.statement(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALTIME?)

Get the current LocalTime instant using
the statement clock.

localtime.transaction() localtime.transaction(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALTIME?)

Get the current LocalTime instant using
the transaction clock.

localtime.truncate() localtime.truncate(unit :: STRING?,
input = DEFAULT_TEMPORAL_ARGUMENT ::
ANY?, fields = null :: MAP?) ::
(LOCALTIME?)

Truncate the input temporal value to a
LocalTime instant using the specified
unit.

time() time(input =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (TIME?)

Create a Time instant.

time.realtime() time.realtime(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (TIME?)

Get the current Time instant using the
realtime clock.

time.statement() time.statement(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (TIME?)

Get the current Time instant using the
statement clock.

267

Function Signature Description

time.transaction() time.transaction(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (TIME?)

Get the current Time instant using the
transaction clock.

time.truncate() time.truncate(unit :: STRING?, input
= DEFAULT_TEMPORAL_ARGUMENT :: ANY?,
fields = null :: MAP?) :: (TIME?)

Truncate the input temporal value to a
Time instant using the specified unit.

Temporal duration functions

Duration values of the temporal types can be created manipulated using the following functions:

Function Signature Description

duration() duration(input :: ANY?) ::
(DURATION?)

Construct a Duration value.

duration.between() duration.between(from :: ANY?, to ::
ANY?) :: (DURATION?)

Compute the duration between the
'from' instant (inclusive) and the 'to'
instant (exclusive) in logical units.

duration.inDays() duration.inDays(from :: ANY?, to ::
ANY?) :: (DURATION?)

Compute the duration between the
'from' instant (inclusive) and the 'to'
instant (exclusive) in days.

duration.inMonths() duration.inMonths(from :: ANY?, to
:: ANY?) :: (DURATION?)

Compute the duration between the
'from' instant (inclusive) and the 'to'
instant (exclusive) in months.

duration.inSeconds() duration.inSeconds(from :: ANY?, to
:: ANY?) :: (DURATION?)

Compute the duration between the
'from' instant (inclusive) and the 'to'
instant (exclusive) in seconds.

Spatial functions

These functions are used to specify 2D or 3D points in a geographic or cartesian Coordinate Reference
System and to calculate the geodesic distance between two points.

Function Signature Description

point.distance() point.distance(from :: POINT?, to ::
POINT?) :: (FLOAT?)

Returns a floating point number
representing the geodesic distance
between any two points in the same
CRS.

point() - Cartesian 2D point(input :: MAP?) :: (POINT?) Returns a 2D point object, given two
coordinate values in the Cartesian
coordinate system.

point() - Cartesian 3D point(input :: MAP?) :: (POINT?) Returns a 3D point object, given three
coordinate values in the Cartesian
coordinate system.

point() - WGS 84 2D point(input :: MAP?) :: (POINT?) Returns a 2D point object, given two
coordinate values in the WGS 84
geographic coordinate system.

268

Function Signature Description

point() - WGS 84 3D point(input :: MAP?) :: (POINT?) Returns a 3D point object, given three
coordinate values in the WGS 84
geographic coordinate system.

point.withinBBox() point.withinBBox(point :: POINT?,
lowerLeft :: POINT?, upperRight ::
POINT?) :: (BOOLEAN?)

Returns true if the provided point is
within the bounding box defined by the
two provided points, lowerLeft and
upperRight.

LOAD CSV functions

LOAD CSV functions can be used to get information about the file that is processed by LOAD CSV.

Function Signature Description

file() file() :: (STRING?) Returns the absolute path of the file that
LOAD CSV is using.

linenumber() linenumber() :: (INTEGER?) Returns the line number that LOAD CSV
is currently using.

Graph functions

Graph functions provide information about the constituent graphs in composite databases.

Function Signature Description

graph.names() graph.names() :: (LIST? OF STRING?) Returns a list containing the names of all
graphs in the current composite
database.

graph.propertiesByName() graph.propertiesByName(name ::
STRING?) :: (MAP?)

Returns a map containing the properties
associated with the given graph.

graph.byName() USE graph.byName(name :: STRING?) Resolves a constituent graph by name.

User-defined functions

User-defined functions are written in Java, deployed into the database and are called in the same way as
any other Cypher function. There are two main types of functions that can be developed and used:

Type Description Usage Developing

Scalar For each row the function
takes parameters and returns
a result.

Using UDF Extending Neo4j (UDF)

Aggregating Consumes many rows and
produces an aggregated
result.

Using aggregating UDF Extending Neo4j
(Aggregating UDF)

269

https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-aggregation-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-aggregation-functions

Predicate functions

Predicates are boolean functions that return true or false for a given set of non-null input.

They are most commonly used to filter out paths in the WHERE part of a query.

Functions:

• all()

• any()

• exists()

• isEmpty()

• none()

• single()

name = 'Alice'
age = 38
eyes = 'brown'

name = 'Charlie'
age = 53
eyes = 'green'

KNOWS

name = 'Bob'
age = 25
eyes = 'blue'

KNOWS

eyes = 'brown'
liked_colors = []
name = 'Daniel'
age = 54

KNOWS KNOWS

eyes = 'blue'
liked_colors = ['pink', 'yellow', 'black']
name = 'Eskil'
age = 41

MARRIED

eyes = ''
liked_colors = ['blue', 'green']
alias = 'Frank'
age = 61

Person

all()

The function all() returns true if the predicate holds for all elements in the given list.

null is returned if the list is null or if the predicate evaluates to null for at least one element and does not
evaluate to false for any other element.

Syntax:

all(variable IN list WHERE predicate)

Returns:

A Boolean.

270

Arguments:

Name Description

list An expression that returns a list. A single element
cannot be explicitly passed as a literal in the cypher
statement. However, an implicit conversion will
happen for single elements when passing node
properties during cypher execution.

variable A variable that can be used from within the predicate.

predicate A predicate that is tested against all items in the list.

Example 71. all()

Query

MATCH p = (a)-[*1..3]->(b)
WHERE
 a.name = 'Alice'
 AND b.name = 'Daniel'
 AND all(x IN nodes(p) WHERE x.age > 30)
RETURN p

All nodes in the returned paths will have a property age with a value larger than 30.

Table 295. Result

p

[{"name":"Alice","eyes":"brown","age":38},{},{"name":"Charlie","eyes":"green","age":53},{"name":"Charlie"
,"eyes":"green","age":53},{},{"name":"Daniel","eyes":"brown","age":54}]

Rows: 1

any()

The function any() returns true if the predicate holds for at least one element in the given list.

null is returned if the list is null, or if the predicate evaluates to null for at least one element and does not
evaluate to true for any other element.

Syntax:

any(variable IN list WHERE predicate)

Returns:

A Boolean.

Arguments:

271

Name Description

list An expression that returns a list. A single element
cannot be explicitly passed as a literal in the cypher
statement. However, an implicit conversion will
happen for single elements when passing node
properties during cypher execution.

variable A variable that can be used from within the predicate.

predicate A predicate that is tested against all items in the list.

Example 72. any()

Query

MATCH (n)
WHERE any(color IN n.liked_colors WHERE color = 'yellow')
RETURN n

The query returns nodes with the property liked_colors (as a list), where at least one element has
the value 'yellow'.

Table 296. Result

n

Node[4]{eyes:"blue",liked_colors:["pink","yellow","black"],name:"Eskil",age:41}

Rows: 1

exists()

The function exists() returns true if a match for the given pattern exists in the graph.

null is returned if the input argument is null.

 To check if a property is not null use the IS NOT NULL predicate.

Syntax:

exists(pattern)

Returns:

A Boolean.

Arguments:

272

Name Description

pattern A pattern.

Example 73. exists()

Query

MATCH (n)
WHERE n.name IS NOT NULL
RETURN
 n.name AS name,
 exists((n)-[:MARRIED]->()) AS is_married

The names of all nodes with the name property are returned, along with a boolean (true or false)
indicating if they are married.

Table 297. Result

name is_married

"Alice" false

"Bob" true

"Charlie" false

"Daniel" false

"Eskil" false

Rows: 5



The function exists() looks very similar to the expression EXISTS { ... }, but they are
not related.

See Using EXISTS subqueries for more information.

isEmpty()

The function isEmpty() returns true if the given list or map contains no elements or if the given string
contains no characters.

Syntax:

isEmpty(list)

Returns:

A Boolean.

Arguments:

273

Name Description

list An expression that returns a list.

Example 74. isEmpty(list)

Query

MATCH (n)
WHERE NOT isEmpty(n.liked_colors)
RETURN n

The nodes with the property liked_colors being non-empty are returned.

Table 298. Result

n

Node[4]{eyes:"blue",liked_colors:["pink","yellow","black"],name:"Eskil",age:41}

Node[5]{eyes:"",liked_colors:["blue","green"],alias:"Frank",age:61}

Rows: 2

Syntax:

isEmpty(map)

Returns:

A Boolean.

Arguments:

Name Description

map An expression that returns a map.

274

Example 75. isEmpty(map)

Query

MATCH (n)
WHERE isEmpty(properties(n))
RETURN n

Nodes that does not have any properties are returned.

Table 299. Result

n

Node[6]{}

Rows: 1

Syntax:

isEmpty(string)

Returns:

A Boolean.

Arguments:

Name Description

string An expression that returns a string.

Example 76. isEmpty(string)

Query

MATCH (n)
WHERE isEmpty(n.eyes)
RETURN n.age AS age

The age are returned for each node that has a property eyes where the value evaulates to be empty
(empty string).

Table 300. Result

age

61

Rows: 1

275



The function isEmpty(), like most other Cypher functions, returns null if null is passed
in to the function. That means that a predicate isEmpty(n.eyes) will filter out all nodes
where the eyes property is not set. Thus, isEmpty() is not suited to test for null-values.
IS NULL or IS NOT NULL should be used for that purpose.

none()

The function none() returns true if the predicate does not hold for any element in the given list.

null is returned if the list is null, or if the predicate evaluates to null for at least one element and does not
evaluate to true for any other element.

Syntax:

none(variable IN list WHERE predicate)

Returns:

A Boolean.

Arguments:

Name Description

list An expression that returns a list. A single element
cannot be explicitly passed as a literal in the cypher
statement. However, an implicit conversion will
happen for single elements when passing node
properties during cypher execution.

variable A variable that can be used from within the predicate.

predicate A predicate that is tested against all items in the list.

276

Example 77. none()

Query

MATCH p = (n)-[*1..3]->(b)
WHERE
 n.name = 'Alice'
 AND none(x IN nodes(p) WHERE x.age = 25)
RETURN p

No node in the returned paths has a property age with the value 25.

Table 301. Result

p

(0)-[KNOWS,1]->(2)

(0)-[KNOWS,1]->(2)-[KNOWS,3]->(3)

Rows: 2

single()

The function single() returns true if the predicate holds for exactly one of the elements in the given list.

null is returned if the list is null, or if the predicate evaluates to null for at least one element and true for
max one element.

Syntax:

single(variable IN list WHERE predicate)

Returns:

A Boolean.

Arguments:

Name Description

list An expression that returns a list.

variable A variable that can be used from within the predicate.

predicate A predicate that is tested against all items in the list.

277

Example 78. single()

Query

MATCH p = (n)-->(b)
WHERE
 n.name = 'Alice'
 AND single(var IN nodes(p) WHERE var.eyes = 'blue')
RETURN p

In every returned path there is exactly one node that has a property eyes with the value 'blue'.

Table 302. Result

p

(0)-[KNOWS,0]->(1)

Rows: 1

Scalar functions

Scalar functions return a single value.

Functions:

• coalesce()

• elementId()

• endNode()

• head()

• id() Deprecated

• last()

• length()

• properties()

• randomUUID()

• size()

• Size of pattern comprehension

• Size of string

• startNode()

• timestamp()

• toBoolean()

• toBooleanOrNull()

• toFloat()

278

• toFloatOrNull()

• toInteger()

• toIntegerOrNull()

• type()



The length() and size() functions are quite similar, and so it is important to take note of
the difference.

Function length()

Only works for paths.

Function size()

Only works for the three types: strings, lists, pattern comprehension.

Developer

name = 'Alice'
age = 38
eyes = 'brown'

name = 'Charlie'
age = 53
eyes = 'green'

KNOWS

name = 'Bob'
age = 25
eyes = 'blue'

KNOWS

name = 'Daniel'
age = 54
eyes = 'brown'

KNOWS KNOWS

eyes = 'blue'
liked_colors = ['pink', 'yellow', 'black']
name = 'Eskil'
age = 41

MARRIED

coalesce()

The function coalesce() returns the first non-null value in the given list of expressions.

Syntax:

coalesce(expression [, expression]*)

Returns:

The type of the value returned will be that of the first non-null expression.

Arguments:

Name Description

expression An expression that may return null.

279

Considerations:

null will be returned if all the arguments are null.

Example 79. coalesce()

Query

MATCH (a)
WHERE a.name = 'Alice'
RETURN coalesce(a.hairColor, a.eyes)

Table 303. Result

coalesce(a.hairColor, a.eyes)

"brown"

Rows: 1

elementId()

The function elementId() returns a node or relationship identifier, unique within a specific transaction and
DBMS.



Every node and relationship is guaranteed an element ID. This ID is unique among both
nodes and relationships across all databases in the same DBMS within the scope of a
single transaction.

However, no guarantees are given regarding the order of the returned ID values or the
length of the ID string values.

Outside of the scope of a single transaction, no guarantees are given about the mapping
between ID values and elements.

Syntax:

elementId(expression)

Returns:

A String.

Arguments:

Name Description

expression An expression that returns a node or a relationship.

Considerations:

280

elementId(null) returns null.

elementId on values other than a node, relationship, or null will fail the query.

Example 80. elementId()

Query

MATCH (a)
RETURN elementId(a)

The node identifier for each of the nodes is returned.

Table 304. Result

elementId(a)

"4:c0a65d96-4993-4b0c-b036-e7ebd9174905:0"

"4:c0a65d96-4993-4b0c-b036-e7ebd9174905:1"

"4:c0a65d96-4993-4b0c-b036-e7ebd9174905:2"

"4:c0a65d96-4993-4b0c-b036-e7ebd9174905:3"

"4:c0a65d96-4993-4b0c-b036-e7ebd9174905:4"

Rows: 5

endNode()

The function endNode() returns the end node of a relationship.

Syntax:

endNode(relationship)

Returns:

A Node.

Arguments:

Name Description

relationship An expression that returns a relationship.

Considerations:

endNode(null) returns null.

281

Example 81. endNode()

Query

MATCH (x:Developer)-[r]-()
RETURN endNode(r)

Table 305. Result

endNode(r)

{name:"Bob",age:25,eyes:"blue"}

{name:"Charlie",age:53,eyes:"green"}

Rows: 2

head()

The function head() returns the first element in a list.

Syntax:

head(expression)

Returns:

The type of the value returned will be that of the first element of the list.

Arguments:

Name Description

expression An expression that returns a list.

Considerations:

head(null) returns null.

head([]) returns null.

If the first element in list is null, head(list) will return null.

282

Example 82. head()

Query

MATCH (a)
WHERE a.name = 'Eskil'
RETURN a.liked_colors, head(a.liked_colors)

The first element in the list is returned.

Table 306. Result

a.liked_colors head(a.liked_colors)

["pink","yellow","black"] "pink"

Rows: 1

id() Deprecated

The function id() returns a node or a relationship identifier, unique by an object type and a database.
Therefore, it is perfectly allowable for id() to return the same value for both nodes and relationships in the
same database. For examples on how to get a node and a relationship by ID, see Get node or relationship
by ID.

 The function id is deprecated. Use the function elementId instead.



Neo4j implements the ID so that:

Node

Every node in a database has an identifier. The identifier for a node is guaranteed to be
unique among other nodes' identifiers in the same database, within the scope of a single
transaction.

Relationship

Every relationship in a database has an identifier. The identifier for a relationship is
guaranteed to be unique among other relationships' identifiers in the same database,
within the scope of a single transaction.

283



On a composite database, the id() function should be used with caution. It is
recommended to use elementId() instead.

When called in database-specific subqueries, the resulting id value for a node or
relationship is local to that database. The local id for nodes or relationships from different
databases may be the same.

When called from the root context of a query, the resulting value is an extended id for
the node or relationship. The extended id is likely different from the local id for the same
node or relationship.

Syntax:

id(expression)

Returns:

An Integer.

Arguments:

Name Description

expression An expression that returns a node or a relationship.

Considerations:

id(null) returns null.

Example 83. id()

Query

MATCH (a)
RETURN id(a)

The node identifier for each of the nodes is returned.

Table 307. Result

id(a)

0

1

2

3

4

Rows: 5

284

last()

The function last() returns the last element in a list.

Syntax:

last(expression)

Returns:

The type of the value returned will be that of the last element of the list.

Arguments:

Name Description

expression An expression that returns a list.

Considerations:

last(null) returns null.

last([]) returns null.

If the last element in list is null, last(list) will return null.

Example 84. last()

Query

MATCH (a)
WHERE a.name = 'Eskil'
RETURN a.liked_colors, last(a.liked_colors)

The last element in the list is returned.

Table 308. Result

a.liked_colors last(a.liked_colors)

["pink","yellow","black"] "black"

Rows: 1

length()

The function length() returns the length of a path.

Syntax:

length(path)

285

Returns:

An Integer.

Arguments:

Name Description

path An expression that returns a path.

Considerations:

length(null) returns null.

Example 85. length()

Query

MATCH p = (a)-->(b)-->(c)
WHERE a.name = 'Alice'
RETURN length(p)

The length of the path p is returned.

Table 309. Result

length(p)

2

2

2

Rows: 3

properties()

The function properties() returns a map containing all the properties; the function can be utilized for a
relationship or a node. If the argument is already a map, it is returned unchanged.

Syntax:

properties(expression)

Returns:

A Map.

Arguments:

286

Name Description

expression An expression that returns a relationship, a node, or a map.

Considerations:

properties(null) returns null.

Example 86. properties()

Query

CREATE (p:Person {name: 'Stefan', city: 'Berlin'})
RETURN properties(p)

Table 310. Result

properties(p)

{"city":"Berlin","name":"Stefan"}

Rows: 1
Nodes created: 1
Properties set: 2
Labels added: 1

randomUUID()

The function randomUUID() returns a randomly-generated Universally Unique Identifier (UUID), also known
as a Globally Unique Identifier (GUID). This is a 128-bit value with strong guarantees of uniqueness.

Syntax:

randomUUID()

Returns:

A String.

287

Example 87. randomUUID()

Query

RETURN randomUUID() AS uuid

Table 311. Result

uuid

"9f4c297d-309a-4743-a196-4525b96135c1"

Rows: 1

A randomly-generated UUID is returned.

size()

The function size() returns the number of elements in a list.

Syntax:

size(list)

Returns:

An Integer.

Arguments:

Name Description

list An expression that returns a list.

Considerations:

size(null) returns null.

288

Example 88. size()

Query

RETURN size(['Alice', 'Bob'])

Table 312. Result

size(['Alice', 'Bob'])

2

Rows: 1

The number of elements in the list is returned.

size() applied to pattern comprehension

This is the same function size() as described above, but you pass in a pattern comprehension. The
function size will then calculate on a list of paths.

Syntax:

size(pattern comprehension)

Arguments:

Name Description

pattern comprehension A pattern comprehension that returns a list.

Example 89. size()

Query

MATCH (a)
WHERE a.name = 'Alice'
RETURN size([p=(a)-->()-->() | p]) AS fof

Table 313. Result

fof

3

Rows: 1

The number of paths matching the pattern expression is returned. (The size of the list of paths).

289

size() applied to string

The function size() returns the number of Unicode characters in a string.

Syntax:

size(string)

Returns:

An Integer.

Arguments:

Name Description

string An expression that returns a string value.

Considerations:

size(null) returns null.

Example 90. size()

Query

MATCH (a)
WHERE size(a.name) > 6
RETURN size(a.name)

Table 314. Result

size(a.name)

7

Rows: 1

The number of characters in the string 'Charlie' is returned.

startNode()

The function startNode() returns the start node of a relationship.

Syntax:

startNode(relationship)

Returns:

290

A Node.

Arguments:

Name Description

relationship An expression that returns a relationship.

Considerations:

startNode(null) returns null.

Example 91. startNode()

Query

MATCH (x:Developer)-[r]-()
RETURN startNode(r)

Table 315. Result

startNode(r)

{name:"Alice",age:38,eyes:"brown"}

{name:"Alice",age:38,eyes:"brown"}

Rows: 2

timestamp()

The function timestamp() returns the difference, measured in milliseconds, between the current time and
midnight, January 1, 1970 UTC.

 It is the equivalent of datetime().epochMillis.

Syntax:

timestamp()

Returns:

An Integer.

Considerations:

timestamp() will return the same value during one entire query, even for long-running queries.

291

Example 92. timestamp()

Query

RETURN timestamp()

The time in milliseconds is returned.

Table 316. Result

timestamp()

1655201331965

Rows: 1

toBoolean()

The function toBoolean() converts a string, integer or boolean value to a boolean value.

Syntax:

toBoolean(expression)

Returns:

A Boolean.

Arguments:

Name Description

expression An expression that returns a boolean, string or integer value.

Considerations:

toBoolean(null) returns null.

If expression is a boolean value, it will be returned unchanged.

If the parsing fails, null will be returned.

If expression is the integer value 0, false will be returned. For any other integer value true will be returned.

This function will return an error if provided with an expression that is not a string, integer or boolean value.

292

Example 93. toBoolean()

Query

RETURN toBoolean('true'), toBoolean('not a boolean'), toBoolean(0)

Table 317. Result

toBoolean('true') toBoolean('not a boolean') toBoolean(0)

true <null> false

Rows: 1

toBooleanOrNull()

The function toBooleanOrNull() converts a string, integer or boolean value to a boolean value. For any
other input value, null will be returned.

Syntax:

toBooleanOrNull(expression)

Returns:

A Boolean or null.

Arguments:

Name Description

expression Any expression that returns a value.

Considerations:

toBooleanOrNull(null) returns null.

If expression is a boolean value, it will be returned unchanged.

If the parsing fails, null will be returned.

If expression is the integer value 0, false will be returned. For any other integer value true will be returned.

If the expression is not a string, integer or boolean value, null will be returned.

293

Example 94. toBooleanOrNull()

Query

RETURN toBooleanOrNull('true'), toBooleanOrNull('not a boolean'), toBooleanOrNull(0),
toBooleanOrNull(1.5)

Table 318. Result

toBooleanOrNull('true') toBooleanOrNull('not a
boolean')

toBooleanOrNull(0) toBooleanOrNull(1.5)

true <null> false <null>

Rows: 1

toFloat()

The function toFloat() converts an integer, floating point or a string value to a floating point number.

Syntax:

toFloat(expression)

Returns:

A Float.

Arguments:

Name Description

expression An expression that returns a numeric or a string value.

Considerations:

toFloat(null) returns null.

If expression is a floating point number, it will be returned unchanged.

If the parsing fails, null will be returned.

This function will return an error if provided with an expression that is not an integer, floating point or a string value.

294

Example 95. toFloat()

Query

RETURN toFloat('11.5'), toFloat('not a number')

Table 319. Result

toFloat('11.5') toFloat('not a number')

11.5 <null>

Rows: 1

toFloatOrNull()

The function toFloatOrNull() converts an integer, floating point or a string value to a floating point
number. For any other input value, null will be returned.

Syntax:

toFloatOrNull(expression)

Returns:

A Float or null.

Arguments:

Name Description

expression Any expression that returns a value.

Considerations:

toFloatOrNull(null) returns null.

If expression is a floating point number, it will be returned unchanged.

If the parsing fails, null will be returned.

If the expression is not an integer, floating point or a string value, null will be returned.

295

Example 96. toFloatOrNull()

Query

RETURN toFloatOrNull('11.5'), toFloatOrNull('not a number'), toFloatOrNull(true)

Table 320. Result

toFloatOrNull('11.5') toFloatOrNull('not a number') toFloatOrNull(true)

11.5 <null> <null>

Rows: 1

toInteger()

The function toInteger() converts a boolean, integer, floating point or a string value to an integer value.

Syntax:

toInteger(expression)

Returns:

An Integer.

Arguments:

Name Description

expression An expression that returns a boolean, numeric or a string
value.

Considerations:

toInteger(null) returns null.

If expression is an integer value, it will be returned unchanged.

If the parsing fails, null will be returned.

If expression is the boolean value false, 0 will be returned.

If expression is the boolean value true, 1 will be returned.

This function will return an error if provided with an expression that is not a boolean, floating point, integer or a string value.

296

Example 97. toInteger()

Query

RETURN toInteger('42'), toInteger('not a number'), toInteger(true)

Table 321. Result

toInteger('42') toInteger('not a number') toInteger(true)

42 <null> 1

Rows: 1

toIntegerOrNull()

The function toIntegerOrNull() converts a boolean, integer, floating point or a string value to an integer
value. For any other input value, null will be returned.

Syntax:

toIntegerOrNull(expression)

Returns:

An Integer or null.

Arguments:

Name Description

expression Any expression that returns a value.

Considerations:

toIntegerOrNull(null) returns null.

If expression is an integer value, it will be returned unchanged.

If the parsing fails, null will be returned.

If expression is the boolean value false, 0 will be returned.

If expression is the boolean value true, 1 will be returned.

If the expression is not a boolean, floating point, integer or a string value, null will be returned.

297

Example 98. toIntegerOrNull()

Query

RETURN toIntegerOrNull('42'), toIntegerOrNull('not a number'), toIntegerOrNull(true),
toIntegerOrNull(['A', 'B', 'C'])

Table 322. Result

toIntegerOrNull('42') toIntegerOrNull('not a
number')

toIntegerOrNull(true) toIntegerOrNull(['A', 'B',
'C'])

42 <null> 1 <null>

Rows: 1

type()

The function type() returns the string representation of the relationship type.

Syntax:

type(relationship)

Returns:

A String.

Arguments:

Name Description

relationship An expression that returns a relationship.

Considerations:

type(null) returns null.

298

Example 99. type()

Query

MATCH (n)-[r]->()
WHERE n.name = 'Alice'
RETURN type(r)

The relationship type of r is returned.

Table 323. Result

type(r)

"KNOWS"

"KNOWS"

Rows: 2

Aggregating functions

Aggregating functions take a set of values and calculate an aggregated value over them.

Functions:

• avg() - Numeric values

• avg() - Durations

• collect()

• count()

• max()

• min()

• percentileCont()

• percentileDisc()

• stDev()

• stDevP()

• sum() - Numeric values

• sum() - Durations

Aggregation can be computed over all the matching paths, or it can be further divided by introducing
grouping keys. Grouping keys are non-aggregate expressions, that are used to group the values going into
the aggregate functions.

Assume we have the following return statement:

299

RETURN n, count(*)

We have two return expressions: n, and count(*). The first, n, is not an aggregate function, so it will be the
grouping key. The latter, count(*) is an aggregate expression. The matching paths will be divided into
different buckets, depending on the grouping key. The aggregate function will then be run on these
buckets, calculating an aggregate value per bucket.

The input expression of an aggregation function can contain any expression, including expressions that are
not grouping keys. However, not all expressions can be composed with aggregation functions. The
example below will throw an error since we compose n.x, which is not a grouping key, with the
aggregation expression count(*). For more information see Grouping keys.

RETURN n.x + count(*)

To use aggregations to sort the result set, the aggregation must be included in the RETURN to be used in the
ORDER BY.

The DISTINCT operator works in conjunction with aggregation. It is used to make all values unique before
running them through an aggregate function. More information about DISTINCT may be found in Syntax →
Aggregation operators.

The following graph is used for the examples below:

Person

age = 13
name = 'A'

Person

eyes = 'blue'
age = 33
name = 'B'

KNOWS

Person

eyes = 'blue'
age = 44
name = 'C'

KNOWS

Person

eyes = 'brown'
name = 'D'

KNOWS

Book

name = 'Cypher'

READS

Person

name = 'D'

KNOWS KNOWS

avg() - Numeric values

The function avg() returns the average of a set of numeric values.

Syntax:

avg(expression)

Returns:

300

Either an Integer or a Float, depending on the values returned by expression and whether or not the calculation overflows.

Arguments:

Name Description

expression An expression returning a set of numeric values.

Considerations:

Any null values are excluded from the calculation.

avg(null) returns null.

Example 100. avg()

Query

MATCH (n:Person)
RETURN avg(n.age)

The average of all the values in the property age is returned.

Table 324. Result

avg(n.age)

30.0

Rows: 1

avg() - Durations

The function avg() returns the average of a set of Durations.

Syntax:

avg(expression)

Returns:

A Duration.

Arguments:

Name Description

expression An expression returning a set of Durations.

Considerations:

301

Any null values are excluded from the calculation.

avg(null) returns null.

Example 101. avg()

Query

UNWIND [duration('P2DT3H'), duration('PT1H45S')] AS dur
RETURN avg(dur)

The average of the two supplied Durations is returned.

Table 325. Result

avg(dur)

P1DT2H22.5S

Rows: 1

collect()

The function collect() returns a single aggregated list containing the values returned by an expression.

Syntax:

collect(expression)

Returns:

A list containing heterogeneous elements; the types of the elements are determined by the values returned by expression.

Arguments:

Name Description

expression An expression returning a set of values.

Considerations:

Any null values are ignored and will not be added to the list.

collect(null) returns an empty list.

302

Example 102. collect()

Query

MATCH (n:Person)
RETURN collect(n.age)

All the values are collected and returned in a single list.

Table 326. Result

collect(n.age)

[13,33,44]

Rows: 1

count()

The function count() returns the number of values or rows, and appears in two variants:

count(*)

returns the number of matching rows.

count(expr)

returns the number of non-null values returned by an expression.

Syntax:

count(expression)

Returns:

An Integer.

Arguments:

Name Description

expression An expression.

Considerations:

count(*) includes rows returning null.

count(expr) ignores null values.

count(null) returns 0.

303

Using count(*) to return the number of nodes

The function count(*) can be used to return the number of nodes; for example, the number of nodes
connected to some node n.

Example 103. count()

Query

MATCH (n {name: 'A'})-->(x)
RETURN labels(n), n.age, count(*)

The labels and age property of the start node n and the number of nodes related to n are returned.

Table 327. Result

labels(n) n.age count(*)

["Person"] 13 4

Rows: 1

Using count(*) to group and count relationship types

The function count(*) can be used to group the type of matched relationships and return the number.

Example 104. count()

Query

MATCH (n {name: 'A'})-[r]->()
RETURN type(r), count(*)

The type of matched relationships are grouped and the group count are returned.

Table 328. Result

type(r) count(*)

"KNOWS" 3

"READS" 1

Rows: 2

Counting non-null values

Instead of simply returning the number of rows with count(*), the function count(expression) can be
used to return the number of non-null values returned by the expression.

304

Example 105. count()

Query

MATCH (n:Person)
RETURN count(n.age)

The number of nodes with the label Person and a property age is returned. (If you want the sum, use
sum(n.age))

Table 329. Result

count(n.age)

3

Rows: 1

Counting with and without duplicates

In this example we are trying to find all our friends of friends, and count them:

count(DISTINCT friend_of_friend)

Will only count a friend_of_friend once, as DISTINCT removes the duplicates.

count(friend_of_friend)

Will consider the same friend_of_friend multiple times.

Example 106. count()

Query

MATCH (me:Person)-->(friend:Person)-->(friend_of_friend:Person)
WHERE me.name = 'A'
RETURN count(DISTINCT friend_of_friend), count(friend_of_friend)

Both B and C know D and thus D will get counted twice when not using DISTINCT.

Table 330. Result

count(DISTINCT friend_of_friend) count(friend_of_friend)

1 2

Rows: 1

max()

The function max() returns the maximum value in a set of values.

Syntax:

305

max(expression)

Returns:

A property type, or a list, depending on the values returned by expression.

Arguments:

Name Description

expression An expression returning a set containing any combination of
property types and lists thereof.

Considerations:

Any null values are excluded from the calculation.

In a mixed set, any numeric value is always considered to be higher than any string value, and any string value is always
considered to be higher than any list.

Lists are compared in dictionary order, i.e. list elements are compared pairwise in ascending order from the start of the list to
the end.

max(null) returns null.

Example 107. max()

Query

UNWIND [1, 'a', null, 0.2, 'b', '1', '99'] AS val
RETURN max(val)

The highest of all the values in the mixed set — in this case, the numeric value 1 — is returned.


The value '99' (a string), is considered to be a lower value than 1 (an integer),
because '99' is a string.

Table 331. Result

max(val)

1

Rows: 1

306

Example 108. max()

Query

UNWIND [[1, 'a', 89], [1, 2]] AS val
RETURN max(val)

The highest of all the lists in the set — in this case, the list [1, 2] — is returned, as the number 2 is
considered to be a higher value than the string 'a', even though the list [1, 'a', 89] contains more
elements.

Table 332. Result

max(val)

[1,2]

Rows: 1

Example 109. max()

Query

MATCH (n:Person)
RETURN max(n.age)

The highest of all the values in the property age is returned.

Table 333. Result

max(n.age)

44

Rows: 1

min()

The function min() returns the minimum value in a set of values.

Syntax:

min(expression)

Returns:

A property type, or a list, depending on the values returned by expression.

Arguments:

307

Name Description

expression An expression returning a set containing any combination of
property types and lists thereof.

Considerations:

Any null values are excluded from the calculation.

In a mixed set, any string value is always considered to be lower than any numeric value, and any list is always considered to
be lower than any string.

Lists are compared in dictionary order, i.e. list elements are compared pairwise in ascending order from the start of the list to
the end.

min(null) returns null.

Example 110. min()

Query

UNWIND [1, 'a', null, 0.2, 'b', '1', '99'] AS val
RETURN min(val)

The lowest of all the values in the mixed set — in this case, the string value "1" — is returned. Note
that the (numeric) value 0.2, which may appear at first glance to be the lowest value in the list, is
considered to be a higher value than "1" as the latter is a string.

Table 334. Result

min(val)

"1"

Rows: 1

Example 111. min()

Query

UNWIND ['d', [1, 2], ['a', 'c', 23]] AS val
RETURN min(val)

The lowest of all the values in the set — in this case, the list ['a', 'c', 23] — is returned, as (i) the
two lists are considered to be lower values than the string "d", and (ii) the string "a" is considered to
be a lower value than the numerical value 1.

Table 335. Result

min(val)

["a","c",23]

Rows: 1

308

Example 112. min()

Query

MATCH (n:Person)
RETURN min(n.age)

The lowest of all the values in the property age is returned.

Table 336. Result

min(n.age)

13

Rows: 1

percentileCont()

The function percentileCont() returns the percentile of the given value over a group, with a percentile
from 0.0 to 1.0. It uses a linear interpolation method, calculating a weighted average between two values
if the desired percentile lies between them. For nearest values using a rounding method, see
percentileDisc.

Syntax:

percentileCont(expression, percentile)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

percentile A numeric value between 0.0 and 1.0.

Considerations:

Any null values are excluded from the calculation.

percentileCont(null, percentile) returns null.

309

Example 113. percentileCont()

Query

MATCH (n:Person)
RETURN percentileCont(n.age, 0.4)

The 40th percentile of the values in the property age is returned, calculated with a weighted average.

Table 337. Result

percentileCont(n.age, 0.4)

29.0

Rows: 1

percentileDisc()

The function percentileDisc() returns the percentile of the given value over a group, with a percentile
from 0.0 to 1.0. It uses a rounding method and calculates the nearest value to the percentile. For
interpolated values, see percentileCont.

Syntax:

percentileDisc(expression, percentile)

Returns:

Either an Integer or a Float, depending on the values returned by expression and whether or not the calculation overflows.

Arguments:

Name Description

expression A numeric expression.

percentile A numeric value between 0.0 and 1.0.

Considerations:

Any null values are excluded from the calculation.

percentileDisc(null, percentile) returns null.

310

Example 114. percentileDisc()

Query

MATCH (n:Person)
RETURN percentileDisc(n.age, 0.5)

The 50th percentile of the values in the property age is returned.

Table 338. Result

percentileDisc(n.age, 0.5)

33

Rows: 1

stDev()

The function stDev() returns the standard deviation for the given value over a group. It uses a standard
two-pass method, with N - 1 as the denominator, and should be used when taking a sample of the
population for an unbiased estimate. When the standard variation of the entire population is being
calculated, stdDevP should be used.

Syntax:

stDev(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

Any null values are excluded from the calculation.

stDev(null) returns 0.

311

Example 115. stDev()

Query

MATCH (n)
WHERE n.name IN ['A', 'B', 'C']
RETURN stDev(n.age)

The standard deviation of the values in the property age is returned.

Table 339. Result

stDev(n.age)

15.716233645501712

Rows: 1

stDevP()

The function stDevP() returns the standard deviation for the given value over a group. It uses a standard
two-pass method, with N as the denominator, and should be used when calculating the standard deviation
for an entire population. When the standard variation of only a sample of the population is being
calculated, stDev should be used.

Syntax:

stDevP(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

Any null values are excluded from the calculation.

stDevP(null) returns 0.

312

Example 116. stDevP()

Query

MATCH (n)
WHERE n.name IN ['A', 'B', 'C']
RETURN stDevP(n.age)

The population standard deviation of the values in the property age is returned.

Table 340. Result

stDevP(n.age)

12.832251036613439

Rows: 1

sum() - Numeric values

The function sum() returns the sum of a set of numeric values.

Syntax:

sum(expression)

Returns:

Either an Integer or a Float, depending on the values returned by expression.

Arguments:

Name Description

expression An expression returning a set of numeric values.

Considerations:

Any null values are excluded from the calculation.

sum(null) returns 0.

313

Example 117. sum()

Query

MATCH (n:Person)
RETURN sum(n.age)

The sum of all the values in the property age is returned.

Table 341. Result

sum(n.age)

90

Rows: 1

sum() - Durations

The function sum() returns the sum of a set of durations.

Syntax:

sum(expression)

Returns:

A Duration.

Arguments:

Name Description

expression An expression returning a set of Durations.

Considerations:

Any null values are excluded from the calculation.

314

Example 118. sum()

Query

UNWIND [duration('P2DT3H'), duration('PT1H45S')] AS dur
RETURN sum(dur)

The sum of the two supplied Durations is returned.

Table 342. Result

sum(dur)

P2DT4H45S

Rows: 1

Grouping keys

Aggregation expressions are expressions which contain one or more aggregation functions. A simple
aggregation expression consists of a single aggregation function. For instance, SUM(x.a) is an aggregation
expression that only consists of the aggregation function SUM() with x.a as its argument. Aggregation
expressions are also allowed to be more complex, where the result of one or more aggregation functions
are input arguments to other expressions. For instance, 0.1 * (SUM(x.a) / COUNT(x.b)) is an aggregation
expression that contains two aggregation functions, SUM() with x.a as its argument and COUNT() with
x.b as its argument. Both are input arguments to the division expression.

For aggregation expressions to be correctly computable for the buckets formed by the grouping key(s),
they have to fulfill some requirements. Specifically, each sub expression in an aggregation expression has
to be either:

• an aggregation function, e.g. SUM(x.a),

• a constant, e.g. 0.1,

• a parameter, e.g. $param,

• a grouping key, e.g. the a in RETURN a, count(*)

• a local variable, e.g. the x in count(*) + size([x IN range(1, 10) | x]), or

• a subexpression, all whose operands are operands allowed in an aggregation expression.

Examples of aggregation expressions.

315

Example 119. Simple aggregation without any grouping keys:

Query

MATCH (p: Person) RETURN max(p.age)

Table 343. Result

max(p.age)

44

Rows: 1

Example 120. Addition of an aggregation and a constant, without any grouping keys:

Query

MATCH (p: Person) RETURN max(p.age) + 1

Table 344. Result

max(p.age) + 1

45

Rows: 1

Example 121. Subtraction of a property access and an aggregation.

Note that n is a grouping key:

Query

MATCH (n: Person{name:"A"})-[:KNOWS]-(f:Person) RETURN n, n.age - max(f.age)

Table 345. Result

n n.age - max(f.age)

Node[0]{age:13,name:"A"} -31

Rows: 1

316

Example 122. Subtraction of a property access and an aggregation.

Note that n.age is a grouping key:

Query

MATCH (n: Person{name:"A"})-[:KNOWS]-(f:Person) RETURN n.age, n.age - max(f.age)

Table 346. Result

n.age n.age - max(f.age)

13 -31

Rows: 1

Grouping keys themselves can be complex expressions. For better query readability, Cypher only
recognizes a sub-expression in aggregation expressions as a grouping key if the grouping key is
either:

• A variable - e.g. the n in RETURN n, n.age - max(f.age)

• A property access - e.g. the n.age in RETURN n.age, n.age - max(f.age)

• A map access - e.g. the n.age in WITH {age: 34, name:Chris} AS n RETURN n.age, n.age -
max(n.age)

If more complex grouping keys are needed as operands in aggregation expression, it is always
possible to project them in advance with WITH.

Using the property n.age will throw an exception, since n.age is not a grouping key:

Query

MATCH (n: Person{name:"A"})-[:KNOWS]-(f:Person) RETURN n.age - max(f.age)

n.age + n.age is not a valid grouping key, since the expression is not a variable, property access or
map access. It can therefore not be used in the expression which contains the aggregation function:

Query

MATCH (n: Person{name:"A"})-[:KNOWS]-(f:Person) RETURN n.age + n.age, n.age + n.age - max(f.age)

The above query could be rewritten to:

Query

MATCH (n: Person{name:"A"})-[:KNOWS]-(f:Person) WITH n.age + n.age AS groupingKey, f RETURN
groupingKey, groupingKey - max(f.age)

317

List functions

List functions return lists of things — nodes in a path, and so on.

Further details and examples of lists may be found in Lists and List operators.

Functions:

• keys()

• labels()

• nodes()

• range()

• reduce()

• relationships()

• reverse()

• tail()

• toBooleanList()

• toFloatList()

• toIntegerList()

• toStringList()

Person, Developer

name = 'Alice'
age = 38
eyes = 'brown'

name = 'Charlie'
age = 53
eyes = 'green'

KNOWS

name = 'Bob'
age = 25
eyes = 'blue'

KNOWS

name = 'Daniel'
age = 54
eyes = 'brown'

KNOWS KNOWS

eyes = 'blue'
array = ['one', 'two', 'three']
name = 'Eskil'
age = 41

MARRIED

keys()

keys returns a list containing the string representations for all the property names of a node, relationship,
or map.

Syntax:

318

keys(expression)

Returns:

A list containing String elements.

Arguments:

Name Description

expression An expression that returns a node, a relationship, or a map.

Considerations:

keys(null) returns null.

Example 123. keys()

Query

MATCH (a) WHERE a.name = 'Alice'
RETURN keys(a)

A list containing the names of all the properties on the node bound to a is returned.

Table 347. Result

keys(a)

["name","age","eyes"]

Rows: 1

labels()

labels returns a list containing the string representations for all the labels of a node.

Syntax:

labels(node)

Returns:

A list containing String elements.

Arguments:

Name Description

node An expression that returns a single node.

319

Considerations:

labels(null) returns null.

Example 124. labels()

Query

MATCH (a) WHERE a.name = 'Alice'
RETURN labels(a)

A list containing all the labels of the node bound to a is returned.

Table 348. Result

labels(a)

["Person","Developer"]

Rows: 1

nodes()

nodes() returns a list containing all the nodes in a path.

Syntax:

nodes(path)

Returns:

A list containing Node elements.

Arguments:

Name Description

path An expression that returns a path.

Considerations:

nodes(null) returns null.

320

Example 125. nodes()

Query

MATCH p = (a)-->(b)-->(c)
WHERE a.name = 'Alice' AND c.name = 'Eskil'
RETURN nodes(p)

A list containing all the nodes in the path p is returned.

Table 349. Result

nodes(p)

[Node[0]{name:"Alice",age:38,eyes:"brown"},Node[1]{name:"Bob",age:25,eyes:"blue"},Node[4]{eyes:"blue",arr
ay:["one","two","three"],name:"Eskil",age:41}]

Rows: 1

range()

range() returns a list comprising all integer values within a range bounded by a start value start and end
value end, where the difference step between any two consecutive values is constant; i.e. an arithmetic
progression. To create ranges with decreasing integer values, use a negative value step. The range is
inclusive for non-empty ranges, and the arithmetic progression will therefore always contain start
and — depending on the values of start, step and end — end. The only exception where the range does
not contain start are empty ranges. An empty range will be returned if the value step is negative and
start - end is positive, or vice versa, e.g. range(0, 5, -1).

Syntax:

range(start, end [, step])

Returns:

A list of Integer elements.

Arguments:

Name Description

start An expression that returns an integer value.

end An expression that returns an integer value.

step A numeric expression defining the difference between any
two consecutive values, with a default of 1.

321

Example 126. range()

Query

RETURN range(0, 10), range(2, 18, 3), range(0, 5, -1)

Three lists of numbers in the given ranges are returned.

Table 350. Result

range(0, 10) range(2, 18, 3) range(0, 5, -1)

[0,1,2,3,4,5,6,7,8,9,10] [2,5,8,11,14,17] []

Rows: 1

reduce()

reduce() returns the value resulting from the application of an expression on each successive element in a
list in conjunction with the result of the computation thus far. This function will iterate through each
element e in the given list, run the expression on e — taking into account the current partial result — and
store the new partial result in the accumulator. This function is analogous to the fold or reduce method in
functional languages such as Lisp and Scala.

Syntax:

reduce(accumulator = initial, variable IN list | expression)

Returns:

The type of the value returned depends on the arguments provided, along with the semantics of expression.

Arguments:

Name Description

accumulator A variable that will hold the result and the partial results as
the list is iterated.

initial An expression that runs once to give a starting value to the
accumulator.

list An expression that returns a list.

variable The closure will have a variable introduced in its context. We
decide here which variable to use.

expression This expression will run once per value in the list, and
produce the result value.

322

Example 127. reduce()

Query

MATCH p = (a)-->(b)-->(c)
WHERE a.name = 'Alice' AND b.name = 'Bob' AND c.name = 'Daniel'
RETURN reduce(totalAge = 0, n IN nodes(p) | totalAge + n.age) AS reduction

The age property of all nodes in the path are summed and returned as a single value.

Table 351. Result

reduction

117

Rows: 1

relationships()

relationships() returns a list containing all the relationships in a path.

Syntax:

relationships(path)

Returns:

A list containing Relationship elements.

Arguments:

Name Description

path An expression that returns a path.

Considerations:

relationships(null) returns null.

323

Example 128. relationships()

Query

MATCH p = (a)-->(b)-->(c)
WHERE a.name = 'Alice' AND c.name = 'Eskil'
RETURN relationships(p)

A list containing all the relationships in the path p is returned.

Table 352. Result

relationships(p)

[:KNOWS[0]{},:MARRIED[4]{}]

Rows: 1

reverse()

reverse() returns a list in which the order of all elements in the original list have been reversed.

Syntax:

reverse(original)

Returns:

A list containing homogeneous or heterogeneous elements; the types of the elements are determined by the elements
within original.

Arguments:

Name Description

original An expression that returns a list.

Considerations:

Any null element in original is preserved.

324

Example 129. reverse()

Query

WITH [4923,'abc',521, null, 487] AS ids
RETURN reverse(ids)

Table 353. Result

reverse(ids)

[487,<null>,521,"abc",4923]

Rows: 1

tail()

tail() returns a list lresult containing all the elements, excluding the first one, from a list list.

Syntax:

tail(list)

Returns:

A list containing heterogeneous elements; the types of the elements are determined by the elements in list.

Arguments:

Name Description

list An expression that returns a list.

Example 130. tail()

Query

MATCH (a) WHERE a.name = 'Eskil'
RETURN a.array, tail(a.array)

The property named array and a list comprising all but the first element of the array property are
returned.

Table 354. Result

a.array tail(a.array)

["one","two","three"] ["two","three"]

Rows: 1

325

toBooleanList()

toBooleanList() converts a list of values and returns a list of boolean values. If any values are not
convertible to boolean they will be null in the list returned.

Syntax:

toBooleanList(list)

Returns:

A list containing the converted elements; depending on the input value a converted value is either a boolean value or null.

Arguments:

Name Description

list An expression that returns a list.

Considerations:

Any null element in list is preserved.

Any boolean value in list is preserved.

If the list is null, null will be returned.

If the list is not a list, an error will be returned.

The conversion for each value in list is done according to the toBooleanOrNull() function.

Example 131. toBooleanList()

Query

RETURN toBooleanList(null) as noList,
toBooleanList([null, null]) as nullsInList,
toBooleanList(['a string', true, 'false', null, ['A','B']]) as mixedList

Table 355. Result

noList nullsInList mixedList

<null> [<null>,<null>] [<null>,true,false,<null>,<null>]

Rows: 1

toFloatList()

toFloatList() converts a list of values and returns a list of floating point values. If any values are not
convertible to floating point they will be null in the list returned.

Syntax:

326

toFloatList(list)

Returns:

A list containing the converted elements; depending on the input value a converted value is either a floating point value or
null.

Arguments:

Name Description

list An expression that returns a list.

Considerations:

Any null element in list is preserved.

Any floating point value in list is preserved.

If the list is null, null will be returned.

If the list is not a list, an error will be returned.

The conversion for each value in list is done according to the toFloatOrNull() function.

Example 132. toFloatList()

Query

RETURN toFloatList(null) as noList,
toFloatList([null, null]) as nullsInList,
toFloatList(['a string', 2.5, '3.14159', null, ['A','B']]) as mixedList

Table 356. Result

noList nullsInList mixedList

<null> [<null>,<null>] [<null>,2.5,3.14159,<null>,<null>]

Rows: 1

toIntegerList()

toIntegerList() converts a list of values and returns a list of integer values. If any values are not
convertible to integer they will be null in the list returned.

Syntax:

toIntegerList(list)

Returns:

327

A list containing the converted elements; depending on the input value a converted value is either a integer value or null.

Arguments:

Name Description

list An expression that returns a list.

Considerations:

Any null element in list is preserved.

Any integer value in list is preserved.

If the list is null, null will be returned.

If the list is not a list, an error will be returned.

The conversion for each value in list is done according to the toIntegerOrNull() function.

Example 133. toIntegerList()

Query

RETURN toIntegerList(null) as noList,
toIntegerList([null, null]) as nullsInList,
toIntegerList(['a string', 2, '5', null, ['A','B']]) as mixedList

Table 357. Result

noList nullsInList mixedList

<null> [<null>,<null>] [<null>,2,5,<null>,<null>]

Rows: 1

toStringList()

toStringList() converts a list of values and returns a list of string values. If any values are not convertible
to string they will be null in the list returned.

Syntax:

toStringList(list)

Returns:

A list containing the converted elements; depending on the input value a converted value is either a string value or null.

Arguments:

328

Name Description

list An expression that returns a list.

Considerations:

Any null element in list is preserved.

Any string value in list is preserved.

If the list is null, null will be returned.

If the list is not a list, an error will be returned.

The conversion for each value in list is done according to the toStringOrNull() function.

Example 134. toStringList()

Query

RETURN toStringList(null) as noList,
toStringList([null, null]) as nullsInList,
toStringList(['already a string', 2, date({year:1955, month:11, day:5}), null, ['A','B']]) as
mixedList

Table 358. Result

noList nullsInList mixedList

<null> [<null>,<null>] ["already a string","2","1955-11-
05",<null>,<null>]

Rows: 1

Mathematical functions - numeric

These functions all operate on numeric expressions only, and will return an error if used on

any other values. See also Mathematical operators.

Functions:

• abs()

• ceil()

• floor()

• isNaN()

• rand()

• round()

• round(), with precision

• round(), with precision and rounding mode

329

• sign()

The following graph is used for the examples below:

A

name = 'Alice'
age = 38
eyes = 'brown'

C

name = 'Charlie'
age = 53
eyes = 'green'

KNOWS

B

name = 'Bob'
age = 25
eyes = 'blue'

KNOWS

D

name = 'Daniel'
age = 54
eyes = 'brown'

KNOWS KNOWS

E

eyes = 'blue'
array = ['one', 'two', 'three']
name = 'Eskil'
age = 41

MARRIED

abs()

abs() returns the absolute value of the given number.

Syntax:

abs(expression)

Returns:

The type of the value returned will be that of expression.

Arguments:

Name Description

expression A numeric expression.

Considerations:

abs(null) returns null.

If expression is negative, -(expression) (i.e. the negation of expression) is returned.

330

Example 135. abs()

Query

MATCH (a), (e) WHERE a.name = 'Alice' AND e.name = 'Eskil' RETURN a.age, e.age, abs(a.age - e.age)

The absolute value of the age difference is returned.

Table 359. Result

a.age e.age abs(a.age - e.age)

38 41 3

Rows: 1

ceil()

ceil() returns the smallest floating point number that is greater than or equal to the given number and
equal to a mathematical integer.

Syntax:

ceil(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

ceil(null) returns null.

331

Example 136. ceil()

Query

RETURN ceil(0.1)

The ceil of 0.1 is returned.

Table 360. Result

ceil(0.1)

1.0

Rows: 1

floor()

floor() returns the largest floating point number that is less than or equal to the given number and equal
to a mathematical integer.

Syntax:

floor(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

floor(null) returns null.

332

Example 137. floor()

Query

RETURN floor(0.9)

The floor of 0.9 is returned.

Table 361. Result

floor(0.9)

0.0

Rows: 1

isNaN()

isNaN() returns true if the given numeric value is NaN (Not a Number).

Syntax:

isNaN(expression)

Returns:

A Boolean.

Arguments:

Name Description

expression A numeric expression.

Considerations:

isNaN(null) returns null.

333

Example 138. isNaN()

Query

RETURN isNaN(0/0.0)

true is returned since the value is NaN.

Table 362. Result

isNaN(0/0.0)

true

Rows: 1

rand()

rand() returns a random floating point number in the range from 0 (inclusive) to 1 (exclusive); i.e. [0,1).
The numbers returned follow an approximate uniform distribution.

Syntax:

rand()

Returns:

A Float.

Example 139. rand()

Query

RETURN rand()

A random number is returned.

Table 363. Result

rand()

0.5460251846326871

Rows: 1

round()

round() returns the value of the given number rounded to the nearest integer, with ties always rounded
towards positive infinity.

334

Syntax:

round(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression to be rounded.

Considerations:

round(null) returns null.

Example 140. round()

Query

RETURN round(3.141592)

3.0 is returned.

Table 364. Result

round(3.141592)

3.0

Rows: 1

Example 141. round() of negative number with tie

Query

RETURN round(-1.5)

Ties are rounded towards positive infinity, therfore -1.0 is returned.

Table 365. Result

round(-1.5)

-1.0

Rows: 1

335

round(), with precision

round() returns the value of the given number rounded to the closest value of given precision, with ties
always being rounded away from zero (using rounding mode HALF_UP). The exception is for precision 0,
where ties are rounded towards positive infinity to align with round() without precision.

Syntax:

round(expression, precision)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression to be rounded.

precision A numeric expression specifying precision.

Considerations:

round() returns null if any of its input parameters are null.

Example 142. round() with precision

Query

RETURN round(3.141592, 3)

3.142 is returned.

Table 366. Result

round(3.141592, 3)

3.142

Rows: 1

336

Example 143. round() with precision 0 and tie

Query

RETURN round(-1.5, 0)

To align with round(-1.5), -1.0 is returned.

Table 367. Result

round(-1.5, 0)

-1.0

Rows: 1

Example 144. round() with precision 1 and tie

Query

RETURN round(-1.55, 1)

The default is to round away from zero when there is a tie, therefore -1.6 is returned.

Table 368. Result

round(-1.55, 1)

-1.6

Rows: 1

round(), with precision and rounding mode

round() returns the value of the given number rounded with the specified precision and the specified
rounding mode.

Syntax:

round(expression, precision, mode)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression to be rounded.

337

Name Description

precision A numeric expression specifying precision.

mode A string expression specifying rounding mode.

Modes:

Mode Description

UP Round away from zero.

DOWN Round towards zero.

CEILING Round towards positive infinity.

FLOOR Round towards negative infinity.

HALF_UP Round towards closest value of given precision, with ties
always being rounded away from zero.

HALF_DOWN Round towards closest value of given precision, with ties
always being rounded towards zero.

HALF_EVEN Round towards closest value of given precision, with ties
always being rounded to the even neighbor.

Considerations:

For the rounding modes, a tie means that the two closest values of the given precision are at the same distance from the
given value. E.g. for precision 1, 2.15 is a tie as it has equal distance to 2.1 and 2.2, while 2.151 is not a tie, as it is closer to
2.2.

round() returns null if any of its input parameters are null.

Example 145. round() with precision and UP rounding mode

Query

RETURN round(1.249, 1, 'UP') AS positive,
round(-1.251, 1, 'UP') AS negative,
round(1.25, 1, 'UP') AS positiveTie,
round(-1.35, 1, 'UP') AS negativeTie

The rounded values using precision 1 and rounding mode UP are returned.

Table 369. Result

positive negative positiveTie negativeTie

1.3 -1.3 1.3 -1.4

Rows: 1

338

Example 146. round() with precision and DOWN rounding mode

Query

RETURN round(1.249, 1, 'DOWN') AS positive,
round(-1.251, 1, 'DOWN') AS negative,
round(1.25, 1, 'DOWN') AS positiveTie,
round(-1.35, 1, 'DOWN') AS negativeTie

The rounded values using precision 1 and rounding mode DOWN are returned.

Table 370. Result

positive negative positiveTie negativeTie

1.2 -1.2 1.2 -1.3

Rows: 1

Example 147. round() with precision and CEILING rounding mode

Query

RETURN round(1.249, 1, 'CEILING') AS positive,
round(-1.251, 1, 'CEILING') AS negative,
round(1.25, 1, 'CEILING') AS positiveTie,
round(-1.35, 1, 'CEILING') AS negativeTie

The rounded values using precision 1 and rounding mode CEILING are returned.

Table 371. Result

positive negative positiveTie negativeTie

1.3 -1.2 1.3 -1.3

Rows: 1

Example 148. round() with precision and FLOOR rounding mode

Query

RETURN round(1.249, 1, 'FLOOR') AS positive,
round(-1.251, 1, 'FLOOR') AS negative,
round(1.25, 1, 'FLOOR') AS positiveTie,
round(-1.35, 1, 'FLOOR') AS negativeTie

The rounded values using precision 1 and rounding mode FLOOR are returned.

Table 372. Result

positive negative positiveTie negativeTie

1.2 -1.3 1.2 -1.4

Rows: 1

339

Example 149. round() with precision and HALF_UP rounding mode

Query

RETURN round(1.249, 1, 'HALF_UP') AS positive,
round(-1.251, 1, 'HALF_UP') AS negative,
round(1.25, 1, 'HALF_UP') AS positiveTie,
round(-1.35, 1, 'HALF_UP') AS negativeTie

The rounded values using precision 1 and rounding mode HALF_UP are returned.

Table 373. Result

positive negative positiveTie negativeTie

1.2 -1.3 1.3 -1.4

Rows: 1

Example 150. round() with precision and HALF_DOWN rounding mode

Query

RETURN round(1.249, 1, 'HALF_DOWN') AS positive,
round(-1.251, 1, 'HALF_DOWN') AS negative,
round(1.25, 1, 'HALF_DOWN') AS positiveTie,
round(-1.35, 1, 'HALF_DOWN') AS negativeTie

The rounded values using precision 1 and rounding mode HALF_DOWN are returned.

Table 374. Result

positive negative positiveTie negativeTie

1.2 -1.3 1.2 -1.3

Rows: 1

Example 151. round() with precision and HALF_EVEN rounding mode

Query

RETURN round(1.249, 1, 'HALF_EVEN') AS positive,
round(-1.251, 1, 'HALF_EVEN') AS negative,
round(1.25, 1, 'HALF_EVEN') AS positiveTie,
round(-1.35, 1, 'HALF_EVEN') AS negativeTie

The rounded values using precision 1 and rounding mode HALF_EVEN are returned.

Table 375. Result

positive negative positiveTie negativeTie

1.2 -1.3 1.2 -1.4

Rows: 1

340

sign()

sign() returns the signum of the given number: 0 if the number is 0, -1 for any negative number, and 1 for
any positive number.

Syntax:

sign(expression)

Returns:

An Integer.

Arguments:

Name Description

expression A numeric expression.

Considerations:

sign(null) returns null.

Example 152. sign()

Query

RETURN sign(-17), sign(0.1)

The signs of -17 and 0.1 are returned.

Table 376. Result

sign(-17) sign(0.1)

-1 1

Rows: 1

Mathematical functions - logarithmic

These functions all operate on numeric expressions only, and will return an error if used on

any other values. See also Mathematical operators.

Functions:

• e()

• exp()

341

• log()

• log10()

• sqrt()

e()

e() returns the base of the natural logarithm, e.

Syntax:

e()

Returns:

A Float.

Example 153. e()

Query

RETURN e()

The base of the natural logarithm, e, is returned.

Table 377. Result

e()

2.718281828459045

Rows: 1

exp()

exp() returns en, where e is the base of the natural logarithm, and n is the value of the argument
expression.

Syntax:

e(expression)

Returns:

A Float.

Arguments:

342

Name Description

expression A numeric expression.

Considerations:

exp(null) returns null.

Example 154. exp()

Query

RETURN exp(2)

e to the power of 2 is returned.

Table 378. Result

exp(2)

7.38905609893065

Rows: 1

log()

log() returns the natural logarithm of a number.

Syntax:

log(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

log(null) returns null.

log(0) returns null.

343

Example 155. log()

Query

RETURN log(27)

The natural logarithm of 27 is returned.

Table 379. Result

log(27)

3.295836866004329

Rows: 1

log10()

log10() returns the common logarithm (base 10) of a number.

Syntax:

log10(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

log10(null) returns null.

log10(0) returns null.

344

Example 156. log10()

Query

RETURN log10(27)

The common logarithm of 27 is returned.

Table 380. Result

log10(27)

1.4313637641589874

Rows: 1

sqrt()

sqrt() returns the square root of a number.

Syntax:

sqrt(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

sqrt(null) returns null.

sqrt(<any negative number>) returns NaN

345

Example 157. sqrt()

Query

RETURN sqrt(256)

The square root of 256 is returned.

Table 381. Result

sqrt(256)

16.0

Rows: 1

Mathematical functions - trigonometric

These functions all operate on numeric expressions only, and will return an error if used on

any other values. See also Mathematical operators.

Functions:

• acos()

• asin()

• atan()

• atan2()

• cos()

• cot()

• degrees()

• haversin()

• Spherical distance using the haversin() function

• pi()

• radians()

• sin()

• tan()

acos()

acos() returns the arccosine of a number in radians.

Syntax:

346

acos(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

acos(null) returns null.

If (expression < -1) or (expression > 1), then (acos(expression)) returns null.

Example 158. acos()

Query

RETURN acos(0.5)

The arccosine of 0.5 is returned.

Table 382. Result

acos(0.5)

1.0471975511965979

Rows: 1

asin()

asin() returns the arcsine of a number in radians.

Syntax:

asin(expression)

Returns:

A Float.

Arguments:

347

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

asin(null) returns null.

If (expression < -1) or (expression > 1), then (asin(expression)) returns null.

Example 159. asin()

Query

RETURN asin(0.5)

The arcsine of 0.5 is returned.

Table 383. Result

asin(0.5)

0.5235987755982989

Rows: 1

atan()

atan() returns the arctangent of a number in radians.

Syntax:

atan(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

atan(null) returns null.

348

Example 160. atan()

Query

RETURN atan(0.5)

The arctangent of 0.5 is returned.

Table 384. Result

atan(0.5)

0.4636476090008061

Rows: 1

atan2()

atan2() returns the arctangent2 of a set of coordinates in radians.

Syntax:

atan2(expression1, expression2)

Returns:

A Float.

Arguments:

Name Description

expression1 A numeric expression for y that represents the angle in
radians.

expression2 A numeric expression for x that represents the angle in
radians.

Considerations:

atan2(null, null), atan2(null, expression2) and atan(expression1, null) all return null.

349

Example 161. atan2()

Query

RETURN atan2(0.5, 0.6)

The arctangent2 of 0.5 and 0.6 is returned.

Table 385. Result

atan2(0.5, 0.6)

0.6947382761967033

Rows: 1

cos()

cos() returns the cosine of a number.

Syntax:

cos(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

cos(null) returns null.

350

Example 162. cos()

Query

RETURN cos(0.5)

The cosine of 0.5 is returned.

Table 386. Result

cos(0.5)

0.8775825618903728

Rows: 1

cot()

cot() returns the cotangent of a number.

Syntax:

cot(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

cot(null) returns null.

cot(0) returns null.

351

Example 163. cot()

Query

RETURN cot(0.5)

The cotangent of 0.5 is returned.

Table 387. Result

cot(0.5)

1.830487721712452

Rows: 1

degrees()

degrees() converts radians to degrees.

Syntax:

degrees(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

degrees(null) returns null.

352

Example 164. degrees

Query

RETURN degrees(3.14159)

The number of degrees in something close to pi is returned.

Table 388. Result

degrees(3.14159)

179.9998479605043

Rows: 1

haversin()

haversin() returns half the versine of a number.

Syntax:

haversin(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

haversin(null) returns null.

353

Example 165. haversin()

Query

RETURN haversin(0.5)

The haversine of 0.5 is returned.

Table 389. Result

haversin(0.5)

0.06120871905481362

Rows: 1

Spherical distance using the haversin() function

The haversin() function may be used to compute the distance on the surface of a sphere between two
points (each given by their latitude and longitude).

Example 166. haversin()

In this example the spherical distance (in km) between Berlin in Germany (at lat 52.5, lon 13.4) and
San Mateo in California (at lat 37.5, lon -122.3) is calculated using an average earth radius of 6371
km.

Query

CREATE (ber:City {lat: 52.5, lon: 13.4}), (sm:City {lat: 37.5, lon: -122.3})
RETURN 2 * 6371 * asin(sqrt(haversin(radians(sm.lat - ber.lat))
 + cos(radians(sm.lat)) * cos(radians(ber.lat)) *
 haversin(radians(sm.lon - ber.lon)))) AS dist

The estimated distance between 'Berlin' and 'San Mateo' is returned.

Table 390. Result

dist

9129.969740051658

Rows: 1
Nodes created: 2
Properties set: 4
Labels added: 2

pi()

pi() returns the mathematical constant pi.

Syntax:

354

pi()

Returns:

A Float.

Example 167. pi()

Query

RETURN pi()

The constant pi is returned.

Table 391. Result

pi()

3.141592653589793

Rows: 1

radians()

radians() converts degrees to radians.

Syntax:

radians(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in degrees.

Considerations:

radians(null) returns null.

355

Example 168. radians()

Query

RETURN radians(180)

The number of radians in 180 degrees is returned (pi).

Table 392. Result

radians(180)

3.141592653589793

Rows: 1

sin()

sin() returns the sine of a number.

Syntax:

sin(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

sin(null) returns null.

356

Example 169. sin()

Query

RETURN sin(0.5)

The sine of 0.5 is returned.

Table 393. Result

sin(0.5)

0.479425538604203

Rows: 1

tan()

tan() returns the tangent of a number.

Syntax:

tan(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

tan(null) returns null.

357

Example 170. tan()

Query

RETURN tan(0.5)

The tangent of 0.5 is returned.

Table 394. Result

tan(0.5)

0.5463024898437905

Rows: 1

String functions

These functions all operate on string expressions only, and will return an error if used on

any other values. The exception to this rule is toString(), which also accepts numbers,

booleans and temporal values (i.e. Date, Time. LocalTime, DateTime, LocalDateTime or

Duration values).

Functions taking a string as input all operate on Unicode characters rather than on a standard char[]. For
example, the size() function applied to any Unicode character will return 1, even if the character does not
fit in the 16 bits of one char.


When toString() is applied to a temporal value, it returns a string representation
suitable for parsing by the corresponding temporal functions. This string will therefore
be formatted according to the ISO 8601 format.

See also String operators.

Functions:

• left()

• ltrim()

• replace()

• reverse()

• right()

• rtrim()

• split()

• substring()

• toLower()

358

https://en.wikipedia.org/wiki/ISO_8601

• toString()

• toStringOrNull()

• toUpper()

• trim()

left()

left() returns a string containing the specified number of leftmost characters of the original string.

Syntax:

left(original, length)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

length An expression that returns a positive integer.

Considerations:

left(null, length) return null.

left(null, null) return null.

left(original, null) will raise an error.

If length is not a positive integer, an error is raised.

If length exceeds the size of original, original is returned.

Example 171. left()

Query

RETURN left('hello', 3)

Table 395. Result

left('hello', 3)

"hel"

Rows: 1

359

ltrim()

ltrim() returns the original string with leading whitespace removed.

Syntax:

ltrim(original)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

Considerations:

ltrim(null) returns null.

Example 172. ltrim()

Query

RETURN ltrim(' hello')

Table 396. Result

ltrim(' hello')

"hello"

Rows: 1

replace()

replace() returns a string in which all occurrences of a specified string in the original string have been
replaced by another (specified) string.

Syntax:

replace(original, search, replace)

Returns:

A String.

360

Arguments:

Name Description

original An expression that returns a string.

search An expression that specifies the string to be replaced in
original.

replace An expression that specifies the replacement string.

Considerations:

If any argument is null, null will be returned.

If search is not found in original, original will be returned.

Example 173. replace()

Query

RETURN replace("hello", "l", "w")

Table 397. Result

replace("hello", "l", "w")

"hewwo"

Rows: 1

reverse()

reverse() returns a string in which the order of all characters in the original string have been reversed.

Syntax:

reverse(original)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

Considerations:

reverse(null) returns null.

361

Example 174. reverse

Query

RETURN reverse('anagram')

Table 398. Result

reverse('anagram')

"margana"

Rows: 1

right()

right() returns a string containing the specified number of rightmost characters of the original string.

Syntax:

right(original, length)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

length An expression that returns a positive integer.

Considerations:

right(null, length) return null.

right(null, null) return null.

right(original, null) will raise an error.

If length is not a positive integer, an error is raised.

If length exceeds the size of original, original is returned.

362

Example 175. right()

Query

RETURN right('hello', 3)

Table 399. Result

right('hello', 3)

"llo"

Rows: 1

rtrim()

rtrim() returns the original string with trailing whitespace removed.

Syntax:

rtrim(original)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

Considerations:

rtrim(null) returns null.

Example 176. rtrim()

Query

RETURN rtrim('hello ')

Table 400. Result

rtrim('hello ')

"hello"

Rows: 1

363

split()

split() returns a list of strings resulting from the splitting of the original string around matches of the
given delimiter.

Syntax:

split(original, splitDelimiter)

Returns:

A list of Strings.

Arguments:

Name Description

original An expression that returns a string.

splitDelimiter The string with which to split original.

Considerations:

split(null, splitDelimiter) return null.

split(original, null) return null

Example 177. split()

Query

RETURN split('one,two', ',')

Table 401. Result

split('one,two', ',')

["one","two"]

Rows: 1

substring()

substring() returns a substring of the original string, beginning with a zero-based index start and length.

Syntax:

substring(original, start [, length])

Returns:

364

A String.

Arguments:

Name Description

original An expression that returns a string.

start An expression that returns a positive integer, denoting the
position at which the substring will begin.

length An expression that returns a positive integer, denoting how
many characters of original will be returned.

Considerations:

start uses a zero-based index.

If length is omitted, the function returns the substring starting at the position given by start and extending to the end of
original.

If original is null, null is returned.

If either start or length is null or a negative integer, an error is raised.

If start is 0, the substring will start at the beginning of original.

If length is 0, the empty string will be returned.

Example 178. substring()

Query

RETURN substring('hello', 1, 3), substring('hello', 2)

Table 402. Result

substring('hello', 1, 3) substring('hello', 2)

"ell" "llo"

Rows: 1

toLower()

toLower() returns the original string in lowercase.

Syntax:

toLower(original)

Returns:

365

A String.

Arguments:

Name Description

original An expression that returns a string.

Considerations:

toLower(null) returns null.

Example 179. toLower()

Query

RETURN toLower('HELLO')

Table 403. Result

toLower('HELLO')

"hello"

Rows: 1

toString()

toString() converts an integer, float, boolean, string, point, duration, date, time, localtime, localdatetime,
or datetime value to a string.

Syntax:

toString(expression)

Returns:

A String.

Arguments:

Name Description

expression An expression that returns a number, a boolean, string,
temporal, or spatial value.

Considerations:

toString(null) returns null.

366

If expression is a string, it will be returned unchanged.

This function will return an error if provided with an expression that is not an integer, float, string, boolean, point, duration,
date, time, localtime, localdatetime or datetime value.

Example 180. toString()

Query

RETURN
 toString(11.5),
 toString('already a string'),
 toString(true),
 toString(date({year: 1984, month: 10, day: 11})) AS dateString,
 toString(datetime({year: 1984, month: 10, day: 11, hour: 12, minute: 31, second: 14, millisecond:
341, timezone: 'Europe/Stockholm'})) AS datetimeString,
 toString(duration({minutes: 12, seconds: -60})) AS durationString

Table 404. Result

toString(11.5) toString('already
a string')

toString(true) dateString datetimeString durationString

"11.5" "already a
string"

"true" "1984-10-11" "1984-10-
11T12:31:14.341+
01:00[Europe/Sto
ckholm]"

"PT11M"

Rows: 1

toStringOrNull()

The function toStringOrNull() converts an integer, float, boolean, string, point, duration, date, time,
localtime, localdatetime, or datetime value to a string.

Syntax:

toStringOrNull(expression)

Returns:

A String or null.

Arguments:

Name Description

expression Any expression that returns a value.

Considerations:

toStringOrNull(null) returns null.

367

If the expression is not an integer, float, string, boolean, point, duration, date, time, localtime, localdatetime, or datetime
value, null will be returned.

Example 181. toStringOrNull()

Query

RETURN toStringOrNull(11.5),
toStringOrNull('already a string'),
toStringOrNull(true),
toStringOrNull(date({year: 1984, month: 10, day: 11})) AS dateString,
toStringOrNull(datetime({year: 1984, month: 10, day: 11, hour: 12, minute: 31, second: 14,
millisecond: 341, timezone: 'Europe/Stockholm'})) AS datetimeString,
toStringOrNull(duration({minutes: 12, seconds: -60})) AS durationString,
toStringOrNull(['A', 'B', 'C']) AS list

Table 405. Result

toStringOrNull(
11.5)

toStringOrNull(
'already a
string')

toStringOrNull(
true)

dateString datetimeString durationString list

"11.5" "already a
string"

"true" "1984-10-11" "1984-10-
11T12:31:14.34
1+01:00[Europe
/Stockholm]"

"PT11M" <null>

Rows: 1

toUpper()

toUpper() returns the original string in uppercase.

Syntax:

toUpper(original)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

Considerations:

toUpper(null) returns null.

368

Example 182. toUpper()

Query

RETURN toUpper('hello')

Table 406. Result

toUpper('hello')

"HELLO"

Rows: 1

trim()

trim() returns the original string with leading and trailing whitespace removed.

Syntax:

trim(original)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

Considerations:

trim(null) returns null.

Example 183. trim()

Query

RETURN trim(' hello ')

Table 407. Result

trim(' hello ')

"hello"

Rows: 1

369

Temporal functions - instant types

Cypher provides functions allowing for the creation and manipulation of values for each

temporal type — Date, Time, LocalTime, DateTime, and LocalDateTime.

 See also Temporal (Date/Time) values and Temporal operators.

Temporal instant types

An overview of temporal instant type creation

Each function bears the same name as the type, and construct the type they correspond to in one of four
ways:

• Capturing the current time.

• Composing the components of the type.

• Parsing a string representation of the temporal value.

• Selecting and composing components from another temporal value by

◦ either combining temporal values (such as combining a Date with a Time to create a DateTime), or

◦ selecting parts from a temporal value (such as selecting the Date from a DateTime); the
extractors — groups of components which can be selected — are:

▪ date — contains all components for a Date (conceptually year, month and day).

▪ time — contains all components for a Time (hour, minute, second, and sub-seconds; namely
millisecond, microsecond and nanosecond). If the type being created and the type from which
the time component is being selected both contain timezone (and a timezone is not explicitly
specified) the timezone is also selected.

▪ datetime — selects all components, and is useful for overriding specific components.
Analogously to time, if the type being created and the type from which the time component is
being selected both contain timezone (and a timezone is not explicitly specified) the timezone is
also selected.

◦ In effect, this allows for the conversion between different temporal types, and allowing for
'missing' components to be specified.

Table 408. Temporal instant type creation functions

Function Date Time LocalTime DateTime LocalDateTime

Getting the current
value.

X X X X X

Creating a
calendar-based
(Year-Month-Day)
value.

X X X

370

Function Date Time LocalTime DateTime LocalDateTime

Creating a week-
based (Year-
Week-Day) value.

X X X

Creating a quarter-
based (Year-
Quarter-Day)
value.

X X X

Creating an ordinal
(Year-Day) value.

X X X

Creating a value
from time
components.

X X

Creating a value
from other
temporal values
using extractors
(i.e. converting
between different
types).

X X X X X

Creating a value
from a string.

X X X X X

Creating a value
from a timestamp.

X



All the temporal instant types — including those that do not contain time zone
information support such as Date, LocalTime and DateTime — allow for a time zone to
specified for the functions that retrieve the current instant. This allows for the retrieval of
the current instant in the specified time zone.

Controlling which clock to use

The functions which create temporal instant values based on the current instant use the statement clock
as default. However, there are three different clocks available for more fine-grained control:

• transaction: The same instant is produced for each invocation within the same transaction. A different
time may be produced for different transactions.

• statement: The same instant is produced for each invocation within the same statement. A different
time may be produced for different statements within the same transaction.

• realtime: The instant produced will be the live clock of the system.

The following table lists the different sub-functions for specifying the clock to be used when creating the
current temporal instant value:

371

Type default transaction statement realtime

Date date() date.transaction() date.statement() date.realtime()

Time time() time.transaction() time.statement() time.realtime()

LocalTime localtime() localtime.transaction() localtime.statement() localtime.realtime()

DateTime datetime() datetime.transaction() datetime.statement() datetime.realtime()

LocalDateTime localdatetime() localdatetime.transactio
n()

localdatetime.statemen
t()

localdatetime.realtime()

Truncating temporal values

A temporal instant value can be created by truncating another temporal instant value at the nearest
preceding point in time at a specified component boundary (namely, a truncation unit). A temporal instant
value created in this way will have all components which are less significant than the specified truncation
unit set to their default values.

It is possible to supplement the truncated value by providing a map containing components which are less
significant than the truncation unit. This will have the effect of overriding the default values which would
otherwise have been set for these less significant components.

The following truncation units are supported:

• millennium: Select the temporal instant corresponding to the millenium of the given instant.

• century: Select the temporal instant corresponding to the century of the given instant.

• decade: Select the temporal instant corresponding to the decade of the given instant.

• year: Select the temporal instant corresponding to the year of the given instant.

• weekYear: Select the temporal instant corresponding to the first day of the first week of the week-year
of the given instant.

• quarter: Select the temporal instant corresponding to the quarter of the year of the given instant.

• month: Select the temporal instant corresponding to the month of the given instant.

• week: Select the temporal instant corresponding to the week of the given instant.

• day: Select the temporal instant corresponding to the month of the given instant.

• hour: Select the temporal instant corresponding to the hour of the given instant.

• minute: Select the temporal instant corresponding to the minute of the given instant.

• second: Select the temporal instant corresponding to the second of the given instant.

• millisecond: Select the temporal instant corresponding to the millisecond of the given instant.

• microsecond: Select the temporal instant corresponding to the microsecond of the given instant.

The following table lists the supported truncation units and the corresponding sub-functions:

372

Truncation unit Date Time LocalTime DateTime LocalDateTime

millennium date.truncate('mille
nnium', input)

datetime.truncate('
millennium', input)

localdatetime.trunc
ate('millennium',
input)

century date.truncate('cent
ury', input)

datetime.truncate('
century', input)

localdatetime.trunc
ate('century', input)

decade date.truncate('deca
de', input)

datetime.truncate('
decade', input)

localdatetime.trunc
ate('decade', input)

year date.truncate('year'
, input)

datetime.truncate('
year', input)

localdatetime.trunc
ate('year', input)

weekYear date.truncate('wee
kYear', input)

datetime.truncate('
weekYear', input)

localdatetime.trunc
ate('weekYear',
input)

quarter date.truncate('quar
ter', input)

datetime.truncate('
quarter', input)

localdatetime.trunc
ate('quarter', input)

month date.truncate('mon
th', input)

datetime.truncate('
month', input)

localdatetime.trunc
ate('month', input)

week date.truncate('wee
k', input)

datetime.truncate('
week', input)

localdatetime.trunc
ate('week', input)

day date.truncate('day',
input)

time.truncate('day',
input)

localtime.truncate('
day', input)

datetime.truncate('
day', input)

localdatetime.trunc
ate('day', input)

hour time.truncate('hour'
, input)

localtime.truncate('
hour', input)

datetime.truncate('
hour', input)

localdatetime.trunc
ate('hour',input)

minute time.truncate('minu
te', input)

localtime.truncate('
minute', input)

datetime.truncate('
minute', input)

localdatetime.trunc
ate('minute', input)

second time.truncate('seco
nd', input)

localtime.truncate('
second', input)

datetime.truncate('
second', input)

localdatetime.trunc
ate('second', input)

millisecond time.truncate('millis
econd', input)

localtime.truncate('
millisecond', input)

datetime.truncate('
millisecond', input)

localdatetime.trunc
ate('millisecond',
input)

microsecond time.truncate('micr
osecond', input)

localtime.truncate('
microsecond',
input)

datetime.truncate('
microsecond',
input)

localdatetime.trunc
ate('microsecond',
input)

date()

Details for using the date() function.

• Getting the current Date

◦ date.transaction()

◦ date.statement()

◦ date.realtime()

373

• Creating a calendar (Year-Month-Day) Date

• Creating a week (Year-Week-Day) Date

• Creating a quarter (Year-Quarter-Day) Date

• Creating an ordinal (Year-Day) Date

• Creating a Date from a string

• Creating a Date using other temporal values as components

• Truncating a Date

Getting the current Date

date() returns the current Date value. If no time zone parameter is specified, the local time zone will be
used.

Syntax:

date([{timezone}])

Returns:

A Date.

Arguments:

Name Description

A single map consisting of the following:

timezone A string expression that represents the time zone.

Considerations:

If no parameters are provided, date() must be invoked (date({}) is invalid).

Example 184. date()

Query

RETURN date() AS currentDate

The current date is returned.

Table 409. Result

currentDate

2022-06-14

Rows: 1

374

Example 185. date()

Query

RETURN date({timezone: 'America/Los Angeles'}) AS currentDateInLA

The current date in California is returned.

Table 410. Result

currentDateInLA

2022-06-14

Rows: 1

date.transaction()

date.transaction() returns the current Date value using the transaction clock. This value will be the
same for each invocation within the same transaction. However, a different value may be produced for
different transactions.

Syntax:

date.transaction([{timezone}])

Returns:

A Date.

Arguments:

Name Description

timezone A string expression that represents the time zone.

Example 186. date.transaction()

Query

RETURN date.transaction() AS currentDate

Table 411. Result

currentDate

2022-06-14

Rows: 1

375

date.statement()

date.statement() returns the current Date value using the statement clock. This value will be the same for
each invocation within the same statement. However, a different value may be produced for different
statements within the same transaction.

Syntax:

date.statement([{timezone}])

Returns:

A Date.

Arguments:

Name Description

timezone A string expression that represents the time zone.

Example 187. date.statement()

Query

RETURN date.statement() AS currentDate

Table 412. Result

currentDate

2022-06-14

Rows: 1

date.realtime()

date.realtime() returns the current Date value using the realtime clock. This value will be the live clock of
the system.

Syntax:

date.realtime([{timezone}])

Returns:

A Date.

Arguments:

376

Name Description

timezone A string expression that represents the time zone.

Example 188. date.realtime()

Query

RETURN date.realtime() AS currentDate

Table 413. Result

currentDate

2022-06-14

Rows: 1

Example 189. date.realtime()

Query

RETURN date.realtime('America/Los Angeles') AS currentDateInLA

Table 414. Result

currentDateInLA

2022-06-14

Rows: 1

Creating a calendar (Year-Month-Day) Date

date() returns a Date value with the specified year, month and day component values.

Syntax:

date({year [, month, day]})

Returns:

A Date.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

377

Name Description

month An integer between 1 and 12 that specifies the month.

day An integer between 1 and 31 that specifies the day of the
month.

Considerations:

The day of the month component will default to 1 if day is omitted.

The month component will default to 1 if month is omitted.

If month is omitted, day must also be omitted.

Example 190. date()

Query

UNWIND [
date({year: 1984, month: 10, day: 11}),
date({year: 1984, month: 10}),
date({year: 1984})
] AS theDate
RETURN theDate

Table 415. Result

theDate

1984-10-11

1984-10-01

1984-01-01

Rows: 3

Creating a week (Year-Week-Day) Date

date() returns a Date value with the specified year, week and dayOfWeek component values.

Syntax:

date({year [, week, dayOfWeek]})

Returns:

A Date.

Arguments:

Name Description

A single map consisting of the following:

378

Name Description

year An expression consisting of at least four digits that specifies
the year.

week An integer between 1 and 53 that specifies the week.

dayOfWeek An integer between 1 and 7 that specifies the day of the
week.

Considerations:

The day of the week component will default to 1 if dayOfWeek is omitted.

The week component will default to 1 if week is omitted.

If week is omitted, dayOfWeek must also be omitted.

Example 191. date()

Query

UNWIND [
date({year: 1984, week: 10, dayOfWeek: 3}),
date({year: 1984, week: 10}),
date({year: 1984})
] AS theDate
RETURN theDate

Table 416. Result

theDate

1984-03-07

1984-03-05

1984-01-01

Rows: 3

Creating a quarter (Year-Quarter-Day) Date

date() returns a Date value with the specified year, quarter and dayOfQuarter component values.

Syntax:

date({year [, quarter, dayOfQuarter]})

Returns:

A Date.

Arguments:

379

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

quarter An integer between 1 and 4 that specifies the quarter.

dayOfQuarter An integer between 1 and 92 that specifies the day of the
quarter.

Considerations:

The day of the quarter component will default to 1 if dayOfQuarter is omitted.

The quarter component will default to 1 if quarter is omitted.

If quarter is omitted, dayOfQuarter must also be omitted.

Example 192. date()

Query

UNWIND [
date({year: 1984, quarter: 3, dayOfQuarter: 45}),
date({year: 1984, quarter: 3}),
date({year: 1984})
] AS theDate
RETURN theDate

Table 417. Result

theDate

1984-08-14

1984-07-01

1984-01-01

Rows: 3

Creating an ordinal (Year-Day) Date

date() returns a Date value with the specified year and ordinalDay component values.

Syntax:

date({year [, ordinalDay]})

Returns:

A Date.

Arguments:

380

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

ordinalDay An integer between 1 and 366 that specifies the ordinal day
of the year.

Considerations:

The ordinal day of the year component will default to 1 if ordinalDay is omitted.

Example 193. date()

Query

UNWIND [
date({year: 1984, ordinalDay: 202}),
date({year: 1984})
] AS theDate
RETURN theDate

The date corresponding to 11 February 1984 is returned.

Table 418. Result

theDate

1984-07-20

1984-01-01

Rows: 2

Creating a Date from a string

date() returns the Date value obtained by parsing a string representation of a temporal value.

Syntax:

date(temporalValue)

Returns:

A Date.

Arguments:

Name Description

temporalValue A string representing a temporal value.

381

Considerations:

temporalValue must comply with the format defined for dates.

temporalValue must denote a valid date; i.e. a temporalValue denoting 30 February 2001 is invalid.

date(null) returns null.

Example 194. date()

Query

UNWIND [
date('2015-07-21'),
date('2015-07'),
date('201507'),
date('2015-W30-2'),
date('2015202'),
date('2015')
] AS theDate
RETURN theDate

Table 419. Result

theDate

2015-07-21

2015-07-01

2015-07-01

2015-07-21

2015-07-21

2015-01-01

Rows: 6

Creating a Date using other temporal values as components

date() returns the Date value obtained by selecting and composing components from another temporal
value. In essence, this allows a DateTime or LocalDateTime value to be converted to a Date, and for
"missing" components to be provided.

Syntax:

date({date [, year, month, day, week, dayOfWeek, quarter, dayOfQuarter, ordinalDay]})

Returns:

A Date.

Arguments:

382

Name Description

A single map consisting of the following:

date A Date value.

year An expression consisting of at least four digits that specifies
the year.

month An integer between 1 and 12 that specifies the month.

day An integer between 1 and 31 that specifies the day of the
month.

week An integer between 1 and 53 that specifies the week.

dayOfWeek An integer between 1 and 7 that specifies the day of the
week.

quarter An integer between 1 and 4 that specifies the quarter.

dayOfQuarter An integer between 1 and 92 that specifies the day of the
quarter.

ordinalDay An integer between 1 and 366 that specifies the ordinal day
of the year.

Considerations:

If any of the optional parameters are provided, these will override the corresponding components of date.

date(dd) may be written instead of date({date: dd}).

Example 195. date()

Query

UNWIND [
date({year: 1984, month: 11, day: 11}),
localdatetime({year: 1984, month: 11, day: 11, hour: 12, minute: 31, second: 14}),
datetime({year: 1984, month: 11, day: 11, hour: 12, timezone: '+01:00'})
] AS dd
RETURN date({date: dd}) AS dateOnly, date({date: dd, day: 28}) AS dateDay

Table 420. Result

dateOnly dateDay

1984-11-11 1984-11-28

1984-11-11 1984-11-28

1984-11-11 1984-11-28

Rows: 3

Truncating a Date

date.truncate() returns the Date value obtained by truncating a specified temporal instant value at the

383

nearest preceding point in time at the specified component boundary (which is denoted by the truncation
unit passed as a parameter to the function). In other words, the Date returned will have all components
that are less significant than the specified truncation unit set to their default values.

It is possible to supplement the truncated value by providing a map containing components which are less
significant than the truncation unit. This will have the effect of overriding the default values which would
otherwise have been set for these less significant components. For example, day — with some value
x — may be provided when the truncation unit string is 'year' in order to ensure the returned value has
the day set to x instead of the default day (which is 1).

Syntax:

date.truncate(unit [, temporalInstantValue [, mapOfComponents]])

Returns:

A Date.

Arguments:

Name Description

unit A string expression evaluating to one of the following strings:
'millennium', 'century', 'decade', 'year', 'weekYear',
'quarter', 'month', 'week', 'day'.

temporalInstantValue An expression of one of the following types: DateTime,
LocalDateTime, Date.

mapOfComponents An expression evaluating to a map containing components
less significant than unit.

Considerations:

Any component that is provided in mapOfComponents must be less significant than unit; i.e. if unit string is 'day',
mapOfComponents cannot contain information pertaining to a month.

Any component that is not contained in mapOfComponents and which is less significant than unit will be set to its minimal
value.

If mapOfComponents is not provided, all components of the returned value which are less significant than unit will be set to
their default values.

If temporalInstantValue is not provided, it will be set to the current date, i.e. date.truncate(unit) is equivalent of
date.truncate(unit, date()).

384

Example 196. date.truncate()

Query

WITH
 datetime({
 year: 2017, month: 11, day: 11,
 hour: 12, minute: 31, second: 14, nanosecond: 645876123,
 timezone: '+01:00'
 }) AS d
RETURN
 date.truncate('millennium', d) AS truncMillenium,
 date.truncate('century', d) AS truncCentury,
 date.truncate('decade', d) AS truncDecade,
 date.truncate('year', d, {day: 5}) AS truncYear,
 date.truncate('weekYear', d) AS truncWeekYear,
 date.truncate('quarter', d) AS truncQuarter,
 date.truncate('month', d) AS truncMonth,
 date.truncate('week', d, {dayOfWeek: 2}) AS truncWeek,
 date.truncate('day', d) AS truncDay

Table 421. Result

truncMilleni
um

truncCentu
ry

truncDecad
e

truncYear truncWeek
Year

truncQuart
er

truncMonth truncWeek truncDay

2000-01-01 2000-01-01 2010-01-01 2017-01-05 2017-01-02 2017-10-01 2017-11-01 2017-11-07 2017-11-11

Rows: 1

datetime()

Details for using the datetime() function.

• Getting the current DateTime

◦ datetime.transaction()

◦ datetime.statement()

◦ datetime.realtime()

• Creating a calendar (Year-Month-Day) DateTime

• Creating a week (Year-Week-Day) DateTime

• Creating a quarter (Year-Quarter-Day) DateTime

• Creating an ordinal (Year-Day) DateTime

• Creating a DateTime from a string

• Creating a DateTime using other temporal values as components

• Creating a DateTime from a timestamp

• Truncating a DateTime

Getting the current DateTime

datetime() returns the current DateTime value. If no time zone parameter is specified, the default time

385

zone will be used.

Syntax:

datetime([{timezone}])

Returns:

A DateTime.

Arguments:

Name Description

A single map consisting of the following:

timezone A string expression that represents the time zone.

Considerations:

If no parameters are provided, datetime() must be invoked (datetime({}) is invalid).

Example 197. .datetime()

Query

RETURN datetime() AS currentDateTime

The current date and time using the local time zone is returned.

Table 422. Result

currentDateTime

2022-06-14T10:02:28.192Z

Rows: 1

386

Example 198. .datetime()

Query

RETURN datetime({timezone: 'America/Los Angeles'}) AS currentDateTimeInLA

The current date and time of day in California is returned.

Table 423. Result

currentDateTimeInLA

2022-06-14T03:02:28.238-07:00[America/Los_Angeles]

Rows: 1

datetime.transaction()

datetime.transaction() returns the current DateTime value using the transaction clock. This value will
be the same for each invocation within the same transaction. However, a different value may be produced
for different transactions.

Syntax:

datetime.transaction([{timezone}])

Returns:

A DateTime.

Arguments:

Name Description

timezone A string expression that represents the time zone.

Example 199. datetime.transaction()

Query

RETURN datetime.transaction() AS currentDateTime

Table 424. Result

currentDateTime

2022-06-14T10:02:28.290Z

Rows: 1

387

Example 200. datetime.transaction()

Query

RETURN datetime.transaction('America/Los Angeles') AS currentDateTimeInLA

Table 425. Result

currentDateTimeInLA

2022-06-14T03:02:28.338-07:00[America/Los_Angeles]

Rows: 1

datetime.statement()

datetime.statement() returns the current DateTime value using the statement clock. This value will be the
same for each invocation within the same statement. However, a different value may be produced for
different statements within the same transaction.

Syntax:

datetime.statement([{timezone}])

Returns:

A DateTime.

Arguments:

Name Description

timezone A string expression that represents the time zone.

Example 201. datetime.statement()

Query

RETURN datetime.statement() AS currentDateTime

Table 426. Result

currentDateTime

2022-06-14T10:02:28.395Z

Rows: 1

388

datetime.realtime()

datetime.realtime() returns the current DateTime value using the realtime clock. This value will be the
live clock of the system.

Syntax:

datetime.realtime([{timezone}])

Returns:

A DateTime.

Arguments:

Name Description

timezone A string expression that represents the time zone.

Example 202. datetime.realtime()

Query

RETURN datetime.realtime() AS currentDateTime

Table 427. Result

currentDateTime

2022-06-14T10:02:28.494444Z

Rows: 1

Creating a calendar (Year-Month-Day) DateTime

datetime() returns a DateTime value with the specified year, month, day, hour, minute, second,
millisecond, microsecond, nanosecond and timezone component values.

Syntax:

datetime({year [, month, day, hour, minute, second, millisecond, microsecond, nanosecond, timezone]})

Returns:

A DateTime.

Arguments:

389

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

month An integer between 1 and 12 that specifies the month.

day An integer between 1 and 31 that specifies the day of the
month.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

The month component will default to 1 if month is omitted.

The day of the month component will default to 1 if day is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

The timezone component will default to the configured default time zone if timezone is omitted.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, month, day, hour, minute, and second may be omitted; i.e. it is possible to
specify only year, month and day, but specifying year, month, day and minute is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

390

Example 203. datetime()

Query

UNWIND [
datetime({year: 1984, month: 10, day: 11, hour: 12, minute: 31, second: 14, millisecond: 123,
microsecond: 456, nanosecond: 789}),
datetime({year: 1984, month: 10, day: 11, hour: 12, minute: 31, second: 14, millisecond: 645,
timezone: '+01:00'}),
datetime({year: 1984, month: 10, day: 11, hour: 12, minute: 31, second: 14, nanosecond: 645876123,
timezone: 'Europe/Stockholm'}),
datetime({year: 1984, month: 10, day: 11, hour: 12, minute: 31, second: 14, timezone: '+01:00'}),
datetime({year: 1984, month: 10, day: 11, hour: 12, minute: 31, second: 14}),
datetime({year: 1984, month: 10, day: 11, hour: 12, minute: 31, timezone: 'Europe/Stockholm'}),
datetime({year: 1984, month: 10, day: 11, hour: 12, timezone: '+01:00'}),
datetime({year: 1984, month: 10, day: 11, timezone: 'Europe/Stockholm'})
] AS theDate
RETURN theDate

Table 428. Result

theDate

1984-10-11T12:31:14.123456789Z

1984-10-11T12:31:14.645+01:00

1984-10-11T12:31:14.645876123+01:00[Europe/Stockholm]

1984-10-11T12:31:14+01:00

1984-10-11T12:31:14Z

1984-10-11T12:31+01:00[Europe/Stockholm]

1984-10-11T12:00+01:00

1984-10-11T00:00+01:00[Europe/Stockholm]

Rows: 8

Creating a week (Year-Week-Day) DateTime

datetime() returns a DateTime value with the specified year, week, dayOfWeek, hour, minute, second,
millisecond, microsecond, nanosecond and timezone component values.

Syntax:

datetime({year [, week, dayOfWeek, hour, minute, second, millisecond, microsecond, nanosecond, timezone]})

Returns:

A DateTime.

Arguments:

Name Description

A single map consisting of the following:

391

Name Description

year An expression consisting of at least four digits that specifies
the year.

week An integer between 1 and 53 that specifies the week.

dayOfWeek An integer between 1 and 7 that specifies the day of the
week.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

The week component will default to 1 if week is omitted.

The day of the week component will default to 1 if dayOfWeek is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

The timezone component will default to the configured default time zone if timezone is omitted.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, week, dayOfWeek, hour, minute, and second may be omitted; i.e. it is possible
to specify only year, week and dayOfWeek, but specifying year, week, dayOfWeek and minute is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

392

Example 204. datetime()

Query

UNWIND [
datetime({year: 1984, week: 10, dayOfWeek: 3, hour: 12, minute: 31, second: 14, millisecond: 645}),
datetime({year: 1984, week: 10, dayOfWeek: 3, hour: 12, minute: 31, second: 14, microsecond: 645876,
timezone: '+01:00'}),
datetime({year: 1984, week: 10, dayOfWeek: 3, hour: 12, minute: 31, second: 14, nanosecond:
645876123, timezone: 'Europe/Stockholm'}),
datetime({year: 1984, week: 10, dayOfWeek: 3, hour: 12, minute: 31, second: 14, timezone:
'Europe/Stockholm'}),
datetime({year: 1984, week: 10, dayOfWeek: 3, hour: 12, minute: 31, second: 14}),
datetime({year: 1984, week: 10, dayOfWeek: 3, hour: 12, timezone: '+01:00'}),
datetime({year: 1984, week: 10, dayOfWeek: 3, timezone: 'Europe/Stockholm'})
] AS theDate
RETURN theDate

Table 429. Result

theDate

1984-03-07T12:31:14.645Z

1984-03-07T12:31:14.645876+01:00

1984-03-07T12:31:14.645876123+01:00[Europe/Stockholm]

1984-03-07T12:31:14+01:00[Europe/Stockholm]

1984-03-07T12:31:14Z

1984-03-07T12:00+01:00

1984-03-07T00:00+01:00[Europe/Stockholm]

Rows: 7

Creating a quarter (Year-Quarter-Day) DateTime

datetime() returns a DateTime value with the specified year, quarter, dayOfQuarter, hour, minute, second,
millisecond, microsecond, nanosecond and timezone component values.

Syntax:

datetime({year [, quarter, dayOfQuarter, hour, minute, second, millisecond, microsecond, nanosecond,
timezone]})

Returns:

A DateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

393

Name Description

quarter An integer between 1 and 4 that specifies the quarter.

dayOfQuarter An integer between 1 and 92 that specifies the day of the
quarter.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

The quarter component will default to 1 if quarter is omitted.

The day of the quarter component will default to 1 if dayOfQuarter is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

The timezone component will default to the configured default time zone if timezone is omitted.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, quarter, dayOfQuarter, hour, minute, and second may be omitted; i.e. it is
possible to specify only year, quarter and dayOfQuarter, but specifying year, quarter, dayOfQuarter and minute is not
permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

394

Example 205. datetime()

Query

UNWIND [
datetime({year: 1984, quarter: 3, dayOfQuarter: 45, hour: 12, minute: 31, second: 14, microsecond:
645876}),
datetime({year: 1984, quarter: 3, dayOfQuarter: 45, hour: 12, minute: 31, second: 14, timezone:
'+01:00'}),
datetime({year: 1984, quarter: 3, dayOfQuarter: 45, hour: 12, timezone: 'Europe/Stockholm'}),
datetime({year: 1984, quarter: 3, dayOfQuarter: 45})
] AS theDate
RETURN theDate

Table 430. Result

theDate

1984-08-14T12:31:14.645876Z

1984-08-14T12:31:14+01:00

1984-08-14T12:00+02:00[Europe/Stockholm]

1984-08-14T00:00Z

Rows: 4

Creating an ordinal (Year-Day) DateTime

datetime() returns a DateTime value with the specified year, ordinalDay, hour, minute, second,
millisecond, microsecond, nanosecond and timezone component values.

Syntax:

datetime({year [, ordinalDay, hour, minute, second, millisecond, microsecond, nanosecond, timezone]})

Returns:

A DateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

ordinalDay An integer between 1 and 366 that specifies the ordinal day
of the year.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

395

Name Description

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

The ordinal day of the year component will default to 1 if ordinalDay is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

The timezone component will default to the configured default time zone if timezone is omitted.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, ordinalDay, hour, minute, and second may be omitted; i.e. it is possible to
specify only year and ordinalDay, but specifying year, ordinalDay and minute is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

396

Example 206. datetime()

Query

UNWIND [
datetime({year: 1984, ordinalDay: 202, hour: 12, minute: 31, second: 14, millisecond: 645}),
datetime({year: 1984, ordinalDay: 202, hour: 12, minute: 31, second: 14, timezone: '+01:00'}),
datetime({year: 1984, ordinalDay: 202, timezone: 'Europe/Stockholm'}),
datetime({year: 1984, ordinalDay: 202})
] AS theDate
RETURN theDate

Table 431. Result

theDate

1984-07-20T12:31:14.645Z

1984-07-20T12:31:14+01:00

1984-07-20T00:00+02:00[Europe/Stockholm]

1984-07-20T00:00Z

Rows: 4

Creating a DateTime from a string

datetime() returns the DateTime value obtained by parsing a string representation of a temporal value.

Syntax:

datetime(temporalValue)

Returns:

A DateTime.

Arguments:

Name Description

temporalValue A string representing a temporal value.

Considerations:

temporalValue must comply with the format defined for dates, times and time zones.

The timezone component will default to the configured default time zone if it is omitted.

temporalValue must denote a valid date and time; i.e. a temporalValue denoting 30 February 2001 is invalid.

datetime(null) returns null.

397

Example 207. datetime()

Query

UNWIND [
datetime('2015-07-21T21:40:32.142+0100'),
datetime('2015-W30-2T214032.142Z'),
datetime('2015T214032-0100'),
datetime('20150721T21:40-01:30'),
datetime('2015-W30T2140-02'),
datetime('2015202T21+18:00'),
datetime('2015-07-21T21:40:32.142[Europe/London]'),
datetime('2015-07-21T21:40:32.142-04[America/New_York]')
] AS theDate
RETURN theDate

Table 432. Result

theDate

2015-07-21T21:40:32.142+01:00

2015-07-21T21:40:32.142Z

2015-01-01T21:40:32-01:00

2015-07-21T21:40-01:30

2015-07-20T21:40-02:00

2015-07-21T21:00+18:00

2015-07-21T21:40:32.142+01:00[Europe/London]

2015-07-21T21:40:32.142-04:00[America/New_York]

Rows: 8

Creating a DateTime using other temporal values as components

datetime() returns the DateTime value obtained by selecting and composing components from another
temporal value. In essence, this allows a Date, LocalDateTime, Time or LocalTime value to be converted to
a DateTime, and for "missing" components to be provided.

Syntax:

datetime({datetime [, year, ..., timezone]}) | datetime({date [, year, ..., timezone]}) | datetime({time
[, year, ..., timezone]}) | datetime({date, time [, year, ..., timezone]})

Returns:

A DateTime.

Arguments:

Name Description

A single map consisting of the following:

398

Name Description

datetime A DateTime value.

date A Date value.

time A Time value.

year An expression consisting of at least four digits that specifies
the year.

month An integer between 1 and 12 that specifies the month.

day An integer between 1 and 31 that specifies the day of the
month.

week An integer between 1 and 53 that specifies the week.

dayOfWeek An integer between 1 and 7 that specifies the day of the
week.

quarter An integer between 1 and 4 that specifies the quarter.

dayOfQuarter An integer between 1 and 92 that specifies the day of the
quarter.

ordinalDay An integer between 1 and 366 that specifies the ordinal day
of the year.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

If any of the optional parameters are provided, these will override the corresponding components of datetime, date and/or
time.

datetime(dd) may be written instead of datetime({datetime: dd}).

Selecting a Time or DateTime value as the time component also selects its time zone. If a LocalTime or LocalDateTime is
selected instead, the default time zone is used. In any case, the time zone can be overridden explicitly.

Selecting a DateTime as the datetime component and overwriting the time zone will adjust the local time to keep the same
point in time.

399

Selecting a DateTime or Time as the time component and overwriting the time zone will adjust the local time to keep the
same point in time.

Example 208. datetime()

The following query shows the various usages of datetime({date [, year, ..., timezone]}).

Query

WITH date({year: 1984, month: 10, day: 11}) AS dd
RETURN
 datetime({date: dd, hour: 10, minute: 10, second: 10}) AS dateHHMMSS,
 datetime({date: dd, hour: 10, minute: 10, second: 10, timezone:'+05:00'}) AS dateHHMMSSTimezone,
 datetime({date: dd, day: 28, hour: 10, minute: 10, second: 10}) AS dateDDHHMMSS,
 datetime({date: dd, day: 28, hour: 10, minute: 10, second: 10, timezone:'Pacific/Honolulu'}) AS
dateDDHHMMSSTimezone

Table 433. Result

dateHHMMSS dateHHMMSSTimezone dateDDHHMMSS dateDDHHMMSSTimezone

1984-10-11T10:10:10Z 1984-10-11T10:10:10+05:00 1984-10-28T10:10:10Z 1984-10-28T10:10:10-
10:00[Pacific/Honolulu]

Rows: 1

Example 209. datetime()

The following query shows the various usages of datetime({time [, year, …, timezone]}).

Query

WITH time({hour: 12, minute: 31, second: 14, microsecond: 645876, timezone: '+01:00'}) AS tt
RETURN
 datetime({year: 1984, month: 10, day: 11, time: tt}) AS YYYYMMDDTime,
 datetime({year: 1984, month: 10, day: 11, time: tt, timezone:'+05:00'}) AS YYYYMMDDTimeTimezone,
 datetime({year: 1984, month: 10, day: 11, time: tt, second: 42}) AS YYYYMMDDTimeSS,
 datetime({year: 1984, month: 10, day: 11, time: tt, second: 42, timezone: 'Pacific/Honolulu'}) AS
YYYYMMDDTimeSSTimezone

Table 434. Result

YYYYMMDDTime YYYYMMDDTimeTimezone YYYYMMDDTimeSS YYYYMMDDTimeSSTimezo
ne

1984-10-
11T12:31:14.645876+01:00

1984-10-
11T16:31:14.645876+05:00

1984-10-
11T12:31:42.645876+01:00

1984-10-
11T01:31:42.645876-
10:00[Pacific/Honolulu]

Rows: 1

400

Example 210. datetime()

The following query shows the various usages of datetime({date, time [, year, ...,
timezone]}); i.e. combining a Date and a Time value to create a single DateTime value.

Query

WITH
 date({year: 1984, month: 10, day: 11}) AS dd,
 localtime({hour: 12, minute: 31, second: 14, millisecond: 645}) AS tt
RETURN
 datetime({date: dd, time: tt}) AS dateTime,
 datetime({date: dd, time: tt, timezone: '+05:00'}) AS dateTimeTimezone,
 datetime({date: dd, time: tt, day: 28, second: 42}) AS dateTimeDDSS,
 datetime({date: dd, time: tt, day: 28, second: 42, timezone: 'Pacific/Honolulu'}) AS
dateTimeDDSSTimezone

Table 435. Result

dateTime dateTimeTimezone dateTimeDDSS dateTimeDDSSTimezone

1984-10-11T12:31:14.645Z 1984-10-
11T12:31:14.645+05:00

1984-10-28T12:31:42.645Z 1984-10-28T12:31:42.645-
10:00[Pacific/Honolulu]

Rows: 1

Example 211. datetime()

The following query shows the various usages of datetime({datetime [, year, ..., timezone]}).

Query

WITH
 datetime({
 year: 1984, month: 10, day: 11,
 hour: 12,
 timezone: 'Europe/Stockholm'
 }) AS dd
RETURN
 datetime({datetime: dd}) AS dateTime,
 datetime({datetime: dd, timezone: '+05:00'}) AS dateTimeTimezone,
 datetime({datetime: dd, day: 28, second: 42}) AS dateTimeDDSS,
 datetime({datetime: dd, day: 28, second: 42, timezone: 'Pacific/Honolulu'}) AS dateTimeDDSSTimezone

Table 436. Result

dateTime dateTimeTimezone dateTimeDDSS dateTimeDDSSTimezone

1984-10-
11T12:00+01:00[Europe/Sto
ckholm]

1984-10-11T16:00+05:00 1984-10-
28T12:00:42+01:00[Europe/
Stockholm]

1984-10-28T01:00:42-
10:00[Pacific/Honolulu]

Rows: 1

Creating a DateTime from a timestamp

datetime() returns the DateTime value at the specified number of seconds or milliseconds from the UNIX
epoch in the UTC time zone.

401

Conversions to other temporal instant types from UNIX epoch representations can be achieved by
transforming a DateTime value to one of these types.

Syntax:

datetime({ epochSeconds | epochMillis })

Returns:

A DateTime.

Arguments:

Name Description

A single map consisting of the following:

epochSeconds A numeric value representing the number of seconds from
the UNIX epoch in the UTC time zone.

epochMillis A numeric value representing the number of milliseconds
from the UNIX epoch in the UTC time zone.

Considerations:

epochSeconds/epochMillis may be used in conjunction with nanosecond.

Example 212. datetime()

Query

RETURN datetime({epochSeconds: timestamp() / 1000, nanosecond: 23}) AS theDate

Table 437. Result

theDate

2022-06-14T10:02:30.000000023Z

Rows: 1

402

Example 213. datetime()

Query

RETURN datetime({epochMillis: 424797300000}) AS theDate

Table 438. Result

theDate

1983-06-18T15:15Z

Rows: 1

Truncating a DateTime

datetime.truncate() returns the DateTime value obtained by truncating a specified temporal instant value
at the nearest preceding point in time at the specified component boundary (which is denoted by the
truncation unit passed as a parameter to the function). In other words, the DateTime returned will have all
components that are less significant than the specified truncation unit set to their default values.

It is possible to supplement the truncated value by providing a map containing components which are less
significant than the truncation unit. This will have the effect of overriding the default values which would
otherwise have been set for these less significant components. For example, day — with some value
x — may be provided when the truncation unit string is 'year' in order to ensure the returned value has
the day set to x instead of the default day (which is 1).

Syntax:

datetime.truncate(unit [, temporalInstantValue [, mapOfComponents]])

Returns:

A DateTime.

Arguments:

Name Description

unit A string expression evaluating to one of the following strings:
'millennium', 'century', 'decade', 'year', 'weekYear',
'quarter', 'month', 'week', 'day', 'hour', 'minute',
'second', 'millisecond', 'microsecond'.

temporalInstantValue An expression of one of the following types: DateTime,
LocalDateTime, Date.

403

Name Description

mapOfComponents An expression evaluating to a map containing
components less significant than unit. During
truncation, a time zone can be attached or
overridden using the key timezone.

Considerations:

temporalInstantValue cannot be a Date value if unit is one of: 'hour', 'minute', 'second', 'millisecond', 'microsecond'.

The time zone of temporalInstantValue may be overridden; for example, datetime.truncate('minute', input, {timezone:
'+0200'}).

If temporalInstantValue is one of Time, DateTime — a value with a time zone — and the time zone is overridden, no time
conversion occurs.

If temporalInstantValue is one of LocalDateTime, Date — a value without a time zone — and the time zone is not
overridden, the configured default time zone will be used.

Any component that is provided in mapOfComponents must be less significant than unit; i.e. if unit is 'day', mapOfComponents
cannot contain information pertaining to a month.

Any component that is not contained in mapOfComponents and which is less significant than unit will be set to its minimal
value.

If mapOfComponents is not provided, all components of the returned value which are less significant than unit will be set to
their default values.

If temporalInstantValue is not provided, it will be set to the current date, time and timezone, i.e. datetime.truncate(unit) is
equivalent of datetime.truncate(unit, datetime()).

Example 214. datetime()

Query

WITH
 datetime({
 year:2017, month:11, day:11,
 hour:12, minute:31, second:14, nanosecond: 645876123,
 timezone: '+03:00'
 }) AS d
RETURN
 datetime.truncate('millennium', d, {timezone: 'Europe/Stockholm'}) AS truncMillenium,
 datetime.truncate('year', d, {day: 5}) AS truncYear,
 datetime.truncate('month', d) AS truncMonth,
 datetime.truncate('day', d, {millisecond: 2}) AS truncDay,
 datetime.truncate('hour', d) AS truncHour,
 datetime.truncate('second', d) AS truncSecond

Table 439. Result

truncMillenium truncYear truncMonth truncDay truncHour truncSecond

2000-01-
01T00:00+01:00[E
urope/Stockholm]

2017-01-
05T00:00+03:00

2017-11-
01T00:00+03:00

2017-11-
11T00:00:00.002+
03:00

2017-11-
11T12:00+03:00

2017-11-
11T12:31:14+03:0
0

Rows: 1

404

localdatetime()

Details for using the localdatetime() function.

• Getting the current LocalDateTime

◦ localdatetime.transaction()

◦ localdatetime.statement()

◦ localdatetime.realtime()

• Creating a calendar (Year-Month-Day) LocalDateTime

• Creating a week (Year-Week-Day) LocalDateTime

• Creating a quarter (Year-Quarter-Day) LocalDateTime

• Creating an ordinal (Year-Day) LocalDateTime

• Creating a LocalDateTime from a string

• Creating a LocalDateTime using other temporal values as components

• Truncating a LocalDateTime

Getting the current LocalDateTime

localdatetime() returns the current LocalDateTime value. If no time zone parameter is specified, the local
time zone will be used.

Syntax:

localdatetime([{timezone}])

Returns:

A LocalDateTime.

Arguments:

Name Description

A single map consisting of the following:

timezone A string expression that represents the time zone.

Considerations:

If no parameters are provided, localdatetime() must be invoked (localdatetime({}) is invalid).

405

Example 215. localdatetime()

Query

RETURN localdatetime() AS now

The current local date and time (i.e. in the local time zone) is returned.

Table 440. Result

now

2022-06-14T10:02:30.447

Rows: 1

Example 216. localdatetime()

Query

RETURN localdatetime({timezone: 'America/Los Angeles'}) AS now

The current local date and time in California is returned.

Table 441. Result

now

2022-06-14T03:02:30.482

Rows: 1

localdatetime.transaction()

localdatetime.transaction() returns the current LocalDateTime value using the transaction clock. This
value will be the same for each invocation within the same transaction. However, a different value may be
produced for different transactions.

Syntax:

localdatetime.transaction([{timezone}])

Returns:

A LocalDateTime.

Arguments:

406

Name Description

timezone A string expression that represents the time zone.

Example 217. localdatetime.transaction()

Query

RETURN localdatetime.transaction() AS now

Table 442. Result

now

2022-06-14T10:02:30.532

Rows: 1

localdatetime.statement()

localdatetime.statement() returns the current LocalDateTime value using the statement clock. This value
will be the same for each invocation within the same statement. However, a different value may be
produced for different statements within the same transaction.

Syntax:

localdatetime.statement([{timezone}])

Returns:

A LocalDateTime.

Arguments:

Name Description

timezone A string expression that represents the time zone.

407

Example 218. localdatetime.statement()

Query

RETURN localdatetime.statement() AS now

Table 443. Result

now

2022-06-14T10:02:30.570

Rows: 1

localdatetime.realtime()

localdatetime.realtime() returns the current LocalDateTime value using the realtime clock. This value
will be the live clock of the system.

Syntax:

localdatetime.realtime([{timezone}])

Returns:

A LocalDateTime.

Arguments:

Name Description

timezone A string expression that represents the time zone.

Example 219. localdatetime.realtime()

Query

RETURN localdatetime.realtime() AS now

Table 444. Result

now

2022-06-14T10:02:30.647817

Rows: 1

408

Example 220. localdatetime.realtime()

Query

RETURN localdatetime.realtime('America/Los Angeles') AS nowInLA

Table 445. Result

nowInLA

2022-06-14T03:02:30.691099

Rows: 1

Creating a calendar (Year-Month-Day) LocalDateTime

localdatetime() returns a LocalDateTime value with the specified year, month, day, hour, minute, second,
millisecond, microsecond and nanosecond component values.

Syntax:

localdatetime({year [, month, day, hour, minute, second, millisecond, microsecond, nanosecond]})

Returns:

A LocalDateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

month An integer between 1 and 12 that specifies the month.

day An integer between 1 and 31 that specifies the day of the
month.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

409

Name Description

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

The month component will default to 1 if month is omitted.

The day of the month component will default to 1 if day is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, month, day, hour, minute, and second may be omitted; i.e. it is possible to
specify only year, month and day, but specifying year, month, day and minute is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

Example 221. localdatetime.realtime()

Query

RETURN
 localdatetime({
 year: 1984, month: 10, day: 11,
 hour: 12, minute: 31, second: 14, millisecond: 123, microsecond: 456, nanosecond: 789
 }) AS theDate

Table 446. Result

theDate

1984-10-11T12:31:14.123456789

Rows: 1

Creating a week (Year-Week-Day) LocalDateTime

localdatetime() returns a LocalDateTime value with the specified year, week, dayOfWeek, hour, minute,
second, millisecond, microsecond and nanosecond component values.

Syntax:

localdatetime({year [, week, dayOfWeek, hour, minute, second, millisecond, microsecond, nanosecond]})

Returns:

410

A LocalDateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

week An integer between 1 and 53 that specifies the week.

dayOfWeek An integer between 1 and 7 that specifies the day of the
week.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

The week component will default to 1 if week is omitted.

The day of the week component will default to 1 if dayOfWeek is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, week, dayOfWeek, hour, minute, and second may be omitted; i.e. it is possible
to specify only year, week and dayOfWeek, but specifying year, week, dayOfWeek and minute is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

411

Example 222. localdatetime()

Query

RETURN
 localdatetime({
 year: 1984, week: 10, dayOfWeek: 3,
 hour: 12, minute: 31, second: 14, millisecond: 645
 }) AS theDate

Table 447. Result

theDate

1984-03-07T12:31:14.645

Rows: 1

Creating a quarter (Year-Quarter-Day) DateTime

localdatetime() returns a LocalDateTime value with the specified year, quarter, dayOfQuarter, hour,
minute, second, millisecond, microsecond and nanosecond component values.

Syntax:

localdatetime({year [, quarter, dayOfQuarter, hour, minute, second, millisecond, microsecond,
nanosecond]})

Returns:

A LocalDateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

quarter An integer between 1 and 4 that specifies the quarter.

dayOfQuarter An integer between 1 and 92 that specifies the day of the
quarter.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

412

Name Description

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

The quarter component will default to 1 if quarter is omitted.

The day of the quarter component will default to 1 if dayOfQuarter is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, quarter, dayOfQuarter, hour, minute, and second may be omitted; i.e. it is
possible to specify only year, quarter and dayOfQuarter, but specifying year, quarter, dayOfQuarter and minute is not
permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

Example 223. localdatetime()

Query

RETURN
 localdatetime({
 year: 1984, quarter: 3, dayOfQuarter: 45,
 hour: 12, minute: 31, second: 14, nanosecond: 645876123
 }) AS theDate

Table 448. Result

theDate

1984-08-14T12:31:14.645876123

Rows: 1

Creating an ordinal (Year-Day) LocalDateTime

localdatetime() returns a LocalDateTime value with the specified year, ordinalDay, hour, minute, second,
millisecond, microsecond and nanosecond component values.

Syntax:

413

localdatetime({year [, ordinalDay, hour, minute, second, millisecond, microsecond, nanosecond]})

Returns:

A LocalDateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

ordinalDay An integer between 1 and 366 that specifies the ordinal day
of the year.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

The ordinal day of the year component will default to 1 if ordinalDay is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, ordinalDay, hour, minute, and second may be omitted; i.e. it is possible to
specify only year and ordinalDay, but specifying year, ordinalDay and minute is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

414

Example 224. localdatetime()

Query

RETURN
 localdatetime({
 year: 1984, ordinalDay: 202,
 hour: 12, minute: 31, second: 14, microsecond: 645876
 }) AS theDate

Table 449. Result

theDate

1984-07-20T12:31:14.645876

Rows: 1

Creating a LocalDateTime from a string

localdatetime() returns the LocalDateTime value obtained by parsing a string representation of a
temporal value.

Syntax:

localdatetime(temporalValue)

Returns:

A LocalDateTime.

Arguments:

Name Description

temporalValue A string representing a temporal value.

Considerations:

temporalValue must comply with the format defined for dates and times.

temporalValue must denote a valid date and time; i.e. a temporalValue denoting 30 February 2001 is invalid.

localdatetime(null) returns null.

415

Example 225. localdatetime()

Query

UNWIND [
localdatetime('2015-07-21T21:40:32.142'),
localdatetime('2015-W30-2T214032.142'),
localdatetime('2015-202T21:40:32'),
localdatetime('2015202T21')
] AS theDate
RETURN theDate

Table 450. Result

theDate

2015-07-21T21:40:32.142

2015-07-21T21:40:32.142

2015-07-21T21:40:32

2015-07-21T21:00

Rows: 4

Creating a LocalDateTime using other temporal values as components

localdatetime() returns the LocalDateTime value obtained by selecting and composing components from
another temporal value. In essence, this allows a Date, DateTime, Time or LocalTime value to be converted
to a LocalDateTime, and for "missing" components to be provided.

Syntax:

localdatetime({datetime [, year, ..., nanosecond]}) | localdatetime({date [, year, ..., nanosecond]}) |
localdatetime({time [, year, ..., nanosecond]}) | localdatetime({date, time [, year, ..., nanosecond]})

Returns:

A LocalDateTime.

Arguments:

Name Description

A single map consisting of the following:

datetime A DateTime value.

date A Date value.

time A Time value.

year An expression consisting of at least four digits that specifies
the year.

month An integer between 1 and 12 that specifies the month.

416

Name Description

day An integer between 1 and 31 that specifies the day of the
month.

week An integer between 1 and 53 that specifies the week.

dayOfWeek An integer between 1 and 7 that specifies the day of the
week.

quarter An integer between 1 and 4 that specifies the quarter.

dayOfQuarter An integer between 1 and 92 that specifies the day of the
quarter.

ordinalDay An integer between 1 and 366 that specifies the ordinal day
of the year.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

If any of the optional parameters are provided, these will override the corresponding components of datetime, date and/or
time.

localdatetime(dd) may be written instead of localdatetime({datetime: dd}).

417

Example 226. localdatetime()

The following query shows the various usages of localdatetime({date [, year, ...,
nanosecond]}).

Query

WITH date({year: 1984, month: 10, day: 11}) AS dd
RETURN
 localdatetime({date: dd, hour: 10, minute: 10, second: 10}) AS dateHHMMSS,
 localdatetime({date: dd, day: 28, hour: 10, minute: 10, second: 10}) AS dateDDHHMMSS

Table 451. Result

dateHHMMSS dateDDHHMMSS

1984-10-11T10:10:10 1984-10-28T10:10:10

Rows: 1

Example 227. localdatetime()

The following query shows the various usages of localdatetime({time [, year, ...,
nanosecond]}).

Query

WITH time({hour: 12, minute: 31, second: 14, microsecond: 645876, timezone: '+01:00'}) AS tt
RETURN
 localdatetime({year: 1984, month: 10, day: 11, time: tt}) AS YYYYMMDDTime,
 localdatetime({year: 1984, month: 10, day: 11, time: tt, second: 42}) AS YYYYMMDDTimeSS

Table 452. Result

YYYYMMDDTime YYYYMMDDTimeSS

1984-10-11T12:31:14.645876 1984-10-11T12:31:42.645876

Rows: 1

418

Example 228. localdatetime()

The following query shows the various usages of localdatetime({date, time [, year, ...,
nanosecond]}); i.e. combining a Date and a Time value to create a single LocalDateTime value.

Query

WITH
 date({year: 1984, month: 10, day: 11}) AS dd,
 time({hour: 12, minute: 31, second: 14, microsecond: 645876, timezone: '+01:00'}) AS tt
RETURN
 localdatetime({date: dd, time: tt}) AS dateTime,
 localdatetime({date: dd, time: tt, day: 28, second: 42}) AS dateTimeDDSS

Table 453. Result

dateTime dateTimeDDSS

1984-10-11T12:31:14.645876 1984-10-28T12:31:42.645876

Rows: 1

Example 229. localdatetime()

The following query shows the various usages of localdatetime({datetime [, year, ...,
nanosecond]}).

Query

WITH
 datetime({
 year: 1984, month: 10, day: 11,
 hour: 12,
 timezone: '+01:00'
 }) AS dd
RETURN
 localdatetime({datetime: dd}) AS dateTime,
 localdatetime({datetime: dd, day: 28, second: 42}) AS dateTimeDDSS

Table 454. Result

dateTime dateTimeDDSS

1984-10-11T12:00 1984-10-28T12:00:42

Rows: 1

Truncating a LocalDateTime

localdatetime.truncate() returns the LocalDateTime value obtained by truncating a specified temporal
instant value at the nearest preceding point in time at the specified component boundary (which is
denoted by the truncation unit passed as a parameter to the function). In other words, the LocalDateTime
returned will have all components that are less significant than the specified truncation unit set to their
default values.

It is possible to supplement the truncated value by providing a map containing components which are less

419

significant than the truncation unit. This will have the effect of overriding the default values which would
otherwise have been set for these less significant components. For example, day — with some value
x — may be provided when the truncation unit string is 'year' in order to ensure the returned value has
the day set to x instead of the default day (which is 1).

Syntax:

localdatetime.truncate(unit [, temporalInstantValue [, mapOfComponents]])

Returns:

A LocalDateTime.

Arguments:

Name Description

unit A string expression evaluating to one of the following strings:
'millennium', 'century', 'decade', 'year', 'weekYear',
'quarter', 'month', 'week', 'day', 'hour', 'minute',
'second', 'millisecond', 'microsecond'.

temporalInstantValue An expression of one of the following types: DateTime,
LocalDateTime, Date.

mapOfComponents An expression evaluating to a map containing components
less significant than unit.

Considerations:

temporalInstantValue cannot be a Date value if unit is one of: 'hour', 'minute', 'second', 'millisecond', 'microsecond'.

Any component that is provided in mapOfComponents must be less significant than unit; i.e. if unit is 'day', mapOfComponents
cannot contain information pertaining to a month.

Any component that is not contained in mapOfComponents and which is less significant than unit will be set to its minimal
value.

If mapOfComponents is not provided, all components of the returned value which are less significant than unit will be set to
their default values.

If temporalInstantValue is not provided, it will be set to the current date and time, i.e. localdatetime.truncate(unit) is
equivalent of localdatetime.truncate(unit, localdatetime()).

420

Example 230. localdatetime.truncate()

Query

WITH
 localdatetime({
 year: 2017, month: 11, day: 11,
 hour: 12, minute: 31, second: 14, nanosecond: 645876123
 }) AS d
RETURN
 localdatetime.truncate('millennium', d) AS truncMillenium,
 localdatetime.truncate('year', d, {day: 2}) AS truncYear,
 localdatetime.truncate('month', d) AS truncMonth,
 localdatetime.truncate('day', d) AS truncDay,
 localdatetime.truncate('hour', d, {nanosecond: 2}) AS truncHour,
 localdatetime.truncate('second', d) AS truncSecond

Table 455. Result

truncMillenium truncYear truncMonth truncDay truncHour truncSecond

2000-01-01T00:00 2017-01-02T00:00 2017-11-01T00:00 2017-11-11T00:00 2017-11-
11T12:00:00.0000
00002

2017-11-
11T12:31:14

Rows: 1

localtime()

Details for using the localtime() function.

• Getting the current LocalTime

◦ localtime.transaction()

◦ localtime.statement()

◦ localtime.realtime()

• Creating a LocalTime

• Creating a LocalTime from a string

• Creating a LocalTime using other temporal values as components

• Truncating a LocalTime

Getting the current LocalTime

localtime() returns the current LocalTime value. If no time zone parameter is specified, the local time zone
will be used.

Syntax:

localtime([{timezone}])

Returns:

421

A LocalTime.

Arguments:

Name Description

A single map consisting of the following:

timezone A string expression that represents the time zone.

Considerations:

If no parameters are provided, localtime() must be invoked (localtime({}) is invalid).

Example 231. localtime()

Query

RETURN localtime() AS now

The current local time (i.e. in the local time zone) is returned.

Table 456. Result

now

10:02:31.596

Rows: 1

Example 232. localtime()

Query

RETURN localtime({timezone: 'America/Los Angeles'}) AS nowInLA

The current local time in California is returned.

Table 457. Result

nowInLA

03:02:31.629

Rows: 1

localtime.transaction()

localtime.transaction() returns the current LocalTime value using the transaction clock. This value will
be the same for each invocation within the same transaction. However, a different value may be produced
for different transactions.

422

Syntax:

localtime.transaction([{timezone}])

Returns:

A LocalTime.

Arguments:

Name Description

timezone A string expression that represents the time zone.

Example 233. localtime.transaction()

Query

RETURN localtime.transaction() AS now

Table 458. Result

now

10:02:31.662

Rows: 1

localtime.statement()

localtime.statement() returns the current LocalTime value using the statement clock. This value will be
the same for each invocation within the same statement. However, a different value may be produced for
different statements within the same transaction.

Syntax:

localtime.statement([{timezone}])

Returns:

A LocalTime.

Arguments:

Name Description

timezone A string expression that represents the time zone.

423

Example 234. localtime.statement()

Query

RETURN localtime.statement() AS now

Table 459. Result

now

10:02:31.697

Rows: 1

Example 235. localtime.statement()

Query

RETURN localtime.statement('America/Los Angeles') AS nowInLA

Table 460. Result

nowInLA

03:02:31.737

Rows: 1

localtime.realtime()

localtime.realtime() returns the current LocalTime value using the realtime clock. This value will be the
live clock of the system.

Syntax:

localtime.realtime([{timezone}])

Returns:

A LocalTime.

Arguments:

Name Description

timezone A string expression that represents the time zone.

424

Example 236. localtime.realtime()

Query

RETURN localtime.realtime() AS now

Table 461. Result

now

10:02:31.806895

Rows: 1

Creating a LocalTime

localtime() returns a LocalTime value with the specified hour, minute, second, millisecond, microsecond
and nanosecond component values.

Syntax:

localtime({hour [, minute, second, millisecond, microsecond, nanosecond]})

Returns:

A LocalTime.

Arguments:

Name Description

A single map consisting of the following:

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

The hour component will default to 0 if hour is omitted.

425

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set hour, minute, and second may be omitted; i.e. it is possible to specify only hour
and minute, but specifying hour and second is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

Example 237. localtime()

Query

UNWIND [
localtime({hour: 12, minute: 31, second: 14, nanosecond: 789, millisecond: 123, microsecond: 456}),
localtime({hour: 12, minute: 31, second: 14}),
localtime({hour: 12})
] AS theTime
RETURN theTime

Table 462. Result

theTime

12:31:14.123456789

12:31:14

12:00

Rows: 3

Creating a LocalTime from a string

localtime() returns the LocalTime value obtained by parsing a string representation of a temporal value.

Syntax:

localtime(temporalValue)

Returns:

A LocalTime.

Arguments:

Name Description

temporalValue A string representing a temporal value.

Considerations:

426

temporalValue must comply with the format defined for times.

temporalValue must denote a valid time; i.e. a temporalValue denoting 13:46:64 is invalid.

localtime(null) returns null.

Example 238. localtime()

Query

UNWIND [
localtime('21:40:32.142'),
localtime('214032.142'),
localtime('21:40'),
localtime('21')
] AS theTime
RETURN theTime

Table 463. Result

theTime

21:40:32.142

21:40:32.142

21:40

21:00

Rows: 4

Creating a LocalTime using other temporal values as components

localtime() returns the LocalTime value obtained by selecting and composing components from another
temporal value. In essence, this allows a DateTime, LocalDateTime or Time value to be converted to a
LocalTime, and for "missing" components to be provided.

Syntax:

localtime({time [, hour, ..., nanosecond]})

Returns:

A LocalTime.

Arguments:

Name Description

A single map consisting of the following:

time A Time value.

hour An integer between 0 and 23 that specifies the hour of the
day.

427

Name Description

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

If any of the optional parameters are provided, these will override the corresponding components of time.

localtime(tt) may be written instead of localtime({time: tt}).

Example 239. localtime()

Query

WITH time({hour: 12, minute: 31, second: 14, microsecond: 645876, timezone: '+01:00'}) AS tt
RETURN
 localtime({time: tt}) AS timeOnly,
 localtime({time: tt, second: 42}) AS timeSS

Table 464. Result

timeOnly timeSS

12:31:14.645876 12:31:42.645876

Rows: 1

Truncating a LocalTime

localtime.truncate() returns the LocalTime value obtained by truncating a specified temporal instant
value at the nearest preceding point in time at the specified component boundary (which is denoted by the
truncation unit passed as a parameter to the function). In other words, the LocalTime returned will have all
components that are less significant than the specified truncation unit set to their default values.

It is possible to supplement the truncated value by providing a map containing components which are less
significant than the truncation unit. This will have the effect of overriding the default values which would
otherwise have been set for these less significant components. For example, minute — with some value
x — may be provided when the truncation unit string is 'hour' in order to ensure the returned value has
the minute set to x instead of the default minute (which is 1).

Syntax:

428

localtime.truncate(unit [, temporalInstantValue [, mapOfComponents]])

Returns:

A LocalTime.

Arguments:

Name Description

unit A string expression evaluating to one of the following strings:
'day', 'hour', 'minute', 'second', 'millisecond',
'microsecond'.

temporalInstantValue An expression of one of the following types: DateTime,
LocalDateTime, Time, LocalTime.

mapOfComponents An expression evaluating to a map containing components
less significant than unit.

Considerations:

Truncating time to day — i.e. unit is 'day'  — is supported, and yields midnight at the start of the day
(00:00), regardless of the value of temporalInstantValue. However, the time zone of
temporalInstantValue is retained.

Any component that is provided in mapOfComponents must be less significant than unit; i.e. if unit is 'second',
mapOfComponents cannot contain information pertaining to a minute.

Any component that is not contained in mapOfComponents and which is less significant than unit will be set to its minimal
value.

If mapOfComponents is not provided, all components of the returned value which are less significant than unit will be set to
their default values.

If temporalInstantValue is not provided, it will be set to the current time, i.e. localtime.truncate(unit) is equivalent of
localtime.truncate(unit, localtime()).

429

Example 240. localtime.truncate()

Query

WITH time({hour: 12, minute: 31, second: 14, nanosecond: 645876123, timezone: '-01:00'}) AS t
RETURN
 localtime.truncate('day', t) AS truncDay,
 localtime.truncate('hour', t) AS truncHour,
 localtime.truncate('minute', t, {millisecond: 2}) AS truncMinute,
 localtime.truncate('second', t) AS truncSecond,
 localtime.truncate('millisecond', t) AS truncMillisecond,
 localtime.truncate('microsecond', t) AS truncMicrosecond

Table 465. Result

truncDay truncHour truncMinute truncSecond truncMillisecond truncMicrosecond

00:00 12:00 12:31:00.002 12:31:14 12:31:14.645 12:31:14.645876

Rows: 1

time()

Details for using the time() function.

• Getting the current Time

◦ time.transaction()

◦ time.statement()

◦ time.realtime()

• Creating a Time

• Creating a Time from a string

• Creating a Time using other temporal values as components

• Truncating a Time

Getting the current Time

time() returns the current Time value. If no time zone parameter is specified, the local time zone will be
used.

Syntax:

time([{timezone}])

Returns:

A Time.

Arguments:

430

Name Description

A single map consisting of the following:

timezone A string expression that represents the time zone.

Considerations:

If no parameters are provided, time() must be invoked (time({}) is invalid).

Example 241. time()

Query

RETURN time() AS currentTime

The current time of day using the local time zone is returned.

Table 466. Result

currentTime

10:02:32.192Z

Rows: 1

Example 242. time()

Query

RETURN time({timezone: 'America/Los Angeles'}) AS currentTimeInLA

The current time of day in California is returned.

Table 467. Result

currentTimeInLA

03:02:32.233-07:00

Rows: 1

time.transaction()

time.transaction() returns the current Time value using the transaction clock. This value will be the
same for each invocation within the same transaction. However, a different value may be produced for
different transactions.

Syntax:

time.transaction([{timezone}])

431

Returns:

A Time.

Arguments:

Name Description

timezone A string expression that represents the time zone.

Example 243. time.transaction()

Query

RETURN time.transaction() AS currentTime

Table 468. Result

currentTime

10:02:32.276Z

Rows: 1

time.statement()

time.statement() returns the current Time value using the statement clock. This value will be the same for
each invocation within the same statement. However, a different value may be produced for different
statements within the same transaction.

Syntax:

time.statement([{timezone}])

Returns:

A Time.

Arguments:

Name Description

timezone A string expression that represents the time zone.

432

Example 244. time.statement()

Query

RETURN time.statement() AS currentTime

Table 469. Result

currentTime

10:02:32.317Z

Rows: 1

Example 245. time.statement()

Query

RETURN time.statement('America/Los Angeles') AS currentTimeInLA

Table 470. Result

currentTimeInLA

03:02:32.351-07:00

Rows: 1

time.realtime()

time.realtime() returns the current Time value using the realtime clock. This value will be the live clock
of the system.

Syntax:

time.realtime([{timezone}])

Returns:

A Time.

Arguments:

Name Description

timezone A string expression that represents the time zone.

433

Example 246. time.realtime()

Query

RETURN time.realtime() AS currentTime

Table 471. Result

currentTime

10:02:32.436948Z

Rows: 1

Creating a Time

time() returns a Time value with the specified hour, minute, second, millisecond, microsecond,
nanosecond and timezone component values.

Syntax:

time({hour [, minute, second, millisecond, microsecond, nanosecond, timezone]})

Returns:

A Time.

Arguments:

Name Description

A single map consisting of the following:

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

434

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

The timezone component will default to the configured default time zone if timezone is omitted.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set hour, minute, and second may be omitted; i.e. it is possible to specify only hour
and minute, but specifying hour and second is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

Example 247. time()

Query

UNWIND [
time({hour: 12, minute: 31, second: 14, millisecond: 123, microsecond: 456, nanosecond: 789}),
time({hour: 12, minute: 31, second: 14, nanosecond: 645876123}),
time({hour: 12, minute: 31, second: 14, microsecond: 645876, timezone: '+01:00'}),
time({hour: 12, minute: 31, timezone: '+01:00'}),
time({hour: 12, timezone: '+01:00'})
] AS theTime
RETURN theTime

Table 472. Result

theTime

12:31:14.123456789Z

12:31:14.645876123Z

12:31:14.645876+01:00

12:31+01:00

12:00+01:00

Rows: 5

Creating a Time from a string

time() returns the Time value obtained by parsing a string representation of a temporal value.

Syntax:

time(temporalValue)

Returns:

A Time.

435

Arguments:

Name Description

temporalValue A string representing a temporal value.

Considerations:

temporalValue must comply with the format defined for times and time zones.

The timezone component will default to the configured default time zone if it is omitted.

temporalValue must denote a valid time; i.e. a temporalValue denoting 15:67 is invalid.

time(null) returns null.

Example 248. time()

Query

UNWIND [
time('21:40:32.142+0100'),
time('214032.142Z'),
time('21:40:32+01:00'),
time('214032-0100'),
time('21:40-01:30'),
time('2140-00:00'),
time('2140-02'),
time('22+18:00')
] AS theTime
RETURN theTime

Table 473. Result

theTime

21:40:32.142+01:00

21:40:32.142Z

21:40:32+01:00

21:40:32-01:00

21:40-01:30

21:40Z

21:40-02:00

22:00+18:00

Rows: 8

Creating a Time using other temporal values as components

time() returns the Time value obtained by selecting and composing components from another temporal
value. In essence, this allows a DateTime, LocalDateTime or LocalTime value to be converted to a Time,
and for "missing" components to be provided.

Syntax:

436

time({time [, hour, ..., timezone]})

Returns:

A Time.

Arguments:

Name Description

A single map consisting of the following:

time A Time value.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

If any of the optional parameters are provided, these will override the corresponding components of time.

time(tt) may be written instead of time({time: tt}).

Selecting a Time or DateTime value as the time component also selects its time zone. If a LocalTime or LocalDateTime is
selected instead, the default time zone is used. In any case, the time zone can be overridden explicitly.

Selecting a DateTime or Time as the time component and overwriting the time zone will adjust the local time to keep the
same point in time.

437

Example 249. time()

Query

WITH localtime({hour: 12, minute: 31, second: 14, microsecond: 645876}) AS tt
RETURN
 time({time: tt}) AS timeOnly,
 time({time: tt, timezone: '+05:00'}) AS timeTimezone,
 time({time: tt, second: 42}) AS timeSS,
 time({time: tt, second: 42, timezone: '+05:00'}) AS timeSSTimezone

Table 474. Result

timeOnly timeTimezone timeSS timeSSTimezone

12:31:14.645876Z 12:31:14.645876+05:00 12:31:42.645876Z 12:31:42.645876+05:00

Rows: 1

Truncating a Time

time.truncate() returns the Time value obtained by truncating a specified temporal instant value at the
nearest preceding point in time at the specified component boundary (which is denoted by the truncation
unit passed as a parameter to the function). In other words, the Time returned will have all components
that are less significant than the specified truncation unit set to their default values.

It is possible to supplement the truncated value by providing a map containing components which are less
significant than the truncation unit. This will have the effect of overriding the default values which would
otherwise have been set for these less significant components. For example, minute — with some value
x — may be provided when the truncation unit string is 'hour' in order to ensure the returned value has
the minute set to x instead of the default minute (which is 1).

Syntax:

time.truncate(unit [, temporalInstantValue [, mapOfComponents]])

Returns:

A Time.

Arguments:

Name Description

unit A string expression evaluating to one of the following strings:
'day', 'hour', 'minute', 'second', 'millisecond',
'microsecond'.

temporalInstantValue An expression of one of the following types: DateTime,
LocalDateTime, Time, LocalTime.

438

Name Description

mapOfComponents An expression evaluating to a map containing
components less significant than unit. During
truncation, a time zone can be attached or
overridden using the key timezone.

Considerations:

Truncating time to day — i.e. unit is 'day'  — is supported, and yields midnight at the start of the day (00:00), regardless of
the value of temporalInstantValue. However, the time zone of temporalInstantValue is retained.

The time zone of temporalInstantValue may be overridden; for example, time.truncate('minute', input, {timezone:
'+0200'}).

If temporalInstantValue is one of Time, DateTime — a value with a time zone — and the time zone is overridden, no time
conversion occurs.

If temporalInstantValue is one of LocalTime, LocalDateTime, Date — a value without a time zone — and the time zone is not
overridden, the configured default time zone will be used.

Any component that is provided in mapOfComponents must be less significant than unit; i.e. if unit is 'second',
mapOfComponents cannot contain information pertaining to a minute.

Any component that is not contained in mapOfComponents and which is less significant than unit will be set to its minimal
value.

If mapOfComponents is not provided, all components of the returned value which are less significant than unit will be set to
their default values.

If temporalInstantValue is not provided, it will be set to the current time and timezone, i.e. time.truncate(unit) is
equivalent of time.truncate(unit, time()).

Example 250. time()

Query

WITH time({hour: 12, minute: 31, second: 14, nanosecond: 645876123, timezone: '-01:00'}) AS t
RETURN
 time.truncate('day', t) AS truncDay,
 time.truncate('hour', t) AS truncHour,
 time.truncate('minute', t) AS truncMinute,
 time.truncate('second', t) AS truncSecond,
 time.truncate('millisecond', t, {nanosecond: 2}) AS truncMillisecond,
 time.truncate('microsecond', t) AS truncMicrosecond

Table 475. Result

truncDay truncHour truncMinute truncSecond truncMillisecond truncMicrosecond

00:00-01:00 12:00-01:00 12:31-01:00 12:31:14-01:00 12:31:14.6450000
02-01:00

12:31:14.645876-
01:00

Rows: 1

439

Temporal functions - duration

Cypher provides functions allowing for the creation and manipulation of values for a

Duration temporal type.

 See also Temporal (Date/Time) values and Temporal operators.

duration():

• Creating a Duration from duration components

• Creating a Duration from a string

• Computing the Duration between two temporal instants

Information regarding specifying and accessing components of a Duration value can be found here.

Creating a Duration from duration components

duration() can construct a Duration from a map of its components in the same way as the temporal
instant types.

• years

• quarters

• months

• weeks

• days

• hours

• minutes

• seconds

• milliseconds

• microseconds

• nanoseconds

Syntax:

duration([{years, quarters, months, weeks, days, hours, minutes, seconds, milliseconds, microseconds,
nanoseconds}])

Returns:

A Duration.

Arguments:

440

Name Description

A single map consisting of the following:

years A numeric expression.

quarters A numeric expression.

months A numeric expression.

weeks A numeric expression.

days A numeric expression.

hours A numeric expression.

minutes A numeric expression.

seconds A numeric expression.

milliseconds A numeric expression.

microseconds A numeric expression.

nanoseconds A numeric expression.

Considerations:

At least one parameter must be provided (duration() and duration({}) are invalid).

There is no constraint on how many of the parameters are provided.

It is possible to have a Duration where the amount of a smaller unit (e.g. seconds) exceeds the threshold of a larger unit (e.g.
days).

The values of the parameters may be expressed as decimal fractions.

The values of the parameters may be arbitrarily large.

The values of the parameters may be negative.

441

Example 251. duration()

Query

UNWIND [
duration({days: 14, hours:16, minutes: 12}),
duration({months: 5, days: 1.5}),
duration({months: 0.75}),
duration({weeks: 2.5}),
duration({minutes: 1.5, seconds: 1, milliseconds: 123, microseconds: 456, nanoseconds: 789}),
duration({minutes: 1.5, seconds: 1, nanoseconds: 123456789})
] AS aDuration
RETURN aDuration

Table 476. Result

aDuration

P14DT16H12M

P5M1DT12H

P22DT19H51M49.5S

P17DT12H

PT1M31.123456789S

PT1M31.123456789S

Rows: 6

Creating a Duration from a string

duration() returns the Duration value obtained by parsing a string representation of a temporal amount.

Syntax:

duration(temporalAmount)

Returns:

A Duration.

Arguments:

Name Description

temporalAmount A string representing a temporal amount.

Considerations:

temporalAmount must comply with either the unit based form or date-and-time based form defined for Durations.

442

Example 252. duration()

Query

UNWIND [
duration("P14DT16H12M"),
duration("P5M1.5D"),
duration("P0.75M"),
duration("PT0.75M"),
duration("P2012-02-02T14:37:21.545")
] AS aDuration
RETURN aDuration

Table 477. Result

aDuration

P14DT16H12M

P5M1DT12H

P22DT19H51M49.5S

PT45S

P2012Y2M2DT14H37M21.545S

Rows: 5

Computing the Duration between two temporal instants

duration() has sub-functions which compute the logical difference (in days, months, etc) between two
temporal instant values:

• duration.between(a, b): Computes the difference in multiple components between instant a and
instant b. This captures month, days, seconds and sub-seconds differences separately.

• duration.inMonths(a, b): Computes the difference in whole months (or quarters or years) between
instant a and instant b. This captures the difference as the total number of months. Any difference
smaller than a whole month is disregarded.

• duration.inDays(a, b): Computes the difference in whole days (or weeks) between instant a and
instant b. This captures the difference as the total number of days. Any difference smaller than a whole
day is disregarded.

• duration.inSeconds(a, b): Computes the difference in seconds (and fractions of seconds, or minutes
or hours) between instant a and instant b. This captures the difference as the total number of seconds.

duration.between()

duration.between() returns the Duration value equal to the difference between the two given instants.

Syntax:

duration.between(instant1, instant2)

443

Returns:

A Duration.

Arguments:

Name Description

instant1 An expression returning any temporal instant type (Date etc)
that represents the starting instant.

instant2 An expression returning any temporal instant type (Date etc)
that represents the ending instant.

Considerations:

If instant2 occurs earlier than instant1, the resulting Duration will be negative.

If instant1 has a time component and instant2 does not, the time component of instant2 is assumed to be midnight, and
vice versa.

If instant1 has a time zone component and instant2 does not, the time zone component of instant2 is assumed to be the
same as that of instant1, and vice versa.

If instant1 has a date component and instant2 does not, the date component of instant2 is assumed to be the same as
that of instant1, and vice versa.

444

Example 253. duration.between()

Query

UNWIND [
duration.between(date("1984-10-11"), date("1985-11-25")),
duration.between(date("1985-11-25"), date("1984-10-11")),
duration.between(date("1984-10-11"), datetime("1984-10-12T21:40:32.142+0100")),
duration.between(date("2015-06-24"), localtime("14:30")),
duration.between(localtime("14:30"), time("16:30+0100")),
duration.between(localdatetime("2015-07-21T21:40:32.142"), localdatetime("2016-07-21T21:45:22.142")),
duration.between(datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/Stockholm'}),
datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/London'}))
] AS aDuration
RETURN aDuration

Table 478. Result

aDuration

P1Y1M14D

P-1Y-1M-14D

P1DT21H40M32.142S

PT14H30M

PT2H

P1YT4M50S

PT1H

Rows: 7

duration.inMonths()

duration.inMonths() returns the Duration value equal to the difference in whole months, quarters or years
between the two given instants.

Syntax:

duration.inMonths(instant1, instant2)

Returns:

A Duration.

Arguments:

Name Description

instant1 An expression returning any temporal instant type (Date etc)
that represents the starting instant.

instant2 An expression returning any temporal instant type (Date etc)
that represents the ending instant.

445

Considerations:

If instant2 occurs earlier than instant1, the resulting Duration will be negative.

If instant1 has a time component and instant2 does not, the time component of instant2 is assumed to be midnight, and
vice versa.

If instant1 has a time zone component and instant2 does not, the time zone component of instant2 is assumed to be the
same as that of instant1, and vice versa.

If instant1 has a date component and instant2 does not, the date component of instant2 is assumed to be the same as
that of instant1, and vice versa.

Any difference smaller than a whole month is disregarded.

Example 254. duration.inMonths()

Query

UNWIND [
duration.inMonths(date("1984-10-11"), date("1985-11-25")),
duration.inMonths(date("1985-11-25"), date("1984-10-11")),
duration.inMonths(date("1984-10-11"), datetime("1984-10-12T21:40:32.142+0100")),
duration.inMonths(date("2015-06-24"), localtime("14:30")),
duration.inMonths(localdatetime("2015-07-21T21:40:32.142"), localdatetime("2016-07-
21T21:45:22.142")),
duration.inMonths(datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/Stockholm'}),
datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/London'}))
] AS aDuration
RETURN aDuration

Table 479. Result

aDuration

P1Y1M

P-1Y-1M

PT0S

PT0S

P1Y

PT0S

Rows: 6

duration.inDays()

duration.inDays() returns the Duration value equal to the difference in whole days or weeks between the
two given instants.

Syntax:

duration.inDays(instant1, instant2)

Returns:

446

A Duration.

Arguments:

Name Description

instant1 An expression returning any temporal instant type (Date etc)
that represents the starting instant.

instant2 An expression returning any temporal instant type (Date etc)
that represents the ending instant.

Considerations:

If instant2 occurs earlier than instant1, the resulting Duration will be negative.

If instant1 has a time component and instant2 does not, the time component of instant2 is assumed to be midnight, and
vice versa.

If instant1 has a time zone component and instant2 does not, the time zone component of instant2 is assumed to be the
same as that of instant1, and vice versa.

If instant1 has a date component and instant2 does not, the date component of instant2 is assumed to be the same as
that of instant1, and vice versa.

Any difference smaller than a whole day is disregarded.

Example 255. duration.inDays()

Query

UNWIND [
duration.inDays(date("1984-10-11"), date("1985-11-25")),
duration.inDays(date("1985-11-25"), date("1984-10-11")),
duration.inDays(date("1984-10-11"), datetime("1984-10-12T21:40:32.142+0100")),
duration.inDays(date("2015-06-24"), localtime("14:30")),
duration.inDays(localdatetime("2015-07-21T21:40:32.142"), localdatetime("2016-07-21T21:45:22.142")),
duration.inDays(datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/Stockholm'}),
datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/London'}))
] AS aDuration
RETURN aDuration

Table 480. Result

aDuration

P410D

P-410D

P1D

PT0S

P366D

PT0S

Rows: 6

447

duration.inSeconds()

duration.inSeconds() returns the Duration value equal to the difference in seconds and fractions of
seconds, or minutes or hours, between the two given instants.

Syntax:

duration.inSeconds(instant1, instant2)

Returns:

A Duration.

Arguments:

Name Description

instant1 An expression returning any temporal instant type (Date etc)
that represents the starting instant.

instant2 An expression returning any temporal instant type (Date etc)
that represents the ending instant.

Considerations:

If instant2 occurs earlier than instant1, the resulting Duration will be negative.

If instant1 has a time component and instant2 does not, the time component of instant2 is assumed to be midnight, and
vice versa.

If instant1 has a time zone component and instant2 does not, the time zone component of instant2 is assumed to be the
same as that of instant1, and vice versa.

If instant1 has a date component and instant2 does not, the date component of instant2 is assumed to be the same as
that of instant1, and vice versa.

448

Example 256. duration.inSeconds()

Query

UNWIND [
duration.inSeconds(date("1984-10-11"), date("1984-10-12")),
duration.inSeconds(date("1984-10-12"), date("1984-10-11")),
duration.inSeconds(date("1984-10-11"), datetime("1984-10-12T01:00:32.142+0100")),
duration.inSeconds(date("2015-06-24"), localtime("14:30")),
duration.inSeconds(datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/Stockholm'}),
datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/London'}))
] AS aDuration
RETURN aDuration

Table 481. Result

aDuration

PT24H

PT-24H

PT25H32.142S

PT14H30M

PT1H

Rows: 5

Spatial functions

These functions are used to specify 2D or 3D points in a Coordinate Reference System

(CRS) and to calculate the geodesic distance between two points.

Functions:

• point.distance()

• point.withinBBox()

• point() - WGS 84 2D

• point() - WGS 84 3D

• point() - Cartesian 2D

• point() - Cartesian 3D

The following graph is used for some of the examples below.

449

TrainStation

latitude = 55.672874
longitude = 12.56459
city = 'Copenhagen'

Office

latitude = 55.611784
longitude = 12.994341
city = 'Malmo'

TRAVEL_ROUTE

point.distance()

point.distance() returns a floating point number representing the geodesic distance between two points
in the same Coordinate Reference System (CRS).

• If the points are in the Cartesian CRS (2D or 3D), then the units of the returned distance will be the
same as the units of the points, calculated using Pythagoras' theorem.

• If the points are in the WGS-84 CRS (2D), then the units of the returned distance will be meters, based
on the haversine formula over a spherical earth approximation.

• If the points are in the WGS-84 CRS (3D), then the units of the returned distance will be meters.

◦ The distance is calculated in two steps.

▪ First, a haversine formula over a spherical earth is used, at the average height of the two
points.

▪ To account for the difference in height, Pythagoras' theorem is used, combining the previously
calculated spherical distance with the height difference.

◦ This formula works well for points close to the earth’s surface; for instance, it is well-suited for
calculating the distance of an airplane flight. It is less suitable for greater heights, however, such as
when calculating the distance between two satellites.

Syntax:

point.distance(point1, point2)

Returns:

A Float.

Arguments:

Name Description

point1 A point in either a geographic or cartesian coordinate system.

point2 A point in the same CRS as point1.

450

Considerations:

point.distance(null, null) return null.

point.distance(null, point2) return null.

point.distance(point1, null) return null.

Attempting to use points with different Coordinate Reference Systems (such as WGS 84 2D and WGS 84 3D) will return
null.

Example 257. point.distance()

Query

WITH
 point({x: 2.3, y: 4.5, crs: 'cartesian'}) AS p1,
 point({x: 1.1, y: 5.4, crs: 'cartesian'}) AS p2
RETURN point.distance(p1,p2) AS dist

The distance between two 2D points in the Cartesian CRS is returned.

Table 482. Result

dist

1.5

Rows: 1

Example 258. point.distance()

Query

WITH
 point({longitude: 12.78, latitude: 56.7, height: 100}) AS p1,
 point({latitude: 56.71, longitude: 12.79, height: 100}) AS p2
RETURN point.distance(p1, p2) AS dist

The distance between two 3D points in the WGS 84 CRS is returned.

Table 483. Result

dist

1269.9148706779097

Rows: 1

451

Example 259. point.distance()

Query

MATCH (t:TrainStation)-[:TRAVEL_ROUTE]->(o:Office)
WITH
 point({longitude: t.longitude, latitude: t.latitude}) AS trainPoint,
 point({longitude: o.longitude, latitude: o.latitude}) AS officePoint
RETURN round(point.distance(trainPoint, officePoint)) AS travelDistance

The distance between the train station in Copenhagen and the Neo4j office in Malmo is returned.

Table 484. Result

travelDistance

27842.0

Rows: 1

Example 260. point.distance()

Query

RETURN point.distance(null, point({longitude: 56.7, latitude: 12.78})) AS d

If null is provided as one or both of the arguments, null is returned.

Table 485. Result

d

<null>

Rows: 1

point.withinBBox()

point.withinBBox() takes the following arguments:

• The point to check.

• The lower-left (south-west) point of a bounding box.

• The upper-right (or north-east) point of a bounding box.

The return value will be true if the provided point is contained in the bounding box (boundary included),
otherwise the return value will be false.

Syntax:

point.withinBBox(point, lowerLeft, upperRight)

Returns:

452

A Boolean.

Arguments:

Name Description

point A point in either a geographic or cartesian coordinate system.

lowerLeft A point in the same CRS as 'point'.

upperRight A point in the same CRS as 'point'.

Considerations:

point.withinBBox(p1, p2, p3) will return null if any of the arguments evaluate to null.

Attempting to use points with different Coordinate Reference Systems (such as WGS 84 2D and WGS 84 3D) will return
null.

point.withinBBox will handle crossing the 180th meridian in geographic coordinates.

Switching the longitude of the lowerLeft and upperRight in geographic coordinates will switch the direction of the resulting
bounding box.

Switching the latitude of the lowerLeft and upperRight in geographic coordinates so that the former is north of the latter
will result in an empty range.

Example 261. point.withinBBox()

Query

WITH
 point({x: 0, y: 0, crs: 'cartesian'}) AS lowerLeft,
 point({x: 10, y: 10, crs: 'cartesian'}) AS upperRight
RETURN point.withinBBox(point({x: 5, y: 5, crs: 'cartesian'}), lowerLeft, upperRight) AS result

Checking if a point in Cartesian CRS is contained in the bounding box.

Table 486. Result

result

true

Rows: 1

453

Example 262. point.withinBBox()

Query

WITH
 point({longitude: 12.53, latitude: 55.66}) AS lowerLeft,
 point({longitude: 12.614, latitude: 55.70}) AS upperRight
MATCH (t:TrainStation)
WHERE point.withinBBox(point({longitude: t.longitude, latitude: t.latitude}), lowerLeft, upperRight)
RETURN count(t)

Finds all train stations contained in a bounding box around Copenhagen.

Table 487. Result

count(t)

1

Rows: 1

Example 263. point.withinBBox()

Query

WITH
 point({longitude: 179, latitude: 55.66}) AS lowerLeft,
 point({longitude: -179, latitude: 55.70}) AS upperRight
RETURN point.withinBBox(point({longitude: 180, latitude: 55.66}), lowerLeft, upperRight) AS result

A bounding box that crosses the 180th meridian.

Table 488. Result

result

true

Rows: 1

454

Example 264. point.withinBBox()

Query

RETURN
 point.withinBBox(
 null,
 point({longitude: 56.7, latitude: 12.78}),
 point({longitude: 57.0, latitude: 13.0})
) AS in

If null is provided as any of the arguments, null is returned.

Table 489. Result

in

<null>

Rows: 1

point() - WGS 84 2D

point({longitude | x, latitude | y [, crs][, srid]}) returns a 2D point in the WGS 84 CRS
corresponding to the given coordinate values.

Syntax:

point({longitude | x, latitude | y [, crs][, srid]})

Returns:

A 2D point in WGS 84.

Arguments:

Name Description

A single map consisting of the following:

longitude/x A numeric expression that represents the longitude/x value in
decimal degrees.

latitude/y A numeric expression that represents the latitude/y value in
decimal degrees.

crs The optional string 'WGS-84'.

srid The optional number 4326.

Considerations:

If any argument provided to point() is null, null will be returned.

455

If the coordinates are specified using latitude and longitude, the crs or srid fields are optional and inferred to be 'WGS-84'
(srid:4326).

If the coordinates are specified using x and y, then either the crs or srid field is required if a geographic CRS is desired.

Example 265. point()

Query

RETURN point({longitude: 56.7, latitude: 12.78}) AS point

A 2D point with a longitude of 56.7 and a latitude of 12.78 in the WGS 84 CRS is returned.

Table 490. Result

point

point({x: 56.7, y: 12.78, crs: 'wgs-84'})

Rows: 1

Example 266. point()

Query

RETURN point({x: 2.3, y: 4.5, crs: 'WGS-84'}) AS point

x and y coordinates may be used in the WGS 84 CRS instead of longitude and latitude,
respectively, providing crs is set to 'WGS-84', or srid is set to 4326.

Table 491. Result

point

point({x: 2.3, y: 4.5, crs: 'wgs-84'})

Rows: 1

456

Example 267. point()

Query

MATCH (p:Office)
RETURN point({longitude: p.longitude, latitude: p.latitude}) AS officePoint

A 2D point representing the coordinates of the city of Malmo in the WGS 84 CRS is returned.

Table 492. Result

officePoint

point({x: 12.994341, y: 55.611784, crs: 'wgs-84'})

Rows: 1

Example 268. point()

Query

RETURN point(null) AS p

If null is provided as the argument, null is returned.

Table 493. Result

p

<null>

Rows: 1

point() - WGS 84 3D

point({longitude | x, latitude | y, height | z, [, crs][, srid]}) returns a 3D point in the WGS
84 CRS corresponding to the given coordinate values.

Syntax:

point({longitude | x, latitude | y, height | z, [, crs][, srid]})

Returns:

A 3D point in WGS 84.

Arguments:

Name Description

A single map consisting of the following:

457

Name Description

longitude/x A numeric expression that represents the longitude/x value in
decimal degrees.

latitude/y A numeric expression that represents the latitude/y value in
decimal degrees.

height/z A numeric expression that represents the height/z value in
meters.

crs The optional string 'WGS-84-3D'.

srid The optional number 4979.

Considerations:

If any argument provided to point() is null, null will be returned.

If the height/z key and value is not provided, a 2D point in the WGS 84 CRS will be returned.

If the coordinates are specified using latitude and longitude, the crs or srid fields are optional and inferred to be 'WGS-84-
3D' (srid:4979).

If the coordinates are specified using x and y, then either the crs or srid field is required if a geographic CRS is desired.

Example 269. point()

Query

RETURN point({longitude: 56.7, latitude: 12.78, height: 8}) AS point

A 3D point with a longitude of 56.7, a latitude of 12.78 and a height of 8 meters in the WGS 84
CRS is returned.

Table 494. Result

point

point({x: 56.7, y: 12.78, z: 8.0, crs: 'wgs-84-3d'})

Rows: 1

point() - Cartesian 2D

point({x, y [, crs][, srid]}) returns a 2D point in the Cartesian CRS corresponding to the given
coordinate values.

Syntax:

point({x, y [, crs][, srid]})

Returns:

458

A 2D point in Cartesian.

Arguments:

Name Description

A single map consisting of the following:

x A numeric expression.

y A numeric expression.

crs The optional string 'cartesian'.

srid The optional number 7203.

Considerations:

If any argument provided to point() is null, null will be returned.

The crs or srid fields are optional and default to the Cartesian CRS (which means srid:7203).

Example 270. point()

Query

RETURN point({x: 2.3, y: 4.5}) AS point

A 2D point with an x coordinate of 2.3 and a y coordinate of 4.5 in the Cartesian CRS is returned.

Table 495. Result

point

point({x: 2.3, y: 4.5, crs: 'cartesian'})

Rows: 1

point() - Cartesian 3D

point({x, y, z, [, crs][, srid]}) returns a 3D point in the Cartesian CRS corresponding to the given
coordinate values.

Syntax:

point({x, y, z, [, crs][, srid]})

Returns:

A 3D point in Cartesian.

Arguments:

459

Name Description

A single map consisting of the following:

x A numeric expression.

y A numeric expression.

z A numeric expression.

crs The optional string 'cartesian-3D'.

srid The optional number 9157.

Considerations:

If any argument provided to point() is null, null will be returned.

If the z key and value is not provided, a 2D point in the Cartesian CRS will be returned.

The crs or srid fields are optional and default to the 3D Cartesian CRS (which means srid:9157).

Example 271. point()

Query

RETURN point({x: 2.3, y: 4.5, z: 2}) AS point

A 3D point with an x coordinate of 2.3, a y coordinate of 4.5 and a z coordinate of 2 in the Cartesian
CRS is returned.

Table 496. Result

point

point({x: 2.3, y: 4.5, z: 2.0, crs: 'cartesian-3d'})

Rows: 1

LOAD CSV functions

LOAD CSV functions can be used to get information about the file that is processed by

LOAD CSV.


The functions described on this page are only useful when run on a query that uses LOAD
CSV. In all other contexts they will always return null.

Functions:

• linenumber()

• file()

460

linenumber()

linenumber() returns the line number that LOAD CSV is currently using.

Syntax:

linenumber()

Returns:

An Integer.

Considerations:

null will be returned if this function is called without a LOAD CSV context.

If the CSV file contains headers, the headers will be linenumber 1 and the 1st row of data will have a linenumber of 2.

file()

file() returns the absolute path of the file that LOAD CSV is using.

Syntax:

file()

Returns:

A String.

Considerations:

null will be returned if this function is called without a LOAD CSV context.

Graph functions

graph.names()

Returns a list containing the names of all graphs on the current composite database. It is only supported
on composite databases.

461

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#composite_databases

Example 272. graph.names()

Setup

CREATE DATABASE dba;
CREATE DATABASE dbb;
CREATE DATABASE dbc;
CREATE COMPOSITE DATABASE composite;
CREATE ALIAS composite.first FOR DATABASE dba;
CREATE ALIAS composite.second FOR DATABASE dbb;
CREATE ALIAS composite.third FOR DATABASE dbc;

Query

RETURN graph.names() AS name

The names of all graphs on the current composite database are returned.

Table 497. Result

name

"composite.first"

"composite.second"

"composite.third"

Rows: 3

graph.propertiesByName()

Returns a map containing the properties associated with the given graph. The properties are set on the
alias that adds the graph as a constituent of a composite database. It is only supported on composite
databases.

462

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#composite_databases
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#composite_databases

Example 273. graph.propertiesByName()

Setup

CREATE DATABASE dba;
CREATE DATABASE dbb;
CREATE DATABASE dbc;
CREATE COMPOSITE DATABASE composite;
CREATE ALIAS composite.first FOR DATABASE dba
 PROPERTIES {number: 1, tags: ['A', 'B']};
CREATE ALIAS composite.second FOR DATABASE dbb
 PROPERTIES {number: 0, tags: ['A']};
CREATE ALIAS composite.third FOR DATABASE dbc
 PROPERTIES {number: 2, tags: ['B', 'C']};

Query

UNWIND graph.names() AS name
RETURN name, graph.propertiesByName(name) AS props

Properties for all graphs on the current composite database are returned.

Table 498. Result

name props

"composite.first" {number: 1, tags: ["A", "B"]}

"composite.second" {number: 0, tags: ["A"]}

"composite.third" {number: 2, tags: ["B", "C"]}

Rows: 3

graph.byName()

Resolves a constituent graph by name. It is only supported in the USE clause, on composite databases.

Example 274. graph.byName()

Query

UNWIND graph.names() AS graphName
CALL {
 USE graph.byName(graphName)
 MATCH (n)
 RETURN n
}
RETURN n

Returns all nodes from all graphs on the current composite database.

User-defined functions

User-defined functions are written in Java, deployed into the database and are called in the

same way as any other Cypher function.

463

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#composite_databases

There are two main types of functions that can be developed and used:

Type Description Usage Developing

Scalar For each row the function
takes parameters and returns
a result.

Using UDF Extending Neo4j (UDF)

Aggregating Consumes many rows and
produces an aggregated
result.

Using aggregating UDF Extending Neo4j
(Aggregating UDF)

User-defined scalar functions

For each incoming row the function takes parameters and returns a single result.

For developing and deploying user-defined functions in Neo4j, see Extending Neo4j → User-defined
functions.

Example 275. Call a user-defined function

This example shows how you invoke a user-defined function called join from Cypher.

This calls the user-defined function org.neo4j.procedure.example.join().

Query

MATCH (n:Member)
RETURN org.neo4j.function.example.join(collect(n.name)) AS members

Table 499. Result

members

"John,Paul,George,Ringo"

Rows: 1

User-defined aggregation functions

Aggregating functions consume many rows and produces a single aggregated result.

464

https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-aggregation-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-aggregation-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-5.pdf#extending-neo4j-functions

Example 276. Call a user-defined aggregation function

This example shows how you invoke a user-defined aggregation function called longestString from
Cypher.

This calls the user-defined function org.neo4j.function.example.longestString().

Query

MATCH (n:Member)
RETURN org.neo4j.function.example.longestString(n.name) AS member

Table 500. Result

member

"George"

Rows: 1

465

Indexes for search performance
This section explains how to manage indexes used for search performance.

For query performance purposes, it is important to also understand how the indexes are used by the
Cypher planner. Refer to Query tuning for examples and in-depth discussions on how query plans result
from different index and query scenarios. See specifically The use of indexes for examples of how various
index scenarios result in different query plans.

For information on index configuration and limitations, refer to Operations Manual → Index configuration.

Indexes (types and limitations)
A database index is a redundant copy of some of the data in the database for the purpose of making
searches of related data more efficient. This comes at the cost of additional storage space and slower
writes, so deciding what to index and what not to index is an important and often non-trivial task.

Once an index has been created, it will be managed and kept up to date by the DBMS. Neo4j will
automatically pick up and start using the index once it has been created and brought online.

There are multiple index types available:

• Range index.

• Lookup index.

• Text index.

• Point index.

• Full-text index.

See Full-text search index for more information about full-text indexes. Lookup indexes contain nodes with
one or more labels or relationship types, without regard for any properties.

Cypher enables the creation of range indexes on one or more properties for all nodes or relationships with
a given label or relationship type:

• An index created on a single property for any given label or relationship type is called a single-property
index.

• An index created on more than one property for any given label or relationship type is called a
composite index.

Differences in the usage patterns between composite and single-property indexes are described in
Composite index limitations.

Additionally, text and point indexes are a kind of single-property indexes, with the limitation that they only
recognize properties with string and point values, respectively. Nodes or relationships with the indexed
label or relationship type where the indexed property is of another value type are not included in the index.

466

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#index_configuration
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#index_configuration
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#index_configuration

The following is true for indexes:

• Best practice is to give the index a name when it is created. If the index is not explicitly named, it gets
an auto-generated name.

• The index name must be unique among both indexes and constraints.

• Index creation is by default not idempotent, and an error will be thrown if you attempt to create the
same index twice. Using the keyword IF NOT EXISTS makes the command idempotent, and no error
will be thrown if you attempt to create the same index twice.

Syntax

 The index name must be unique among both indexes and constraints.


Best practice is to give the index a name when it is created. If the index is not explicitly
named, it gets an auto-generated name.



The CREATE ... INDEX ... command is optionally idempotent. This mean that its default
behavior is to throw an error if an attempt is made to create the same index twice. With
IF NOT EXISTS, no error is thrown and nothing happens should an index with the same
name or same schema and index type already exist. It may still throw an error if
conflicting constraints exist, such as constraints with the same name or schema and
backing index type.

 The syntax descriptions use the style from access control.

Table 501. Create a range index on nodes

Syntax
CREATE [RANGE] INDEX [index_name] [IF NOT EXISTS]
FOR (n:LabelName)
ON (n.propertyName_1[,
 n.propertyName_2,
 ...
 n.propertyName_n])
[OPTIONS "{" option: value[, ...] "}"]

Description Create a range index on nodes, either on a single property or composite.

Index provider can be specified using the OPTIONS clause.

Table 502. Create a range index on relationships

Syntax
CREATE [RANGE] INDEX [index_name] [IF NOT EXISTS]
FOR ()-"["r:TYPE_NAME"]"-()
ON (r.propertyName_1[,
 r.propertyName_2,
 ...
 r.propertyName_n])
[OPTIONS "{" option: value[, ...] "}"]

467

Description Create a range index on relationships, either on a single property or composite.

Index provider can be specified using the OPTIONS clause.

Table 503. Create a node label lookup index

Syntax
CREATE LOOKUP INDEX [index_name] [IF NOT EXISTS]
FOR (n)
ON EACH labels(n)
[OPTIONS "{" option: value[, ...] "}"]

Description Create a node label lookup index.

Index provider can be specified using the OPTIONS clause.

Table 504. Create a relationship type lookup index

Syntax
CREATE LOOKUP INDEX [index_name] [IF NOT EXISTS]
FOR ()-"["r"]"-()
ON [EACH] type(r)
[OPTIONS "{" option: value[, ...] "}"]

Description Create a relationship type lookup index.

Index provider can be specified using the OPTIONS clause.

Table 505. Create a text index on nodes

Syntax
CREATE TEXT INDEX [index_name] [IF NOT EXISTS]
FOR (n:LabelName)
ON (n.propertyName)
[OPTIONS "{" option: value[, ...] "}"]

Description Create a text index on nodes where the property has a string value.

Index provider can be specified using the OPTIONS clause.

Table 506. Create a text index on relationships

Syntax
CREATE TEXT INDEX [index_name] [IF NOT EXISTS]
FOR ()-"["r:TYPE_NAME"]"-()
ON (r.propertyName)
[OPTIONS "{" option: value[, ...] "}"]

468

Description Create a text index on relationships where the property has a string value.

Index provider can be specified using the OPTIONS clause.

Table 507. Create a point index on nodes

Syntax
CREATE POINT INDEX [index_name] [IF NOT EXISTS]
FOR (n:LabelName)
ON (n.propertyName)
[OPTIONS "{" option: value[, ...] "}"]

Description Create a point index on nodes where the property has a point value.

Index provider and configuration can be specified using the OPTIONS clause.

Table 508. Create a point index on relationships

Syntax
CREATE POINT INDEX [index_name] [IF NOT EXISTS]
FOR ()-"["r:TYPE_NAME"]"-()
ON (r.propertyName)
[OPTIONS "{" option: value[, ...] "}"]

Description Create a point index on relationships where the property has a point value.

Index provider and configuration can be specified using the OPTIONS clause.

Table 509. Drop an index

Syntax
DROP INDEX index_name [IF EXISTS]

Description Drop an index of any index type.

Note The command is optionally idempotent. This means that its default behavior is to
throw an error if an attempt is made to drop the same index twice. With IF EXISTS,
no error is thrown and nothing happens should the index not exist.

Table 510. List indexes

Syntax
SHOW [ALL | FULLTEXT | LOOKUP | POINT | RANGE | TEXT] INDEX[ES]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description List indexes in the database, either all or filtered on index type.

469

Note When using the RETURN clause, the YIELD clause is mandatory and must not be
omitted.

Creating an index requires the CREATE INDEX privilege, while dropping an index requires the DROP INDEX
privilege and listing indexes require the SHOW INDEX privilege.

Planner hints and the USING keyword describes how to make the Cypher planner use specific indexes
(especially in cases where the planner would not necessarily have used them).

Composite index limitations
Like single-property range indexes, composite range indexes support all predicates:

• equality check: n.prop = value

• list membership check: n.prop IN list

• existence check: n.prop IS NOT NULL

• range search: n.prop > value

• prefix search: STARTS WITH

 For details about each operator, see Operators.

However, predicates might be planned as existence check and a filter. For most predicates, this can be
avoided by following these restrictions:

• If there is any equality check and list membership check predicates, they need to be for the first
properties defined by the index.

• There can be up to one range search or prefix search predicate.

• There can be any number of existence check predicates.

• Any predicate after a range search, prefix search or existence check predicate has to be an
existence check predicate.


The suffix search (ENDS WITH) and substring search (CONTAINS) predicates can utilize
the index as well. However, they are always planned as an existence check and a filter
and any predicates following after will therefore also be planned as such.

For example, an index on nodes with :Label(prop1,prop2,prop3,prop4,prop5,prop6) and predicates:

WHERE n.prop1 = 'x' AND n.prop2 = 1 AND n.prop3 > 5 AND n.prop4 < 'e' AND n.prop5 = true AND n.prop6 IS
NOT NULL

will be planned as:

WHERE n.prop1 = 'x' AND n.prop2 = 1 AND n.prop3 > 5 AND n.prop4 IS NOT NULL AND n.prop5 IS NOT NULL AND
n.prop6 IS NOT NULL

470

with filters on n.prop4 < 'e' and n.prop5 = true, since n.prop3 has a range search predicate.

And an index on nodes with :Label(prop1,prop2) with predicates:

WHERE n.prop1 ENDS WITH 'x' AND n.prop2 = false

will be planned as:

WHERE n.prop1 IS NOT NULL AND n.prop2 IS NOT NULL

with filters on n.prop1 ENDS WITH 'x' and n.prop2 = false, since n.prop1 has a suffix search predicate.

Composite indexes require predicates on all properties indexed. If there are predicates on only a subset of
the indexed properties, it will not be possible to use the composite index. To get this kind of fallback
behavior, it is necessary to create additional indexes on the relevant sub-set of properties or on single
properties.

CREATE INDEX
Examples:

• Create a single-property range index for nodes

• Create a single-property range index for relationships

• Create a range index only if it does not already exist

• Create a range index specifying the index provider

• Create a composite range index for nodes

• Create a composite range index for relationships

• Create a node label lookup index

• Create a relationship type lookup index

• Create a token lookup index specifying the index provider

• Create a node point index

• Create a relationship point index

• Create a point index only if it does not already exist

• Create a point index specifying the index provider

• Create a point index specifying the index configuration

• Create a point index specifying both the index provider and configuration

• Create a node text index

• Create a relationship text index

• Create a text index only if it does not already exist

• Create a text index specifying the index provider

471

• Failure to create an already existing index

• Failure to create an index with the same name as an already existing index

• Failure to create an index when a constraint already exists

• Failure to create an index with the same name as an already existing constraint

Create a single-property range index for nodes

A named range index on a single property for all nodes with a particular label can be created with:

CREATE INDEX index_name FOR (n:Label) ON (n.property)

Note that the index is not immediately available, but is created in the background.

Example 277. CREATE INDEX

Query

CREATE INDEX node_range_index_name FOR (n:Person) ON (n.surname)

 The index name must be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

Create a single-property range index for relationships

A named range index on a single property for all relationships with a particular relationship type can be
created with:

CREATE INDEX index_name FOR ()-[r:TYPE]-() ON (r.property)

Note that the index is not immediately available, but is created in the background.

472

Example 278. CREATE INDEX

Query

CREATE INDEX rel_range_index_name FOR ()-[r:KNOWS]-() ON (r.since)

 The index name must be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

Create a range index only if it does not already exist

If it is not known whether an index exists or not, add IF NOT EXISTS to ensure it does.

Example 279. CREATE RANGE INDEX

Query

CREATE INDEX node_range_index_name IF NOT EXISTS
FOR (n:Person) ON (n.surname)


The index will not be created if there already exists an index with the same schema
and type, same name or both.

Result

+--+
| No data returned, and nothing was changed. |
+--+

Create a range index specifying the index provider

To create a range index with a specific index provider, the OPTIONS clause is used. Only one valid value
exists for the index provider, range-1.0, which is the default value.

473

Example 280. CREATE INDEX

Query

CREATE INDEX range_index_with_provider
FOR ()-[r:TYPE]-() ON (r.prop1)
OPTIONS {
 indexProvider: 'range-1.0'
}

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

There is no supported index configuration for range indexes.

Create a composite range index for nodes

A named range index on multiple properties for all nodes with a particular label — i.e. a composite
index — can be created with:

CREATE INDEX index_name FOR (n:Label) ON (n.prop1, ..., n.propN)

Only nodes with the specified label and that contain all the properties in the index definition will be added
to the index. Note that the composite index is not immediately available, but is created in the background.

Example 281. CREATE INDEX

The following statement will create a named composite range index on all nodes labeled with Person
and which have both an age and country property:

Query

CREATE INDEX composite_range_node_index_name FOR (n:Person) ON (n.age, n.country)

 The index name must be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

Create a composite range index for relationships

A named range index on multiple properties for all relationships with a particular relationship type — i.e. a

474

composite index — can be created with:

CREATE INDEX index_name FOR ()-[r:TYPE]-() ON (r.prop1, ..., r.propN)

Only relationships with the specified type and that contain all the properties in the index definition will be
added to the index. Note that the composite index is not immediately available, but is created in the
background.

Example 282. CREATE INDEX

The following statement will create a named composite range index on all relationships labeled with
PURCHASED and which have both a date and amount property:

Query

CREATE INDEX composite_range_rel_index_name FOR ()-[r:PURCHASED]-() ON (r.date, r.amount)

 The index name must be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

Create a node label lookup index

A named node label lookup index for all nodes with one or more labels can be created with:

CREATE LOOKUP INDEX index_name FOR (n) ON EACH labels(n)

 The index is not immediately available, but is created in the background.

475

Example 283. CREATE LOOKUP INDEX

Query

CREATE LOOKUP INDEX node_label_lookup_index FOR (n) ON EACH labels(n)


Note that a node label lookup index can only be created once and that the index
name must be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

 Only one node label lookup index can exist at the time.

Create a relationship type lookup index

A named relationship type lookup index for all relationships with any relationship type can be created with:

CREATE LOOKUP INDEX index_name FOR ()-[r]-() ON EACH type(r)

 The index is not immediately available, but is created in the background.

Example 284. CREATE LOOKUP INDEX

Query

CREATE LOOKUP INDEX rel_type_lookup_index FOR ()-[r]-() ON EACH type(r)


Note that a relationship type lookup index can only be created once and that the
index name must be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

 Only one relationship type lookup index can exist at the time.

Create a token lookup index specifying the index provider

Token lookup indexes (node label and relationship type lookup indexes) allow setting the index provider

476

using the OPTIONS clause. Only one valid value exists for the index provider, token-lookup-1.0, which is the
default value.

Example 285. CREATE LOOKUP INDEX

Query

CREATE LOOKUP INDEX node_label_lookup_index_2 FOR (n) ON EACH labels(n)
OPTIONS {indexProvider: 'token-lookup-1.0'}

 Note that the above command will fail if any node label lookup index already exists.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

There is no supported index configuration for token lookup indexes.

Create a node point index

A named point index on a single property for all nodes with a particular label can be created with:

CREATE POINT INDEX index_name FOR (n:Label) ON (n.property)

Note that the index is not immediately available, but is created in the background.

Example 286. CREATE POINT INDEX

Query

CREATE POINT INDEX node_index_name FOR (n:Person) ON (n.sublocation)

 The index name must be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1


Note that point indexes only recognize point values and do not support multiple
properties.

Create a relationship point index

477

A named point index on a single property for all relationships with a particular relationship type can be
created with:

CREATE POINT INDEX index_name FOR ()-[r:TYPE]-() ON (r.property)

Note that the index is not immediately available, but is created in the background.

Example 287. CREATE POINT INDEX

Query

CREATE POINT INDEX rel_index_name FOR ()-[r:STREET]-() ON (r.intersection)

 The index name must be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1


Note that point indexes only recognize point values and do not support multiple
properties.

Create a point index only if it does not already exist

If it is not known whether an index exists or not, add IF NOT EXISTS to ensure it does.

Example 288. CREATE POINT INDEX

Query

CREATE POINT INDEX node_index_name IF NOT EXISTS
FOR (n:Person) ON (n.sublocation)


Note that the index will not be created if there already exists an index with the
same schema and type, same name or both.

Result

+--+
| No data returned, and nothing was changed. |
+--+

Create a point index specifying the index provider

To create a point index with a specific index provider, the OPTIONS clause is used. Only one valid value

478

exists for the index provider, point-1.0, which is the default value.

Example 289. CREATE POINT INDEX

Query

CREATE POINT INDEX index_with_provider
FOR (n:Label) ON (n.prop1)
OPTIONS {
 indexProvider: 'point-1.0'
}

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

Specifying the index provider can be combined with specifying index configuration.

Create a point index specifying the index configuration

To create a point index with a specific index configuration, the OPTIONS clause is used.

The valid configuration settings are:

• spatial.cartesian.min

• spatial.cartesian.max

• spatial.cartesian-3d.min

• spatial.cartesian-3d.max

• spatial.wgs-84.min

• spatial.wgs-84.max

• spatial.wgs-84-3d.min

• spatial.wgs-84-3d.max

Non-specified settings have their respective default values.

479

Example 290. CREATE POINT INDEX

Query

CREATE POINT INDEX index_with_config
FOR (n:Label) ON (n.prop2)
OPTIONS {
 indexConfig: {
 `spatial.cartesian.min`: [-100.0, -100.0],
 `spatial.cartesian.max`: [100.0, 100.0]
 }
}

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

Specifying the index configuration can be combined with specifying index provider.

Create a point index specifying both the index provider and
configuration

To create a point index with a specific index provider and configuration, the OPTIONS clause is used. Only
one valid value exists for the index provider, point-1.0, which is the default value.

The valid configuration settings are:

• spatial.cartesian.min

• spatial.cartesian.max

• spatial.cartesian-3d.min

• spatial.cartesian-3d.max

• spatial.wgs-84.min

• spatial.wgs-84.max

• spatial.wgs-84-3d.min

• spatial.wgs-84-3d.max

Non-specified settings have their respective default values.

480

Example 291. CREATE POINT INDEX

Query

CREATE POINT INDEX index_with_options
FOR ()-[r:TYPE]-() ON (r.prop1)
OPTIONS {
 indexProvider: 'point-1.0',
 indexConfig: {
 `spatial.wgs-84.min`: [-100.0, -80.0],
 `spatial.wgs-84.max`: [100.0, 80.0]
 }
}

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

Index provider and configuration can also be specified separately.

Create a node text index

A named text index on a single property for all nodes with a particular label can be created with:

CREATE TEXT INDEX index_name FOR (n:Label) ON (n.property)

 The index is not immediately available, but is created in the background.

Example 292. CREATE TEXT INDEX

Query

CREATE TEXT INDEX node_index_name FOR (n:Person) ON (n.nickname)

 The index name must be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

 Text indexes only recognize string values and do not support multiple properties.

Create a relationship text index

A named text index on a single property for all relationships with a particular relationship type can be

481

created with:

CREATE TEXT INDEX index_name FOR ()-[r:TYPE]-() ON (r.property)

 The index is not immediately available, but is created in the background.

Example 293. CREATE TEXT INDEX

Query

CREATE TEXT INDEX rel_index_name FOR ()-[r:KNOWS]-() ON (r.interest)

 The index name must be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1


Note that text indexes only recognize string values and do not support multiple
properties.

Create a text index only if it does not already exist

If it is not known whether an index exists or not, add IF NOT EXISTS to ensure it does.

Example 294. CREATE TEXT INDEX

Query

CREATE TEXT INDEX node_index_name IF NOT EXISTS FOR (n:Person) ON (n.nickname)


Note that the index will not be created if there already exists an index with the
same schema and type, same name or both.

Result

+--+
| No data returned, and nothing was changed. |
+--+

Create a text index specifying the index provider

To create a text index with a specific index provider, the OPTIONS clause is used. The valid values for the
index provider are text-2.0 and text-1.0 (deprecated). The default provider is text-2.0.

482

Example 295. CREATE TEXT INDEX

Query

CREATE TEXT INDEX index_with_provider FOR ()-[r:TYPE]-() ON (r.prop1)
OPTIONS {indexProvider: 'text-2.0'}

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

There is no supported index configuration for text indexes.

Failure to create an already existing index

Create an index on the property title on nodes with the Book label, when that index already exists.

Example 296. CREATE RANGE INDEX

Query

CREATE INDEX bookTitleIndex FOR (book:Book) ON (book.title)

In this case the index can not be created because it already exists.

Error message

There already exists an index (:Book {title}).

Failure to create an index with the same name as an already existing
index

Create a named index on the property numberOfPages on nodes with the Book label, when an index with
the given name already exists.

483

Example 297. CREATE RANGE INDEX

Query

CREATE INDEX indexOnBooks FOR (book:Book) ON (book.numberOfPages)

In this case the index can’t be created because there already exists an index with the given name.

Error message

There already exists an index called 'indexOnBooks'.

Failure to create an index when a constraint already exists

Create an index on the property isbn on nodes with the Book label, when an index-backed constraint
already exists on that schema.

Example 298. CREATE RANGE INDEX

Query

CREATE INDEX bookIsbnIndex FOR (book:Book) ON (book.isbn)

In this case the index can not be created because a index-backed constraint already exists on that
label and property combination.

Error message

There is a uniqueness constraint on (:Book {isbn}), so an index is already created that matches this.

Failure to create an index with the same name as an already existing
constraint

Create a named index on the property numberOfPages on nodes with the Book label, when a constraint with
the given name already exists.

484

Example 299. CREATE RANGE INDEX

Query

CREATE INDEX bookRecommendations FOR (book:Book) ON (book.recommendations)

In this case the index can not be created because there already exists a constraint with the given
name.

Error message

There already exists a constraint called 'bookRecommendations'.

SHOW INDEXES
Listing indexes can be done with SHOW INDEXES, which will produce a table with the following columns:

Table 511. List indexes output

Column Description

id The id of the index. Default output

name Name of the index (explicitly set by the user or automatically assigned).
Default output

state Current state of the index. Default output

populationPercent % of index population. Default output

type The IndexType of this index (FULLTEXT, LOOKUP, POINT, RANGE, or TEXT).
Default output

owningConstraint The name of the constraint the index is associated with or null, in case it
is not associated with any constraint. Default output

entityType Type of entities this index represents (nodes or relationship). Default
output

labelsOrTypes The labels or relationship types of this index. Default output

properties The properties of this index. Default output

indexProvider The index provider for this index. Default output

options The options passed to CREATE command.

failureMessage The failure description of a failed index.

createStatement Statement used to create the index.


The command SHOW INDEXES returns only the default output. For a full output use the
optional YIELD command. Full output: SHOW INDEXES YIELD *.

Listing indexes also allows for WHERE and YIELD clauses to filter the returned rows and columns.

485

SHOW INDEXES
Examples:

• Listing all indexes

• Listing indexes with filtering

Listing all indexes

To list all indexes with the default output columns, the SHOW INDEXES command can be used. If all columns
are required, use SHOW INDEXES YIELD *.

Example 300. SHOW INDEXES

Query

SHOW INDEXES

One of the output columns from SHOW INDEXES is the name of the index. This can be used to drop the
index with the DROP INDEX command.

Result

+--
---+
| id | name | state | populationPercent | type | entityType |
labelsOrTypes | properties | indexProvider | owningConstraint |
+--
---+
| 10 | "constraint_1bc95fcb" | "ONLINE" | 100.0 | "RANGE" | "NODE" | ["Person"]
| ["name"] | "range-1.0" | "constraint_1bc95fcb" |
| 4 | "index_58a1c03e" | "ONLINE" | 100.0 | "RANGE" | "NODE" | ["Person"]
| ["location"] | "point-1.0" | <null> |
| 3 | "index_664b28a2" | "ONLINE" | 100.0 | "RANGE" | "NODE" | ["Person"]
| ["middlename"] | "range-1.0" | <null> |
| 7 | "index_763f72db" | "ONLINE" | 100.0 | "TEXT" | "NODE" | ["Person"]
| ["middlename"] | "text-1.0" | <null> |
| 5 | "index_8a688dca" | "ONLINE" | 100.0 | "RANGE" | "NODE" | ["Person"]
| ["highScore"] | "range-1.0" | <null> |
| 6 | "index_b87724c3" | "ONLINE" | 100.0 | "RANGE" | "NODE" | ["Person"]
| ["firstname"] | "range-1.0" | <null> |
| 9 | "index_c3493fe4" | "ONLINE" | 100.0 | "POINT" | "NODE" | ["Person"]
| ["location"] | "point-1.0" | <null> |
| 1 | "index_d7c12ba3" | "ONLINE" | 100.0 | "LOOKUP" | "NODE" | <null>
| <null> | "token-lookup-1.0" | <null> |
| 2 | "index_deeafdb2" | "ONLINE" | 100.0 | "LOOKUP" | "RELATIONSHIP" | <null>
| <null> | "token-lookup-1.0" | <null> |
| 8 | "index_eadb868e" | "ONLINE" | 100.0 | "TEXT" | "NODE" | ["Person"]
| ["surname"] | "text-1.0" | <null> |
+--
---+
7 rows

Listing indexes with filtering

One way of filtering the output from SHOW INDEXES by index type is the use of type keywords, listed in the
syntax table.

486

For example, to show only range indexes, use SHOW RANGE INDEXES.

Another more flexible way of filtering the output is to use the WHERE clause. An example is to only show
indexes not belonging to constraints.

Example 301. SHOW RANGE INDEXES

Query

SHOW RANGE INDEXES WHERE owningConstraint IS NULL

This will only return the default output columns.

To get all columns, use:

SHOW INDEXES YIELD * WHERE ...

Result

+--
---+
| id | name | state | populationPercent | type | entityType | labelsOrTypes |
properties | indexProvider | owningConstraint |
+--
---+
| 3 | "index_664b28a2" | "ONLINE" | 100.0 | "RANGE" | "NODE" | ["Person"] |
["middlename"] | "range-1.0" | <null> |
| 6 | "index_6e62c571" | "ONLINE" | 100.0 | "RANGE" | "RELATIONSHIP" | ["KNOWS"] |
["since"] | "range-1.0" | <null> |
| 4 | "index_8a688dca" | "ONLINE" | 100.0 | "RANGE" | "NODE" | ["Person"] |
["highScore"] | "range-1.0" | <null> |
| 5 | "index_b87724c3" | "ONLINE" | 100.0 | "RANGE" | "NODE" | ["Person"] |
["firstname"] | "range-1.0" | <null> |
+--
---+
4 rows

DROP INDEX
An index can be dropped (removed) using the name with the DROP INDEX index_name command. This
command can drop indexes of any type, except those backing constraints. The name of the index can be
found using the SHOW INDEXES command, given in the output column name.

DROP INDEX
Examples:

• Drop an index

• Drop a non-existing index

Drop an index

487

Example 302. DROP INDEX

Query

DROP INDEX index_name

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes removed: 1

Drop a non-existing index

If it is uncertain if an index exists and you want to drop it if it does but not get an error should it not, use IF
EXISTS.

Example 303. DROP INDEX

Query

DROP INDEX missing_index_name IF EXISTS

Result

+--+
| No data returned, and nothing was changed. |
+--+

488

Full-text search index
This chapter describes how to use full-text indexes, to enable full-text search.

Full-text indexes are powered by the Apache Lucene indexing and search library, and can be used to index
nodes and relationships by string properties. A full-text index allows you to write queries that match
within the contents of indexed string properties. For instance, the range and text indexes described in
previous sections can only perform limited matching on strings; exact, prefix, substring, or suffix matches.
A full-text index will instead tokenize the indexed string values, so it can match terms anywhere within the
strings. How the indexed strings are tokenized and broken into terms, is determined by what analyzer the
full-text index is configured with. For instance, the swedish analyzer knows how to tokenize and stem
Swedish words, and will avoid indexing Swedish stop words. The complete list of stop words for each
analyzer is included in the result of the db.index.fulltext.listAvailableAnalyzers procedure.

Full-text indexes:

• support the indexing of both nodes and relationships.

• support configuring custom analyzers, including analyzers that are not included with Lucene itself.

• can be queried using the Lucene query language.

• can return the score for each result from a query.

• are kept up to date automatically, as nodes and relationships are added, removed, and modified.

• will automatically populate newly created indexes with the existing data in a store.

• can be checked by the consistency checker, and they can be rebuilt if there is a problem with them.

• are a projection of the store, and can only index nodes and relationships by the contents of their
properties.

• include only property values of types String or String Array.

• can support any number of documents in a single index.

• are created, dropped, and updated transactionally, and is automatically replicated throughout a cluster.

• can be accessed via Cypher procedures.

• can be configured to be eventually consistent, in which index updating is moved from the commit path
to a background thread. Using this feature, it is possible to work around the slow Lucene writes from
the performance critical commit process, thus removing the main bottlenecks for Neo4j write
performance.

At first sight, the construction of full-text indexes can seem similar to regular indexes. However there are
some things that are interesting to note: In contrast to other indexes, a full-text index can be:

• applied to more than one label.

• applied to more than one relationship type.

• applied to more than one property at a time (similar to a composite index) but with an important
difference: While a composite index applies only to entities that match the indexed label and all of the
indexed properties, full-text index will index entities that have at least one of the indexed labels or

489

https://lucene.apache.org/

relationship types, and at least one of the indexed properties.

For information on how to configure full-text indexes, refer to Operations Manual → Indexes to support full-
text search.

Full-text search procedures
Full-text indexes are managed through commands and used through built-in procedures, see Operations
Manual → Procedures for a complete reference.

The commands and procedures for full-text indexes are listed in the table below:

Usage Procedure/Command Description

Create full-text node index. CREATE FULLTEXT INDEX ... Create a node full-text index for the
given labels and properties.

Create full-text relationship index. CREATE FULLTEXT INDEX ... Create a relationship full-text
index for the given relationship
types and properties.

List available analyzers. db.index.fulltext.listAvailableAnaly
zers

List the available analyzers that the full-
text indexes can be configured with.

Use full-text node index. db.index.fulltext.queryNodes Query the given full-text index. Returns
the matching nodes and their Lucene
query score, ordered by score.

Use full-text relationship index. db.index.fulltext.queryRelationships Query the given full-text index. Returns
the matching relationships and their
Lucene query score, ordered by score.

Drop full-text index. DROP INDEX ... Drop the specified index.

Eventually consistent indexes. db.index.fulltext.awaitEventuallyCon
sistentIndexRefresh

Wait for the updates from recently
committed transactions to be applied to
any eventually-consistent full-text
indexes.

Listing all full-text indexes. SHOW FULLTEXT INDEXES Lists all full-text indexes, see the SHOW
INDEXES command for details.

Create and configure full-text indexes
Full-text indexes are created with the CREATE FULLTEXT INDEX command. An index can be given a unique
name when created (or get a generated one), which is used to reference the specific index when querying
or dropping it. A full-text index applies to a list of labels or a list of relationship types, for node and
relationship indexes respectively, and then a list of property names.

 The syntax descriptions use the style from access control.

Table 512. Syntax for creating full-text indexes

490

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#index-configuration-fulltext
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#index-configuration-fulltext
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#index-configuration-fulltext
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#index-configuration-fulltext
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#procedures
https://neo4j.com/docs/operations-manual/current/reference/procedures/#procedure_db_index_fulltext_listavailableanalyzers
https://neo4j.com/docs/operations-manual/current/reference/procedures/#procedure_db_index_fulltext_listavailableanalyzers
https://neo4j.com/docs/operations-manual/current/reference/procedures/#procedure_db_index_fulltext_querynodes
https://neo4j.com/docs/operations-manual/current/reference/procedures/#procedure_db_index_fulltext_queryrelationships
https://neo4j.com/docs/operations-manual/current/reference/procedures/#procedure_db_index_fulltext_awaiteventuallyconsistentindexrefresh
https://neo4j.com/docs/operations-manual/current/reference/procedures/#procedure_db_index_fulltext_awaiteventuallyconsistentindexrefresh

Command Description

CREATE FULLTEXT INDEX [index_name] [IF NOT EXISTS]
FOR (n:LabelName["|" ...])
ON EACH "[" n.propertyName[, ...] "]"
[OPTIONS "{" option: value[, ...] "}"]

Create a full-text index on nodes.

CREATE FULLTEXT INDEX [index_name] [IF NOT EXISTS]
FOR ()-"["r:TYPE_NAME["|" ...]"]"-()
ON EACH "[" r.propertyName[, ...] "]"
[OPTIONS "{" option: value[, ...] "}"]

Create a full-text index on relationships.

It is considered best practice to give the index a name when it is created. This name is needed for both
dropping and querying the index. If the index is not explicitly named, it will get an auto-generated name.

 The index name must be unique among all indexes and constraints.

Index provider and configuration settings can be specified using the OPTIONS clause. Supported settings
are fulltext.analyzer, for specifying what analyzer to use when indexing and querying. Use the
db.index.fulltext.listAvailableAnalyzers procedure to see what options are available. To make this
index eventually consistent, fulltext.eventually_consistent should be set to true. This will ensure that
updates from committing transactions are applied in a background thread.

The command is optionally idempotent. This means that its default behavior is to throw an error if an
attempt is made to create the same index twice. With IF NOT EXISTS, no error is thrown and nothing
happens should an index with the same name, schema or both already exist. It may still throw an error
should a constraint with the same name exist.

491

Example 304. CREATE FULLTEXT INDEX

For instance, if we have a movie with a title.

Query

CREATE (m:Movie {title: "The Matrix"}) RETURN m.title

Table 513. Result

m.title

"The Matrix"

Rows: 1
Nodes created: 1
Properties set: 1
Labels added: 1

And we have a full-text index on the title and description properties of movies and books.

Query

CREATE FULLTEXT INDEX titlesAndDescriptions FOR (n:Movie|Book) ON EACH [n.title, n.description]

Then our movie node from above will be included in the index, even though it only has one of the
indexed labels, and only one of the indexed properties:

Query

CALL db.index.fulltext.queryNodes("titlesAndDescriptions", "matrix") YIELD node, score
RETURN node.title, node.description, score

Table 514. Result

node.title node.description score

"The Matrix" <null> 0.7799721956253052

Rows: 1

The same is true for full-text indexes on relationships. Though a relationship can only have one type,
a relationship full-text index can index multiple types, and all relationships will be included that match
one of the relationship types, and at least one of the indexed properties.

The CREATE FULLTEXT INDEX command take an optional clause, called options. This have two parts, the
indexProvider and indexConfig. The provider can only have the default value, 'fulltext-1.0'. The
indexConfig is a map from string to string and booleans, and can be used to set index-specific
configuration settings.

The fulltext.analyzer setting can be used to configure an index-specific analyzer. The possible values
for the fulltext.analyzer setting can be listed with the db.index.fulltext.listAvailableAnalyzers
procedure.

492

The fulltext.eventually_consistent setting, if set to true, will put the index in an eventually consistent
update mode. This means that updates will be applied in a background thread "as soon as possible",
instead of during transaction commit like other indexes.

Example 305. CREATE FULLTEXT INDEX

Query

CREATE FULLTEXT INDEX taggedByRelationshipIndex FOR ()-[r:TAGGED_AS]-() ON EACH [r.taggedByUser]
OPTIONS {
 indexConfig: {
 `fulltext.analyzer`: 'url_or_email',
 `fulltext.eventually_consistent`: true
 }
}

In this example, an eventually consistent relationship full-text index is created for the TAGGED_AS
relationship type, and the taggedByUser property, and the index uses the url_or_email analyzer. This
could, for instance, be a system where people are assigning tags to documents, and where the index
on the taggedByUser property will allow them to quickly find all of the documents they have tagged.
Had it not been for the relationship index, one would have had to add artificial connective nodes
between the tags and the documents in the data model, just so these nodes could be indexed.

Table 515. Result

(empty result)

Rows: 0
Indexes added: 1

Query full-text indexes
Full-text indexes will, in addition to any exact matches, also return approximate matches to a given query.
Both the property values that are indexed, and the queries to the index, are processed through the
analyzer such that the index can find that don’t exactly matches. The score that is returned alongside each
result entry, represents how well the index thinks that entry matches the given query. The results are
always returned in descending score order, where the best matching result entry is put first.

493

Example 306. Query full-text

To illustrate, in the example below, we search our movie database for "Full Metal Jacket", and even
though there is an exact match as the first result, we also get three other less interesting results:

Query

CALL db.index.fulltext.queryNodes("titlesAndDescriptions", "Full Metal Jacket") YIELD node, score
RETURN node.title, score

Table 516. Result

node.title score

"Full Metal Jacket" 1.411118507385254

"Full Moon High" 0.44524085521698

"Yellow Jacket" 0.3509605824947357

"The Jacket" 0.3509605824947357

Rows: 4

Full-text indexes are powered by the Apache Lucene indexing and search library. This means that we can
use Lucene’s full-text query language to express what we wish to search for. For instance, if we are only
interested in exact matches, then we can quote the string we are searching for.

Example 307. Query full-text

Query

CALL db.index.fulltext.queryNodes("titlesAndDescriptions", '"Full Metal Jacket"') YIELD node, score
RETURN node.title, score

When we put "Full Metal Jacket" in quotes, Lucene only gives us exact matches.

Table 517. Result

node.title score

"Full Metal Jacket" 1.411118507385254

Rows: 1

Lucene also allows us to use logical operators, such as AND and OR, to search for terms.

494

https://lucene.apache.org/

Example 308. Query full-text

Query

CALL db.index.fulltext.queryNodes("titlesAndDescriptions", 'full AND metal') YIELD node, score
RETURN node.title, score

Only the Full Metal Jacket movie in our database has both the words full and metal.

Table 518. Result

node.title score

"Full Metal Jacket" 1.1113792657852173

Rows: 1

It is also possible to search for only specific properties, by putting the property name and a colon in front of
the text being searched for.

Example 309. Query full-text

Query

CALL db.index.fulltext.queryNodes("titlesAndDescriptions", 'description:"surreal adventure"') YIELD
node, score
RETURN node.title, node.description, score

Table 519. Result

node.title node.description score

"Metallica Through The Never" "The movie follows the young
roadie Trip through his surreal
adventure with the band."

0.2615291476249695

Rows: 1

A complete description of the Lucene query syntax can be found in the Lucene documentation.

Handling of Text Array properties
If the indexed property contains a text array, each element of this array is analyzed independently and all
produced terms are associated with the same property name. This means that when querying such an
indexed node or relationship, there is a match if any of the array elements match the query. For scoring
purposes, the full-text index treats it as a single-property value, and the score will represent how close the
query is to matching the entire array.

495

https://lucene.apache.org/core/8_2_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package.description

Example 310. Text Array properties

For example, both of the following queries match the same node while referring different elements:

Query

CALL db.index.fulltext.queryNodes("reviews", 'best') YIELD node, score
RETURN
 node.title AS title,
 node.reviews AS reviews,
 score

Result

Rows: 1

+--------------+--+---------------------+
| title | reviews | score |
+--------------+--+---------------------+
| 'The Matrix' | ['The best movie ever.', 'The movie is nonsense.'] | 0.13076457381248474 |
+--------------+--+---------------------+

Query

CALL db.index.fulltext.queryNodes("reviews", 'nonsense') YIELD node, score
RETURN
 node.title AS title,
 node.reviews AS reviews,
 score

Result

Rows: 1

+--------------+--+---------------------+
| title | reviews | score |
+--------------+--+---------------------+
| 'The Matrix' | ['The best movie ever.', 'The movie is nonsense.'] | 0.13076457381248474 |
+--------------+--+---------------------+

Drop full-text indexes
A full-text node index is dropped by using the same command as for other indexes, DROP INDEX.

496

Example 311. DROP INDEX

In the following example, we will drop the taggedByRelationshipIndex that we created previously:

Query

DROP INDEX taggedByRelationshipIndex

Table 520. Result

(empty result)

Rows: 0
Indexes removed: 1

497

Constraints
This section explains how to manage constraints used for ensuring data integrity.

Types of constraint
The following constraint types are available:

Unique node property constraints

Unique node property constraints, or node property uniqueness constraints, ensure that property
values are unique for all nodes with a specific label. For property uniqueness constraints on multiple
properties, the combination of the property values is unique. Node property uniqueness constraints do
not require all nodes to have a unique value for the properties listed (nodes without all properties are
not subject to this rule).

Node property existence constraints Enterprise edition

Node property existence constraints ensure that a property exists for all nodes with a specific label.
Queries that try to create new nodes of the specified label, but without this property, will fail. The same
is true for queries that try to remove the mandatory property.

Relationship property existence constraints Enterprise edition

Relationship property existence constraints ensure that a property exists for all relationships with a
specific type. All queries that try to create relationships of the specified type, but without this property,
will fail. The same is true for queries that try to remove the mandatory property.

Node key constraints Enterprise edition

Node key constraints ensure that, for a given label and set of properties:

i. All the properties exist on all the nodes with that label.

ii. The combination of the property values is unique.

Queries attempting to do any of the following will fail:

• Create new nodes without all the properties or where the combination of property values is not
unique.

• Remove one of the mandatory properties.

• Update the properties so that the combination of property values is no longer unique.



Node key constraints, node property existence constraints, and relationship property
existence constraints are only available in Neo4j Enterprise Edition. Databases
containing one of these constraint types cannot be opened using Neo4j Community
Edition.

498

Implications on indexes
Creating a constraint has the following implications on indexes:

• Adding a node key or property uniqueness constraint on a single property also adds an index on that
property, and therefore, an index of the same index type, label, and property combination cannot be
added separately.

• Adding a node key or property uniqueness constraint for a set of properties also adds an index on
those properties, and therefore, an index of the same index type, label, and properties combination
cannot be added separately.

• Cypher will use these indexes for lookups just like other indexes. Refer to Indexes for search
performance for more details on indexes.

• If a node key or property uniqueness constraint is dropped and the backing index is still required, the
index need to be created explicitly.

Additionally, the following is true for constraints:

• A given label can have multiple constraints, and uniqueness and property existence constraints can be
combined on the same property.

• Adding constraints is an atomic operation that can take a while — all existing data has to be scanned
before Neo4j DBMS can turn the constraint 'on'.

• Best practice is to give the constraint a name when it is created. If the constraint is not explicitly
named, it will get an auto-generated name.

• The constraint name must be unique among both indexes and constraints.

• Constraint creation is by default not idempotent, and an error will be thrown if you attempt to create
the same constraint twice. Using the keyword IF NOT EXISTS makes the command idempotent, and no
error will be thrown if you attempt to create the same constraint twice.

Syntax

 The syntax descriptions use the style from access control.

Syntax for creating constraints

Best practice when creating a constraint is to give the constraint a name. This name must be unique
among both indexes and constraints. If a name is not explicitly given, a unique name will be auto-
generated.

The CREATE CONSTRAINT command is optionally idempotent. This means its default behavior is to throw an
error if an attempt is made to create the same constraint twice. With the IF NOT EXISTS flag, no error is
thrown and nothing happens should a constraint with the same name or same schema and constraint type
already exist. It may still throw an error if conflicting data, indexes, or constraints exist. Examples of this
are nodes with missing properties, indexes with the same name, or constraints with same schema but a
different conflicting constraint type.

499

For constraints that are backed by an index, the index provider for the backing index can be specified using
the OPTIONS clause. Only one valid value exists for the index provider, range-1.0, which is the default value.
There is no supported index configuration for range indexes.

 Creating a constraint requires the CREATE CONSTRAINT privilege.

Create a node property uniqueness constraint

This command creates a property uniqueness constraint on nodes with the specified label and properties.

CREATE CONSTRAINT [constraint_name] [IF NOT EXISTS]
FOR (n:LabelName)
REQUIRE n.propertyName IS [NODE] UNIQUE
[OPTIONS "{" option: value[, ...] "}"]

CREATE CONSTRAINT [constraint_name] [IF NOT EXISTS]
FOR (n:LabelName)
REQUIRE (n.propertyName_1, ..., n.propertyName_n) IS [NODE] UNIQUE
[OPTIONS "{" option: value[, ...] "}"]

Index provider can be specified using the OPTIONS clause.

Create a node property existence constraint Enterprise edition

This command creates a property existence constraint on nodes with the specified label and property.

CREATE CONSTRAINT [constraint_name] [IF NOT EXISTS]
FOR (n:LabelName)
REQUIRE n.propertyName IS NOT NULL
[OPTIONS "{" "}"]


There are no supported OPTIONS values for existence constraints, but an empty options
map is allowed for consistency.

Create a relationship property existence constraint Enterprise edition

This command creates a property existence constraint on relationships with the specified relationship type
and property.

CREATE CONSTRAINT [constraint_name] [IF NOT EXISTS]
FOR ()-"["r:RELATIONSHIP_TYPE"]"-()
REQUIRE r.propertyName IS NOT NULL
[OPTIONS "{" "}"]


There are no supported OPTIONS values for existence constraints, but an empty options
map is allowed for consistency.

Create a node key constraint Enterprise edition

This command creates a node key constraint on nodes with the specified label and properties.

500

CREATE CONSTRAINT [constraint_name] [IF NOT EXISTS]
FOR (n:LabelName)
REQUIRE n.propertyName IS [NODE] KEY
[OPTIONS "{" option: value[, ...] "}"]

CREATE CONSTRAINT [constraint_name] [IF NOT EXISTS]
FOR (n:LabelName)
REQUIRE (n.propertyName_1, ..., n.propertyName_n) IS [NODE] KEY
[OPTIONS "{" option: value[, ...] "}"]

Index provider can be specified using the OPTIONS clause.

Syntax for dropping constraints

Dropping a constraint is done by specifying the name of the constraint.

DROP CONSTRAINT constraint_name [IF EXISTS]

This drop command is optionally idempotent. This means its default behavior is to throw an error if an
attempt is made to drop the same constraint twice. With the IF EXISTS flag, no error is thrown and
nothing happens should the constraint not exist.

 Dropping a constraint requires the DROP CONSTRAINT privilege.

Syntax for listing constraints

List constraints in the database, either all or filtered on constraint type.

 Listing constraints requires the SHOW CONSTRAINTS privilege.

The simple version of the command allows for a WHERE clause and will give back the default set of output
columns:

SHOW [
 ALL
 |UNIQUE[NESS]
 |NODE [PROPERTY] EXIST[ENCE]
 |REL[ATIONSHIP] [PROPERTY] EXIST[ENCE]
 |[PROPERTY] EXIST[ENCE]
 |NODE KEY
] CONSTRAINT[S]
 [WHERE expression]

To get the full set of output columns, a yield clause is needed:

501

SHOW [
 ALL
 |UNIQUE[NESS]
 |NODE [PROPERTY] EXIST[ENCE]
 |REL[ATIONSHIP] [PROPERTY] EXIST[ENCE]
 |[PROPERTY] EXIST[ENCE]
 |NODE KEY
] CONSTRAINT[S]
YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

The type filtering keywords filters the returned constraints on constraint type:

Table 521. Type filters

Filter Description

ALL Returns all constraints, no filtering on constraint type. This is
the default if none is given.

UNIQUE[NESS] Returns all property uniqueness constraints.

NODE [PROPERTY] EXIST[ENCE] Returns the node property existence constraints.

REL[ATIONSHIP] [PROPERTY] EXIST[ENCE] Returns the relationship property existence constraints.

[PROPERTY] EXIST[ENCE] Returns all property existence constraints, for both nodes and
relationships.

NODE KEY Returns the node key constraints.

The returned columns from the show command is:

Table 522. Listing constraints output

Column Description

id The id of the constraint. Default output

name Name of the constraint (explicitly set by the user or
automatically assigned). Default output

type The ConstraintType of this constraint (UNIQUENESS,
NODE_PROPERTY_EXISTENCE, RELATIONSHIP_PROPERTY_EXISTENCE,
or NODE_KEY). Default output

entityType Type of entities this constraint represents (nodes or
relationship). Default output

502

Column Description

labelsOrTypes The labels or relationship types of this constraint. Default
output

properties The properties of this constraint. Default output

ownedIndex The name of the index associated with the constraint or null,
in case no index is associated with it. Default output

options The options passed to CREATE command, for the index
associated to the constraint, or null if no index is associated
with the constraint.

createStatement Statement used to create the constraint.

Examples

Examples of how to manage constraints used for ensuring data integrity.

Node property uniqueness constraints

A node property uniqueness constraint ensures that all nodes with a particular label have a set of defined
properties whose combined value is unique when existing.

• Create a node property uniqueness constraint

• Handling existing constraints when creating a constraint

• Specifying an index provider when creating a constraint

• Creating an already existing constraint will fail

• Creating a constraint on the same schema as an existing index will fail

• Creating a node that complies with an existing constraint

• Creating a node that violates an existing constraint will fail

• Creating a constraint when there exist conflicting nodes will fail

Create a node property uniqueness constraint

When creating a property uniqueness constraint, a name can be provided.

503

Example 312. CREATE CONSTRAINT

Query

CREATE CONSTRAINT constraint_name
FOR (book:Book) REQUIRE book.isbn IS UNIQUE

Result

+-------------------+
| No data returned. |
+-------------------+
Unique constraints added: 1

Handling existing constraints when creating a constraint

Creating an already existing constraint will fail. To avoid such an error, IF NOT EXISTS can be added to the
CREATE command. This will ensure that no error is thrown and no constraint is created if any other
constraint with the given name or another node property uniqueness constraint on the same schema
already exists.

Example 313. CREATE CONSTRAINT

Query

CREATE CONSTRAINT constraint_name IF NOT EXISTS
FOR (book:Book) REQUIRE book.isbn IS UNIQUE

Assuming no constraint with the given name or other node property uniqueness constraint on the
same schema exists:

Result

+-------------------+
| No data returned. |
+-------------------+
Unique constraints added: 1

Specifying an index provider when creating a constraint

To create a property uniqueness constraint with a specific index provider for the backing index, the
OPTIONS clause is used.

The index type of the backing index is set with the indexProvider option.

The only valid value for the index provider is:

• range-1.0 Default

504

Example 314. CREATE CONSTRAINT

Query

CREATE CONSTRAINT constraint_with_options
FOR (n:Label) REQUIRE (n.prop1, n.prop2) IS UNIQUE
OPTIONS {
 indexProvider: 'range-1.0',
}

Result

+-------------------+
| No data returned. |
+-------------------+
Unique constraints added: 1

There is no valid index configuration values for the constraint-backing range indexes.

Creating an already existing constraint will fail

Example 315. CREATE CONSTRAINT

Create a property uniqueness constraint on the property title on nodes with the Book label, when
that constraint already exists.

Query

CREATE CONSTRAINT FOR (book:Book) REQUIRE book.title IS UNIQUE

In this case the constraint can not be created because it already exists.

Error message

Constraint already exists:
Constraint(id=4, name='preExistingUnique', type='UNIQUENESS', schema=(:Book {title}), ownedIndex=3)

Creating a constraint on the same schema as an existing index will fail

505

Example 316. CREATE CONSTRAINT

Create a property uniqueness constraint on the property wordCount on nodes with the Book label,
when an index already exists on that label and property combination.

Query

CREATE CONSTRAINT FOR (book:Book) REQUIRE book.wordCount IS UNIQUE

In this case the constraint can not be created because there already exists an index covering that
schema.

Error message

There already exists an index (:Book {wordCount}).
A constraint cannot be created until the index has been dropped.

Creating a node that complies with an existing constraint

Example 317. CREATE NODE

Create a Book node with an isbn that is not already in the database.

Query

CREATE (book:Book {isbn: '1449356265', title: 'Graph Databases'})

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 1
Properties set: 2
Labels added: 1

Creating a node that violates an existing constraint will fail

506

Example 318. CREATE NODE

Create a Book node with an isbn that is already used in the database.

Query

CREATE (book:Book {isbn: '1449356265', title: 'Graph Databases'})

In this case the node is not created in the graph.

Error message

Node(0) already exists with label `Book` and property `isbn` = '1449356265'

Creating a constraint when there exist conflicting nodes will fail

Example 319. CREATE CONSTRAINT

Create a property uniqueness constraint on the property isbn on nodes with the Book label when
there are two nodes with the same isbn.

Query

CREATE CONSTRAINT FOR (book:Book) REQUIRE book.isbn IS UNIQUE

In this case the constraint can not be created because it is violated by existing data. Either use
Indexes for search performance instead, or remove the offending nodes and then re-apply the
constraint.

Error message

Unable to create Constraint(name='constraint_62365a16', type='UNIQUENESS', schema=(:Book {isbn})):
Both Node(0) and Node(1) have the label `Book` and property `isbn` = '1449356265'

Node property existence constraints Enterprise edition

A node property existence constraint ensures that all nodes with a certain label have a certain property.

• Create a node property existence constraint

• Handling existing constraints when creating a constraint

• Creating an already existing constraint will fail

• Creating a node that complies with an existing constraint

• Creating a node that violates an existing constraint will fail

• Removing an existence constrained node property will fail

• Creating a constraint when there exist conflicting nodes will fail

507

Create a node property existence constraint

When creating a node property existence constraint, a name can be provided.

Example 320. CREATE CONSTRAINT

Query

CREATE CONSTRAINT constraint_name
FOR (book:Book) REQUIRE book.isbn IS NOT NULL

Result

+-------------------+
| No data returned. |
+-------------------+
Property existence constraints added: 1

Handling existing constraints when creating a constraint

Creating an already existing constraint will fail. To avoid such an error, IF NOT EXISTS can be added to the
CREATE command. This will ensure that no error is thrown and no constraint is created if any other
constraint with the given name or another node property existence constraint on the same schema already
existed.

Example 321. CREATE CONSTRAINT

Query

CREATE CONSTRAINT constraint_name IF NOT EXISTS
FOR (book:Book) REQUIRE book.isbn IS NOT NULL

Assuming a constraint with the name constraint_name already existed:

Result

+--+
| No data returned, and nothing was changed. |
+--+

Creating an already existing constraint will fail

508

Example 322. CREATE CONSTRAINT

Create a node property existence constraint on the property title on nodes with the Book label,
when that constraint already exists.

Query

CREATE CONSTRAINT booksShouldHaveTitles
FOR (book:Book) REQUIRE book.title IS NOT NULL

In this case the constraint can not be created because it already exists.

Error message

Constraint already exists:
Constraint(id=3, name='preExistingNodePropExist', type='NODE PROPERTY EXISTENCE', schema=(:Book
{title}))

Creating a node that complies with an existing constraint

Example 323. CREATE NODE

Create a Book node with an isbn property.

Query

CREATE (book:Book {isbn: '1449356265', title: 'Graph Databases'})

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 1
Properties set: 2
Labels added: 1

Creating a node that violates an existing constraint will fail

509

Example 324. CREATE NODE

Trying to create a Book node without an isbn property, given a property existence constraint on
:Book(isbn).

Query

CREATE (book:Book {title: 'Graph Databases'})

In this case the node is not created in the graph.

Error message

Node(0) with label `Book` must have the property `isbn`

Removing an existence constrained node property will fail

Example 325. REMOVE PROPERTY

Trying to remove the isbn property from an existing node book, given a property existence constraint
on :Book(isbn).

Query

MATCH (book:Book {title: 'Graph Databases'})
REMOVE book.isbn

In this case the property is not removed.

Error message

Node(0) with label `Book` must have the property `isbn`

Creating a constraint when there exist conflicting nodes will fail

510

Example 326. CREATE CONSTRAINT

Create a constraint on the property isbn on nodes with the Book label when there already exists a
node without an isbn.

Query

CREATE CONSTRAINT FOR (book:Book) REQUIRE book.isbn IS NOT NULL

In this case the constraint can’t be created because it is violated by existing data. Remove the
offending nodes and then re-apply the constraint.

Error message

Unable to create Constraint(type='NODE PROPERTY EXISTENCE', schema=(:Book {isbn})):
Node(0) with label `Book` must have the property `isbn`

Relationship property existence constraints Enterprise edition

A relationship property existence constraint ensures that all relationships with a certain type have a certain
property.

• Create a relationship property existence constraint

• Handling existing constraints when creating a constraint

• Creating an already existing constraint will fail

• Creating a relationship that complies with an existing constraint

• Creating a relationship that violates an existing constraint will fail

• Removing an existence constrained relationship property will fail

• Creating a constraint when there exist conflicting relationships will fail

Create a relationship property existence constraint

When creating a relationship property existence constraint, a name can be provided.

Example 327. CREATE CONSTRAINT

Query

CREATE CONSTRAINT constraint_name
FOR ()-[like:LIKED]-() REQUIRE like.day IS NOT NULL

Result

+-------------------+
| No data returned. |
+-------------------+
Property existence constraints added: 1

511

Handling existing constraints when creating a constraint

Creating an already existing constraint will fail. To avoid such an error, IF NOT EXISTS can be added to the
CREATE command. This will ensure that no error is thrown and no constraint is created if any other
constraint with the given name or another relationship property existence constraint on the same schema
already existed.

Example 328. CREATE CONSTRAINT

Query

CREATE CONSTRAINT constraint_name
IF NOT EXISTS FOR ()-[like:LIKED]-() REQUIRE like.day IS NOT NULL

Assuming a constraint with the name constraint_name already existed:

Result

+--+
| No data returned, and nothing was changed. |
+--+

Creating an already existing constraint will fail

Example 329. CREATE CONSTRAINT

Create a named relationship property existence constraint on the property week on relationships with
the LIKED type, when a constraint with the given name already exists.

Query

CREATE CONSTRAINT relPropExist
FOR ()-[like:LIKED]-() REQUIRE like.week IS NOT NULL

In this case the constraint can not be created because there already exists a constraint with the given
name.

Error message

There already exists a constraint called 'relPropExist'.

Creating a relationship that complies with an existing constraint

512

Example 330. CREATE RELATIONSHIP

Create a LIKED relationship with a day property.

Query

CREATE (user:User)-[like:LIKED {day: 'yesterday'}]->(book:Book)

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 2
Relationships created: 1
Properties set: 1
Labels added: 2

Creating a relationship that violates an existing constraint will fail

Example 331. CREATE RELATIONSHIP

Trying to create a LIKED relationship without a day property, given a property existence constraint
:LIKED(day).

Query

CREATE (user:User)-[like:LIKED]->(book:Book)

In this case the relationship is not created in the graph.

Error message

Relationship(0) with type `LIKED` must have the property `day`

Removing an existence constrained relationship property will fail

513

Example 332. REMOVE PROPERTY

Trying to remove the day property from an existing relationship like of type LIKED, given a property
existence constraint :LIKED(day).

Query

MATCH (user:User)-[like:LIKED]->(book:Book) REMOVE like.day

In this case the property is not removed.

Error message

Relationship(0) with type `LIKED` must have the property `day`

Creating a constraint when there exist conflicting relationships will fail

Example 333. CREATE CONSTRAINT

Create a constraint on the property day on relationships with the LIKED type when there already
exists a relationship without a property named day.

Query

CREATE CONSTRAINT FOR ()-[like:LIKED]-() REQUIRE like.day IS NOT NULL

In this case the constraint can not be created because it is violated by existing data. Remove the
offending relationships and then re-apply the constraint.

Error message

Unable to create Constraint(type='RELATIONSHIP PROPERTY EXISTENCE', schema=-[:LIKED {day}]-):
Relationship(0) with type `LIKED` must have the property `day`

Node key constraints Enterprise edition

A node key constraint ensures that all nodes with a particular label have a set of defined properties whose
combined value is unique and all properties in the set are present.

• Create a node key constraint

• Handling existing constraints when creating a constraint

• Specifying an index provider when creating a constraint

• Node key and property uniqueness constraints are not allowed on the same schema

• Creating a constraint on same name as an existing index will fail

• Creating a node that complies with an existing constraint

• Creating a node that violates an existing constraint will fail

514

• Removing a NODE KEY-constrained property will fail

• Creating a constraint when there exist conflicting node will fail

Create a node key constraint

When creating a node key constraint, a name can be provided.

Example 334. CREATE CONSTRAINT

Query

CREATE CONSTRAINT constraint_name
FOR (n:Person) REQUIRE (n.firstname, n.surname) IS NODE KEY

Result

+-------------------+
| No data returned. |
+-------------------+
Node key constraints added: 1

Handling existing constraints when creating a constraint

Creating an already existing constraint will fail. To avoid such an error, IF NOT EXISTS can be added to the
CREATE command. This will ensure that no error is thrown and no constraint is created if any other
constraint with the given name or another node key constraint on the same schema already exists.

Example 335. CREATE CONSTRAINT

Query

CREATE CONSTRAINT constraint_name IF NOT EXISTS
FOR (n:Person) REQUIRE (n.firstname, n.surname) IS NODE KEY

Assuming a node key constraint on (:Person {firstname, surname}) already existed:

Result

+--+
| No data returned, and nothing was changed. |
+--+

Specifying an index provider when creating a constraint

To create a node key constraint with a specific index provider for the backing index, the OPTIONS clause is
used.

The index type of the backing index is set with the indexProvider option.

The only valid value for the index provider is:

515

• range-1.0 Default

Example 336. CREATE CONSTRAINT

Query

CREATE CONSTRAINT constraint_with_provider
FOR (n:Label) REQUIRE (n.prop1) IS NODE KEY
OPTIONS {
 indexProvider: 'range-1.0'
}

Result

+-------------------+
| No data returned. |
+-------------------+
Node key constraints added: 1

There is no valid index configuration values for the constraint-backing range indexes.

Node key and property uniqueness constraints are not allowed on the same
schema

Example 337. CREATE CONSTRAINT

Create a node key constraint on the properties firstname and age on nodes with the Person label,
when a property uniqueness constraint already exists on the same label and property combination.

Query

CREATE CONSTRAINT FOR (p:Person) REQUIRE (p.firstname, p.age) IS NODE KEY

In this case the constraint can not be created because there already exist a conflicting constraint on
that label and property combination.

Error message

Constraint already exists:
Constraint(id=4, name='preExistingUnique', type='UNIQUENESS', schema=(:Person {firstname, age}),
ownedIndex=3)

Creating a constraint on same name as an existing index will fail

516

Example 338. CREATE CONSTRAINT

Create a named node key constraint on the property title on nodes with the Book label, when an
index already exists with the given name.

Query

CREATE CONSTRAINT bookTitle
FOR (book:Book) REQUIRE book.title IS NODE KEY

In this case the constraint can’t be created because there already exists an index with the given
name.

Error message

There already exists an index called 'bookTitle'.

Creating a node that complies with an existing constraint

Example 339. CREATE NODE

Create a Person node with both a firstname and surname property.

Query

CREATE (p:Person {firstname: 'John', surname: 'Wood', age: 55})

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 1
Properties set: 3
Labels added: 1

Creating a node that violates an existing constraint will fail

517

Example 340. CREATE NODE

Trying to create a Person node without a surname property, given a node key constraint on
:Person(firstname, surname), will fail.

Query

CREATE (p:Person {firstname: 'Jane', age: 34})

In this case the node is not created in the graph.

Error message

Node(0) with label `Person` must have the properties (`firstname`, `surname`)

Removing a NODE KEY-constrained property will fail

Example 341. REMOVE PROPERTY

Trying to remove the surname property from an existing node Person, given a NODE KEY constraint on
:Person(firstname, surname).

Query

MATCH (p:Person {firstname: 'John', surname: 'Wood'}) REMOVE p.surname

In this case the property is not removed.

Error message

Node(0) with label `Person` must have the properties (`firstname`, `surname`)

Creating a constraint when there exist conflicting node will fail

518

Example 342. CREATE CONSTRAINT

Trying to create a node key constraint on the property surname on nodes with the Person label will fail
when a node without a surname already exists in the database.

Query

CREATE CONSTRAINT FOR (n:Person) REQUIRE (n.firstname, n.surname) IS NODE KEY

In this case the node key constraint can not be created because it is violated by existing data. Either
use Indexes for search performance instead, or remove the offending nodes and then re-apply the
constraint.

Error message

Unable to create Constraint(type='NODE KEY', schema=(:Person {firstname, surname})):
Node(0) with label `Person` must have the properties (`firstname`, `surname`)

Drop a constraint by name

• Drop a constraint

• Drop a non-existing constraint

Drop a constraint

A constraint can be dropped using the name with the DROP CONSTRAINT constraint_name command. It is
the same command for uniqueness, property existence, and node key constraints. The name of the
constraint can be found using the SHOW CONSTRAINTS command, given in the output column name.

Example 343. DROP CONSTRAINT

Query

DROP CONSTRAINT constraint_name

Result

+-------------------+
| No data returned. |
+-------------------+
Named constraints removed: 1

Drop a non-existing constraint

If it is uncertain if any constraint with a given name exists and you want to drop it if it does but not get an
error should it not, use IF EXISTS. It is the same command for uniqueness, property existence, and node
constraints.

519

Example 344. DROP CONSTRAINT

Query

DROP CONSTRAINT missing_constraint_name IF EXISTS

Result

+--+
| No data returned, and nothing was changed. |
+--+

Listing constraints

• Listing all constraints

• Listing constraints with filtering

Listing all constraints

To list all constraints with the default output columns, the SHOW CONSTRAINTS command can be used. If all
columns are required, use SHOW CONSTRAINTS YIELD *.


One of the output columns from SHOW CONSTRAINTS is the name of the constraint. This
can be used to drop the constraint with the DROP CONSTRAINT command.

Example 345. SHOW CONSTRAINTS

Query

SHOW CONSTRAINTS

+---+
| id | name | type | entityType | labelsOrTypes | properties | ownedIndex |
+---+
| 4 | "isbnConstraint" | "UNIQUENESS" | "NODE" | ["Book"] | ["isbn"] | "isbnConstraint" |
+---+
2 rows

Listing constraints with filtering

One way of filtering the output from SHOW CONSTRAINTS by constraint type is the use of type keywords,
listed in the syntax for listing constraints type filter table. For example, to show only property uniqueness
constraints, use SHOW UNIQUENESS CONSTRAINTS. Another more flexible way of filtering the output is to use
the WHERE clause. An example is to only show constraints on relationships.

520

Example 346. SHOW CONSTRAINTS

Query

SHOW EXISTENCE CONSTRAINTS
WHERE entityType = 'RELATIONSHIP'

This will only return the default output columns. To get all columns, use SHOW INDEXES YIELD * WHERE
....

+--
-----------------------+
| id | name | type | entityType | labelsOrTypes |
properties | ownedIndex |
+--
-----------------------+
| 7 | "constraint_f076a74d" | "RELATIONSHIP_PROPERTY_EXISTENCE" | "RELATIONSHIP" | ["KNOWS"] |
["since"] | <null> |
+--
-----------------------+
1 row

521

Database management
This section explains how to use Cypher to manage databases in Neo4j DBMS: creating,

modifying, deleting, starting, and stopping individual databases within a single server.

Neo4j supports the management of multiple databases within the same DBMS. The metadata for these
databases, including the associated security model, is maintained in a special database called the system
database. All multi-database administrative commands must be run against the system database. These
administrative commands are automatically routed to the system database when connected to the DBMS
over Bolt.

The syntax of the database management commands is as follows:

 The syntax descriptions use the style from access control.

Table 523. Database management command syntax

Command Syntax

SHOW DATABASE
SHOW { DATABASE[S] name | DATABASE[S] | DEFAULT DATABASE | HOME DATABASE }
[WHERE expression]

SHOW { DATABASE[S] name | DATABASE[S] | DEFAULT DATABASE | HOME DATABASE }
YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

CREATE DATABASE
CREATE DATABASE name [IF NOT EXISTS]
[TOPOLOGY n PRIMAR{Y|IES} [m SECONDAR{Y|IES}]]
[OPTIONS "{" option: value[, ...] "}"]
[WAIT [n [SEC[OND[S]]]]|NOWAIT]

CREATE OR REPLACE DATABASE name
[TOPOLOGY n PRIMAR{Y|IES} [m SECONDAR{Y|IES}]]
[OPTIONS "{" option: value[, ...] "}"]
[WAIT [n [SEC[OND[S]]]]|NOWAIT]

CREATE COMPOSITE
DATABASE CREATE COMPOSITE DATABASE name [IF NOT EXISTS]

[OPTIONS "{" "}"]
[WAIT [n [SEC[OND[S]]]]|NOWAIT]

CREATE OR REPLACE COMPOSITE DATABASE name
[OPTIONS "{" "}"]
[WAIT [n [SEC[OND[S]]]]|NOWAIT]

522

Command Syntax

ALTER DATABASE
ALTER DATABASE name [IF EXISTS]
{
SET ACCESS {READ ONLY | READ WRITE} |
SET TOPOLOGY n PRIMAR{Y|IES} [m SECONDAR{Y|IES}]
}

STOP DATABASE
STOP DATABASE name [WAIT [n [SEC[OND[S]]]]|NOWAIT]

START DATABASE
START DATABASE name [WAIT [n [SEC[OND[S]]]]|NOWAIT]

DROP DATABASE
DROP [COMPOSITE] DATABASE name [IF EXISTS] [{DUMP|DESTROY} [DATA]] [WAIT [n
[SEC[OND[S]]]]|NOWAIT]

Listing databases
There are four different commands for listing databases:

• Listing all databases.

• Listing a particular database.

• Listing the default database.

• Listing the home database.

These commands return the following columns:

Table 524. Listing databases output

Column Description

name The name of the database. Default output

type The type of the database: system, standard, or composite.
Default output

aliases The names of any aliases the database may have. Default
output

523

Column Description

access The database access mode, either read-write or read-only.
Default output


A database may be described as read-only
when using ALTER DATABASE … SET ACCESS
READ ONLY.

databaseID The database unique ID.

serverID The server instance ID.

address Instance address in a clustered DBMS. The default for a
standalone database is neo4j://localhost:7687. Default
output

role The current role of the database (primary, secondary, unknown).
Default output

writer true for the database node that accepts writes (this node is
the leader for this database in a cluster or this is a standalone
instance). Default output

requestedStatus The expected status of the database. Default output

currentStatus The actual status of the database. Default output

error An error message explaining why the database is not in the
correct state. Default output

default Show if this is the default database for the DBMS. Default
output


Not returned by SHOW HOME DATABASE or SHOW
DEFAULT DATABASE.

home Shown if this is the home database for the current user.
Default output


Not returned by SHOW HOME DATABASE or SHOW
DEFAULT DATABASE.

524

Column Description

currentPrimariesCount Number of primaries for this database reported as running
currently. It is the same as the number of rows where
role=primary and name=this database.

currentSecondariesCount Number of secondaries for this database reported as running
currently. It is the same as the number of rows where
role=secondary and name=this database.

requestedPrimariesCount The requested number of primaries for this database. May be
lower than current if the DBMS is currently reducing the
number of copies of the database, or higher if it is currently
increasing the number of copies.

requestedSecondariesCount The requested number of secondaries for this database. May
be lower than current if the DBMS is currently reducing the
number of copies of the database, or higher if it is currently
increasing the number of copies.

creationTime The date and time at which the database was created.

lastStartTime The date and time at which the database was last started.

lastStopTime The date and time at which the database was last stopped.

store Information about the storage engine and the store format.

The value is a string formatted as:

{storage engine}-{store format}-{major version}.{minor
version}

lastCommittedTxn The ID of the last transaction received.

replicationLag Number of transactions the current database is behind
compared to the database on the primary instance. The lag is
expressed in negative integers. In standalone environments,
the value is always 0.

constituents The names of any constituents the database may have.
Default output

525

Example 347. SHOW DATABASES

A summary of all available databases can be displayed using the command SHOW DATABASES.

Query

SHOW DATABASES

Table 525. Result

name aliases access address role requested
Status

currentSta
tus

error default home

"movies" ["films",
"motion
pictures"
]

"read-
write"

"localhos
t:7687"

"standalo
ne"

"online" "online" "" false false

"neo4j" [] "read-
write"

"localhos
t:7687"

"standalo
ne"

"online" "online" "" true true

"system" [] "read-
write"

"localhos
t:7687"

"standalo
ne"

"online" "online" "" false false

Rows: 3



The results of this command are filtered according to the ACCESS privileges of the
user. However, some privileges enable users to see additional databases regardless
of their ACCESS privileges:

• Users with CREATE/DROP/ALTER DATABASE or SET DATABASE ACCESS privileges can
see all standard databases.

• Users with CREATE/DROP COMPOSITE DATABASE or COMPOSITE DATABASE
MANAGEMENT privileges can see all composite databases.

• Users with DATABASE MANAGEMENT privilege can see all databases.

If a user has not been granted ACCESS privilege to any databases nor any of the
above special cases, the command can still be executed but will only return the
system database, which is always visible.



Databases hosted on servers that are offline are also returned by the SHOW
DATABASES command. For such databases, the address column displays NULL, the
currentStatus column displays unknown, and the statusMessage displays Server is
unavailable.

526

Example 348. SHOW DATABASES

In this example, the detailed information for a particular database can be displayed using the
command SHOW DATABASE name YIELD *. When a YIELD clause is provided, the full set of columns is
returned.

Query

SHOW DATABASE movies YIELD *

Table 526. Result

name aliases access databaseID serverID address ...

"movies" ["films","moti
on pictures"]

"read-write" "367221F9021C0
0CEBFCA25C8E21
01F1DCF45C7DB9
BF7D7A0949B877
45E760EDD"

"adc0a7bc-
d9a6-4cc8-
b394-
91635fbb1137"

"localhost:768
7"

...

Rows: 1

Example 349. SHOW DATABASES

The number of databases can be seen using a count() aggregation with YIELD and RETURN.

Query

SHOW DATABASES YIELD *
RETURN count(*) AS count

Table 527. Result

count

3

Rows: 1

527

Example 350. SHOW DEFAULT DATABASE

The default database can be seen using the command SHOW DEFAULT DATABASE.

Query

SHOW DEFAULT DATABASE

Table 528. Result

name aliases access address role requestedSta
tus

currentStatu
s

error

"neo4j" [] "read-write" "localhost:7
687"

"standalone" "online" "online" ""

Rows: 1

Example 351. SHOW HOME DATABASE

The home database for the current user can be seen using the command SHOW HOME DATABASE.

Query

SHOW HOME DATABASE

Table 529. Result

name aliases access address role requestedSta
tus

currentStatu
s

error

"neo4j" [] "read-write" "localhost:7
687"

"standalone" "online" "online" ""

Rows: 1

528

Example 352. SHOW DATABASES

It is also possible to filter and sort the results by using YIELD, ORDER BY, and WHERE.

Query

SHOW DATABASES YIELD name, currentStatus, requestedStatus
ORDER BY currentStatus
WHERE name CONTAINS 'e'

In this example:

• The number of columns returned has been reduced with the YIELD clause.

• The order of the returned columns has been changed.

• The results have been filtered to only show database names containing 'e'.

• The results are ordered by the currentStatus column using ORDER BY.

It is also possible to use SKIP and LIMIT to paginate the results.

Table 530. Result

name currentStatus requestedStatus

"movies" "online" "online"

"neo4j" "online" "online"

"system" "online" "online"

Rows: 3



Note that for failed databases, the currentStatus and requestedStatus are
different. This often implies an error, but does not always. For example, a database
may take a while to transition from offline to online due to performing recovery.
Or, during normal operation a database’s currentStatus may be transiently
different from its requestedStatus due to a necessary automatic process, such as
one Neo4j instance copying store files from another. The possible statuses are
initial, online, offline, store copying and unknown.

For composite databases the constituents column is particularly interesting as it lists the aliases that
make up the composite database:

Query

SHOW DATABASE library YIELD name, constituents

Table 531. Result

name constituents

"library" ["library.sci-fi","library.romance"]

Rows: 1

529

Creating databases Enterprise edition
Databases can be created using CREATE DATABASE.

Example 353. CREATE DATABASE

Query

CREATE DATABASE customers

Result

System updates: 1
Rows: 0



Database names are subject to the standard Cypher restrictions on valid identifiers.

The following naming rules apply:

• Database name length must be between 3 and 63 characters.

• The first character must be an ASCII alphabetic character.

• Subsequent characters can be ASCII alphabetic (mydatabase), numeric
characters (mydatabase2), dots (main.db), and dashes (enclosed within
backticks, e.g., CREATE DATABASE `main-db`). Using database names with dots
without enclosing them in backticks is deprecated.

• Names cannot end with dots or dashes.

• Names that begin with an underscore or with the prefix system are reserved for
internal use.

530

Example 354. SHOW DATABASES

When a database has been created, it will show up in the listing provided by the command SHOW
DATABASES.

Query

SHOW DATABASES

Table 532. Result

name aliases access address role requested
Status

currentSta
tus

error default home

"customer
s"

[] "read-
write"

"localhos
t:7687"

"standalo
ne"

"online" "online" "" false false

"movies" ["films",
"motion
pictures"
]

"read-
write"

"localhos
t:7687"

"standalo
ne"

"online" "online" "" false false

"neo4j" [] "read-
write"

"localhos
t:7687"

"standalo
ne"

"online" "online" "" true true

"system" [] "read-
write"

"localhos
t:7687"

"standalo
ne"

"online" "online" "" false false

Rows: 4

Cluster topology Enterprise edition

In a cluster environment, it may be desirable to control the number of servers used to host a database. The
number of primary and secondary servers can be specified using the following command.

Query

CREATE DATABASE `topology-example` TOPOLOGY 1 PRIMARY 0 SECONDARIES

For more details on primary and secondary server roles, see Cluster overview.


TOPOLOGY is only available for standard databases and not composite databases.
Composite databases are always available on all servers.

Creating composite databases Enterprise edition

Composite databases do not contain data, but they reference to other databases that can be queried
together through their constituent aliases. For more information about composite databases, see
Operations Manual → Composite database introduction.

Composite databases can be created using CREATE COMPOSITE DATABASE.

531

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#clustering-introduction-operational
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#introduction
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#introduction
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#introduction

Query

CREATE COMPOSITE DATABASE inventory

0 rows, System updates: 1



Composite database names are subject to the same rules as standard databases. One
difference is however that the deprecated syntax using dots without enclosing the name
in backticks is not available. Both dots and dashes needs to be enclosed within backticks
when using composite databases.

When a composite database has been created, it will show up in the listing provided by the command SHOW
DATABASES.

Query

SHOW DATABASES YIELD name, type, access, role, writer, constituents

Table 533. Result

name type access role writer constituents

"customers" "standard" "read-write" "primary" true []

"inventory" "composite" "read-only" <null> false []

"library" "composite" "read-only" <null> false ["library.sci-
fi","library.roma
nce"]

"movies" "standard" "read-write" "primary" true []

"neo4j" "standard" "read-write" "primary" true []

"sci-fi-books" "standard" "read-write" "primary" true []

"system" "system" "read-write" "primary" true []

"topology-
example"

"standard" "read-write" "primary" true []

Rows: 8

In order to create database aliases in the composite database, give the composite database as namespace
for the alias. For information about creating aliases in composite databases, see here.

Handling Existing Databases Enterprise edition

These commands are optionally idempotent, with the default behavior to fail with an error if the database
already exists. Appending IF NOT EXISTS to the command ensures that no error is returned and nothing
happens should the database already exist. Adding OR REPLACE to the command will result in any existing
database being deleted and a new one created.

These behavior flags apply to both standard and composite databases (e.g. a composite database may
replace a standard one or another composite.)

532

Example 355. CREATE DATABASE

Query

CREATE COMPOSITE DATABASE customers IF NOT EXISTS

Example 356. CREATE OR REPLACE DATABASE

Query

CREATE OR REPLACE DATABASE customers

This is equivalent to running DROP DATABASE customers IF EXISTS followed by CREATE DATABASE
customers.


The IF NOT EXISTS and OR REPLACE parts of these commands cannot be used
together.

Options Enterprise edition

The CREATE DATABASE command can have a map of options, e.g. OPTIONS {key: 'value'}.

 There are no available OPTIONS values for composite databases.

Key Value Description

existingData use Controls how the system handles
existing data on disk when creating the
database. Currently this is only
supported with
existingDataSeedInstance and must be
set to use which indicates the existing
data files should be used for the new
database.

existingDataSeedInstance instance ID of the cluster node Defines which instance is used for
seeding the data of the created
database. The instance id can be taken
from the id column of the
dbms.cluster.overview() procedure.
Can only be used in clusters.

seedURI URI to a backup or a dump from an
existing database.

Defines an identical seed from an
external source which will be used to
seed all servers.

seedConfig comma separated list of configuration
values.

Defines additional configuration
specified by comma separated
name=value pairs that might be required
by certain seed providers.

533

Key Value Description

seedCredentials credentials Defines credentials that needs to be
passed into certain seed providers.



The existingData, existingDataSeedInstance, seedURI, seedConfig and
seedCredentials options cannot be combined with the OR REPLACE part of this
command. For details about the use of these seeding options, see Operations Manual →
Seed a cluster.

Altering databases Enterprise edition
Standard databases can be modified using the command ALTER DATABASE.

Access

By default, a database has read-write access mode on creation. The database can be limited to read-only
mode on creation using the configuration parameters dbms.databases.default_to_read_only,
dbms.databases.read_only, and dbms.database.writable. For details, see Configuration parameters.

A database that was created with read-write access mode can be changed to read-only. To change it to
read-only, you can use the ALTER DATABASE command with the sub-clause SET ACCESS READ ONLY.
Subsequently, the database access mode can be switched back to read-write using the sub-clause SET
ACCESS READ WRITE. Altering the database access mode is allowed at all times, whether a database is
online or offline.

If conflicting modes are set by the ALTER DATABASE command and the configuration parameters, i.e. one
says read-write and the other read-only, the database will be read-only and prevent write queries.


Modifying access mode is only available to standard databases and not composite
databases.

Example 357. ALTER DATABASE

Query

ALTER DATABASE customers SET ACCESS READ ONLY

Result

System updates: 1
Rows: 0

534

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#cluster-seed
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#cluster-seed
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#cluster-seed
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#cluster-seed
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#manage_database_parameters

Example 358. SHOW DATABASES

The database access mode can be seen in the access output column of the command SHOW
DATABASES.

Query

SHOW DATABASES yield name, access

Table 534. Result

name access

"customers" "read-only"

"movies" "read-write"

"neo4j" "read-write"

"system" "read-write"

Rows: 4

Example 359. ALTER DATABASE

ALTER DATABASE commands are optionally idempotent, with the default behavior to fail with an error if
the database does not exist. Appending IF EXISTS to the command ensures that no error is returned
and nothing happens should the database not exist.

Query

ALTER DATABASE nonExisting IF EXISTS
SET ACCESS READ WRITE

Topology

In a cluster environment, it may be desirable to change the number of servers used to host a database. The
number of primary and secondary servers can be specified using the following command:

Example 360. ALTER DATABASE

Query

ALTER DATABASE `topology-example`
SET TOPOLOGY 3 PRIMARY 0 SECONDARIES


It is not possible to automatically transition to or from a topology with a single primary
host. See the Operations Manual → Alter topology for more information.

535

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#_alter_topology
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#_alter_topology
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#_alter_topology

Example 361. SHOW DATABASE

Query

SHOW DATABASES yield name, currentPrimariesCount, currentSecondariesCount, requestedPrimariesCount,
requestedSecondariesCount

For more details on primary and secondary server roles, see Operations Manual → Clustering overview.


Modifying database topology is only available to standard databases and not composite
databases.

ALTER DATABASE commands are optionally idempotent, with the default behavior to fail with an error if the
database does not exist. Appending IF EXISTS to the command ensures that no error is returned and
nothing happens should the database not exist.

Query

ALTER DATABASE nonExisting IF EXISTS SET TOPOLOGY 1 PRIMARY 0 SECONDARY

0 rows

Stopping databases Enterprise edition
Databases can be stopped using the command STOP DATABASE.

Example 362. STOP DATABASE

Query

STOP DATABASE customers

Result

System updates: 1
Rows: 0


Both standard databases and composite databases can be stopped using this
command.

536

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#clustering-introduction-operational
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#clustering-introduction-operational
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#clustering-introduction-operational

Example 363. SHOW DATABASE

The status of the stopped database can be seen using the command SHOW DATABASE name.

Query

SHOW DATABASE customers

Table 535. Result

name aliases access address role requested
Status

currentSta
tus

error default home

"customer
s"

[] "read-
only"

"localhos
t:7687"

"standalo
ne"

"offline" "offline" "" false false

Rows: 1

Starting databases Enterprise edition
Databases can be started using the command START DATABASE.

Example 364. START DATABASE

Query

START DATABASE customers

Result

System updates: 1
Rows: 0


Both standard databases and composite databases can be stopped using this
command.

537

Example 365. SHOW DATABASE

The status of the started database can be seen using the command SHOW DATABASE name.

Query

SHOW DATABASE customers

Table 536. Result

name aliases access address role requested
Status

currentSta
tus

error default home

"customer
s"

[] "read-
only"

"localhos
t:7687"

"standalo
ne"

"online" "online" "" false false

Rows: 1

Deleting databases Enterprise edition
Standard and composite databases can be deleted by using the command DROP DATABASE.

Example 366. DROP DATABASE

Query

DROP DATABASE customers

Result

System updates: 1
Rows: 0

It is also possible to ensure that only composite databases are dropped. A DROP COMPOSITE request
would then fail if the targeted database is a standard database.

538

Example 367. SHOW DATABASES

When a database has been deleted, it will no longer show up in the listing provided by the command
SHOW DATABASES.

Query

SHOW DATABASES

Table 537. Result

name aliases access address role requested
Status

currentSta
tus

error default home

"movies" ["films",
"motion
pictures"
]

"read-
write"

"localhos
t:7687"

"standalo
ne"

"online" "online" "" false false

"neo4j" [] "read-
write"

"localhos
t:7687"

"standalo
ne"

"online" "online" "" true true

"system" [] "read-
write"

"localhos
t:7687"

"standalo
ne"

"online" "online" "" false false

Rows: 3

Example 368. DROP DATABASE

This command is optionally idempotent, with the default behavior to fail with an error if the database
does not exist. Appending IF EXISTS to the command ensures that no error is returned and nothing
happens should the database not exist. It will always return an error, if there is an existing alias that
targets the database. In that case, the alias needs to be dropped before dropping the database.

Query

DROP DATABASE customers IF EXISTS

The DROP DATABASE command will remove a database entirely.

539

Example 369. DROP DATABASE

You can request that a dump of the store files is produced first, and stored in the path configured
using the dbms.directories.dumps.root setting (by default <neo4j-home>/data/dumps). This can be
achieved by appending DUMP DATA to the command (or DESTROY DATA to explicitly request the default
behavior). These dumps are equivalent to those produced by neo4j-admin dump and can be similarly
restored using neo4j-admin load.

Query

DROP DATABASE customers DUMP DATA

The options IF EXISTS and DUMP DATA/ DESTROY DATA can also be combined. An example could look
like this:

Query

DROP DATABASE customers IF EXISTS DUMP DATA

It is also possible to ensure that only composite databases are dropped. A DROP COMPOSITE request would
then fail if the targeted database is a standard database.

Example 370. DROP COMPOSITE DATABASE

Query

DROP COMPOSITE DATABASE inventory

0 rows, System updates: 1

To ensure the database to be dropped is standard and not composite, the user first needs to check
the type column of SHOW DATABASES manually.

Wait options Enterprise edition
Aside from SHOW DATABASES and ALTER DATABASE, all database management commands accept an optional
WAIT/NOWAIT clause. The WAIT/NOWAIT clause allows you to specify a time limit in which the command must
complete and return.

The options are:

• WAIT n SECONDS - Return once completed or when the specified time limit of n seconds is up.

• WAIT - Return once completed or when the default time limit of 300 seconds is up.

• NOWAIT - Return immediately.

A command using a WAIT clause will automatically commit the current transaction when it executes
successfully, as the command needs to run immediately for it to be possible to WAIT for it to complete. Any

540

subsequent commands executed will therefore be performed in a new transaction. This is different to the
usual transactional behavior, and for this reason it is recommended that these commands be run in their
own transaction. The default behavior is NOWAIT, so if no clause is specified the transaction will behave
normally and the action is performed in the background post-commit.


A command with a WAIT clause may be interrupted whilst it is waiting to complete. In
this event the command will continue to execute in the background and will not be
aborted.

Example 371. CREATE DATABASE

Query

CREATE DATABASE slow WAIT 5 SECONDS

Table 538. Result

address state message success

"localhost:7687" "CaughtUp" "caught up" true

Rows: 1

The success column provides an aggregate status of whether or not the command is considered
successful and thus every row will have the same value. The intention of this column is to make it
easy to determine, for example in a script, whether or not the command completed successfully
without timing out.

A command with a WAIT clause may be interrupted whilst it is waiting to complete. In this event the
command will continue to execute in the background and will not be aborted.

541

Database alias management
This section explains how to use Cypher to manage database aliases in Neo4j.

There are two kinds of database aliases: local and remote. A local database alias can only target a
database within the same DBMS. A remote database alias may target a database from another Neo4j
DBMS. When a query is run against a database alias, it will be redirected to the target database. The home
database for users can be set to an alias, which will be resolved to the target database on use. Both local
and remote database aliases can be created as part of a composite database.

A local database alias can be used in all other Cypher commands in place of the target database. Please
note that the local database alias will be resolved while executing the command. Privileges are defined on
the database, and not the local database alias.

A remote database alias can be used for connecting to a database of a remote Neo4j DBMS, use clauses,
setting a user’s home database and defining the access privileges to the remote database. Remote
database aliases require configuration to safely connect to the remote target, which is described in
Connecting remote databases. It is not possible to impersonate a user on the remote database or to
execute an administration command on the remote database via a remote database alias.

Database aliases can be created and managed using a set of Cypher administration commands executed
against the system database. The required privileges are described here. When connected to the DBMS
over Bolt, administration commands are automatically routed to the system database.

The syntax of the database alias management commands is as follows:

 The syntax descriptions use the style from access control.

Table 539. Alias management command syntax

Command Syntax

Show Database
Alias

SHOW ALIAS[ES] [name] FOR DATABASE[S]
[WHERE expression]

SHOW ALIAS[ES] [name] FOR DATABASE[S]
YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Lists both local and remote database aliases, optionally filtered on the alias name.

Create Local Alias
CREATE ALIAS name [IF NOT EXISTS] FOR DATABASE targetName
[PROPERTIES "{" key: value[, ...] "}"]

CREATE OR REPLACE ALIAS name FOR DATABASE targetName
[PROPERTIES "{" key: value[, ...] "}"]

542

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#remote_alias

Command Syntax

Create Remote
Alias

CREATE ALIAS name [IF NOT EXISTS] FOR DATABASE targetName
AT 'url' USER username PASSWORD 'password'
[DRIVER "{" setting: value[, ...] "}"]
[PROPERTIES "{" key: value[, ...] "}"]

CREATE OR REPLACE ALIAS name FOR DATABASE targetName
AT 'url' USER username PASSWORD 'password'
[DRIVER "{" setting: value[, ...] "}"]
[PROPERTIES "{" key: value[, ...] "}"]

Alter Local Alias
ALTER ALIAS name [IF EXISTS] SET DATABASE
[TARGET targetName]
[PROPERTIES "{" key: value[, ...] "}"]

Alter Remote Alias
ALTER ALIAS name [IF EXISTS] SET DATABASE
[TARGET targetName AT 'url']
[USER username]
[PASSWORD 'password']
[DRIVER "{" setting: value[, ...] "}"]
[PROPERTIES "{" key: value[, ...] "}"]

Drop Alias
DROP ALIAS name [IF EXISTS] FOR DATABASE

Drop either a local or remote database alias.

This is the list of the allowed driver settings for remote database aliases.

Table 540. ssl_enforced

Description SSL for remote database alias drivers is configured through the target url scheme. If
ssl_enforced is set to true, a secure url scheme is enforced. This will be validated
when the command is executed.

Valid values Boolean

Default value true

Table 541. connection_timeout

Description Socket connection timeout. A timeout of zero is treated as an infinite timeout and
will be bound by the timeout configured on the operating system level.

Valid values Duration

543

Default value dbms.routing.driver.connection.connect_timeout

Table 542. connection_max_lifetime

Description Pooled connections older than this threshold will be closed and removed from the
pool. Setting this option to a low value will cause a high connection churn and might
result in a performance hit. It is recommended to set maximum lifetime to a slightly
smaller value than the one configured in network equipment (load balancer, proxy,
firewall, etc. can also limit maximum connection lifetime).

Valid values Duration.

Zero and negative values result in lifetime not being checked.

Default value dbms.routing.driver.connection.max_lifetime

Table 543. connection_pool_acquisition_timeout

Description Maximum amount of time spent attempting to acquire a connection from the
connection pool. This timeout only kicks in when all existing connections are being
used and no new connections can be created because maximum connection pool
size has been reached. Error is raised when connection can’t be acquired within
configured time.

Valid values Duration.

Negative values are allowed and result in unlimited acquisition timeout. Value of 0 is
allowed and results in no timeout and immediate failure when connection is
unavailable.

Default value dbms.routing.driver.connection.pool.acquisition_timeout

Table 544. connection_pool_max_size

Description Maximum total number of connections to be managed by a connection pool. The
limit is enforced for a combination of a host and user.

Valid values Integer.

Negative values are allowed and result in unlimited pool. Value of 0 is not allowed.

Default value dbms.routing.driver.connection.pool.max_size

Table 545. logging_level

544

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_dbms.routing.driver.connection.connect_timeout
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_dbms.routing.driver.connection.max_lifetime
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_dbms.routing.driver.connection.pool.acquisition_timeout
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_dbms.routing.driver.connection.pool.max_size

Description Sets level for driver internal logging.

Valid values org.neo4j.logging.Level.

One of DEBUG, INFO, WARN, ERROR, or NONE.

Default value dbms.routing.driver.logging.level


If transaction modifies a database alias, other transactions concurrently executing
against that alias may be aborted and rolled back for safety. This prevents issues such as
a transaction executing against multiple target databases for the same alias.

Listing database aliases Enterprise edition
Available database aliases can be seen using SHOW ALIASES FOR DATABASE. The required privileges are
described here.

SHOW ALIASES FOR DATABASE will produce a table of database aliases with the following columns:

Column Description

name The fully qualified name of the database alias. Default output

database The name of the target database. Default output

location The location of the database, either local or remote. Default output

url Target location or null if the target is local. Default output

user User connecting to the remote database or null if the target database
is local. Default output

driver The driver options for connection to the remote database or null if
the target database is local or if no driver settings are added. List of
driver settings allowed for remote database aliases.

properties Any properties set on the database alias.

The detailed information for a particular database alias can be displayed using the command SHOW ALIASES
FOR DATABASE YIELD *. When a YIELD * clause is provided, the full set of columns is returned.

545

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_dbms.routing.driver.logging.level

Example 372. Show all aliases for a database

A summary of all available database aliases can be displayed using the command SHOW ALIASES FOR
DATABASE.

Query

SHOW ALIASES FOR DATABASE

Table 546. Result

name database location url user

"films" "movies" "local" <null> <null>

"library.romance" romance-books" "remote" "neo4j+s://location:
7687"

"alice"

"library.sci-fi" sci-fi-books" "local" <null> <null>

"motion pictures" "movies" "local" <null> <null>

"movie scripts" "scripts" "remote" "neo4j+s://location:
7687"

"alice"

Rows: 5

Example 373. Show specific aliases for databases

To list just one database alias, the SHOW ALIASES command takes an alias name;

Query

SHOW ALIAS films FOR DATABASES

Table 547. Result

name database location url user

"films" "movies" "local" <null> <null>

Rows: 1

Query

SHOW ALIAS library.romance FOR DATABASES

Table 548. Result

name database location url user

"library.romance" romance-books" "remote" "neo4j+s://location:
7687"

"alice"

Rows: 1

546

Example 374. Show detailed aliases information for a database

Query

SHOW ALIASES FOR DATABASE YIELD *

Table 549. Result

name database location url user driver properties

"films" "movies" "local" <null> <null> <null> {}

"library.roman
ce"

"romance-
books"

"remote" "neo4j+s://loc
ation:7687"

"alice" {} {}

"library.sci-
fi"

"sci-fi-books" "local" <null> <null> <null> {}

"motion
pictures"

"movies" "local" <null> <null> <null> {"namecontains
space":true}

"movie
scripts"

"scripts" "remote" "neo4j+s://loc
ation:7687"

"alice" +{"connection_
pool_idle_test
":PT2M,"connec
tion_pool_max_
size":10,"logg
i"connection_p
ool_idle_test"
:PT2M,"connect
ion_pool_max_s
ize":10,"loggi
ng_level":"INF
O","ssl_enforc
ed":true,"conn
ection_pool_ac
quisition_time
out":PT1M,"con
nection_timeou
t":PT5S,"conne
ction_max_life
time":PT1H}

{}

Rows: 5

Example 375. Show count of aliases for a database

The number of database aliases can be seen using a count() aggregation with YIELD and RETURN.

Query

SHOW ALIASES FOR DATABASE YIELD *
RETURN count(*) as count

Table 550. Result

count

5

Rows: 1

547

Example 376. Show filtered aliases information for a database

It is possible to filter and sort the results by using YIELD, ORDER BY and WHERE.

Query

SHOW ALIASES FOR DATABASE YIELD name, url, database
ORDER BY database
WHERE name CONTAINS 'e'

In this example:

• The number of columns returned has been reduced with the YIELD clause.

• The order of the returned columns has been changed.

• The results have been filtered to only show database alias names containing 'e'.

• The results are ordered by the database column using ORDER BY.

It is also possible to use SKIP and LIMIT to paginate the results.

Table 551. Result

name url database

"motion pictures" <null> "movies"

"library.romance" "neo4j+s://location:7687" "romance-books"

"movie scripts" "neo4j+s://location:7687" "scripts"

Rows: 3

Creating database aliases Enterprise edition
Database aliases can be created using CREATE ALIAS.

The required privileges are described here.

Table 552. Create alias command syntax

Syntax Comment

CREATE [OR REPLACE] ALIAS [compositeDatabaseName.]aliasName [IF NOT
EXISTS] FOR DATABASE targetName
[PROPERTIES "{" key: value[, ...] "}"]

Create a local alias.

CREATE [OR REPLACE] ALIAS [compositeDatabaseName.]aliasName [IF NOT
EXISTS] FOR DATABASE targetName
AT 'url' USER username PASSWORD 'password'
[DRIVER "{" setting: value[, ...] "}"]
[PROPERTIES "{" key: value[, ...] "}"]

Create a remote database alias.

This command is optionally idempotent, with the default behavior to fail with an error if the database alias

548

already exists. Inserting IF NOT EXISTS after the alias name ensures that no error is returned and nothing
happens should a database alias with that name already exist. Adding OR REPLACE to the command will
result in any existing database alias being deleted and a new one created. CREATE OR REPLACE ALIAS will
fail if there is an existing database with the same name.

 The IF NOT EXISTS and OR REPLACE parts of this command cannot be used together.



Database alias names are subject to the standard Cypher restrictions on valid identifiers.

The following naming rules apply:

• A name is a valid identifier.

• Name length can be up to 65534 characters.

• Names cannot end with dots.

• Names that begin with an underscore or with the prefix system are reserved for
internal use.

• Non-alphabetic characters, including numbers, symbols and whitespace characters,
can be used in names, but must be escaped using backticks.

Creating local database aliases Enterprise edition

Local aliases are created with a target database.

549

Example 377. Creating aliases for local databases

Query

CREATE ALIAS `northwind` FOR DATABASE `northwind-graph-2021`

System updates: 1
Rows: 0

When a local database alias has been created, it will show up in the aliases column provided by the
command SHOW DATABASES and in the SHOW ALIASES FOR DATABASE command.

Query

SHOW DATABASE `northwind`

Table 553. Result

name type aliases access addres
s

role writer request
edStat
us

current
Status

status
Messag
e

default home constit
uents

"northw
ind-
graph-
2021"

+"stand
ard"

["north
wind"]

"read-
write"

"localh
ost:768
7"

"primar
y"

"true" "online
"

"online
"

"" false false []

Rows: 1

Query

SHOW ALIAS `northwind` FOR DATABASE

Table 554. Result

name database location url user

"northwind" "northwind-graph-
2021"

"local" <null> <null>

Rows: 1

550

Example 378. Setting properties for local database aliases

Local database aliases can also be given properties.

Query

CREATE ALIAS `northwind-2022`
FOR DATABASE `northwind-graph-2022`
PROPERTIES { newestNorthwind: true, index: 3 }

System updates: 1
Rows: 0

The properties are then shown in the SHOW ALIASES FOR DATABASE YIELD … command.

Query

SHOW ALIAS `northwind-2022` FOR DATABASE YIELD name, properties

Table 555. Result

name properties

"northwind-2022" {"index":3,"newestnorthwind":true}

Rows: 1

Example 379. Creating database aliases with the same name as an existing alias

Adding a local database alias with the same name as an existing local or remote alias will do nothing
with the IF NOT EXISTS clause but fail without it.

Query

CREATE ALIAS `northwind` IF NOT EXISTS FOR DATABASE `northwind-graph-2020`

(no changes, no records)

551

Example 380. Creating or replacing database aliases

It is also possible to replace a database alias. The old alias may be either local or remote.

Query

CREATE OR REPLACE ALIAS `northwind` FOR DATABASE `northwind-graph-2020`

System updates: 2
Rows: 0

This is equivalent to running the following two queries consecutively:

Query

DROP ALIAS `northwind` IF EXISTS FOR DATABASE

Query

CREATE ALIAS `northwind` FOR DATABASE `northwind-graph-2020`

Creating remote database aliases Enterprise edition

Database aliases can also point to remote databases by providing an url and the credentials of a user on
the remote Neo4j DBMS. See Connecting remote databases for the necessary configurations.

Creating remote database aliases also allows IF NOT EXISTS and OR REPLACE clauses. Both check for any
remote or local database aliases.

552

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#remote_alias

Example 381. Creating remote database aliases

Query

CREATE ALIAS `remote-northwind` FOR DATABASE `northwind-graph-2020`
AT "neo4j+s://location:7687"
USER alice
PASSWORD 'example_secret'

System updates: 1
Rows: 0

When a database alias pointing to a remote database has been created, its details can be shown with
the SHOW ALIASES FOR DATABASE command.

Query

SHOW ALIAS `remote-northwind`
FOR DATABASE

Table 556. Result

name database location url user

"remote-northwind" "northwind-graph-
2020"

"remote" "neo4j+s://location:
7687"

"alice"

Rows: 1

553

Example 382. Creating remote database aliases with driver settings

It is possible to override the default driver settings per database alias, which are used for connecting
to the remote database. The full list of supported driver settings can be seen here.

Query

CREATE ALIAS `remote-with-driver-settings` FOR DATABASE `northwind-graph-2020`
AT "neo4j+s://location:7687"
USER alice
PASSWORD 'example_secret'
DRIVER {
 connection_timeout: duration({minutes: 1}),
 connection_pool_max_size: 10
}

System updates: 1
Rows: 0

When a database alias pointing to a remote database has been created, its details can be shown with
the SHOW ALIASES FOR DATABASE command.

Query

SHOW ALIAS `remote-with-driver-settings` FOR DATABASE YIELD *

Table 557. Result

name database location url user driver properties

"remote-with-
driver-
settings"

"northwind-
graph-2020"

"remote" "neo4j+s://loc
ation:7687"

"alice" {connection_po
ol_max_size ->
10,
connection_tim
eout -> PT1M}

{}

Rows: 1

554

Example 383. Setting properties for remote database aliases

Just as the local database aliases, the remote database aliases can be given properties.

Query

CREATE ALIAS `remote-northwind-2021` FOR DATABASE `northwind-graph-2021` AT 'neo4j+s://location:7687'
USER alice PASSWORD 'password'
PROPERTIES { newestNorthwind: false, index: 6 }

System updates: 1
Rows: 0

The properties are then shown in the SHOW ALIASES FOR DATABASE YIELD … command.

Query

SHOW ALIAS `remote-northwind-2021` FOR DATABASE YIELD name, properties

Table 558. Result

name properties

"remote-northwind-2021" {"index":6,"newestnorthwind":false}

Rows: 1

Create database aliases in composite databases Enterprise
edition
Both local and remote database aliases can be part of a composite database.

Create a database alias in a composite database by giving the name of the composite database as
namespace for the alias.

555

Example 384. Creating aliases in composite databases

Query

CREATE ALIAS garden.flowers
FOR DATABASE `perennial-flowers`

System updates: 1
Rows: 0

Query

CREATE ALIAS garden.trees
FOR DATABASE trees AT 'neo4j+s://location:7687'
USER alice PASSWORD 'password'

System updates: 1
Rows: 0

When a database alias has been created in a composite database, it will show up in the constituents
column provided by the command SHOW DATABASES and in the SHOW ALIASES FOR DATABASE command.

Query

SHOW DATABASE garden YIELD name, type, constituents

Table 559. Result

name type constituents

"garden" "composite" ["garden.flowers","garden.trees"]

Rows: 1

Query

SHOW ALIASES FOR DATABASE WHERE name STARTS WITH 'garden'

Table 560. Result

name database location url user

"garden.flowers" "perennial-flowers" "local" <null> <null>

"garden.trees" "trees" "remote" "neo4j+s://location:
7687"

"alice"

Rows: 1

556

Example 385. Aliases pointing to composite databases

Database aliases cannot point to a composite database.

Query

CREATE ALIAS yard FOR DATABASE garden

Error message

Failed to create the specified database alias 'yard': Database 'garden' is composite.

Altering database aliases
Database aliases can be altered using ALTER ALIAS to change its database target, properties, url, user
credentials, or driver settings. The required privileges are described here. Only the clauses used will be
altered.

 Local database aliases cannot be altered to remote aliases, or vice versa.

Table 561. Alter alias command syntax

Syntax Comment

ALTER ALIAS [compositeDatabaseName.]aliasName [IF EXISTS] SET DATABASE
[TARGET targetName]
[PROPERTIES "{" key: value[, ...] "}"]

Modify database target of a local
alias.

The clauses can be applied in any
order, while at least one clause
needs to be set.

ALTER ALIAS [compositeDatabaseName.]aliasName [IF EXISTS] SET DATABASE
[TARGET targetName AT 'url']
[USER username]
[PASSWORD 'password']
[DRIVER "{" setting: value[, ...] "}"]
[PROPERTIES "{" key: value[, ...] "}"]

Modify a remote alias.

The clauses can be applied in any
order, while at least one clause
needs to be set.

557

Example 386. Altering local database aliases

Example of altering a local database alias target.

Query

ALTER ALIAS `northwind`
SET DATABASE TARGET `northwind-graph-2021`

System updates: 1
Rows: 0

When a local database alias has been altered, it will show up in the aliases column for the target
database provided by the command SHOW DATABASES.

Query

SHOW DATABASE `northwind-graph-2021`

Table 562. Result

name type aliases access addres
s

role writer request
edStat
us

current
Status

status
Messag
e

default home constit
uents

"northw
ind-
graph-
2021"

"standa
rd"

["north
wind"]

"read-
write"

"localh
ost:768
7"

"primar
y"

"true" "online
"

"online
"

"" false false []

Rows: 1

Example 387. Altering remote database aliases

Example of altering a remote database alias target.

Query

ALTER ALIAS `remote-northwind` SET DATABASE
TARGET `northwind-graph-2020` AT "neo4j+s://other-location:7687"

System updates: 1
Rows: 0

558

Example 388. Altering remote credentials and driver settings for remote database aliases

Example of altering a remote database alias credentials and driver settings.

Query

ALTER ALIAS `remote-with-driver-settings` SET DATABASE
USER bob
PASSWORD 'new_example_secret'
DRIVER {
 connection_timeout: duration({ minutes: 1}),
 logging_level: 'debug'
}

System updates: 1
Rows: 0


All driver settings are replaced by the new ones. In this case, by not repeating the
driver setting connection_pool_max_size the value will be deleted and fallback to
the default value.

Example 389. Removing custom driver settings from remote database aliases

Example of altering a remote database alias to remove all custom driver settings.

Query

ALTER ALIAS `movie scripts` SET DATABASE
DRIVER {}

System updates: 1
Rows: 0

559

Example 390. Altering properties for local and remote database aliases

Examples of altering local and remote database alias properties.

Query

ALTER ALIAS `motion pictures` SET DATABASE PROPERTIES { nameContainsSpace: true, moreInfo: 'no, not
really' }

System updates: 1
Rows: 0

Query

ALTER ALIAS `movie scripts` SET DATABASE PROPERTIES { nameContainsSpace: true }

System updates: 1
Rows: 0

Example 391. Altering local and remote aliases in composite databases

Examples of altering local and remote database alias in composite databases.

Query

ALTER ALIAS garden.flowers SET DATABASE PROPERTIES { perennial: true }

System updates: 1
Rows: 0

Query

ALTER ALIAS garden.trees SET DATABASE TARGET updatedTrees AT 'neo4j+s://location:7687' PROPERTIES {
treeVersion: 2 }

System updates: 1
Rows: 0

The changes for all database aliases will show up in the SHOW ALIASES FOR DATABASE command.

Query

SHOW ALIASES FOR DATABASE YIELD *
WHERE name IN ['northwind', 'remote-northwind', 'remote-with-driver-settings', 'movie scripts',
'motion pictures', 'garden.flowers', 'garden.trees']

Table 563. Result

560

name database location url user driver properties

"garden.flower
s"

"perennial-
flowers"

"local" <null> <null> <null> {"perennial":t
rue}

"garden.trees" "updatedtrees" "remote" "neo4j+s://loc
ation:7687"

"alice" {} {"treeversion"
:2}

"motion
pictures"

"movies" "local" <null> <null> <null> {"namecontains
space":true,"m
oreinfo":"no,
not really"}

"movie
scripts"

"scripts" "remote" "neo4j+s://loc
ation:7687"

"alice" {} {"namecontains
space":true}

"northwind" "northwind-
graph-2021"

"local" <null> <null> <null> []

"remote-
northwind"

"northwind-
graph-2020"

"remote" "neo4j+s://oth
er-
location:7687"

"alice" {} {}

"remote-with-
driver-
settings"

"northwind-
graph-2020"

"remote" "neo4j+s://loc
ation:7687"

"bob" {logging_level
-> "DEBUG",
connection_tim
eout -> PT1M}

[]

Rows: 7

Example 392. Using IF EXISTS when altering database aliases

The ALTER ALIAS command is optionally idempotent, with the default behavior to fail with an error if
the database alias does not exist. Appending IF EXISTS to the command ensures that no error is
returned and nothing happens should the alias not exist.

Query

ALTER ALIAS `no-alias` IF EXISTS SET DATABASE TARGET `northwind-graph-2021`

(no changes, no records)

Deleting database aliases Enterprise edition
Both local and remote database aliases can be deleted using the DROP ALIAS command. The required
privileges are described here.

561

Example 393. Deleting local database aliases

Delete a local database alias.

Query

DROP ALIAS `northwind` FOR DATABASE

System updates: 1
Rows: 0

When a database alias has been deleted, it will no longer show up in the aliases column provided by
the command SHOW DATABASES.

Query

SHOW DATABASE `northwind-graph-2021`

Table 564. Result

name type aliases access addres
s

role writer request
edStat
us

current
Status

status
Messag
e

default home constit
uents

"northw
ind-
graph-
2021"

"standa
rd"

[] "read-
write"

"localh
ost:768
7"

"primar
y"

"true" "online
"

"online
"

"" false false []

Rows: 1

Example 394. Deleting remote database aliases

Delete a remote database alias.

Query

DROP ALIAS `remote-northwind` FOR DATABASE

System updates: 1
Rows: 0

562

Example 395. Deleting aliases in composite databases

Delete an alias in a composite database.

Query

DROP ALIAS garden.flowers FOR DATABASE

System updates: 1
Rows: 0

When a database alias has been deleted, it will no longer show up in the SHOW ALIASES FOR DATABASE
command.

Query

SHOW ALIASES FOR DATABASE

Table 565. Result

name database location url user

"films" "movies" "local" <null> <null>

"garden.trees" "updatedtrees" "local" <null> <null>

"library.romance" "romance-books" "remote" "neo4j+s://location:7
687"

"alice"

"library.sci-fi" "sci-fi-books" "local" <null> <null>

"motion pictures" "movies" "local" <null> <null>

"movie scripts" "scripts" "remote" "neo4j+s://location:7
687"

"alice"

"northwind-2022" "northwind-graph-
2022"

"local" <null> <null>

"remote-northwind-
2021"

"northwind-graph-
2021"

"remote" "neo4j+s://location:7
687"

"alice"

"remote-with-driver-
settings"

"northwind-graph-
2020"

"remote" "neo4j+s://location:7
687"

"bob"

Rows: 9

563

Example 396. Using IF EXISTS when deleting database aliases

The DROP ALIAS command is optionally idempotent, with the default behavior to fail with an error if
the database alias does not exist. Inserting IF EXISTS after the alias name ensures that no error is
returned and nothing happens should the alias not exist.

Query

DROP ALIAS `northwind` IF EXISTS FOR DATABASE

(no changes, no records)

564

Access control
This section explains how to manage Neo4j role-based access control and fine-grained

security.

Neo4j has a complex security model stored in the system graph, which is maintained on a special database
called the system database. All administrative commands need to be executed against the system
database. When connected to the DBMS over bolt, administrative commands are automatically routed to
the system database. For more information on how to manage multiple databases, refer to the section on
administering databases.

The concept of role-based access control was introduced in Neo4j 3.1. Since then, it has been possible to
create users and assign them to roles to control whether users can read, write and administer the
database. In Neo4j 4.0 this model was enhanced significantly with the addition of privileges, which are the
underlying access-control rules by which the users rights are defined.

The original built-in roles still exist with almost the exact same access rights, but they are no-longer
statically defined (see Built-in roles). Instead, they are defined in terms of their underlying privileges, and
they can be modified by adding or removing these access rights.

In addition, any newly created roles can be assigned to any combination of privileges, so that you may set
specific access controls for them. Another new major capability is the sub-graph access control, through
which read access to the graph can be limited to specific combinations of labels, relationship types, and
properties.

Syntax summaries
Almost all administration commands have variations. The most common are parts of the command that are
optional or that can have multiple values.

See below a summary of the syntax used to describe all versions of a command. These summaries use
some special characters to indicate such variations.

Table 566. Special characters in syntax summaries

Character Meaning Example

| Used to indicate alternative parts of a
command (i.e. or). Needs to be part of a
grouping.

If the syntax needs to specify either a name
or *, this can be indicated with * | name.

{ and } Used to group parts of the command.
Commonly found together with |.

In order to use the or in the syntax
summary, it needs to be in a group: {* |
name}.

565

Character Meaning Example

[and] Used to indicate an optional part of the
command. It also groups alternatives
together, when there can be either of the
alternatives or nothing.

If a keyword in the syntax can either be in
singular or plural, we can indicate that the S
is optional with GRAPH[S].

... Repeated pattern. Related to the command
part immediately before this is repeated.

A comma separated list of names would be
name[, ...].

" When a special character is part of the
syntax itself, we surround it with " to
indicate this.

To include { in the syntax use "{" { * |
name } "}". In this case, you will get either {
* } or { name }.

The special characters in the table above are the only ones that need to be escaped using " in the syntax
summaries.

Here is an example that uses all the special characters. It grants the READ privilege:

GRANT READ
 "{" { * | property[, ...] } "}"
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }]
 TO role[, ...]

Note that this command includes { and } in the syntax, and between them there can be a grouping of
properties or the character *. It also has multiple optional parts, including the entity part of the command
which is the grouping following the graph name.

However, there is no need to escape any characters when creating a constraint for a node property. This is
because (and) are not special characters, and [and] indicate that the constraint name is optional, and
therefore not part of the command.

CREATE CONSTRAINT [constraint_name] [IF NOT EXISTS]
FOR (n:LabelName)
REQUIRE n.propertyName IS NOT NULL

Managing users

This section explains how to use Cypher to manage users in Neo4j.

Users can be created and managed using a set of Cypher administration commands executed against the
system database. When connected to the DBMS over bolt, administration commands are automatically
routed to the system database.

566

User management command syntax

 The syntax descriptions use the style from access control.

Command SHOW CURRENT USER

Syntax
SHOW CURRENT USER
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description Lists the current user.

When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

For more information, see Listing current user.

Required
privilege

None

Command SHOW USERS

Syntax
SHOW USER[S]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description Lists all users.

When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

For more information, see Listing users.

Required
privilege

GRANT SHOW USER

(see DBMS USER MANAGEMENT privileges)

Command SHOW USER PRIVILEGES

Syntax
SHOW USER[S] [name[, ...]] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

567

Description Lists the privileges granted to the specified users or the current user if no user is
specified.

When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

For more information, see Listing privileges.

Required
privilege

GRANT SHOW PRIVILEGE

(see DBMS PRIVILEGE MANAGEMENT privileges)

GRANT SHOW USER

(see DBMS USER MANAGEMENT privileges)

Command CREATE USER

Syntax
CREATE USER name [IF NOT EXISTS]
 SET [PLAINTEXT | ENCRYPTED] PASSWORD 'password'
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]
 [SET HOME DATABASE name]

Description Creates a new user.

For more information, see Creating users.

Required
privilege

GRANT CREATE USER

(see DBMS USER MANAGEMENT privileges)

Command CREATE OR REPLACE USER

Syntax
CREATE OR REPLACE USER name
 SET [PLAINTEXT | ENCRYPTED] PASSWORD 'password'
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]
 [SET HOME DATABASE name]

Description Creates a new user, or if a user with the same name exists, replace it.

For more information, see Creating users.

568

Required
privilege

GRANT CREATE USER

(see DBMS USER MANAGEMENT privileges)

GRANT DROP USER

(see DBMS USER MANAGEMENT privileges)

Command RENAME USER

Syntax
RENAME USER name [IF EXISTS] TO otherName

Description Changes the name of a user.

For more information, see Renaming users.

Required
privilege

GRANT RENAME USER

(see DBMS USER MANAGEMENT privileges)

Command ALTER USER

Syntax
ALTER USER name [IF EXISTS]
 [SET [PLAINTEXT | ENCRYPTED] PASSWORD 'password']
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]
 [SET HOME DATABASE name]
 [REMOVE HOME DATABASE]

Description Modifies the settings for an existing user. At least one SET or REMOVE clause is required.
SET and REMOVE clauses cannot be combined in the same command.

For more information, see Modifying users.

569

Required
privilege

GRANT SET PASSWORD

[source, privilege, role="noheader"

GRANT SET USER STATUS

GRANT SET USER HOME DATABASE

(see DBMS USER MANAGEMENT privileges)

Command ALTER CURRENT USER SET PASSWORD

Syntax
ALTER CURRENT USER SET PASSWORD FROM 'oldPassword' TO 'newPassword'

Description Changes the current user’s password.

For more information, see Changing the current user’s password.

Required
privilege

None

Command DROP USER

Syntax
DROP USER name [IF EXISTS]

Description Removes an existing user.

For more information, see Delete users.

Required
privilege

GRANT DROP USER

(see DBMS USER MANAGEMENT privileges)


The SHOW USER[S] PRIVILEGES command is only available in Neo4j Enterprise Edition.
Enterprise edition

Listing current user

The currently logged-in user can be seen using SHOW CURRENT USER, which will produce a table with the
following columns:

570

Column Description Community
Edition

Enterprise
Edition

user User name
 

roles Roles granted to the user.
 

passwordChangeRequir
ed

If true, the user must change their password at the next
login.  

suspended If true, the user is currently suspended (cannot log in).
 

home The home database configured by the user, or null if no
home database has been configured. If this database is
unavailable and the user does not specify a database to use,
they will not be able to log in.

 

SHOW CURRENT USER

Table 567. Result

user roles passwordChangeRequired suspended home

"jake" ["PUBLIC"] false false <null>

Rows: 1


This command is only supported for a logged-in user and will return an empty result if
authorization has been disabled.

Listing users

Available users can be seen using SHOW USERS, which will produce a table of users with the following
columns:

Column Description Community
Edition

Enterprise
Edition

user User name
 

roles Roles granted to the user.
 

passwordChangeRequir
ed

If true, the user must change their password at the next
login.  

suspended If true, the user is currently suspended (cannot log in).
 

571

Column Description Community
Edition

Enterprise
Edition

home The home database configured by the user, or null if no
home database has been configured. A home database will
be resolved if it is either pointing to a database or a database
alias. If this database is unavailable and the user does not
specify a database to use, they will not be able to log in.

 

SHOW USERS

Table 568. Result

user roles passwordChangeRequired suspended home

"neo4j" ["admin","PUBLIC"] true false <null>

Rows: 1

When first starting a Neo4j DBMS, there is always a single default user neo4j with administrative
privileges. It is possible to set the initial password using neo4j-admin set-initial-password, otherwise it is
necessary to change the password after the first login.

Example 397. Show user

This example shows how to:

• Reorder the columns using a YIELD clause.

• Filter the results using a WHERE clause.

SHOW USER YIELD user, suspended, passwordChangeRequired, roles, home
WHERE user = 'jake'

Example 398. Show user

It is possible to add a RETURN clause to further manipulate the results after filtering. In this example,
the RETURN clause is used to filter out the roles column and rename the user column to adminUser.

SHOW USERS YIELD roles, user
WHERE 'admin' IN roles
RETURN user AS adminUser

 The SHOW USER name PRIVILEGES command is described in Listing privileges.

Creating users

Users can be created using CREATE USER.

572

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#set_initial_password

CREATE USER name [IF NOT EXISTS]
 SET [PLAINTEXT | ENCRYPTED] PASSWORD 'password'
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]
 [SET HOME DATABASE name]

Users can be created or replaced using CREATE OR REPLACE USER.

CREATE OR REPLACE USER name
 SET [PLAINTEXT | ENCRYPTED] PASSWORD 'password'
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]
 [SET HOME DATABASE name]

• For SET PASSWORD:

◦ The password can either be a string value or a string parameter.

◦ The default Neo4j password length is at least 8 characters.

◦ All passwords are encrypted (hashed) when stored in the Neo4j system database. PLAINTEXT and
ENCRYPTED just refer to the format of the password in the Cypher command, i.e. whether Neo4j
needs to hash it or it has already been hashed. Consequently, it is never possible to get the
plaintext of a password back out of the database. A password can be set in either fashion at any
time.

◦ The optional PLAINTEXT in SET PLAINTEXT PASSWORD has the same behavior as SET PASSWORD.

◦ The optional ENCRYPTED is used to recreate an existing user when the plaintext password is
unknown, but the encrypted password is available in the
data/scripts/databasename/restore_metadata.cypher file of a database backup. See Operations
Manual → Restore a database backup → Example.
With ENCRYPTED, the password string is expected to be in the format of <encryption-
version>,<hash>,<salt>, where, for example:

▪ 0 is the first version and refers to the SHA-256 cryptographic hash function with iterations 1.

▪ 1 is the second version and refers to the SHA-256 cryptographic hash function with iterations
1024.

• If the optional SET PASSWORD CHANGE [NOT] REQUIRED is omitted, the default is CHANGE REQUIRED. The
SET PASSWORD part is only optional if it directly follows the SET PASSWORD clause.

• The default for SET STATUS is ACTIVE.

• SET HOME DATABASE can be used to configure a home database for a user. A home database will be
resolved if it is either pointing to a database or a database alias. If no home database is set, the DBMS
default database is used as the home database for the user.

• The SET PASSWORD CHANGE [NOT] REQUIRED, SET STATUS, and SET HOME DATABASE clauses can be applied
in any order.

573

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#restore-backup-example



User names are case sensitive. The created user will appear on the list provided by SHOW
USERS.

• In Neo4j Community Edition there are no roles, but all users have implied
administrator privileges.

• In Neo4j Enterprise Edition all users are automatically assigned the PUBLIC role,
giving them a base set of privileges.

Example 399. Create user

For example, you can create the user jake in a suspended state, with the home database anotherDb,
and the requirement to change the password by using the command:

CREATE USER jake
SET PASSWORD 'abcd1234' CHANGE REQUIRED
SET STATUS SUSPENDED
SET HOME DATABASE anotherDb

Example 400. Create user

Or you can recreate the user jake in an active state, with an encrypted password (taken from the
data/scripts/databasename/restore_metadata.cypher of a database backup), and the requirement to
not change the password by running:

CREATE USER jake
SET ENCRYPTED PASSWORD
'1,6d57a5e0b3317055454e455f96c98c750c77fb371f3f0634a1b8ff2a55c5b825,190ae47c661e0668a0c8be8a21ff78a4a
34cdf918cae3c407e907b73932bd16c' CHANGE NOT REQUIRED
SET STATUS ACTIVE


The SET STATUS {ACTIVE | SUSPENDED} and SET HOME DATABASE parts of the commands
are only available in Neo4j Enterprise Edition. Enterprise edition

The CREATE USER command is optionally idempotent, with the default behavior to throw an exception if the
user already exists. Appending IF NOT EXISTS to the CREATE USER command will ensure that no exception
is thrown and nothing happens should the user already exist.

Example 401. Create user if not exists

CREATE USER jake IF NOT EXISTS
SET PLAINTEXT PASSWORD 'abcd1234'

The CREATE OR REPLACE USER command will result in any existing user being deleted and a new one
created.

574

Example 402. Create or replace user

CREATE OR REPLACE USER jake
SET PLAINTEXT PASSWORD 'abcd1234'

This is equivalent to running DROP USER jake IF EXISTS followed by CREATE USER jake SET PASSWORD
'abcd1234'.

 The CREATE OR REPLACE USER command does not allow the use of IF NOT EXISTS.

Renaming users

Users can be renamed with the RENAME USER command.

RENAME USER jake TO bob

SHOW USERS

Table 569. Result

user roles passwordChangeRequired suspended home

"bob" ["PUBLIC"] true false <null>

"neo4j" ["admin","PUBLIC"] true false <null>

Rows: 2


The RENAME USER command is only available when using native authentication and
authorization.

Modifying users

Users can be modified with ALTER USER.

ALTER USER name [IF EXISTS]
 [SET [PLAINTEXT | ENCRYPTED] PASSWORD 'password']
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]
 [SET HOME DATABASE name]
 [REMOVE HOME DATABASE name]

• At least one SET or REMOVE clause is required for the command.

• SET and REMOVE clauses cannot be combined in the same command.

• The SET PASSWORD CHANGE [NOT] REQUIRED, SET STATUS, and SET HOME DATABASE clauses can be applied
in any order. The SET PASSWORD clause must come first, if used.

• For SET PASSWORD:

575

◦ The password can either be a string value or a string parameter.

◦ All passwords are encrypted (hashed) when stored in the Neo4j system database. PLAINTEXT and
ENCRYPTED just refer to the format of the password in the Cypher command, i.e. whether Neo4j
needs to hash it or it has already been hashed. Consequently, it is never possible to get the
plaintext of a password back out of the database. A password can be set in either fashion at any
time.

◦ The optional PLAINTEXT in SET PLAINTEXT PASSWORD has the same behavior as SET PASSWORD.

◦ The optional ENCRYPTED is used to update an existing user’s password when the plaintext
password is unknown, but the encrypted password is available in the
data/scripts/databasename/restore_metadata.cypher file of a database backup. See Operations
Manual → Restore a database backup → Example.
With ENCRYPTED, the password string is expected to be in the format of <encryption-
version>,<hash>,<salt>, where, for example:

▪ 0 is the first version and refers to the SHA-256 cryptographic hash function with iterations 1.

▪ 1 is the second version and refers to the SHA-256 cryptographic hash function with iterations
1024.

• If the optional SET PASSWORD CHANGE [NOT] REQUIRED is omitted, the default is CHANGE REQUIRED. The
SET PASSWORD part is only optional if it directly follows the SET PASSWORD clause.

• For SET PASSWORD CHANGE [NOT] REQUIRED, the SET PASSWORD is only optional if it directly follows the
SET PASSWORD clause.

• SET HOME DATABASE can be used to configure a home database for a user. A home database will be
resolved if it is either pointing to a database or a database alias. If no home database is set, the DBMS
default database is used as the home database for the user.

• REMOVE HOME DATABASE is used to unset the home database for a user. This results in the DBMS default
database being used as the home database for the user.

For example, you can modify the user bob with a new password and active status, and remove the
requirement to change his password:

ALTER USER bob
SET PASSWORD 'abcd1234' CHANGE NOT REQUIRED
SET STATUS ACTIVE

Or you may decide to assign the user bob a different home database:

ALTER USER bob
SET HOME DATABASE anotherDbOrAlias

Or remove the home database from the user bob:

ALTER USER bob
REMOVE HOME DATABASE


When altering a user, it is only necessary to specify the changes required. For example,
leaving out the CHANGE [NOT] REQUIRED part of the query will leave that unchanged.

576

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#restore-backup-example


The SET STATUS {ACTIVE | SUSPENDED}, SET HOME DATABASE, and REMOVE HOME DATABASE
parts of the command are only available in Neo4j Enterprise Edition. Enterprise edition

The changes to the user will appear on the list provided by SHOW USERS:

SHOW USERS

Table 570. Result

user roles passwordChangeRequired suspended home

"bob" ["PUBLIC"] false false <null>

"neo4j" ["admin","PUBLIC"] true false <null>

Rows: 2

The default behavior of this command is to throw an exception if the user does not exist. Adding an
optional parameter IF EXISTS to the command makes it idempotent and ensures that no exception is
thrown. Nothing happens should the user not exist.

ALTER USER nonExistingUser IF EXISTS SET PASSWORD 'abcd1234'

Changing the current user’s password

Users can change their password using ALTER CURRENT USER SET PASSWORD. The old password is required
in addition to the new one, and either or both can be a string value or a string parameter. When a user
executes this command it will change their password as well as set the CHANGE NOT REQUIRED flag.

ALTER CURRENT USER
SET PASSWORD FROM 'password1' TO 'password2'

 This command works only for a logged-in user and cannot be run with auth disabled.

Delete users

Users can be deleted with DROP USER.

DROP USER bob

Deleting a user will not automatically terminate associated connections, sessions, transactions, or queries.

However, when a user has been deleted, it will no longer appear on the list provided by SHOW USERS:

SHOW USERS

Table 571. Result

577

user roles passwordChangeRequired suspended home

"neo4j" ["admin","PUBLIC"] true false <null>

Rows: 1

Managing roles

This section explains how to use Cypher to manage roles in Neo4j.

Roles can be created and managed using a set of Cypher administration commands executed against the
system database.

When connected to the DBMS over bolt, administration commands are automatically routed to the system
database.

Role management command syntax

 The syntax descriptions use the style from access control.

Command SHOW ROLES

Syntax
SHOW [ALL|POPULATED] ROLE[S]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description Lists roles.

When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

For more information, see Listing roles.

Required
privilege

GRANT SHOW ROLE

(see DBMS ROLE MANAGEMENT privileges).

Command SHOW ROLES WITH USERS

Syntax
SHOW [ALL|POPULATED] ROLE[S] WITH USER[S]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

578

Description Lists roles and users assigned to them.

When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

For more information, see Listing roles.

Required
privilege

GRANT SHOW ROLE

(see DBMS ROLE MANAGEMENT privileges)

GRANT SHOW USER

(see DBMS USER MANAGEMENT privileges)

Command SHOW ROLE PRIVILEGES

Syntax
SHOW ROLE[S] name[, ...] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description Lists the privileges granted to the specified roles.

When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

For more information, see Listing privileges.

Required
privilege

GRANT SHOW PRIVILEGE

(see DBMS PRIVILEGE MANAGEMENT privileges)

Command CREATE ROLE

Syntax
CREATE ROLE name [IF NOT EXISTS] [AS COPY OF otherName]

Description Creates a new role.

For more information, see Creating roles.

Required
privilege

GRANT CREATE ROLE

(see DBMS ROLE MANAGEMENT privileges)

579

Command CREATE OR REPLACE ROLE

Syntax
CREATE OR REPLACE ROLE name [AS COPY OF otherName]

Description Creates a new role, or if a role with the same name exists, replace it.

For more information, see Creating roles.

Required
privilege

GRANT CREATE ROLE

GRANT DROP ROLE

(see DBMS ROLE MANAGEMENT privileges)

Command RENAME ROLE

Syntax
RENAME ROLE name [IF EXISTS] TO otherName

Description Changes the name of a role.

For more information, see Renaming roles.

Required
privilege

GRANT RENAME ROLE

(see DBMS ROLE MANAGEMENT privileges)

Command DROP ROLE

Syntax
DROP ROLE name [IF EXISTS]

Description Removes a role.

For more information, see Deleting roles.

Command GRANT ROLE TO

Syntax
GRANT ROLE[S] name[, ...] TO user[, ...]

580

Description Assigns roles to users.

For more information, see Assigning roles to users.

Required
privilege

GRANT ASSIGN ROLE

(see DBMS ROLE MANAGEMENT privileges)

Command REVOKE ROLE

Syntax
REVOKE ROLE[S] name[, ...] FROM user[, ...]

Description Removes roles from users.

For more information, see Revoking roles from users.

Required
privilege

GRANT REMOVE ROLE

(see DBMS ROLE MANAGEMENT privileges)

Listing roles

Available roles can be seen using SHOW ROLES:

SHOW ROLES

This is the same command as SHOW ALL ROLES.

When first starting a Neo4j DBMS, there are a number of built-in roles:

• PUBLIC - a role that all users have granted. By default it gives access to the home database and to
execute privileges for procedures and functions.

• reader - can perform traverse and read operations in all databases except system.

• editor - can perform traverse, read, and write operations in all databases except system, but cannot
create new labels or relationship types.

• publisher - can do the same as editor, but also create new labels and relationship types.

• architect - can do the same as publisher as well as create and manage indexes and constraints.

• admin - can do the same as all the above, as well as manage databases, aliases, users, roles, and
privileges.

Table 572. Result

581

role

"PUBLIC"

"admin"

"architect"

"editor"

"publisher"

"reader"

Rows: 6

More information about the built-in roles can be found in Operations Manual → Built-in roles

There are multiple versions of this command, the default being SHOW ALL ROLES. To only show roles that
are assigned to users, the command is SHOW POPULATED ROLES. To see which users are assigned to roles,
WITH USERS can be added to the command. This will give a result with one row for each user, so if a role is
assigned to two users, then it will show up twice.

SHOW POPULATED ROLES WITH USERS

The table of results will show information about the role and what database it belongs to:

Table 573. Result

role member

"PUBLIC" "neo4j"

"PUBLIC" "bob"

"PUBLIC" "user1"

"PUBLIC" "user2"

"PUBLIC" "user3"

"admin" "neo4j"

Rows: 6

It is also possible to filter and sort the results by using YIELD, ORDER BY and WHERE:

SHOW ROLES YIELD role
ORDER BY role
WHERE role ENDS WITH 'r'

In this example:

• The results have been filtered to only return the roles ending in 'r'.

• The results are ordered by the action column using ORDER BY.

It is also possible to use SKIP and LIMIT to paginate the results.

582

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#built_in_roles
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#built_in_roles
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#built_in_roles

Table 574. Result

role

"editor"

"publisher"

"reader"

Rows: 3

 The SHOW ROLE name PRIVILEGES command is found in Listing privileges.

Creating roles

Roles can be created using CREATE ROLE:

CREATE ROLE name [IF NOT EXISTS] [AS COPY OF otherName]

Roles can be created or replaced by using CREATE OR REPLACE ROLE:

CREATE OR REPLACE ROLE name [AS COPY OF otherName]



The following naming rules apply:

• The first character must be an ASCII alphabetic character.

• Subsequent characters can be ASCII alphabetic, numeric characters, and underscore.

• Role names are case sensitive.

A role can be copied, keeping its privileges, using CREATE ROLE name AS COPY OF otherName.

Example 403. Copy a role

CREATE ROLE mysecondrole AS COPY OF myrole

Created roles will appear on the list provided by SHOW ROLES.

583

Example 404. List roles

SHOW ROLES

Table 575. Result

role

"PUBLIC"

"admin"

"architect"

"editor"

"myrole"

"mysecondrole"

"publisher"

"reader"

Rows: 8

The CREATE ROLE command is optionally idempotent, with the default behavior to throw an exception if the
role already exists. Adding IF NOT EXISTS to the CREATE ROLE command will ensure that no exception is
thrown and nothing happens should the role already exist.

Example 405. Create role if not exists

CREATE ROLE myrole IF NOT EXISTS

The CREATE OR REPLACE ROLE command will result in any existing role being deleted and a new one
created.

Example 406. Create or replace role

CREATE OR REPLACE ROLE myrole

This is equivalent to running DROP ROLE myrole IF EXISTS followed by CREATE ROLE myrole.


• The CREATE OR REPLACE ROLE command does not allow you to use the IF NOT
EXISTS.

Renaming roles

Roles can be renamed using RENAME ROLE command:

584

RENAME ROLE mysecondrole TO mythirdrole

SHOW ROLES

Table 576. Result

role

"PUBLIC"

"admin"

"architect"

"editor"

"myrole"

"mythirdrole"

"publisher"

"reader"

Rows: 8


The RENAME ROLE command is only available when using native authentication and
authorization.

Assigning roles to users

Users can be given access rights by assigning them roles using GRANT ROLE:

GRANT ROLE myrole TO bob

The roles assigned to each user can be seen on the list provided by SHOW USERS:

SHOW ROLES

Table 577. Result

user roles passwordChangeRequired suspended home

"bob" ["myrole","PUBLIC"] false false <null>

"neo4j" ["admin","PUBLIC"] true false <null>

"user1" ["PUBLIC"] true false <null>

"user2" ["PUBLIC"] true false <null>

"user3" ["PUBLIC"] true false <null>

Rows: 5

It is possible to assign multiple roles to multiple users in one command:

585

GRANT ROLES role1, role2 TO user1, user2, user3

SHOW ROLES

Table 578. Result

user roles passwordChangeRequired suspended home

"bob" ["myrole","PUBLIC"] false false <null>

"neo4j" ["admin","PUBLIC"] true false <null>

"user1" ["role1","role2","PUBLIC"] true false <null>

"user2" ["role1","role2","PUBLIC"] true false <null>

"user3" ["role1","role2","PUBLIC"] true false <null>

Rows: 5

Revoking roles from users

Users can lose access rights by revoking their role using REVOKE ROLE:

REVOKE ROLE myrole FROM bob

The roles revoked from users can no longer be seen on the list provided by SHOW USERS:

SHOW ROLES

Table 579. Result

user roles passwordChangeRequired suspended home

"bob" ["PUBLIC"] false false <null>

"neo4j" ["admin","PUBLIC"] true false <null>

"user1" ["role1","role2","PUBLIC"] true false <null>

"user2" ["role1","role2","PUBLIC"] true false <null>

"user3" ["role1","role2","PUBLIC"] true false <null>

Rows: 5

It is possible to revoke multiple roles from multiple users in one command:

REVOKE ROLES role1, role2 FROM user1, user2, user3

Deleting roles

Roles can be deleted using DROP ROLE command:

586

DROP ROLE mythirdrole

When a role has been deleted, it will no longer appear on the list provided by SHOW ROLES:

SHOW ROLES

Table 580. Result

role

"PUBLIC"

"admin"

"architect"

"editor"

"myrole"

"publisher"

"reader"

Rows: 8

This command is optionally idempotent, with the default behavior to throw an exception if the role does
not exist. Adding IF EXISTS to the command will ensure that no exception is thrown and nothing happens
should the role not exist:

DROP ROLE mythirdrole IF EXISTS

Managing privileges

This section explains how to use Cypher to manage privileges for Neo4j role-based access

control and fine-grained security.

Privileges control the access rights to graph elements using a combined allowlist/denylist mechanism. It is
possible to grant or deny access, or use a combination of the two. The user will be able to access the
resource if they have a GRANT (allowlist) and do not have a DENY (denylist) relevant to that resource. All
other combinations of GRANT and DENY will result in the matching path being inaccessible. What this means
in practice depends on whether we are talking about a read privilege or a write privilege:

• If an entity is not accessible due to read privileges, the data will become invisible. It will appear to the
user as if they had a smaller database (smaller graph).

• If an entity is not accessible due to write privileges, an error will occur on any attempt to write that
data.

587



In this document we will often use the terms 'allows' and 'enables' in seemingly identical
ways. However, there is a subtle difference. We will use 'enables' to refer to the
consequences of read privileges where a restriction will not cause an error, only a
reduction in the apparent graph size. We will use 'allows' to refer to the consequence of
write privileges where a restriction can result in an error.


If a user was not also provided with the database ACCESS privilege, then access to the
entire database will be denied. Information about the database access privilege can be
found in The ACCESS privilege.

 The syntax descriptions use the style from access control.

Graph privilege commands (GRANT, DENY and REVOKE) Enterprise edition

Administrators can use Cypher commands to manage Neo4j graph administrative rights. The components
of the graph privilege commands are:

• the command:

◦ GRANT – gives privileges to roles.

◦ DENY – denies privileges to roles.

◦ REVOKE – removes granted or denied privileges from roles.

• mutability:

◦ IMMUTABLE can optionally be specified when performing a GRANT or DENY to indicate that the
privilege cannot be subsequently removed unless auth is disabled. Auth must also be disabled in
order to GRANT or DENY an immutable privilege. Contrastingly, when IMMUTABLE is specified in
conjunction with a REVOKE command, it will act as a filter and only remove matching immutable
privileges. See also immutable privileges.

• graph-privilege:

◦ Can be either a read privilege or write privilege.

• name:

◦ The graph or graphs to associate the privilege with. Because in Neo4j 5 you can have only one
graph per database, this command uses the database name or alias to refer to that graph. When
using an alias, the command will be executed on the resolved graph.


If you delete a database and create a new one with the same name, the new one
will NOT have the privileges previously assigned to the deleted graph.

◦ It can be *, which means all graphs. Graphs created after this command execution will also be
associated with these privileges.

◦ HOME GRAPH refers to the graph associated with the home database for that user. The default
database will be used as home database if a user does not have one configured. If the user’s home
database changes for any reason after privileges have been created, then these privileges will be
associated with the graph attached to the new database. This can be quite powerful as it allows

588

permissions to be switched from one graph to another simply by changing a user’s home database.

• entity

◦ The graph elements this privilege applies to:

▪ NODES label (nodes with the specified label(s)).

▪ RELATIONSHIPS type (relationships of the specific type(s)).

▪ ELEMENTS label (both nodes and relationships).

◦ The label or type can be referred with *, which means all labels or types.

◦ Multiple labels or types can be specified, comma-separated.

◦ Defaults to ELEMENTS * if omitted.

◦ Some of the commands for write privileges do not allow an entity part. See Write privileges for
details.

• role[, …]

◦ The role or roles to associate the privilege with, comma-separated.

Table 581. General grant ON GRAPH privilege syntax

Command GRANT ... ON ... TO ...

Syntax
GRANT [IMMUTABLE] graph-privilege ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
[entity] TO role[, ...]

Description Grants a privilege to one or multiple roles.

Table 582. General deny ON GRAPH privilege syntax

Command DENY ... ON ... TO ...

Syntax
DENY [IMMUTABLE] graph-privilege ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
[entity] TO role[, ...]

Description Denies a privilege to one or multiple roles.

Table 583. General revoke ON GRAPH privilege syntax

Command REVOKE GRANT ... ON ... FROM ...

Syntax
REVOKE [IMMUTABLE] GRANT graph-privilege ON { HOME GRAPH | GRAPH[S] { * | name[, ...] }
} [entity] FROM role[, ...]

Description Revokes a granted privilege from one or multiple roles.

Table 584. General revoke ON GRAPH privilege syntax

589

Command REVOKE DENY ... ON ... FROM ...

Syntax
REVOKE [IMMUTABLE] DENY graph-privilege ON { HOME GRAPH | GRAPH[S] {* | name[, ...] } }
[entity] FROM role[, ...]

Description Revokes a denied privilege from one or multiple roles.

Table 585. General revoke ON GRAPH privilege syntax

Command REVOKE ... ON ... FROM ...

Syntax
REVOKE [IMMUTABLE] graph-privilege ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
[entity] FROM role[, ...]

Description Revokes a granted or denied privilege from one or multiple roles.


DENY does NOT erase a granted privilege; they both exist. Use REVOKE if you want to
remove a privilege.

The general GRANT and DENY syntaxes are illustrated in the following image:

Figure 1. GRANT and DENY Syntax

A more detailed syntax illustration for graph privileges would be the following:

Figure 2. Syntax of GRANT and DENY Graph Privileges. The { and } are part of the syntax and not used
for grouping.

The following image shows the hierarchy between different graph privileges:

590

Figure 3. Graph privileges hierarchy

Listing privileges Enterprise edition

Available privileges can be displayed using the different SHOW PRIVILEGE[S] commands.

Table 586. Show privileges command syntax

Command SHOW PRIVILEGE

Syntax
SHOW [ALL] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description List all privileges.

Table 587. Show role privileges syntax

Command SHOW ROLE ... PRIVILEGE

Syntax
SHOW ROLE[S] name[, ...] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description Lists privileges for a specific role.

Table 588. Show user privileges syntax

Command SHOW USER ... PRIVILEGE

Syntax
SHOW USER[S] [name[, ...]] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

591

Description Lists privileges for a specific user, or the current user.

[NOTE] ==== Please note that it is only possible for a user to show their own privileges. Therefore, if a
non-native auth provider like LDAP is in use, SHOW USER PRIVILEGES will only work in a limited capacity.

Other users' privileges cannot be listed when using a non-native auth provider. ====

When using the RETURN clause, the YIELD clause is mandatory and must not be omitted.

For an easy overview of the existing privileges, it is recommended to use the AS COMMANDS version of the
SHOW command. This returns the privileges as the commands that are granted or denied.

When omitting the AS COMMANDS clause, results will include multiple columns describing privileges:

• access: whether the privilege is granted or denied.

• action: which type of privilege this is, for example traverse, read, index management or role
management.

• resource: what type of scope this privilege applies to, i.e. the entire DBMS, a specific database, a graph
or sub-graph access.

• graph: the specific database or graph this privilege applies to.

• segment: when applicable, this privilege applies to labels, relationship types, procedures, functions or
transactions.

• role: the role a privilege is granted to.

• immutable: whether or not the privilege is immutable.

Examples for listing all privileges Enterprise edition

Available privileges can be displayed using the different SHOW PRIVILEGE[S] commands.

Command syntax

SHOW [ALL] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [WHERE expression]

SHOW [ALL] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

SHOW PRIVILEGES

Lists all privileges for all roles:

Table 589. Result

access action resource graph segment role immutable

"GRANTED" "execute" "database" "*" "FUNCTION(*)" "PUBLIC" false

"GRANTED" "execute" "database" "*" "PROCEDURE(*)" "PUBLIC" false

"GRANTED" "access" "database" "DEFAULT" "database" "PUBLIC" false

592

access action resource graph segment role immutable

"GRANTED" "match" "all_propertie
s"

"*" "NODE(*)" "admin" false

"GRANTED" "write" "graph" "*" "NODE(*)" "admin" false

"GRANTED" "match" "all_propertie
s"

"*" "RELATIONSHIP(
*)"

"admin" false

"GRANTED" "write" "graph" "*" "RELATIONSHIP(
*)"

"admin" false

"GRANTED" "transaction_m
anagement"

"database" "*" "USER(*)" "admin" false

"GRANTED" "access" "database" "*" "database" "admin" false

"GRANTED" "constraint" "database" "*" "database" "admin" false

"GRANTED" "dbms_actions" "database" "*" "database" "admin" false

"GRANTED" "index" "database" "*" "database" "admin" false

"GRANTED" "start_databas
e"

"database" "*" "database" "admin" false

"GRANTED" "stop_database
"

"database" "*" "database" "admin" false

"GRANTED" "token" "database" "*" "database" "admin" false

"GRANTED" "match" "all_propertie
s"

"*" "NODE(*)" "architect" false

"GRANTED" "write" "graph" "*" "NODE(*)" "architect" false

"GRANTED" "match" "all_propertie
s"

"*" "RELATIONSHIP(
*)"

"architect" false

"GRANTED" "write" "graph" "*" "RELATIONSHIP(
*)"

"architect" false

"GRANTED" "access" "database" "*" "database" "architect" false

"GRANTED" "constraint" "database" "*" "database" "architect" false

"GRANTED" "index" "database" "*" "database" "architect" false

"GRANTED" "token" "database" "*" "database" "architect" false

"GRANTED" "match" "all_propertie
s"

"*" "NODE(*)" "editor" false

"GRANTED" "write" "graph" "*" "NODE(*)" "editor" false

"GRANTED" "match" "all_propertie
s"

"*" "RELATIONSHIP(
*)"

"editor" false

"GRANTED" "write" "graph" "*" "RELATIONSHIP(
*)"

"editor" false

"GRANTED" "access" "database" "*" "database" "editor" false

"DENIED" "access" "database" "neo4j" "database" "noAccessUsers
"

false

"GRANTED" "match" "all_propertie
s"

"*" "NODE(*)" "publisher" false

"GRANTED" "write" "graph" "*" "NODE(*)" "publisher" false

"GRANTED" "match" "all_propertie
s"

"*" "RELATIONSHIP(
*)"

"publisher" false

593

access action resource graph segment role immutable

"GRANTED" "write" "graph" "*" "RELATIONSHIP(
*)"

"publisher" false

"GRANTED" "access" "database" "*" "database" "publisher" false

"GRANTED" "token" "database" "*" "database" "publisher" false

"GRANTED" "match" "all_propertie
s"

"*" "NODE(*)" "reader" false

"GRANTED" "match" "all_propertie
s"

"*" "RELATIONSHIP(
*)"

"reader" false

"GRANTED" "access" "database" "*" "database" "reader" false

"GRANTED" "access" "database" "neo4j" "database" "regularUsers" false

It is also possible to filter and sort the results by using YIELD, ORDER BY and WHERE:

SHOW PRIVILEGES YIELD role, access, action, segment
ORDER BY action
WHERE role = 'admin'

In this example:

• The number of columns returned has been reduced with the YIELD clause.

• The order of the returned columns has been changed.

• The results have been filtered to only return the admin role using a WHERE clause.

• The results are ordered by the action column using ORDER BY.

SKIP and LIMIT can also be used to paginate the results.

Table 590. Result

role access action segment

"admin" "GRANTED" "access" "database"

"admin" "GRANTED" "constraint" "database"

"admin" "GRANTED" "dbms_actions" "database"

"admin" "GRANTED" "index" "database"

"admin" "GRANTED" "match" "NODE(*)"

"admin" "GRANTED" "match" "RELATIONSHIP(*)"

"admin" "GRANTED" "start_database" "database"

"admin" "GRANTED" "stop_database" "database"

"admin" "GRANTED" "token" "database"

"admin" "GRANTED" "transaction_management" "USER(*)"

"admin" "GRANTED" "write" "NODE(*)"

"admin" "GRANTED" "write" "RELATIONSHIP(*)"

Rows: 12

594

WHERE can also be used without YIELD:

SHOW PRIVILEGES
WHERE graph <> '*'

In this example, the WHERE clause is used to filter privileges down to those that target specific graphs only.

Table 591. Result

access action graph resource role segment

"GRANTED" "access" "DEFAULT" "database" "PUBLIC" "database"

"DENIED" "access" "neo4j" "database" "noAccessUsers" "database"

"GRANTED" "access" "neo4j" "database" "regularUsers" "database"

Rows: 3

Aggregations in the RETURN clause can be used to group privileges. In this case, by user and GRANTED or
DENIED:

SHOW PRIVILEGES YIELD * RETURN role, access, collect([graph, resource, segment, action]) AS privileges

Table 592. Result

role access privileges

"PUBLIC" "GRANTED" [["*","database","FUNCTION(*)","execute"],["*","database","PROCED
URE(*)","execute"],["DEFAULT","database","database","access"]]

"admin" "GRANTED" [["*","all_properties","NODE(*)","match"],["*","graph","NODE(*)",
"write"],["*","all_properties","RELATIONSHIP(*)","match"],["*","g
raph","RELATIONSHIP(*)","write"],["*","database","USER(*)","trans
action_management"],["*","database","database","access"],["*","da
tabase","database","constraint"],["*","database","database","dbms
_actions"],["*","database","database","index"],["*","database","d
atabase","start_database"],["*","database","database","stop_datab
ase"],["*","database","database","token"]]

"architect" "GRANTED" [["*","all_properties","NODE(*)","match"],["*","graph","NODE(*)",
"write"],["*","all_properties","RELATIONSHIP(*)","match"],["*","g
raph","RELATIONSHIP(*)","write"],["*","database","database","acce
ss"],["*","database","database","constraint"],["*","database","da
tabase","index"],["*","database","database","token"]]

"editor" "GRANTED" [["*","all_properties","NODE(*)","match"],["*","graph","NODE(*)",
"write"],["*","all_properties","RELATIONSHIP(*)","match"],["*","g
raph","RELATIONSHIP(*)","write"],["*","database","database","acce
ss"]]

"noAccessUsers" "DENIED" [["neo4j","database","database","access"]]

"publisher" "GRANTED" [["*","all_properties","NODE(*)","match"],["*","graph","NODE(*)",
"write"],["*","all_properties","RELATIONSHIP(*)","match"],["*","g
raph","RELATIONSHIP(*)","write"],["*","database","database","acce
ss"],["*","database","database","token"]]

"reader" "GRANTED" [["*","all_properties","NODE(*)","match"],["*","all_properties","
RELATIONSHIP(*)","match"],["*","database","database","access"]]

"regularUsers" "GRANTED" [["neo4j","database","database","access"]]

595

role access privileges

Rows: 8

The RETURN clause can also be used to order and paginate the results, which is useful when combined with
YIELD and WHERE. In this example the query returns privileges for display five-per-page, and skips the first
five to display the second page.

SHOW PRIVILEGES YIELD * RETURN * ORDER BY role SKIP 5 LIMIT 5

Table 593. Result

access action graph resource role segment immutabl
e

"GRANTED" "match" "*" "all_properties" "admin" "RELATIONSHIP(*)" false

"GRANTED" "write" "*" "graph" "admin" "RELATIONSHIP(*)" false

"GRANTED" "transaction_manage
ment"

"*" "database" "admin" "USER(*)" false

"GRANTED" "access" "*" "database" "admin" "database" false

"GRANTED" "constraint" "*" "database" "admin" "database" false

Available privileges can also be displayed as Cypher commands by adding AS COMMAND[S]:

SHOW PRIVILEGES AS COMMANDS

Table 594. Result

command

"DENY ACCESS ON DATABASE neo4j TO `noAccessUsers`"

"GRANT ACCESS ON DATABASE * TO `admin`"

"GRANT ACCESS ON DATABASE * TO `architect`"

"GRANT ACCESS ON DATABASE * TO `editor`"

"GRANT ACCESS ON DATABASE * TO `publisher`"

"GRANT ACCESS ON DATABASE * TO `reader`"

"GRANT ACCESS ON DATABASE neo4j TO `regularUsers`"

"GRANT ACCESS ON HOME DATABASE TO `PUBLIC`"

"GRANT ALL DBMS PRIVILEGES ON DBMS TO `admin`"

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `admin`"

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `architect`"

"GRANT EXECUTE FUNCTION * ON DBMS TO `PUBLIC`"

"GRANT EXECUTE PROCEDURE * ON DBMS TO `PUBLIC`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `admin`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `architect`"

596

command

"GRANT MATCH {*} ON GRAPH * NODE * TO `admin`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `architect`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `editor`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `publisher`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `reader`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `admin`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `architect`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `editor`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `publisher`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `reader`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `admin`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `architect`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `publisher`"

"GRANT START ON DATABASE * TO `admin`"

"GRANT STOP ON DATABASE * TO `admin`"

"GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO `admin`"

"GRANT WRITE ON GRAPH * TO `admin`"

"GRANT WRITE ON GRAPH * TO `architect`"

"GRANT WRITE ON GRAPH * TO `editor`"

"GRANT WRITE ON GRAPH * TO `publisher`"

Rows: 35

Like other SHOW commands, the output can also be processed using YIELD / WHERE / RETURN:

SHOW PRIVILEGES AS COMMANDS
WHERE command CONTAINS 'MANAGEMENT'

Table 595. Result

command

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `admin`"

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `architect`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `admin`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `architect`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `admin`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `architect`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `publisher`"

"GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO `admin`"

597

command

Rows: 8

It is also possible to get the privileges listed as revoking commands instead of granting or denying:

SHOW PRIVILEGES AS REVOKE COMMANDS

Table 596. Result

command

"REVOKE DENY ACCESS ON DATABASE neo4j FROM `noAccessUsers`"

"REVOKE GRANT ACCESS ON DATABASE * FROM `admin`"

"REVOKE GRANT ACCESS ON DATABASE * FROM `architect`"

"REVOKE GRANT ACCESS ON DATABASE * FROM `editor`"

"REVOKE GRANT ACCESS ON DATABASE * FROM `publisher`"

"REVOKE GRANT ACCESS ON DATABASE * FROM `reader`"

"REVOKE GRANT ACCESS ON DATABASE neo4j FROM `regularUsers`"

"REVOKE GRANT ACCESS ON HOME DATABASE FROM `PUBLIC`"

"REVOKE GRANT ALL DBMS PRIVILEGES ON DBMS FROM `admin`"

"REVOKE GRANT CONSTRAINT MANAGEMENT ON DATABASE * FROM `admin`"

"REVOKE GRANT CONSTRAINT MANAGEMENT ON DATABASE * FROM `architect`"

"REVOKE GRANT EXECUTE FUNCTION * ON DBMS FROM `PUBLIC`"

"REVOKE GRANT EXECUTE PROCEDURE * ON DBMS FROM `PUBLIC`"

"REVOKE GRANT INDEX MANAGEMENT ON DATABASE * FROM `admin`"

"REVOKE GRANT INDEX MANAGEMENT ON DATABASE * FROM `architect`"

"REVOKE GRANT MATCH {*} ON GRAPH * NODE * FROM `admin`"

"REVOKE GRANT MATCH {*} ON GRAPH * NODE * FROM `architect`"

"REVOKE GRANT MATCH {*} ON GRAPH * NODE * FROM `editor`"

"REVOKE GRANT MATCH {*} ON GRAPH * NODE * FROM `publisher`"

"REVOKE GRANT MATCH {*} ON GRAPH * NODE * FROM `reader`"

"REVOKE GRANT MATCH {*} ON GRAPH * RELATIONSHIP * FROM `admin`"

"REVOKE GRANT MATCH {*} ON GRAPH * RELATIONSHIP * FROM `architect`"

"REVOKE GRANT MATCH {*} ON GRAPH * RELATIONSHIP * FROM `editor`"

"REVOKE GRANT MATCH {*} ON GRAPH * RELATIONSHIP * FROM `publisher`"

"REVOKE GRANT MATCH {*} ON GRAPH * RELATIONSHIP * FROM `reader`"

"REVOKE GRANT NAME MANAGEMENT ON DATABASE * FROM `admin`"

"REVOKE GRANT NAME MANAGEMENT ON DATABASE * FROM `architect`"

"REVOKE GRANT NAME MANAGEMENT ON DATABASE * FROM `publisher`"

"REVOKE GRANT START ON DATABASE * FROM `admin`"

598

command

"REVOKE GRANT STOP ON DATABASE * FROM `admin`"

"REVOKE GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * FROM `admin`"

"REVOKE GRANT WRITE ON GRAPH * FROM `admin`"

"REVOKE GRANT WRITE ON GRAPH * FROM `architect`"

"REVOKE GRANT WRITE ON GRAPH * FROM `editor`"

"REVOKE GRANT WRITE ON GRAPH * FROM `publisher`"

Rows: 35

For more info about revoking privileges, please see The REVOKE command.

Examples for listing privileges for specific roles Enterprise edition

Available privileges for specific roles can be displayed using SHOW ROLE name PRIVILEGE[S]:

SHOW ROLE[S] name[, ...] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [WHERE expression]

SHOW ROLE[S] name[, ...] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

SHOW ROLE regularUsers PRIVILEGES

Lists all privileges for role regularUsers.

Table 597. Result

access action graph resource role segment immutable

"GRANTED" "access" "database" "neo4j" "database" "regularUsers" false

SHOW ROLES regularUsers, noAccessUsers PRIVILEGES

Lists all privileges for roles regularUsers and noAccessUsers.

Table 598. Result

access action graph resource role segment immutable

"DENIED" "access" "database" "neo4j" "database" "noAccessUsers
"

false

"GRANTED" "access" "database" "neo4j" "database" "regularUsers" false

Similar to the other SHOW PRIVILEGES commands, the available privileges for roles can also be listed as
Cypher commands with the optional AS COMMAND[S].

Table 599. Result

599

command

"GRANT ACCESS ON DATABASE * TO `admin`"

"GRANT ALL DBMS PRIVILEGES ON DBMS TO `admin`"

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `admin`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `admin`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `admin`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `admin`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `admin`"

"GRANT START ON DATABASE * TO `admin`"

"GRANT STOP ON DATABASE * TO `admin`"

"GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO `admin`"

"GRANT WRITE ON GRAPH * TO `admin`"

Rows: 11

The output can be processed using YIELD / WHERE / RETURN here as well:

SHOW ROLE architect PRIVILEGES AS COMMANDS WHERE command CONTAINS 'MATCH'

Table 600. Result

command

"GRANT MATCH {*} ON GRAPH * NODE * TO `architect`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `architect`"

Rows: 2

Again, it is possible to get the privileges listed as revoking commands instead of granting or denying. For
more info about revoking privileges, please see The REVOKE command.

SHOW ROLE reader PRIVILEGES AS REVOKE COMMANDS

Table 601. Result

command

"REVOKE GRANT ACCESS ON DATABASE * FROM `reader`"

"REVOKE GRANT MATCH {*} ON GRAPH * NODE * FROM `reader`"

"REVOKE GRANT MATCH {*} ON GRAPH * RELATIONSHIP * FROM `reader`"

Rows: 3

600

Examples for listing privileges for specific users Enterprise edition

Available privileges for specific users can be displayed using SHOW USER name PRIVILEGES.



Note that if a non-native auth provider like LDAP is in use, SHOW USER PRIVILEGES will
only work with a limited capacity as it is only possible for a user to show their own
privileges. Other users' privileges cannot be listed when using a non-native auth
provider.

SHOW USER[S] [name[, ...]] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [WHERE expression]

SHOW USER[S] [name[, ...]] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

SHOW USER jake PRIVILEGES

Lists all privileges for user jake.

Table 602. Result

access action resource graph resource role segment immutable

"GRANTED" "execute" "database" "*" "FUNCTION(*)
"

"PUBLIC" "jake" false

"GRANTED" "execute" "database" "*" "PROCEDURE(*
)"

"PUBLIC" "jake" false

"GRANTED" "access" "database" "DEFAULT" "database" "PUBLIC" "jake" false

"GRANTED" "access" "database" "neo4j" "database" "regularUser
s"

"jake" false

SHOW USERS jake, joe PRIVILEGES

Lists all privileges for users jake and joe.

Table 603. Result

access action resource graph resource role segment immutable

"GRANTED" "execute" "database" "*" "FUNCTION(*)
"

"PUBLIC" "jake" false

"GRANTED" "execute" "database" "*" "PROCEDURE(*
)"

"PUBLIC" "jake" false

"GRANTED" "access" "database" "DEFAULT" "database" "PUBLIC" "jake" false

"GRANTED" "access" "database" "neo4j" "database" "regularUser
s"

"jake" false

"GRANTED" "execute" "database" "*" "FUNCTION(*)
"

"PUBLIC" "joe" false

"GRANTED" "execute" "database" "*" "PROCEDURE(*
)"

"PUBLIC" "joe" false

601

access action resource graph resource role segment immutable

"GRANTED" "access" "database" "DEFAULT" "database" "PUBLIC" "joe" false

"DENIED" "access" "database" "neo4j" "database" "noAccessUse
rs"

"joe" false

The same command can be used at all times to review available privileges for the current user. For this
purpose, there is a shorter form of the command: SHOW USER PRIVILEGES:

SHOW USER PRIVILEGES

As for the other privilege commands, available privileges for users can also be listed as Cypher commands
with the optional AS COMMAND[S].


When showing user privileges as commands, the roles in the Cypher commands are
replaced with a parameter. This can be used to quickly create new roles based on the
privileges of specific users.

SHOW USER jake PRIVILEGES AS COMMANDS

Table 604. Result

command

"GRANT ACCESS ON DATABASE neo4j TO $role"

"GRANT ACCESS ON HOME DATABASE TO $role"

"GRANT EXECUTE FUNCTION * ON DBMS TO $role"

"GRANT EXECUTE PROCEDURE * ON DBMS TO $role"

Rows: 4

Like other SHOW commands, the output can also be processed using YIELD / WHERE / RETURN. Additionally,
similar to the other show privilege commands, it is also possible to show the commands for revoking the
privileges.

SHOW USER jake PRIVILEGES AS REVOKE COMMANDS
WHERE command CONTAINS 'EXECUTE'

Table 605. Result

command

"REVOKE GRANT EXECUTE FUNCTION * ON DBMS FROM $role"

"REVOKE GRANT EXECUTE PROCEDURE * ON DBMS FROM $role"

Rows: 2

602

Revoking privileges Enterprise edition

Privileges that were granted or denied earlier can be revoked using the REVOKE command:

REVOKE
 [IMMUTABLE]
 [GRANT | DENY] graph-privilege
 FROM role[, ...]

An example usage of the REVOKE command is given here:

REVOKE GRANT TRAVERSE ON HOME GRAPH NODES Post FROM regularUsers

While it can be explicitly specified that REVOKE should remove a GRANT or DENY, it is also possible to REVOKE
both by not specifying them at all, as the next example demonstrates. Because of this, if there happens to
be a GRANT and a DENY for the same privilege, it would remove both.

REVOKE TRAVERSE ON HOME GRAPH NODES Payments FROM regularUsers

Adding IMMUTABLE explicitly specifies that only immutable privileges should be removed. Omitting it
specifies that both immutable and regular privileges should be removed.

Managing servers
Servers can be added and managed using a set of Cypher administration commands executed against the
system database.

When connected to the DBMS over bolt, administration commands are automatically routed to the system
database.

Server management command syntax

 The syntax descriptions use the style from access control.

Command ENABLE SERVER

Syntax
ENABLE SERVER 'serverId' [OPTIONS "{" option: value[,...] "}"]

Description Adds a server that has been discovered to the cluster. For more information see Enabling
servers.

Required
privilege

GRANT SERVER MANAGEMENT

(see SERVER MANAGEMENT privileges)

603

Command ALTER SERVER

Syntax
ALTER SERVER 'name' SET OPTIONS "{" option: value[,...] "}"

Description Changes the constraints for a server. For more information see Modifying servers.

Required
privilege

GRANT SERVER MANAGEMENT

(see SERVER MANAGEMENT privileges)

Command RENAME SERVER

Syntax
RENAME SERVER 'name' TO 'newName'

Description Changes the name of a server. For more information see Renaming servers.

Required
privilege

GRANT SERVER MANAGEMENT

(see SERVER MANAGEMENT privileges)

Command REALLOCATE DATABASES

Syntax
[DRYRUN] REALLOCATE DATABASE[S]

Description Re-balances databases among the servers in the cluster. For more information see
Reallocate databases.

Required
privilege

GRANT SERVER MANAGEMENT

(see SERVER MANAGEMENT privileges)

Command DEALLOCATE DATABASES

Syntax
[DRYRUN] DEALLOCATE DATABASE[S] FROM SERVER[S] 'name'[, ...]

Description Removes all databases from the given servers. For more information see Deallocate
databases.

Required
privilege

GRANT SERVER MANAGEMENT

(see SERVER MANAGEMENT privileges)

604

Command DROP SERVER

Syntax
DROP SERVER 'name'

Description Removes a server not hosting any databases from the cluster. For more information see
Drop server.

Required
privilege

GRANT SERVER MANAGEMENT

(see SERVER MANAGEMENT privileges)

Command SHOW SERVERS

Syntax
SHOW SERVER[S]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description Lists all servers visible to the cluster. For more information see Listing servers.

Required
privilege

GRANT SHOW SERVERS

(see SERVER MANAGEMENT privileges)

Listing servers

SHOW SERVERS displays all servers running in the cluster, including servers that have yet to be enabled as
well as dropped servers.

The table of results shows information about the servers:

Column Description Default
output

Full output

name Name of the server.  

serverId Id of the server. 

address Bolt address of the server (if enabled).  

httpAddress Http address of the server (if enabled). 

httpsAddress Https address of the server (if enabled). 

605

Column Description Default
output

Full output

state Information of the state of the server: free, enabled,
deallocating, or dropped.

 

health The availability of the server: available or unavailable.  

hosting A list of databases currently hosted on the server.  

requestedHosting A list of databases that should be hosted on the server,
decided by the allocator.



tags Tags are user provided strings that can be used while
allocating databases.



allowedDatabases A list of databases allowed to be hosted on the server. 

deniedDatabases A list of databases not allowed to be hosted on the server. 

modeConstraint Constraint for the allocator to allocate only databases in this
mode on the server.



version Neo4j version the server is running. 

A summary of all servers can be displayed using the command SHOW SERVERS.

Table 606. Result

name address state health hosting

"server1" "localhost:20000" "Enabled" "Available" ["system","neo4j"]

"server2" "localhost:20007" "Enabled" "Available" ["system","neo4j"]

"server3" "localhost:20014" "Enabled" "Available" ["system","neo4j"]

"0c030000-267b-49a8-
801f-78bd0b5c6445"

"localhost:20021" "Free" "Available" ["system"]

Enabling servers

A server can be added to the cluster with the ENABLE SERVER 'name' command. The servers initial name is
its id. The server must be in the free state to be added to the cluster. If the server is already enabled and
the command is executed with the same options specified nothing is changed. In any other case trying to
enable a server fails.

The possible options allowed when enabling a server are:

606

Option Allowed values Description

modeConstraint PRIMARY, SECONDARY, NONE Databases may only be
hosted on the server in
the mode specified by

the constraint. None
means there is no
constraint and any
mode is allowed.

allowedDatabases list of database names Only databases
matching the specified
names may be hosted

on the server. This may
not be specified in
combination with
deniedDatabases.

deniedDatabases list of database names Only databases not
matching the specified
names may be hosted

on the server. This may
not be specified in
combination with
allowedDatabases.


Composite databases are ignored by both allowedDatabases and deniedDatabases. The
composite databases are available everywhere and hold no data on their own.

Modifying servers

The constraints on a server can be changed with ALTER SERVER 'name' SET OPTIONS { option: value }.
Either the name or the id of the server can be used.

The possible options allowed when altering a server are:

Option Allowed values Description

modeConstraint PRIMARY, SECONDARY, NONE Databases may only be
hosted on the server in
the mode specified by

the constraint. None
means there is no
constraint and any
mode is allowed.

allowedDatabases list of database names Only databases
matching the specified
names may be hosted

on the server. This may
not be specified in
combination with
deniedDatabases.

607

Option Allowed values Description

deniedDatabases list of database names Only databases not
matching the specified
names may be hosted

on the server. This may
not be specified in
combination with
allowedDatabases.


Composite databases are ignored by both allowedDatabases and deniedDatabases. The
composite databases are available everywhere and hold no data on their own.

Renaming servers

The name of a server can be altered with RENAME SERVER 'name' TO 'newName'. Either the id or current
name of the server can be used to identify the server. The new name of the server must be unique.

Reallocate databases

After enabling a server, REALLOCATE DATABASES can be used to make the cluster re-balance databases
across all servers that are part of the cluster. Using DRYRUN REALLOCATE DATABASE returns a view of how the
databases would have been re-balanced if the command was executed without DRYRUN:

Table 607. Result

database fromServerName fromServerId toServerName toServerId mode

"db1" "server-1" "00000000-94ff-
4ede-87be-
3d741b795480"

"server-4" "00000002-25a9-
4984-9ad2-
dc39024c9238"

"primary"

"db3" "server-1" "00000000-94ff-
4ede-87be-
3d741b795480"

"server-5" "00000003-0df7-
4057-81fd-
1cf43c9ef5f7"

"primary"

 DRYRUN is introduced in Neo4j 5.2, and thus is not available in earlier minor releases of v5.

Deallocate databases

A server can be set to not host any databases with DEALLOCATE DATABASES FROM SERVER 'name', in
preparation for removing the server from the cluster. Either the id or name of the server can be used. All
databases that the server is hosting are moved to other servers. The server changes state to deallocating.
A deallocated server cannot readily be enabled again.

Multiple servers can be deallocated at the same time, DEALLOCATE DATABASES FROM SERVER 'server-1',
'server-2'. The command fails if there aren’t enough servers available to move the databases to.

Using DRYRUN DEALLOCATE DATABASES FROM 'server-1', 'server-2' returns a view of how the databases
would have been re-balanced if the command was executed without DRYRUN:

Table 608. Result

608

database fromServerName fromServerId toServerName toServerId mode

"db1" "server-1" "00000001-8c04-
4731-a2fd-
7b0289c511ce"

"server-4" "00000002-5b91-
43c1-8b25-
5289f674563e"

"primary"

"db1" "server-2" "00000000-7e53-
427c-a987-
24634c4745f3"

"server-5" "00000003-0e98-
44c8-9844-
f0a4eb95b0d8"

"primary"

Drop server

When a server has been deallocated and is no longer hosting any databases it can be removed from the
cluster with DROP SERVER 'name'. Either the id or name of the server can be used. As long as the server is
running, it is listed when showing servers with the state dropped.

Built-in roles and privileges

This section explains the default privileges of the built-in roles in Neo4j and how to recreate

them if needed.

All of the commands described in this chapter require that the user executing the commands has the rights
to do so. The privileges listed in the following sections are the default set of privileges for each built-in role:

• The PUBLIC role

• The reader role

• The editor role

• The publisher role

• The architect role

• The admin role

The PUBLIC role

All users are granted the PUBLIC role, and it can not be revoked or dropped. By default, it gives access to
the default database and allows executing all procedures and user-defined functions.


The PUBLIC role cannot be dropped or revoked from any user, but the specific privileges
for the role can be modified. In contrast to the PUBLIC role, the other built-in roles can be
granted, revoked, dropped, and re-created.

Listing PUBLIC role privileges

SHOW ROLE PUBLIC PRIVILEGES AS COMMANDS

Table 609. Result

609

command

"GRANT ACCESS ON HOME DATABASE TO `PUBLIC`"

"GRANT EXECUTE FUNCTION * ON DBMS TO `PUBLIC`"

"GRANT EXECUTE PROCEDURE * ON DBMS TO `PUBLIC`"

Rows: 3

Recreating the PUBLIC role

The PUBLIC role can not be dropped and thus there is no need to recreate the role itself. To restore the role
to its original capabilities, two steps are needed.

First, all GRANT or DENY privileges on this role should be revoked (see output of SHOW ROLE PUBLIC
PRIVILEGES AS REVOKE COMMANDS on what to revoke). Secondly, run these queries:

GRANT ACCESS ON HOME DATABASE TO PUBLIC

GRANT EXECUTE PROCEDURES * ON DBMS TO PUBLIC

GRANT EXECUTE USER DEFINED FUNCTIONS * ON DBMS TO PUBLIC

The resulting PUBLIC role now has the same privileges as the original built-in PUBLIC role.

The reader role

The reader role can perform read-only queries on all graphs except for the system database.

Listing reader role privileges

SHOW ROLE reader PRIVILEGES AS COMMANDS

Table 610. Result

command

"GRANT ACCESS ON DATABASE * TO `reader`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `reader`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `reader`"

"GRANT SHOW CONSTRAINT ON DATABASE * TO `reader`"

"GRANT SHOW INDEX ON DATABASE * TO `reader`"

Rows: 5

610

Recreating the reader role

To restore the role to its original capabilities two steps are needed. First, execute DROP ROLE reader.
Secondly, run these queries:

CREATE ROLE reader

GRANT ACCESS ON DATABASE * TO reader

GRANT MATCH {*} ON GRAPH * TO reader

GRANT SHOW CONSTRAINT ON DATABASE * TO reader

GRANT SHOW INDEX ON DATABASE * TO reader

The resulting reader role now has the same privileges as the original built-in reader role.

The editor role

The editor role can perform read and write operations on all graphs except for the system database, but it
cannot create new labels, property keys or relationship types.

Listing editor role privileges

SHOW ROLE editor PRIVILEGES AS COMMANDS

Table 611. Result

command

"GRANT ACCESS ON DATABASE * TO `editor`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `editor`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `editor`"

"GRANT SHOW CONSTRAINT ON DATABASE * TO `editor`"

"GRANT SHOW INDEX ON DATABASE * TO `editor`"

"GRANT WRITE ON GRAPH * TO `editor`"

Rows: 6

Recreating the editor role

To restore the role to its original capabilities two steps are needed. First, execute DROP ROLE editor.
Secondly, run these queries:

611

CREATE ROLE editor

GRANT ACCESS ON DATABASE * TO editor

GRANT MATCH {*} ON GRAPH * TO editor

GRANT WRITE ON GRAPH * TO editor

GRANT SHOW CONSTRAINT ON DATABASE * TO editor

GRANT SHOW INDEX ON DATABASE * TO editor

The resulting editor role now has the same privileges as the original built-in editor role.

The publisher role

The publisher role can do the same as editor, as well as create new labels, property keys and relationship
types.

Listing publisher role privileges

SHOW ROLE publisher PRIVILEGES AS COMMANDS

Table 612. Result

command

"GRANT ACCESS ON DATABASE * TO `publisher`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `publisher`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `publisher`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `publisher`"

"GRANT SHOW CONSTRAINT ON DATABASE * TO `publisher`"

"GRANT SHOW INDEX ON DATABASE * TO `publisher`"

"GRANT WRITE ON GRAPH * TO `publisher`"

Rows: 7

Recreating the publisher role

To restore the role to its original capabilities two steps are needed. First, execute DROP ROLE publisher.
Secondly, run these queries:

CREATE ROLE publisher

612

GRANT ACCESS ON DATABASE * TO publisher

GRANT MATCH {*} ON GRAPH * TO publisher

GRANT WRITE ON GRAPH * TO publisher

GRANT NAME MANAGEMENT ON DATABASE * TO publisher

GRANT SHOW CONSTRAINT ON DATABASE * TO publisher

GRANT SHOW INDEX ON DATABASE * TO publisher

The resulting publisher role now has the same privileges as the original built-in publisher role.

The architect role

The architect role can do the same as the publisher, as well as create and manage indexes and
constraints.

Listing architect role privileges

SHOW ROLE architect PRIVILEGES AS COMMANDS

Table 613. Result

command

"GRANT ACCESS ON DATABASE * TO `architect`"

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `architect`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `architect`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `architect`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `architect`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `architect`"

"GRANT SHOW CONSTRAINT ON DATABASE * TO `architect`"

"GRANT SHOW INDEX ON DATABASE * TO `architect`"

"GRANT WRITE ON GRAPH * TO `architect`"

Rows: 9

Recreating the architect role

To restore the role to its original capabilities two steps are needed. First, execute DROP ROLE architect.
Secondly, run these queries:

613

GRANT ACCESS ON DATABASE * TO architect

GRANT MATCH {*} ON GRAPH * TO architect

GRANT WRITE ON GRAPH * TO architect

GRANT NAME MANAGEMENT ON DATABASE * TO architect

GRANT SHOW CONSTRAINT ON DATABASE * TO architect

GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO architect

GRANT SHOW INDEX ON DATABASE * TO architect

GRANT INDEX MANAGEMENT ON DATABASE * TO architect

The resulting architect role now has the same privileges as the original built-in architect role.

The admin role

The admin role can do the same as the architect, as well as manage databases, aliases, users, roles and
privileges.

The admin role has the ability to perform administrative tasks. These include the rights to perform the
following classes of tasks:

• Manage database security to control the rights to perform actions on specific databases:

◦ Manage access to a database and the right to start and stop a database.

◦ Manage indexes and constraints.

◦ Allow the creation of labels, relationship types or property names.

◦ Manage transactions

• Manage DBMS security to control the rights to perform actions on the entire system:

◦ Manage multiple databases.

◦ Manage users and roles.

◦ Change configuration parameters.

◦ Manage sub-graph privileges.

◦ Manage procedure security.

These rights are conferred using privileges that can be managed through the GRANT, DENY and REVOKE
commands.

614

Listing admin role privileges

SHOW ROLE admin PRIVILEGES AS COMMANDS

Table 614. Result

command

"GRANT ACCESS ON DATABASE * TO `admin`"

"GRANT ALL DBMS PRIVILEGES ON DBMS TO `admin`"

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `admin`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `admin`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `admin`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `admin`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `admin`"

"GRANT SHOW CONSTRAINT ON DATABASE * TO `admin`"

"GRANT SHOW INDEX ON DATABASE * TO `admin`"

"GRANT START ON DATABASE * TO `admin`"

"GRANT STOP ON DATABASE * TO `admin`"

"GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO `admin`"

"GRANT WRITE ON GRAPH * TO `admin`"

Rows: 13

If the built-in admin role has been altered or dropped, and needs to be restored to its original state, see
Operations Manual → Password and user recovery.

Recreating the admin role

To restore the role to its original capabilities two steps are needed. First, execute DROP ROLE admin.
Secondly, run these queries:

CREATE ROLE admin

GRANT ALL DBMS PRIVILEGES ON DBMS TO admin

GRANT TRANSACTION MANAGEMENT ON DATABASE * TO admin

GRANT START ON DATABASE * TO admin

GRANT STOP ON DATABASE * TO admin

615

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#password_and_user_recovery
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#password_and_user_recovery
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#password_and_user_recovery

GRANT MATCH {*} ON GRAPH * TO admin

GRANT WRITE ON GRAPH * TO admin

GRANT ALL ON DATABASE * TO admin

The resulting admin role now has the same effective privileges as the original built-in admin role.

Additional information about restoring the admin role can be found in the Operations Manual → Recover the
admin role.

Read privileges

This section explains how to use Cypher to manage read privileges on graphs.

There are three separate read privileges:

• TRAVERSE - enables the specified entities to be found.

• READ - enables the specified properties of the found entities to be read.

• MATCH - combines both TRAVERSE and READ, enabling an entity to be found and its properties read.

 The syntax descriptions use the style from access control.

The TRAVERSE privilege

Users can be granted the right to find nodes and relationships using the GRANT TRAVERSE privilege.

GRANT [IMMUTABLE] TRAVERSE
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, we can enable the user jake, who has the role 'regularUsers' to find all nodes with the label
Post:

GRANT TRAVERSE ON GRAPH neo4j NODES Post TO regularUsers

The TRAVERSE privilege can also be denied.

616

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#recover-admin-role
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#recover-admin-role
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#recover-admin-role
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#recover-admin-role

DENY [IMMUTABLE] TRAVERSE
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, we can disable the user jake, who has the role 'regularUsers' from finding all nodes with the
label Payments:

DENY TRAVERSE ON HOME GRAPH NODES Payments TO regularUsers

The READ privilege

Users can be granted the right to do property reads on nodes and relationships using the GRANT READ
privilege. It is very important to note that users can only read properties on entities that they are enabled to
find in the first place.

GRANT [IMMUTABLE] READ "{" { * | property[, ...] } "}"
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, we can enable the user jake, who has the role 'regularUsers' to read all properties on nodes
with the label Post. The * implies that the ability to read all properties also extends to properties that might
be added in the future.

GRANT READ { * } ON GRAPH neo4j NODES Post TO regularUsers


Granting property READ access does not imply that the entities with that property can be
found. For example, if there is also a DENY TRAVERSE present on the same entity as a
GRANT READ, the entity will not be found by a Cypher MATCH statement.

The READ privilege can also be denied.

DENY [IMMUTABLE] READ "{" { * | property[, ...] } "}"
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

Although we just granted the user jake the right to read all properties, we may want to hide the secret
property. The following example shows how to do that:

617

DENY READ { secret } ON GRAPH neo4j NODES Post TO regularUsers

The MATCH privilege

Users can be granted the right to find and do property reads on nodes and relationships using the GRANT
MATCH privilege. This is semantically the same as having both TRAVERSE and READ privileges.

GRANT [IMMUTABLE] MATCH "{" { * | property[, ...] } "}"
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example if you want to grant the ability to read the properties language and length for nodes with the
label Message, as well as the ability to find these nodes to the role regularUsers, you can use the following
GRANT MATCH query:

GRANT MATCH { language, length } ON GRAPH neo4j NODES Message TO regularUsers

Like all other privileges, the MATCH privilege can also be denied.

DENY [IMMUTABLE] MATCH "{" { * | property[, ...] } "}"
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

Please note that the effect of denying a MATCH privilege depends on whether concrete property keys are
specified or are *. If you specify concrete property keys, then DENY MATCH will only deny reading those
properties. Finding the elements to traverse would still be enabled. If you specify * instead, then both
traversal of the element and all property reads will be disabled. The following queries will show examples
for this.

Denying to read the property content on nodes with the label Message for the role regularUsers would
look like the following query. Although not being able to read this specific property, nodes with that label
can still be traversed (and, depending on other grants, other properties on it could still be read).

DENY MATCH { content } ON GRAPH neo4j NODES Message TO regularUsers

The following query exemplifies how it would look if you wanted to deny both reading all properties and
traversing nodes labeled with Account:

DENY MATCH { * } ON GRAPH neo4j NODES Account TO regularUsers

618

Write privileges

This section explains how to use Cypher to manage write privileges on graphs.

Write privileges are defined for different parts of the graph:

• CREATE - allows creating nodes and relationships.

• DELETE - allows deleting nodes and relationships.

• SET LABEL - allows setting the specified node labels using the SET clause.

• REMOVE LABEL - allows removing the specified node labels using the REMOVE clause.

• SET PROPERTY - allows setting properties on nodes and relationships.

There are also compound privileges which combine the above specific privileges:

• MERGE - allows MATCH, CREATE and SET PROPERTY to apply the MERGE command.

• WRITE - allows all WRITE operations on an entire graph.

• ALL GRAPH PRIVILEGES - allows all READ and WRITE operations on an entire graph.

 The syntax descriptions use the style from access control.

The CREATE privilege

The CREATE privilege allows a user to create new node and relationship elements on a graph. See the
Cypher CREATE clause.

GRANT [IMMUTABLE] CREATE
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, to grant the role regularUsers the ability to CREATE elements on the graph neo4j, use:

GRANT CREATE ON GRAPH neo4j ELEMENTS * TO regularUsers

The CREATE privilege can also be denied:

DENY [IMMUTABLE] CREATE
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

619

For example, to deny the role regularUsers the ability to CREATE nodes with the label foo on all graphs,
use:

DENY CREATE ON GRAPH * NODES foo TO regularUsers



If the user attempts to create nodes with a label that does not already exist on the
database, then the user must also possess the CREATE NEW LABEL privilege. The
same applies to new relationships: the CREATE NEW RELATIONSHIP TYPE privilege is
required.

The DELETE privilege

The DELETE privilege allows a user to delete node and relationship elements on a graph. See the Cypher
DELETE clause.

GRANT [IMMUTABLE] DELETE
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, to grant the role regularUsers the ability to DELETE elements on the graph neo4j, use:

GRANT DELETE ON GRAPH neo4j ELEMENTS * TO regularUsers

The DELETE privilege can also be denied:

DENY [IMMUTABLE] DELETE
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, to deny the role regularUsers the ability to DELETE relationships with the relationship type
bar on all graphs, use:

DENY DELETE ON GRAPH * RELATIONSHIPS bar TO regularUsers


Users with DELETE privilege, but restricted TRAVERSE privileges, will not be able to do
DETACH DELETE in all cases. See Operations Manual → Fine-grained access control for
more info.

620

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#detach-delete-restricted-user

The SET LABEL privilege

The SET LABEL privilege allows you to set labels on a node using the SET clause:

GRANT [IMMUTABLE] SET LABEL { * | label[, ...] }
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 TO role[, ...]

For example, to grant the role regularUsers the ability to SET any label on nodes of the graph neo4j, use:

GRANT SET LABEL * ON GRAPH neo4j TO regularUsers


Unlike many of the other READ and WRITE privileges, it is not possible to restrict the SET
LABEL privilege to specific ELEMENTS, NODES or RELATIONSHIPS.

The SET LABEL privilege can also be denied:

DENY [IMMUTABLE] SET LABEL { * | label[, ...] }
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 TO role[, ...]

For example, to deny the role regularUsers the ability to SET the label foo on nodes of all graphs, use:

DENY SET LABEL foo ON GRAPH * TO regularUsers


If no instances of this label exist on the database, then the CREATE NEW LABEL
privilege is also required.

The REMOVE LABEL privilege

The REMOVE LABEL privilege allows you to remove labels from a node by using the REMOVE clause:

GRANT [IMMUTABLE] REMOVE LABEL { * | label[, ...] }
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 TO role[, ...]

For example, to grant the role regularUsers the ability to REMOVE any label from nodes of the graph neo4j,
use:

GRANT REMOVE LABEL * ON GRAPH neo4j TO regularUsers


Unlike many of the other READ and WRITE privileges, it is not possible to restrict the
REMOVE LABEL privilege to specific ELEMENTS, NODES or RELATIONSHIPS.

The REMOVE LABEL privilege can also be denied:

621

DENY [IMMUTABLE] REMOVE LABEL { * | label[, ...] }
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 TO role[, ...]

For example, denying the role regularUsers the ability to remove the label foo from nodes of all graphs,
use:

DENY REMOVE LABEL foo ON GRAPH * TO regularUsers

The SET PROPERTY privilege

The SET PROPERTY privilege allows a user to set a property on a node or relationship element in a graph by
using the SET clause:

GRANT [IMMUTABLE] SET PROPERTY "{" { * | property[, ...] } "}"
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, to grant the role regularUsers the ability to SET any property on all elements of the graph
neo4j, use:

GRANT SET PROPERTY {*} ON HOME GRAPH ELEMENTS * TO regularUsers

The SET PROPERTY privilege can also be denied:

DENY [IMMUTABLE] SET PROPERTY "{" { * | property[, ...] } "}"
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, to deny the role regularUsers the ability to SET the property foo on nodes with the label bar
on all graphs, use:

DENY SET PROPERTY { foo } ON GRAPH * NODES bar TO regularUsers


If the user attempts to set a property with a property name that does not already exist
on the database, the user must also possess the CREATE NEW PROPERTY NAME
privilege.

The MERGE privilege

The MERGE privilege is a compound privilege that combines TRAVERSE and READ (i.e. MATCH) with CREATE and

622

SET PROPERTY. This is intended to enable the use of the MERGE command, but it is also applicable to all
reads and writes that require these privileges.

GRANT [IMMUTABLE] MERGE "{" { * | property[, ...] } "}"
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, to grant the role regularUsers the ability to MERGE on all elements of the graph neo4j, use:

GRANT MERGE {*} ON GRAPH neo4j ELEMENTS * TO regularUsers

It is not possible to deny the MERGE privilege. If you wish to prevent a user from creating elements and
setting properties: use DENY CREATE or DENY SET PROPERTY.



If the user attempts to create nodes with a label that does not already exist on the
database, the user must also possess the CREATE NEW LABEL privilege. The same
applies to new relationships and properties - the CREATE NEW RELATIONSHIP TYPE
or CREATE NEW PROPERTY NAME privileges are required.

The WRITE privilege

The WRITE privilege allows the user to execute any WRITE command on a graph.

GRANT [IMMUTABLE] WRITE
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 TO role[, ...]

For example, to grant the role regularUsers the ability to WRITE on the graph neo4j, use:

GRANT WRITE ON GRAPH neo4j TO regularUsers



Unlike the more specific WRITE commands, it is not possible to restrict WRITE privileges to
specific ELEMENTS, NODES or RELATIONSHIPS. If you wish to prevent a user from
writing to a subset of database objects, a GRANT WRITE can be combined with more
specific DENY commands to target these elements.

The WRITE privilege can also be denied:

DENY [IMMUTABLE] WRITE
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 TO role[, ...]

For example, to deny the role regularUsers the ability to WRITE on the graph neo4j, use:

623

DENY WRITE ON GRAPH neo4j TO regularUsers


Users with WRITE privilege but restricted TRAVERSE privileges will not be able to do DETACH
DELETE in all cases. See Operations Manual → Fine-grained access control for more info.

The ALL GRAPH PRIVILEGES privilege

The ALL GRAPH PRIVILEGES privilege allows the user to execute any command on a graph:

GRANT [IMMUTABLE] ALL [[GRAPH] PRIVILEGES]
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 TO role[, ...]

For example, to grant the role regularUsers ALL GRAPH PRIVILEGES on the graph neo4j, use:

GRANT ALL GRAPH PRIVILEGES ON GRAPH neo4j TO regularUsers



Unlike the more specific READ and WRITE commands, it is not possible to restrict ALL
GRAPH PRIVILEGES to specific ELEMENTS, +NODES or RELATIONSHIPS. If you wish to
prevent a user from reading or writing to a subset of database objects, a GRANT ALL
GRAPH PRIVILEGES can be combined with more specific DENY commands to target these
elements.

The ALL GRAPH PRIVILEGES privilege can also be denied:

DENY [IMMUTABLE] ALL [[GRAPH] PRIVILEGES]
 ON { HOME GRAPH | GRAPH[S] { * | name[, ...] } }
 TO role[, ...]

For example, to deny the role regularUsers all graph privileges on the graph neo4j, use:

DENY ALL GRAPH PRIVILEGES ON GRAPH neo4j TO regularUsers

Database administration

This section explains how to use Cypher to manage Neo4j database administrative

privileges.

Administrators can use the following Cypher commands to manage Neo4j database administrative rights.

The components of the database privilege commands are:

• command:

◦ GRANT – gives privileges to roles.

◦ DENY – denies privileges to roles.

624

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#detach-delete-restricted-user

◦ REVOKE – removes granted or denied privileges from roles.

• mutability:

◦ IMMUTABLE - When used in conjunction with GRANT or DENY, specifies that a privilege cannot
subsequently be removed unless auth is disabled. Contrastingly, when IMMUTABLE is specified in
conjunction with a REVOKE command, it will act as a filter and only remove matching immutable
privileges. See also immutable privileges.

• database-privilege

◦ ACCESS - allows access to a specific database or remote database alias.

◦ START - allows the specified database to be started.

◦ STOP - allows the specified database to be stopped.

◦ CREATE INDEX - allows indexes to be created on the specified database.

◦ DROP INDEX - allows indexes to be deleted on the specified database.

◦ SHOW INDEX - allows indexes to be listed on the specified database.

◦ INDEX [MANAGEMENT] - allows indexes to be created, deleted, and listed on the specified database.

◦ CREATE CONSTRAINT - allows constraints to be created on the specified database.

◦ DROP CONSTRAINT - allows constraints to be deleted on the specified database.

◦ SHOW CONSTRAINT - allows constraints to be listed on the specified database.

◦ CONSTRAINT [MANAGEMENT] - allows constraints to be created, deleted, and listed on the specified
database.

◦ CREATE NEW [NODE] LABEL - allows new node labels to be created.

◦ CREATE NEW [RELATIONSHIP] TYPE - allows new relationship types to be created.

◦ CREATE NEW [PROPERTY] NAME - allows property names to be created, so that nodes and
relationships can have properties assigned with these names.

◦ NAME [MANAGEMENT] - allows all of the name management capabilities: node labels, relationship
types, and property names.

◦ ALL [[DATABASE] PRIVILEGES] - allows access, index, constraint, and name management for the
specified database or remote database alias.

◦ SHOW TRANSACTION - allows listing transactions and queries for the specified users on the specified
database.

◦ TERMINATE TRANSACTION - allows ending transactions and queries for the specified users on the
specified database.

◦ TRANSACTION [MANAGEMENT] - allows listing and ending transactions and queries for the specified
users on the specified database.

• name

◦ The database to associate the privilege with.


If you delete a database and create a new one with the same name, the new one
will NOT have the same privileges previously assigned to the deleted one.

625

◦ The name component can be *, which means all databases. Databases created after this command
execution will also be associated with these privileges.

◦ The DATABASE[S] name part of the command can be replaced by HOME DATABASE. This refers to the
home database configured for a user or, if that user does not have a home database configured,
the default database. If the user’s home database changes for any reason after this command
execution, the new one will be associated with these privileges. This can be quite powerful as it
allows permissions to be switched from one database to another simply by changing a user’s
home database.

• role[, …]

◦ The role or roles to associate the privilege with, comma-separated.

 The syntax descriptions use the style from access control.

Table 615. General grant ON DATABASE privilege syntax

Command GRANT ... ON ... TO ...

Syntax
GRANT [IMMUTABLE] database-privilege ON { HOME DATABASE | DATABASE[S] { * | name[, ...]
} } TO role[, ...]

Description Grants a privilege to one or multiple roles.

Table 616. General deny ON DATABASE privilege syntax

Command DENY ... ON ... TO ...

Syntax
DENY [IMMUTABLE] database-privilege ON { HOME DATABASE | DATABASE[S] { * | name[, ...] }
} TO role[, ...]

Description Denies a privilege to one or multiple roles.

Table 617. General revoke ON DATABASE privilege syntax

Command REVOKE GRANT ... ON ... FROM ...

Syntax
REVOKE [IMMUTABLE] GRANT database-privilege ON { HOME DATABASE | DATABASE[S] { * |
name[, ...] } } FROM role[, ...]

Description Revoke a granted privilege from one or multiple roles.

Table 618. General revoke ON DATABASE privilege syntax

Command REVOKE DENY ... ON ... FROM ...

Syntax
REVOKE [IMMUTABLE] DENY database-privilege ON { HOME DATABASE | DATABASE[S] { * | name[,
...] } } FROM role[, ...]

Description Revokes a denied privilege from one or multiple roles.

626

Table 619. General revoke ON DATABASE privilege syntax

Command REVOKE ... ON ... FROM ...

Syntax
REVOKE [IMMUTABLE] database-privilege ON { HOME DATABASE | DATABASE[S] { * | name[, ...]
} } FROM role[, ...]

Description Revokes a granted or denied privilege from one or multiple roles.

 DENY does not erase a granted privilege. Use REVOKE if you want to remove a privilege.

The hierarchy between the different database privileges is shown in the image below.

Figure 4. Database privileges hierarchy

Table 620. Database privilege syntax

Command GRANT ACCESS

Syntax
GRANT [IMMUTABLE] ACCESS
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Grants the specified roles the privilege to access:

• The home database.

• Specific database(s) or remote database alias(es).

• All databases and remote database aliases.

Table 621. Database privilege syntax

Command GRANT { START | STOP }

Syntax
GRANT [IMMUTABLE] { START | STOP }
 ON { HOME DATABASE | DATABASE[S] {* | name[, ...] } }
 TO role[, ...]

627

Description Grants the specified roles the privilege to start or stop the home database, specific database(s), or all
databases.

Table 622. Database privilege syntax

Command GRANT { CREATE | DROP | SHOW } INDEX

Syntax
GRANT [IMMUTABLE] { CREATE | DROP | SHOW } INDEX[ES]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Grants the specified roles the privilege to create, delete, or show indexes on the home database, specific
database(s), or all databases.

Table 623. Database privilege syntax

Command GRANT INDEX

Syntax
GRANT [IMMUTABLE] INDEX[ES] [MANAGEMENT]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Grants the specified roles the privilege to manage indexes on the home database, specific database(s), or
all databases.

Table 624. Database privilege syntax

Command GRANT { CREATE | DROP | SHOW } CONSTRAINT

Syntax
GRANT [IMMUTABLE] { CREATE | DROP | SHOW } CONSTRAINT[S]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Grants the specified roles the privilege to create, delete, or show constraints on the home database,
specific database(s), or all databases.

Table 625. Database privilege syntax

Command GRANT CONSTRAINT

Syntax
GRANT [IMMUTABLE] CONSTRAINT[S] [MANAGEMENT]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Grants the specified roles the privilege to manage constraints on the home database, specific
database(s), or all databases.

Table 626. Database privilege syntax

Command GRANT CREATE NEW LABEL

628

Syntax
GRANT [IMMUTABLE] CREATE NEW [NODE] LABEL[S]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Grants the specified roles the privilege to create new node labels in the home database, specific
database(s), or all databases.

Table 627. Database privilege syntax

Command GRANT CREATE NEW TYPE

Syntax
GRANT [IMMUTABLE] CREATE NEW [RELATIONSHIP] TYPE[S]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Grants the specified roles the privilege to create new relationship types in the home database, specific
database(s), or all databases.

Table 628. Database privilege syntax

Command GRANT CREATE NEW NAME

Syntax
GRANT [IMMUTABLE] CREATE NEW [PROPERTY] NAME[S]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Grants the specified roles the privilege to create new property names in the home database, specific
database(s), or all databases.

Table 629. Database privilege syntax

Command GRANT NAME

Syntax
GRANT [IMMUTABLE] NAME [MANAGEMENT]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Grants the specified roles the privilege to manage new labels, relationship types, and property names in
the home database, specific database(s), or all databases.

Table 630. Database privilege syntax

Command GRANT ALL

Syntax
GRANT [IMMUTABLE] ALL [[DATABASE] PRIVILEGES]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Grants the specified roles all privileges for the home, a specific, or all databases and remote database
aliases.

629

Table 631. Database privilege syntax

Command GRANT { SHOW | TERMINATE } TRANSACTION

Syntax
GRANT [IMMUTABLE] { SHOW | TERMINATE } TRANSACTION[S] [({ * | user[, ...] })]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Grants the specified roles the privilege to list and end the transactions and queries of all users or a
particular user(s) in the home database, specific database(s), or all databases.

Table 632. Database privilege syntax

Command GRANT TRANSACTION

Syntax
GRANT [IMMUTABLE] TRANSACTION [MANAGEMENT] [({ * | user[, ...] })]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Grants the specified roles the privilege to manage the transactions and queries of all users or a particular
user(s) in the home database, specific database(s), or all databases.

Figure 5. Syntax of GRANT and DENY Database Privileges

The database ACCESS privilege

The ACCESS privilege enables users to connect to a database or a remote database alias. With ACCESS you
can run calculations, for example, RETURN 2 * 5 AS answer or call functions RETURN timestamp() AS time.

GRANT [IMMUTABLE] ACCESS
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

For example, to grant the role regularUsers the ability to access the database neo4j, use:

GRANT ACCESS ON DATABASE neo4j TO regularUsers

630

The ACCESS privilege can also be denied:

DENY [IMMUTABLE] ACCESS
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

For example, to deny the role regularUsers the ability to access to the remote database alias remote-db,
use:

DENY ACCESS ON DATABASE `remote-db` TO regularUsers

The privileges granted can be seen using the SHOW PRIVILEGES command:

SHOW ROLE regularUsers PRIVILEGES AS COMMANDS

Table 633. Result

command

"DENY ACCESS ON DATABASE remote-db TO `regularUsers`"

"GRANT ACCESS ON DATABASE neo4j TO `regularUsers`"

Rows: 2

The database START/STOP privileges

The START privilege can be used to enable the ability to start a database:

GRANT [IMMUTABLE] START
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

For example, to grant the role regularUsers the ability to start the database neo4j, use:

GRANT START ON DATABASE neo4j TO regularUsers

The START privilege can also be denied:

DENY [IMMUTABLE] START
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

For example, to deny the role regularUsers the ability to start to the database neo4j, use:

DENY START ON DATABASE system TO regularUsers

The STOP privilege can be used to enable the ability to stop a database:

631

GRANT [IMMUTABLE] STOP
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

For example, to grant the role regularUsers the ability to stop the database neo4j, use:

GRANT STOP ON DATABASE neo4j TO regularUsers

The STOP privilege can also be denied:

DENY [IMMUTABLE] STOP
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

For example, to deny the role regularUsers the ability to stop the database neo4j, use:

DENY STOP ON DATABASE system TO regularUsers

The privileges granted can be seen using the SHOW PRIVILEGES command:

SHOW ROLE regularUsers PRIVILEGES AS COMMANDS

Table 634. Result

command

"DENY ACCESS ON DATABASE remote-db TO `regularUsers`"

"DENY START ON DATABASE system TO `regularUsers`"

"DENY STOP ON DATABASE system TO `regularUsers`"

"GRANT ACCESS ON DATABASE neo4j TO `regularUsers`"

"GRANT START ON DATABASE neo4j TO `regularUsers`"

"GRANT STOP ON DATABASE neo4j TO `regularUsers`"

Rows: 6

 Note that START and STOP privileges are not included in the ALL DATABASE PRIVILEGES.

The INDEX MANAGEMENT privileges

Indexes can be created, deleted, or listed with the CREATE INDEX, DROP INDEX, and SHOW INDEXES
commands. The privilege to do this can be granted with GRANT CREATE INDEX, GRANT DROP INDEX, and GRANT
SHOW INDEX commands. The privilege to do all three can be granted with GRANT INDEX MANAGEMENT
command.

Table 635. Index management privilege syntax

Command GRANT { CREATE | DROP | SHOW } INDEX

632

Syntax
GRANT [IMMUTABLE] { CREATE | DROP | SHOW } INDEX[ES]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Enables the specified roles to create, delete, or show indexes in the home database, specific database(s),
or all databases.

Table 636. Index management privilege syntax

Command GRANT INDEX

Syntax
GRANT [IMMUTABLE] INDEX[ES] [MANAGEMENT]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Enables the specified roles to manage indexes in the home database, specific database(s), or all
databases.

For example, to grant the role regularUsers the ability to create indexes on the database neo4j, use:

GRANT CREATE INDEX ON DATABASE neo4j TO regularUsers

The CONSTRAINT MANAGEMENT privileges

Constraints can be created, deleted, or listed with the CREATE CONSTRAINT, DROP CONSTRAINT and SHOW
CONSTRAINTS commands. The privilege to do this can be granted with GRANT CREATE CONSTRAINT, GRANT
DROP CONSTRAINT, GRANT SHOW CONSTRAINT commands. The privilege to do all three can be granted with
GRANT CONSTRAINT MANAGEMENT command.

Table 637. Constraint management privilege syntax

Command GRANT { CREATE | DROP | SHOW } CONSTRAINT

Syntax
GRANT [IMMUTABLE] { CREATE | DROP | SHOW } CONSTRAINT[S]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Enables the specified roles to create, delete, or show constraints on the home database, specific
database(s), or all databases.

Table 638. Constraint management privilege syntax

Command GRANT CONSTRAINT

Syntax
GRANT [IMMUTABLE] CONSTRAINT[S] [MANAGEMENT]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Enable the specified roles to manage constraints on the home database, specific database(s), or all
databases.

633

For example, to grant the role regularUsers the ability to create constraints on the database neo4j, use:

GRANT CREATE CONSTRAINT ON DATABASE neo4j TO regularUsers

The NAME MANAGEMENT privileges

The right to create new labels, relationship types, and property names is different from the right to create
nodes, relationships, and properties. The latter is managed using database WRITE privileges, while the
former is managed using specific GRANT/DENY CREATE NEW ... commands for each type.

Table 639. Node label management privileges syntax

Command GRANT CREATE NEW LABEL

Syntax
GRANT [IMMUTABLE] CREATE NEW [NODE] LABEL[S]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Enables the specified roles to create new node labels in the home database, specific database(s), or all
databases.

Table 640. Relationship type management privileges syntax

Command GRANT CREATE NEW TYPE

Syntax
GRANT [IMMUTABLE] CREATE NEW [RELATIONSHIP] TYPE[S]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Enables the specified roles to create new relationship types in the home database, specific database(s), or
all databases.

Table 641. Property name management privileges syntax

Command GRANT CREATE NEW NAME

Syntax
GRANT [IMMUTABLE] CREATE NEW [PROPERTY] NAME[S]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Enables the specified roles to create new property names in the home database, specific database(s), or
all databases.

Table 642. Node label, relationship type, and property name privileges management syntax

Command GRANT NAME

Syntax
GRANT [IMMUTABLE] NAME [MANAGEMENT]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

634

Description Enables the specified roles to create new labels, relationship types, and property names in the home
database, specific database(s), or all databases.

For example, to grant the role regularUsers the ability to create new properties on nodes or relationships
on the database neo4j, use:

GRANT CREATE NEW PROPERTY NAME ON DATABASE neo4j TO regularUsers

Granting ALL DATABASE PRIVILEGES

The right to access a database, create and drop indexes and constraints and create new labels,
relationship types or property names can be achieved with a single command:

GRANT [IMMUTABLE] ALL [[DATABASE] PRIVILEGES]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]



Note that the privileges for starting and stopping all databases, and transaction
management, are not included in the ALL DATABASE PRIVILEGES grant. These privileges
are associated with administrators while other database privileges are of use to domain
and application developers.

For example, granting the abilities above on the database neo4j to the role databaseAdminUsers is done
using the following query.

GRANT ALL DATABASE PRIVILEGES ON DATABASE neo4j TO databaseAdminUsers

The privileges granted can be seen using the SHOW PRIVILEGES command:

SHOW ROLE databaseAdminUsers PRIVILEGES AS COMMANDS

Table 643. Result

command

"GRANT ALL DATABASE PRIVILEGES ON DATABASE neo4j TO `databaseAdminUsers`"

Rows: 1

Granting TRANSACTION MANAGEMENT privileges

The right to run the commands SHOW TRANSACTIONS, TERMINATE TRANSACTIONS, and the deprecated
procedures dbms.listTransactions, dbms.listQueries, dbms.killQuery, dbms.killQueries,
dbms.killTransaction and dbms.killTransactions is now managed through the SHOW TRANSACTION and
TERMINATE TRANSACTION privileges.

Table 644. Database privilege syntax

635

Command GRANT SHOW TRANSACTION

Syntax
GRANT [IMMUTABLE] SHOW TRANSACTION[S] [({ * | user[, ...] })]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Enables the specified roles to list transactions and queries for user(s) or all users in the home database,
specific database(s), or all databases.

Table 645. Database privilege syntax

Command GRANT TERMINATE TRANSACTION

Syntax
GRANT [IMMUTABLE] TERMINATE TRANSACTION[S] [({ * | user[, ...] })]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Enables the specified roles to end running transactions and queries for user(s) or all users in the home
database, specific database(s), or all databases.

Table 646. Database privilege syntax

Command GRANT TRANSACTION

Syntax
GRANT [IMMUTABLE] TRANSACTION [MANAGEMENT] [({ * | user[, ...] })]
 ON { HOME DATABASE | DATABASE[S] { * | name[, ...] } }
 TO role[, ...]

Description Enables the specified roles to manage transactions and queries for user(s) or all users in the home
database, specific database(s), or all databases.


Note that the TRANSACTION MANAGEMENT privileges are not included in the ALL DATABASE
PRIVILEGES.

For example, to grant the role regularUsers the ability to list transactions for user jake on the database
neo4j, use:

GRANT SHOW TRANSACTION (jake) ON DATABASE neo4j TO regularUsers

DBMS administration

This section explains how to use Cypher to manage Neo4j DBMS administrative privileges.

All DBMS privileges are relevant system-wide. Like user management, they do not belong to one specific
database or graph. For more details on the differences between graphs, databases and the DBMS, refer to
Neo4j databases and graphs.

636

Figure 6. Syntax of GRANT and DENY DBMS Privileges

Figure 7. DBMS privileges hierarchy

The admin role has a number of built-in privileges. These include:

• Create, delete, and modify databases and aliases.

• Change configuration parameters.

• Manage transactions.

• Manage users and roles.

• Manage sub-graph privileges.

• Manage procedure security.

To enable a user to perform these tasks, you can grant them the admin role, but it is also possible to make a
custom role with a subset of these privileges. All privileges are also assignable using Cypher commands.
For more details, see the following sections:

• Role management

637

• User management

• Impersonation privileges management

• Database management

• Alias management

• Privilege management

• Transaction management

• Procedure and user-defined function security

Using a custom role to manage DBMS privileges

In order to have an administrator role with a subset of privileges that includes all DBMS privileges, but not
all database privileges, you can copy the admin role and revoke or deny the unwanted privileges. A second
option is to build a custom administrator from scratch by granting the wanted privileges instead.

As an example, an administrator role can be created to only manage users and roles by using the second
option:

1. First, create the new role:

CREATE ROLE usermanager

2. Then grant the privilege to manage users:

GRANT USER MANAGEMENT ON DBMS TO usermanager

3. And to manage roles:

GRANT ROLE MANAGEMENT ON DBMS TO usermanager

The resulting role has privileges that only allow user and role management. To list all privileges for the role
usermanager as commands, run this query:

SHOW ROLE usermanager PRIVILEGES AS COMMANDS

Table 647. Result

command

"GRANT ROLE MANAGEMENT ON DBMS TO `usermanager`"

"GRANT USER MANAGEMENT ON DBMS TO `usermanager`"

Rows: 2

Note that this role does not allow all DBMS capabilities. For example, the role is missing privileges for
management, creation and drop of databases as well as execution of admin procedures. To create a more

638

powerful administrator, you can grant a different set of privileges.

In the following example, a new administrator role is created to perform almost all DBMS capabilities,
excluding database management. However, the role still has some limited database capabilities, such as
managing transactions:

1. Again, start by creating a new role:

CREATE ROLE customAdministrator

2. Then grant the privilege for all DBMS capabilities:

GRANT ALL DBMS PRIVILEGES ON DBMS TO customAdministrator

3. And explicitly deny the privilege to manage databases and aliases:

DENY DATABASE MANAGEMENT ON DBMS TO customAdministrator

4. Next, grant the transaction management privilege:

GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO customAdministrator

The resulting role has privileges that include all DBMS privileges except creating, dropping, and modifying
databases and aliases, as well as managing transactions. Use the following query to list all privileges for
the role customAdministrator as commands:

SHOW ROLE customAdministrator PRIVILEGES AS COMMANDS

Table 648. Result

command

"DENY DATABASE MANAGEMENT ON DBMS TO `customAdministrator`"

"GRANT ALL DBMS PRIVILEGES ON DBMS TO `customAdministrator`"

"GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO `customAdministrator`"

Rows: 3

The DBMS ROLE MANAGEMENT privileges

The DBMS privileges for role management are assignable using Cypher administrative commands. They
can be granted, denied and revoked like other privileges.

 The syntax descriptions use the style from access control.

Table 649. Role management privileges command syntax

639

Command Description

GRANT [IMMUTABLE] CREATE ROLE
 ON DBMS
 TO role[, ...]

Enables the specified roles to create new roles.

GRANT [IMMUTABLE] RENAME ROLE
 ON DBMS
 TO role[, ...]

Enables the specified roles to change the name
of roles.

GRANT [IMMUTABLE] DROP ROLE
 ON DBMS
 TO role[, ...]

Enables the specified roles to delete roles.

GRANT [IMMUTABLE] ASSIGN ROLE
 ON DBMS
 TO role[, ...]

Enables the specified roles to assign roles to
users.

GRANT [IMMUTABLE] REMOVE ROLE
 ON DBMS
 TO role[, ...]

Enables the specified roles to remove roles from
users.

GRANT [IMMUTABLE] SHOW ROLE
 ON DBMS
 TO role[, ...]

Enables the specified roles to list roles.

GRANT [IMMUTABLE] ROLE MANAGEMENT
 ON DBMS
 TO role[, ...]

Enables the specified roles to create, delete,
assign, remove, and list roles.

The ability to add roles can be granted via the CREATE ROLE privilege. See an example:

GRANT CREATE ROLE ON DBMS TO roleAdder

The resulting role has privileges that only allow adding roles. List all privileges for the role roleAdder as
commands by using the following query:

SHOW ROLE roleAdder PRIVILEGES AS COMMANDS

Table 650. Result

command

"GRANT CREATE ROLE ON DBMS TO `roleAdder`"

Rows: 1

640

The ability to rename roles can be granted via the RENAME ROLE privilege. See an example:

GRANT RENAME ROLE ON DBMS TO roleNameModifier

The resulting role has privileges that only allow renaming roles. List all privileges for the role
roleNameModifier using the following query:

SHOW ROLE roleNameModifier PRIVILEGES AS COMMANDS

Table 651. Result

command

"GRANT RENAME ROLE ON DBMS TO `roleNameModifier`"

Rows: 1

The ability to delete roles can be granted via the DROP ROLE privilege. See an example:

GRANT DROP ROLE ON DBMS TO roleDropper

The resulting role has privileges that only allow deleting roles. List all privileges for the role roleDropper by
using the following query:

SHOW ROLE roleDropper PRIVILEGES AS COMMANDS

Table 652. Result

command

"GRANT DROP ROLE ON DBMS TO `roleDropper`"

Rows: 1

The ability to assign roles to users can be granted via the ASSIGN ROLE privilege. See an example:

GRANT ASSIGN ROLE ON DBMS TO roleAssigner

The resulting role has privileges that only allow assigning/granting roles. List all privileges for the role
roleAssigner as commands by using the following query:

SHOW ROLE roleAssigner PRIVILEGES AS COMMANDS

Table 653. Result

command

"GRANT ASSIGN ROLE ON DBMS TO `roleAssigner`"

641

command

Rows: 1

The ability to remove roles from users can be granted via the REMOVE ROLE privilege. See an example:

GRANT REMOVE ROLE ON DBMS TO roleRemover

The resulting role has privileges that only allow removing/revoking roles. List all privileges for the role
roleRemover as commands by using the following query:

SHOW ROLE roleRemover PRIVILEGES AS COMMANDS

Table 654. Result

command

"GRANT REMOVE ROLE ON DBMS TO `roleRemover`"

Rows: 1

The ability to show roles can be granted via the SHOW ROLE privilege. A role with this privilege is allowed to
execute the SHOW ROLES and SHOW POPULATED ROLES administration commands. For the SHOW ROLES WITH
USERS and SHOW POPULATED ROLES WITH USERS administration commands, both this privilege and the SHOW
USER privilege are required. The following query shows an example of how to grant the SHOW ROLE privilege:

In order to use SHOW ROLES WITH USERS and SHOW POPULATED ROLES WITH USERS administration commands,
both the SHOW ROLE and the SHOW USER privileges are required. See an example of how to grant the SHOW
ROLE privilege:

GRANT SHOW ROLE ON DBMS TO roleShower

The resulting role has privileges that only allow showing roles. List all privileges for the role roleShower as
commands by using the following query:

SHOW ROLE roleShower PRIVILEGES AS COMMANDS

Table 655. Result

command

"GRANT SHOW ROLE ON DBMS TO `roleShower`"

Rows: 1

The privileges to create, rename, delete, assign, remove, and list roles can be granted via the ROLE
MANAGEMENT privilege. See an example:

642

GRANT ROLE MANAGEMENT ON DBMS TO roleManager

The resulting role has all privileges to manage roles. List all privileges for the role roleManager as
commands by using the following query:

SHOW ROLE roleManager PRIVILEGES AS COMMANDS

Table 656. Result

command

"GRANT ROLE MANAGEMENT ON DBMS TO `roleManager`"

Rows: 1

The DBMS USER MANAGEMENT privileges

The DBMS privileges for user management can be assigned using Cypher administrative commands. They
can be granted, denied and revoked like other privileges.

 The syntax descriptions use the style from access control.

Table 657. User management privileges command syntax

Command Description

GRANT [IMMUTABLE] CREATE USER
 ON DBMS
 TO role[, ...]

Enables the specified roles to create new users.

GRANT [IMMUTABLE] RENAME USER
 ON DBMS
 TO role[, ...]

Enables the specified roles to change the name
of users.

GRANT [IMMUTABLE] ALTER USER
 ON DBMS
 TO role[, ...]

Enables the specified roles to modify users.

GRANT [IMMUTABLE] SET PASSWORD[S]
 ON DBMS
 TO role[, ...]

Enables the specified roles to modify users'
passwords and whether those passwords must
be changed upon first login.

GRANT [IMMUTABLE] SET USER HOME DATABASE
 ON DBMS
 TO role[, ...]

Enables the specified roles to modify users'
home database.

643

Command Description

GRANT [IMMUTABLE] SET USER STATUS
 ON DBMS
 TO role[, ...]

Enables the specified roles to modify the account
status of users.

GRANT [IMMUTABLE] DROP USER
 ON DBMS
 TO role[, ...]

Enables the specified roles to delete users.

GRANT [IMMUTABLE] SHOW USER
 ON DBMS
 TO role[, ...]

Enables the specified roles to list users.

GRANT [IMMUTABLE] USER MANAGEMENT
 ON DBMS
 TO role[, ...]

Enables the specified roles to create, delete,
modify, and list users.

The ability to add users can be granted via the CREATE USER privilege. See an example:

GRANT CREATE USER ON DBMS TO userAdder

The resulting role has privileges that only allow adding users. List all privileges for the role userAdder as
commands by using this query:

SHOW ROLE userAdder PRIVILEGES AS COMMANDS

Table 658. Result

command

"GRANT CREATE USER ON DBMS TO `userAdder`"

Rows: 1

The ability to rename users can be granted via the RENAME USER privilege. The following query shows an
example of this:

GRANT RENAME USER ON DBMS TO userNameModifier

The resulting role has privileges that only allow renaming users:

SHOW ROLE userNameModifier PRIVILEGES AS COMMANDS

Lists all privileges for role userNameModifier:

644

Table 659. Result

command

"GRANT RENAME USER ON DBMS TO `userNameModifier`"

Rows: 1

The ability to modify users can be granted via the ALTER USER privilege. See an example:

GRANT ALTER USER ON DBMS TO userModifier

The resulting role has privileges that only allow modifying users. List all privileges for the role
userModifier as commands by using the following query:

SHOW ROLE userModifier PRIVILEGES AS COMMANDS

Table 660. Result

command

"GRANT ALTER USER ON DBMS TO `userModifier`"

Rows: 1

A user that is granted the ALTER USER privilege is allowed to run the ALTER USER administration command
with one or several of the SET PASSWORD, SET PASSWORD CHANGE [NOT] REQUIRED and SET STATUS parts:

ALTER USER jake SET PASSWORD 'secret' SET STATUS SUSPENDED

The ability to modify users' passwords and whether those passwords must be changed upon first login
can be granted via the SET PASSWORDS privilege. See an example:

GRANT SET PASSWORDS ON DBMS TO passwordModifier

The resulting role has privileges that only allow modifying users' passwords and whether those passwords
must be changed upon first login. List all privileges for the role passwordModifier as commands by using
the following query:

SHOW ROLE passwordModifier PRIVILEGES AS COMMANDS

Table 661. Result

command

"GRANT SET PASSWORD ON DBMS TO `passwordModifier`"

Rows: 1

645

A user that is granted the SET PASSWORDS privilege is allowed to run the ALTER USER administration
command with one or both of the SET PASSWORD and SET PASSWORD CHANGE [NOT] REQUIRED parts:

ALTER USER jake SET PASSWORD 'abc123' CHANGE NOT REQUIRED

The ability to modify the account status of users can be granted via the SET USER STATUS privilege. See an
example:

GRANT SET USER STATUS ON DBMS TO statusModifier

The resulting role has privileges that only allow modifying the account status of users. List all privileges for
the role statusModifier as commands by using the following query:

SHOW ROLE statusModifier PRIVILEGES AS COMMANDS

Table 662. Result

command

"GRANT SET USER STATUS ON DBMS TO `statusModifier`"

Rows: 1

A user that is granted the SET USER STATUS privilege is allowed to run the ALTER USER administration
command with only the SET STATUS part:

ALTER USER jake SET STATUS ACTIVE

In order to be able to modify the home database of users, grant the SET USER HOME DATABASE privilege. See
an example:

GRANT SET USER HOME DATABASE ON DBMS TO statusModifier

The resulting role has privileges that only allow modifying the home database of users. List all privileges
for the role statusModifier as commands by using the following query:

SHOW ROLE statusModifier PRIVILEGES AS COMMANDS

Table 663. Result

command

"GRANT SET USER HOME DATABASE ON DBMS TO `statusModifier`"

"GRANT SET USER STATUS ON DBMS TO `statusModifier`"

Rows: 2

A user that is granted the SET USER HOME DATABASE privilege is allowed to run the ALTER USER

646

administration command with only the SET HOME DATABASE or REMOVE HOME DATABASE part:

ALTER USER jake SET HOME DATABASE otherDb

ALTER USER jake REMOVE HOME DATABASE


Note that the combination of the SET PASSWORDS, SET USER STATUS, and the SET USER
HOME DATABASE privilege actions is equivalent to the ALTER USER privilege action.

The ability to delete users can be granted via the DROP USER privilege. See an example:

GRANT DROP USER ON DBMS TO userDropper

The resulting role has privileges that only allow deleting users. List all privileges for the role userDropper as
commands by using the following query:

SHOW ROLE userDropper PRIVILEGES AS COMMANDS

Table 664. Result

command

"GRANT DROP USER ON DBMS TO `userDropper`"

Rows: 1

The ability to show users can be granted via the SHOW USER privilege. See an example:

GRANT SHOW USER ON DBMS TO userShower

The resulting role has privileges that only allow showing users. List all privileges for the role userShower as
commands by using the following query:

SHOW ROLE userShower PRIVILEGES AS COMMANDS

Table 665. Result

command

"GRANT SHOW USER ON DBMS TO `userShower`"

Rows: 1

The privileges to create, rename, modify, delete, and list users can be granted via the USER MANAGEMENT
privilege. See an example:

GRANT USER MANAGEMENT ON DBMS TO userManager

647

The resulting role has all privileges to manage users. List all privileges for the role userManager as
commands by using the following query:

SHOW ROLE userManager PRIVILEGES AS COMMANDS

Table 666. Result

command

"GRANT SHOW USER ON DBMS TO `userManager`"

Rows: 1

The DBMS IMPERSONATE privileges

The DBMS privileges for impersonation can be assigned through Cypher administrative commands. They
can be granted, denied, and revoked like other privileges.

Impersonation is the ability of a user to assume another user’s roles (and therefore privileges), with the
restriction of not being able to execute updating admin commands as the impersonated user (i.e. they
would still be able to use SHOW commands).

The ability to impersonate users can be granted via the IMPERSONATE privilege.

 The syntax descriptions use the style from access control.

Table 667. Impersonation privileges command syntax

Command Description

GRANT [IMMUTABLE] IMPERSONATE [(*)]
 ON DBMS
 TO role[, ...]

Enables the specified roles to impersonate any
user.

GRANT [IMMUTABLE] IMPERSONATE (user[, ...])
 ON DBMS
 TO role[, ...]

Enables the specified roles to impersonate the
specified users.

The following query shows an example of this. Note that userImpersonator must be an existing role in
order to make this query work:

Query

GRANT IMPERSONATE (*) ON DBMS TO userImpersonator

The resulting role has privileges that allow impersonating all users:

648

Query

SHOW ROLE userImpersonator PRIVILEGES AS COMMANDS

Table 668. Result

command

"GRANT IMPERSONATE (*) ON DBMS TO `userImpersonator`"

Rows: 1

It is also possible to deny and revoke that privilege. See an example which shows of how the
userImpersonator user would be able to impersonate all users, except alice:

Query

DENY IMPERSONATE (alice) ON DBMS TO userImpersonator

To grant (or revoke) the permissions to impersonate a specific user or a subset of users, you can first list
them with this query:

Query

GRANT IMPERSONATE (alice, bob) ON DBMS TO userImpersonator

The DBMS DATABASE MANAGEMENT privileges

The DBMS privileges for database management can be assigned by using Cypher administrative
commands. They can be granted, denied and revoked like other privileges.

 The syntax descriptions use the style from access control.

Table 669. Database management privileges command syntax

Command Description

GRANT [IMMUTABLE] CREATE DATABASE
 ON DBMS
 TO role[, ...]

Enables the specified roles to create new
standard databases and aliases.

GRANT [IMMUTABLE] DROP DATABASE
 ON DBMS
 TO role[, ...]

Enables the specified roles to delete standard
databases and aliases.

GRANT [IMMUTABLE] ALTER DATABASE
 ON DBMS
 TO role[, ...]

Enables the specified roles to modify standard
databases and aliases.

649

Command Description

GRANT [IMMUTABLE] SET DATABASE ACCESS
 ON DBMS
 TO role[, ...]

Enables the specified roles to modify access to
standard databases.

GRANT CREATE COMPOSITE DATABASE
 ON DBMS
 TO role[, ...]

Enables the specified roles to create new
composite databases.

GRANT DROP COMPOSITE DATABASE
 ON DBMS
 TO role[, ...]

Enables the specified roles to delete composite
databases.

GRANT COMPOSITE DATABASE MANAGEMENT
 ON DBMS
 TO role[, ...]

Enables the specified roles to create and delete
composite databases.

GRANT [IMMUTABLE] DATABASE MANAGEMENT
 ON DBMS
 TO role[, ...]

Enables the specified roles to create, delete, and
modify databases and aliases.

The ability to create standard databases and aliases can be granted via the CREATE DATABASE privilege. See
an example:

GRANT CREATE DATABASE ON DBMS TO databaseAdder

The resulting role has privileges that only allow creating standard databases and aliases. List all privileges
for the role databaseAdder as commands by using the following query:

SHOW ROLE databaseAdder PRIVILEGES AS COMMANDS

Table 670. Result

command

"GRANT CREATE DATABASE ON DBMS TO `databaseAdder`"

Rows: 1

The ability to create composite databases can be granted via the CREATE COMPOSITE DATABASE privilege.
See an example:

GRANT CREATE COMPOSITE DATABASE ON DBMS TO compositeDatabaseAdder

The resulting role has privileges that only allow creating composite databases. List all privileges for the role

650

compositeDatabaseAdder as commands by using the following query:

SHOW ROLE compositeDatabaseAdder PRIVILEGES AS COMMANDS

Table 671. Result

command

"GRANT CREATE COMPOSITE DATABASE ON DBMS TO `compositeDatabaseAdder`"

Rows: 1

The ability to delete standard databases and aliases can be granted via the DROP DATABASE privilege. See
an example:

GRANT DROP DATABASE ON DBMS TO databaseDropper

The resulting role has privileges that only allow deleting standard databases and aliases. List all privileges
for the role databaseDropper as commands by using the following query:

SHOW ROLE databaseDropper PRIVILEGES AS COMMANDS

Table 672. Result

command

"GRANT DROP DATABASE ON DBMS TO `databaseDropper`"

Rows: 1

The ability to delete composite databases can be granted via the DROP COMPOSITE DATABASE privilege. See
an example:

GRANT DROP COMPOSITE DATABASE ON DBMS TO compositeDatabaseDropper

The resulting role has privileges that only allow deleting composite databases. List all privileges for the role
compositeDatabaseDropper as commands by using the following query:

SHOW ROLE compositeDatabaseDropper PRIVILEGES AS COMMANDS

Table 673. Result

command

"GRANT DROP COMPOSITE DATABASE ON DBMS TO `compositeDatabaseDropper`"

Rows: 1

The ability to modify standard databases and aliases can be granted via the ALTER DATABASE privilege. See

651

an example:

GRANT ALTER DATABASE ON DBMS TO databaseModifier

The resulting role has privileges that only allow modifying standard databases and aliases. List all
privileges for the role databaseModifier as commands by using the following query:

SHOW ROLE databaseModifier PRIVILEGES AS COMMANDS

Table 674. Result

command

"GRANT ALTER DATABASE ON DBMS TO `databaseModifier`"

Rows: 1

The ability to modify access to standard databases can be granted via the SET DATABASE ACCESS privilege.
See an example:

GRANT SET DATABASE ACCESS ON DBMS TO accessModifier

The resulting role has privileges that only allow modifying access to standard databases. List all privileges
for the role accessModifier as commands by using the following query:

SHOW ROLE accessModifier PRIVILEGES AS COMMANDS

Table 675. Result

command

"GRANT SET DATABASE ACCESS ON DBMS TO `accessModifier`"

Rows: 1

The ability to create and delete composite databases can be granted via the COMPOSITE DATABASE
MANAGEMENT privilege. See an example:

GRANT COMPOSITE DATABASE MANAGEMENT ON DBMS TO compositeDatabaseManager

The resulting role has all privileges to manage composite databases. List all privileges for the role
compositeDatabaseManager as commands by using the following query:

SHOW ROLE compositeDatabaseManager PRIVILEGES AS COMMANDS

Table 676. Result

652

command

"GRANT COMPOSITE DATABASE MANAGEMENT ON DBMS TO `compositeDatabaseManager`"

Rows: 1

The ability to create, delete, and modify databases and aliases can be granted via the DATABASE MANAGEMENT
privilege. See an example:

GRANT DATABASE MANAGEMENT ON DBMS TO databaseManager

The resulting role has all privileges to manage standard and composite databases as well as aliases. List all
privileges for the role databaseManager as commands by using the following query:

SHOW ROLE databaseManager PRIVILEGES AS COMMANDS

Table 677. Result

command

"GRANT DATABASE MANAGEMENT ON DBMS TO `databaseManager`"

Rows: 1

The DBMS ALIAS MANAGEMENT privileges

The DBMS privileges for alias management can be assigned by using Cypher administrative commands
and can be applied to both local and remote aliases. They can be granted, denied and revoked like other
privileges. It is also possible to manage aliases with database management commands.

 The syntax descriptions use the style from access control.

Table 678. Alias management privileges command syntax

Command Description

GRANT [IMMUTABLE] CREATE ALIAS
ON DBMS
TO role[, ...]

Enables the specified roles to create new aliases.

GRANT [IMMUTABLE] DROP ALIAS
ON DBMS
TO role[, ...]

Enables the specified roles to delete aliases.

GRANT [IMMUTABLE] ALTER ALIAS
ON DBMS
TO role[, ...]

Enables the specified roles to modify aliases.

653

Command Description

GRANT [IMMUTABLE] SHOW ALIAS
ON DBMS
TO role[, ...]

Enables the specified roles to list aliases.

GRANT [IMMUTABLE] ALIAS MANAGEMENT
ON DBMS
TO role[, ...]

Enables the specified roles to list, create, delete,
and modify aliases.

The ability to create aliases can be granted via the CREATE ALIAS privilege. See an example:

GRANT CREATE ALIAS ON DBMS TO aliasAdder

The resulting role has privileges that only allow creating aliases. List all privileges for the role aliasAdder
as commands by using the following query:

SHOW ROLE aliasAdder PRIVILEGES AS COMMANDS

Table 679. Result

command

"GRANT CREATE ALIAS ON DBMS TO `aliasAdder`"

Rows: 1

The ability to delete aliases can be granted via the DROP ALIAS privilege. See an example:

GRANT DROP ALIAS ON DBMS TO aliasDropper

The resulting role has privileges that only allow deleting aliases. See all privileges for the role aliasDropper
as commands by using the following query:

SHOW ROLE aliasDropper PRIVILEGES AS COMMANDS

Table 680. Result

command

"GRANT DROP ALIAS ON DBMS TO `aliasDropper`"

Rows: 1

The ability to modify aliases can be granted via the ALTER ALIAS privilege. See an example:

GRANT ALTER ALIAS ON DBMS TO aliasModifier

654

The resulting role has privileges that only allow modifying aliases. List all privileges for the role
aliasModifier as commands by using the following query:

SHOW ROLE aliasModifier PRIVILEGES AS COMMANDS

Table 681. Result

command

"GRANT ALTER ALIAS ON DBMS TO `aliasModifier`"

Rows: 1

The ability to list aliases can be granted via the SHOW ALIAS privilege. See an example:

GRANT SHOW ALIAS ON DBMS TO aliasLister

The resulting role has privileges that only allow modifying aliases. List all privileges for the role
aliasLister as commands by using the following query:

SHOW ROLE aliasLister PRIVILEGES AS COMMANDS

Table 682. Result

command

"GRANT SHOW ALIAS ON DBMS TO `aliasLister`"

Rows: 1

The privileges to list, create, delete, and modify aliases can be granted via the ALIAS MANAGEMENT privilege.
See an example:

GRANT ALIAS MANAGEMENT ON DBMS TO aliasManager

The resulting role has all privileges to manage aliases. List all privileges for the role aliasManager as
commands by using the following query:

SHOW ROLE aliasManager PRIVILEGES AS COMMANDS

Table 683. Result

command

"GRANT ALIAS MANAGEMENT ON DBMS TO `aliasManager`"

Rows: 1

655

The DBMS SERVER MANAGEMENT privileges

The DBMS privileges for server management can be assigned using Cypher administrative commands.
They can be granted, denied, and revoked like other privileges.

 The syntax descriptions use the style from access control.

Table 684. Server management privileges command syntax

Command Description

GRANT SERVER MANAGEMENT
 ON DBMS
 TO role[, ...]

Enables the specified roles to show, enable,
rename, alter, reallocate, deallocate, and drop
servers.

GRANT SHOW SERVERS
 ON DBMS
 TO role[, ...]

Enables the specfied roles to show servers.

The DBMS PRIVILEGE MANAGEMENT privileges

The DBMS privileges for privilege management can be assigned by using Cypher administrative
commands. They can be granted, denied and revoked like other privileges.

 The syntax descriptions use the style from access control.

Table 685. Privilege management privileges command syntax

Command Description

GRANT [IMMUTABLE] SHOW PRIVILEGE
 ON DBMS
 TO role[, ...]

Enables the specified roles to list privileges.

GRANT [IMMUTABLE] ASSIGN PRIVILEGE
 ON DBMS
 TO role[, ...]

Enables the specified roles to assign privileges
using the GRANT and DENY commands.

GRANT [IMMUTABLE] REMOVE PRIVILEGE
 ON DBMS
 TO role[, ...]

Enables the specified roles to remove privileges
using the REVOKE command.

GRANT [IMMUTABLE] PRIVILEGE MANAGEMENT
 ON DBMS
 TO role[, ...]

Enables the specified roles to list, assign, and
remove privileges.

656

The ability to list privileges can be granted via the SHOW PRIVILEGE privilege.

A user with this privilege is allowed to execute the SHOW PRIVILEGES and SHOW ROLE roleName PRIVILEGES
administration commands. To execute the SHOW USER username PRIVILEGES administration command, both
this privilege and the SHOW USER privilege are required. The following query shows an example of how to
grant the SHOW PRIVILEGE privilege:

GRANT SHOW PRIVILEGE ON DBMS TO privilegeShower

The resulting role has privileges that only allow showing privileges. List all privileges for the role
privilegeShower as commands by using the following query:

SHOW ROLE privilegeShower PRIVILEGES AS COMMANDS

Table 686. Result

command

"GRANT SHOW PRIVILEGE ON DBMS TO `privilegeShower`"

Rows: 1



Note that no specific privileges are required for showing the current user’s privileges
through the SHOW USER username PRIVILEGES or SHOW USER PRIVILEGES commands.

In addition, note that if a non-native auth provider like LDAP is in use, SHOW USER
PRIVILEGES will only work with a limited capacity by making it only possible for a user to
show their own privileges. Other users' privileges cannot be listed when using a non-
native auth provider.

The ability to assign privileges to roles can be granted via the ASSIGN PRIVILEGE privilege. A user with this
privilege is allowed to execute GRANT and DENY administration commands. See an example of how to grant
this privilege:

GRANT ASSIGN PRIVILEGE ON DBMS TO privilegeAssigner

The resulting role has privileges that only allow assigning privileges. List all privileges for the role
privilegeAssigner as commands by using the following query:

SHOW ROLE privilegeAssigner PRIVILEGES AS COMMANDS

Table 687. Result

command

"GRANT ASSIGN PRIVILEGE ON DBMS TO `privilegeAssigner`"

Rows: 1

657

The ability to remove privileges from roles can be granted via the REMOVE PRIVILEGE privilege.

A user with this privilege is allowed to execute REVOKE administration commands. See an example of how
to grant this privilege:

GRANT REMOVE PRIVILEGE ON DBMS TO privilegeRemover

The resulting role has privileges that only allow removing privileges. List all privileges for the role
privilegeRemover as commands by using the following query:

SHOW ROLE privilegeRemover PRIVILEGES AS COMMANDS

Table 688. Result

command

"GRANT REMOVE PRIVILEGE ON DBMS TO `privilegeRemover`"

Rows: 1

The privileges to list, assign, and remove privileges can be granted via the PRIVILEGE MANAGEMENT privilege.
See an example:

GRANT PRIVILEGE MANAGEMENT ON DBMS TO privilegeManager

The resulting role has all privileges to manage privileges. List all privileges for the role privilegeManager as
commands by using the following query:

SHOW ROLE privilegeManager PRIVILEGES AS COMMANDS

Table 689. Result

command

"GRANT PRIVILEGE MANAGEMENT ON DBMS TO `privilegeManager`"

Rows: 1

The DBMS EXECUTE privileges

The DBMS privileges for procedure and user defined function execution can be assigned by using Cypher
administrative commands. They can be granted, denied and revoked like other privileges.

 The syntax descriptions use the style from access control.

Table 690. Execute privileges command syntax

658

Command Description

GRANT [IMMUTABLE] EXECUTE PROCEDURE[S] name-globbing[, ...]
 ON DBMS
 TO role[, ...]

Enables the specified roles to execute the given
procedures.

GRANT [IMMUTABLE] EXECUTE BOOSTED PROCEDURE[S] name-
globbing[, ...]
 ON DBMS
 TO role[, ...]

Enables the specified roles to execute the given
procedures with elevated privileges.

GRANT [IMMUTABLE] EXECUTE ADMIN[ISTRATOR] PROCEDURES
 ON DBMS
 TO role[, ...]

Enables the specified roles to execute
procedures annotated with @Admin. The
procedures are executed with elevated
privileges.

GRANT [IMMUTABLE] EXECUTE [USER [DEFINED]] FUNCTION[S] name-
globbing[, ...]
 ON DBMS
 TO role[, ...]

Enables the specified roles to execute the given
user defined functions.

GRANT [IMMUTABLE] EXECUTE BOOSTED [USER [DEFINED]] FUNCTION[
S] name-globbing[, ...]
 ON DBMS
 TO role[, ...]

Enables the specified roles to execute the given
user defined functions with elevated privileges.

The EXECUTE BOOSTED privileges replace the dbms.security.procedures.default_allowed and
dbms.security.procedures.roles configuration parameters for procedures and user defined functions. The
configuration parameters are still honored as a set of temporary privileges. These cannot be revoked, but
will be updated on each restart with the current configuration values.

The EXECUTE PROCEDURE privilege

The ability to execute a procedure can be granted via the EXECUTE PROCEDURE privilege. A role with this
privilege is allowed to execute the procedures matched by the name-globbing. The following query shows
an example of how to grant this privilege:

GRANT EXECUTE PROCEDURE db.schema.* ON DBMS TO procedureExecutor

Users with the role procedureExecutor can then run any procedure in the db.schema namespace. The
procedure is run using the user’s own privileges.

The resulting role has privileges that only allow executing procedures in the db.schema namespace. List all
privileges for the role procedureExecutor as commands by using the following query:

SHOW ROLE procedureExecutor PRIVILEGES AS COMMANDS

Table 691. Result

659

command

"GRANT EXECUTE PROCEDURE db.schema.* ON DBMS TO `procedureExecutor`"

Rows: 1

In order to allow the execution of all but only a few procedures, you can grant EXECUTE PROCEDURES * and
deny the unwanted procedures. For example, the following queries allow the execution of all procedures,
except those starting with dbms.killTransaction:

GRANT EXECUTE PROCEDURE * ON DBMS TO deniedProcedureExecutor

DENY EXECUTE PROCEDURE dbms.killTransaction* ON DBMS TO deniedProcedureExecutor

The resulting role has privileges that only allow executing all procedures except those starting with
dbms.killTransaction. List all privileges for the role deniedProcedureExecutor as commands by using the
following query:

SHOW ROLE deniedProcedureExecutor PRIVILEGES AS COMMANDS

Table 692. Result

command

"DENY EXECUTE PROCEDURE dbms.killTransaction* ON DBMS TO `deniedProcedureExecutor`"

"GRANT EXECUTE PROCEDURE * ON DBMS TO `deniedProcedureExecutor`"

Rows: 2

Both the dbms.killTransaction and the dbms.killTransactions procedures are blocked here, as well as
any other procedures starting with dbms.killTransaction.

The EXECUTE BOOSTED PROCEDURE privilege

The ability to execute a procedure with elevated privileges can be granted via the EXECUTE BOOSTED
PROCEDURE privilege. A user with this privilege is allowed to execute the procedures matched by the name-
globbing without the execution being restricted to their other privileges.

There is no need to grant an individual EXECUTE PROCEDURE privilege for the procedures either, as granting
the EXECUTE BOOSTED PROCEDURE includes an implicit EXECUTE PROCEDURE grant for them. A denied EXECUTE
PROCEDURE still denies executing the procedure. The following query shows an example of how to grant this
privilege:

GRANT EXECUTE PROCEDURE * ON DBMS TO boostedProcedureExecutor
GRANT EXECUTE BOOSTED PROCEDURE db.labels, db.relationshipTypes ON DBMS TO boostedProcedureExecutor

Users with the role boostedProcedureExecutor can thus run the db.labels and the db.relationshipTypes
procedures with full privileges. Now they can see everything on the graph and not just the labels and types

660

that the user has TRAVERSE privilege on.

The resulting role has privileges that only allow executing the db.labels and the db.relationshipTypes
procedures, but with elevated execution. List all privileges for the role boostedProcedureExecutor as
commands by using the following query:

SHOW ROLE boostedProcedureExecutor PRIVILEGES AS COMMANDS

Table 693. Result

command

"GRANT EXECUTE PROCEDURE * ON DBMS TO `boostedProcedureExecutor`"

"GRANT EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO `boostedProcedureExecutor`"

"GRANT EXECUTE BOOSTED PROCEDURE db.relationshipTypes ON DBMS TO `boostedProcedureExecutor`"

Rows: 3

Granting the EXECUTE BOOSTED PROCEDURE privilege on its own allows the procedure to be both executed
(due to the implicit EXECUTE PROCEDURE grant) and proceed with elevated privileges. A denied EXECUTE
BOOSTED PROCEDURE on its own behaves slightly differently: it only denies the elevation and not the
execution of the procedure. However, a role with both a granted EXECUTE BOOSTED PROCEDURE and a denied
EXECUTE BOOSTED PROCEDURE will deny the execution as well. This is explained through the following
examples:

661

Example 407. Grant EXECUTE PROCEDURE and deny EXECUTE BOOSTED PROCEDURE

GRANT EXECUTE PROCEDURE * ON DBMS TO deniedBoostedProcedureExecutor1

DENY EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO deniedBoostedProcedureExecutor1

The resulting role has privileges that allow the execution of all procedures using the user’s own
privileges. It also prevents the db.labels procedure from being elevated. Still, the denied EXECUTE
BOOSTED PROCEDURE does not block execution of db.labels.

To list all privileges for role deniedBoostedProcedureExecutor1 as commands, use the following
query:

SHOW ROLE deniedBoostedProcedureExecutor1 PRIVILEGES AS COMMANDS

Table 694. Result

command

"DENY EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO `deniedBoostedProcedureExecutor1`"

"GRANT EXECUTE PROCEDURE * ON DBMS TO `deniedBoostedProcedureExecutor1`"

Rows: 2

Example 408. Grant EXECUTE BOOSTED PROCEDURE and deny EXECUTE PROCEDURE

GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO deniedBoostedProcedureExecutor2

DENY EXECUTE PROCEDURE db.labels ON DBMS TO deniedBoostedProcedureExecutor2

The resulting role has privileges that allow executing all procedures with elevated privileges except
db.labels, which is not allowed to be executed at all. List all privileges for the role
deniedBoostedProcedureExecutor2 as commands by using the following query:

SHOW ROLE deniedBoostedProcedureExecutor2 PRIVILEGES AS COMMANDS

Table 695. Result

command

"DENY EXECUTE PROCEDURE db.labels ON DBMS TO `deniedBoostedProcedureExecutor2`"

"GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO `deniedBoostedProcedureExecutor2`"

Rows: 2

662

Example 409. Grant EXECUTE BOOSTED PROCEDURE and deny EXECUTE BOOSTED PROCEDURE

GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO deniedBoostedProcedureExecutor3

DENY EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO deniedBoostedProcedureExecutor3

The resulting role has privileges that allow executing all procedures with elevated privileges except
db.labels, which is not allowed to be executed at all. List all privileges for the role
deniedBoostedProcedureExecutor3 as commands by using the following query:

SHOW ROLE deniedBoostedProcedureExecutor3 PRIVILEGES AS COMMANDS

Table 696. Result

command

"DENY EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO `deniedBoostedProcedureExecutor3`"

"GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO `deniedBoostedProcedureExecutor3`"

Rows: 2

663

Example 410. Grant EXECUTE PROCEDURE and EXECUTE BOOSTED PROCEDURE and deny EXECUTE BOOSTED
PROCEDURE

GRANT EXECUTE PROCEDURE db.labels ON DBMS TO deniedBoostedProcedureExecutor4

GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO deniedBoostedProcedureExecutor4

DENY EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO deniedBoostedProcedureExecutor4

The resulting role has privileges that allow executing all procedures with elevated privileges except
the db.labels procedure, which is only allowed to execute using the user’s own privileges. List all
privileges for the role deniedBoostedProcedureExecutor4 as commands by using the following query:

SHOW ROLE deniedBoostedProcedureExecutor4 PRIVILEGES AS COMMANDS

Table 697. Result

command

"DENY EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO `deniedBoostedProcedureExecutor4`"

"GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO `deniedBoostedProcedureExecutor4`"

"GRANT EXECUTE PROCEDURE db.labels ON DBMS TO `deniedBoostedProcedureExecutor4`"

Rows: 3

664

Example 411. How would the privileges from examples 1 to 4 affect the output of a procedure?

Assume there is a procedure called myProc.

This procedure gives the result A and B for a user with EXECUTE PROCEDURE privilege and A, B and C for
a user with EXECUTE BOOSTED PROCEDURE privilege.

Now, adapt the privileges from examples 1 to 4 to be applied to this procedure and show what is
returned. With the privileges from example 1, granted EXECUTE PROCEDURE * and denied EXECUTE
BOOSTED PROCEDURE myProc, the myProc procedure returns the result A and B.

With the privileges from example 2, granted EXECUTE BOOSTED PROCEDURE * and denied EXECUTE
PROCEDURE myProc, execution of the myProc procedure is not allowed.

With the privileges from example 3, granted EXECUTE BOOSTED PROCEDURE * and denied EXECUTE
BOOSTED PROCEDURE myProc, execution of the myProc procedure is not allowed.

For comparison, when granted:

• EXECUTE PROCEDURE myProc: the myProc procedure returns the result A and B.

• EXECUTE BOOSTED PROCEDURE myProc: execution of the myProc procedure is not allowed.

• EXECUTE PROCEDURE myProc and EXECUTE BOOSTED PROCEDURE myProc: the myProc procedure
returns the result A, B, and C.

For comparison, when only EXECUTE BOOSTED PROCEDURE myProc is granted, the myProc procedure
returns the result A, B, and C; without the need for granting of the EXECUTE PROCEDURE myProc
privilege.

The EXECUTE ADMIN PROCEDURE privilege

The ability to execute admin procedures (annotated with @Admin) can be granted via the EXECUTE ADMIN
PROCEDURES privilege. This privilege is equivalent to granting the EXECUTE BOOSTED PROCEDURE privilege on
each of the admin procedures. Any newly added admin procedure is automatically included in this privilege.
The following query shows an example of how to grant this privilege:

GRANT EXECUTE ADMIN PROCEDURES ON DBMS TO adminProcedureExecutor

Users with the role adminProcedureExecutor can then run any admin procedure with elevated privileges.

The resulting role has privileges that allow executing all admin procedures. List all privileges for the role
adminProcedureExecutor as commands by using the following query:

SHOW ROLE adminProcedureExecutor PRIVILEGES AS COMMANDS

Table 698. Result

665

command

"GRANT EXECUTE ADMIN PROCEDURES ON DBMS TO `adminProcedureExecutor`"

Rows: 1

In order to compare this with the EXECUTE PROCEDURE and EXECUTE BOOSTED PROCEDURE privileges, revisit the
myProc procedure, but this time as an admin procedure, which will give the result A, B and C when allowed
to execute.

By starting with a user only granted with the EXECUTE PROCEDURE myProc privilege, execution of the myProc
procedure is not allowed.

However, for a user granted with the EXECUTE BOOSTED PROCEDURE myProc or EXECUTE ADMIN PROCEDURES
privileges, the myProc procedure returns the result A, B and C.

Any denied EXECUTE privilege results in the procedure not being allowed to be executed. In this case, it
does not matter whether EXECUTE PROCEDURE, EXECUTE BOOSTED PROCEDURE or EXECUTE ADMIN PROCEDURES is
being denied.

The EXECUTE USER DEFINED FUNCTION privilege

The ability to execute a user-defined function (UDF) can be granted via the EXECUTE USER DEFINED
FUNCTION privilege. A role with this privilege is allowed to execute the UDFs matched by the name-
globbing.


The EXECUTE USER DEFINED FUNCTION privilege does not apply to built-in functions, which
are always executable.

666

Example 412. Execute user-defined function

The following query shows an example of how to grant this privilege:

GRANT EXECUTE USER DEFINED FUNCTION apoc.coll.* ON DBMS TO functionExecutor

Or in short form:

GRANT EXECUTE FUNCTION apoc.coll.* ON DBMS TO functionExecutor

Users with the role functionExecutor can thus run any UDF in the apoc.coll namespace. The
function here is run using the user’s own privileges.

The resulting role has privileges that only allow executing UDFs in the apoc.coll namespace. List all
privileges for the role functionExecutor as commands by using the following query:

SHOW ROLE functionExecutor PRIVILEGES AS COMMANDS

Table 699. Result

command

"GRANT EXECUTE FUNCTION apoc.coll.* ON DBMS TO `functionExecutor`"

Rows: 1

To allow the execution of all but a few UDFs, you can grant EXECUTE USER DEFINED FUNCTIONS * and deny
the unwanted functions.

667

Example 413. Execute user-defined functions

The following queries allow the execution of all UDFs except those starting with apoc.any.prop:

GRANT EXECUTE USER DEFINED FUNCTIONS * ON DBMS TO deniedFunctionExecutor

DENY EXECUTE USER DEFINED FUNCTION apoc.any.prop* ON DBMS TO deniedFunctionExecutor

Or in short form:

GRANT EXECUTE FUNCTIONS * ON DBMS TO deniedFunctionExecutor

DENY EXECUTE FUNCTION apoc.any.prop* ON DBMS TO deniedFunctionExecutor

The resulting role has privileges that only allow the execution of all procedures except those starting
with apoc.any.prop. List all privileges for the role deniedFunctionExecutor as commands by using the
following query:

SHOW ROLE deniedFunctionExecutor PRIVILEGES AS COMMANDS

Table 700. Result

command

"DENY EXECUTE FUNCTION apoc.any.prop* ON DBMS TO `deniedFunctionExecutor`"

"GRANT EXECUTE FUNCTION * ON DBMS TO `deniedFunctionExecutor`"

Rows: 2

The apoc.any.property and apoc.any.properties are blocked, as well as any other procedures
starting with apoc.any.prop.

The EXECUTE BOOSTED USER DEFINED FUNCTION privilege

The ability to execute a user-defined function (UDF) with elevated privileges can be granted via the
EXECUTE BOOSTED USER DEFINED FUNCTION privilege. A user with this privilege is allowed to execute the
UDFs matched by the name-globbing without the execution being restricted to their other privileges.

There is no need to grant an individual EXECUTE USER DEFINED FUNCTION privilege for the functions, as
granting EXECUTE BOOSTED USER DEFINED FUNCTION includes an implicit EXECUTE USER DEFINED FUNCTION
grant. However, a denied EXECUTE USER DEFINED FUNCTION still prevents the function to be executed.


The EXECUTE BOOSTED USER DEFINED FUNCTION privilege does not apply to built-in
functions, as they have no concept of elevated privileges.

Granting EXECUTE BOOSTED USER DEFINED FUNCTION on its own allows the UDF to be both executed

668

(because of the implicit EXECUTE USER DEFINED FUNCTION grant) and gives it elevated privileges during the
execution. A denied EXECUTE BOOSTED USER DEFINED FUNCTION on its own behaves slightly differently: it
only denies the elevation and not the execution of the UDF. However, a role with only a granted EXECUTE
BOOSTED USER DEFINED FUNCTION and a denied EXECUTE BOOSTED USER DEFINED FUNCTION prevents the
execution to be performed as well. This is the same behavior as for the EXECUTE BOOSTED PROCEDURE
privilege.

Example 414. Execute boosted user-defined function

The following query shows an example of how to grant the EXECUTE BOOSTED USER DEFINED FUNCTION
privilege:

GRANT EXECUTE USER DEFINED FUNCTION * ON DBMS TO boostedFunctionExecutor
GRANT EXECUTE BOOSTED USER DEFINED FUNCTION apoc.any.properties ON DBMS TO boostedFunctionExecutor

Or in short form:

GRANT EXECUTE FUNCTION * ON DBMS TO boostedFunctionExecutor
GRANT EXECUTE BOOSTED FUNCTION apoc.any.properties ON DBMS TO boostedFunctionExecutor

Users with the role boostedFunctionExecutor can thus run apoc.any.properties with full privileges
and see every property on the node/relationship, not just the properties that the user has READ
privilege on.

The resulting role has privileges that only allow executing of the UDF apoc.any.properties, but with
elevated execution. List all privileges for the role boostedFunctionExecutor as commands by using
the following query:

SHOW ROLE boostedFunctionExecutor PRIVILEGES AS COMMANDS

Table 701. Result

command

"GRANT EXECUTE FUNCTION * ON DBMS TO `boostedFunctionExecutor`"

"GRANT EXECUTE BOOSTED FUNCTION apoc.any.properties ON DBMS TO `boostedFunctionExecutor`"

Rows: 2

Procedure and user-defined function name-globbing

The name-globbing for procedure and user defined function names is a simplified version of globbing for
filename expansions. It only allows two wildcard characters: * and ?, which are used for multiple and single
character matches. In this case, * means 0 or more characters and ? matches exactly one character.

669



The name-globbing is subject to the standard Cypher restrictions on valid identifiers,
with the exception that it may include dots, stars, and question marks without the need
for escaping using backticks.

Each part of the name-globbing separated by dots may be individually escaped, for
example, mine.`procedureWith%` but not mine.procedure`With%`. It is also good to keep
in mind that wildcard characters behave as wildcards even when escaped. As an
example, using `*` is equivalent to using *, and thus allows executing all functions or
procedures and not only the procedure or function named *.

The examples below only use procedures, but the same rules apply to user defined function names:

• mine.public.exampleProcedure

• mine.public.exampleProcedure1

• mine.public.exampleProcedure2

• mine.public.with#Special§Characters

• mine.private.exampleProcedure

• mine.private.exampleProcedure1

• mine.private.exampleProcedure2

• mine.private.with#Special§Characters

• your.exampleProcedure

GRANT EXECUTE PROCEDURE * ON DBMS TO globbing1

Users with the role globbing1 can thus run all the procedures.

GRANT EXECUTE PROCEDURE mine.*.exampleProcedure ON DBMS TO globbing2

Users with the role globbing2 can thus run procedures mine.public.exampleProcedure and
mine.private.exampleProcedure, but none of the others.

GRANT EXECUTE PROCEDURE mine.*.exampleProcedure? ON DBMS TO globbing3

Users with the role globbing3 can thus run procedures mine.public.exampleProcedure1,
mine.private.exampleProcedure1 and mine.private.exampleProcedure2, but none of the others.

GRANT EXECUTE PROCEDURE *.exampleProcedure ON DBMS TO globbing4

Users with the role globbing4 can thus run procedures your.exampleProcedure,
mine.public.exampleProcedure and mine.private.exampleProcedure, but none of the others.

GRANT EXECUTE PROCEDURE mine.public.exampleProcedure* ON DBMS TO globbing5

670

Users with the role globbing5 can thus run procedures mine.public.exampleProcedure,
mine.public.exampleProcedure1 and mine.public.exampleProcedure42, but none of the others.

GRANT EXECUTE PROCEDURE `mine.public.with#*§Characters`, mine.private.`with#Spec???§Characters` ON DBMS TO
globbing6

Users with the role globbing6 can thus run procedures mine.public.with#Special§Characters and
mine.private.with#Special§Characters, but none of the others.


The name-globbing may be fully or partially escaped. Both * and ? are interpreted as
wildcards either way.

Granting ALL DBMS PRIVILEGES

The right to perform the following privileges can be achieved with a single command:

• Create, drop, assign, remove, and show roles.

• Create, alter, drop, show, and impersonate users.

• Create, alter, and drop databases and aliases.

• Enable, alter, rename, reallocate, deallocate, and drop servers

• Show, assign, and remove privileges.

• Execute all procedures with elevated privileges.

• Execute all user defined functions with elevated privileges.

 The syntax descriptions use the style from access control.

GRANT [IMMUTABLE] ALL [[DBMS] PRIVILEGES]
 ON DBMS
 TO role[, ...]

For example, to grant the role dbmsManager the abilities above, use the following query:

GRANT ALL DBMS PRIVILEGES ON DBMS TO dbmsManager

The privileges granted can be seen using the SHOW PRIVILEGES command:

SHOW ROLE dbmsManager PRIVILEGES AS COMMANDS

Table 702. Result

command

"GRANT ALL DBMS PRIVILEGES ON DBMS TO `dbmsManager`"

Rows: 1

671

Limitations

This section lists the known limitations and implications of Neo4js role-based access

control security.

Security and Indexes

As described in Indexes for search performance, Neo4j 5 supports the creation and use of indexes to
improve the performance of Cypher queries.

Note that the Neo4j security model impacts the results of queries, regardless if the indexes are used or not.
When using non full-text Neo4j indexes, a Cypher query will always return the same results it would have
if no index existed. This means that, if the security model causes fewer results to be returned due to
restricted read access in Graph and sub-graph access control, the index will also return the same fewer
results.

However, this rule is not fully obeyed by Indexes for full-text search. These specific indexes are backed by
Lucene internally. It is therefore not possible to know for certain whether a security violation has affected
each specific entry returned from the index. In face of this, Neo4j will return zero results from full-text
indexes in case it is determined that any result might be violating the security privileges active for that
query.

Since full-text indexes are not automatically used by Cypher, they do not lead to the case where the same
Cypher query would return different results simply because such an index was created. Users need to
explicitly call procedures to use these indexes. The problem is only that, if this behavior is not known by
the user, they might expect the full-text index to return the same results that a different, but semantically
similar, Cypher query does.

Example with denied properties

Consider the following example. The database has nodes with labels :User and :Person, and they have
properties name and surname. There are indexes on both properties:

CREATE INDEX singleProp FOR (n:User) ON (n.name)
CREATE INDEX composite FOR (n:User) ON (n.name, n.surname)
CREATE FULLTEXT INDEX userNames FOR (n:User|Person) ON EACH [n.name, n.surname]


Full-text indexes support multiple labels. See Indexes for full-text search for more details
on creating and using full-text indexes.

After creating these indexes, it would appear that the latter two indexes accomplish the same thing.
However, this is not completely accurate. The composite and full-text indexes behave in different ways
and are focused on different use cases. A key difference is that full-text indexes are backed by Lucene, and
will use the Lucene syntax for querying.

This has consequences for users restricted on the labels or properties involved in the indexes. Ideally, if the
labels and properties in the index are denied, they can correctly return zero results from both native

672

indexes and full-text indexes. However, there are borderline cases where this is not as simple.

Imagine the following nodes were added to the database:

CREATE (:User {name: 'Sandy'})
CREATE (:User {name: 'Mark', surname: 'Andy'})
CREATE (:User {name: 'Andy', surname: 'Anderson'})
CREATE (:User:Person {name: 'Mandy', surname: 'Smith'})
CREATE (:User:Person {name: 'Joe', surname: 'Andy'})

Consider denying the label :Person:

DENY TRAVERSE Person ON GRAPH * TO users

If the user runs a query that uses the native single property index on name:

MATCH (n:User) WHERE n.name CONTAINS 'ndy' RETURN n.name

This query performs several checks:

• Scans the index to create a stream of results of nodes with the name property, which leads to five
results.

• Filters the results to include only nodes where n.name CONTAINS 'ndy', filtering out Mark and Joe,
which leads to three results.

• Filters the results to exclude nodes that also have the denied label :Person, filtering out Mandy, which
leads to two results.

Two results will be returned from this dataset and only one of them has the surname property.

In order to use the native composite index on name and surname, the query needs to include a predicate on
the surname property as well:

MATCH (n:User)
WHERE n.name CONTAINS 'ndy' AND n.surname IS NOT NULL
RETURN n.name

This query performs several checks, which are almost identical to the single property index query:

• Scans the index to create a stream of results of nodes with the name and surname property, which leads
to four results.

• Filters the results to include only nodes where n.name CONTAINS 'ndy', filtering out Mark and Joe,
which leads to two results.

• Filters the results to exclude nodes that also have the denied label :Person, filtering out Mandy, which
leads to only one result.

Only one result was returned from the above dataset. What if this query with the full-text index was used
instead:

673

CALL db.index.fulltext.queryNodes("userNames", "ndy") YIELD node, score
RETURN node.name

The problem now is that it is not certain whether the results provided by the index were achieved due to a
match to the name or the surname property. The steps taken by the query engine would be:

• Run a Lucene query on the full-text index to produce results containing ndy in either property, leading
to five results.

• Filter the results to exclude nodes that also have the label :Person, filtering out Mandy and Joe, leading
to three results.

This difference in results is caused by the OR relationship between the two properties in the index creation.

Denying properties

Now consider denying access on properties, like the surname property:

DENY READ {surname} ON GRAPH * TO users

For that, run the same queries again:

MATCH (n:User)
WHERE n.name CONTAINS 'ndy'
RETURN n.name

This query operates exactly as before, returning the same two results, because nothing in it relates to the
denied property.

However, this is not the same for the query targeting the composite index:

MATCH (n:User)
WHERE n.name CONTAINS 'ndy' AND n.surname IS NOT NULL
RETURN n.name

Since the surname property is denied, it will appear to always be null and the composite index empty.
Therefore, the query returns no result.

Now consider the full-text index query:

CALL db.index.fulltext.queryNodes("userNames", "ndy") YIELD node, score
RETURN node.name

The problem remains, since it is not certain whether the results provided by the index were returned due to
a match on the name or the surname property. Results from the surname property now need to be excluded
by the security rules, because they require that the user is unable to see any surname properties. However,
the security model is not able to introspect the Lucene query in order to know what it will actually do,
whether it works only on the allowed name property, or also on the disallowed surname property. What is
known is that the earlier query returned a match for Joe Andy which should now be filtered out. Therefore,
in order to never return results the user should not be able to see, all results need to be blocked. The steps

674

taken by the query engine would be:

• Determine if the full-text index includes denied properties.

• If yes, return an empty results stream. Otherwise, it will process as described before.

In this case, the query will return zero results rather than simply returning the results Andy and Sandy,
which might have been expected.

Security and labels

Traversing the graph with multi-labeled nodes

The general influence of access control privileges on graph traversal is described in detail in Graph and
sub-graph access control. The following section will only focus on nodes due to their ability to have
multiple labels. Relationships can only have one type of label and thus they do not exhibit the behavior this
section aims to clarify. While this section will not mention relationships further, the general function of the
traverse privilege also applies to them.

For any node that is traversable, due to GRANT TRAVERSE or GRANT MATCH, the user can get information about
the attached labels by calling the built-in labels() function. In the case of nodes with multiple labels, they
can be returned to users that weren’t directly granted access to.

To give an illustrative example, imagine a graph with three nodes: one labeled :A, another labeled :B and
one with the labels :A and :B. In this case, there is a user with the role custom defined by:

GRANT TRAVERSE ON GRAPH * NODES A TO custom

If that user were to execute

MATCH (n:A)
RETURN n, labels(n)

They would get a result with two nodes: the node that was labeled with :A and the node with labels :A :B.

In contrast, executing

MATCH (n:B)
RETURN n, labels(n)

This will return only the one node that has both labels: :A and :B. Even though :B did not have access to
traversals, there is one node with that label accessible in the dataset due to the allow-listed label :A that is
attached to the same node.

If a user is denied to traverse on a label they will never get results from any node that has this label
attached to it. Thus, the label name will never show up for them. As an example, this can be done by
executing:

DENY TRAVERSE ON GRAPH * NODES B TO custom

675

The query

MATCH (n:A)
RETURN n, labels(n)

will now return the node only labeled with :A, while the query

MATCH (n:B)
RETURN n, labels(n)

will now return no nodes.

The db.labels() procedure

In contrast to the normal graph traversal described in the previous section, the built-in db.labels()
procedure is not processing the data graph itself, but the security rules defined on the system graph. That
means:

• If a label is explicitly whitelisted (granted), it will be returned by this procedure.

• If a label is denied or isn’t explicitly allowed, it will not be returned by this procedure.

Reusing the previous example, imagine a graph with three nodes: one labeled :A, another labeled :B and
one with the labels :A and :B. In this case, there is a user with the role custom defined by:

GRANT TRAVERSE ON GRAPH * NODES A TO custom

This means that only label :A is explicitly allow-listed. Thus, executing

CALL db.labels()

will only return label :A, because that is the only label for which traversal was granted.

Security and count store operations

The rules of a security model may impact some of the database operations. This means extra security
checks are necessary to incur additional data accesses, especially in the case of count store operations.
These are, however, usually very fast lookups and the difference might be noticeable.

See the following security rules that set up a restricted and a free role as an example:

GRANT TRAVERSE ON GRAPH * NODES Person TO restricted
DENY TRAVERSE ON GRAPH * NODES Customer TO restricted
GRANT TRAVERSE ON GRAPH * ELEMENTS * TO free

Now, let’s look at what the database needs to do in order to execute the following query:

MATCH (n:Person)
RETURN count(n)

676

For both roles the execution plan will look like this:

+--------------------------+
| Operator |
+--------------------------+
| +ProduceResults |
| | +
| +NodeCountFromCountStore |
+--------------------------+

Internally, however, very different operations need to be executed. The following table illustrates the
difference:

User with free role User with restricted role

The database can access the count store and retrieve the
total number of nodes with the label :Person.

This is a very quick operation.

The database cannot access the count store because it must
make sure that only traversable nodes with the desired label
:Person are counted. Due to this, each node with the :Person
label needs to be accessed and examined to make sure that
they do not have a deny-listed label, such as :Customer.

Due to the additional data accesses that the security checks
need to do, this operation will be slower compared to
executing the query as an unrestricted user.

Immutable privileges
Unlike regular privileges, having privilege management privileges is not sufficient to enable immutable
privileges to be added or removed. They can only be administered when auth is disabled — that is, when
the configuration setting dbms.security.auth_enabled is set to false.

When to use immutable privileges

Immutable privileges are useful for restricting the actions of users who themselves are able to administer
privileges.

For example, you may want to prevent all users from performing Database Management, even the admin
user (who are themselves able to add or remove privileges). To do so, you could run:

DENY DATABASE MANAGEMENT ON DBMS TO PUBLIC

However, this would not be adequate. In case the admin user subsequently runs this:

REVOKE DENY DATABASE MANAGEMENT ON DBMS TO PUBLIC

They would effectively regain Database Management privileges. Instead, run the following query to
prevent this scenario:

DENY IMMUTABLE DATABASE MANAGEMENT ON DBMS TO PUBLIC

677

How to administer immutable privileges

Immutable privileges can only be administered when auth is disabled — that is, when the configuration
setting dbms.security.auth_enabled is set to false, for example. Under these conditions, immutable
privileges can be added and removed in a similar manner to regular privileges, using the IMMUTABLE
keyword.

See the Immutable privileges tutorial for examples of how to administer immutable privileges.

See Managing Privileges for more detail on syntax.

678

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#tutorial_immutable_privileges

Query tuning
This section describes query tuning for the Cypher query language.

Neo4j aims to execute queries as fast as possible.

However, when optimizing for maximum query execution performance, it may be helpful to rephrase
queries using knowledge about the domain and the application.

The overall goal of manual query performance optimization is to ensure that only necessary data is
retrieved from the graph. At the very least, data should get filtered out as early as possible in order to
reduce the amount of work that has to be done in the later stages of query execution. This also applies to
what gets returned: returning whole nodes and relationships ought to be avoided in favour of selecting
and returning only the data that is needed. You should also make sure to set an upper limit on variable
length patterns, so they don’t cover larger portions of the dataset than needed.

Each Cypher query gets optimized and transformed into an execution plan by the Cypher query planner.
To minimize the resources used for this, try to use parameters instead of literals when possible. This allows
Cypher to re-use your queries instead of having to parse and build new execution plans.

To read more about the execution plan operators mentioned in this section, see Execution plans.

Cypher query options
Query execution can be fine-tuned through the use of query options.

In order to use one or more of these options, the query must be prepended with CYPHER, followed by the
query option(s), as exemplified thus:

CYPHER query-option [further-query-options] query

Cypher runtime

The Cypher runtime runs queries and returns records based on an execution plan. Depending on the Neo4j
edition, there are two different runtimes available:

Slotted

In the slotted runtime, the operators in the execution plan are chained together in a tree, where each
non-leaf operator feeds from one or two child operators. The tree comprises nested iterators, which
stream records from the top iterator, which pulls from the next iterator, and so on. Each variable in the
query gets a dedicated "slot" or offset, which the runtime uses for accessing (e.g., slotRow[0]).
The slotted runtime covers all operators and queries.
In Neo4j 5, it is the default for Community Edition.

Pipelined

In the pipelined runtime, the operators are grouped into pipelines in the execution plan to generate new

679

combinations and orders of execution, which are optimized for performance and memory usage.
The pipelined runtime covers most operators and queries. If the pipelined runtime does not support a
query, the planner falls back to the slotted runtime.
It is the default for Enterprise Edition.

Option Description Default

runtime=slotted Forces the Cypher query planner to use
the slotted runtime.

Default for
Community Edition.

runtime=pipelined Forces the Cypher query planner to use
the pipelined runtime.

Default for
Enterprise Edition.

Cypher planner

The Cypher planner takes a Cypher query and computes an execution plan that solves it. For any given
query there is likely a number of execution plan candidates that each solve the query in a different way.
The planner uses a search algorithm to find the execution plan with the lowest estimated execution cost.

This table describes the available planner options:

Query option Description Default

planner=cost Use cost based planning with default limits on plan
search space and time.



planner=idp Synonym for planner=cost.

planner=dp Use cost based planning without limits on plan
search space and time to perform an exhaustive
search for the best execution plan.


Using this option can significantly
increase the planning time of the
query.

Cypher connect-components planner

One part of the Cypher planner is responsible for combining sub-plans for separate patterns into larger
plans - a task referred to as connecting components.

This table describes the available query options for the connect-components planner:

680

Query option Description Default

connectComponentsPlanner=greedy Use a greedy approach when combining sub-plans.


Using this option can significantly
reduce the planning time of the
query.

connectComponentsPlanner=idp Use the cost based IDP search algorithm when
combining sub-plans.



Using this option can significantly
increase the planning time of the
query but usually finds better
plans.



Cypher update strategy

This option affects the eagerness of updating queries.

The possible values are:

Query option Description Default

updateStrategy=default Update queries are executed eagerly when needed. 

updateStrategy=eager Update queries are always executed eagerly.

Cypher expression engine

This option affects how the runtime evaluates expressions.

The possible values are:

Query option Description Default

expressionEngine=default Compile expressions and use the compiled
expression engine when needed.



expressionEngine=interpreted Always use the interpreted expression engine.

681

Query option Description Default

expressionEngine=compiled Always compile expressions and use the compiled
expression engine.

Cannot be used together with
runtime=interpreted.

Cypher operator engine

This query option affects whether the pipelined runtime attempts to generate compiled code for groups of
operators.

The possible values are:

Query option Description Default

operatorEngine=default Attempt to generate compiled operators when
applicable.



operatorEngine=interpreted Never attempt to generate compiled operators.

operatorEngine=compiled Always attempt to generate compiled operators.

Cannot be used together with runtime=interpreted
or runtime=slotted.

Cypher interpreted pipes fallback

This query option affects how the pipelined runtime behaves for operators it does not directly support.

The available options are:

Query option Description Default

interpretedPipesFallback=default Equivalent to
interpretedPipesFallback=whitelisted_plans_onl
y.



interpretedPipesFallback=disabled If the plan contains any operators not supported by
the pipelined runtime then another runtime is
chosen to execute the entire plan.

Cannot be used together with runtime=interpreted
or runtime=slotted.

682

Query option Description Default

interpretedPipesFallback=whitelisted
_plans_only

Parts of the execution plan can be executed on
another runtime. Only certain operators are allowed
to execute on another runtime.

Cannot be used together with runtime=interpreted
or runtime=slotted.

interpretedPipesFallback=all Parts of the execution plan may be executed on
another runtime. Any operator is allowed to execute
on another runtime. Queries with this option set
might produce incorrect results, or fail.

Cannot be used together with runtime=interpreted
or runtime=slotted.


This setting is experimental, and
using it in a production
environment is discouraged.

Cypher replanning

Cypher replanning occurs in the following circumstances:

• When the query is not in the cache. This can either be when the server is first started or restarted, if
the cache has recently been cleared, or if server.db.query_cache_size was exceeded.

• When the time has past the dbms.cypher.statistics_divergence_threshold value.

There may be situations where Cypher query planning can occur at a non-ideal time. For example, when a
query must be as fast as possible and a valid plan is already in place.


Replanning is not performed for all queries at once; it is performed in the same thread as
running the query, and can block the query. However, replanning one query does not
replan any other queries.

There are three different replan options available:

Option Description Default

replan=default This is the planning and replanning option as
described above.



683

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_server.db.query_cache_size
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_dbms.cypher.statistics_divergence_threshold

Option Description Default

replan=force This will force a replan, even if the plan is valid
according to the planning rules. Once the new plan
is complete, it replaces the existing one in the query
cache.

replan=skip If a valid plan already exists, it will be used even if
the planning rules would normally dictate that it
should be replanned.

The replan option is prepended to queries.

For example:

CYPHER replan=force MATCH ...

In a mixed workload, you can force replanning by using the Cypher EXPLAIN commands. This can be useful
to schedule replanning of queries which are expensive to plan, at known times of low load. Using EXPLAIN
will make sure the query is only planned, but not executed.

For example:

CYPHER replan=force EXPLAIN MATCH ...

During times of known high load, replan=skip can be useful to not introduce unwanted latency spikes.

Profile a query
There are two options to choose from when you want to analyze a query by looking at its execution plan:

EXPLAIN

If you want to see the execution plan but not run the statement, prepend your Cypher statement with
EXPLAIN. The statement will always return an empty result and make no changes to the database.

PROFILE

If you want to run the statement and see which operators are doing most of the work, use PROFILE. This
will run your statement and keep track of how many rows pass through each operator, and how much
each operator needs to interact with the storage layer to retrieve the necessary data. Note that profiling
your query uses more resources, so you should not profile unless you are actively working on a query.

See Execution plans for a detailed explanation of each of the operators contained in an execution plan.

684



Being explicit about what types and labels you expect relationships and nodes to have in
your query helps Neo4j use the best possible statistical information, which leads to
better execution plans. This means that when you know that a relationship can only be
of a certain type, you should add that to the query. The same goes for labels, where
declaring labels on both the start and end nodes of a relationship helps Neo4j find the
best way to execute the statement.

The use of indexes

This section describes the query plans when indexes are used in various scenarios.

The task of tuning calls for different indexes depends on what the queries look like. Therefore, it is
important to have a fundamental understanding of how the indexes operate. This section describes the
query plans that result from different index scenarios.

Node indexes and relationship indexes operate in the same way. Therefore, node and relationship indexes
are used interchangeably in this section.

For instructions on how to create and maintain indexes, refer to Indexes for search performance.

Index types and predicate compatibility

Generally, an index solves some combination of a label/relationship type predicate and property predicates
at the same time. There are different types of indexes available in Neo4j and these are compatible with
different property predicates.

Indexes are most often used for MATCH and OPTIONAL MATCH clauses that combine a label/relationship type
predicate with a property predicate. Therefore, it is important to know what kind of predicates can be
solved by the different indexes.

The different index types used for search performance are:

• LOOKUP

• RANGE

• POINT

• TEXT

• BTREE Deprecated


The RANGE and TEXT indexes can only perform limited matching on strings - exact, prefix,
substring, or suffix matches. A FULLTEXT index will instead tokenize the indexed string
values, so it can match terms anywhere within the strings. See Full-text search index.

LOOKUP indexes

LOOKUP indexes are present by default and solve only node label and relationship type predicates:

685

Predicate Syntax (example)

Node label predicate. [source, syntax, role="noheader"] ---- MATCH (n:Label) ----

Node label predicate. [source, syntax, role="noheader"] ---- MATCH (n) WHERE
n:Label ----

Relationship type predicate. [source, syntax, role="noheader"] ---- MATCH ()-[r:REL]→()

Relationship type predicate. [source, syntax, role="noheader"] ---- MATCH ()-[r]→()
WHERE r:REL ----



LOOKUP indexes are the most important index type in the database because they improve
the performance of the Cypher queries and the population of other indexes. Dropping
these indexes may lead to severe performance degradation. Therefore, carefully consider
the consequences before doing so.

RANGE indexes

In combination with node label and relationship type predicates, RANGE indexes support most types of
predicates:

Predicate Syntax

Equality check.
n.prop = value

List membership check.
n.prop IN list

Existence check.
n.prop IS NOT NULL

Range search.
n.prop > value

Prefix search.
STARTS WITH

POINT indexes

In combination with node label and relationship type predicates, POINT indexes only solve predicates
operating on points. Therefore, POINT indexes are only used when it is known that the predicate evaluates
to null for all non-point values.

POINT indexes only support point type predicates:

686

Predicate Syntax

Property point value.
n.prop = point({x: value, y: value})

Within bounding box.
point.withinBBox(n.prop, lowerLeftCorner,
upperRightCorner)

Distance.
point.distance(n.prop, center) < = distance

TEXT indexes

In combination with node label and relationship type predicates, TEXT indexes only solve predicates
operating on strings. That means that TEXT indexes are only used when it is known that the predicate
evaluates to null for all non-string values.

Predicates that only operate on strings are always solvable by a TEXT index:

• STARTS WITH

• ENDS WITH

• CONTAINS

However, other predicates are only used when it is known that the property is compared to a string:

• n.prop = "string"

• n.prop IN ["a", "b", "c"]

This means that a TEXT index is not able to solve e.g. a.prop = b.prop.

In summary, TEXT indexes support the following predicates:

Predicate Syntax

Equality check.
n.prop = 'example_string'

List membership check.
n.prop IN ['abc', 'example_string', 'neo4j']

Prefix search.
STARTS WITH

Suffix search.
ENDS WITH

687

Predicate Syntax

Substring search.
CONTAINS

In some cases, the system cannot determine whether an expression is of type string.

For example when the compared value is a parameter:

MATCH (n:Label) WHERE n.prop = $param

Such queries can be modified to provide this information. Depending on how values that are not of type
string should be treated, there are two options:

• If rows in which the expression is not of type string should be discarded, then adding WHERE
<expression> STARTS WITH '' is the right option: MATCH (n:Label) WHERE $param STARTS WITH '' AND
n.prop = $param

• If expressions which are not of type string should be converted to string, then wrapping these in
toString(<expression>) is the right choice: MATCH (n:Label) WHERE n.prop = toString($param)

Index preference

When multiple indexes are available and able to solve a predicate, there is an order defined that decides
which index to use.

It is defined as such:

• TEXT indexes are used over RANGE and POINT indexes for CONTAINS and ENDS WITH.

• POINT indexes are used over RANGE and TEXT indexes for distance and within a bounding box.

• RANGE indexes are preferred over TEXT and POINT indexes in all other cases.

LOOKUP indexes are not defined in this order since they never solve the same set of predicates as the other
indexes.

Examples:

• Node label LOOKUP index example

• Relationship type LOOKUP index example

• Node RANGE index example

• Relationship RANGE index example

• Node TEXT index

• Relationship TEXT index

• Multiple available index types

• Equality check using WHERE (single-property index)

• Equality check using WHERE (composite index)

688

• Range comparisons using WHERE (single-property index)

• Range comparisons using WHERE (composite index)

• Multiple range comparisons using WHERE (single-property index)

• Multiple range comparisons using WHERE (composite index)

• List membership check using IN (single-property index)

• List membership check using IN (composite index)

• Prefix search using STARTS WITH (single-property index)

• Prefix search using STARTS WITH (composite index)

• Suffix search using ENDS WITH (single-property index)

• Suffix search using ENDS WITH (composite index)

• Substring search using CONTAINS (single-property index)

• Substring search using CONTAINS (composite index)

• Existence check using IS NOT NULL (single-property index)

• Existence check using IS NOT NULL (composite index)

• Spatial distance searches (single-property index)

• Spatial bounding box searches (single-property index)

Node label LOOKUP index example

In the example below, a node LOOKUP index is available.

Query

MATCH (person:Person)
RETURN person

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | person | 42 | 42 | 0 | |
| | |
| | +---------------+----------------+------+---------+----------------+
| | |
| +NodeByLabelScan | person:Person | 42 | 42 | 43 | 120 |
2/1 | 0.565 | Fused in Pipeline 0 |
+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 43, total allocated memory: 184

689

Relationship type LOOKUP index example

In the example below, a relationship LOOKUP index is available.

Query

MATCH ()-[r:KNOWS]->()
RETURN r

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-------------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-------------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r | 22 | 22 | 0 |
| | | |
| | +------------------------------+----------------+------+---------
+----------------+ | | |
| +DirectedRelationshipTypeScan | (anon_0)-[r:KNOWS]->(anon_1) | 22 | 22 | 23 |
120 | 3/1 | 0.915 | Fused in Pipeline 0 |
+-------------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 23, total allocated memory: 184

Node RANGE index example

In the example below, a Person(firstname) node RANGE index is available.

Query

MATCH (person:Person {firstname: 'Andy'})
RETURN person

690

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows
| Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | person | 1
| 1 | 0 | | | | |
| | +--+----------------
+------+---------+----------------+ | | |
| +NodeIndexSeek | RANGE INDEX person:Person(firstname) WHERE firstname = $autostring_0 | 1
| 1 | 2 | 120 | 2/1 | 0.635 | Fused in Pipeline 0 |
+-----------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 184

Relationship RANGE index example

In this example, a KNOWS(since) relationship RANGE index is available.

Query

MATCH (person)-[relationship:KNOWS {since: 1992}]->(friend)
RETURN person, friend

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------------------
+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--------------------------------
+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | person, friend
| 1 | 1 | 0 | | | |
|
| |
+---+----------------
+------+---------+----------------+ | | |
| +DirectedRelationshipIndexSeek | RANGE INDEX (person)-[relationship:KNOWS(since)]->(friend) WHERE since
= $autoint_0 | 1 | 1 | 2 | 120 | 2/1 | 0.413 |
Fused in Pipeline 0 |
+--------------------------------
+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 184

691

Node TEXT index

In the example below, a Person(surname) node TEXT index is available.

Query

MATCH (person:Person {surname: 'Smith'})
RETURN person

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows |
Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | person | 1 |
1 | 0 | | | | |
| | +---+----------------
+------+---------+----------------+ | | |
| +NodeIndexSeek | TEXT INDEX person:Person(surname) WHERE surname = $autostring_0 | 1 |
1 | 2 | 120 | 2/0 | 0.446 | Fused in Pipeline 0 |
+-----------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 184

Relationship TEXT index

In this example, a KNOWS(lastMetLocation) relationship TEXT index is available.

Query

MATCH (person)-[relationship:KNOWS {metIn: 'Malmo'}]->(friend)
RETURN person, friend

692

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------------------
+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--------------------------------
+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | person, friend
| 1 | 1 | 0 | | | |
|
| |
+---+----------------
+------+---------+----------------+ | | |
| +DirectedRelationshipIndexSeek | TEXT INDEX (person)-[relationship:KNOWS(metIn)]->(friend) WHERE metIn =
$autostring_0 | 1 | 1 | 2 | 120 | 2/0 | 0.691 |
Fused in Pipeline 0 |
+--------------------------------
+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 184

Multiple available index types

In the example below, both a Person(middlename) node TEXT index and a Person(middlename) node RANGE
index are available. The RANGE node index is chosen.

Query

MATCH (person:Person {middlename: 'Ron'})
RETURN person

693

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person |
1 | 1 | 0 | | | | |
| | +--
+----------------+------+---------+----------------+ | |
|
| +NodeIndexSeek | RANGE INDEX person:Person(middlename) WHERE middlename = $autostring_0 |
1 | 1 | 2 | 120 | 2/1 | 0.423 | Fused in Pipeline 0 |
+-----------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 184

Equality check using WHERE (single-property index)

A query containing equality comparisons of a single indexed property in the WHERE clause is backed
automatically by the index. It is also possible for a query with multiple OR predicates to use multiple
indexes, if indexes exist on the properties. For example, if indexes exist on both :Label(p1) and
:Label(p2), MATCH (n:Label) WHERE n.p1 = 1 OR n.p2 = 2 RETURN n will use both indexes.

Query

MATCH (person:Person)
WHERE person.firstname = 'Andy'
RETURN person

694

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows
| Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | person | 1
| 1 | 0 | | | | |
| | +--+----------------
+------+---------+----------------+ | | |
| +NodeIndexSeek | RANGE INDEX person:Person(firstname) WHERE firstname = $autostring_0 | 1
| 1 | 2 | 120 | 2/1 | 0.292 | Fused in Pipeline 0 |
+-----------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 184

Equality check using WHERE (composite index)

A query containing equality comparisons for all the properties of a composite index will automatically be
backed by the same index. However, the query does not need to have equality on all properties. It can
have ranges and existence predicates as well. But in these cases rewrites might happen depending on
which properties have which predicates, see composite index limitations.

Query

MATCH (n:Person)
WHERE n.age = 35 AND n.country = 'UK'
RETURN n

However, the query MATCH (n:Person) WHERE n.age = 35 RETURN n will not be backed by the composite
index, as the query does not contain a predicate on the country property. It will only be backed by an index
on the Person label and age property defined thus: :Person(age); i.e. a single-property index.

Range comparisons using WHERE (single-property index)

Single-property indexes are also automatically used for inequality (range) comparisons of an indexed
property in the WHERE clause.

Query

MATCH (friend)<-[r:KNOWS]-(person)
WHERE r.since < 2011
RETURN friend, person

695

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+---------------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | friend, person
| 1 | 1 | 0 | | | |
|
| |
+--+----------------+------
+---------+----------------+ | | |
| +DirectedRelationshipIndexSeekByRange | RANGE INDEX (person)-[r:KNOWS(since)]->(friend) WHERE since <
$autoint_0 | 1 | 1 | 2 | 120 | 2/1 | 0.943 | Fused
in Pipeline 0 |
+---------------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 184

Range comparisons using WHERE (composite index)

Composite indexes are also automatically used for inequality (range) comparisons of indexed properties in
the WHERE clause. Equality or list membership check predicates may precede the range predicate. However,
predicates after the range predicate may be rewritten as an existence check predicate and a filter as
described in composite index limitations.

Query

MATCH ()-[r:KNOWS]-()
WHERE r.since < 2011 AND r.lastMet > 2019
RETURN r.since

696

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+----------------------------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+----------------------------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | `r.since`
| 2 | 2 | 0 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +Projection | cache[r.since] AS `r.since`
| 2 | 2 | 0 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +Filter | cache[r.lastMet] > $autoint_1
| 2 | 2 | 0 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +UndirectedRelationshipIndexSeek | RANGE INDEX (anon_0)-[r:KNOWS(since, lastMet)]-(anon_1) WHERE since <
$autoint_0 AND lastMet IS NOT | 2 | 2 | 2 | 120 | 1/1
| 0.525 | Fused in Pipeline 0 |
| | NULL, cache[r.since], cache[r.lastMet]
| | | | | | |
|
+----------------------------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 184

Multiple range comparisons using WHERE (single-property index)

When the WHERE clause contains multiple inequality (range) comparisons for the same property, these can
be combined in a single index range seek.

Query

MATCH (person:Person)
WHERE 10000 < person.highScore < 20000
RETURN person

697

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-----------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person
| 1 | 1 | 0 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +NodeIndexSeekByRange | RANGE INDEX person:Person(highScore) WHERE highScore > $autoint_0 AND highScore
< $autoint_1 | 1 | 1 | 2 | 120 | 2/1 | 0.286 |
Fused in Pipeline 0 |
+-----------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 184

Multiple range comparisons using WHERE (composite index)

When the WHERE clause contains multiple inequality (range) comparisons for the same property, these can
be combined in a single index range seek. That single range seek created in the following query will then
use the composite index Person(highScore, name) if it exists.

Query

MATCH (person:Person)
WHERE 10000 < person.highScore < 20000 AND person.name IS NOT NULL
RETURN person

698

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person
| 1 | 1 | 0 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +NodeIndexSeek | RANGE INDEX person:Person(highScore, name) WHERE highScore > $autoint_0 AND highScore
< $autoint_1 A | 1 | 1 | 2 | 120 | 2/1 | 4.498 |
Fused in Pipeline 0 |
| | ND name IS NOT NULL
| | | | | | |
|
+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 184

List membership check using IN (single-property index)

The IN predicate on r.since in the following query will use the single-property index KNOWS(lastMetIn) if it
exists.

Query

MATCH (person)-[r:KNOWS]->(friend)
WHERE r.lastMetIn IN ['Malmo', 'Stockholm']
RETURN person, friend

699

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--------------------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | person, friend
| 1 | 1 | 0 | | | |
|
| |
+--+----------------
+------+---------+----------------+ | | |
| +DirectedRelationshipIndexSeek | RANGE INDEX (person)-[r:KNOWS(lastMetIn)]->(friend) WHERE lastMetIn IN
$autolist_0 | 1 | 1 | 3 | 120 | 3/1 | 0.614 |
Fused in Pipeline 0 |
+--------------------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 3, total allocated memory: 184

List membership check using IN (composite index)

The IN predicates on r.since and r.lastMet in the following query will use the composite index
KNOWS(since, lastMet) if it exists.

Query

MATCH (person)-[r:KNOWS]->(friend)
WHERE r.since IN [1992, 2017] AND r.lastMet IN [2002, 2021]
RETURN person, friend

700

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person, friend
| 1 | 1 | 0 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +DirectedRelationshipIndexSeek | RANGE INDEX (person)-[r:KNOWS(since, lastMet)]->(friend) WHERE since IN
$autolist_0 AND lastMet IN $ | 1 | 1 | 5 | 120 | 5/1 |
1.864 | Fused in Pipeline 0 |
| | autolist_1
| | | | | | |
|
+--------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 5, total allocated memory: 184

Prefix search using STARTS WITH (single-property index)

The STARTS WITH predicate on person.firstname in the following query will use the Person(firstname)
index, if it exists.

Query

MATCH (person:Person)
WHERE person.firstname STARTS WITH 'And'
RETURN person

701

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person |
2 | 1 | 0 | | | | |
| | +--
+----------------+------+---------+----------------+ | |
|
| +NodeIndexSeekByRange | RANGE INDEX person:Person(firstname) WHERE firstname STARTS WITH $autostring_0 |
2 | 1 | 2 | 120 | 3/0 | 0.387 | Fused in Pipeline 0 |
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 184

Prefix search using STARTS WITH (composite index)

The STARTS WITH predicate on person.firstname in the following query will use the
Person(firstname,surname) index, if it exists. Any (non-existence check) predicate on person.surname will
be rewritten as existence check with a filter. However, if the predicate on person.firstname is a equality
check then a STARTS WITH on person.surname would also use the index (without rewrites). More
information about how the rewriting works can be found in composite index limitations.

Query

MATCH (person:Person)
WHERE person.firstname STARTS WITH 'And' AND person.surname IS NOT NULL
RETURN person

702

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-----------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person
| 1 | 1 | 0 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +NodeIndexSeek | RANGE INDEX person:Person(firstname, surname) WHERE firstname STARTS WITH
$autostring_0 AND surname | 1 | 1 | 2 | 120 | 3/0 |
0.534 | Fused in Pipeline 0 |
| | IS NOT NULL
| | | | | | |
|
+-----------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 184

Suffix search using ENDS WITH (single-property index)

The ENDS WITH predicate on r.metIn in the following query uses the KNOWS(metIn) index, if it exists. Text
indexes are optimized for CONTAINS and ENDS WITH and they are the only indexes that can solve those
predicates.

Query

MATCH (person)-[r:KNOWS]->(friend)
WHERE r.metIn ENDS WITH 'mo'
RETURN person, friend

Text indexes only index String values and therefore do not find other values.

Suffix search using ENDS WITH (composite index)

The ENDS WITH predicate on r.metIn in the following query uses the KNOWS(metIn, lastMetIn) index, if it
exists. However, it is rewritten as existence check and a filter due to the index not supporting actual suffix
searches for composite indexes, this is still faster than not using an index in the first place. Any (non-
existence check) predicate on KNOWS.lastMetIn is also rewritten as existence check with a filter. More
information about how the rewriting works can be found in composite index limitations.

703

Query

MATCH (person)-[r:KNOWS]->(friend)
WHERE r.metIn ENDS WITH 'mo' AND r.lastMetIn IS NOT NULL
RETURN person, friend

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--------------------------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person, friend
| 0 | 1 | 0 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +Filter | cache[r.metIn] ENDS WITH $autostring_0
| 0 | 1 | 0 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +DirectedRelationshipIndexScan | RANGE INDEX (person)-[r:KNOWS(metIn, lastMetIn)]->(friend) WHERE metIn
IS NOT NULL AND lastMetIn IS | 1 | 1 | 2 | 120 | 2/1 |
0.317 | Fused in Pipeline 0 |
| | NOT NULL, cache[r.metIn]
| | | | | | |
|
+--------------------------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 184

Substring search using CONTAINS (single-property index)

The CONTAINS predicate on person.firstname in the following query will use the Person(firstname) index,
if it exists. Text indexes are optimized for CONTAINS and ENDS WITH and they are the only indexes that can
solve those predicates. Composite indexes are currently not able to support CONTAINS.

Query

MATCH (person:Person)
WHERE person.firstname CONTAINS 'h'
RETURN person

Text indexes only index String values and therefore do not find other values.

704

Substring search using CONTAINS (composite index)

The CONTAINS predicate on person.country in the following query will use the Person(country,age) index,
if it exists. However, it will be rewritten as existence check and a filter due to the index not supporting
actual suffix searches for composite indexes, this is still faster than not using an index in the first place.
Any (non-existence check) predicate on person.age will also be rewritten as existence check with a filter.
More information about how the rewriting works can be found in composite index limitations.

Query

MATCH (person:Person)
WHERE person.country CONTAINS '300' AND person.age IS NOT NULL
RETURN person

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person
| 15 | 1 | 0 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +Filter | cache[person.country] CONTAINS $autostring_0
| 15 | 1 | 0 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +NodeIndexScan | RANGE INDEX person:Person(country, age) WHERE country IS NOT NULL AND age IS NOT NULL,
cache[person. | 303 | 303 | 304 | 120 | 5/0 | 2.309 |
Fused in Pipeline 0 |
| | country]
| | | | | | |
|
+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 304, total allocated memory: 184

Existence check using IS NOT NULL (single-property index)

The r.since IS NOT NULL predicate in the following query uses the KNOWS(since) index, if it exists.

705

Query

MATCH (person)-[r:KNOWS]->(friend)
WHERE r.since IS NOT NULL
RETURN person, friend

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------------------
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--------------------------------
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | person, friend
| 1 | 1 | 0 | | | |
|
| |
+---+----------------+------
+---------+----------------+ | | |
| +DirectedRelationshipIndexScan | RANGE INDEX (person)-[r:KNOWS(since)]->(friend) WHERE since IS NOT NULL
| 1 | 1 | 2 | 120 | 2/1 | 1.046 | Fused in
Pipeline 0 |
+--------------------------------
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 184

Existence check using IS NOT NULL (composite index)

The p.firstname IS NOT NULL and p.surname IS NOT NULL predicates in the following query will use the
Person(firstname,surname) index, if it exists. Any (non-existence check) predicate on person.surname will
be rewritten as existence check with a filter.

Query

MATCH (p:Person)
WHERE p.firstname IS NOT NULL AND p.surname IS NOT NULL
RETURN p

706

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | p
| 1 | 2 | 0 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +NodeIndexScan | RANGE INDEX p:Person(firstname, surname) WHERE firstname IS NOT NULL AND surname IS
NOT NULL | 1 | 2 | 3 | 120 | 2/1 | 0.310 | Fused
in Pipeline 0 |
+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 3, total allocated memory: 184

Spatial distance searches (single-property index)

If a property with point values is indexed, the index is used for spatial distance searches as well as for
range queries.

Query

MATCH ()-[r:KNOWS]->()
WHERE point.distance(r.lastMetPoint, point({x: 1, y: 2})) < 2
RETURN r.lastMetPoint

707

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+---------------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | `r.lastMetPoint`
| 13 | 9 | 0 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +Projection | cache[r.lastMetPoint] AS `r.lastMetPoint`
| 13 | 9 | 0 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +Filter | point.distance(cache[r.lastMetPoint], point({x: $autoint_0, y:
$autoint_1})) < $autoint_2 | 13 | 9 | 0 | |
| | |
| |
+--
+----------------+------+---------+----------------+ | |
|
| +DirectedRelationshipIndexSeekByRange | POINT INDEX (anon_0)-[r:KNOWS(lastMetPoint)]->(anon_1) WHERE
point.distance(lastMetPoint, point($aut | 13 | 9 | 10 | 120 |
5/3 | 1.417 | Fused in Pipeline 0 |
| | oint_0, $autoint_1)) < $autoint_2, cache[r.lastMetPoint]
| | | | | | |
|
+---------------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 10, total allocated memory: 184

Spatial bounding box searches (single-property index)

The ability to do index seeks on bounded ranges works even with the 2D and 3D spatial Point types.

Query

MATCH (person:Person)
WHERE point.withinBBox(person.location, point({x: 1.2, y: 5.4}), point({x: 1.3, y: 5.5}))
RETURN person.firstname

708

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-----------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | `person.firstname`
| 0 | 1 | 0 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +Projection | person.firstname AS `person.firstname`
| 0 | 1 | 2 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +NodeIndexSeekByRange | POINT INDEX person:Person(location) WHERE point.withinBBox(location,
point($autodouble_0, $autodoubl | 0 | 1 | 2 | 120 |
6/0 | 7.910 | Fused in Pipeline 0 |
| | e_1), point($autodouble_2, $autodouble_3))
| | | | | | |
|
+-----------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 4, total allocated memory: 184

Basic query tuning example

This section describes how to profile a query, by using optimizations based on native index

capabilities.

Start with a basic example to help you get the hang of profiling queries. The following examples will use a
movies data set.

The data set

In this section, examples demonstrates the impact native indexes can have on query performance under
certain conditions. You will use a movies dataset to illustrate this more advanced query tuning.

In this tutorial, you import data from the following CSV files:

• movies.csv

709

• actors.csv

• directors.csv

Movies

The movies.csv file contains two columns title, released, and tagline.

The content of the movies.csv file:

movies.csv

title,released,tagline
Something's Gotta Give,1975,null
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Devil's Advocate,1997,Evil has its winning ways
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
V for Vendetta,2006,Freedom! Forever!
Cloud Atlas,2012,Everything is connected
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
Speed Racer,2008,Speed has no limits
Cloud Atlas,2012,Everything is connected
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
Ninja Assassin,2009,Prepare to enter a secret world of assassins
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
Cloud Atlas,2012,Everything is connected
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
Ninja Assassin,2009,Prepare to enter a secret world of assassins
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
The Matrix,1999,Welcome to the Real World
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
The Devil's Advocate,1997,Evil has its winning ways
The Devil's Advocate,1997,Evil has its winning ways
The Devil's Advocate,1997,Evil has its winning ways
Jerry Maguire,2000,The rest of his life begins now.
Top Gun,1986,"I feel the need, the need for speed."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Something's Gotta Give,1975,null
One Flew Over the Cuckoo's Nest,1975,"If he's crazy, what does that make you?"
Hoffa,1992,He didn't want law. He wanted justice.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man

710

will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Apollo 13,1995,"Houston, we have a problem."
Frost/Nixon,2008,400 million people were waiting for the truth.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
What Dreams May Come,1998,After life there is more. The end is just the beginning.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
Jerry Maguire,2000,The rest of his life begins now.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Hoffa,1992,He didn't want law. He wanted justice.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Ninja Assassin,2009,Prepare to enter a secret world of assassins
V for Vendetta,2006,Freedom! Forever!
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
When Harry Met Sally,1998,At odds in life... in love on-line.
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
When Harry Met Sally,1998,At odds in life... in love on-line.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
When Harry Met Sally,1998,At odds in life... in love on-line.
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
You've Got Mail,1998,At odds in life... in love on-line.
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
The Green Mile,1999,Walk a mile you'll never forget.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Cast Away,2000,"At the edge of the world, his journey begins."
Twister,1996,Don't Breathe. Don't Look Back.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
You've Got Mail,1998,At odds in life... in love on-line.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.

711

As Good as It Gets,1997,A comedy from the heart that goes for the throat.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
Snow Falling on Cedars,1999,First loves last. Forever.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Bicentennial Man,1999,One robot's 200 year journey to become an ordinary man.
The Birdcage,1996,Come as you are
What Dreams May Come,1998,After life there is more. The end is just the beginning.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
Snow Falling on Cedars,1999,First loves last. Forever.
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Snow Falling on Cedars,1999,First loves last. Forever.
The Green Mile,1999,Walk a mile you'll never forget.
Snow Falling on Cedars,1999,First loves last. Forever.
Snow Falling on Cedars,1999,First loves last. Forever.
You've Got Mail,1998,At odds in life... in love on-line.
You've Got Mail,1998,At odds in life... in love on-line.
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
You've Got Mail,1998,At odds in life... in love on-line.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
The Polar Express,2004,This Holiday Season… Believe
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
Cast Away,2000,"At the edge of the world, his journey begins."
Apollo 13,1995,"Houston, we have a problem."
The Green Mile,1999,Walk a mile you'll never forget.
The Da Vinci Code,2006,Break The Codes
Cloud Atlas,2012,Everything is connected
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
You've Got Mail,1998,At odds in life... in love on-line.
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
You've Got Mail,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
The Birdcage,1996,Come as you are
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
When Harry Met Sally,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
Unforgiven,1992,"It's a hell of a thing, killing a man"
The Birdcage,1996,Come as you are
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Twister,1996,Don't Breathe. Don't Look Back.
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
The Birdcage,1996,Come as you are
Unforgiven,1992,"It's a hell of a thing, killing a man"
Unforgiven,1992,"It's a hell of a thing, killing a man"
Unforgiven,1992,"It's a hell of a thing, killing a man"
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town

712

Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Cloud Atlas,2012,Everything is connected
Cloud Atlas,2012,Everything is connected
Cloud Atlas,2012,Everything is connected
The Da Vinci Code,2006,Break The Codes
The Da Vinci Code,2006,Break The Codes
The Da Vinci Code,2006,Break The Codes
Apollo 13,1995,"Houston, we have a problem."
Frost/Nixon,2008,400 million people were waiting for the truth.
The Da Vinci Code,2006,Break The Codes
V for Vendetta,2006,Freedom! Forever!
V for Vendetta,2006,Freedom! Forever!
V for Vendetta,2006,Freedom! Forever!
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Speed Racer,2008,Speed has no limits
Ninja Assassin,2009,Prepare to enter a secret world of assassins
The Green Mile,1999,Walk a mile you'll never forget.
The Green Mile,1999,Walk a mile you'll never forget.
Frost/Nixon,2008,400 million people were waiting for the truth.
The Green Mile,1999,Walk a mile you'll never forget.
Apollo 13,1995,"Houston, we have a problem."
The Green Mile,1999,Walk a mile you'll never forget.
The Green Mile,1999,Walk a mile you'll never forget.
The Green Mile,1999,Walk a mile you'll never forget.
Frost/Nixon,2008,400 million people were waiting for the truth.
Frost/Nixon,2008,400 million people were waiting for the truth.
Bicentennial Man,1999,One robot's 200 year journey to become an ordinary man.
Frost/Nixon,2008,400 million people were waiting for the truth.
One Flew Over the Cuckoo's Nest,1975,"If he's crazy, what does that make you?"
Hoffa,1992,He didn't want law. He wanted justice.
Hoffa,1992,He didn't want law. He wanted justice.
Hoffa,1992,He didn't want law. He wanted justice.
Apollo 13,1995,"Houston, we have a problem."
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
Twister,1996,Don't Breathe. Don't Look Back.
Apollo 13,1995,"Houston, we have a problem."
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
Twister,1996,Don't Breathe. Don't Look Back.
Twister,1996,Don't Breathe. Don't Look Back.
The Polar Express,2004,This Holiday Season… Believe
Cast Away,2000,"At the edge of the world, his journey begins."
One Flew Over the Cuckoo's Nest,1975,"If he's crazy, what does that make you?"
Something's Gotta Give,1975,null
Something's Gotta Give,1975,null
Something's Gotta Give,1975,null
Something's Gotta Give,1975,null
Bicentennial Man,1999,One robot's 200 year journey to become an ordinary man.
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Da Vinci Code,2006,Break The Codes
The Birdcage,1996,Come as you are
Unforgiven,1992,"It's a hell of a thing, killing a man"
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
Cloud Atlas,2012,Everything is connected
The Da Vinci Code,2006,Break The Codes
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"

713

Actors

The actors.csv file contains two columns title, roles, name, and born.

The content of the actors.csv file:

actors.csv

title,roles,name,born
Something's Gotta Give,Julian Mercer,Keanu Reeves,1964
Johnny Mnemonic,Johnny Mnemonic,Keanu Reeves,1964
The Replacements,Shane Falco,Keanu Reeves,1964
The Devil's Advocate,Kevin Lomax,Keanu Reeves,1964
The Matrix Revolutions,Neo,Keanu Reeves,1964
The Matrix Reloaded,Neo,Keanu Reeves,1964
The Matrix,Neo,Keanu Reeves,1964
The Matrix Revolutions,Trinity,Carrie-Anne Moss,1967
The Matrix Reloaded,Trinity,Carrie-Anne Moss,1967
The Matrix,Trinity,Carrie-Anne Moss,1967
The Matrix Revolutions,Morpheus,Laurence Fishburne,1961
The Matrix Reloaded,Morpheus,Laurence Fishburne,1961
The Matrix,Morpheus,Laurence Fishburne,1961
V for Vendetta,V,Hugo Weaving,1960
Cloud Atlas,Bill Smoke;Haskell Moore;Tadeusz Kesselring;Nurse Noakes;Boardman Mephi;Old Georgie,Hugo
Weaving,1960
The Matrix Revolutions,Agent Smith,Hugo Weaving,1960
The Matrix Reloaded,Agent Smith,Hugo Weaving,1960
The Matrix,Agent Smith,Hugo Weaving,1960
The Matrix,Emil,Emil Eifrem,1978
That Thing You Do,Tina,Charlize Theron,1975
The Devil's Advocate,Mary Ann Lomax,Charlize Theron,1975
The Devil's Advocate,John Milton,Al Pacino,1940
Jerry Maguire,Jerry Maguire,Tom Cruise,1962
Top Gun,Maverick,Tom Cruise,1962
A Few Good Men,Lt. Daniel Kaffee,Tom Cruise,1962
Something's Gotta Give,Harry Sanborn,Jack Nicholson,1937
One Flew Over the Cuckoo's Nest,Randle McMurphy,Jack Nicholson,1937
Hoffa,Hoffa,Jack Nicholson,1937
As Good as It Gets,Melvin Udall,Jack Nicholson,1937
A Few Good Men,Col. Nathan R. Jessup,Jack Nicholson,1937
A Few Good Men,Lt. Cdr. JoAnne Galloway,Demi Moore,1962
Apollo 13,Jack Swigert,Kevin Bacon,1958
Frost/Nixon,Jack Brennan,Kevin Bacon,1958
A Few Good Men,Capt. Jack Ross,Kevin Bacon,1958
Stand By Me,Ace Merrill,Kiefer Sutherland,1966
A Few Good Men,Lt. Jonathan Kendrick,Kiefer Sutherland,1966
A Few Good Men,Cpl. Jeffrey Barnes,Noah Wyle,1971
What Dreams May Come,Albert Lewis,Cuba Gooding Jr.,1968
As Good as It Gets,Frank Sachs,Cuba Gooding Jr.,1968
Jerry Maguire,Rod Tidwell,Cuba Gooding Jr.,1968
A Few Good Men,Cpl. Carl Hammaker,Cuba Gooding Jr.,1968
A Few Good Men,Lt. Sam Weinberg,Kevin Pollak,1957
Hoffa,Frank Fitzsimmons,J.T. Walsh,1943
A Few Good Men,Lt. Col. Matthew Andrew Markinson,J.T. Walsh,1943
A Few Good Men,Pfc. Louden Downey,James Marshall,1967
A Few Good Men,Dr. Stone,Christopher Guest,1948
A Few Good Men,Man in Bar,Aaron Sorkin,1961
Top Gun,Charlie,Kelly McGillis,1957
Top Gun,Iceman,Val Kilmer,1959
Top Gun,Goose,Anthony Edwards,1962
Top Gun,Viper,Tom Skerritt,1933
When Harry Met Sally,Sally Albright,Meg Ryan,1961
Joe Versus the Volcano,DeDe;Angelica Graynamore;Patricia Graynamore,Meg Ryan,1961
Sleepless in Seattle,Annie Reed,Meg Ryan,1961
You've Got Mail,Kathleen Kelly,Meg Ryan,1961
Top Gun,Carole,Meg Ryan,1961
Jerry Maguire,Dorothy Boyd,Renee Zellweger,1969
Jerry Maguire,Avery Bishop,Kelly Preston,1962
Stand By Me,Vern Tessio,Jerry O'Connell,1974
Jerry Maguire,Frank Cushman,Jerry O'Connell,1974
Jerry Maguire,Bob Sugar,Jay Mohr,1970
The Green Mile,Jan Edgecomb,Bonnie Hunt,1961
Jerry Maguire,Laurel Boyd,Bonnie Hunt,1961

714

Jerry Maguire,Marcee Tidwell,Regina King,1971
Jerry Maguire,Ray Boyd,Jonathan Lipnicki,1990
Stand By Me,Chris Chambers,River Phoenix,1970
Stand By Me,Teddy Duchamp,Corey Feldman,1971
Stand By Me,Gordie Lachance,Wil Wheaton,1972
Stand By Me,Denny Lachance,John Cusack,1966
RescueDawn,Admiral,Marshall Bell,1942
Stand By Me,Mr. Lachance,Marshall Bell,1942
Cast Away,Kelly Frears,Helen Hunt,1963
Twister,Dr. Jo Harding,Helen Hunt,1963
As Good as It Gets,Carol Connelly,Helen Hunt,1963
You've Got Mail,Frank Navasky,Greg Kinnear,1963
As Good as It Gets,Simon Bishop,Greg Kinnear,1963
What Dreams May Come,Simon Bishop,Annabella Sciorra,1960
Snow Falling on Cedars,Nels Gudmundsson,Max von Sydow,1929
What Dreams May Come,The Tracker,Max von Sydow,1929
What Dreams May Come,The Face,Werner Herzog,1942
Bicentennial Man,Andrew Marin,Robin Williams,1951
The Birdcage,Armand Goldman,Robin Williams,1951
What Dreams May Come,Chris Nielsen,Robin Williams,1951
Snow Falling on Cedars,Ishmael Chambers,Ethan Hawke,1970
Ninja Assassin,Takeshi,Rick Yune,1971
Snow Falling on Cedars,Kazuo Miyamoto,Rick Yune,1971
The Green Mile,Warden Hal Moores,James Cromwell,1940
Snow Falling on Cedars,Judge Fielding,James Cromwell,1940
You've Got Mail,Patricia Eden,Parker Posey,1968
You've Got Mail,Kevin Jackson,Dave Chappelle,1973
RescueDawn,Duane,Steve Zahn,1967
You've Got Mail,George Pappas,Steve Zahn,1967
A League of Their Own,Jimmy Dugan,Tom Hanks,1956
The Polar Express,Hero Boy;Father;Conductor;Hobo;Scrooge;Santa Claus,Tom Hanks,1956
Charlie Wilson's War,Rep. Charlie Wilson,Tom Hanks,1956
Cast Away,Chuck Noland,Tom Hanks,1956
Apollo 13,Jim Lovell,Tom Hanks,1956
The Green Mile,Paul Edgecomb,Tom Hanks,1956
The Da Vinci Code,Dr. Robert Langdon,Tom Hanks,1956
Cloud Atlas,Zachry;Dr. Henry Goose;Isaac Sachs;Dermot Hoggins,Tom Hanks,1956
That Thing You Do,Mr. White,Tom Hanks,1956
Joe Versus the Volcano,Joe Banks,Tom Hanks,1956
Sleepless in Seattle,Sam Baldwin,Tom Hanks,1956
You've Got Mail,Joe Fox,Tom Hanks,1956
Sleepless in Seattle,Suzy,Rita Wilson,1956
Sleepless in Seattle,Walter,Bill Pullman,1953
Sleepless in Seattle,Greg,Victor Garber,1949
A League of Their Own,Doris Murphy,Rosie O'Donnell,1962
Sleepless in Seattle,Becky,Rosie O'Donnell,1962
The Birdcage,Albert Goldman,Nathan Lane,1956
Joe Versus the Volcano,Baw,Nathan Lane,1956
When Harry Met Sally,Harry Burns,Billy Crystal,1948
When Harry Met Sally,Marie,Carrie Fisher,1956
When Harry Met Sally,Jess,Bruno Kirby,1949
That Thing You Do,Faye Dolan,Liv Tyler,1977
The Replacements,Annabelle Farrell,Brooke Langton,1970
Unforgiven,Little Bill Daggett,Gene Hackman,1930
The Birdcage,Sen. Kevin Keeley,Gene Hackman,1930
The Replacements,Jimmy McGinty,Gene Hackman,1930
The Replacements,Clifford Franklin,Orlando Jones,1968
RescueDawn,Dieter Dengler,Christian Bale,1974
Twister,Eddie,Zach Grenier,1954
RescueDawn,Squad Leader,Zach Grenier,1954
Unforgiven,English Bob,Richard Harris,1930
Unforgiven,Bill Munny,Clint Eastwood,1930
Johnny Mnemonic,Takahashi,Takeshi Kitano,1947
Johnny Mnemonic,Jane,Dina Meyer,1968
Johnny Mnemonic,J-Bone,Ice-T,1958
Cloud Atlas,Luisa Rey;Jocasta Ayrs;Ovid;Meronym,Halle Berry,1966
Cloud Atlas,Vyvyan Ayrs;Captain Molyneux;Timothy Cavendish,Jim Broadbent,1949
The Da Vinci Code,Sir Leight Teabing,Ian McKellen,1939
The Da Vinci Code,Sophie Neveu,Audrey Tautou,1976
The Da Vinci Code,Silas,Paul Bettany,1971
V for Vendetta,Evey Hammond,Natalie Portman,1981
V for Vendetta,Eric Finch,Stephen Rea,1946
V for Vendetta,High Chancellor Adam Sutler,John Hurt,1940
Ninja Assassin,Ryan Maslow,Ben Miles,1967
Speed Racer,Cass Jones,Ben Miles,1967
V for Vendetta,Dascomb,Ben Miles,1967
Speed Racer,Speed Racer,Emile Hirsch,1985

715

Speed Racer,Pops,John Goodman,1960
Speed Racer,Mom,Susan Sarandon,1946
Speed Racer,Racer X,Matthew Fox,1966
Speed Racer,Trixie,Christina Ricci,1980
Ninja Assassin,Raizo,Rain,1982
Speed Racer,Taejo Togokahn,Rain,1982
Ninja Assassin,Mika Coretti,Naomie Harris,null
The Green Mile,John Coffey,Michael Clarke Duncan,1957
The Green Mile,Brutus 'Brutal' Howell,David Morse,1953
Frost/Nixon,"James Reston, Jr.",Sam Rockwell,1968
The Green Mile,'Wild Bill' Wharton,Sam Rockwell,1968
Apollo 13,Ken Mattingly,Gary Sinise,1955
The Green Mile,Burt Hammersmith,Gary Sinise,1955
The Green Mile,Melinda Moores,Patricia Clarkson,1959
Frost/Nixon,Richard Nixon,Frank Langella,1938
Frost/Nixon,David Frost,Michael Sheen,1969
Bicentennial Man,Rupert Burns,Oliver Platt,1960
Frost/Nixon,Bob Zelnick,Oliver Platt,1960
One Flew Over the Cuckoo's Nest,Martini,Danny DeVito,1944
Hoffa,Robert 'Bobby' Ciaro,Danny DeVito,1944
Hoffa,Peter 'Pete' Connelly,John C. Reilly,1965
Apollo 13,Gene Kranz,Ed Harris,1950
A League of Their Own,Bob Hinson,Bill Paxton,1955
Twister,Bill Harding,Bill Paxton,1955
Apollo 13,Fred Haise,Bill Paxton,1955
Charlie Wilson's War,Gust Avrakotos,Philip Seymour Hoffman,1967
Twister,Dustin 'Dusty' Davis,Philip Seymour Hoffman,1967
Something's Gotta Give,Erica Barry,Diane Keaton,1946
Charlie Wilson's War,Joanne Herring,Julia Roberts,1967
A League of Their Own,'All the Way' Mae Mordabito,Madonna,1954
A League of Their Own,Dottie Hinson,Geena Davis,1956
A League of Their Own,Kit Keller,Lori Petty,1963

Directors

The directors.csv file contains two columns title, name, and born.

The content of the directors.csv file:

716

directors.csv

title,name,born
Speed Racer,Andy Wachowski,1967
Cloud Atlas,Andy Wachowski,1967
The Matrix Revolutions,Andy Wachowski,1967
The Matrix Reloaded,Andy Wachowski,1967
The Matrix,Andy Wachowski,1967
Speed Racer,Lana Wachowski,1965
Cloud Atlas,Lana Wachowski,1965
The Matrix Revolutions,Lana Wachowski,1965
The Matrix Reloaded,Lana Wachowski,1965
The Matrix,Lana Wachowski,1965
The Devil's Advocate,Taylor Hackford,1944
Ninja Assassin,James Marshall,1967
V for Vendetta,James Marshall,1967
When Harry Met Sally,Rob Reiner,1947
Stand By Me,Rob Reiner,1947
A Few Good Men,Rob Reiner,1947
Top Gun,Tony Scott,1944
Jerry Maguire,Cameron Crowe,1957
As Good as It Gets,James L. Brooks,1940
RescueDawn,Werner Herzog,1942
What Dreams May Come,Vincent Ward,1956
Snow Falling on Cedars,Scott Hicks,1953
That Thing You Do,Tom Hanks,1956
Sleepless in Seattle,Nora Ephron,1941
You've Got Mail,Nora Ephron,1941
Joe Versus the Volcano,John Patrick Stanley,1950
The Replacements,Howard Deutch,1950
Charlie Wilson's War,Mike Nichols,1931
The Birdcage,Mike Nichols,1931
Unforgiven,Clint Eastwood,1930
Johnny Mnemonic,Robert Longo,1953
Cloud Atlas,Tom Tykwer,1965
Apollo 13,Ron Howard,1954
Frost/Nixon,Ron Howard,1954
The Da Vinci Code,Ron Howard,1954
The Green Mile,Frank Darabont,1959
Hoffa,Danny DeVito,1944
Twister,Jan de Bont,1943
The Polar Express,Robert Zemeckis,1951
Cast Away,Robert Zemeckis,1951
One Flew Over the Cuckoo's Nest,Milos Forman,1932
Something's Gotta Give,Nancy Meyers,1949
Bicentennial Man,Chris Columbus,1958
A League of Their Own,Penny Marshall,1943

Prerequisites

The example uses the Linux or macOS tarball installation. It assumes that your current work directory is
the <neo4j-home> directory of the tarball installation, and the CSV files are placed in the default import
directory.


• For the default directory of other installations see, Operations Manual → File locations.

• The import location can be configured with Operations Manual →
server.directories.import.

Importing the data

Import the movies.csv file

717

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#file_locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#file_locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#file_locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_server.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_server.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_server.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_server.directories.import

LOAD CSV WITH HEADERS FROM 'file:///movies.csv' AS line
MERGE (m:Movie {title: line.title})
ON CREATE SET
 m.released = toInteger(line.released),
 m.tagline = line.tagline

Added 38 nodes, Set 114 properties, Added 38 labels

Import the actors.csv file

LOAD CSV WITH HEADERS FROM 'file:///actors.csv' AS line
MATCH (m:Movie {title: line.title})
MERGE (p:Person {name: line.name})
ON CREATE SET p.born = toInteger(line.born)
MERGE (p)-[:ACTED_IN {roles:split(line.roles, ';')}]->(m)

Added 102 nodes, Created 172 relationships, Set 375 properties, Added 102 labels

Import the directors.csv file

LOAD CSV WITH HEADERS FROM 'file:///directors.csv' AS line
MATCH (m:Movie {title: line.title})
MERGE (p:Person {name: line.name})
ON CREATE SET p.born = toInteger(line.born)
MERGE (p)-[:DIRECTED]->(m)

Added 23 nodes, Created 44 relationships, Set 46 properties, Added 23 labels

Profile query

Let’s say you want to write a query to find 'Tom Hanks'.

The naive way of doing this would be to write the following:

MATCH (p {name: 'Tom Hanks'})
RETURN p

This query will find the 'Tom Hanks' node but as the number of nodes in the database increase it will
become slower and slower. We can profile the query to find out why that is.

You can learn more about the options for profiling queries in Cypher query options but in this case you are
going to prefix our query with PROFILE:

PROFILE
MATCH (p {name: 'Tom Hanks'})
RETURN p

718

+---+
| p |
+---+
| (:Person {name: "Tom Hanks", born: 1956}) |
+---+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 26 | 406 | 1 | 136 |
+--+

+-----------------------+------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page
Cache Hits/Misses | Time (ms) | Other |
+-----------------------+------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults@neo4j | p | 8 | 1 | 3 | |
| | Fused in Pipeline 0 |
| | +------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +Filter@neo4j | p.name = $autostring_0 | 8 | 1 | 239 | |
| | Fused in Pipeline 0 |
| | +------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +AllNodesScan@neo4j | p | 163 | 163 | 164 | 72 |
4/0 | 1.705 | Fused in Pipeline 0 |
+-----------------------+------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

1 row

The first thing to keep in mind when reading execution plans is that you need to read from the bottom up.

In that vein, starting from the last row, the first thing you notice is that the value in the Rows column seems
high given there is only one node with the name property 'Tom Hanks' in the database. If you look across
to the Operator column, you will see that AllNodesScan has been used which means that the query
planner scanned through all the nodes in the database.

The Filter operator which will check the name property on each of the nodes passed through by
AllNodesScan.

This seems like an inefficient way of finding 'Tom Hanks' given that you are looking at many nodes that
are not even people and therefore are not what you are looking for.

The solution to this problem is that whenever you are looking for a node you should specify a label to help
the query planner narrow down the search space.

For this query you need to add a Person label.

MATCH (p:Person {name: 'Tom Hanks'})
RETURN p

This query will be faster than the first one, but as the number of people in your database increase you may
notice that the query slows down.

Again you can profile the query to work out why:

719

PROFILE
MATCH (p:Person {name: 'Tom Hanks'})
RETURN p

+---+
| p |
+---+
| (:Person {name: "Tom Hanks", born: 1956}) |
+---+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 33 | 379 | 1 | 136 |
+--+

+------------------------+------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) |
Page Cache Hits/Misses | Time (ms) | Other |
+------------------------+------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults@neo4j | p | 6 | 1 | 3 | |
| | Fused in Pipeline 0 |
| | +------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +Filter@neo4j | p.name = $autostring_0 | 6 | 1 | 250 | |
| | Fused in Pipeline 0 |
| | +------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +NodeByLabelScan@neo4j | p:Person | 125 | 125 | 126 | 72 |
4/0 | 0.901 | Fused in Pipeline 0 |
+------------------------+------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

1 row

This time the Rows value on the last row has reduced so you are not scanning some nodes that you were
before which is a good start. The NodeByLabelScan operator indicates that you achieved this by first doing
a linear scan of all the Person nodes in the database.

Once you have done that, you can again scan through all those nodes using the Filter operator,
comparing the name property of each one.

This might be acceptable in some cases but if you are going to be looking up people by name frequently
then you will see better performance if you create an index on the name property for the Person label:

CREATE INDEX FOR (p:Person)
ON (p.name)

Added 1 indexes

CALL db.awaitIndexes

Now if you run the query again it will run more quickly:

MATCH (p:Person {name: 'Tom Hanks'})
RETURN p

720

A profile for the query to see why that is:

PROFILE
MATCH (p:Person {name: 'Tom Hanks'})
RETURN p

+---+
| p |
+---+
| (:Person {name: "Tom Hanks", born: 1956}) |
+---+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 17 | 5 | 1 | 136 |
+--+

+-----------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults@neo4j | p | 1 | 1 | 3 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeIndexSeek@neo4j | p:Person(name) WHERE name = $autostring_0 | 1 | 1 | 2 |
72 | 2/1 | 0.494 | Fused in Pipeline 0 |
+-----------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

1 row

Our execution plan is down to a single row and uses the Node Index Seek operator which does an index
seek (see Indexes for search performance) to find the appropriate node.

Advanced query tuning example

This section describes some more subtle optimizations based on native index capabilities.

One of the most important and useful ways of optimizing Cypher queries involves creating appropriate
indexes. This is described in more detail in Indexes for search performance, and demonstrated in Basic
query tuning example. In summary, an index will be based on the combination of a Label and a property.
Any Cypher query that searches for nodes with a specific label and some predicate on the property
(equality, range or existence) will be planned to use the index if the cost planner deems that to be the most
efficient solution.

In order to benefit from enhancements provided by native indexes, it is useful to understand when index-
backed property lookup and index-backed ORDER BY will come into play. Let’s explain how to use these
features with a more advanced query tuning example.


If you are upgrading an existing store to 5.4.0, it may be necessary to drop and re-create
existing indexes. For information on native index support and upgrade considerations
regarding indexes, see Operations Manual → Indexes.

721

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#index-configuration-btree
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#index-configuration-btree
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#index-configuration-btree

The data set

In this section, examples demonstrates the impact native indexes can have on query performance under
certain conditions. You will use a movies dataset to illustrate this more advanced query tuning.

In this tutorial, you import data from the following CSV files:

• movies.csv

• actors.csv

• directors.csv

Movies

The movies.csv file contains two columns title, released and tagline.

The content of the movies.csv file:

movies.csv

title,released,tagline
Something's Gotta Give,1975,null
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Devil's Advocate,1997,Evil has its winning ways
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
V for Vendetta,2006,Freedom! Forever!
Cloud Atlas,2012,Everything is connected
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
Speed Racer,2008,Speed has no limits
Cloud Atlas,2012,Everything is connected
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
Ninja Assassin,2009,Prepare to enter a secret world of assassins
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
Cloud Atlas,2012,Everything is connected
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
Ninja Assassin,2009,Prepare to enter a secret world of assassins
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
The Matrix,1999,Welcome to the Real World
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
The Devil's Advocate,1997,Evil has its winning ways

722

The Devil's Advocate,1997,Evil has its winning ways
The Devil's Advocate,1997,Evil has its winning ways
Jerry Maguire,2000,The rest of his life begins now.
Top Gun,1986,"I feel the need, the need for speed."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Something's Gotta Give,1975,null
One Flew Over the Cuckoo's Nest,1975,"If he's crazy, what does that make you?"
Hoffa,1992,He didn't want law. He wanted justice.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Apollo 13,1995,"Houston, we have a problem."
Frost/Nixon,2008,400 million people were waiting for the truth.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
What Dreams May Come,1998,After life there is more. The end is just the beginning.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
Jerry Maguire,2000,The rest of his life begins now.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Hoffa,1992,He didn't want law. He wanted justice.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Ninja Assassin,2009,Prepare to enter a secret world of assassins
V for Vendetta,2006,Freedom! Forever!
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
When Harry Met Sally,1998,At odds in life... in love on-line.
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
When Harry Met Sally,1998,At odds in life... in love on-line.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
When Harry Met Sally,1998,At odds in life... in love on-line.
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
You've Got Mail,1998,At odds in life... in love on-line.
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
The Green Mile,1999,Walk a mile you'll never forget.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But

723

for everyone, it's the time that memories are made of."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Cast Away,2000,"At the edge of the world, his journey begins."
Twister,1996,Don't Breathe. Don't Look Back.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
You've Got Mail,1998,At odds in life... in love on-line.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
Snow Falling on Cedars,1999,First loves last. Forever.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Bicentennial Man,1999,One robot's 200 year journey to become an ordinary man.
The Birdcage,1996,Come as you are
What Dreams May Come,1998,After life there is more. The end is just the beginning.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
Snow Falling on Cedars,1999,First loves last. Forever.
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Snow Falling on Cedars,1999,First loves last. Forever.
The Green Mile,1999,Walk a mile you'll never forget.
Snow Falling on Cedars,1999,First loves last. Forever.
Snow Falling on Cedars,1999,First loves last. Forever.
You've Got Mail,1998,At odds in life... in love on-line.
You've Got Mail,1998,At odds in life... in love on-line.
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
You've Got Mail,1998,At odds in life... in love on-line.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
The Polar Express,2004,This Holiday Season… Believe
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
Cast Away,2000,"At the edge of the world, his journey begins."
Apollo 13,1995,"Houston, we have a problem."
The Green Mile,1999,Walk a mile you'll never forget.
The Da Vinci Code,2006,Break The Codes
Cloud Atlas,2012,Everything is connected
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
You've Got Mail,1998,At odds in life... in love on-line.
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
You've Got Mail,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
The Birdcage,1996,Come as you are
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
When Harry Met Sally,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
Unforgiven,1992,"It's a hell of a thing, killing a man"
The Birdcage,1996,Come as you are
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"

724

The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Twister,1996,Don't Breathe. Don't Look Back.
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
The Birdcage,1996,Come as you are
Unforgiven,1992,"It's a hell of a thing, killing a man"
Unforgiven,1992,"It's a hell of a thing, killing a man"
Unforgiven,1992,"It's a hell of a thing, killing a man"
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Cloud Atlas,2012,Everything is connected
Cloud Atlas,2012,Everything is connected
Cloud Atlas,2012,Everything is connected
The Da Vinci Code,2006,Break The Codes
The Da Vinci Code,2006,Break The Codes
The Da Vinci Code,2006,Break The Codes
Apollo 13,1995,"Houston, we have a problem."
Frost/Nixon,2008,400 million people were waiting for the truth.
The Da Vinci Code,2006,Break The Codes
V for Vendetta,2006,Freedom! Forever!
V for Vendetta,2006,Freedom! Forever!
V for Vendetta,2006,Freedom! Forever!
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Speed Racer,2008,Speed has no limits
Ninja Assassin,2009,Prepare to enter a secret world of assassins
The Green Mile,1999,Walk a mile you'll never forget.
The Green Mile,1999,Walk a mile you'll never forget.
Frost/Nixon,2008,400 million people were waiting for the truth.
The Green Mile,1999,Walk a mile you'll never forget.
Apollo 13,1995,"Houston, we have a problem."
The Green Mile,1999,Walk a mile you'll never forget.
The Green Mile,1999,Walk a mile you'll never forget.
The Green Mile,1999,Walk a mile you'll never forget.
Frost/Nixon,2008,400 million people were waiting for the truth.
Frost/Nixon,2008,400 million people were waiting for the truth.
Bicentennial Man,1999,One robot's 200 year journey to become an ordinary man.
Frost/Nixon,2008,400 million people were waiting for the truth.
One Flew Over the Cuckoo's Nest,1975,"If he's crazy, what does that make you?"
Hoffa,1992,He didn't want law. He wanted justice.
Hoffa,1992,He didn't want law. He wanted justice.
Hoffa,1992,He didn't want law. He wanted justice.
Apollo 13,1995,"Houston, we have a problem."
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
Twister,1996,Don't Breathe. Don't Look Back.
Apollo 13,1995,"Houston, we have a problem."
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
Twister,1996,Don't Breathe. Don't Look Back.
Twister,1996,Don't Breathe. Don't Look Back.
The Polar Express,2004,This Holiday Season… Believe
Cast Away,2000,"At the edge of the world, his journey begins."
One Flew Over the Cuckoo's Nest,1975,"If he's crazy, what does that make you?"
Something's Gotta Give,1975,null
Something's Gotta Give,1975,null
Something's Gotta Give,1975,null
Something's Gotta Give,1975,null
Bicentennial Man,1999,One robot's 200 year journey to become an ordinary man.
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Da Vinci Code,2006,Break The Codes

725

The Birdcage,1996,Come as you are
Unforgiven,1992,"It's a hell of a thing, killing a man"
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
Cloud Atlas,2012,Everything is connected
The Da Vinci Code,2006,Break The Codes
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"

Actors

The actors.csv file contains two columns title, roles, name, and born.

The content of the actors.csv file:

actors.csv

title,roles,name,born
Something's Gotta Give,Julian Mercer,Keanu Reeves,1964
Johnny Mnemonic,Johnny Mnemonic,Keanu Reeves,1964
The Replacements,Shane Falco,Keanu Reeves,1964
The Devil's Advocate,Kevin Lomax,Keanu Reeves,1964
The Matrix Revolutions,Neo,Keanu Reeves,1964
The Matrix Reloaded,Neo,Keanu Reeves,1964
The Matrix,Neo,Keanu Reeves,1964
The Matrix Revolutions,Trinity,Carrie-Anne Moss,1967
The Matrix Reloaded,Trinity,Carrie-Anne Moss,1967
The Matrix,Trinity,Carrie-Anne Moss,1967
The Matrix Revolutions,Morpheus,Laurence Fishburne,1961
The Matrix Reloaded,Morpheus,Laurence Fishburne,1961
The Matrix,Morpheus,Laurence Fishburne,1961
V for Vendetta,V,Hugo Weaving,1960
Cloud Atlas,Bill Smoke;Haskell Moore;Tadeusz Kesselring;Nurse Noakes;Boardman Mephi;Old Georgie,Hugo
Weaving,1960
The Matrix Revolutions,Agent Smith,Hugo Weaving,1960
The Matrix Reloaded,Agent Smith,Hugo Weaving,1960
The Matrix,Agent Smith,Hugo Weaving,1960
The Matrix,Emil,Emil Eifrem,1978
That Thing You Do,Tina,Charlize Theron,1975
The Devil's Advocate,Mary Ann Lomax,Charlize Theron,1975
The Devil's Advocate,John Milton,Al Pacino,1940
Jerry Maguire,Jerry Maguire,Tom Cruise,1962
Top Gun,Maverick,Tom Cruise,1962
A Few Good Men,Lt. Daniel Kaffee,Tom Cruise,1962
Something's Gotta Give,Harry Sanborn,Jack Nicholson,1937
One Flew Over the Cuckoo's Nest,Randle McMurphy,Jack Nicholson,1937
Hoffa,Hoffa,Jack Nicholson,1937
As Good as It Gets,Melvin Udall,Jack Nicholson,1937
A Few Good Men,Col. Nathan R. Jessup,Jack Nicholson,1937
A Few Good Men,Lt. Cdr. JoAnne Galloway,Demi Moore,1962
Apollo 13,Jack Swigert,Kevin Bacon,1958
Frost/Nixon,Jack Brennan,Kevin Bacon,1958
A Few Good Men,Capt. Jack Ross,Kevin Bacon,1958
Stand By Me,Ace Merrill,Kiefer Sutherland,1966
A Few Good Men,Lt. Jonathan Kendrick,Kiefer Sutherland,1966
A Few Good Men,Cpl. Jeffrey Barnes,Noah Wyle,1971
What Dreams May Come,Albert Lewis,Cuba Gooding Jr.,1968
As Good as It Gets,Frank Sachs,Cuba Gooding Jr.,1968
Jerry Maguire,Rod Tidwell,Cuba Gooding Jr.,1968
A Few Good Men,Cpl. Carl Hammaker,Cuba Gooding Jr.,1968
A Few Good Men,Lt. Sam Weinberg,Kevin Pollak,1957
Hoffa,Frank Fitzsimmons,J.T. Walsh,1943
A Few Good Men,Lt. Col. Matthew Andrew Markinson,J.T. Walsh,1943
A Few Good Men,Pfc. Louden Downey,James Marshall,1967
A Few Good Men,Dr. Stone,Christopher Guest,1948
A Few Good Men,Man in Bar,Aaron Sorkin,1961
Top Gun,Charlie,Kelly McGillis,1957
Top Gun,Iceman,Val Kilmer,1959
Top Gun,Goose,Anthony Edwards,1962
Top Gun,Viper,Tom Skerritt,1933
When Harry Met Sally,Sally Albright,Meg Ryan,1961
Joe Versus the Volcano,DeDe;Angelica Graynamore;Patricia Graynamore,Meg Ryan,1961
Sleepless in Seattle,Annie Reed,Meg Ryan,1961
You've Got Mail,Kathleen Kelly,Meg Ryan,1961

726

Top Gun,Carole,Meg Ryan,1961
Jerry Maguire,Dorothy Boyd,Renee Zellweger,1969
Jerry Maguire,Avery Bishop,Kelly Preston,1962
Stand By Me,Vern Tessio,Jerry O'Connell,1974
Jerry Maguire,Frank Cushman,Jerry O'Connell,1974
Jerry Maguire,Bob Sugar,Jay Mohr,1970
The Green Mile,Jan Edgecomb,Bonnie Hunt,1961
Jerry Maguire,Laurel Boyd,Bonnie Hunt,1961
Jerry Maguire,Marcee Tidwell,Regina King,1971
Jerry Maguire,Ray Boyd,Jonathan Lipnicki,1990
Stand By Me,Chris Chambers,River Phoenix,1970
Stand By Me,Teddy Duchamp,Corey Feldman,1971
Stand By Me,Gordie Lachance,Wil Wheaton,1972
Stand By Me,Denny Lachance,John Cusack,1966
RescueDawn,Admiral,Marshall Bell,1942
Stand By Me,Mr. Lachance,Marshall Bell,1942
Cast Away,Kelly Frears,Helen Hunt,1963
Twister,Dr. Jo Harding,Helen Hunt,1963
As Good as It Gets,Carol Connelly,Helen Hunt,1963
You've Got Mail,Frank Navasky,Greg Kinnear,1963
As Good as It Gets,Simon Bishop,Greg Kinnear,1963
What Dreams May Come,Simon Bishop,Annabella Sciorra,1960
Snow Falling on Cedars,Nels Gudmundsson,Max von Sydow,1929
What Dreams May Come,The Tracker,Max von Sydow,1929
What Dreams May Come,The Face,Werner Herzog,1942
Bicentennial Man,Andrew Marin,Robin Williams,1951
The Birdcage,Armand Goldman,Robin Williams,1951
What Dreams May Come,Chris Nielsen,Robin Williams,1951
Snow Falling on Cedars,Ishmael Chambers,Ethan Hawke,1970
Ninja Assassin,Takeshi,Rick Yune,1971
Snow Falling on Cedars,Kazuo Miyamoto,Rick Yune,1971
The Green Mile,Warden Hal Moores,James Cromwell,1940
Snow Falling on Cedars,Judge Fielding,James Cromwell,1940
You've Got Mail,Patricia Eden,Parker Posey,1968
You've Got Mail,Kevin Jackson,Dave Chappelle,1973
RescueDawn,Duane,Steve Zahn,1967
You've Got Mail,George Pappas,Steve Zahn,1967
A League of Their Own,Jimmy Dugan,Tom Hanks,1956
The Polar Express,Hero Boy;Father;Conductor;Hobo;Scrooge;Santa Claus,Tom Hanks,1956
Charlie Wilson's War,Rep. Charlie Wilson,Tom Hanks,1956
Cast Away,Chuck Noland,Tom Hanks,1956
Apollo 13,Jim Lovell,Tom Hanks,1956
The Green Mile,Paul Edgecomb,Tom Hanks,1956
The Da Vinci Code,Dr. Robert Langdon,Tom Hanks,1956
Cloud Atlas,Zachry;Dr. Henry Goose;Isaac Sachs;Dermot Hoggins,Tom Hanks,1956
That Thing You Do,Mr. White,Tom Hanks,1956
Joe Versus the Volcano,Joe Banks,Tom Hanks,1956
Sleepless in Seattle,Sam Baldwin,Tom Hanks,1956
You've Got Mail,Joe Fox,Tom Hanks,1956
Sleepless in Seattle,Suzy,Rita Wilson,1956
Sleepless in Seattle,Walter,Bill Pullman,1953
Sleepless in Seattle,Greg,Victor Garber,1949
A League of Their Own,Doris Murphy,Rosie O'Donnell,1962
Sleepless in Seattle,Becky,Rosie O'Donnell,1962
The Birdcage,Albert Goldman,Nathan Lane,1956
Joe Versus the Volcano,Baw,Nathan Lane,1956
When Harry Met Sally,Harry Burns,Billy Crystal,1948
When Harry Met Sally,Marie,Carrie Fisher,1956
When Harry Met Sally,Jess,Bruno Kirby,1949
That Thing You Do,Faye Dolan,Liv Tyler,1977
The Replacements,Annabelle Farrell,Brooke Langton,1970
Unforgiven,Little Bill Daggett,Gene Hackman,1930
The Birdcage,Sen. Kevin Keeley,Gene Hackman,1930
The Replacements,Jimmy McGinty,Gene Hackman,1930
The Replacements,Clifford Franklin,Orlando Jones,1968
RescueDawn,Dieter Dengler,Christian Bale,1974
Twister,Eddie,Zach Grenier,1954
RescueDawn,Squad Leader,Zach Grenier,1954
Unforgiven,English Bob,Richard Harris,1930
Unforgiven,Bill Munny,Clint Eastwood,1930
Johnny Mnemonic,Takahashi,Takeshi Kitano,1947
Johnny Mnemonic,Jane,Dina Meyer,1968
Johnny Mnemonic,J-Bone,Ice-T,1958
Cloud Atlas,Luisa Rey;Jocasta Ayrs;Ovid;Meronym,Halle Berry,1966
Cloud Atlas,Vyvyan Ayrs;Captain Molyneux;Timothy Cavendish,Jim Broadbent,1949
The Da Vinci Code,Sir Leight Teabing,Ian McKellen,1939
The Da Vinci Code,Sophie Neveu,Audrey Tautou,1976

727

The Da Vinci Code,Silas,Paul Bettany,1971
V for Vendetta,Evey Hammond,Natalie Portman,1981
V for Vendetta,Eric Finch,Stephen Rea,1946
V for Vendetta,High Chancellor Adam Sutler,John Hurt,1940
Ninja Assassin,Ryan Maslow,Ben Miles,1967
Speed Racer,Cass Jones,Ben Miles,1967
V for Vendetta,Dascomb,Ben Miles,1967
Speed Racer,Speed Racer,Emile Hirsch,1985
Speed Racer,Pops,John Goodman,1960
Speed Racer,Mom,Susan Sarandon,1946
Speed Racer,Racer X,Matthew Fox,1966
Speed Racer,Trixie,Christina Ricci,1980
Ninja Assassin,Raizo,Rain,1982
Speed Racer,Taejo Togokahn,Rain,1982
Ninja Assassin,Mika Coretti,Naomie Harris,null
The Green Mile,John Coffey,Michael Clarke Duncan,1957
The Green Mile,Brutus 'Brutal' Howell,David Morse,1953
Frost/Nixon,"James Reston, Jr.",Sam Rockwell,1968
The Green Mile,'Wild Bill' Wharton,Sam Rockwell,1968
Apollo 13,Ken Mattingly,Gary Sinise,1955
The Green Mile,Burt Hammersmith,Gary Sinise,1955
The Green Mile,Melinda Moores,Patricia Clarkson,1959
Frost/Nixon,Richard Nixon,Frank Langella,1938
Frost/Nixon,David Frost,Michael Sheen,1969
Bicentennial Man,Rupert Burns,Oliver Platt,1960
Frost/Nixon,Bob Zelnick,Oliver Platt,1960
One Flew Over the Cuckoo's Nest,Martini,Danny DeVito,1944
Hoffa,Robert 'Bobby' Ciaro,Danny DeVito,1944
Hoffa,Peter 'Pete' Connelly,John C. Reilly,1965
Apollo 13,Gene Kranz,Ed Harris,1950
A League of Their Own,Bob Hinson,Bill Paxton,1955
Twister,Bill Harding,Bill Paxton,1955
Apollo 13,Fred Haise,Bill Paxton,1955
Charlie Wilson's War,Gust Avrakotos,Philip Seymour Hoffman,1967
Twister,Dustin 'Dusty' Davis,Philip Seymour Hoffman,1967
Something's Gotta Give,Erica Barry,Diane Keaton,1946
Charlie Wilson's War,Joanne Herring,Julia Roberts,1967
A League of Their Own,'All the Way' Mae Mordabito,Madonna,1954
A League of Their Own,Dottie Hinson,Geena Davis,1956
A League of Their Own,Kit Keller,Lori Petty,1963

Directors

The directors.csv file contains two columns title, name, and born.

The content of the directors.csv file:

728

directors.csv

title,name,born
Speed Racer,Andy Wachowski,1967
Cloud Atlas,Andy Wachowski,1967
The Matrix Revolutions,Andy Wachowski,1967
The Matrix Reloaded,Andy Wachowski,1967
The Matrix,Andy Wachowski,1967
Speed Racer,Lana Wachowski,1965
Cloud Atlas,Lana Wachowski,1965
The Matrix Revolutions,Lana Wachowski,1965
The Matrix Reloaded,Lana Wachowski,1965
The Matrix,Lana Wachowski,1965
The Devil's Advocate,Taylor Hackford,1944
Ninja Assassin,James Marshall,1967
V for Vendetta,James Marshall,1967
When Harry Met Sally,Rob Reiner,1947
Stand By Me,Rob Reiner,1947
A Few Good Men,Rob Reiner,1947
Top Gun,Tony Scott,1944
Jerry Maguire,Cameron Crowe,1957
As Good as It Gets,James L. Brooks,1940
RescueDawn,Werner Herzog,1942
What Dreams May Come,Vincent Ward,1956
Snow Falling on Cedars,Scott Hicks,1953
That Thing You Do,Tom Hanks,1956
Sleepless in Seattle,Nora Ephron,1941
You've Got Mail,Nora Ephron,1941
Joe Versus the Volcano,John Patrick Stanley,1950
The Replacements,Howard Deutch,1950
Charlie Wilson's War,Mike Nichols,1931
The Birdcage,Mike Nichols,1931
Unforgiven,Clint Eastwood,1930
Johnny Mnemonic,Robert Longo,1953
Cloud Atlas,Tom Tykwer,1965
Apollo 13,Ron Howard,1954
Frost/Nixon,Ron Howard,1954
The Da Vinci Code,Ron Howard,1954
The Green Mile,Frank Darabont,1959
Hoffa,Danny DeVito,1944
Twister,Jan de Bont,1943
The Polar Express,Robert Zemeckis,1951
Cast Away,Robert Zemeckis,1951
One Flew Over the Cuckoo's Nest,Milos Forman,1932
Something's Gotta Give,Nancy Meyers,1949
Bicentennial Man,Chris Columbus,1958
A League of Their Own,Penny Marshall,1943

Prerequisites

The example uses the Linux or macOS tarball installation. It assumes that your current work directory is
the <neo4j-home> directory of the tarball installation, and the CSV files are placed in the default import
directory.


• For the default directory of other installations see, Operations Manual → File locations.

• The import location can be configured with Operations Manual →
server.directories.import.

Importing the data

Import the movies.csv file

729

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#file_locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#file_locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#file_locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_server.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_server.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_server.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_server.directories.import

LOAD CSV WITH HEADERS FROM 'file:///movies.csv' AS line
MERGE (m:Movie {title: line.title})
ON CREATE SET
 m.released = toInteger(line.released),
 m.tagline = line.tagline

Added 38 nodes, Set 114 properties, Added 38 labels

Import the actors.csv file

LOAD CSV WITH HEADERS FROM 'file:///actors.csv' AS line
MATCH (m:Movie {title: line.title})
MERGE (p:Person {name: line.name})
ON CREATE SET p.born = toInteger(line.born)
MERGE (p)-[:ACTED_IN {roles:split(line.roles, ';')}]->(m)

Added 102 nodes, Created 172 relationships, Set 375 properties, Added 102 labels

Import the directors.csv file

LOAD CSV WITH HEADERS FROM 'file:///directors.csv' AS line
MATCH (m:Movie {title: line.title})
MERGE (p:Person {name: line.name})
ON CREATE SET p.born = toInteger(line.born)
MERGE (p)-[:DIRECTED]->(m)

Added 23 nodes, Created 44 relationships, Set 46 properties, Added 23 labels

Create an index for nodes with the Person label

CREATE INDEX FOR (p:Person)
ON (p.name)

Added 1 indexes

CALL db.awaitIndexes

Index-backed property-lookup

In this example you want to write a query to find persons with the name 'Tom' that acted in a movie.

MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
WHERE p.name STARTS WITH 'Tom'
RETURN
 p.name AS name,
 count(m) AS count

730

+---------------------------+
| name | count |
+---------------------------+
"Tom Cruise"	3
"Tom Hanks"	12
"Tom Skerritt"	1
+---------------------------+
3 rows

The query request the database to return all the actors with the first name 'Tom'. There are three of them:
'Tom Cruise', 'Tom Skerritt' and 'Tom Hanks'. With native indexes, however, you can leverage the fact that
indexes store the property values. In this case, it means that the names can be looked up directly from the
index. This allows Cypher to avoid the second call to the database to find the property, which can save
time on very large queries.

If we profile the above query, we see that the NodeIndexSeekByRange in the Details column contains
cache[p.name], which means that p.name is retrieved from the index. We can also see that the
OrderedAggregation has no DB Hits, which means it does not have to access the database again.

PROFILE
MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
WHERE p.name STARTS WITH 'Tom'
RETURN
 p.name AS name,
 count(m) AS count

731

+------------------------+
| name | count |
+------------------------+
"Tom Cruise"	3
"Tom Hanks"	12
"Tom Skerritt"	1
+------------------------+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 2 | 43 | 3 | 1768 |
+--+

+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by | Other
|
+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +ProduceResults@neo4j | name, count |
1 | 3 | 0 | | 0/0 | 0.049 | name ASC | In Pipeline 1
|
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +OrderedAggregation@neo4j | cache[p.name] AS name, count(m) AS count |
1 | 3 | 0 | 1688 | 0/0 | 0.188 | name ASC | In Pipeline 1
|
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +Filter@neo4j | m:Movie |
1 | 16 | 16 | | | | p.name ASC | Fused in Pipeline
0 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +Expand(All)@neo4j | (p)-[anon_16:ACTED_IN]->(m) |
1 | 16 | 22 | | | | p.name ASC | Fused in Pipeline
0 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +NodeIndexSeekByRange@neo4j | p:Person(name) WHERE name STARTS WITH $autostring_0, cache[p.name] |
1 | 4 | 5 | 72 | 4/0 | 0.340 | p.name ASC | Fused in Pipeline
0 |
+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+

3 rows

If we change the query, such that it can no longer use an index, we will see that there will be no
cache[p.name] in the Details column, and that the EagerAggregation now has DB Hits, since it accesses
the database again to retrieve the name.

PROFILE
MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
RETURN
 p.name AS name,
 count(m) AS count

+----------------------------------+
| name | count |
+----------------------------------+
| "Diane Keaton" | 1 |

732

"Jack Nicholson"	5
"Keanu Reeves"	7
"Ice-T"	1
"Takeshi Kitano"	1
"Dina Meyer"	1
"Brooke Langton"	1
"Gene Hackman"	3
"Orlando Jones"	1
"Al Pacino"	1
"Charlize Theron"	2
"Hugo Weaving"	5
"Laurence Fishburne"	3
"Carrie-Anne Moss"	3
"Emil Eifrem"	1
"John Hurt"	1
"Stephen Rea"	1
"Natalie Portman"	1
"Ben Miles"	3
"Jim Broadbent"	1
"Tom Hanks"	12
"Halle Berry"	1
"John Goodman"	1
"Susan Sarandon"	1
"Christina Ricci"	1
"Rain"	2
"Emile Hirsch"	1
"Matthew Fox"	1
"Rick Yune"	2
"Naomie Harris"	1
"Liv Tyler"	1
"Kelly Preston"	1
"Bonnie Hunt"	2
"Jerry O'Connell"	2
"Renee Zellweger"	1
"Jay Mohr"	1
"Jonathan Lipnicki"	1
"Cuba Gooding Jr."	4
"Regina King"	1
"Tom Cruise"	3
"Kelly McGillis"	1
"Anthony Edwards"	1
"Tom Skerritt"	1
"Meg Ryan"	5
"Val Kilmer"	1
"Kiefer Sutherland"	2
"Kevin Bacon"	3
"Aaron Sorkin"	1
"Christopher Guest"	1
"Noah Wyle"	1
"James Marshall"	1
"Kevin Pollak"	1
"J.T. Walsh"	2
"Demi Moore"	1
"Danny DeVito"	2
"John C. Reilly"	1
"Helen Hunt"	3
"Greg Kinnear"	2
"Ed Harris"	1
"Bill Paxton"	3
"Gary Sinise"	2
"Oliver Platt"	2
"Frank Langella"	1
"Michael Sheen"	1
"Sam Rockwell"	2
"John Cusack"	1
"Wil Wheaton"	1
"Corey Feldman"	1
"River Phoenix"	1
"Marshall Bell"	2
"Max von Sydow"	2
"Annabella Sciorra"	1
"Werner Herzog"	1
"Robin Williams"	3
"Billy Crystal"	1
"Carrie Fisher"	1
"Bruno Kirby"	1
"Nathan Lane"	2

733

"Rita Wilson"	1
"Rosie O'Donnell"	2
"Bill Pullman"	1
"Victor Garber"	1
"Steve Zahn"	2
"Dave Chappelle"	1
"Parker Posey"	1
"James Cromwell"	2
"Patricia Clarkson"	1
"Michael Clarke Duncan"	1
"David Morse"	1
"Zach Grenier"	2
"Christian Bale"	1
"Philip Seymour Hoffman"	2
"Ethan Hawke"	1
"Geena Davis"	1
"Madonna"	1
"Lori Petty"	1
"Julia Roberts"	1
"Ian McKellen"	1
"Paul Bettany"	1
"Audrey Tautou"	1
"Clint Eastwood"	1
"Richard Harris"	1
+----------------------------------+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 70 | 809 | 102 | 17376 |
+--+

+-------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults@neo4j | name, count | 13 | 102 | 0 |
| 0/0 | 0.536 | In Pipeline 1 |
| | +-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +EagerAggregation@neo4j | p.name AS name, count(m) AS count | 13 | 102 | 344 |
17296 | | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Filter@neo4j | p:Person | 172 | 172 | 172 |
| | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Expand(All)@neo4j | (m)<-[anon_16:ACTED_IN]-(p) | 172 | 172 | 254 |
| | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeByLabelScan@neo4j | m:Movie | 38 | 38 | 39 |
72 | 5/0 | 12.818 | Fused in Pipeline 0 |
+-------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

102 rows

For non-native indexes there will still be a second database access to retrieve those values.

Predicates that can be used to enable this optimization are:

• Existence (e.g. WHERE n.name IS NOT NULL)

• Equality (e.g. WHERE n.name = 'Tom Hanks')

• Range (e.g. WHERE n.uid > 1000 AND n.uid < 2000)

• Prefix (e.g. WHERE n.name STARTS WITH 'Tom')

734

• Suffix (e.g. WHERE n.name ENDS WITH 'Hanks')

• Substring (e.g. WHERE n.name CONTAINS 'a')

• Several predicates of the above types combined using OR, given that all of them are on the same
property (e.g. WHERE n.prop < 10 OR n.prop = 'infinity')


If there is an existence constraint on the property, no predicate is required to trigger the
optimization. For example, CREATE CONSTRAINT constraint_name FOR (p:Person)
REQUIRE p.name IS NOT NULL.

Aggregating functions

For all built-in aggregating functions in Cypher, the index-backed property-lookup optimization can be
used even without a predicate.

Consider this query which returns the number of distinct names of people in the movies dataset:

PROFILE
MATCH (p:Person)
RETURN count(DISTINCT p.name) AS numberOfNames

+---------------+
| numberOfNames |
+---------------+
| 125 |
+---------------+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 45 | 126 | 1 | 9952 |
+--+

+-------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults@neo4j | numberOfNames | 1 | 1 |
0 | | 0/0 | 0.048 | In Pipeline 1 |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +EagerAggregation@neo4j | count(DISTINCT cache[p.name]) AS numberOfNames | 1 | 1 |
0 | 9888 | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +NodeIndexScan@neo4j | p:Person(name) WHERE name IS NOT NULL, cache[p.name] | 125 | 125 |
126 | 72 | 1/0 | 1.569 | Fused in Pipeline 0 |
+-------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

1 row

Note that the NodeIndexScan in the Details column contains cache[p.name] and that the EagerAggregation
has no DB Hits. In this case, the semantics of aggregating functions works like an implicit existence
predicate because Person nodes without the property name will not affect the result of an aggregation.

735

Index-backed ORDER BY

Now consider the following refinement to the query:

PROFILE
MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
WHERE p.name STARTS WITH 'Tom'
RETURN
 p.name AS name,
 count(m) AS count
ORDER BY name

+------------------------+
| name | count |
+------------------------+
"Tom Cruise"	3
"Tom Hanks"	12
"Tom Skerritt"	1
+------------------------+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 48 | 43 | 3 | 1768 |
+--+

+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by | Other
|
+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +ProduceResults@neo4j | name, count |
1 | 3 | 0 | | 0/0 | 0.045 | name ASC | In Pipeline 1
|
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +OrderedAggregation@neo4j | cache[p.name] AS name, count(m) AS count |
1 | 3 | 0 | 1688 | 0/0 | 0.173 | name ASC | In Pipeline 1
|
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +Filter@neo4j | m:Movie |
1 | 16 | 16 | | | | p.name ASC | Fused in Pipeline
0 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +Expand(All)@neo4j | (p)-[anon_16:ACTED_IN]->(m) |
1 | 16 | 22 | | | | p.name ASC | Fused in Pipeline
0 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +NodeIndexSeekByRange@neo4j | p:Person(name) WHERE name STARTS WITH $autostring_0, cache[p.name] |
1 | 4 | 5 | 72 | 4/0 | 0.459 | p.name ASC | Fused in Pipeline
0 |
+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+

3 rows

We are asking for the results in ascending alphabetical order. The native index happens to store String

736

properties in ascending alphabetical order, and Cypher knows this. In Neo4j 3.5 and later, the Cypher
planner will recognize that the index already returns data in the correct order, and skip the Sort operation.

The Order by column describes the order of rows after each operator. We see that the Order by column
contains p.name ASC from the index seek operation, meaning that the rows are ordered by p.name in
ascending order.

Index-backed ORDER BY can also be used for queries that expect their results is descending order, but
with slightly lower performance.


In cases where the Cypher planner is unable to remove the Sort operator, the planner
can utilize knowledge of the ORDER BY clause to plan the Sort operator at a point in the
plan with optimal cardinality.

min() and max()

For the min and max functions, the index-backed ORDER BY optimization can be used to avoid aggregation
and instead utilize the fact that the minimum/maximum value is the first/last one in a sorted index.
Consider the following query which returns the fist actor in alphabetical order:

PROFILE
MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
RETURN min(p.name) AS name

737

+----------------+
| name |
+----------------+
| "Aaron Sorkin" |
+----------------+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 38 | 809 | 1 | 184 |
+--+

+-------------------------+-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes)
| Page Cache Hits/Misses | Time (ms) | Other |
+-------------------------+-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults@neo4j | name | 1 | 1 | 0 |
| 0/0 | 0.041 | In Pipeline 1 |
| | +-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +EagerAggregation@neo4j | min(p.name) AS name | 1 | 1 | 344 | 32
| | | Fused in Pipeline 0 |
| | +-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Filter@neo4j | p:Person | 172 | 172 | 172 |
| | | Fused in Pipeline 0 |
| | +-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Expand(All)@neo4j | (m)<-[anon_16:ACTED_IN]-(p) | 172 | 172 | 254 |
| | | Fused in Pipeline 0 |
| | +-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeByLabelScan@neo4j | m:Movie | 38 | 38 | 39 | 72
| 5/0 | 1.636 | Fused in Pipeline 0 |
+-------------------------+-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

1 row

Aggregations are usually using the EagerAggregation operation. This would mean scanning all nodes in
the index to find the name that is first in alphabetic order. Instead, the query is planned with Projection,
followed by Limit, followed by Optional. This will simply pick the first value from the index.

For large datasets, this can improve performance dramatically.

Index-backed ORDER BY can also be used for corresponding queries with the max function, but with
slightly lower performance.

Restrictions

The optimization can only work on native indexes. It does not work for predicates only querying for the
spatial type Point.

Predicates that can be used to enable this optimization are:

• Existence (e.g.WHERE n.name IS NOT NULL)

• Equality (e.g. WHERE n.name = 'Tom Hanks')

• Range (e.g. WHERE n.uid > 1000 AND n.uid < 2000)

• Prefix (e.g. WHERE n.name STARTS WITH 'Tom')

738

• Suffix (e.g. WHERE n.name ENDS WITH 'Hanks')

• Substring (e.g. WHERE n.name CONTAINS 'a')

Predicates that will not work:

• Several predicates combined using OR

• Equality or range predicates querying for points (e.g. WHERE n.place > point({ x: 1, y: 2 }))

• Spatial distance predicates (e.g. WHERE point.distance(n.place, point({ x: 1, y: 2 })) < 2)



If there is an existence constraint on the property, no predicate is required to trigger the
optimization. For example, CREATE CONSTRAINT constraint_name FOR (p:Person)
REQUIRE p.name IS NOT NULL

As of Neo4j 5.4.0, predicates with parameters, such as WHERE n.prop > $param, can
trigger index-backed ORDER BY. The only exception are queries with parameters of
type Point.

Planner hints and the USING keyword

A planner hint is used to influence the decisions of the planner when building an execution

plan for a query. Planner hints are specified in a query with the USING keyword.


Forcing planner behavior is an advanced feature, and should be used with caution by
experienced developers and/or database administrators only, as it may cause queries to
perform poorly.

When executing a query, Neo4j needs to decide where in the query graph to start matching. This is done
by looking at the MATCH clause and the WHERE conditions and using that information to find useful indexes,
or other starting points.

However, the selected index might not always be the best choice. Sometimes multiple indexes are possible
candidates, and the query planner picks the suboptimal one from a performance point of view. Moreover,
in some circumstances (albeit rarely) it is better not to use an index at all.

Neo4j can be forced to use a specific starting point through the USING keyword. This is called giving a
planner hint.

There are three types of planner hints:

• Index hints.

• Scan hints.

• Join hints.

739

Query

MATCH
 (s:Scientist {born: 1850})-[:RESEARCHED]->
 (sc:Science)<-[i:INVENTED_BY {year: 560}]-
 (p:Pioneer {born: 525})-[:LIVES_IN]->
 (c:City)-[:PART_OF]->
 (cc:Country {formed: 411})
RETURN *

The query above will be used in some of the examples on this page. Without any hints, one index and no
join is used.

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c, cc, i, p, s, sc | 0 | 0 |
0 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Filter | s.born = $autoint_0 AND s:Scientist | 0 | 0 |
0 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (sc)<-[anon_0:RESEARCHED]-(s) | 0 | 0 |
0 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Filter | i.year = $autoint_1 AND sc:Science | 0 | 0 |
0 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (p)-[i:INVENTED_BY]->(sc) | 0 | 0 |
0 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Filter | p.born = $autoint_2 AND p:Pioneer | 0 | 0 |
2 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (c)<-[anon_1:LIVES_IN]-(p) | 1 | 1 |
3 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Filter | c:City | 1 | 1 |
2 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (cc)<-[anon_2:PART_OF]-(c) | 1 | 1 |
2 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +NodeIndexSeek | RANGE INDEX cc:Country(formed) WHERE formed = $autoint_3 | 1 | 1 |
2 | 120 | 6/1 | 0.506 | Fused in Pipeline 0 |
+-----------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 11, total allocated memory: 208

740

Index hints

Index hints are used to specify which index the planner should use as a starting point. This can be
beneficial in cases where the index statistics are not accurate for the specific values that the query at hand
is known to use, which would result in the planner picking a non-optimal index. An index hint is supplied
after an applicable MATCH clause.

Available index hints are:

Hint Fulfilled by plans

USING [RANGE | TEXT | POINT] INDEX
variable:Label(property)

NodeIndexScan, NodeIndexSeek

USING [RANGE | TEXT | POINT] INDEX SEEK
variable:Label(property)

NodeIndexSeek

USING [RANGE | TEXT | POINT] INDEX
variable:RELATIONSHIP_TYPE(property)

DirectedRelationshipIndexScan,
UndirectedRelationshipIndexScan,
DirectedRelationshipIndexSeek,
UndirectedRelationshipIndexSeek

USING [RANGE | TEXT | POINT] INDEX SEEK
variable:RELATIONSHIP_TYPE(property)

DirectedRelationshipIndexSeek,
UndirectedRelationshipIndexSeek

When specifying an index type for a hint, e.g. RANGE, TEXT, or POINT, the hint can only be fulfilled when an
index of the specified type is available. When no index type is specified, the hint can be fulfilled by any
index types.


Using a hint must never change the result of a query. Therefore, a hint with a specified
index type is only fulfillable when the planner knows that using an index of the specified
type does not change the results. Please refer to The use of indexes for more details.

It is possible to supply several index hints, but keep in mind that several starting points will require the use
of a potentially expensive join later in the query plan.

Query using a node index hint

The query above can be tuned to pick a different index as the starting point.

Query

MATCH
 (s:Scientist {born: 1850})-[:RESEARCHED]->
 (sc:Science)<-[i:INVENTED_BY {year: 560}]-
 (p:Pioneer {born: 525})-[:LIVES_IN]->
 (c:City)-[:PART_OF]->
 (cc:Country {formed: 411})
USING INDEX p:Pioneer(born)
RETURN *

741

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits
| Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c, cc, i, p, s, sc | 0 | 0 | 0
| | | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Filter | cc.formed = $autoint_3 AND cc:Country | 0 | 0 | 0
| | | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Expand(All) | (c)-[anon_2:PART_OF]->(cc) | 0 | 0 | 0
| | | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Filter | c:City | 0 | 0 | 0
| | | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Expand(All) | (p)-[anon_1:LIVES_IN]->(c) | 0 | 0 | 0
| | | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Filter | s.born = $autoint_0 AND s:Scientist | 0 | 0 | 0
| | | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Expand(All) | (sc)<-[anon_0:RESEARCHED]-(s) | 0 | 0 | 0
| | | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Filter | i.year = $autoint_1 AND sc:Science | 0 | 0 | 2
| | | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Expand(All) | (p)-[i:INVENTED_BY]->(sc) | 2 | 2 | 6
| | | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +NodeIndexSeek | RANGE INDEX p:Pioneer(born) WHERE born = $autoint_2 | 2 | 2 | 3
| 120 | 4/1 | 0.491 | Fused in Pipeline 0 |
+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 11, total allocated memory: 208

Query using a node text index hint

The following query can be tuned to pick a text index.

Query

MATCH (c:Country)
USING TEXT INDEX c:Country(name)
WHERE c.name = 'Country7'
RETURN *

742

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c | 1 | 1 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +NodeIndexSeek | TEXT INDEX c:Country(name) WHERE name = $autostring_0 | 1 | 1 |
2 | 120 | 2/0 | 0.949 | Fused in Pipeline 0 |
+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 184

Query using a relationship index hint

The query above can be tuned to pick a relationship index as the starting point.

Query

MATCH
 (s:Scientist {born: 1850})-[:RESEARCHED]->
 (sc:Science)<-[i:INVENTED_BY {year: 560}]-
 (p:Pioneer {born: 525})-[:LIVES_IN]->
 (c:City)-[:PART_OF]->
 (cc:Country {formed: 411})
USING INDEX i:INVENTED_BY(year)
RETURN *

743

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | c, cc, i, p, s, sc |
0 | 0 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +Filter | cc.formed = $autoint_3 AND cc:Country |
0 | 0 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +Expand(All) | (c)-[anon_2:PART_OF]->(cc) |
0 | 0 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +Filter | c:City |
0 | 0 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +Expand(All) | (p)-[anon_1:LIVES_IN]->(c) |
0 | 0 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +Filter | s.born = $autoint_0 AND s:Scientist |
0 | 0 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +Expand(All) | (sc)<-[anon_0:RESEARCHED]-(s) |
0 | 0 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +Filter | p.born = $autoint_2 AND sc:Science AND p:Pioneer |
0 | 0 | 4 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +DirectedRelationshipIndexSeek | RANGE INDEX (p)-[i:INVENTED_BY(year)]->(sc) WHERE year = $autoint_1 |
2 | 2 | 3 | 120 | 5/1 | 0.461 | Fused in Pipeline 0 |
+--------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 7, total allocated memory: 208

Query using a relationship text index hint

The following query can be tuned to pick a text index.

744

Query

MATCH ()-[i:INVENTED_BY]->()
USING TEXT INDEX i:INVENTED_BY(location)
WHERE i.location = 'Location7'
RETURN *

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--------------------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | i
| 1 | 1 | 0 | | | |
|
| |
+--+----------------
+------+---------+----------------+ | | |
| +DirectedRelationshipIndexSeek | TEXT INDEX (anon_0)-[i:INVENTED_BY(location)]->(anon_1) WHERE location
= $autostring_0 | 1 | 1 | 2 | 120 | 3/0 | 1.079 |
Fused in Pipeline 0 |
+--------------------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 184

Query using multiple index hints

Supplying one index hint changed the starting point of the query, but the plan is still linear, meaning it only
has one starting point. If we give the planner yet another index hint, we force it to use two starting points,
one at each end of the match. It will then join these two branches using a join operator.

Query

MATCH
 (s:Scientist {born: 1850})-[:RESEARCHED]->
 (sc:Science)<-[i:INVENTED_BY {year: 560}]-
 (p:Pioneer {born: 525})-[:LIVES_IN]->
 (c:City)-[:PART_OF]->
 (cc:Country {formed: 411})
USING INDEX s:Scientist(born)
USING INDEX cc:Country(formed)
RETURN *

745

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c, cc, i, p, s, sc | 0 | 0 |
0 | | 0/0 | 0.000 | |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+ |
| +NodeHashJoin | sc | 0 | 0 |
0 | 432 | | | In Pipeline 2 |
| |\ +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| | +Expand(All) | (s)-[anon_0:RESEARCHED]->(sc) | 1 | 0 |
0 | | | | |
| | | +--+----------------+------
+---------+----------------+ | | |
| | +NodeIndexSeek | RANGE INDEX s:Scientist(born) WHERE born = $autoint_0 | 1 | 0 |
0 | 120 | 0/0 | 0.000 | Fused in Pipeline 1 |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +Filter | i.year = $autoint_1 AND sc:Science | 0 | 0 |
0 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (p)-[i:INVENTED_BY]->(sc) | 0 | 0 |
0 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Filter | p.born = $autoint_2 AND p:Pioneer | 0 | 0 |
2 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (c)<-[anon_1:LIVES_IN]-(p) | 1 | 1 |
3 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Filter | c:City | 1 | 1 |
2 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (cc)<-[anon_2:PART_OF]-(c) | 1 | 1 |
2 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +NodeIndexSeek | RANGE INDEX cc:Country(formed) WHERE formed = $autoint_3 | 1 | 1 |
2 | 120 | 7/0 | 0.494 | Fused in Pipeline 0 |
+------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 11, total allocated memory: 768

Query using multiple index hints with a disjunction

Supplying multiple index hints can also be useful if the query contains a disjunction (OR) in the WHERE
clause. This makes sure that all hinted indexes are used and the results are joined together with a Union
and a Distinct afterwards.

746

Query

MATCH (country:Country)
USING INDEX country:Country(name)
USING INDEX country:Country(formed)
WHERE country.formed = 500 OR country.name STARTS WITH "A"
RETURN *

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | country |
1 | 1 | 0 | | | | |
| | +--
+----------------+------+---------+----------------+ | |
|
| +Distinct | country |
1 | 1 | 0 | 224 | | | |
| | +--
+----------------+------+---------+----------------+ | |
|
| +Union | |
2 | 1 | 0 | 80 | 1/0 | 0.213 | Fused in Pipeline 2 |
| |\ +--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| | +NodeIndexSeek | RANGE INDEX country:Country(formed) WHERE formed = $autoint_0 |
1 | 1 | 2 | 120 | 1/0 | 0.101 | In Pipeline 1 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +NodeIndexSeekByRange | RANGE INDEX country:Country(name) WHERE name STARTS WITH $autostring_1 |
1 | 0 | 1 | 120 | 0/1 | 0.307 | In Pipeline 0 |
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 3, total allocated memory: 320

Cypher will usually provide a plan that uses all indexes for a disjunction without hints. It may, however,
decide to plan a NodeByLabelScan instead, if the predicates appear to be not very selective. In this case, the
index hints can be useful.

Scan hints

If your query matches large parts of an index, it might be faster to scan the label or relationship type and
filter out rows that do not match. To do this, you can use USING SCAN variable:Label after the applicable
MATCH clause for node indexes, and USING SCAN variable:RELATIONSHIP_TYPE for relationship indexes. This
will force Cypher to not use an index that could have been used, and instead do a label scan/relationship
type scan. You can use the same hint to enforce a starting point where no index is applicable.

747

Hinting a label scan

Query

MATCH
 (s:Scientist {born: 1850})-[:RESEARCHED]->
 (sc:Science)<-[i:INVENTED_BY {year: 560}]-
 (p:Pioneer {born: 525})-[:LIVES_IN]->
 (c:City)-[:PART_OF]->
 (cc:Country {formed: 411})
USING SCAN s:Scientist
RETURN *

748

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c, cc, i, p, s, sc | 0 | 0 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Filter | cc.formed = $autoint_3 AND cc:Country | 0 | 0 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (c)-[anon_2:PART_OF]->(cc) | 0 | 0 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Filter | c:City | 0 | 0 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (p)-[anon_1:LIVES_IN]->(c) | 0 | 0 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Filter | i.year = $autoint_1 AND p.born = $autoint_2 AND p:Pioneer | 0 | 0 |
1 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (sc)<-[i:INVENTED_BY]-(p) | 1 | 1 |
3 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Filter | sc:Science | 1 | 1 |
2 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (s)-[anon_0:RESEARCHED]->(sc) | 1 | 1 |
2 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Filter | s.born = $autoint_0 | 1 | 1 |
200 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +NodeByLabelScan | s:Scientist | 100 | 100 |
101 | 120 | 11/0 | 0.512 | Fused in Pipeline 0 |
+------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 309, total allocated memory: 216

Hinting a relationship type scan

749

Query

MATCH
 (s:Scientist {born: 1850})-[:RESEARCHED]->
 (sc:Science)<-[i:INVENTED_BY {year: 560}]-
 (p:Pioneer {born: 525})-[:LIVES_IN]->
 (c:City)-[:PART_OF]->
 (cc:Country {formed: 411})
USING SCAN i:INVENTED_BY
RETURN *

750

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c, cc, i, p, s, sc
| 0 | 0 | 0 | | | |
|
| |
+--+----------------+------
+---------+----------------+ | | |
| +Filter | cc.formed = $autoint_3 AND cc:Country
| 0 | 0 | 0 | | | |
|
| |
+--+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (c)-[anon_2:PART_OF]->(cc)
| 0 | 0 | 0 | | | |
|
| |
+--+----------------+------
+---------+----------------+ | | |
| +Filter | c:City
| 0 | 0 | 0 | | | |
|
| |
+--+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (p)-[anon_1:LIVES_IN]->(c)
| 0 | 0 | 0 | | | |
|
| |
+--+----------------+------
+---------+----------------+ | | |
| +Filter | s.born = $autoint_0 AND s:Scientist
| 0 | 0 | 0 | | | |
|
| |
+--+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (sc)<-[anon_0:RESEARCHED]-(s)
| 0 | 0 | 0 | | | |
|
| |
+--+----------------+------
+---------+----------------+ | | |
| +Filter | i.year = $autoint_1 AND p.born = $autoint_2 AND sc:Science AND p:Pioneer
| 0 | 0 | 204 | | | |
|
| |
+--+----------------+------
+---------+----------------+ | | |
| +DirectedRelationshipTypeScan | (p)-[i:INVENTED_BY]->(sc)
| 100 | 100 | 101 | 120 | 9/0 | 0.910 | Fused in
Pipeline 0 |
+-------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 305, total allocated memory: 208

751

Query using multiple scan hints with a disjunction

Supplying multiple scan hints can also be useful if the query contains a disjunction (OR) in the WHERE clause.
This makes sure that all involved label predicates are solved by a UnionNodeByLabelsScan.

Query

MATCH (person)
USING SCAN person:Pioneer
USING SCAN person:Scientist
WHERE person:Pioneer OR person:Scientist
RETURN *

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------------+--------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) |
Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------------+--------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | person | 180 | 200 | 0 | |
| | |
| | +--------------------------+----------------+------+---------+----------------+
| | |
| +UnionNodeByLabelsScan | person:Pioneer|Scientist | 180 | 200 | 202 | 120 |
6/0 | 1.740 | Fused in Pipeline 0 |
+------------------------+--------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 202, total allocated memory: 184

Cypher will usually provide a plan that uses scans for a disjunction without hints. It may, however, decide
to plan an AllNodeScan followed by a Filter instead, if the label predicates appear to be not very selective.
In this case, the scan hints can be useful.

Join hints

Join hints are the most advanced type of hints, and are not used to find starting points for the query
execution plan, but to enforce that joins are made at specified points. This implies that there has to be
more than one starting point (leaf) in the plan, in order for the query to be able to join the two branches
ascending from these leaves. Due to this nature, joins, and subsequently join hints, will force the planner to
look for additional starting points, and in the case where there are no more good ones, potentially pick a
very bad starting point. This will negatively affect query performance. In other cases, the hint might force
the planner to pick a seemingly bad starting point, which in reality proves to be a very good one.

Hinting a join on a single node

In the example above using multiple index hints, we saw that the planner chose to do a join, but not on the
p node. By supplying a join hint in addition to the index hints, we can enforce the join to happen on the p
node.

752

Query

MATCH
 (s:Scientist {born: 1850})-[:RESEARCHED]->
 (sc:Science)<-[i:INVENTED_BY {year: 560}]-
 (p:Pioneer {born: 525})-[:LIVES_IN]->
 (c:City)-[:PART_OF]->
 (cc:Country {formed: 411})
USING INDEX s:Scientist(born)
USING INDEX cc:Country(formed)
USING JOIN ON p
RETURN *

753

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows |
Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c, cc, i, p, s, sc | 0 |
0 | 0 | | 0/0 | 0.000 | |
| | +--+----------------
+------+---------+----------------+------------------------+-----------+ |
| +NodeHashJoin | p | 0 |
0 | 0 | 432 | | | In Pipeline 2 |
| |\ +--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| | +Filter | cache[p.born] = $autoint_2 | 1 |
0 | 0 | | | | |
| | | +--+----------------
+------+---------+----------------+ | | |
| | +Expand(All) | (c)<-[anon_1:LIVES_IN]-(p) | 1 |
0 | 0 | | | | |
| | | +--+----------------
+------+---------+----------------+ | | |
| | +Filter | c:City | 1 |
0 | 0 | | | | |
| | | +--+----------------
+------+---------+----------------+ | | |
| | +Expand(All) | (cc)<-[anon_2:PART_OF]-(c) | 1 |
0 | 0 | | | | |
| | | +--+----------------
+------+---------+----------------+ | | |
| | +NodeIndexSeek | RANGE INDEX cc:Country(formed) WHERE formed = $autoint_3 | 1 |
0 | 0 | 120 | 0/0 | 0.000 | Fused in Pipeline 1 |
| | +--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +Filter | i.year = $autoint_1 AND cache[p.born] = $autoint_2 AND p:Pioneer | 0 |
0 | 1 | | | | |
| | +--+----------------
+------+---------+----------------+ | | |
| +Expand(All) | (sc)<-[i:INVENTED_BY]-(p) | 1 |
1 | 3 | | | | |
| | +--+----------------
+------+---------+----------------+ | | |
| +Filter | sc:Science | 1 |
1 | 2 | | | | |
| | +--+----------------
+------+---------+----------------+ | | |
| +Expand(All) | (s)-[anon_0:RESEARCHED]->(sc) | 1 |
1 | 2 | | | | |
| | +--+----------------
+------+---------+----------------+ | | |
| +NodeIndexSeek | RANGE INDEX s:Scientist(born) WHERE born = $autoint_0 | 1 |
1 | 2 | 120 | 6/1 | 0.515 | Fused in Pipeline 0 |
+------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 10, total allocated memory: 768

Hinting a join for an OPTIONAL MATCH

A join hint can also be used to force the planner to pick a NodeLeftOuterHashJoin or
NodeRightOuterHashJoin to solve an OPTIONAL MATCH. In most cases, the planner will rather use an
OptionalExpand.

754

Query

MATCH (s:Scientist {born: 1850})
OPTIONAL MATCH (s)-[:RESEARCHED]->(sc:Science)
RETURN *

Without any hint, the planner did not use a join to solve the OPTIONAL MATCH.

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+----------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+----------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | s, sc | 1 | 1 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +OptionalExpand(All) | (s)-[anon_0:RESEARCHED]->(sc) WHERE sc:Science | 1 | 1 |
4 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +NodeIndexSeek | RANGE INDEX s:Scientist(born) WHERE born = $autoint_0 | 1 | 1 |
2 | 120 | 6/0 | 0.560 | Fused in Pipeline 0 |
+----------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 6, total allocated memory: 184

Query

MATCH (s:Scientist {born: 1850})
OPTIONAL MATCH (s)-[:RESEARCHED]->(sc:Science)
USING JOIN ON s
RETURN *

Now the planner uses a join to solve the OPTIONAL MATCH.

755

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | s, sc | 1 | 1 |
0 | | 2/0 | 0.213 | |
| | +---+----------------+------
+---------+----------------+------------------------+-----------+ |
| +NodeLeftOuterHashJoin | s | 1 | 1 |
0 | 3112 | | 0.650 | In Pipeline 2 |
| |\ +---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| | +Expand(All) | (sc)<-[anon_0:RESEARCHED]-(s) | 100 | 100 |
300 | | | | |
| | | +---+----------------+------
+---------+----------------+ | | |
| | +NodeByLabelScan | sc:Science | 100 | 100 |
101 | 120 | 4/0 | 0.786 | Fused in Pipeline 1 |
| | +---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +NodeIndexSeek | RANGE INDEX s:Scientist(born) WHERE born = $autoint_0 | 1 | 1 |
2 | 120 | 1/0 | 0.214 | In Pipeline 0 |
+------------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 403, total allocated memory: 3192

756

Execution plans
This section describes the characteristics of query execution plans and provides details

about each of the operators.

 For information on replanning, see Cypher replanning.

Introduction

The task of executing a query is decomposed into operators, each of which implements a specific piece of
work. The operators are combined into a tree-like structure called an execution plan. Each operator in the
execution plan is represented as a node in the tree. Each operator takes as input zero or more rows, and
produces as output zero or more rows. This means that the output from one operator becomes the input
for the next operator. Operators that join two branches in the tree combine input from two incoming
streams and produce a single output.

Evaluation model

Evaluation of the execution plan begins at the leaf nodes of the tree. Leaf nodes have no input rows and
generally comprise operators such as scans and seeks. These operators obtain the data directly from the
storage engine, thus incurring database hits. Any rows produced by leaf nodes are then piped into their
parent nodes, which in turn pipe their output rows to their parent nodes and so on, all the way up to the
root node. The root node produces the final results of the query.

Eager and lazy evaluation

In general, query evaluation is lazy: most operators pipe their output rows to their parent operators as soon
as they are produced. This means that a child operator may not be fully exhausted before the parent
operator starts consuming the input rows produced by the child.

However, some operators, such as those used for aggregation and sorting, need to aggregate all their
rows before they can produce output. Such operators need to complete execution in its entirety before any
rows are sent to their parents as input. These operators are called eager operators, and are denoted as
such in Execution plan operators. Eagerness can cause high memory usage and may therefore be the
cause of query performance issues.

IDs

Each operator is assigned a unique ID, which is shown in the execution plan. The IDs can be used to refer
unambiguously to operators. There are no guarantees about the order of IDs, although they will usually
start with 0 at the root, and will increase towards the leaves of the tree.

Statistics

Each operator is annotated with statistics.

Rows

The number of rows that the operator produced. This is only available if the query was profiled.

757

EstimatedRows

This is the estimated number of rows that is expected to be produced by the operator. The estimate is
an approximate number based on the available statistical information. The compiler uses this estimate
to choose a suitable execution plan.

DbHits

Each operator will ask the Neo4j storage engine to do work such as retrieving or updating data. A
database hit is an abstract unit of this storage engine work. The actions triggering a database hit are
listed in Database hits.

Page Cache Hits, Page Cache Misses, Page Cache Hit Ratio

These metrics are only shown for some queries when using Neo4j Enterprise Edition. The page cache is
used to cache data and avoid accessing disk, so having a high number of hits and a low number of
misses will typically make the query run faster. Whenever several operators are fused together for more
efficient execution we can no longer associate this metric with a given operator and then nothing will
appear here.

Time

Time is only shown for some operators when using the pipelined runtime. The number shown is the
time in milliseconds it took to execute the given operator. Whenever several operators are fused
together for more efficient execution we can no longer associate a duration with a given operator and
then nothing will appear here.

To produce an efficient plan for a query, the Cypher query planner requires information about the Neo4j
database. This information includes which indexes and constraints are available, as well as various
statistics maintained by the database. The Cypher query planner uses this information to determine which
access patterns will produce the best execution plan.

The statistical information maintained by Neo4j is:

1. The number of nodes having a certain label.

2. The number of relationships by type.

3. Selectivity per index.

4. The number of relationships by type, ending with or starting from a node with a specific label.

Information about how the statistics are kept up to date, as well as configuration options for managing
query replanning and caching, can be found in the Operations Manual → Statistics and execution plans.

Query tuning describes how to tune Cypher queries. In particular, see Profile a query for how to view the
execution plan for a query and Planner hints and the USING keyword for how to use hints to influence the
decisions of the planner when building an execution plan for a query.

For a deeper understanding of how each operator works, refer to Execution plan operators and the linked
sections per operator. Please remember that the statistics of the particular database where the queries run
will decide the plan used. There is no guarantee that a specific query will always be solved with the same
plan.

758

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#statistics_execution_plans
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#statistics_execution_plans
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#statistics_execution_plans

Database hits
Each operator will send a request to the storage engine to do work such as retrieving or updating data. A
database hit (DBHits) is an abstract unit of this storage engine work.

These are all the actions that trigger one or more database hits:

• Create actions

◦ Create a node.

◦ Create a relationship.

◦ Create a new node label.

◦ Create a new relationship type.

◦ Create a new ID for property keys with the same name.

• Delete actions

◦ Delete a node.

◦ Delete a relationship.

• Update actions

◦ Set one or more labels on a node.

◦ Remove one or more labels from a node.

• Node-specific actions

◦ Get a node by its ID.

◦ Get the degree of a node.

◦ Determine whether a node is dense.

◦ Determine whether a label is set on a node.

◦ Get the labels of a node.

◦ Get a property of a node.

◦ Get an existing node label.

◦ Get the name of a label by its ID, or its ID by its name.

• Relationship-specific actions

◦ Get a relationship by its ID.

◦ Get a property of a relationship.

◦ Get an existing relationship type.

◦ Get a relationship type name by its ID, or its ID by its name.

• General actions

◦ Get the name of a property key by its ID, or its ID by the key name.

◦ Find a node or relationship through an index seek or index scan.

◦ Find a path in a variable-length expand.

759

◦ Find a shortest path.

◦ Ask the count store for a value.

• Schema actions

◦ Add an index.

◦ Drop an index.

◦ Get the reference of an index.

◦ Create a constraint.

◦ Drop a constraint.

• Call a procedure.

• Call a user-defined function.


The presented value can vary slightly depending on the Cypher runtime that was used to
execute the query. In the pipelined runtime the number of database hits will typically be
higher since it uses a more accurate way of measuring.

Execution plan operators

This section contains the exection plan operators at a glance.

This table comprises all the execution plan operators ordered lexicographically.

• Leaf operators, in most cases, locate the starting nodes and relationships required in order to execute
the query.

• Updating operators are used in queries that update the graph.

• Eager operators accumulate all their rows before piping them to the next operator.

Name Description Leaf? Updating? Considerations

AllNodesScan Reads all nodes from the node
store.

Yes

Anti Tests for the absence of a pattern.

AntiSemiApply Performs a nested loop. Tests for
the absence of a pattern predicate.

Apply Performs a nested loop. Yields rows
from both the left-hand and right-
hand side operators.

760

Name Description Leaf? Updating? Considerations

Argument Indicates the variable to be used as
an argument to the right-hand side
of an Apply operator.

Yes

AssertSameNode Used to ensure that no property
uniqueness constraints are violated.

AssertingMultiNodeIndexSeek Used to ensure that no property
uniqueness constraints are violated.

CacheProperties Reads node or relationship
properties and caches them.

CartesianProduct Produces a cartesian product of the
inputs from the left-hand and right-
hand operators.

Create Creates nodes and relationships. Yes

CreateIndex Creates an index for either nodes or
relationships.

Yes

CreateConstraint Creates a constraint for either
nodes or relationships.

Yes

Delete Deletes a node or relationship. Yes

DetachDelete Deletes a node and its
relationships.

Yes

DirectedAllRelationshipsScan Fetches all relationships and their
start and end nodes in the
database.

DirectedRelationshipByIdSeek Reads one or more relationships by
id from the relationship store.

Yes

761

Name Description Leaf? Updating? Considerations

DirectedRelationshipIndexContains
Scan

Examines all values stored in an
index, searching for entries
containing a specific string; for
example, in queries including
CONTAINS.

DirectedRelationshipIndexEndsWit
hScan

Examines all values stored in an
index, searching for entries ending
in a specific string; for example, in
queries containing ENDS WITH.

DirectedRelationshipIndexScan Examines all values stored in an
index, returning all relationships
and their start and end nodes with
a particular relationship type and a
specified property.

DirectedRelationshipIndexSeek Finds relationships and their start
and end nodes using an index seek.

DirectedRelationshipIndexSeekByR
ange

Finds relationships and their start
and end nodes using an index seek
where the value of the property
matches a given prefix string.

DirectedRelationshipTypeScan Fetches all relationships and their
start and end nodes with a specific
type from the relationship type
index.

DirectedUnionRelationshipTypesSc
an

Fetches all relationships and their
start and end nodes with at least
one of the provided types from the
relationship type index.

Distinct Drops duplicate rows from the
incoming stream of rows.

Eager

DoNothingIfExists(CONSTRAINT) Checks if a constraint already
exists, if it does then it stops the
execution, if not it continues.

Yes

762

Name Description Leaf? Updating? Considerations

DoNothingIfExists(INDEX) Checks if an index already exists, if
it does then it stops the execution,
if not it continues.

Yes

DropConstraint Drops a constraint using its name. Yes Yes

DropIndex Drops an index using its name. Yes Yes

Eager For isolation purposes, Eager
ensures that operations affecting
subsequent operations are
executed fully for the whole dataset
before continuing execution.

Eager

EagerAggregation Evaluates a grouping expression. Eager

EmptyResult Eagerly loads all incoming data and
discards it.

EmptyRow Returns a single row with no
columns.

Yes

ExhaustiveLimit The ExhaustiveLimit operator is
similar to the Limit operator, but
always exhausts the input. Used
when combining LIMIT and
updates.

Expand(All) Traverses incoming or outgoing
relationships from a given node.

Expand(Into) Finds all relationships between two
nodes.

Filter Filters each row coming from the
child operator, only passing through
rows that evaluate the predicates to
true.

763

Name Description Leaf? Updating? Considerations

Foreach Performs a nested loop. Yields rows
from the left-hand operator and
discards rows from the right-hand
operator.

LetAntiSemiApply Performs a nested loop. Tests for
the absence of a pattern predicate
in queries containing multiple
pattern predicates.

LetSelectOrAntiSemiApply Performs a nested loop. Tests for
the absence of a pattern predicate
that is combined with other
predicates.

LetSelectOrSemiApply Performs a nested loop. Tests for
the presence of a pattern predicate
that is combined with other
predicates.

LetSemiApply Performs a nested loop. Tests for
the presence of a pattern predicate
in queries containing multiple
pattern predicates.

Limit Returns the first n rows from the
incoming input.

LoadCSV Loads data from a CSV source into
the query.

Yes

LockingMerge Similar to the Merge operator but
will lock the start and end node
when creating a relationship if
necessary.

Merge The Merge operator will either read
or create nodes and/or
relationships.

MultiNodeIndexSeek Finds nodes using multiple index
seeks.

Yes

764

Name Description Leaf? Updating? Considerations

NodeByIdSeek Reads one or more nodes by ID
from the node store.

Yes

NodeByLabelScan Fetches all nodes with a specific
label from the node label index.

Yes

NodeCountFromCountStore Uses the count store to answer
questions about node counts.

Yes

NodeHashJoin Executes a hash join on node ID. Eager

NodeIndexContainsScan Examines all values stored in an
index, searching for entries
containing a specific string.

Yes

NodeIndexEndsWithScan Examines all values stored in an
index, searching for entries ending
in a specific string.

Yes

NodeIndexScan Examines all values stored in an
index, returning all nodes with a
particular label with a specified
property.

Yes

NodeIndexSeek Finds nodes using an index seek. Yes

NodeIndexSeekByRange Finds nodes using an index seek
where the value of the property
matches the given prefix string.

Yes

NodeLeftOuterHashJoin Executes a left outer hash join. Eager

NodeRightOuterHashJoin Executes a right outer hash join. Eager

NodeUniqueIndexSeek Finds nodes using an index seek
within a unique index.

Yes

NodeUniqueIndexSeekByRange Finds nodes using an index seek
within a unique index where the
value of the property matches the
given prefix string.

Yes

765

Name Description Leaf? Updating? Considerations

Optional Yields a single row with all columns
set to null if no data is returned by
its source.

OptionalExpand(All) Traverses relationships from a
given node, producing a single row
with the relationship and end node
set to null if the predicates are not
fulfilled.

OptionalExpand(Into) Traverses all relationships between
two nodes, producing a single row
with the relationship and end node
set to null if no matching
relationships are found (the start
node is the node with the smallest
degree).

OrderedAggregation Like EagerAggregation but relies on
the ordering of incoming rows. Is
not eager.

OrderedDistinct Like Distinct but relies on the
ordering of incoming rows.

PartialSort Sorts a row by multiple columns if
there is already an ordering.

PartialTop Returns the first n rows sorted by
multiple columns if there is already
an ordering.

ProcedureCall Calls a procedure.

ProduceResults Prepares the result so that it is
consumable by the user.

ProjectEndpoints Projects the start and end node of a
relationship.

766

Name Description Leaf? Updating? Considerations

Projection Evaluates a set of expressions,
producing a row with the results
thereof.

Yes

RelationshipCountFromCountStore Uses the count store to answer
questions about relationship
counts.

Yes

RemoveLabels Deletes labels from a node. Yes

RollUpApply Performs a nested loop. Executes a
pattern expression or pattern
comprehension.

SelectOrAntiSemiApply Performs a nested loop. Tests for
the absence of a pattern predicate if
an expression predicate evaluates
to false.

SelectOrSemiApply Performs a nested loop. Tests for
the presence of a pattern predicate
if an expression predicate evaluates
to false.

SemiApply Performs a nested loop. Tests for
the presence of a pattern predicate.

SetLabels Sets labels on a node. Yes

SetNodePropertiesFromMap Sets properties from a map on a
node.

Yes

SetProperty Sets a property on a node or
relationship.

Yes

SetRelationshipPropertiesFromMap Sets properties from a map on a
relationship.

Yes

ShortestPath Finds one or all shortest paths
between two previously matches
node variables.

767

Name Description Leaf? Updating? Considerations

ShowConstraints Lists the available constraints. Yes

ShowFunctions Lists the available functions. Yes

ShowIndexes Lists the available indexes. Yes

ShowProcedures Lists the available procedures. Yes

ShowTransactions Lists the available transactions on
the current server.

Yes

Skip Skips n rows from the incoming
rows.

Sort Sorts rows by a provided key. Eager

TerminateTransactions Terminate transactions with the
given IDs.

Yes

Top Returns the first 'n' rows sorted by
a provided key.

Eager

TriadicBuild The TriadicBuild operator is used
in conjunction with TriadicFilter
to solve triangular queries.

TriadicFilter The TriadicFilter operator is used
in conjunction with TriadicBuild to
solve triangular queries.

TriadicSelection Solves triangular queries, such as
the very common 'find my friend-
of-friends that are not already my
friend'.

UndirectedAllRelationshipsScan Fetches all relationships and their
start and end nodes in the
database.

768

Name Description Leaf? Updating? Considerations

UndirectedRelationshipByIdSeek Reads one or more relationships by
ID from the relationship store.

Yes

UndirectedRelationshipIndexContai
nsScan

Examines all values stored in an
index, searching for entries
containing a specific string; for
example, in queries including
CONTAINS.

UndirectedRelationshipIndexEnds
WithScan

Examines all values stored in an
index, searching for entries ending
in a specific string; for example, in
queries containing ENDS WITH.

UndirectedRelationshipIndexScan Examines all values stored in an
index, returning all relationships
and their start and end nodes with
a particular relationship type and a
specified property.

UndirectedRelationshipIndexSeek Finds relationships and their start
and end nodes using an index seek.

UndirectedRelationshipIndexSeekB
yRange

Finds relationships and their start
and end nodes using an index seek
where the value of the property
matches a given prefix string.

UndirectedRelationshipTypeScan Fetches all relationships and their
start and end nodes with a specific
type from the relationship type
index.

UndirectedUnionRelationshipTypes
Scan

Fetches all relationships and their
start and end nodes with at least
one of the provided types from the
relationship type index.

Union Concatenates the results from the
right-hand operator with the results
from the left-hand operator.

769

Name Description Leaf? Updating? Considerations

UnionNodeByLabelsScan Fetches all nodes that have at least
one of the provided labels from the
node label index.

Unwind Returns one row per item in a list.

ValueHashJoin Executes a hash join on arbitrary
values.

Eager

VarLengthExpand(All) Traverses variable-length
relationships from a given node.

VarLengthExpand(Into) Finds all variable-length
relationships between two nodes.

VarLengthExpand(Pruning) Traverses variable-length
relationships from a given node and
only returns unique end nodes.

VarLengthExpand(Pruning,BFS) Traverses variable-length
relationships from a given node and
only returns unique end nodes.

Execution plan operators in detail

All executin plan operators are listed here, grouped by the similarity of their characteristics.

Certain operators are only used by a subset of the runtimes that Cypher can choose from. If that is the
case, the example queries will be prefixed with an option to choose one of these runtimes.

All Nodes Scan

The AllNodesScan operator reads all nodes from the node store. The variable that will contain the nodes is
seen in the arguments. Any query using this operator is likely to encounter performance problems on a
non-trivial database.

770

Example 415. AllNodesScan

Query

PROFILE
MATCH (n)
RETURN n

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+-----------------+---------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | n | 35 | 35 | 0 | |
| | |
| | +---------+----------------+------+---------+----------------+
| | |
| +AllNodesScan | n | 35 | 35 | 36 | 120 |
3/0 | 0.354 | Fused in Pipeline 0 |
+-----------------+---------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 36, total allocated memory: 184

Directed Relationship Index Scan

The DirectedRelationshipIndexScan operator examines all values stored in an index, returning all
relationships and their start and end nodes with a particular relationship type and a specified property.

771

Example 416. DirectedRelationshipIndexScan

Query

PROFILE
MATCH ()-[r: WORKS_IN]->()
WHERE r.title IS NOT NULL
RETURN r

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r
| 15 | 15 | 0 | | | |
|
| |
+--+----------------+------
+---------+----------------+ | | |
| +DirectedRelationshipIndexScan | RANGE INDEX (anon_0)-[r:WORKS_IN(title)]->(anon_1) WHERE title IS
NOT NULL | 15 | 15 | 16 | 120 | 3/1 | 2.464 |
Fused in Pipeline 0 |
+--------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 16, total allocated memory: 184

Undirected Relationship Index Scan

The UndirectedRelationshipIndexScan operator examines all values stored in an index, returning all
relationships and their start and end nodes with a particular relationship type and a specified property.

772

Example 417. UndirectedRelationshipIndexScan

Query

PROFILE
MATCH ()-[r: WORKS_IN]-()
WHERE r.title IS NOT NULL
RETURN r

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+----------------------------------
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+----------------------------------
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r
| 30 | 30 | 0 | | | |
|
| |
+---+----------------+------
+---------+----------------+ | | |
| +UndirectedRelationshipIndexScan | RANGE INDEX (anon_0)-[r:WORKS_IN(title)]-(anon_1) WHERE title IS
NOT NULL | 30 | 30 | 16 | 120 | 3/1 | 1.266 |
Fused in Pipeline 0 |
+----------------------------------
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 16, total allocated memory: 184

Directed Relationship Index Seek

The DirectedRelationshipIndexSeek operator finds relationships and their start and end nodes using an
index seek. The relationship variable and the index used are shown in the arguments of the operator.

773

Example 418. DirectedRelationshipIndexSeek

Query

PROFILE
MATCH (candidate)-[r:WORKS_IN]->()
WHERE r.title = 'chief architect'
RETURN candidate

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------------------
+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--------------------------------
+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | candidate
| 2 | 1 | 0 | | | |
|
| |
+---+----------------
+------+---------+----------------+ | | |
| +DirectedRelationshipIndexSeek | RANGE INDEX (candidate)-[r:WORKS_IN(title)]->(anon_0) WHERE title
= $autostring_0 | 2 | 1 | 2 | 120 | 3/1 |
0.591 | Fused in Pipeline 0 |
+--------------------------------
+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 184

Undirected Relationship Index Seek

The UndirectedRelationshipIndexSeek operator finds relationships and their start and end nodes using an
index seek. The relationship variable and the index used are shown in the arguments of the operator.

774

Example 419. UndirectedRelationshipIndexSeek

Query

PROFILE
MATCH (candidate)-[r:WORKS_IN]-()
WHERE r.title = 'chief architect'
RETURN candidate

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+----------------------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+----------------------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | candidate
| 4 | 2 | 0 | | | |
|
| |
+--+----------------
+------+---------+----------------+ | | |
| +UndirectedRelationshipIndexSeek | RANGE INDEX (candidate)-[r:WORKS_IN(title)]-(anon_0) WHERE title
= $autostring_0 | 4 | 2 | 2 | 120 | 3/1 |
0.791 | Fused in Pipeline 0 |
+----------------------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 184

Directed Relationship By Id Seek

The DirectedRelationshipByIdSeek operator reads one or more relationships by id from the relationship
store, and produces both the relationship and the nodes on either side.

775

Example 420. DirectedRelationshipByIdSeek

Query

PROFILE
MATCH (n1)-[r]->()
WHERE id(r) = 0
RETURN r, n1

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-------------------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows
| DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-------------------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r, n1 | 1 | 1
| 0 | | | | |
| | +---+----------------
+------+---------+----------------+ | | |
| +DirectedRelationshipByIdSeek | (n1)-[r]->(anon_0) WHERE id(r) = $autoint_0 | 1 | 1
| 1 | 120 | 4/0 | 0.459 | Fused in Pipeline 0 |
+-------------------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 184

Undirected Relationship By Id Seek

The UndirectedRelationshipByIdSeek operator reads one or more relationships by id from the relationship
store. As the direction is unspecified, two rows are produced for each relationship as a result of alternating
the combination of the start and end node.

776

Example 421. UndirectedRelationshipByIdSeek

Query

PROFILE
MATCH (n1)-[r]-()
WHERE elementId(r) = 1
RETURN r, n1

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated Rows
| Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+---------------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | r, n1 | 2
| 2 | 0 | | | | |
| | +--
+----------------+------+---------+----------------+ | |
|
| +UndirectedRelationshipByElementIdSeek| (n1)-[r]-(anon_0) WHERE elementId(r) = $autoint_0 | 2
| 2 | 1 | 120 | 4/0 | 0.332 | Fused in Pipeline 0 |
+---------------------------------+--+-----+---------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 184

Directed Relationship Index Contains Scan

The DirectedRelationshipIndexContainsScan operator examines all values stored in an index, searching
for entries containing a specific string; for example, in queries including CONTAINS. Although this is slower
than an index seek (since all entries need to be examined), it is still faster than the indirection resulting
from a type scan using DirectedRelationshipTypeScan, and a property store filter.

777

Example 422. DirectedRelationshipIndexContainsScan

Query

PROFILE
MATCH ()-[r: WORKS_IN]->()
WHERE r.title CONTAINS 'senior'
RETURN r

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | r
| 0 | 4 | 0 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +DirectedRelationshipIndexContainsScan | TEXT INDEX (anon_0)-[r:WORKS_IN(title)]->(anon_1) WHERE
title CONTAINS $autostring_0 | 0 | 4 | 5 | 120 |
3/0 | 1.051 | Fused in Pipeline 0 |
+--
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 5, total allocated memory: 184

Undirected Relationship Index Contains Scan

The UndirectedRelationshipIndexContainsScan operator examines all values stored in an index, searching
for entries containing a specific string; for example, in queries including CONTAINS. Although this is slower
than an index seek (since all entries need to be examined), it is still faster than the indirection resulting
from a type scan using DirectedRelationshipTypeScan, and a property store filter.

778

Example 423. UndirectedRelationshipIndexContainsScan

Query

PROFILE
MATCH ()-[r: WORKS_IN]-()
WHERE r.title CONTAINS 'senior'
RETURN r

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | r
| 0 | 8 | 0 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +UndirectedRelationshipIndexContainsScan | TEXT INDEX (anon_0)-[r:WORKS_IN(title)]-(anon_1) WHERE
title CONTAINS $autostring_0 | 0 | 8 | 5 | 120 |
3/0 | 2.684 | Fused in Pipeline 0 |
+--
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 5, total allocated memory: 184

Directed Relationship Index Ends With Scan

The DirectedRelationshipIndexEndsWithScan operator examines all values stored in an index, searching
for entries ending in a specific string; for example, in queries containing ENDS WITH. Although this is slower
than an index seek (since all entries need to be examined), it is still faster than the indirection resulting
from a label scan using NodeByLabelScan, and a property store filter.

779

Example 424. DirectedRelationshipIndexEndsWithScan

Query

PROFILE
MATCH ()-[r: WORKS_IN]->()
WHERE r.title ENDS WITH 'developer'
RETURN r

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | r
| 0 | 8 | 0 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +DirectedRelationshipIndexEndsWithScan | TEXT INDEX (anon_0)-[r:WORKS_IN(title)]->(anon_1) WHERE
title ENDS WITH $autostring_0 | 0 | 8 | 9 | 120 |
3/0 | 1.887 | Fused in Pipeline 0 |
+--
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 9, total allocated memory: 184

Undirected Relationship Index Ends With Scan

The UndirectedRelationshipIndexEndsWithScan operator examines all values stored in an index, searching
for entries ending in a specific string; for example, in queries containing ENDS WITH. Although this is slower
than an index seek (since all entries need to be examined), it is still faster than the indirection resulting
from a label scan using NodeByLabelScan, and a property store filter.

780

Example 425. UndirectedRelationshipIndexEndsWithScan

Query

PROFILE
MATCH ()-[r: WORKS_IN]-()
WHERE r.title ENDS WITH 'developer'
RETURN r

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+--
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | r
| 0 | 16 | 0 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +UndirectedRelationshipIndexEndsWithScan | TEXT INDEX (anon_0)-[r:WORKS_IN(title)]-(anon_1) WHERE
title ENDS WITH $autostring_0 | 0 | 16 | 9 | 120 |
3/0 | 1.465 | Fused in Pipeline 0 |
+--
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 9, total allocated memory: 184

Directed Relationship Index Seek By Range

The DirectedRelationshipIndexSeekByRange operator finds relationships and their start and end nodes
using an index seek where the value of the property matches a given prefix string.
DirectedRelationshipIndexSeekByRange can be used for STARTS WITH and comparison operators such as <,
>, <= and >=.

781

Example 426. DirectedRelationshipIndexSeekByRange

Query

PROFILE
MATCH (candidate: Person)-[r:WORKS_IN]->(location)
WHERE r.duration > 100
RETURN candidate

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+---------------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | candidate
| 4 | 15 | 0 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +Filter | candidate:Person
| 4 | 15 | 30 | | | |
|
| |
+--
+----------------+------+---------+----------------+ | |
|
| +DirectedRelationshipIndexSeekByRange | RANGE INDEX (candidate)-[r:WORKS_IN(duration)]->(location)
WHERE duration > $autoint_0 | 4 | 15 | 16 | 120 |
4/1 | 0.703 | Fused in Pipeline 0 |
+---------------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 46, total allocated memory: 184

Undirected Relationship Index Seek By Range

The UndirectedRelationshipIndexSeekByRange operator finds relationships and their start and end nodes
using an index seek where the value of the property matches a given prefix string.
UndirectedRelationshipIndexSeekByRange can be used for STARTS WITH and comparison operators such as
<, >, <= and >=.

782

Example 427. UndirectedRelationshipIndexSeekByRange

Query

PROFILE
MATCH (candidate: Person)-[r:WORKS_IN]-(location)
WHERE r.duration > 100
RETURN candidate

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+---
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | candidate
| 5 | 15 | 0 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +Filter | candidate:Person
| 5 | 15 | 60 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +UndirectedRelationshipIndexSeekByRange | RANGE INDEX (candidate)-[r:WORKS_IN(duration)]-(location)
WHERE duration > $autoint_0 | 8 | 30 | 16 | 120 |
4/1 | 1.214 | Fused in Pipeline 0 |
+---
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 76, total allocated memory: 184

Union Node By Labels Scan

The UnionNodeByLabelsScan operator fetches all nodes that have at least one of the provided labels from
the node label index.

Query

PROFILE
MATCH (countryOrLocation:Country|Location)
RETURN countryOrLocation

783

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------------+------------------------------------+----------------+------+---------
+----------------+------------------------+-----------+-----------------------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by | Pipeline |
+------------------------+------------------------------------+----------------+------+---------
+----------------+------------------------+-----------+-----------------------+---------------------+
| +ProduceResults | countryOrLocation | 17 | 11 | 0 |
| | | | |
| | +------------------------------------+----------------+------+---------
+----------------+ | | | |
| +UnionNodeByLabelsScan | countryOrLocation:Country|Location | 17 | 11 | 13 |
120 | 3/1 | 0.660 | countryOrLocation ASC | Fused in Pipeline 0 |
+------------------------+------------------------------------+----------------+------+---------
+----------------+------------------------+-----------+-----------------------+---------------------+

Total database accesses: 13, total allocated memory: 184

Directed All Relationships Scan

The DirectedAllRelationshipsScan operator fetches all relationships and their start and end nodes in the
database.

Query

PROFILE
MATCH ()-[r]->() RETURN r

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-------------------------------+------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-------------------------------+------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r | 28 | 28 | 0 |
| | | |
| | +------------------------+----------------+------+---------
+----------------+ | | |
| +DirectedAllRelationshipsScan | (anon_0)-[r]->(anon_1) | 28 | 28 | 28 |
120 | 3/0 | 0.502 | Fused in Pipeline 0 |
+-------------------------------+------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 28, total allocated memory: 184

784

Undirected All Relationships Scan

The UndirectedAllRelationshipsScan operator fetches all relationships and their start and end nodes in
the database.

Query

PROFILE
MATCH ()-[r]-() RETURN r

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------------------+-----------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+---------------------------------+-----------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r | 56 | 56 | 0 |
| | | |
| | +-----------------------+----------------+------+---------
+----------------+ | | |
| +UndirectedAllRelationshipsScan | (anon_0)-[r]-(anon_1) | 56 | 56 | 28 |
120 | 3/0 | 1.110 | Fused in Pipeline 0 |
+---------------------------------+-----------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 28, total allocated memory: 184

Directed Relationship Type Scan

The DirectedRelationshipTypeScan operator fetches all relationships and their start and end nodes with a
specific type from the relationship type index.

785

Example 428. DirectedRelationshipTypeScan

Query

PROFILE
MATCH ()-[r: FRIENDS_WITH]->()
RETURN r

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-------------------------------+-------------------------------------+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-------------------------------+-------------------------------------+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r | 12 | 12 |
0 | | | | |
| | +-------------------------------------+----------------+------
+---------+----------------+ | | |
| +DirectedRelationshipTypeScan | (anon_0)-[r:FRIENDS_WITH]->(anon_1) | 12 | 12 |
13 | 120 | 2/1 | 0.557 | Fused in Pipeline 0 |
+-------------------------------+-------------------------------------+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 13, total allocated memory: 184

Undirected Relationship Type Scan

The UndirectedRelationshipTypeScan operator fetches all relationships and their start and end nodes with
a specific type from the relationship type index.

786

Query

PROFILE
MATCH ()-[r: FRIENDS_WITH]-()
RETURN r

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------------------+------------------------------------+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+---------------------------------+------------------------------------+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r | 24 | 24 |
0 | | | | |
| | +------------------------------------+----------------+------
+---------+----------------+ | | |
| +UndirectedRelationshipTypeScan | (anon_0)-[r:FRIENDS_WITH]-(anon_1) | 24 | 24 |
13 | 120 | 2/1 | 0.749 | Fused in Pipeline 0 |
+---------------------------------+------------------------------------+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 13, total allocated memory: 184

Directed Union Relationship Types Scan

The DirectedUnionRelationshipTypeScan operator fetches all relationships and their start and end nodes
with at least one of the provided types from the relationship type index.

787

Example 429. DirectedUnionRelationshipTypeScan

Query

PROFILE
MATCH ()-[friendOrFoe: FRIENDS_WITH|FOE]->()
RETURN friendOrFoe

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-------------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+-----------------+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by |
Pipeline |
+-------------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+-----------------+---------------------+
| +ProduceResults | friendOrFoe |
15 | 12 | 0 | | | | |
|
| | +---
+----------------+------+---------+----------------+ | |
| |
| +DirectedUnionRelationshipTypesScan | (anon_0)-[friendOrFoe:FRIENDS_WITH|FOE]->(anon_1) |
15 | 12 | 14 | 120 | 3/1 | 2.027 | friendOrFoe ASC | Fused
in Pipeline 0 |
+-------------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+-----------------+---------------------+

Total database accesses: 14, total allocated memory: 184

Undirected Union Relationship Types Scan

The UndirectedUnionRelationshipTypeScan operator fetches all relationships and their start and end
nodes with at least one of the provided types from the relationship type index.

788

Example 430. UndirectedUnionRelationshipTypeScan

Query

PROFILE
MATCH ()-[friendOrFoe: FRIENDS_WITH|FOE]-()
RETURN friendOrFoe

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by
| Pipeline |
+---------------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------+---------------------+
| +ProduceResults | friendOrFoe |
30 | 24 | 0 | | | | |
|
| | +--
+----------------+------+---------+----------------+ | |
| |
| +UndirectedUnionRelationshipTypesScan | (anon_0)-[friendOrFoe:FRIENDS_WITH|FOE]-(anon_1) |
30 | 24 | 14 | 120 | 3/1 | 0.887 | friendOrFoe ASC | Fused
in Pipeline 0 |
+---------------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------+---------------------+

Total database accesses: 14, total allocated memory: 184

Node By Id Seek

The NodeByIdSeek operator reads one or more nodes by id from the node store.

789

Example 431. NodeByIdSeek

Query

PROFILE
MATCH (n)
WHERE elementId(n) = 0
RETURN n

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | n | 1 | 1 | 0 |
| | | |
| | +-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+----------------------
| | |
| +NodeByElementIdSeek | n WHERE elementId(n) = $autoint_0 | 1 | 1 | 1 |
120 | 3/0 | 2.108 | Fused in Pipeline 0 |
+------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 184

Node By Label Scan

The NodeByLabelScan operator fetches all nodes with a specific label from the node label index.

790

Example 432. NodeByLabelScan

Query

PROFILE
MATCH (person:Person)
RETURN person

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | person | 14 | 14 | 0 | |
| | |
| | +---------------+----------------+------+---------+----------------+
| | |
| +NodeByLabelScan | person:Person | 14 | 14 | 15 | 120 |
2/1 | 0.522 | Fused in Pipeline 0 |
+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 15, total allocated memory: 184

Node Index Seek

The NodeIndexSeek operator finds nodes using an index seek. The node variable and the index used are
shown in the arguments of the operator. If the index is a unique index, the operator is instead called
NodeUniqueIndexSeek.

791

Example 433. NodeIndexSeek

Query

PROFILE
MATCH (location:Location {name: 'Malmo'})
RETURN location

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows |
Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | location | 1 |
1 | 0 | | | | |
| | +--+----------------
+------+---------+----------------+ | | |
| +NodeIndexSeek | RANGE INDEX location:Location(name) WHERE name = $autostring_0 | 1 |
1 | 2 | 120 | 2/1 | 0.401 | Fused in Pipeline 0 |
+-----------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 184

Node Unique Index Seek

The NodeUniqueIndexSeek operator finds nodes using an index seek within a unique index. The node
variable and the index used are shown in the arguments of the operator. If the index is not unique, the
operator is instead called NodeIndexSeek. If the index seek is used to solve a MERGE clause, it will also be
marked with (Locking). This makes it clear that any nodes returned from the index will be locked in order
to prevent concurrent conflicting updates.

792

Example 434. NodeUniqueIndexSeek

Query

PROFILE
MATCH (t:Team {name: 'Malmo'})
RETURN t

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+----------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+----------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | t | 1 | 0 |
0 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +NodeUniqueIndexSeek | UNIQUE t:Team(name) WHERE name = $autostring_0 | 1 | 0 |
1 | 120 | 0/1 | 0.280 | Fused in Pipeline 0 |
+----------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 184

Multi Node Index Seek

The MultiNodeIndexSeek operator finds nodes using multiple index seeks. It supports using multiple
distinct indexes for different nodes in the query. The node variables and the indexes used are shown in the
arguments of the operator.

The operator yields a cartesian product of all index seeks. For example, if the operator does two seeks and
the first seek finds the nodes a1, a2 and the second b1, b2, b3, the MultiNodeIndexSeek will yield the
rows (a1, b1), (a1, b2), (a1, b3), (a2, b1), (a2, b2), (a2, b3).

793

Example 435. MultiNodeIndexSeek

Query

PROFILE
CYPHER runtime=pipelined
MATCH
 (location:Location {name: 'Malmo'}),
 (person:Person {name: 'Bob'})
RETURN location, person

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+---------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | location, person |
1 | 1 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +MultiNodeIndexSeek | RANGE INDEX location:Location(name) WHERE name = $autostring_0, |
1 | 0 | 0 | 120 | 2/2 | 1.910 | Fused in Pipeline 0 |
| | RANGE INDEX person:Person(name) WHERE name = $autostring_1 |
| | | | | | |
+---------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 0, total allocated memory: 184

Asserting Multi Node Index Seek

The AssertingMultiNodeIndexSeek operator is used to ensure that no property uniqueness constraints are
violated. The example looks for the presence of a team with the supplied name and id, and if one does not
exist, it will be created. Owing to the existence of two property uniqueness constraints on :Team(name) and
:Team(id), any node that would be found by the UniqueIndexSeek operator must be the very same node or
the constraints would be violated.

794

Example 436. AssertingMultiNodeIndexSeek

Query

PROFILE
MERGE (t:Team {name: 'Engineering', id: 42})

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+------------------------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults |
| 1 | 0 | 0 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +EmptyResult |
| 1 | 0 | 0 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +Merge | CREATE (t:Team {name: $autostring_0, id: $autoint_1})
| 1 | 1 | 0 | | | |
|
| |
+---
+----------------+------+---------+----------------+ | |
|
| +AssertingMultiNodeIndexSeek | UNIQUE t:Team(name) WHERE name = $autostring_0, UNIQUE t:Team(id)
WHERE id = $autoint_1 | 0 | 2 | 4 | 120 | 0/2 |
1.584 | Fused in Pipeline 0 |
+------------------------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 4, total allocated memory: 184

Node Index Seek By Range

The NodeIndexSeekByRange operator finds nodes using an index seek where the value of the property
matches a given prefix string. NodeIndexSeekByRange can be used for STARTS WITH and comparison
operators such as <, >, <= and >=. If the index is a unique index, the operator is instead called
NodeUniqueIndexSeekByRange.

795

Example 437. NodeIndexSeekByRange

Query

PROFILE
MATCH (l:Location)
WHERE l.name STARTS WITH 'Lon'
RETURN l

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-----------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | l |
2 | 1 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +NodeIndexSeekByRange | RANGE INDEX l:Location(name) WHERE name STARTS WITH $autostring_0 |
2 | 1 | 2 | 120 | 3/0 | 0.825 | Fused in Pipeline 0 |
+-----------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 184

Node Unique Index Seek By Range

The NodeUniqueIndexSeekByRange operator finds nodes using an index seek within a unique index, where
the value of the property matches a given prefix string. NodeUniqueIndexSeekByRange is used by STARTS
WITH and comparison operators such as <, >, <=, and >=. If the index is not unique, the operator is instead
called NodeIndexSeekByRange.

796

Example 438. NodeUniqueIndexSeekByRange

Query

PROFILE
MATCH (t:Team)
WHERE t.name STARTS WITH 'Ma'
RETURN t

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | t |
2 | 0 | 0 | | | | |
| | +--
+----------------+------+---------+----------------+ | |
|
| +NodeUniqueIndexSeekByRange | UNIQUE t:Team(name) WHERE name STARTS WITH $autostring_0 |
2 | 0 | 1 | 120 | 1/0 | 0.623 | Fused in Pipeline 0 |
+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 1, total allocated memory: 184

Node Index Contains Scan

The NodeIndexContainsScan operator examines all values stored in an index, searching for entries
containing a specific string; for example, in queries including CONTAINS. Although this is slower than an
index seek (since all entries need to be examined), it is still faster than the indirection resulting from a label
scan using NodeByLabelScan, and a property store filter.

797

Example 439. NodeIndexContainsScan

Query

PROFILE
MATCH (l:Location)
WHERE l.name CONTAINS 'al'
RETURN l

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | l |
0 | 2 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +NodeIndexContainsScan | TEXT INDEX l:Location(name) WHERE name CONTAINS $autostring_0 |
0 | 2 | 3 | 120 | 2/0 | 1.305 | Fused in Pipeline 0 |
+------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 3, total allocated memory: 184

Node Index Ends With Scan

The NodeIndexEndsWithScan operator examines all values stored in an index, searching for entries ending
in a specific string; for example, in queries containing ENDS WITH. Although this is slower than an index
seek (since all entries need to be examined), it is still faster than the indirection resulting from a label scan
using NodeByLabelScan, and a property store filter.

798

Example 440. NodeIndexEndsWithScan

Query

PROFILE
MATCH (l:Location)
WHERE l.name ENDS WITH 'al'
RETURN l

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | l |
0 | 0 | 0 | | | | |
| | +--
+----------------+------+---------+----------------+ | |
|
| +NodeIndexEndsWithScan | TEXT INDEX l:Location(name) WHERE name ENDS WITH $autostring_0 |
0 | 0 | 1 | 120 | 0/0 | 4.409 | Fused in Pipeline 0 |
+------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 1, total allocated memory: 184

Node Index Scan

The NodeIndexScan operator examines all values stored in an index, returning all nodes with a particular
label and a specified property.

799

Example 441. NodeIndexScan

Query

PROFILE
MATCH (l:Location)
WHERE l.name IS NOT NULL
RETURN l

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | l | 10 | 10 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +NodeIndexScan | RANGE INDEX l:Location(name) WHERE name IS NOT NULL | 10 | 10 |
11 | 120 | 2/1 | 0.557 | Fused in Pipeline 0 |
+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 11, total allocated memory: 184

Apply

All the different Apply operators (listed below) share the same basic functionality: they perform a nested
loop by taking a single row from the left-hand side, and using the Argument operator on the right-hand
side, execute the operator tree on the right-hand side. The versions of the Apply operators differ in how
the results are managed. The Apply operator (i.e. the standard version) takes the row produced by the
right-hand side — which at this point contains data from both the left-hand and right-hand sides — and
yields it.

800

Example 442. Apply

Query

PROFILE
MATCH (p:Person {name: 'me'})
MATCH (q:Person {name: p.secondName})
RETURN p, q

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | p, q | 1 | 0 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Apply | | 1 | 0 |
0 | | | | |
| |\ +---+----------------+------
+---------+----------------+ | | |
| | +NodeIndexSeek | RANGE INDEX q:Person(name) WHERE name = p.secondName | 1 | 0 |
0 | 2152 | 0/0 | 0.219 | Fused in Pipeline 1 |
| | +---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +NodeIndexSeek | RANGE INDEX p:Person(name) WHERE name = $autostring_0 | 1 | 1 |
2 | 120 | 0/1 | 0.236 | In Pipeline 0 |
+------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 2216

Semi Apply

The SemiApply operator tests for the presence of a pattern predicate, and is a variation of the Apply
operator. If the right-hand side operator yields at least one row, the row from the left-hand side operator is
yielded by the SemiApply operator. This makes SemiApply a filtering operator, used mostly for pattern
predicates in queries.

801

Example 443. SemiApply

Query

PROFILE
CYPHER runtime=slotted
MATCH (p:Person)
WHERE (p)-[:FRIENDS_WITH]->(:Person)
RETURN p.name

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+-----------------+-------------------------------------+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page
Cache Hits/Misses |
+-----------------+-------------------------------------+----------------+------+---------
+------------------------+
| +ProduceResults | `p.name` | 11 | 10 | 0 |
0/0 |
| | +-------------------------------------+----------------+------+---------
+------------------------+
| +Projection | p.name AS `p.name` | 11 | 10 | 10 |
1/0 |
| | +-------------------------------------+----------------+------+---------
+------------------------+
| +SemiApply | | 11 | 10 | 0 |
0/0 |
| |\ +-------------------------------------+----------------+------+---------
+------------------------+
| | +Filter | anon_3:Person | 12 | 0 | 10 |
0/0 |
| | | +-------------------------------------+----------------+------+---------
+------------------------+
| | +Expand(All) | (p)-[anon_2:FRIENDS_WITH]->(anon_3) | 12 | 10 | 51 |
28/0 |
| | | +-------------------------------------+----------------+------+---------
+------------------------+
| | +Argument | p | 14 | 14 | 0 |
0/0 |
| | +-------------------------------------+----------------+------+---------
+------------------------+
| +NodeByLabelScan| p:Person | 14 | 14 | 35 |
1/0 |
+-----------------+-------------------------------------+----------------+------+---------
+------------------------+

Total database accesses: 142, total allocated memory: 64

Anti Semi Apply

The AntiSemiApply operator tests for the absence of a pattern, and is a variation of the Apply operator. If
the right-hand side operator yields no rows, the row from the left-hand side operator is yielded by the
AntiSemiApply operator. This makes AntiSemiApply a filtering operator, used for pattern predicates in
queries.

802

Example 444. AntiSemiApply

Query

PROFILE
CYPHER runtime=slotted
MATCH
 (me:Person {name: 'me'}),
 (other:Person)
WHERE NOT (me)-[:FRIENDS_WITH]->(other)
RETURN other.name

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+-------------------+--+----------------+------
+---------+----------------+------------------------+
| Operator | Details | Estimated Rows | Rows
| DB Hits | Memory (Bytes) | Page Cache Hits/Misses |
+-------------------+--+----------------+------
+---------+----------------+------------------------+
| +ProduceResults | `other.name` | 4 | 12
| 0 | | 0/0 |
| | +--+----------------+------
+---------+----------------+------------------------+
| +Projection | other.name AS `other.name` | 4 | 12
| 12 | | 1/0 |
| | +--+----------------+------
+---------+----------------+------------------------+
| +AntiSemiApply | | 4 | 12
| 0 | | 0/0 |
| |\ +--+----------------+------
+---------+----------------+------------------------+
| | +Expand(Into) | (me)-[anon_2:FRIENDS_WITH]->(other) | 1 | 0
| 81 | 896 | 28/0 |
| | | +--+----------------+------
+---------+----------------+------------------------+
| | +Argument | me, other | 14 | 14
| 0 | | 0/0 |
| | +--+----------------+------
+---------+----------------+------------------------+
| +CartesianProduct | | 14 | 14
| 0 | | 0/0 |
| |\ +--+----------------+------
+---------+----------------+------------------------+
| | +NodeByLabelScan| other:Person | 14 | 14
| 35 | | 1/0 |
| | +--+----------------+------
+---------+----------------+------------------------+
| +NodeIndexSeek | RANGE INDEX me:Person(name) WHERE name = $autostring_0 | 1 | 1
| 2 | | 0/1 |
+-------------------+--+----------------+------
+---------+----------------+------------------------+

Total database accesses: 166, total allocated memory: 976

Anti

The Anti operator tests for the absence of a pattern. If there are incoming rows, the Anti operator will yield
no rows. If there are no incoming rows, the Anti operator will yield a single row.

803

Example 445. Anti

Query

PROFILE
CYPHER runtime=pipelined
MATCH
 (me:Person {name: 'me'}),
 (other:Person)
WHERE NOT (me)-[:FRIENDS_WITH]->(other)
RETURN other.name

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows
| DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `other.name` | 4 | 12
| 0 | | 0/0 | 0.068 | |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+ |
| +Projection | other.name AS `other.name` | 4 | 12
| 24 | | 2/0 | 0.111 | In Pipeline 4 |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +Apply | | 4 | 12
| 0 | | 0/0 | | |
| |\ +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| | +Anti | | 4 | 12
| 0 | 1256 | 0/0 | 0.084 | In Pipeline 4 |
| | | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| | +Limit | 1 | 11 | 2
| 0 | 752 | | | |
| | | +--+----------------+------
+---------+----------------+ | | |
| | +Expand(Into) | (me)-[anon_2:FRIENDS_WITH]->(other) | 1 | 2
| 81 | 2632 | | | |
| | | +--+----------------+------
+---------+----------------+ | | |
| | +Argument | me, other | 14 | 14
| 0 | 3192 | 1/0 | 0.904 | Fused in Pipeline 3 |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +CartesianProduct | | 14 | 14
| 0 | 3672 | | 1.466 | In Pipeline 2 |
| |\ +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| | +NodeByLabelScan| other:Person | 14 | 14
| 35 | | | | |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +NodeIndexSeek | RANGE INDEX me:Person(name) WHERE name = $autostring_0 | 1 | 1
| 2 | 120 | 0/1 | 0.493 | In Pipeline 0 |
+-------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 178, total allocated memory: 6744

804

Let Semi Apply

The LetSemiApply operator tests for the presence of a pattern predicate, and is a variation of the Apply
operator. When a query contains multiple pattern predicates separated with OR, LetSemiApply will be used
to evaluate the first of these. It will record the result of evaluating the predicate but will leave any filtering
to another operator. In the example, LetSemiApply will be used to check for the presence of the
FRIENDS_WITH relationship from each person.

805

Example 446. LetSemiApply

Query

PROFILE
CYPHER runtime=slotted
MATCH (other:Person)
WHERE (other)-[:FRIENDS_WITH]->(:Person) OR (other)-[:WORKS_IN]->(:Location)
RETURN other.name

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+--------------------+---+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Page Cache Hits/Misses |
+--------------------+---+----------------+------+---------
+------------------------+
| +ProduceResults | `other.name` | 13 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +Projection | other.name AS `other.name` | 13 | 14 | 14 |
1/0 |
| | +---+----------------+------+---------
+------------------------+
| +SelectOrSemiApply | anon_9 | 14 | 14 | 0 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_7:Location | 14 | 0 | 4 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_6:WORKS_IN]->(anon_7) | 14 | 4 | 15 |
8/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 4 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +LetSemiApply | | 14 | 14 | 0 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_5:Person | 12 | 0 | 10 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_4:FRIENDS_WITH]->(anon_5) | 12 | 10 | 51 |
28/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +NodeByLabelScan | other:Person | 14 | 14 | 35 |
1/0 |
+--------------------+---+----------------+------+---------
+------------------------+

Total database accesses: 165, total allocated memory: 64

806

Let Anti Semi Apply

The LetAntiSemiApply operator tests for the absence of a pattern, and is a variation of the Apply operator.
When a query contains multiple negated pattern predicates — i.e. predicates separated with OR, where at
least one predicate contains NOT — LetAntiSemiApply will be used to evaluate the first of these. It will
record the result of evaluating the predicate but will leave any filtering to another operator. In the example,
LetAntiSemiApply will be used to check for the absence of the FRIENDS_WITH relationship from each person.

807

Example 447. LetAntiSemiApply

Query

PROFILE
CYPHER runtime=slotted
MATCH (other:Person)
WHERE NOT ((other)-[:FRIENDS_WITH]->(:Person)) OR (other)-[:WORKS_IN]->(:Location)
RETURN other.name

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4
+--------------------+---+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Page Cache Hits/Misses |
+--------------------+---+----------------+------+---------
+------------------------+
| +ProduceResults | `other.name` | 11 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +Projection | other.name AS `other.name` | 11 | 14 | 14 |
1/0 |
| | +---+----------------+------+---------
+------------------------+
| +SelectOrSemiApply | anon_9 | 14 | 14 | 0 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_7:Location | 14 | 0 | 10 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_6:WORKS_IN]->(anon_7) | 14 | 10 | 38 |
20/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 10 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +LetAntiSemiApply | | 14 | 14 | 0 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_5:Person | 12 | 0 | 10 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_4:FRIENDS_WITH]->(anon_5) | 12 | 10 | 51 |
28/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +NodeByLabelScan | p:Person | 14 | 14 | 35 |
1/0 |
+--------------------+---+----------------+------+---------
+------------------------+

Total database accesses: 142, total allocated memory: 64

808

Select Or Semi Apply

The SelectOrSemiApply operator tests for the presence of a pattern predicate and evaluates a predicate,
and is a variation of the Apply operator. This operator allows for the mixing of normal predicates and
pattern predicates that check for the presence of a pattern. First, the normal expression predicate is
evaluated, and, only if it returns false, is the costly pattern predicate evaluated.

Example 448. SelectOrSemiApply

Query

PROFILE
MATCH (other:Person)
WHERE other.age > 25 OR (other)-[:FRIENDS_WITH]->(:Person)
RETURN other.name

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+--------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `other.name` | 11 | 10 | 0 |
| | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Projection | other.name AS `other.name` | 11 | 10 | 20 |
| | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +SelectOrSemiApply | other.age > $autoint_0 | 14 | 10 | 0 |
392 | 0/0 | 0.190 | Fused in Pipeline 2 |
| |\ +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Limit | 1 | 14 | 10 | 0 |
752 | | | |
| | | +---+----------------+------+---------
+----------------+ | | |
| | +Filter | anon_3:Person | 12 | 10 | 20 |
| | | |
| | | +---+----------------+------+---------
+----------------+ | | |
| | +Expand(All) | (other)-[anon_2:FRIENDS_WITH]->(anon_3) | 12 | 10 | 37 |
| | | |
| | | +---+----------------+------+---------
+----------------+ | | |
| | +Argument | other | 14 | 14 | 0 |
2168 | 2/0 | 0.435 | Fused in Pipeline 1 |
| | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeByLabelScan | other:Person | 14 | 14 | 35 |
| | | Fused in Pipeline 0 |
+--------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 148, total allocated memory: 2952

809

Select Or Anti Semi Apply

The SelectOrAntiSemiApply operator is used to evaluate OR between a predicate and a negative pattern
predicate (i.e. a pattern predicate preceded with NOT), and is a variation of the Apply operator. If the
predicate returns true, the pattern predicate is not tested. If the predicate returns false or null,
SelectOrAntiSemiApply will instead test the pattern predicate.

810

Example 449. SelectOrAntiSemiApply

Query

PROFILE
MATCH (other:Person)
WHERE other.age > 25 OR NOT (other)-[:FRIENDS_WITH]->(:Person)
RETURN other.name

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits
| Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `other.name` | 4 | 4 | 0
| | | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Projection | other.name AS `other.name` | 4 | 4 | 8
| | | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +SelectOrAntiSemiApply | other.age > $autoint_0 | 14 | 4 | 0
| 200 | 0/0 | 0.155 | Fused in Pipeline 3 |
| |\ +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Anti | | 14 | 4 | 0
| 1256 | 0/0 | 0.170 | In Pipeline 2 |
| | | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Limit | 1 | 0 | 10 | 0
| 752 | | | |
| | | +---+----------------+------+---------
+----------------+ | | |
| | +Filter | anon_3:Person | 12 | 10 | 20
| | | | |
| | | +---+----------------+------+---------
+----------------+ | | |
| | +Expand(All) | (other)-[anon_2:FRIENDS_WITH]->(anon_3) | 12 | 10 | 37
| | | | |
| | | +---+----------------+------+---------
+----------------+ | | |
| | +Argument | other | 14 | 14 | 0
| 2168 | 2/0 | 0.449 | Fused in Pipeline 1 |
| | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeByLabelScan | other:Person | 14 | 14 | 35
| | | | Fused in Pipeline 0 |
+------------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 136, total allocated memory: 4208

Let Select Or Semi Apply

The LetSelectOrSemiApply operator is planned for pattern predicates that are combined with other
predicates using OR. This is a variation of the Apply operator.

811

Example 450. LetSelectOrSemiApply

Query

PROFILE
CYPHER runtime=slotted
MATCH (other:Person)
WHERE (other)-[:FRIENDS_WITH]->(:Person) OR (other)-[:WORKS_IN]->(:Location) OR other.age = 5
RETURN other.name

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+-----------------------+---+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Page Cache Hits/Misses |
+-----------------------+---+----------------+------+---------
+------------------------+
| +ProduceResults | `other.name` | 13 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +Projection | other.name AS `other.name` | 13 | 14 | 14 |
1/0 |
| | +---+----------------+------+---------
+------------------------+
| +SelectOrSemiApply | anon_9 | 14 | 14 | 0 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_7:Location | 14 | 0 | 4 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_6:WORKS_IN]->(anon_7) | 14 | 4 | 15 |
8/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 4 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +LetSelectOrSemiApply | other.age = $autoint_0 | 14 | 14 | 14 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_5:Person | 12 | 0 | 10 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_4:FRIENDS_WITH]->(anon_5) | 12 | 10 | 51 |
28/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +NodeByLabelScan | other:Person | 14 | 14 | 35 |
1/0 |
+-----------------------+---+----------------+------+---------
+------------------------+

Total database accesses: 179, total allocated memory: 64

812

Let Select Or Anti Semi Apply

The LetSelectOrAntiSemiApply operator is planned for negated pattern predicates — i.e. pattern
predicates preceded with NOT — that are combined with other predicates using OR. This operator is a
variation of the Apply operator.

813

Example 451. LetSelectOrAntiSemiApply

Query

PROFILE
CYPHER runtime=slotted
MATCH (other:Person)
WHERE NOT (other)-[:FRIENDS_WITH]->(:Person) OR (other)-[:WORKS_IN]->(:Location) OR other.age = 5
RETURN other.name

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+---------------------------+---+----------------+------
+---------+------------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Page Cache Hits/Misses |
+---------------------------+---+----------------+------
+---------+------------------------+
| +ProduceResults | `other.name` | 12 | 14 |
0 | 0/0 |
| | +---+----------------+------
+---------+------------------------+
| +Projection | other.name AS `other.name` | 12 | 14 |
14 | 1/0 |
| | +---+----------------+------
+---------+------------------------+
| +SelectOrSemiApply | anon_9 | 14 | 14 |
0 | 0/0 |
| |\ +---+----------------+------
+---------+------------------------+
| | +Filter | anon_7:Location | 14 | 0 |
10 | 0/0 |
| | | +---+----------------+------
+---------+------------------------+
| | +Expand(All) | (other)-[anon_6:WORKS_IN]->(anon_7) | 14 | 10 |
38 | 20/0 |
| | | +---+----------------+------
+---------+------------------------+
| | +Argument | other | 14 | 10 |
0 | 0/0 |
| | +---+----------------+------
+---------+------------------------+
| +LetSelectOrAntiSemiApply | other.age = $autoint_0 | 14 | 14 |
14 | 0/0 |
| |\ +---+----------------+------
+---------+------------------------+
| | +Filter | anon_5:Person | 12 | 0 |
10 | 0/0 |
| | | +---+----------------+------
+---------+------------------------+
| | +Expand(All) | (other)-[anon_4:FRIENDS_WITH]->(anon_5) | 12 | 10 |
51 | 28/0 |
| | | +---+----------------+------
+---------+------------------------+
| | +Argument | other | 14 | 14 |
0 | 0/0 |
| | +---+----------------+------
+---------+------------------------+
| +NodeByLabelScan | other:Person | 14 | 14 |
35 | 1/0 |
+---------------------------+---+----------------+------
+---------+------------------------+

Total database accesses: 208, total allocated memory: 64

814

Merge

The Merge operator will either read or create nodes and/or relationships.

If matches are found it will execute the provided ON MATCH operations foreach incoming row. If no matches
are found instead nodes and relationships are created and all ON CREATE operations are run.

Example 452. Merge

Query

PROFILE
MERGE (p:Person {name: 'Andy'})
ON MATCH SET p.existed = true
ON CREATE SET p.existed = false

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-----------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | |
1 | 0 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +EmptyResult | |
1 | 0 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +Merge | CREATE (p:Person {name: $autostring_0}), ON MATCH SET p.existed = true, |
1 | 1 | 2 | | | | |
| | | ON CREATE SET p.existed = false |
| | | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +NodeIndexSeek | RANGE INDEX p:Person(name) WHERE name = $autostring_0 |
1 | 1 | 2 | 120 | 2/1 | 0.749 | Fused in Pipeline 0 |
+-----------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 4, total allocated memory: 184

Locking Merge

The LockingMerge operator is just like a normal Merge but will lock the start and end node when creating a
relationship if necessary.

815

Example 453. LockingMerge

Query

PROFILE
MATCH (s:Person {name: 'me'})
MERGE (s)-[:FRIENDS_WITH]->(s)

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | | 1 | 0 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +EmptyResult | | 1 | 0 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Apply | | 1 | 1 |
0 | | | | |
| |\ +---+----------------+------
+---------+----------------+ | | |
| | +LockingMerge | CREATE (s)-[anon_0:FRIENDS_WITH]->(s), LOCK(s) | 1 | 1 |
1 | | | | |
| | | +---+----------------+------
+---------+----------------+ | | |
| | +Expand(Into) | (s)-[anon_0:FRIENDS_WITH]->(s) | 0 | 0 |
12 | 896 | | | |
| | | +---+----------------+------
+---------+----------------+ | | |
| | +Argument | s | 1 | 3 |
0 | 2152 | 3/0 | 0.616 | Fused in Pipeline 1 |
| | +---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +NodeIndexSeek | RANGE INDEX s:Person(name) WHERE name = $autostring_0 | 1 | 1 |
2 | 120 | 0/1 | 0.298 | In Pipeline 0 |
+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 15, total allocated memory: 2232

Roll Up Apply

The RollUpApply operator is used to execute an expression which takes as input a pattern, and returns a
list with content from the matched pattern; for example, when using a pattern expression or pattern
comprehension in a query. This operator is a variation of the Apply operator.

816

Example 454. RollUpApply

Query

PROFILE
CYPHER runtime=slotted
MATCH (p:Person)
RETURN p.name, [(p)-[:WORKS_IN]->(location) | location.name] AS cities

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+-----------------+-----------------------------------+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page Cache
Hits/Misses |
+-----------------+-----------------------------------+----------------+------+---------
+------------------------+
| +ProduceResults | `p.name`, cities | 14 | 14 | 0 |
0/0 |
| | +-----------------------------------+----------------+------+---------
+------------------------+
| +Projection | p.name AS `p.name` | 14 | 14 | 14 |
0/0 |
| | +-----------------------------------+----------------+------+---------
+------------------------+
| +RollUpApply | cities, anon_0 | 14 | 14 | 0 |
0/0 |
| |\ +-----------------------------------+----------------+------+---------
+------------------------+
| | +Projection | location.name AS anon_0 | 15 | 15 | 15 |
1/0 |
| | | +-----------------------------------+----------------+------+---------
+------------------------+
| | +Expand(All) | (p)-[anon_2:WORKS_IN]->(location) | 15 | 15 | 53 |
28/0 |
| | | +-----------------------------------+----------------+------+---------
+------------------------+
| | +Argument | p | 14 | 14 | 0 |
0/0 |
| | +-----------------------------------+----------------+------+---------
+------------------------+
| +NodeByLabelScan| p:Person | 14 | 14 | 35 |
1/0 |
+-----------------+-----------------------------------+----------------+------+---------
+------------------------+

Total database accesses: 153, total allocated memory: 64

Argument

The Argument operator indicates the variable to be used as an argument to the right-hand side of an Apply
operator.

817

Example 455. Argument

Query

PROFILE
MATCH (s:Person {name: 'me'})
MERGE (s)-[:FRIENDS_WITH]->(s)

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | | 1 | 0 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +EmptyResult | | 1 | 0 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Apply | | 1 | 1 |
0 | | | | |
| |\ +---+----------------+------
+---------+----------------+ | | |
| | +LockingMerge | CREATE (s)-[anon_0:FRIENDS_WITH]->(s), LOCK(s) | 1 | 1 |
1 | | | | |
| | | +---+----------------+------
+---------+----------------+ | | |
| | +Expand(Into) | (s)-[anon_0:FRIENDS_WITH]->(s) | 0 | 0 |
12 | 896 | | | |
| | | +---+----------------+------
+---------+----------------+ | | |
| | +Argument | s | 1 | 3 |
0 | 2152 | 3/0 | 0.631 | Fused in Pipeline 1 |
| | +---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +NodeIndexSeek | RANGE INDEX s:Person(name) WHERE name = $autostring_0 | 1 | 1 |
2 | 120 | 0/1 | 0.220 | In Pipeline 0 |
+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 15, total allocated memory: 2232

Expand All

Given a start node, and depending on the pattern relationship, the Expand(All) operator will traverse
incoming or outgoing relationships.

818

Example 456. Expand(All)

Query

PROFILE
MATCH (p:Person {name: 'me'})-[:FRIENDS_WITH]->(fof)
RETURN fof

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | fof | 1 | 2 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (p)-[anon_0:FRIENDS_WITH]->(fof) | 1 | 2 |
5 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +NodeIndexSeek | RANGE INDEX p:Person(name) WHERE name = $autostring_0 | 1 | 1 |
2 | 120 | 4/1 | 1.137 | Fused in Pipeline 0 |
+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 7, total allocated memory: 184

Expand Into

When both the start and end node have already been found, the Expand(Into) operator is used to find all
relationships connecting the two nodes. As both the start and end node of the relationship are already in
scope, the node with the smallest degree will be used. This can make a noticeable difference when dense
nodes appear as end points.

819

Example 457. Expand(Into)

Query

PROFILE
MATCH (p:Person {name: 'me'})-[:FRIENDS_WITH]->(fof)-->(p)
RETURN fof

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | fof | 0 | 0 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Filter | not anon_1 = anon_0 | 0 | 0 |
0 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Expand(Into) | (p)-[anon_0:FRIENDS_WITH]->(fof) | 0 | 0 |
6 | 896 | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (p)<-[anon_1]-(fof) | 1 | 1 |
5 | | | | |
| | +---+----------------+------
+---------+----------------+ | | |
| +NodeIndexSeek | RANGE INDEX p:Person(name) WHERE name = $autostring_0 | 1 | 1 |
2 | 120 | 4/1 | 0.546 | Fused in Pipeline 0 |
+-----------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 13, total allocated memory: 976

Optional Expand All

The OptionalExpand(All) operator is analogous to Expand(All), apart from when no relationships match
the direction, type and property predicates. In this situation, OptionalExpand(all) will return a single row
with the relationship and end node set to null.

820

Example 458. OptionalExpand(All)

Query

PROFILE
MATCH (p:Person)
OPTIONAL MATCH (p)-[works_in:WORKS_IN]->(l)
 WHERE works_in.duration > 180
RETURN p, l

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+----------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+----------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | p, l |
14 | 15 | 1 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +OptionalExpand(All) | (p)-[works_in:WORKS_IN]->(l) WHERE works_in.duration > $autoint_0 |
14 | 15 | 53 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +NodeByLabelScan | p:Person |
14 | 14 | 15 | 120 | 5/0 | 1,233 | Fused in Pipeline 0 |
+----------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 125, total allocated memory: 184

Optional Expand Into

The OptionalExpand(Into) operator is analogous to Expand(Into), apart from when no matching
relationships are found. In this situation, OptionalExpand(Into) will return a single row with the
relationship and end node set to null. As both the start and end node of the relationship are already in
scope, the node with the smallest degree will be used. This can make a noticeable difference when dense
nodes appear as end points.

821

Example 459. OptionalExpand(Into)

Query

PROFILE
MATCH (p:Person)-[works_in:WORKS_IN]->(l)
OPTIONAL MATCH (l)-->(p)
RETURN p

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | p | 15 | 15 | 0 |
| | | |
| | +------------------------------+----------------+------+---------
+----------------+ | | |
| +OptionalExpand(Into) | (l)-[anon_0]->(p) | 15 | 15 | 105 |
3360 | | | |
| | +------------------------------+----------------+------+---------
+----------------+ | | |
| +Expand(All) | (p)-[works_in:WORKS_IN]->(l) | 15 | 15 | 39 |
| | | |
| | +------------------------------+----------------+------+---------
+----------------+ | | |
| +NodeByLabelScan | p:Person | 14 | 14 | 15 |
120 | 7/0 | 3,925 | Fused in Pipeline 0 |
+-----------------------+--- --------------------------+----------------+------+---------+
----------------+------------------------+-----------+---------------------+

Total database accesses: 215, total allocated memory: 3440

VarLength Expand All

Given a start node, the VarLengthExpand(All) operator will traverse variable-length relationships.

822

Example 460. VarLengthExpand(All)

Query

PROFILE
MATCH (p:Person)-[:FRIENDS_WITH *1..2]-(q:Person)
RETURN p, q

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | p, q | 40 | 48 | 0 |
| | | |
| | +-----------------------------------+----------------+------+---------
+----------------+ | | |
| +Filter | q:Person | 40 | 48 | 96 |
| | | |
| | +-----------------------------------+----------------+------+---------
+----------------+ | | |
| +VarLengthExpand(All) | (p)-[anon_0:FRIENDS_WITH*..2]-(q) | 40 | 48 | 151 |
128 | | | |
| | +-----------------------------------+----------------+------+---------
+----------------+ | | |
| +NodeByLabelScan | p:Person | 14 | 14 | 15 |
120 | 6/0 | 10,457 | Fused in Pipeline 0 |
+-----------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 318, total allocated memory: 208

VarLength Expand Into

When both the start and end node have already been found, the VarLengthExpand(Into) operator is used
to find all variable-length relationships connecting the two nodes.

823

Example 461. VarLengthExpand(Into)

Query

PROFILE
MATCH (p:Person)-[:FRIENDS_WITH *1..2]-(p:Person)
RETURN p

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | p | 3 | 4 | 0 |
| | | |
| | +-----------------------------------+----------------+------+---------
+----------------+ | | |
| +VarLengthExpand(Into) | (p)-[anon_0:FRIENDS_WITH*..2]-(p) | 3 | 4 | 151 |
128 | | | |
| | +-----------------------------------+----------------+------+---------
+----------------+ | | |
| +NodeByLabelScan | p:Person | 14 | 14 | 15 |
120 | 6/0 | 0,797 | Fused in Pipeline 0 |
+------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 222, total allocated memory: 192

VarLength Expand Pruning

Given a start node, the VarLengthExpand(Pruning) operator will traverse variable-length relationships
much like the VarLengthExpand(All) operator. However, as an optimization, some paths will not be
explored if they are guaranteed to produce an end node that has already been found (by means of a
previous path traversal).

This kind of expand is only planned when:

• The individual paths are not of interest.

• The relationships have an upper bound.

The VarLengthExpand(Pruning) operator guarantees that all the end nodes produced will be unique.

824

Example 462. VarLengthExpand(Pruning)

Query

PROFILE
MATCH (p:Person)-[:FRIENDS_WITH *3..4]-(q:Person)
RETURN DISTINCT p, q

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+---------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | p, q | 17 | 32 | 0 |
| 2/0 | 0.242 | |
| | +------------------------------+----------------+------+---------
+----------------+------------------------+-----------+ |
| +Distinct | p, q | 17 | 32 | 0 |
2208 | 0/0 | 13.409 | |
| | +------------------------------+----------------+------+---------
+----------------+------------------------+-----------+ |
| +Filter | q:Person | 18 | 32 | 64 |
| 1/0 | 0.358 | |
| | +------------------------------+----------------+------+---------
+----------------+------------------------+-----------+ |
| +VarLengthExpand(Pruning) | (p)-[:FRIENDS_WITH*3..4]-(q) | 18 | 32 | 204 |
1696 | | | In Pipeline 1 |
| | +------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeByLabelScan | p:Person | 14 | 14 | 15 |
120 | 1/0 | 0,100 | In Pipeline 0 |
+---------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 339, total allocated memory: 2288

Breadth First VarLength Expand Pruning

Given a start node, the VarLengthExpand(Pruning,BFS) operator traverses variable-length relationships
much like the VarLengthExpand(All) operator. However, as an optimization, it instead performs a breadth-
first search (BFS) and while expanding, some paths are not explored if they are guaranteed to produce an
end node that has already been found (by means of a previous path traversal). This is only used in cases
where the individual paths are not of interest.

This kind of expand is only planned when:

• The individual paths are not of interest.

• The relationships have an upper bound.

• The lower bound is either 0 or 1 (default).

825

This operator guarantees that all the end nodes produced are unique.

Query

PROFILE
MATCH (p:Person)-[:FRIENDS_WITH *..4]-(q:Person)
RETURN DISTINCT p, q

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-------------------------------+-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-------------------------------+-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | p, q | 56 | 68 | 0 |
| | | |
| | +-----------------------------+----------------+------+---------
+----------------+ | | |
| +Distinct | p, q | 56 | 68 | 0 |
4480 | | | |
| | +-----------------------------+----------------+------+---------
+----------------+ | | |
| +Filter | q:Person | 59 | 68 | 136 |
| | | |
| | +-----------------------------+----------------+------+---------
+----------------+ | | |
| +VarLengthExpand(Pruning,BFS) | (p)-[:FRIENDS_WITH*..4]-(q) | 59 | 68 | 280 |
696 | | | |
| | +-----------------------------+----------------+------+---------
+----------------+ | | |
| +NodeByLabelScan | p:Person | 14 | 14 | 15 |
120 | 4/0 | 3,202 | Fused in Pipeline 0 |
+-------------------------------+-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 487, total allocated memory: 5256

Assert Same Node

The AssertSameNode operator is used to ensure that no property uniqueness constraints are violated in the
slotted and interpreted runtime. The example looks for the presence of a team with the supplied name and
id, and if one does not exist, it will be created. Owing to the existence of two property uniqueness
constraints on :Team(name) and :Team(id), any node that would be found by the UniqueIndexSeek operator
must be the very same node or the constraints would be violated.

826

Example 463. AssertSameNode

Query

PROFILE
CYPHER runtime=slotted
MERGE (t:Team {name: 'Engineering', id: 42})

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+---------------------------------+---
+----------------+------+---------+------------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Page Cache Hits/Misses |
+---------------------------------+---
+----------------+------+---------+------------------------+
| +ProduceResults | |
1 | 0 | 0 | 0/0 |
| | +---
+----------------+------+---------+------------------------+
| +EmptyResult | |
1 | 0 | 0 | 0/0 |
| | +---
+----------------+------+---------+------------------------+
| +Merge | CREATE (t:Team {name: $autostring_0, id: $autoint_1}) |
1 | 1 | 0 | 0/0 |
| | +---
+----------------+------+---------+------------------------+
| +AssertSameNode | t |
0 | 1 | 0 | 0/0 |
| |\ +---
+----------------+------+---------+------------------------+
| | +NodeUniqueIndexSeek(Locking) | UNIQUE t:Team(id) WHERE id = $autoint_1 |
1 | 1 | 1 | 0/1 |
| | +---
+----------------+------+---------+------------------------+
| +NodeUniqueIndexSeek(Locking) | UNIQUE t:Team(name) WHERE name = $autostring_0 |
1 | 1 | 1 | 0/1 |
+---------------------------------+---
+----------------+------+---------+------------------------+

Total database accesses: 2, total allocated memory: 64

Empty Result

The EmptyResult operator eagerly loads all incoming data and discards it.

827

Example 464. EmptyResult

Query

PROFILE
CREATE (:Person)

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+-----------------+----------------+------+---------+------------------------
+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page Cache Hits/Misses | Time
(ms) | Pipeline |
+-----------------+-----------------+----------------+------+---------+------------------------
+-----------+---------------------+
| +ProduceResults | | 1 | 0 | 0 | |
| |
| | +-----------------+----------------+------+---------+ |
| |
| +EmptyResult | | 1 | 0 | 0 | |
| |
| | +-----------------+----------------+------+---------+ |
| |
| +Create | (anon_0:Person) | 1 | 1 | 1 | 0/0 |
0.000 | Fused in Pipeline 0 |
+-----------------+-----------------+----------------+------+---------+------------------------
+-----------+---------------------+

Total database accesses: 1, total allocated memory: 184

Produce Results

The ProduceResults operator prepares the result so that it is consumable by the user, such as transforming
internal values to user values. It is present in every single query that returns data to the user, and has little
bearing on performance optimisation.

828

Example 465. ProduceResults

Query

PROFILE
MATCH (n)
RETURN n

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+-----------------+---------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | n | 35 | 35 | 0 | |
| | |
| | +---------+----------------+------+---------+----------------+
| | |
| +AllNodesScan | n | 35 | 35 | 36 | 120 |
3/0 | 0.508 | Fused in Pipeline 0 |
+-----------------+---------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 36, total allocated memory: 184

Load CSV

The LoadCSV operator loads data from a CSV source into the query. It is used whenever the LOAD CSV
clause is used in a query.

829

Example 466. LoadCSV

Query

PROFILE
LOAD CSV FROM 'https://neo4j.com/docs/cypher-refcard/3.3/csv/artists.csv' AS line
RETURN line

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---------+----------------+------+---------+----------------
+------------------------+-----------+---------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+-----------------+---------+----------------+------+---------+----------------
+------------------------+-----------+---------------+
| +ProduceResults | line | 10 | 4 | 0 | |
0/0 | 0.210 | |
| | +---------+----------------+------+---------+----------------
+------------------------+-----------+ |
| +LoadCSV | line | 10 | 4 | 0 | 72 |
| | In Pipeline 1 |
+-----------------+---------+----------------+------+---------+----------------
+------------------------+-----------+---------------+

Total database accesses: 0, total allocated memory: 184

Hash joins in general

Hash joins have two inputs: the build input and probe input. The query planner assigns these roles so that
the smaller of the two inputs is the build input. The build input is pulled in eagerly, and is used to build a
probe table. Once this is complete, the probe table is checked for each row coming from the probe input
side.

In query plans, the build input is always the left operator, and the probe input the right operator.

There are four hash join operators:

• NodeHashJoin

• ValueHashJoin

• NodeLeftOuterHashJoin

• NodeRightOuterHashJoin

Node Hash Join

The NodeHashJoin operator is a variation of the hash join. NodeHashJoin executes the hash join on node ids.
As primitive types and arrays can be used, it can be done very efficiently.

830

Example 467. NodeHashJoin

Query

PROFILE
MATCH (bob:Person {name: 'Bob'})-[:WORKS_IN]->(loc)<-[:WORKS_IN]-(matt:Person {name: 'Mattias'})
RETURN loc.name

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows
| DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `loc.name` | 10 | 0
| 0 | | 0/0 | 0.000 | |
| | +--+----------------
+------+---------+----------------+------------------------+-----------+ |
| +Projection | loc.name AS `loc.name` | 10 | 0
| 0 | | 0/0 | 0.000 | |
| | +--+----------------
+------+---------+----------------+------------------------+-----------+ |
| +Filter | not anon_0 = anon_1 | 10 | 0
| 0 | | 0/0 | 0.000 | |
| | +--+----------------
+------+---------+----------------+------------------------+-----------+ |
| +NodeHashJoin | loc | 10 | 0
| 0 | 3688 | | 0.053 | In Pipeline 2 |
| |\ +--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| | +Expand(All) | (matt)-[anon_1:WORKS_IN]->(loc) | 19 | 0
| 0 | | | | |
| | | +--+----------------
+------+---------+----------------+ | | |
| | +NodeIndexSeek | RANGE INDEX matt:Person(name) WHERE name = $autostring_1 | 1 | 0
| 1 | 120 | 1/0 | 0.288 | Fused in Pipeline 1 |
| | +--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +Expand(All) | (bob)-[anon_0:WORKS_IN]->(loc) | 19 | 1
| 4 | | | | |
| | +--+----------------
+------+---------+----------------+ | | |
| +NodeIndexSeek | RANGE INDEX bob:Person(name) WHERE name = $autostring_0 | 1 | 1
| 2 | 120 | 3/0 | 0.556 | Fused in Pipeline 0 |
+------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 7, total allocated memory: 3888

Value Hash Join

The ValueHashJoin operator is a variation of the hash join. This operator allows for arbitrary values to be
used as the join key. It is most frequently used to solve predicates of the form: n.prop1 = m.prop2 (i.e.
equality predicates between two property columns).

831

Example 468. ValueHashJoin

Query

PROFILE
MATCH
 (p:Person),
 (q:Person)
WHERE p.age = q.age
RETURN p, q

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+-------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | p, q | 10 | 0 | 0 | |
0/0 | 0.000 | |
| | +---------------+----------------+------+---------+----------------
+------------------------+-----------+ |
| +ValueHashJoin | p.age = q.age| 10 | 0 | 0 | 344 |
| | In Pipeline 2 |
| |\ +---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| | +NodeByLabelScan| q:Person | 15 | 0 | 0 | 120 |
0/0 | 0,000 | In Pipeline 1 |
| | +---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +NodeByLabelScan | p:Person | 15 | 15 | 16 | 120 |
1/0 | 0,211 | In Pipeline 0 |
+-------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 71, total allocated memory: 664

Node Left/Right Outer Hash Join

The NodeLeftOuterHashJoin and NodeRightOuterHashJoin operators are variations of the hash join. The
query below can be planned with either a left or a right outer join. The decision depends on the
cardinalities of the left-hand and right-hand sides; i.e. how many rows would be returned, respectively, for
(a:Person) and (a)-→(b:Person). If (a:Person) returns fewer results than (a)-→(b:Person), a left outer
join — indicated by NodeLeftOuterHashJoin — is planned. On the other hand, if (a:Person) returns more
results than (a)-→(b:Person), a right outer join — indicated by NodeRightOuterHashJoin — is planned
instead.

832

Example 469. NodeRightOuterHashJoin

Query

PROFILE
MATCH (a:Person)
OPTIONAL MATCH (a)-->(b:Person)
USING JOIN ON a
RETURN a.name, b.name

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-------------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows |
Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-------------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `a.name`, `b.name` | 14 |
16 | 0 | | 0/0 | 0.102 | |
| | +--+----------------
+------+---------+----------------+------------------------+-----------+ |
| +Projection | cache[a.name] AS `a.name`, cache[b.name] AS `b.name` | 14 |
16 | 8 | | 0/0 | 0.055 | |
| | +--+----------------
+------+---------+----------------+------------------------+-----------+ |
| +NodeRightOuterHashJoin | a | 14 |
16 | 0 | 4232 | | 0.269 | In Pipeline 2 |
| |\ +--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| | +NodeByLabelScan | a:Person | 15 |
15 | 16 | 120 | 1/0 | 0,049 | In Pipeline 1 |
| | +--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +CacheProperties | cache[b.name], cache[a.name] | 13 |
13 | 39 | | | | |
| | +--+----------------
+------+---------+----------------+ | | |
| +Expand(All) | (b)<-[anon_0]-(a) | 13 |
13 | 55 | | | | |
| | +--+----------------
+------+---------+----------------+ | | |
| +NodeByLabelScan | b:Person | 15 |
15 | 16 | 120 | 5/0 | 1,150 | Fused in Pipeline 0 |
+-------------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 211, total allocated memory: 4312

Triadic Selection

The TriadicSelection operator is used to solve triangular queries, such as the very common 'find my
friend-of-friends that are not already my friend'. It does so by putting all the friends into a set, and uses the
set to check if the friend-of-friends are already connected to me. The example finds the names of all
friends of my friends that are not already my friends.

833

Example 470. TriadicSelection

Query

PROFILE
CYPHER runtime=slotted
MATCH (me:Person)-[:FRIENDS_WITH]-()-[:FRIENDS_WITH]-(other)
WHERE NOT (me)-[:FRIENDS_WITH]-(other)
RETURN other.name

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+-------------------+--+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page
Cache Hits/Misses |
+-------------------+--+----------------+------+---------
+------------------------+
| +ProduceResults | `other.name` | 4 | 24 | 0 |
0/0 |
| | +--+----------------+------+---------
+------------------------+
| +Projection | other.name AS `other.name` | 4 | 24 | 24 |
1/0 |
| | +--+----------------+------+---------
+------------------------+
| +Filter | not anon_2 = anon_4 | 16 | 24 | 0 |
0/0 |
| | +--+----------------+------+---------
+------------------------+
| +TriadicSelection | WHERE NOT (me)--(other) | 4 | 24 | 0 |
0/0 |
| |\ +--+----------------+------+---------
+------------------------+
| | | +--+----------------+------+---------
+------------------------+
| | +Expand(All) | (anon_3)-[anon_4:FRIENDS_WITH]-(other) | 16 | 48 | 98 |
48/0 |
| | | +--+----------------+------+---------
+------------------------+
| | +Argument | anon_3, anon_2 | 24 | 24 | 0 |
0/0 |
| | +--+----------------+------+---------
+------------------------+
| +Expand(All) | (me)-[anon_2:FRIENDS_WITH]-(anon_3) | 24 | 24 | 53 |
28/0 |
| | +--+----------------+------+---------
+------------------------+
| +NodeByLabelScan | me:Person | 15 | 15 | 16 |
1/0 |
+-------------------+--+----------------+------+---------
+------------------------+

Total database accesses: 246, total allocated memory: 64

Triadic Build

The TriadicBuild operator is used in conjunction with TriadicFilter to solve triangular queries, such as
the very common 'find my friend-of-friends that are not already my friend'. These two operators are
specific to Pipelined runtime and together perform the same logic as TriadicSelection does for other
runtimes. TriadicBuild builds a set of all friends, which is later used by TriadicFilter. The example finds

834

the names of all friends of my friends that are not already my friends.

835

Example 471. TriadicBuild

Query

PROFILE
CYPHER runtime=pipelined
MATCH (me:Person)-[:FRIENDS_WITH]-()-[:FRIENDS_WITH]-(other)
WHERE NOT (me)-[:FRIENDS_WITH]-(other)
RETURN other.name

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `other.name` | 4 | 24 | 0 |
| 0/0 | 0.133 | |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+ |
| +Projection | other.name AS `other.name` | 4 | 24 | 48 |
| 2/0 | 0.056 | |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Filter | not anon_2 = anon_4 | 16 | 24 | 0 |
| | | |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +TriadicFilter | WHERE NOT (me)--(other) | 4 | 24 | 0 |
4136 | 0/0 | 0.195 | In Pipeline 3 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Apply | | 16 | 24 | 0 |
| 0/0 | | |
| |\ +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | | +--+----------------+------+---------
+----------------+ | | |
| | +Expand(All) | (anon_3)-[anon_4:FRIENDS_WITH]-(other) | 16 | 48 | 98 |
| | | |
| | | +--+----------------+------+---------
+----------------+ | | |
| | +Argument | anon_3, anon_2 | 24 | 24 | 0 |
4200 | 0/0 | 0.397 | Fused in Pipeline 2 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +TriadicBuild | (me)--(anon_3) | 24 | 24 | 0 |
888 | 0/0 | 1.427 | In Pipeline 1 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Expand(All) | (me)-[anon_2:FRIENDS_WITH]-(anon_3) | 24 | 24 | 39 |
| | | |
| | +--+----------------+------+---------
+----------------+ | | |
| +NodeByLabelScan| me:Person | 15 | 15 | 16 |
120 | 3/0 | 0,200 | Fused in Pipeline 0 |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 256, total allocated memory: 7376

836

Triadic Filter

The TriadicFilter operator is used in conjunction with TriadicBuild to solve triangular queries, such as
the very common 'find my friend-of-friends that are not already my friend'. These two operators are
specific to Pipelined runtime and together perform the same logic as TriadicSelection does for other
runtimes. TriadicFilter uses a set of friends previously built by TriadicBuild to check if the friend-of-
friends are already connected to me. The example finds the names of all friends of my friends that are not
already my friends.

837

Example 472. TriadicFilter

Query

PROFILE
CYPHER runtime=pipelined
MATCH (me:Person)-[:FRIENDS_WITH]-()-[:FRIENDS_WITH]-(other)
WHERE NOT (me)-[:FRIENDS_WITH]-(other)
RETURN other.name

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `other.name` | 4 | 24 | 0 |
| 0/0 | 0.189 | |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+ |
| +Projection | other.name AS `other.name` | 4 | 24 | 48 |
| 2/0 | 0.381 | |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Filter | not anon_2 = anon_4 | 16 | 24 | 0 |
| | | |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +TriadicFilter | WHERE NOT (me)--(other) | 4 | 24 | 0 |
4136 | 0/0 | 0.685 | In Pipeline 3 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Apply | | 16 | 24 | 0 |
| 0/0 | | |
| |\ +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | | +--+----------------+------+---------
+----------------+ | | |
| | +Expand(All) | (anon_3)-[anon_4:FRIENDS_WITH]-(other) | 16 | 48 | 98 |
| | | |
| | | +--+----------------+------+---------
+----------------+ | | |
| | +Argument | anon_3, anon_2 | 24 | 24 | 0 |
4200 | 0/0 | 0.496 | Fused in Pipeline 2 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +TriadicBuild | (me)--(anon_3) | 24 | 24 | 0 |
888 | 0/0 | 3.268 | In Pipeline 1 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Expand(All) | (me)-[anon_2:FRIENDS_WITH]-(anon_3) | 24 | 24 | 39 |
| | | |
| | +--+----------------+------+---------
+----------------+ | | |
| +NodeByLabelScan| me:Person | 15 | 15 | 16 |
120 | 3/0 | 0,481 | Fused in Pipeline 0 |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 256, total allocated memory: 7376

838

Cartesian Product

The CartesianProduct operator produces a cartesian product of the two inputs — each row coming from
the left child operator will be combined with all the rows from the right child operator. CartesianProduct
generally exhibits bad performance and ought to be avoided if possible.

Example 473. CartesianProduct

Query

PROFILE
MATCH
 (p:Person),
 (t:Team)
RETURN p, t

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+--------------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | p, t | 140 | 140 | 0 | |
2/0 | 1.917 | |
| | +----------+----------------+------+---------+----------------
+------------------------+-----------+ |
| +CartesianProduct | | 140 | 140 | 0 | 1736 |
| 1.209 | In Pipeline 2 |
| |\ +----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| | +NodeByLabelScan | t:Team | 10 | 10 | 11 | 136 |
1/0 | 1,145 | In Pipeline 1 |
| | +----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +NodeByLabelScan | p:Person | 15 | 15 | 16 | 120 |
1/0 | 0,409 | In Pipeline 0 |
+--------------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 142, total allocated memory: 1816

Foreach

The Foreach operator executes a nested loop between the left child operator and the right child operator.
In an analogous manner to the Apply operator, it takes a row from the left-hand side and, using the
Argument operator, provides it to the operator tree on the right-hand side. Foreach will yield all the rows
coming in from the left-hand side; all results from the right-hand side are pulled in and discarded.

839

Example 474. Foreach

Query

PROFILE
CYPHER runtime=slotted
FOREACH (value IN [1,2,3] | CREATE (:Person {age: value}))

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+-----------------+---+----------------+------
+---------+------------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Page Cache Hits/Misses |
+-----------------+---+----------------+------
+---------+------------------------+
| +ProduceResults | | 1 | 0 |
0 | 0/0 |
| | +---+----------------+------
+---------+------------------------+
| +EmptyResult | | 1 | 0 |
0 | 0/0 |
| | +---+----------------+------
+---------+------------------------+
| +Foreach | value IN [1, 2, 3], CREATE (anon_0:Person {age: value}) | 1 | 1 |
9 | 0/0 |
+-----------------+---+----------------+------
+---------+------------------------+

Total database accesses: 9, total allocated memory: 64

Eager

The Eager operator causes all preceding operators to execute fully, for the whole dataset, before
continuing execution. This is done to ensure isolation between parts of the query plan that might
otherwise affect each other.

Values from the graph are fetched in a lazy manner; i.e. a pattern matching might not be fully exhausted
before updates are applied. To maintain correct semantics, the query planner will insert Eager operators
into the query plan to prevent updates from influencing pattern matching, or other read operations. This
scenario is exemplified by the query below, where the DELETE clause would otherwise influence both the
MATCH clause and the MERGE clause. For more information on how the Eager operator can ensure correct
semantics, see the section on Clause composition.

The Eager operator can cause high memory usage when importing data or migrating graph structures. In
such cases, the operations should be split into simpler steps; e.g. importing nodes and relationships
separately. Alternatively, the records to be updated can be returned, followed by an update statement.

840

Example 475. Eager

Query

PROFILE
MATCH (a), (b)
DELETE a, b
MERGE ()

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 1024

+-------------------+----
+--+----------------
+-------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Id | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-------------------+----
+--+----------------
+-------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | 0 |
| 15129 | 0 | 0 | | | |
|
| | +----
+--+----------------
+-------+---------+----------------+ | | |
| +EmptyResult | 1 |
| 15129 | 0 | 0 | | | |
|
| | +----
+--+----------------
+-------+---------+----------------+ | | |
| +Apply | 2 |
| 15129 | 15129 | 0 | | | |
|
| |\ +----
+--+----------------
+-------+---------+----------------+ | | |
| | +Merge | 3 | CREATE (anon_0)
| 15129 | 15129 | 1 | | | |
|
| | | +----
+--+----------------
+-------+---------+----------------+ | | |
| | +AllNodesScan | 4 | anon_0
| 1860867 | 15128 | 30257 | 24680 | 347967/0 | 1820.510 | Fused in
Pipeline 5 |
| | +----
+--+----------------
+-------+---------+----------------+------------------------+-----------+---------------------+
| +Eager | 5 | read/delete conflict for variable: anon_0, read/delete conflict for
variable: a, | 15129 | 15129 | 0 | 243608 | 0/0 | 0.182
| In Pipeline 4 |
| | | | read/delete conflict for variable: b
| | | | | | |
|
| | +----
+--+----------------
+-------+---------+----------------+------------------------+-----------+---------------------+
| +Delete | 6 | b
| 15129 | 15129 | 122 | | | |
|
| | +----
+--+----------------
+-------+---------+----------------+ | | |
| +Delete | 7 | a

841

| 15129 | 15129 | 1 | | | |
|
| | +----
+--+----------------
+-------+---------+----------------+ | | |
| +Eager | 8 | read/delete conflict for variable: b
| 15129 | 15129 | 0 | 243608 | 0/0 | 8.515 | Fused in
Pipeline 3 |
| | +----
+--+----------------
+-------+---------+----------------+------------------------+-----------+---------------------+
| +CartesianProduct | 9 |
| 15129 | 15129 | 0 | 10712 | 0/0 | 0.342 | In
Pipeline 2 |
| |\ +----
+--+----------------
+-------+---------+----------------+------------------------+-----------+---------------------+
| | +AllNodesScan | 10 | b
| 123 | 123 | 124 | 136 | 23/0 | 0.243 | In
Pipeline 1 |
| | +----
+--+----------------
+-------+---------+----------------+------------------------+-----------+---------------------+
| +AllNodesScan | 11 | a
| 123 | 123 | 124 | 120 | 23/0 | 0.344 | In
Pipeline 0 |
+-------------------+----
+--+----------------
+-------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 30629, total allocated memory: 260488

Eager Aggregation

The EagerAggregation operator evaluates a grouping expression and uses the result to group rows into
different groupings. For each of these groupings, EagerAggregation will then evaluate all aggregation
functions and return the result. To do this, EagerAggregation, as the name implies, needs to pull in all data
eagerly from its source and build up state, which leads to increased memory pressure in the system.

842

Example 476. EagerAggregation

Query

PROFILE
MATCH (l:Location)<-[:WORKS_IN]-(p:Person)
RETURN
 l.name AS location,
 collect(p.name) AS people

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | location, people | 4 | 6 |
0 | | 0/0 | 0.113 | In Pipeline 1 |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +EagerAggregation | cache[l.name] AS location, collect(p.name) AS people | 4 | 6 |
30 | 2584 | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Filter | p:Person | 15 | 15 |
30 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +Expand(All) | (l)<-[anon_0:WORKS_IN]-(p) | 15 | 15 |
16 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +CacheProperties | cache[l.name] | 10 | 10 |
10 | | | | |
| | +--+----------------+------
+---------+----------------+ | | |
| +NodeByLabelScan | l:Location | 10 | 10 |
11 | 120 | 5/0 | 3,077 | Fused in Pipeline 0 |
+-------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 157, total allocated memory: 2664

Ordered Aggregation

The OrderedAggregation operator is an optimization of the EagerAggregation operator that takes
advantage of the ordering of the incoming rows. This operator uses lazy evaluation and has a lower
memory pressure in the system than the EagerAggregation operator.

843

Example 477. OrderedAggregation

Query

PROFILE
MATCH (p:Person)
WHERE p.name STARTS WITH 'P'
RETURN p.name, count(*) AS count

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+--------------
+---------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by
| Pipeline |
+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+--------------
+---------------+
| +ProduceResults | `p.name`, count
| 0 | 2 | 0 | | 0/0 | 0.045 |
| |
| |
+--+----------------
+------+---------+----------------+------------------------+-----------+ |
|
| +OrderedAggregation | cache[p.name] AS `p.name`, count(*) AS count
| 0 | 2 | 0 | 288 | 0/0 | 0.175 | `p.name`
ASC | In Pipeline 1 |
| |
+--+----------------
+------+---------+----------------+------------------------+-----------+--------------
+---------------+
| +NodeIndexSeekByRange | RANGE INDEX p:Person(name) WHERE name STARTS WITH $autostring_0,
cache[p.name] | 0 | 2 | 3 | 120 | 0/1 | 0.529
| p.name ASC | In Pipeline 0 |
+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+--------------
+---------------+

Total database accesses: 3, total allocated memory: 352

Node Count From Count Store

The NodeCountFromCountStore operator uses the count store to answer questions about node counts. This
is much faster than the EagerAggregation operator which achieves the same result by actually counting.
However, as the count store only stores a limited range of combinations, EagerAggregation will still be
used for more complex queries. For example, we can get counts for all nodes, and nodes with a label, but
not nodes with more than one label.

844

Example 478. NodeCountFromCountStore

Query

PROFILE
MATCH (p:Person)
RETURN count(p) AS people

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+--------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+--------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | people | 1 | 1 | 0 |
| | | |
| | +------------------------------+----------------+------+---------
+----------------+ | | |
| +NodeCountFromCountStore | count((:Person)) AS people | 1 | 1 | 1 |
120 | 0/0 | 0.169 | Fused in Pipeline 0 |
+--------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 184

Relationship Count From Count Store

The RelationshipCountFromCountStore operator uses the count store to answer questions about
relationship counts. This is much faster than the EagerAggregation operator which achieves the same
result by actually counting. However, as the count store only stores a limited range of combinations,
EagerAggregation will still be used for more complex queries. For example, we can get counts for all
relationships, relationships with a type, relationships with a label on one end, but not relationships with
labels on both end nodes.

845

Example 479. RelationshipCountFromCountStore

Query

PROFILE
MATCH (p:Person)-[r:WORKS_IN]->()
RETURN count(r) AS jobs

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+----------------------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows |
Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+----------------------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | jobs | 1 |
1 | 0 | | | | |
| | +--+----------------
+------+---------+----------------+ | | |
| +RelationshipCountFromCountStore | count((:Person)-[:WORKS_IN]->()) AS jobs | 1 |
1 | 1 | 120 | 0/0 | 0.625 | Fused in Pipeline 0 |
+----------------------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 184

Distinct

The Distinct operator removes duplicate rows from the incoming stream of rows. To ensure only distinct
elements are returned, Distinct will pull in data lazily from its source and build up state. This may lead to
increased memory pressure in the system.

846

Example 480. Distinct

Query

PROFILE
MATCH (l:Location)<-[:WORKS_IN]-(p:Person)
RETURN DISTINCT l

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+----------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) |
Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------+----------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | l | 14 | 6 | 0 | |
| | |
| | +----------------------------+----------------+------+---------+----------------+
+Distinct	l	14	6	0	224
	+----------------------------+----------------+------+---------+----------------+				
+Filter	p:Person	15	15	30	
	+----------------------------+----------------+------+---------+----------------+				
+Expand(All)	(l)<-[anon_0:WORKS_IN]-(p)	15	15	16	
	+----------------------------+----------------+------+---------+----------------+				
+NodeByLabelScan	l:Location	10	10	11	120
4/0 | 0,744 | Fused in Pipeline 0 |
+------------------+----------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 117, total allocated memory: 304

Ordered Distinct

The OrderedDistinct operator is an optimization of the Distinct operator that takes advantage of the
ordering of the incoming rows. This operator has a lower memory pressure in the system than the
Distinct operator.

847

Example 481. OrderedDistinct

Query

PROFILE
MATCH (p:Person)
WHERE p.name STARTS WITH 'P'
RETURN DISTINCT p.name

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+--------------
+---------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by
| Pipeline |
+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+--------------
+---------------+
| +ProduceResults | `p.name`
| 0 | 2 | 0 | | 0/0 | 0.046 |
| |
| |
+--+----------------
+------+---------+----------------+------------------------+-----------+ |
|
| +OrderedDistinct | cache[p.name] AS `p.name`
| 0 | 2 | 0 | 32 | 0/0 | 0.090 | `p.name`
ASC | |
| |
+--+----------------
+------+---------+----------------+------------------------+-----------+--------------+
|
| +NodeIndexSeekByRange | RANGE INDEX p:Person(name) WHERE name STARTS WITH $autostring_0,
cache[p.name] | 0 | 2 | 3 | 120 | 0/1 | 0.493
| p.name ASC | In Pipeline 0 |
+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+--------------
+---------------+

Total database accesses: 3, total allocated memory: 184

Filter

The Filter operator filters each row coming from the child operator, only passing through rows that
evaluate the predicates to true.

848

Example 482. Filter

Query

PROFILE
MATCH (p:Person)
WHERE p.name =~ '^a.*'
RETURN p

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated Rows
| Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | p | 14
| 0 | 0 | | | | |
| | +--
+----------------+------+---------+----------------+ | |
|
| +Filter | cache[p.name] =~ $autostring_0 | 14
| 0 | 0 | | | | |
| | +--
+----------------+------+---------+----------------+ | |
|
| +NodeIndexScan | RANGE INDEX p:Person(name) WHERE name IS NOT NULL, cache[p.name] | 14
| 14 | 15 | 120 | 0/1 | 0.763 | Fused in Pipeline 0 |
+-----------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 15, total allocated memory: 184

Limit

The Limit operator returns the first n rows from the incoming input.

849

Example 483. Limit

Query

PROFILE
MATCH (p:Person)
RETURN p
LIMIT 3

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+-----------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | p | 3 | 3 | 0 | |
| | |
| | +----------+----------------+------+---------+----------------+
+Limit	3	3	3	0	32
	+----------+----------------+------+---------+----------------+				
+NodeByLabelScan	p:Person	3	4	5	120
3/0 | 0,540 | Fused in Pipeline 0 |
+-----------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 8, total allocated memory: 184

Skip

The Skip operator skips n rows from the incoming rows.

850

Example 484. Skip

Query

PROFILE
MATCH (p:Person)
RETURN p
ORDER BY p.id
SKIP 1

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+----------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Ordered by | Pipeline |
+------------------+----------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +ProduceResults | p | 13 | 13 | 0 | |
2/0 | 0.165 | | |
| | +----------------+----------------+------+---------+----------------
+------------------------+-----------+ | |
| +Skip | $autoint_0 | 13 | 13 | 0 | 32 |
0/0 | 0.043 | | |
| | +----------------+----------------+------+---------+----------------
+------------------------+-----------+ | |
| +Sort | `p.id` ASC | 14 | 14 | 0 | 400 |
0/0 | 0.155 | p.id ASC | In Pipeline 1 |
| | +----------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +Projection | p.id AS `p.id` | 14 | 14 | 0 | |
| | | |
| | +----------------+----------------+------+---------+----------------+
| +------------+ |
| +NodeByLabelScan | p:Person | 18 | 18 | 19 | 120 |
3/0 | 0,157 | | Fused in Pipeline 0 |
+------------------+----------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+

Total database accesses: 71, total allocated memory: 512

Sort

The Sort operator sorts rows by a provided key. In order to sort the data, all data from the source operator
needs to be pulled in eagerly and kept in the query state, which will lead to increased memory pressure in
the system.

851

Example 485. Sort

Query

PROFILE
MATCH (p:Person)
RETURN p
ORDER BY p.name

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+--------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page
Cache Hits/Misses | Time (ms) | Ordered by | Pipeline |
+------------------+--------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +ProduceResult s | p | 14 | 14 | 0 | |
2/0 | 0.178 | | |
| | +--------------------+----------------+------+---------+----------------
+------------------------+-----------+ | |
| +Sort | `p.name` ASC | 14 | 14 | 0 | 1192 |
0/0 | 0.107 | p.name ASC | In Pipeline 1 |
| | +--------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +Projection | p.name AS `p.name` | 14 | 14 | 14 | |
| | | |
| | +--------------------+----------------+------+---------+----------------+
| +------------+ |
| +NodeByLabelScan |p:Person | 14 | 14 | 35 | 120 |
3/0 | 0,221 | | Fused in Pipeline 0 |
+------------------+--------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+

Total database accesses: 85, total allocated memory: 1272

Partial Sort

The PartialSort operator is an optimization of the Sort operator that takes advantage of the ordering of
the incoming rows. This operator uses lazy evaluation and has a lower memory pressure in the system
than the Sort operator. Partial sort is only applicable when sorting on multiple columns.

852

Example 486. PartialSort

Query

PROFILE
MATCH (p:Person)
WHERE p.name STARTS WITH 'P'
RETURN p
ORDER BY p.name, p.age

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+-----------------------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by
| Pipeline |
+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+-----------------------
+---------------------+
| +ProduceResults | p
| 0 | 2 | 0 | | 2/0 | 0.087 |
| |
| |
+--+----------------
+------+---------+----------------+------------------------+-----------+ |
|
| +PartialSort | `p.name` ASC, `p.age` ASC
| 0 | 2 | 0 | 544 | 0/0 | 0.184 | p.name ASC,
p.age ASC | In Pipeline 1 |
| |
+--+----------------
+------+---------+----------------+------------------------+-----------+-----------------------
+---------------------+
| +Projection | cache[p.name] AS `p.name`, p.age AS `p.age`
| 0 | 2 | 0 | | | | `p.name`
ASC | |
| |
+--+----------------
+------+---------+----------------+ | +-----------------------+
|
| +NodeIndexSeekByRange | RANGE INDEX p:Person(name) WHERE name STARTS WITH $autostring_0,
cache[p.name] | 0 | 2 | 3 | 120 | 0/1 | 0.362
| p.name ASC | Fused in Pipeline 0 |
+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+-----------------------
+---------------------+

Total database accesses: 3, total allocated memory: 608

Top

The Top operator returns the first n rows sorted by a provided key. Instead of sorting the entire input, only
the top n rows are retained.

853

Example 487. Top

Query

PROFILE
MATCH (p:Person)
RETURN p
ORDER BY p.name
LIMIT 2

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+----------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page
Cache Hits/Misses | Time (ms) | Ordered by | Pipeline |
+------------------+----------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +ProduceResults | p | 2 | 2 | 0 | |
2/0 | 0.093 | | |
| | +----------------------+----------------+------+---------+----------------
+------------------------+-----------+ | |
| +Top | `p.name` ASC LIMIT 2 | 2 | 2 | 0 | 1184 |
0/0 | 0.295 | p.name ASC | In Pipeline 1 |
| | +----------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +Projection | p.name AS `p.name` | 14 | 14 | 14 | |
| | | |
| | +----------------------+----------------+------+---------+----------------+
| +------------+ |
| +NodeByLabelScan | p:Person | 14 | 14 | 35 | 120 |
3/0 | 0,166 | | Fused in Pipeline 0 |
+------------------+----------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+

Total database accesses: 85, total allocated memory: 1264

Partial Top

The PartialTop operator is an optimization of the Top operator that takes advantage of the ordering of the
incoming rows. This operator uses lazy evaluation and has a lower memory pressure in the system than
the Top operator. Partial top is only applicable when sorting on multiple columns.

854

Example 488. PartialTop

Query

PROFILE
MATCH (p:Person)
WHERE p.name STARTS WITH 'P'
RETURN p
ORDER BY p.name, p.age
LIMIT 2

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+-----------------------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by
| Pipeline |
+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+-----------------------
+---------------------+
| +ProduceResults | p
| 0 | 2 | 0 | | 2/0 | 0.093 |
| |
| |
+--+----------------
+------+---------+----------------+------------------------+-----------+ |
|
| +PartialTop | `p.name` ASC, `p.age` ASC LIMIT 2
| 0 | 2 | 0 | 640 | 0/0 | 0.870 | p.name ASC,
p.age ASC | In Pipeline 1 |
| |
+--+----------------
+------+---------+----------------+------------------------+-----------+-----------------------
+---------------------+
| +Projection | cache[p.name] AS `p.name`, p.age AS `p.age`
| 0 | 2 | 0 | | | | `p.name`
ASC | |
| |
+--+----------------
+------+---------+----------------+ | +-----------------------+
|
| +NodeIndexSeekByRange | RANGE INDEX p:Person(name) WHERE name STARTS WITH $autostring_0,
cache[p.name] | 0 | 2 | 3 | 120 | 0/1 | 0.556
| p.name ASC | Fused in Pipeline 0 |
+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+-----------------------
+---------------------+

Total database accesses: 3, total allocated memory: 704

Union

The Union operator concatenates the results from the right child operator with the results from the left
child operator.

855

Example 489. Union

Query

PROFILE
MATCH (p:Location)
 RETURN p.name
UNION ALL
MATCH (p:Country)
 RETURN p.name

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+--------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page
Cache Hits/Misses | Time (ms) | Pipeline |
+------------------+--------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | `p.name` | 20 | 11 | 0 | |
| | |
| | +--------------------+----------------+------+---------+----------------+
| | |
| +Union | | 20 | 11 | 0 | 776 |
0/0 | 0.171 | Fused in Pipeline 2 |
| |\ +--------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| | +Projection | `p.name` | 10 | 1 | 0 | |
| | |
| | | +--------------------+----------------+------+---------+----------------+
	+Projection	p.name AS `p.name`	10	1	1	
		+--------------------+----------------+------+---------+----------------+				
	+Filter	p:Country	10	1	35	
		+--------------------+----------------+------+---------+----------------+				
	+AllNodesScan	p	35	35	36	120
0/0	0.127	Fused in Pipeline 1				
	+--------------------+----------------+------+---------+----------------					
+------------------------+-----------+---------------------+						
+Projection	`p.name`	10	10	0		
	+--------------------+----------------+------+---------+----------------+					
+Projection	p.name AS `p.name`	10	10	10		
	+--------------------+----------------+------+---------+----------------+					
+NodeByLabelScan	p:Location	10	10	11	120	
3/0 | 0,171 | Fused in Pipeline 0 |
+------------------+--------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 153, total allocated memory: 984

856

Unwind

The Unwind operator returns one row per item in a list.

Example 490. Unwind

Query

PROFILE
UNWIND range(1, 5) AS value
RETURN value

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+--+----------------+------+---------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page
Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+--+----------------+------+---------
+------------------------+-----------+---------------------+
| +ProduceResults | value | 10 | 5 | 0 |
| | |
| | +--+----------------+------+---------+
| | |
| +Unwind | range($autoint_0, $autoint_1) AS value | 10 | 5 | 0 |
0/0 | 0.000 | Fused in Pipeline 0 |
+-----------------+--+----------------+------+---------
+------------------------+-----------+---------------------+

Total database accesses: 0, total allocated memory: 184

Exhaustive Limit

The ExhaustiveLimit operator is just like a normal Limit but will always exhaust the input. Used when
combining LIMIT and updates

857

Example 491. ExhaustiveLimit

Query

PROFILE
MATCH (p:Person)
SET p.seen = true
RETURN p
LIMIT 3

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | p | 3 | 3 | 0 | |
| | |
| | +---------------+----------------+------+---------+----------------+
+ExhaustiveLimit	3	3	3	0	32
	+---------------+----------------+------+---------+----------------+				
+SetProperty	p.seen = true	14	14	28	
	+---------------+----------------+------+---------+----------------+				
+NodeByLabelScan	p:Person	14	14	35	120
5/0 | 41,656 | Fused in Pipeline 0 |
+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 99, total allocated memory: 200

Optional

The Optional operator is used to solve some OPTIONAL MATCH queries. It will pull data from its source,
simply passing it through if any data exists. However, if no data is returned by its source, Optional will
yield a single row with all columns set to null.

858

Example 492. Optional

Query

PROFILE
MATCH (p:Person {name: 'me'})
OPTIONAL MATCH (q:Person {name: 'Lulu'})
RETURN p, q

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------+
| +ProduceResults | p, q | 1 | 1 |
0 | | 2/0 | 0.079 | In Pipeline 2 |
| | +---+----------------+------
+---------+----------------+------------------------+-----------+---------------+
| +Apply | | 1 | 1 |
0 | | 0/0 | 0.096 | |
| |\ +---+----------------+------
+---------+----------------+------------------------+-----------+---------------+
| | +Optional | p | 1 | 1 |
0 | 768 | 0/0 | 0.043 | In Pipeline 2 |
| | | +---+----------------+------
+---------+----------------+------------------------+-----------+---------------+
| | +NodeIndexSeek | RANGE INDEX q:Person(name) WHERE name = $autostring_1 | 1 | 0 |
1 | 2152 | 1/0 | 0.098 | In Pipeline 1 |
| | +---+----------------+------
+---------+----------------+------------------------+-----------+---------------+
| +NodeIndexSeek | RANGE INDEX p:Person(name) WHERE name = $autostring_0 | 1 | 1 |
2 | 120 | 0/1 | 0.364 | In Pipeline 0 |
+------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------+

Total database accesses: 3, total allocated memory: 3000

Project Endpoints

The ProjectEndpoints operator projects the start and end node of a relationship.

859

Example 493. ProjectEndpoints

Query

PROFILE
CREATE (n)-[p:KNOWS]->(m)
WITH p AS r
MATCH (u)-[r]->(v)
RETURN u, v

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+---------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | u, v | 1 | 1 | 0 |
| | | |
| | +------------------------------+----------------+------+---------
+----------------+ | | |
| +Apply | | 1 | 1 | 0 |
| | | |
| |\ +------------------------------+----------------+------+---------
+----------------+ | | |
| | +ProjectEndpoints | (u)-[r]->(v) | 1 | 1 | 0 |
| | | |
| | | +------------------------------+----------------+------+---------
+----------------+ | | |
| | +Argument | r | 1 | 1 | 0 |
4200 | 0/0 | 0.248 | Fused in Pipeline 1 |
| | +------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Projection | p AS r | 1 | 1 | 0 |
| | | |
| | +------------------------------+----------------+------+---------
+----------------+ | | |
| +Create | (n), (m), (n)-[p:KNOWS]->(m) | 1 | 1 | 4 |
| 0/0 | 0.000 | Fused in Pipeline 0 |
+---------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 4, total allocated memory: 4280

Projection

For each incoming row, the Projection operator evaluates a set of expressions and produces a row with
the results of the expressions.

860

Example 494. Projection

Query

PROFILE
RETURN 'hello' AS greeting

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---------------------------+----------------+------+---------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+-----------------+---------------------------+----------------+------+---------
+------------------------+-----------+---------------------+
| +ProduceResults | greeting | 1 | 1 | 0 |
| | |
| | +---------------------------+----------------+------+---------+
| | |
| +Projection | $autostring_0 AS greeting | 1 | 1 | 0 |
0/0 | 0.000 | Fused in Pipeline 0 |
+-----------------+---------------------------+----------------+------+---------
+------------------------+-----------+---------------------+

Total database accesses: 0, total allocated memory: 184

Shortest path

The ShortestPath operator finds one or all shortest paths between two previously matches node variables.

861

Example 495. ShortestPath

Query

PROFILE
MATCH
 (andy:Person {name: 'Andy'}),
 (mattias:Person {name: 'Mattias'}),
 p = shortestPath((andy)-[*]-(mattias))
RETURN p

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------+
| Operator | Details | Estimated Rows
| Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+---------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------+
| +ProduceResults | p | 1
| 1 | 0 | | 1/0 | 0.241 | |
| | +---+----------------
+------+---------+----------------+------------------------+-----------+ |
| +ShortestPath | p = (andy)-[anon_0*]-(mattias) | 1
| 1 | 1 | 1424 | | | In Pipeline 1 |
| | +---+----------------
+------+---------+----------------+------------------------+-----------+---------------+
| +MultiNodeIndexSeek | RANGE INDEX andy:Person(name) WHERE name = $autostring_0, | 1
1	4	120	1/1	0.308	In Pipeline 0
	RANGE INDEX mattias:Person(name) WHERE name = $autostring_1				
+---------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------+

Total database accesses: 5, total allocated memory: 1488

Empty Row

The EmptyRow operator returns a single row with no columns.

862

Example 496. EmptyRow

Query

PROFILE
CYPHER runtime=slotted
FOREACH (value IN [1,2,3] | MERGE (:Person {age: value}))

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+-----------------+--------------------------------------+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page
Cache Hits/Misses |
+--------------------+--------------------------------------+----------------+------+---------
+------------------------+
| +ProduceResults | | 1 | 0 | 0 |
0/0 |
| | +--------------------------------------+----------------+------+---------
+------------------------+
| +EmptyResult | | 1 | 0 | 0 |
0/0 |
| | +--------------------------------------+----------------+------+---------
+------------------------+
| +Foreach | value IN [1, 2, 3] | 1 | 1 | 0 |
0/0 |
| |\ +--------------------------------------+----------------+------+---------
+------------------------+
| | +Merge | CREATE (anon_0:Person {age: value}) | 1 | 3 | 9 |
0/0 |
| | | +--------------------------------------+----------------+------+---------
+------------------------+
| | +Filter | anon_0.age = value | 1 | 0 | 184 |
2/0 |
| | | +--------------------------------------+----------------+------+---------
+------------------------+
| | +NodeByLabelScan | anon_0:Person | 35 | 108 | 111 |
3/0 |
| | +--------------------------------------+----------------+------+---------
+------------------------+
| +EmptyRow | | 1 | 1 | 0 |
0/0 |
+--------------------+--------------------------------------+----------------+------+---------
+------------------------+

Total database accesses: 304, total allocated memory: 64

Procedure Call

The ProcedureCall operator indicates an invocation to a procedure.

863

Example 497. ProcedureCall

Query

PROFILE
CALL db.labels() YIELD label
RETURN *
ORDER BY label

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+------------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by | Pipeline |
+-----------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+------------+---------------------+
| +ProduceResults | label | 10 | 4 | 0 |
| 0/0 | 0.091 | | |
| | +-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+ | |
| +Sort | label ASC | 10 | 4 | 0 |
536 | 0/0 | 0.178 | label ASC | In Pipeline 1 |
| | +-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+------------+---------------------+
| +ProcedureCall | db.labels() :: (label :: STRING?) | 10 | 4 | |
| | | | Fused in Pipeline 0 |
+-----------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+------------+---------------------+

Total database accesses: ?, total allocated memory: 600

Cache Properties

The CacheProperties operator reads nodes and relationship properties and caches them in the current
row. Future accesses to these properties can avoid reading from the store which will speed up the query.
In the plan below we will cache l.name before Expand(All) where there are fewer rows.

864

Example 498. CacheProperties

Query

PROFILE
MATCH (l:Location)<-[:WORKS_IN]-(p:Person)
RETURN
 l.name AS location,
 p.name AS name

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | location, name | 15 | 15 | 0 |
| | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Projection | cache[l.name] AS location, p.name AS name | 15 | 15 | 30 |
| | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Filter | p:Person | 15 | 15 | 30 |
| | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +Expand(All) | (l)<-[anon_0:WORKS_IN]-(p) | 15 | 15 | 16 |
| | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +CacheProperties | cache[l.name] | 10 | 10 | 10 |
| | | |
| | +---+----------------+------+---------
+----------------+ | | |
| +NodeByLabelScan | l:Location | 10 | 10 | 35 |
120 | 5/0 | 0,422 | Fused in Pipeline 0 |
+------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 157, total allocated memory: 200

Create (nodes and relationships)

The Create operator is used to create nodes and relationships.

865

Example 499. Create

Query

PROFILE
CREATE
 (max:Person {name: 'Max'}),
 (chris:Person {name: 'Chris'})
CREATE (max)-[:FRIENDS_WITH]->(chris)

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---
+----------------+------+---------+------------------------+-----------+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------+---
+----------------+------+---------+------------------------+-----------+---------------------+
| +ProduceResults | |
1 | 0 | 0 | | | |
| | +---
+----------------+------+---------+ | | |
| +EmptyResult | |
1 | 0 | 0 | | | |
| | +---
+----------------+------+---------+ | | |
| +Create | (max:Person {name: $autostring_0}), (chris:Person {name: $autostring_1}), |
1 | 1 | 7 | 0/0 | 0.000 | Fused in Pipeline 0 |
| | (max)-[anon_0:FRIENDS_WITH]->(chris) |
| | | | | |
+-----------------+---
+----------------+------+---------+------------------------+-----------+---------------------+

Total database accesses: 7, total allocated memory: 184

Delete (nodes and relationships)

The Delete operator is used to delete a node or a relationship.

866

Example 500. Delete

Query

PROFILE
MATCH (me:Person {name: 'me'})-[w:WORKS_IN {duration: 190}]->(london:Location {name: 'London'})
DELETE w

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+-----------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | |
0 | 0 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +EmptyResult | |
0 | 0 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +Delete | w |
0 | 1 | 1 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +Eager | read/delete conflict for variable: w |
0 | 1 | 0 | 112 | 1/0 | 0.247 | Fused in Pipeline 1 |
| | +---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +Filter | london.name = $autostring_2 AND w.duration = $autoint_1 AND london:Location |
0 | 1 | 5 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +Expand(All) | (me)-[w:WORKS_IN]->(london) |
1 | 1 | 5 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +NodeIndexSeek | RANGE INDEX me:Person(name) WHERE name = $autostring_0 |
1 | 1 | 2 | 120 | 4/1 | 0.447 | Fused in Pipeline 0 |
+-----------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 13, total allocated memory: 216

Detach Delete

The DetachDelete operator is used in all queries containing the DETACH DELETE clause, when deleting

867

nodes and their relationships.

Example 501. DetachDelete

Query

PROFILE
MATCH (p:Person)
DETACH DELETE p

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+------------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+------------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | | 14 | 0 | 0 | |
| | |
| | +----------+----------------+------+---------+----------------+
+EmptyResult		14	0	0	
	+----------+----------------+------+---------+----------------+				
+DetachDelete	p	14	14	41	
	+----------+----------------+------+---------+----------------+				
+NodeByLabelScan	p:Person	14	14	35	120
21/0 | 12,439 | Fused in Pipeline 0 |
+------------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 112, total allocated memory: 200

Set Labels

The SetLabels operator is used when setting labels on a node.

868

Example 502. SetLabels

Query

PROFILE
MATCH (n)
SET n:Person

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+-----------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | | 35 | 0 | 0 | |
| | |
| | +----------+----------------+------+---------+----------------+
+EmptyResult		35	0	0	
	+----------+----------------+------+---------+----------------+				
+SetLabels	n:Person	35	35	22	
	+----------+----------------+------+---------+----------------+				
+AllNodesScan	n	35	35	36	120
3/0 | 0.873 | Fused in Pipeline 0 |
+-----------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 58, total allocated memory: 184

Remove Labels

The RemoveLabels operator is used when deleting labels from a node.

869

Example 503. RemoveLabels

Query

PROFILE
MATCH (n)
REMOVE n:Person

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+-----------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | | 35 | 0 | 0 | |
| | |
| | +----------+----------------+------+---------+----------------+
+EmptyResult		35	0	0	
	+----------+----------------+------+---------+----------------+				
+RemoveLabels	n:Person	35	35	15	
	+----------+----------------+------+---------+----------------+				
+AllNodesScan	n	35	35	36	120
3/0 | 0.765 | Fused in Pipeline 0 |
+-----------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 51, total allocated memory: 184

Set Node Properties From Map

The SetNodePropertiesFromMap operator is used when setting properties from a map on a node.

870

Example 504. SetNodePropertiesFromMap

Query

PROFILE
MATCH (n)
SET n = {weekday: 'Monday', meal: 'Lunch'}

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows |
Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+---------------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | | 35 |
0 | 0 | | | | |
| | +---+----------------
+------+---------+----------------+ | | |
| +EmptyResult | | 35 |
0 | 0 | | | | |
| | +---+----------------
+------+---------+----------------+ | | |
| +SetNodePropertiesFromMap | n = {weekday: $autostring_0, meal: $autostring_1} | 35 |
35 | 105 | | | | |
| | +---+----------------
+------+---------+----------------+ | | |
| +AllNodesScan | n | 35 |
35 | 36 | 120 | 5/0 | 3.954 | Fused in Pipeline 0 |
+---------------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 141, total allocated memory: 184

Set Relationship Properties From Map

The SetRelationshipPropertiesFromMap operator is used when setting properties from a map on a
relationship.

871

Example 505. SetRelationshipPropertiesFromMap

Query

PROFILE
MATCH (n)-[r]->(m)
SET r = {weight: 5, unit: 'kg'}

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows
| Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+-----------------------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | | 28
| 0 | 0 | | | | |
| | +---+----------------
+------+---------+----------------+ | | |
| +EmptyResult | | 28
| 0 | 0 | | | | |
| | +---+----------------
+------+---------+----------------+ | | |
| +SetRelationshipPropertiesFromMap | r = {weight: $autoint_0, unit: $autostring_1} | 28
| 28 | 84 | | | | |
| | +---+----------------
+------+---------+----------------+ | | |
| +DirectedAllRelationshipsScan | (n)-[r]->(m) | 28
| 28 | 28 | 120 | 5/0 | 15.278 | Fused in Pipeline 0 |
+-----------------------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 112, total allocated memory: 184

Set Property

The SetProperty operator is used when setting a property on a node or relationship.

872

Example 506. SetProperty

Query

PROFILE
MATCH (n)
SET n.checked = true

Query Plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+-----------------+------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Pipeline |
+-----------------+------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | | 35 | 0 | 0 | |
| | |
| | +------------------+----------------+------+---------+----------------+
+EmptyResult		35	0	0	
	+------------------+----------------+------+---------+----------------+				
+SetProperty	n.checked = true	35	35	70	
	+------------------+----------------+------+---------+----------------+				
+AllNodesScan	n	35	35	36	120
3/0 | 0.753 | Fused in Pipeline 0 |
+-----------------+------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 106, total allocated memory: 184

Create Constraint

The CreateConstraint operator creates a constraint.

This constraint can have any of the available constraint types:

• Property uniqueness constraints

• Property existence constraints Enterprise edition

• Node key constraints Enterprise edition

The following query will create a property uniqueness constraint with the name uniqueness on the name
property of nodes with the Country label.

873

Example 507. CreateConstraint

Query

PROFILE
CREATE CONSTRAINT uniqueness
FOR (c:Country) REQUIRE c.name is UNIQUE

Query Plan

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 5.4

+-------------------+--+
| Operator | Details |
+-------------------+--+
| +CreateConstraint | CONSTRAINT uniqueness FOR (c:Country) REQUIRE (c.name) IS UNIQUE |
+-------------------+--+

Total database accesses: ?

Do Nothing If Exists (constraint)

To not get an error creating the same constraint twice, we use the DoNothingIfExists operator for
constraints. This will make sure no other constraint with the given name or another constraint of the same
type and schema already exists before the specific CreateConstraint operator creates the constraint. If it
finds a constraint with the given name or with the same type and schema it will stop the execution and no
new constraint is created. The following query will create a property uniqueness constraint with the name
uniqueness on the name property of nodes with the Country label only if no constraint named uniqueness or
property uniqueness constraint on (:Country {name}) already exists.

874

Example 508. DoNothingIfExists(CONSTRAINT)

Query

PROFILE
CREATE CONSTRAINT uniqueness IF NOT EXISTS
FOR (c:Country) REQUIRE c.name is UNIQUE

Query Plan

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 5.4

+--------------------------------+--+
| Operator | Details |
+--------------------------------+--+
| +CreateConstraint | CONSTRAINT uniqueness FOR (c:Country) REQUIRE (c.name) IS UNIQUE |
| | +--+
| +DoNothingIfExists(CONSTRAINT) | CONSTRAINT uniqueness FOR (c:Country) REQUIRE (c.name) IS UNIQUE |
+--------------------------------+--+

Total database accesses: ?

Drop Constraint

The DropConstraint operator removes a constraint using the name of the constraint, no matter the type.

Example 509. DropConstraint

Query

PROFILE
DROP CONSTRAINT name

Query Plan

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 5.4

+-----------------+-----------------+
| Operator | Details |
+-----------------+-----------------+
| +DropConstraint | CONSTRAINT name |
+-----------------+-----------------+

Total database accesses: ?

Show Constraints

The ShowConstraints operator lists constraints. It may include filtering on constraint type and can have
either default or full output.

875

Example 510. ShowConstraints

Query

PROFILE
SHOW CONSTRAINTS

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+------------------+---
+----------------+------+---------+------------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Page Cache Hits/Misses |
+------------------+---
+----------------+------+---------+------------------------+
| +ProduceResults | id, name, type, entityType, labelsOrTypes, properties, ownedIndex |
10 | 3 | 0 | 0/0 |
| | +---
+----------------+------+---------+------------------------+
| +ShowConstraints | allConstraints, defaultColumns |
10 | 3 | 2 | 0/0 |
+------------------+---
+----------------+------+---------+------------------------+

Total database accesses: 2, total allocated memory: 64

Create Index

The CreateIndex operator creates an index.

This index can either be a fulltext, point, range, text, or lookup index.

876

Example 511. CreateIndex

The following query will create an index with the name my_index on the name property of nodes with
the Country label.

Query

PROFILE
CREATE INDEX my_index
FOR (c:Country) ON (c.name)

Query Plan

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 5.4

+--------------+---+
| Operator | Details |
+--------------+---+
| +CreateIndex | RANGE INDEX my_index FOR (:Country) ON (name) |
+--------------+---+

Total database accesses: ?

Do Nothing If Exits (index)

To not get an error creating the same index twice, we use the DoNothingIfExists operator for indexes.
This will make sure no other index with the given name or schema already exists before the CreateIndex
operator creates an index. If it finds an index with the given name or schema it will stop the execution and
no new index is created. The following query will create an index with the name my_index on the since
property of relationships with the KNOWS relationship type only if no such index already exists.

877

Example 512. DoNothingIfExists(INDEX)

Query

PROFILE
CREATE INDEX my_index IF NOT EXISTS
FOR ()-[k:KNOWS]-() ON (k.since)

Query Plan

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 5.4

+---------------------------+--+
| Operator | Details |
+---------------------------+--+
| +CreateIndex | RANGE INDEX my_index FOR ()-[:KNOWS]-() ON (since) |
| | +--+
| +DoNothingIfExists(INDEX) | RANGE INDEX my_index FOR ()-[:KNOWS]-() ON (since) |
+---------------------------+--+

Total database accesses: ?

Drop Index

The DropIndex operator removes an index using the name of the index.

Example 513. DropIndex

Query

PROFILE
DROP INDEX name

Query Plan

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 5.4

+------------+------------+
| Operator | Details |
+------------+------------+
| +DropIndex | INDEX name |
+------------+------------+

Total database accesses: ?

Show Indexes

The ShowIndexes operator lists indexes. It may include filtering on index type and can have either default or
full output.

878

Example 514. ShowIndexes

Query

PROFILE
SHOW INDEXES

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+-----------------
+---
+----------------+------+---------+------------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Page Cache Hits/Misses |
+-----------------
+---
+----------------+------+---------+------------------------+
| +ProduceResults | id, name, state, populationPercent, type, entityType, labelsOrTypes, properties,
indexProvider, | 10 | 9 | 0 | 0/0 |
| | | owningConstraint
| | | | |
| |
+---
+----------------+------+---------+------------------------+
| +ShowIndexes | allIndexes, defaultColumns
| 10 | 9 | 2 | 0/0 |
+-----------------
+---
+----------------+------+---------+------------------------+

Total database accesses: 2, total allocated memory: 64

Show Functions

The ShowFunctions operator lists functions. It may include filtering on built-in vs user-defined functions as
well as if a given user can execute the function. The output can either be default or full output.

879

Example 515. ShowFunctions

Query

PROFILE
SHOW FUNCTIONS

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+-----------------+---+----------------+------
+---------+------------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Page Cache Hits/Misses |
+-----------------+---+----------------+------
+---------+------------------------+
| +ProduceResults | name, category, description | 10 | 147 |
0 | 0/0 |
| | +---+----------------+------
+---------+------------------------+
| +ShowFunctions | allFunctions, functionsForUser(all), defaultColumns | 10 | 147 |
0 | 0/0 |
+-----------------+---+----------------+------
+---------+------------------------+

Total database accesses: 0, total allocated memory: 64

Show Procedures

The ShowProcedures operator lists procedures. It may include filtering on whether a given user can execute
the procedure and can have either default or full output.

880

Example 516. ShowProcedures

Query

PROFILE
SHOW PROCEDURES

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+-----------------+--+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page
Cache Hits/Misses |
+-----------------+--+----------------+------+---------
+------------------------+
| +ProduceResults | name, description, mode, worksOnSystem | 10 | 55 | 0 |
0/0 |
| | +--+----------------+------+---------
+------------------------+
| +ShowProcedures | proceduresForUser(all), defaultColumns | 10 | 55 | 0 |
0/0 |
+-----------------+--+----------------+------+---------
+------------------------+

Total database accesses: 0, total allocated memory: 64

Show Transactions

The ShowTransactions operator lists transactions. It may include filtering on given ids and can have either
default or full output.

881

Example 517. ShowTransactions

Query

PROFILE
SHOW TRANSACTIONS

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+-------------------
+---
+----------------+------+---------+------------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Page Cache Hits/Misses |
+-------------------
+---
+----------------+------+---------+------------------------+
| +ProduceResults | database, transactionId, currentQueryId, connectionId, clientAddress, username,
currentQuery, | 10 | 1 | 0 | 0/0 |
| | | startTime, status, elapsedTime
| | | | |
| |
+---
+----------------+------+---------+------------------------+
| +ShowTransactions | defaultColumns, allTransactions
| 10 | 1 | 0 | 0/0 |
+-------------------
+---
+----------------+------+---------+------------------------+

Total database accesses: 0, total allocated memory: 64

Terminate Transactions

The TerminateTransactions operator terminates transactions by ID.

882

Example 518. TerminateTransactions

Query

PROFILE
TERMINATE TRANSACTIONS 'database-transaction-123'

Query Plan

Planner COST

Runtime SLOTTED

Runtime version 5.4

+------------------------+--+----------------
+------+---------+------------------------+
| Operator | Details | Estimated Rows |
Rows | DB Hits | Page Cache Hits/Misses |
+------------------------+--+----------------
+------+---------+------------------------+
| +ProduceResults | transactionId, username, message | 10 |
1 | 0 | 0/0 |
| | +--+----------------
+------+---------+------------------------+
| +TerminateTransactions | defaultColumns, transactions(database-transaction-123) | 10 |
1 | 0 | 0/0 |
+------------------------+--+----------------
+------+---------+------------------------+

Total database accesses: 0, total allocated memory: 64

Shortest path planning

Shortest path finding in Cypher and how it is planned.

Planning shortest paths in Cypher can lead to different query plans depending on the predicates that need
to be evaluated. Internally, Neo4j will use a fast bidirectional breadth-first search algorithm if the
predicates can be evaluated whilst searching for the path. Therefore, this fast algorithm will always be
certain to return the right answer when there are universal predicates on the path; for example, when
searching for the shortest path where all nodes have the Person label, or where there are no nodes with a
name property.

If the predicates need to inspect the whole path before deciding on whether it is valid or not, this fast
algorithm cannot be relied on to find the shortest path, and Neo4j may have to resort to using a slower
exhaustive depth-first search algorithm to find the path. This means that query plans for shortest path
queries with non-universal predicates will include a fallback to running the exhaustive search to find the
path should the fast algorithm not succeed. For example, depending on the data, an answer to a shortest
path query with existential predicates — such as the requirement that at least one node contains the
property name='Kevin Bacon' — may not be able to be found by the fast algorithm. In this case, Neo4j will
fall back to using the exhaustive search to enumerate all paths and potentially return an answer.

The running times of these two algorithms may differ by orders of magnitude, so it is important to ensure
that the fast approach is used for time-critical queries.

883

When the exhaustive search is planned, it is still only executed when the fast algorithm fails to find any
matching paths. The fast algorithm is always executed first, since it is possible that it can find a valid path
even though that could not be guaranteed at planning time.

Please note that falling back to the exhaustive search may prove to be a very time consuming strategy in
some cases; such as when there is no shortest path between two nodes. Therefore, in these cases, it is
recommended to set cypher.forbid_exhaustive_shortestpath to true, as explained in Operations Manual
→ Configuration settings.

Shortest path — fast algorithm

884

https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_dbms.cypher.forbid_exhaustive_shortestpath
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_dbms.cypher.forbid_exhaustive_shortestpath
https://neo4j.com/docs/pdf/neo4j-operations-manual-5.pdf#config_dbms.cypher.forbid_exhaustive_shortestpath

Example 519. Query evaluated with the fast algorith

This query can be evaluated with the fast algorithm — there are no predicates that need to see the
whole path before being evaluated.

Query

MATCH
 (KevinB:Person {name: 'Kevin Bacon'}),
 (Al:Person {name: 'Al Pacino'}),
 p = shortestPath((KevinB)-[:ACTED_IN*]-(Al))
WHERE all(r IN relationships(p) WHERE r.role IS NOT NULL)
RETURN p

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline
|
+---------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------+
| +ProduceResults | p
| 2 | 1 | 0 | | 1/0 | 0.252 |
|
| |
+--
+----------------+------+---------+----------------+------------------------+-----------+
|
| +ShortestPath | p = (KevinB)-[anon_0:ACTED_IN*]-(Al) WHERE all(r IN relationships(p) WHERE
r.role IS NOT NULL) | 2 | 1 | 23 | 1688 | |
| In Pipeline 1 |
| |
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------+
| +MultiNodeIndexSeek | RANGE INDEX KevinB:Person(name) WHERE name = $autostring_0,
| 2 | 1 | 4 | 120 | 1/1 | 0.916 | In Pipeline
0 |
| | RANGE INDEX Al:Person(name) WHERE name = $autostring_1
| | | | | | |
|
+---------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------+

Total database accesses: 27, total allocated memory: 1752

Shortest path — additional predicate checks on the paths

Predicates used in the WHERE clause that apply to the shortest path pattern are evaluated before deciding
what the shortest matching path is.

885

Example 520. Consider using the exhaustive search as a fallback

Query

MATCH
 (KevinB:Person {name: 'Kevin Bacon'}),
 (Al:Person {name: 'Al Pacino'}),
 p = shortestPath((KevinB)-[*]-(Al))
WHERE length(p) > 1
RETURN p

This query, in contrast with the one above, needs to check that the whole path follows the predicate
before we know if it is valid or not, and so the query plan will also include the fallback to the slower
exhaustive search algorithm.

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 1024

+--------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+--------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | p |
1 | 1 | 0 | | | | |
| | +---
+----------------+------+---------+----------------+ | |
|
| +AntiConditionalApply | |
1 | 1 | 0 | 41464 | 0/0 | 0.332 | Fused in Pipeline 6 |
| |\ +---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| | +Top | anon_1 ASC LIMIT 1 |
2 | 0 | 0 | 4280 | 0/0 | 0.000 | In Pipeline 5 |
| | | +---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| | +Projection | length(p) AS anon_1 |
7966 | 0 | 0 | | | | |
| | | +---
+----------------+------+---------+----------------+ | |
|
| | +Filter | length(p) > $autoint_2 |
7966 | 0 | 0 | | | | |
| | | +---
+----------------+------+---------+----------------+ | |
|
| | +Projection | (KevinB)-[anon_0*]-(Al) AS p |
26554 | 0 | 0 | | | | |
| | | +---
+----------------+------+---------+----------------+ | |
|
| | +VarLengthExpand(Into) | (KevinB)-[anon_0*]-(Al) |
26554 | 0 | 0 | | | | |
| | | +---
+----------------+------+---------+----------------+ | |
|
| | +Argument | KevinB, Al |
2 | 0 | 0 | 0 | 0/0 | 0.000 | Fused in Pipeline 4 |
| | +---
+----------------+------+---------+----------------+------------------------+-----------

886

+---------------------+
| +Apply | |
2 | 1 | 0 | | 0/0 | 0.026 | |
| |\ +---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| | +Optional | KevinB, Al |
2 | 1 | 0 | 4840 | 0/0 | 0.134 | In Pipeline 3 |
| | | +---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| | +ShortestPath | p = (KevinB)-[anon_0*]-(Al) WHERE length(p) > $autoint_2 |
1 | 1 | 1 | 1760 | | | In Pipeline 2 |
| | | +---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| | +Argument | KevinB, Al |
2 | 1 | 0 | 24680 | 0/0 | 0.056 | In Pipeline 1 |
| | +---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +MultiNodeIndexSeek | RANGE INDEX KevinB:Person(name) WHERE name = $autostring_0, |
2 | 1 | 4 | 120 | 2/0 | 0.644 | In Pipeline 0 |
| | RANGE INDEX Al:Person(name) WHERE name = $autostring_1 |
| | | | | | |
+--------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 5, total allocated memory: 50152

The way the bigger exhaustive query plan works is by using Apply/Optional to ensure that when the fast
algorithm does not find any results, a null result is generated instead of simply stopping the result stream.
On top of this, the planner will issue an AntiConditionalApply, which will run the exhaustive search if the
path variable is pointing to null instead of a path.

An ErrorPlan operator will appear in the execution plan in cases where:

• dbms.cypher.forbid_exhaustive_shortestpath is set to true.

• The fast algorithm is not able to find the shortest path.

887

Example 521. Prevent the exhaustive search from being used as a fallback

Query

MATCH
 (KevinB:Person {name: 'Kevin Bacon'}),
 (Al:Person {name: 'Al Pacino'}),
 p = shortestPath((KevinB)-[*]-(Al))
WITH p
WHERE length(p) > 1
RETURN p

This query, just like the one above, needs to check that the whole path follows the predicate before
we know if it is valid or not. However, the inclusion of the WITH clause means that the query plan will
not include the fallback to the slower exhaustive search algorithm. Instead, any paths found by the
fast algorithm will subsequently be filtered, which may result in no answers being returned.

Query plan

Planner COST

Runtime PIPELINED

Runtime version 5.4

Batch size 128

+---------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------+
| Operator | Details | Estimated Rows
| Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Pipeline |
+---------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------+
| +ProduceResults | p | 1
| 1 | 0 | | 1/0 | 0.353 | |
| | +---+----------------
+------+---------+----------------+------------------------+-----------+ |
| +Filter | length(p) > $autoint_2 | 1
| 1 | 0 | | 0/0 | 0.255 | |
| | +---+----------------
+------+---------+----------------+------------------------+-----------+ |
| +ShortestPath | p = (KevinB)-[anon_0*]-(Al) | 2
| 1 | 1 | 1760 | | | In Pipeline 1 |
| | +---+----------------
+------+---------+----------------+------------------------+-----------+---------------+
| +MultiNodeIndexSeek | RANGE INDEX KevinB:Person(name) WHERE name = $autostring_0, | 2
1	4	120	2/0	0.371	In Pipeline 0
	RANGE INDEX Al:Person(name) WHERE name = $autostring_1				
+---------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------+

Total database accesses: 5, total allocated memory: 1824

888

Deprecations, additions, and compatibility
Cypher is a language that is constantly evolving. New features are added to the language continuously,
and occasionally, some features become deprecated and are subsequently removed.

This section lists all of the features that have been removed, deprecated, added, or extended in different
Cypher versions. Replacement syntax for deprecated and removed features are also indicated.

Version 5.3

Updated features

Feature Details

Functionality Updated

SHOW DATABASES

Changes to the visibility of databases hosted on
offline servers.

For such databases:

• The address column will return NULL.

• The currentStatus column will return unknown.

• The statusMessage will return Server is
unavailable.

Functionality Updated

EXISTS {
 ...
}

An EXISTS subquery now supports any non-writing
query. For example, it now supports UNION and CALL
clauses.

Functionality Updated

COUNT {
 ...
}

A COUNT subquery now supports any non-writing
query. For example, it now supports UNION and CALL
clauses.

Syntax Updated

SHOW UNIQUE[NESS] CONSTRAINTS

The property uniqueness constraint type filter now
allow both UNIQUE and UNIQUENESS keywords.

Version 5.2

889

Deprecated features

Feature Details

Syntax Deprecated

MATCH ()-[r*]-()-[r*]-()

MATCH p = ()-[r*]-(), q = ()-[r*]-()

MATCH ()-[r*]-() MATCH ()-[r*]-()

The use of the same relationship variable for
multiple variable length relationships is deprecated.

Updated features

Feature Details

Syntax Updated

CREATE COMPOSITE DATABASE name OPTIONS {}

Creating composite databases now allows for an
empty options clause. There are no applicable
option values for composite databases.

Functionality New

DRYRUN REALLOCATE|DEALLOCATE DATABASES FROM
<serverId>

To preview of the result of either REALLOCATE or
DEALLOCATE without executing, prepend the
command with DRYRUN.

Version 5.1

Deprecated features

Feature Details

Functionality Deprecated

CREATE TEXT INDEX ... OPTIONS {indexProvider:
`text-1.0`}

The text index provider text-1.0 is deprecated and
replaced by text-2.0.

Updated features

890

Feature Details

Functionality Updated

CREATE TEXT INDEX ... OPTIONS {indexProvider:
`text-2.0`}

A new text index provider is available, text-2.0.
This is also the default provider if none is given.

Version 5.0

Removed features

Feature Details

Syntax Removed

SHOW EXISTS CONSTRAINTS

SHOW NODE EXISTS CONSTRAINTS

SHOW RELATIONSHIP EXISTS CONSTRAINTS

Replaced by:

SHOW [PROPERTY] EXIST[ENCE] CONSTRAINTS

SHOW NODE [PROPERTY] EXIST[ENCE] CONSTRAINTS

SHOW REL[ATIONSHIP] [PROPERTY] EXIST[ENCE]
CONSTRAINTS

Syntax Removed

SHOW INDEXES BRIEF

SHOW CONSTRAINTS BRIEF

Replaced by:

SHOW INDEXES

SHOW CONSTRAINTS

Syntax Removed

SHOW INDEXES VERBOSE

SHOW CONSTRAINTS VERBOSE

Replaced by:

SHOW INDEXES YIELD *

SHOW CONSTRAINTS YIELD *

Functionality Removed

DROP INDEX ON :Label(prop)

Replaced by:

DROP INDEX name

891

Feature Details

Functionality Removed

DROP CONSTRAINT ON (n:Label) ASSERT (n.prop) IS
NODE KEY

DROP CONSTRAINT ON (n:Label) ASSERT (n.prop) IS
UNIQUE

DROP CONSTRAINT ON (n:Label) ASSERT exists(n.prop)

DROP CONSTRAINT ON ()-[r:Type]-() ASSERT exists
(r.prop)

Replaced by:

DROP CONSTRAINT name

Syntax Removed

CREATE INDEX ON :Label(prop)

Replaced by:

CREATE INDEX FOR (n:Label) ON (n.prop)

Syntax Removed

CREATE CONSTRAINT ON ... ASSERT ...

Replaced by:

CREATE CONSTRAINT FOR ... REQUIRE ...

Functionality Removed

CREATE BTREE INDEX ...

Functionality Removed

CREATE INDEX
...
OPTIONS "{" btree-option: btree-value[, ...] "}"

B-tree indexes are removed.

B-tree indexes used for string queries are replaced
by:

CREATE TEXT INDEX ...

B-tree indexes used for spatial queries are replaced
by:

CREATE POINT INDEX ...

B-tree indexes used for general queries or property
value types are replaced by:

CREATE [RANGE] INDEX ...

These new indexes may be combined for multiple
use cases.

892

Feature Details

Functionality Removed

SHOW BTREE INDEXES

B-tree indexes are removed.

Replaced by:

SHOW {POINT | RANGE | TEXT} INDEXES

Functionality Removed

USING BTREE INDEXES

B-tree indexes are removed.

Replaced by:

USING {POINT | RANGE | TEXT} INDEX

Functionality Removed

CREATE CONSTRAINT
...
OPTIONS "{" btree-option: btree-value[, ...] "}"

Node key and property uniqueness constraints
backed by B-tree indexes are removed.

Replaced by:

CREATE CONSTRAINT ...

Constraints used for string properties require an
additional text index to cover the string queries
properly. Constraints used for point properties
require an additional point index to cover the spatial
queries properly.

Functionality Removed

SHOW INDEXES YIELD uniqueness

The uniqueness output has been removed along
with the concept of index uniqueness, as it actually
belongs to the constraint and not the index.

The new column owningConstraint was introduced
to indicate whether an index belongs to a constraint
or not.

Functionality Removed

SHOW CONSTRAINTS YIELD ownedIndexId

The ownedIndexId output has been removed and
replaced by the new ownedIndex column.

Syntax Removed
For privilege commands:

ON DEFAULT DATABASE

Replaced by:

ON HOME DATABASE

893

Feature Details

Syntax Removed
For privilege commands:

ON DEFAULT GRAPH

Replaced by:

ON HOME GRAPH

Functionality Removed

SHOW TRANSACTIONS YIELD allocatedBytes

The allocatedBytes output has been removed,
because it was never tracked and thus was always
0.

Syntax Removed

exists(prop)

Replaced by:

prop IS NOT NULL

Syntax Removed

NOT exists(prop)

Replaced by:

prop IS NULL

Syntax Removed

0...

Replaced by 0o....

Syntax Removed

0X...

Only 0x... (lowercase x) is supported.

Syntax Removed

MATCH ()-[r]-()
RETURN [()-[r]-()-[r]-() | r] AS rs

Remaining support for repeated relationship
variables is removed.

Syntax Removed

WHERE [1,2,3]

Automatic coercion of a list to a boolean is
removed.

Replaced by:

WHERE NOT isEmpty([1, 2, 3])

894

Feature Details

Functionality Removed

distance(n.prop, point({x:0, y:0})

Replaced by:

point.distance(n.prop, point({x:0, y:0})

Functionality Removed

point({x:0, y:0}) <= point({x:1, y:1}) <= point({
x:2, y:2})

The ability to use operators <, ⇐, >, and >= on
spatial points is removed. Instead, use:

point.withinBBox(point({x:1, y:1}), point({x:0, y
:0}), point({x:2, y:2}))

Syntax Removed

USING PERIODIC COMMIT ...

Replaced by:

CALL {
 ...
} IN TRANSACTIONS

Syntax Removed

CREATE (a {prop:7})-[r:R]->(b {prop: a.prop})

It is no longer allowed to have CREATE clauses in
which a variable introduced in the pattern is also
referenced from the same pattern.

Syntax Removed

CALL { RETURN 1 }

Unaliased expressions are no longer supported in
subquery RETURN clauses. Replaced by:

CALL { RETURN 1 AS one }

Syntax Removed

MATCH (a) RETURN (a)--()

Pattern expressions producing lists of paths are no
longer supported, but they can still be used as
existence predicates, for example in WHERE clauses.
Instead, use a pattern comprehension:

MATCH (a) RETURN [p=(a)--() | p]

895

Feature Details

Functionality Removed

MATCH (n) RETURN n.propertyName_1,
n.propertyName_2 + count(*)

Implied grouping keys are no longer supported.
Only expressions that do not contain aggregations
are still considered grouping keys. In expressions
that contain aggregations, the leaves must be
either:

• An aggregation

• A literal

• A parameter

• A variable, ONLY IF it is either: 1) A projection
expression on its own (e.g. the n in RETURN n AS
myNode, n.value + count(*))
2) A local variable in the expression (e.g the x in
RETURN n, n.prop + size([x IN range(1,
10) | x])

• Property access, ONLY IF it is also a projection
expression on its own (e.g. the n.prop in RETURN
n.prop, n.prop + count(*))

• Map access, ONLY IF it is also a projection
expression on its own (e.g. the map.prop in WITH
{prop: 2} AS map RETURN map.prop, map.prop
+ count(*))

Deprecated features

Feature Details

Syntax Deprecated

MATCH (n)-[r:REL]->(m) SET n=r

Use the properties() function instead to get the
map of properties of nodes/relationships that can
then be used in a SET clause:

MATCH (n)-[r:REL]->(m) SET n=properties(r)

Syntax Deprecated

MATCH (a), (b), allShortestPaths((a)-[r]->(b))
RETURN b

MATCH (a), (b), shortestPath((a)-[r]->(b)) RETURN
b

shortestPath and allShortestPaths without
variable-length relationship are deprecated. Instead,
use a MATCH with a LIMIT of 1 or:

MATCH (a), (b), shortestPath((a)-[r*1..1]->(b))
RETURN b

896

Feature Details

Syntax Deprecated

CREATE DATABASE databaseName.withDot ...

Creating a database with unescaped dots in the
name has been deprecated, instead escape the
database name:

CREATE DATABASE `databaseName.withDot` ...

Functionality Deprecated

()-[:A|:B]->()

Replaced by:

()-[:A|B]->()

Updated features

Feature Details

Functionality Updated

CREATE INDEX ...

The default index type is changed from B-tree to
range index.

Functionality Updated

SHOW INDEXES

The new column owningConstraint was added and
will be returned by default from now on. It will list
the name of the constraint that the index is
associated with or null, in case it is not associated
with any constraint.

Functionality Updated

SHOW CONSTRAINTS

The new column ownedIndex was added and will be
returned by default from now on. It will list the
name of the index associated with the constraint or
null, in case no index is associated with it.

897

Feature Details

Functionality Updated

SHOW TRANSACTIONS YIELD *

New columns for the current query are added:

• currentQueryStartTime

• currentQueryStatus

• currentQueryActiveLockCount

• currentQueryElapsedTime

• currentQueryCpuTime

• currentQueryWaitTime

• currentQueryIdleTime

• currentQueryAllocatedBytes

• currentQueryPageHits

• currentQueryPageFaults

These columns are only returned in the full set (with
YIELD) and not by default.

Functionality Updated

TERMINATE TRANSACTIONS transaction-id[,...]
YIELD { * | field[, ...] }
[ORDER BY field[, ...]]
[SKIP n]
[LIMIT n]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP
n] [LIMIT n]]

Terminate transaction now allows YIELD. The WHERE
clause is not allowed on its own, as it is for SHOW,
but needs the YIELD clause.

Functionality Updated

SHOW TRANSACTIONS [transaction-id[,...]]

TERMINATE TRANSACTIONS transaction-id[,...]

transaction-id now allows general expressions
resolving to a string or a list of strings instead of
just parameters.

898

Feature Details

Functionality Updated

SHOW TRANSACTIONS [transaction-id[,...]]
YIELD field[, ...]
 [ORDER BY field[, ...]]
 [SKIP n]
 [LIMIT n]
 [WHERE expression]
TERMINATE TRANSACTIONS transaction-id[,...]
YIELD field[, ...]
 [ORDER BY field[, ...]]
 [SKIP n]
 [LIMIT n]
 [WHERE expression]
RETURN field[, ...]
 [ORDER BY field[, ...]]
 [SKIP n]
 [LIMIT n]

The SHOW and TERMINATE TRANSACTIONS commands
can be combined in the same query. The query does
not require a specific order and there can be zero or
more of each command type, however at least one
command is needed.

When the command is not in standalone mode, the
YIELD and RETURN clauses are mandatory. YIELD * is
not allowed.

transaction-id is a comma-separated list of one or
more quoted strings. It could also be an expression
resolving to a string or a list of strings (for example
the output column from SHOW).

Functionality Updated

GRANT EXECUTE BOOSTED PROCEDURE ...
GRANT EXECUTE BOOSTED FUNCTION ...

Not a syntax change but a semantic one. The
EXECUTE BOOSTED privilege will no longer include an
implicit EXECUTE privilege when granted. That
means that to execute a procedure or a function
with boosted privileges both EXECUTE and EXECUTE
BOOSTED are needed.

Functionality Updated

[GRANT|DENY] [IMMUTABLE] ...

Privileges can be specified as IMMUTABLE, which
means that they cannot be altered by users with
Privilege Management. They can only be
administered with auth disabled.

Functionality Updated

REVOKE [IMMUTABLE] ...

IMMUTABLE can now be specified with the REVOKE
command to specify that only immutable privileges
should be revoked.

899

Feature Details

Functionality Updated

SHOW DATABASES

Changes to the default columns in the result:

• The writer, type, and constituents columns
have been added.

• The values returned in the role column have
changes to be just primary, secondary, or
unknown.

• The error column has been renamed to
statusMessage.

The following columns have been added to the full
result set (with YIELD) and not by default:

• creationTime

• lastStartTime

• lastStopTime

• store

• currentPrimariesCount

• currentSecondariesCount

• requestedPrimariesCount

• requestedSecondariesCount

Functionality Updated

MATCH (n)
RETURN
CASE n.prop
 WHEN null THEN 'one'
 ELSE 'two'
END

Previously, if n.prop is null, 'one' would be
returned. Now, 'two' is returned.

This is a semantic change only. Since null = null
returns false in Cypher, a WHEN expression no
longer matches on null.

If matching on null is required, please use IS NULL
instead:

MATCH (n)
RETURN
CASE
 WHEN n.prop IS NULL THEN 'one'
 ELSE 'two'
END

900

Feature Details

Functionality Updated

RETURN round(val, precision)

Rounding infinity and NaN values will now return
the original value instead of returning an integer
approximation for precision 0 and throwing an
exception for precision > 0:

old value new value

round(Inf) 92233720368547
76000.0

Inf

round(Inf, 1) exception Inf

round(NaN) 0 NaN

round(Inf, 1) exception NaN

To get an integer value use the toInteger function.

Functionality Updated

CREATE [OR REPLACE] ALIAS
compositeDatabase.aliasName ...
ALTER ALIAS compositeDatabase.aliasName
DROP ALIAS compositeDatabase.aliasName

The alias commands can now handle aliases in
composite databases.

Syntax Updated

SHOW ALIAS[ES] aliasName FOR DATABASE[S]
SHOW ALIAS[ES] compositeDatabase.aliasName FOR
DATABASE[S]

SHOW ALIAS now allows for easy filtering on alias
name.

Functionality Updated

CREATE [OR REPLACE] ALIAS
compositeDatabase.aliasName ...
ALTER ALIAS compositeDatabase.aliasName
DROP ALIAS compositeDatabase.aliasName

The alias commands can now handle aliases in
composite databases.

Syntax Updated

SHOW ALIAS[ES] aliasName FOR DATABASE[S]
SHOW ALIAS[ES] compositeDatabase.aliasName FOR
DATABASE[S]

SHOW ALIAS now allows for easy filtering on alias
name.

New features

901

Feature Details

Functionality New

CREATE [OR REPLACE] COMPOSITE DATABASE
databaseName [IF NOT EXISTS] [WAIT [n [SEC[OND[
S]]]]|NOWAIT]
DROP COMPOSITE DATABASE databaseName [IF EXISTS]
[DUMP DATA | DESTROY DATA] [WAIT [n [SEC[OND[S
]]]]|NOWAIT]

New Cypher command for creating and dropping
composite databases.

Functionality New
New privilege:

CREATE COMPOSITE DATABASE
DROP COMPOSITE DATABASE
COMPOSITE DATABASE MANAGEMENT

New privileges that allow a user to CREATE and/or
DROP composite databases.

Syntax Added

1_000_000, 0x_FF_FF, 0o_88_88

Cypher now supports number literals with
underscores between digits.

Functionality Added

isNaN(n.prop)

New function which returns whether the given
number is NaN. NaN is a special floating point number
defined in the Floating-Point Standard IEEE 754.
This function was introduced since comparisons
including NaN = NaN returns false.

Functionality Added

NaN, Inf, Infinity

Cypher now supports float literals for the values
Infinity and NaN. NaN defines a quiet not-a-number
value and does not throw any exceptions in
arithmetic operations. Both values are implemented
according to the Floating-Point Standard IEEE 754.

Functionality Added

COUNT { (n) WHERE n.foo = "bar" }

New expression which returns the number of
results of a subquery.

Functionality Added

CREATE DATABASE ... TOPOLOGY n PRIMAR{Y|IES} [m
SECONDAR{Y|IES}]

New sub-clause for CREATE DATABASE, to specify the
number of servers hosting a database, when
creating a database in cluster environments.

902

Feature Details

Functionality Added

ALTER DATABASE ... SET TOPOLOGY n PRIMAR{Y|IES} [m
SECONDAR{Y|IES}]

New sub-clause for ALTER DATABASE, which allows
modifying the number of servers hosting a
database in cluster environments.

Functionality Added

ENABLE SERVER ...

New Cypher command for enabling servers.

Functionality Added

ALTER SERVER ... SET OPTIONS ...

New Cypher command for setting options for a
server.

Functionality Added

RENAME SERVER ... TO ...

New Cypher command for changing the name of a
server.

Functionality Added

REALLOCATE DATABASES

New Cypher command for re-balancing what
servers host which databases.

Functionality Added

DEALLOCATE DATABASE[S] FROM SERVER[S] ...

New Cypher command for moving all databases
from servers.

Functionality Added

DROP SERVER ...

New Cypher command for dropping servers.

Functionality Added

SHOW SERVERS

New Cypher command for listing servers.

903

Feature Details

Functionality New
New privileges:

SERVER MANAGEMENT

SHOW SERVERS

New privileges that allow a user to create, modify,
reallocate, deallocate, drop and list servers.

Syntax New

MATCH (n: A&(B|C)&!D)

New concise syntax for expressing predicates for
which labels a node may have, referred to as label
expression.

Syntax New

MATCH ()-[r:(!A&!B)]->()

New concise syntax for expressing predicates for
which relationship types a relationship may have,
referred to as relationship type expression.

Syntax New

MATCH ()-[r:R {prop1: 42} WHERE r.prop2 > 42]->()

New syntax that enables inlining of WHERE clauses
inside relationship patterns.

Version 4.4

Deprecated features

904

Feature Details

Functionality Deprecated

MATCH (n) RETURN n.propertyName_1,
n.propertyName_2 + count(*)

Implied grouping keys are deprecated. Only
expressions that do not contain aggregations are
still considered grouping keys. In expressions that
contain aggregations, the leaves must be either:

• An aggregation

• A literal

• A parameter

• A variable, ONLY IF it is either:
1) A projection expression on its own (e.g. the n
in RETURN n AS myNode, n.value + count(*))
2) A local variable in the expression (e.g the x in
RETURN n, n.prop + size([x IN range(1,
10) | x])

• Property access, ONLY IF it is also a projection
expression on its own (e.g. the n.prop in RETURN
n.prop, n.prop + count(*))

• Map access, ONLY IF it is also a projection
expression on its own (e.g. the map.prop in WITH
{prop: 2} AS map RETURN map.prop, map.prop
+ count(*))

Syntax Deprecated

USING PERIODIC COMMIT ...

Replaced by:

CALL {
 ...
} IN TRANSACTIONS

Syntax Deprecated

CREATE (a {prop:7})-[r:R]->(b {prop: a.prop})

CREATE clauses in which a variable introduced in the
pattern is also referenced from the same pattern are
deprecated.

Syntax Deprecated

CREATE CONSTRAINT ON ... ASSERT ...

Replaced by:

CREATE CONSTRAINT FOR ... REQUIRE ...

905

Feature Details

Functionality Deprecated

CREATE BTREE INDEX ...

B-tree indexes are deprecated.

B-tree indexes used for string queries are replaced
by:

CREATE TEXT INDEX ...

B-tree indexes used for spatial queries are replaced
by:

CREATE POINT INDEX ...

B-tree indexes used for general queries or property
value types are replaced by:

CREATE RANGE INDEX ...

These new indexes may be combined for multiple
use cases.

Functionality Deprecated

CREATE INDEX
...
OPTIONS "{" btree-option: btree-value[, ...] "}"

Functionality Deprecated

SHOW BTREE INDEXES

B-tree indexes are deprecated.

Replaced by:

SHOW {POINT | RANGE | TEXT} INDEXES

Functionality Deprecated

USING BTREE INDEX

B-tree indexes are deprecated.

Replaced by:

USING {POINT | RANGE | TEXT} INDEX

906

Feature Details

Functionality Deprecated

CREATE CONSTRAINT
...
OPTIONS "{" btree-option: btree-value[, ...] "}"

Node key and property uniqueness constraints with
B-tree options are deprecated.

Replaced by:

CREATE CONSTRAINT
...
OPTIONS "{" range-option: range-value[, ...] "}"

Constraints used for string properties will also
require an additional text index to cover the string
queries properly. Constraints used for point
properties will also require an additional point index
to cover the spatial queries properly.

Functionality Deprecated

distance(n.prop, point({x:0, y:0})

Replaced by:

point.distance(n.prop, point({x:0, y:0})

Functionality Deprecated

point({x:0, y:0}) <= point({x:1, y:1}) <= point({
x:2, y:2})

The ability to use the inequality operators <, ⇐, >,
and >= on spatial points is deprecated. Instead, use:

point.withinBBox(point({x:1, y:1}), point({x:0, y
:0}), point({x:2, y:2}))

Functionality Deprecated

MATCH (n)
RETURN
CASE n.prop
 WHEN null THEN 'one'
 ELSE 'two'
END

Currently, if n.prop is null, 'one' would be
returned. Since null = null returns false in
Cypher, a WHEN expression will no longer match in
future versions.

Please use IS NULL instead:

MATCH (n)
RETURN
CASE
 WHEN n.prop IS NULL THEN 'one'
 ELSE 'two'
END

New features

907

Feature Details

Functionality New

CALL {
 ...
} IN TRANSACTIONS

New clause for evaluating a subquery in separate
transactions. Typically used when modifying or
importing large amounts of data. See CALL { ... } IN
TRANSACTIONS.

Syntax New

CREATE CONSTRAINT FOR ... REQUIRE ...

New syntax for creating constraints, applicable to
all constraint types.

Functionality New

CREATE CONSTRAINT [constraint_name] [IF NOT
EXISTS]
FOR (n:LabelName)
REQUIRE (n.propertyName_1, …, n.propertyName_n) IS
UNIQUE
[OPTIONS "{" option: value[, ...] "}"]

Property uniqueness constraints now allow multiple
properties, ensuring that the combination of
property values are unique.

Functionality New Deprecated

DROP CONSTRAINT
ON (n:LabelName)
ASSERT (n.propertyName_1, …, n.propertyName_n) IS
UNIQUE

Property uniqueness constraints now allow multiple
properties.

Replaced by:

DROP CONSTRAINT name [IF EXISTS]

Syntax New

CREATE CONSTRAINT [constraint_name] [IF NOT
EXISTS]
FOR ...
REQUIRE ... IS NOT NULL
OPTIONS "{" "}"

Existence constraints now allow an OPTIONS map,
however, at this point there are no available values
for the map.

Functionality New

CREATE LOOKUP INDEX [index_name] [IF NOT EXISTS]
FOR ... ON ...
OPTIONS "{" option: value[, ...] "}"

Token lookup indexes now allow an OPTIONS map to
specify the index provider.

Functionality New

CREATE TEXT INDEX ...

Allows creating text indexes on nodes or
relationships with a particular label or relationship
type, and property combination. They can be
dropped by using their name.

908

Feature Details

Functionality New

CREATE RANGE INDEX ...

Allows creating range indexes on nodes or
relationships with a particular label or relationship
type, and properties combination. They can be
dropped by using their name.

Functionality New

CREATE CONSTRAINT
...
OPTIONS "{" indexProvider: 'range-1.0' "}"

Allows creating node key and property uniqueness
constraints backed by range indexes by providing
the range index provider in the OPTIONS map.

Functionality New

CREATE POINT INDEX ...

Allows creating point indexes on nodes or
relationships with a particular label or relationship
type, and property combination. They can be
dropped by using their name.

Syntax New
New privilege:

IMPERSONATE

New privilege that allows a user to assume
privileges of another one.

Functionality New

SHOW TRANSACTION[S] [transaction-id[,...]]
[YIELD { * | field[, ...] } [ORDER BY field[,
...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP
n] [LIMIT n]]

List transactions on the current server.

The transaction-id is a comma-separated list of
one or more quoted strings, a string parameter, or a
list parameter.

This replaces the procedures
dbms.listTransactions and dbms.listQueries.

Functionality New

TERMINATE TRANSACTION[S] transaction-id[,...]

Terminate transactions on the current server.

The transaction-id is a comma-separated list of
one or more quoted strings, a string parameter, or a
list parameter.

This replaces the procedures
dbms.killTransaction, dbms.killTransactions,
dbms.killQuery, and dbms.killQueries.

909

Feature Details

Functionality New

ALTER DATABASE ... [IF EXISTS]
SET ACCESS {READ ONLY | READ WRITE}

New Cypher command for modifying a database by
changing its access mode.

Functionality New
New privilege:

ALTER DATABASE

New privilege that allows a user to modify
databases.

Functionality New
New privilege:

SET DATABASE ACCESS

New privilege that allows a user to modify database
access mode.

Functionality New

CREATE ALIAS ... [IF NOT EXISTS]
FOR DATABASE ...

New Cypher command for creating an alias for a
database name. Remote aliases are only supported
from version 4.4.8.

Functionality New

CREATE OR REPLACE ALIAS ...
FOR DATABASE ...

New Cypher command for creating or replacing an
alias for a database name. Remote aliases are only
supported from version 4.4.8.

Functionality New

ALTER ALIAS ... [IF EXISTS]
SET DATABASE ...

New Cypher command for altering an alias. Remote
aliases are only supported from version 4.4.8.

Functionality New

DROP ALIAS ... [IF EXISTS] FOR DATABASE

New Cypher command for dropping a database
alias.

Functionality New

SHOW ALIASES FOR DATABASE

New Cypher command for listing database aliases.
Only supported since version 4.4.8.

910

Feature Details

Functionality New
New privilege:

ALIAS MANAGEMENT

New privilege that allows a user to create, modify,
delete and list aliases. Only supported since version
4.4.8.

Functionality New
New privilege:

CREATE ALIAS

New privilege that allows a user to create aliases.
Only supported since version 4.4.8.

Functionality New
New privilege:

ALTER ALIAS

New privilege that allows a user to modify aliases.
Only supported since version 4.4.8.

Functionality New
New privilege:

DROP ALIAS

New privilege that allows a user to delete aliases.
Only supported since version 4.4.8.

Functionality New
New privilege:

SHOW ALIAS

New privilege that allows a user to show aliases.
Only supported since version 4.4.8.

Syntax New

MATCH (n:N {prop1: 42} WHERE n.prop2 > 42)

New syntax that enables inlining of WHERE clauses
inside node patterns.

Version 4.3

Deprecated features

911

Feature Details

Syntax Deprecated

CREATE CONSTRAINT [name]
ON (node:Label)
ASSERT exists(node.property)

Replaced by:

CREATE CONSTRAINT [name]
ON (node:Label)
ASSERT node.property IS NOT NULL

Syntax Deprecated

CREATE CONSTRAINT [name]
ON ()-[rel:REL]-()
ASSERT exists(rel.property)

Replaced by:

CREATE CONSTRAINT [name]
ON ()-[rel:REL]-()
ASSERT rel.property IS NOT NULL

Syntax Deprecated

exists(prop)

Replaced by:

prop IS NOT NULL

Syntax Deprecated

NOT exists(prop)

Replaced by:

prop IS NULL

Syntax Deprecated
BRIEF [OUTPUT] for SHOW INDEXES and SHOW
CONSTRAINTS.

Replaced by default output columns.

Syntax Deprecated
VERBOSE [OUTPUT] for SHOW INDEXES and SHOW
CONSTRAINTS.

Replaced by:

YIELD *

Syntax Deprecated

SHOW EXISTS CONSTRAINTS

Replaced by:

SHOW [PROPERTY] EXIST[ENCE] CONSTRAINTS

Still allows BRIEF and VERBOSE but not YIELD or
WHERE.

Syntax Deprecated

SHOW NODE EXISTS CONSTRAINTS

Replaced by:

SHOW NODE [PROPERTY] EXIST[ENCE] CONSTRAINTS

Still allows BRIEF and VERBOSE but not YIELD or
WHERE.

912

Feature Details

Syntax Deprecated

SHOW RELATIONSHIP EXISTS CONSTRAINTS

Replaced by:

SHOW RELATIONSHIP [PROPERTY] EXIST[ENCE]
CONSTRAINTS

Still allows BRIEF and VERBOSE but not YIELD or
WHERE.

Syntax Deprecated
For privilege commands:

ON DEFAULT DATABASE

Replaced by:

ON HOME DATABASE

Syntax Deprecated
For privilege commands:

ON DEFAULT GRAPH

Replaced by:

ON HOME GRAPH

Syntax Deprecated

MATCH (a) RETURN (a)--()

Pattern expressions producing lists of paths are
deprecated, but they can still be used as existence
predicates, for example in WHERE clauses. Instead,
use a pattern comprehension:

MATCH (a) RETURN [p=(a)--() | p]

Updated features

Feature Details

Functionality Updated

SHOW INDEXES WHERE ...

Now allows filtering for:

SHOW INDEXES

Functionality Updated

SHOW CONSTRAINTS WHERE ...

Now allows filtering for:

SHOW CONSTRAINTS

913

Feature Details

Functionality Updated

SHOW INDEXES YIELD ...
[WHERE ...]
[RETURN ...]

Now allows YIELD, WHERE, and RETURN clauses to
SHOW INDEXES to change the output.

Functionality Updated

SHOW CONSTRAINTS YIELD ...
[WHERE ...]
[RETURN ...]

Now allows YIELD, WHERE, and RETURN clauses to
SHOW CONSTRAINTS to change the output.

Syntax Updated

SHOW [PROPERTY] EXIST[ENCE] CONSTRAINTS

New syntax for filtering SHOW CONSTRAINTS on
property existence constraints.
Allows YIELD and WHERE but not BRIEF or VERBOSE.

Syntax Updated

SHOW NODE [PROPERTY] EXIST[ENCE] CONSTRAINTS

New syntax for filtering SHOW CONSTRAINTS on node
property existence constraints.
Allows YIELD and WHERE but not BRIEF or VERBOSE.

Syntax Updated

SHOW REL[ATIONSHIP] [PROPERTY] EXIST[ENCE]
CONSTRAINTS

New syntax for filtering SHOW CONSTRAINTS on
relationship property existence constraints.
Allows YIELD and WHERE but not BRIEF or VERBOSE.

Functionality Updated

SHOW FULLTEXT INDEXES

Now allows easy filtering for SHOW INDEXES on
fulltext indexes.
Allows YIELD and WHERE but not BRIEF or VERBOSE.

Functionality Updated

SHOW LOOKUP INDEXES

Now allows easy filtering for SHOW INDEXES on token
lookup indexes.
Allows YIELD and WHERE but not BRIEF or VERBOSE.

New features

914

Feature Details

Syntax New

CREATE DATABASE ...
[OPTIONS {...}]

New syntax to pass options to CREATE DATABASE.
This can be used to specify a specific cluster node
to seed data from.

Syntax New

CREATE CONSTRAINT [name]
ON (node:Label)
ASSERT node.property IS NOT NULL

New syntax for creating node property existence
constraints.

Syntax New

CREATE CONSTRAINT [name]
ON ()-[rel:REL]-()
ASSERT rel.property IS NOT NULL

New syntax for creating relationship property
existence constraints.

Syntax New

ALTER USER name IF EXISTS ...

Makes altering users idempotent. If the specified
name does not exists, no error is thrown.

Syntax New

ALTER USER ...
SET HOME DATABASE ...

Now allows setting home database for user.

Syntax New

ALTER USER ...
REMOVE HOME DATABASE

Now allows removing home database for user.

Syntax New

CREATE USER ...
SET HOME DATABASE ...

CREATE USER now allows setting home database for
user.

Syntax New

SHOW HOME DATABASE

New syntax for showing the home database of the
current user.

915

Feature Details

Syntax New
New privilege:

SET USER HOME DATABASE

New Cypher command for administering privilege
for changing users home database.

Syntax New
For privilege commands:

ON HOME DATABASE

New syntax for privileges affecting home database.

Syntax New
For privilege commands:

ON HOME GRAPH

New syntax for privileges affecting home graph.

Syntax New

CREATE FULLTEXT INDEX ...

Allows creating fulltext indexes on nodes or
relationships. They can be dropped by using their
name.

Functionality New

CREATE INDEX FOR ()-[r:TYPE]-() ...

Allows creating indexes on relationships with a
particular relationship type and property
combination. They can be dropped by using their
name.

Functionality New

CREATE LOOKUP INDEX ...

Create token lookup index for nodes with any labels
or relationships with any relationship type. They can
be dropped by using their name.

Functionality New

RENAME ROLE

New Cypher command for changing the name of a
role.

Functionality New

RENAME USER

New Cypher command for changing the name of a
user.

916

Feature Details

Functionality New

SHOW PROCEDURE[S]
[EXECUTABLE [BY {CURRENT USER | username}]]
[YIELD ...]
[WHERE ...]
[RETURN ...]

New Cypher commands for listing procedures.

Functionality New

SHOW [ALL | BUILT IN | USER DEFINED] FUNCTION[S]
[EXECUTABLE [BY {CURRENT USER | username}]]
[YIELD ...]
[WHERE ...]
[RETURN ...]

New Cypher commands for listing functions.

Version 4.2

Deprecated features

Feature Details

Syntax Deprecated

0...

Replaced by 0o....

Syntax Deprecated

0X...

Only 0x... (lowercase x) is supported.

Syntax Deprecated

CALL { RETURN 1 }

Unaliased expressions are deprecated in subquery
RETURN clauses. Replaced by:

CALL { RETURN 1 AS one }

Updated features

Feature Details

Functionality Updated

SHOW ROLE name PRIVILEGES

Can now handle multiple roles.

SHOW ROLES n1, n2, ... PRIVILEGES

917

Feature Details

Functionality Updated

SHOW USER name PRIVILEGES

Can now handle multiple users.

SHOW USERS n1, n2, ... PRIVILEGES

Functionality Updated

round(expression, precision)

The round() function can now take an additional
argument to specify rounding precision.

Functionality Updated

round(expression, precision, mode)

The round() function can now take two additional
arguments to specify rounding precision and
rounding mode.

New features

Feature Details

Functionality New

SHOW PRIVILEGES [AS [REVOKE] COMMAND[S]]

Privileges can now be shown as Cypher commands.

Syntax New

DEFAULT GRAPH

New optional part of the Cypher commands for
database privileges.

Syntax New

0o...

Cypher now interprets literals with prefix 0o as an
octal integer literal.

Syntax New

SET [PLAINTEXT | ENCRYPTED] PASSWORD

For CREATE USER and ALTER USER, it is now possible
to set (or update) a password when the plaintext
password is unknown, but the encrypted password
is available.

Functionality New
New privilege:

EXECUTE

New Cypher commands for administering privileges
for executing procedures and user defined
functions. See The DBMS EXECUTE privileges.

918

Feature Details

Syntax New

CREATE [BTREE] INDEX ... [OPTIONS {...}]

Allows setting index provider and index
configuration when creating an index.

Syntax New

CREATE CONSTRAINT ... IS NODE KEY [OPTIONS {...}]

Allows setting index provider and index
configuration for the backing index when creating a
node key constraint.

Syntax New

CREATE CONSTRAINT ... IS UNIQUE [OPTIONS {...}]

Allows setting index provider and index
configuration for the backing index when creating a
property uniqueness constraint.

Syntax New

SHOW CURRENT USER

New Cypher command for showing current logged-
in user and roles.

Functionality New

SHOW [ALL | BTREE] INDEX[ES] [BRIEF | VERBOSE
[OUTPUT]]

New Cypher commands for listing indexes.

Replaces the procedures db.indexes,
db.indexDetails (verbose), and partially
db.schemaStatements (verbose).

Functionality New

SHOW [ALL | UNIQUE | NODE EXIST[S] | RELATIONSHIP
EXIST[S] | EXIST[S] | NODE KEY] CONSTRAINT[S]
[BRIEF | VERBOSE [OUTPUT]]

New Cypher commands for listing constraints.

Replaces the procedures db.constraints and
partially db.schemaStatements (verbose).

Functionality New
New privilege:

SHOW INDEX

New Cypher command for administering privilege
for listing indexes.

Functionality New
New privilege:

SHOW CONSTRAINT

New Cypher command for administering privilege
for listing constraints.

919

Version 4.1.3

New features

Feature Details

Syntax New

CREATE INDEX [name] IF NOT EXISTS FOR ...

Makes index creation idempotent. If an index with
the name or schema already exists no error will be
thrown.

Syntax New

DROP INDEX name IF EXISTS

Makes index deletion idempotent. If no index with
the name exists no error will be thrown.

Syntax New

CREATE CONSTRAINT [name] IF NOT EXISTS ON ...

Makes constraint creation idempotent. If a
constraint with the name or type and schema
already exists no error will be thrown.

Syntax New

DROP CONSTRAINT name IF EXISTS

Makes constraint deletion idempotent. If no
constraint with the name exists no error will be
thrown.

Version 4.1

Restricted features

Feature Details

Functionality Restricted

REVOKE ...

No longer revokes sub-privileges when revoking a
compound privilege, e.g. when revoking INDEX
MANAGEMENT, any CREATE INDEX and DROP INDEX
privileges will no longer be revoked.

Functionality Restricted

ALL DATABASE PRIVILEGES

No longer includes the privileges START DATABASE
and STOP DATABASE.

Updated features

920

Feature Details

Procedure Updated

queryId

The queryId procedure format has changed, and no
longer includes the database name. For example,
mydb-query-123 is now query-123. This change
affects built-in procedures dbms.listQueries(),
dbms.listActiveLocks(queryId),
dbms.killQueries(queryIds) and
dbms.killQuery(queryId).

Functionality Updated

SHOW PRIVILEGES

The returned privileges are a closer match to the
original grants and denies, e.g. if granted MATCH the
command will show that specific privilege and not
the TRAVERSE and READ privileges. Added support for
YIELD and WHERE clauses to allow filtering results.

New features

Feature Details

Functionality New
New role:

PUBLIC

The PUBLIC role is automatically assigned to all
users, giving them a set of base privileges.

Syntax New
For privileges:

REVOKE MATCH

The MATCH privilege can now be revoked.

Functionality New

SHOW USERS

New support for YIELD and WHERE clauses to allow
filtering results.

Functionality New

SHOW ROLES

New support for YIELD and WHERE clauses to allow
filtering results.

Functionality New

SHOW DATABASES

New support for YIELD and WHERE clauses to allow
filtering results.

921

Feature Details

Functionality New
TRANSACTION MANAGEMENT privileges

New Cypher commands for administering
transaction management.

Functionality New
DBMS USER MANAGEMENT privileges

New Cypher commands for administering user
management.

Functionality New
DBMS DATABASE MANAGEMENT privileges

New Cypher commands for administering database
management.

Functionality New
DBMS PRIVILEGE MANAGEMENT privileges

New Cypher commands for administering privilege
management.

Functionality New

ALL DBMS PRIVILEGES

New Cypher command for administering role, user,
database and privilege management.

Functionality New

ALL GRAPH PRIVILEGES

New Cypher command for administering read and
write privileges.

Functionality New
Write privileges

New Cypher commands for administering write
privileges.

Functionality New

ON DEFAULT DATABASE

New optional part of the Cypher commands for
database privileges.

Version 4.0

Removed features

Feature Details

Function Removed

rels()

Replaced by relationships().

922

Feature Details

Function Removed

toInt()

Replaced by toInteger().

Function Removed

lower()

Replaced by toLower().

Function Removed

upper()

Replaced by toUpper().

Function Removed

extract()

Replaced by list comprehension.

Function Removed

filter()

Replaced by list comprehension.

Functionality Removed
For Rule planner:

CYPHER planner=rule

The RULE planner was removed in 3.2, but still
possible to trigger using START or CREATE UNIQUE
clauses. Now it is completely removed.

Functionality Removed
Explicit indexes

The removal of the RULE planner in 3.2 was the
beginning of the end for explicit indexes. Now they
are completely removed, including the removal of
the built-in procedures for Neo4j 3.3 to 3.5.

Functionality Removed
For compiled runtime:

CYPHER runtime=compiled

Replaced by the new pipelined runtime which
covers a much wider range of queries.

Clause Removed

CREATE UNIQUE

Running queries with this clause will cause a syntax
error.

923

https://neo4j.com/docs/cypher-manual/3.5/schema/index/#explicit-indexes-procedures

Feature Details

Clause Removed

START

Running queries with this clause will cause a syntax
error.

Syntax Removed

MATCH (n)-[:A|:B|:C {foo: 'bar'}]-() RETURN n

Replaced by MATCH (n)-[:A|B|C {foo: 'bar'}]-()
RETURN n.

Syntax Removed

MATCH (n)-[x:A|:B|:C]-() RETURN n

Replaced by MATCH (n)-[x:A|B|C]-() RETURN n.

Syntax Removed

MATCH (n)-[x:A|:B|:C*]-() RETURN n

Replaced by MATCH (n)-[x:A|B|C*]-() RETURN n.

Syntax Removed

{parameter}

Replaced by $parameter.

Deprecated features

Feature Details

Syntax Deprecated

MATCH (n)-[rs*]-() RETURN rs

As in Cypher 3.2, this is replaced by:

MATCH p=(n)-[*]-() RETURN relationships(p) AS rs

Syntax Deprecated

CREATE INDEX ON :Label(prop)

Replaced by CREATE INDEX FOR (n:Label) ON
(n.prop).

Syntax Deprecated

DROP INDEX ON :Label(prop)

Replaced by DROP INDEX name.

924

Feature Details

Syntax Deprecated

DROP CONSTRAINT ON (n:Label) ASSERT (n.prop) IS
NODE KEY

Replaced by DROP CONSTRAINT name.

Syntax Deprecated

DROP CONSTRAINT ON (n:Label) ASSERT (n.prop) IS
UNIQUE

Replaced by DROP CONSTRAINT name.

Syntax Deprecated

DROP CONSTRAINT ON (n:Label) ASSERT exists(n.prop)

Replaced by DROP CONSTRAINT name.

Syntax Deprecated

DROP CONSTRAINT ON ()-[r:Type]-() ASSERT exists
(r.prop)

Replaced by DROP CONSTRAINT name.

Restricted features

Feature Details

Function Restricted

length()

Restricted to only work on paths. See length() for
more details.

Function Restricted

size()

No longer works for paths. Only works for strings,
lists and pattern expressions. See size() for more
details.

Updated features

925

Feature Details

Syntax Extended

CREATE CONSTRAINT [name] ON ...

The create constraint syntax can now include a
name.

The IS NODE KEY and IS UNIQUE versions of this
command replace the procedures db.createNodeKey
and db.createUniquePropertyConstraint,
respectively.

New features

Feature Details

Functionality New
Pipelined runtime:

CYPHER runtime=pipelined

This Neo4j Enterprise Edition only feature involves a
new runtime that has many performance
enhancements.

Functionality New
Multi-database administration

New Cypher commands for administering multiple
databases.

Functionality New
Access control

New Cypher commands for administering role-
based access control.

Functionality New
Fine-grained security

New Cypher commands for administering dbms,
database, graph and sub-graph access control.

Syntax New

CREATE INDEX [name] FOR (n:Label) ON (n.prop)

New syntax for creating indexes, which can include
a name.

Replaces the db.createIndex procedure.

Syntax New

DROP INDEX name

New command for dropping an index by name.

Syntax New

DROP CONSTRAINT name

New command for dropping a constraint by name,
no matter the type.

926

Feature Details

Clause New

WHERE EXISTS {...}

EXISTS subqueries are subclauses used to filter the
results of a MATCH, OPTIONAL MATCH, or WITH clause.

Clause New

USE neo4j

New clause to specify which graph a query, or
query part, is executed against.

Version 3.5

Deprecated features

Feature Details

Functionality Deprecated
Compiled runtime:

CYPHER runtime=compiled

The compiled runtime will be discontinued in the
next major release. It might still be used for default
queries in order to not cause regressions, but
explicitly requesting it will not be possible.

Function Deprecated

extract()

Replaced by list comprehension.

Function Deprecated

filter()

Replaced by list comprehension.

Version 3.4
Feature Type Change Details

Spatial point types Functionality Amendment A point — irrespective of
which Coordinate Reference
System is used — can be
stored as a property and is
able to be backed by an
index. Prior to this, a point
was a virtual property only.

point() - Cartesian 3D Function Added

point() - WGS 84 3D Function Added

927

Feature Type Change Details

randomUUID() Function Added

Temporal types Functionality Added Supports storing, indexing
and working with the
following temporal types:
Date, Time, LocalTime,
DateTime, LocalDateTime
and Duration.

Temporal functions Functionality Added Functions allowing for the
creation and manipulation of
values for each temporal
type — Date, Time,
LocalTime, DateTime,
LocalDateTime and Duration.

Temporal operators Functionality Added Operators allowing for the
manipulation of values for
each temporal type — Date,
Time, LocalTime, DateTime,
LocalDateTime and Duration.

toString() Function Extended Now also allows temporal
values as input (i.e. values of
type Date, Time, LocalTime,
DateTime, LocalDateTime or
Duration).

Version 3.3
Feature Type Change Details

START Clause Removed As in Cypher 3.2, any queries
using the START clause will
revert back to Cypher 3.1
planner=rule. However, there
are built-in procedures for
Neo4j versions 3.3 to 3.5 for
accessing explicit indexes.
The procedures will enable
users to use the current
version of Cypher and the
cost planner together with
these indexes. An example of
this is CALL
db.index.explicit.searchNo
des('my_index','email:me*'
).

CYPHER runtime=slotted
(Faster interpreted runtime)

Functionality Added Neo4j Enterprise Edition only

928

https://neo4j.com/docs/cypher-manual/3.5/schema/index/#explicit-indexes-procedures
https://neo4j.com/docs/cypher-manual/3.5/schema/index/#explicit-indexes-procedures

Feature Type Change Details

max(), min() Function Extended Now also supports
aggregation over sets
containing lists of strings
and/or numbers, as well as
over sets containing strings,
numbers, and lists of strings
and/or numbers

Version 3.2
Feature Type Change Details

CYPHER planner=rule (Rule
planner)

Functionality Removed All queries now use the cost
planner. Any query
prepended thus will fall back
to using Cypher 3.1.

CREATE UNIQUE Clause Removed Running such queries will fall
back to using Cypher 3.1 (and
use the rule planner)

START Clause Removed Running such queries will fall
back to using Cypher 3.1 (and
use the rule planner)

MATCH (n)-[rs*]-() RETURN
rs

Syntax Deprecated Replaced by MATCH p=(n)-
[*]-() RETURN
relationships(p) AS rs

MATCH (n)-[:A|:B|:C {foo:
'bar'}]-() RETURN n

Syntax Deprecated Replaced by MATCH (n)-
[:A|B|C {foo: 'bar'}]-()
RETURN n

MATCH (n)-[x:A|:B|:C]-()
RETURN n

Syntax Deprecated Replaced by MATCH (n)-
[x:A|B|C]-() RETURN n

MATCH (n)-[x:A|:B|:C*]-()
RETURN n

Syntax Deprecated Replaced by MATCH (n)-
[x:A|B|C*]-() RETURN n

User-defined aggregation
functions

Functionality Added

Composite indexes Index Added

Node Key Index Added Neo4j Enterprise Edition only

CYPHER runtime=compiled
(Compiled runtime)

Functionality Added Neo4j Enterprise Edition only

reverse() Function Extended Now also allows a list as
input

max(), min() Function Extended Now also supports
aggregation over a set
containing both strings and
numbers

929

/docs/java-reference/5/extending-neo4j/aggregation-functions#extending-neo4j-aggregation-functions
/docs/java-reference/5/extending-neo4j/aggregation-functions#extending-neo4j-aggregation-functions

Version 3.1
Feature Type Change Details

rels() Function Deprecated Replaced by relationships()

toInt() Function Deprecated Replaced by toInteger()

lower() Function Deprecated Replaced by toLower()

upper() Function Deprecated Replaced by toUpper()

toBoolean() Function Added

Map projection Syntax Added

Pattern comprehension Syntax Added

User-defined functions Functionality Added

CALL...YIELD...WHERE Clause Extended Records returned by YIELD
may be filtered further using
WHERE

Version 3.0
Feature Type Change Details

has() Function Removed Replaced by exists()

str() Function Removed Replaced by toString()

{parameter} Syntax Deprecated Replaced by $parameter

properties() Function Added

CALL [...YIELD\] Clause Added

point() - Cartesian 2D Function Added

point() - WGS 84 2D Function Added

distance() Function Added

User-defined procedures Functionality Added

toString() Function Extended Now also allows Boolean
values as input

930

/docs/java-reference/5/extending-neo4j/functions#extending-neo4j-functions
/docs/java-reference/5/extending-neo4j/procedures#extending-neo4j-procedures

Glossary of keywords
This section comprises a glossary of all the keywords — grouped by category and thence

ordered lexicographically — in the Cypher query language.

• Clauses

• Operators

• Functions

• Expressions

• Cypher query options

• Administrative commands

• Privilege Actions

Clauses
Clause Category Description

CALL […YIELD\] Reading/Writing Invoke a procedure deployed in the
database.

CALL {...} Reading/Writing Evaluates a subquery, typically used for
post-union processing or aggregations.

CALL { ... } IN TRANSACTIONS Reading/Writing Evaluates a subquery in separate
transactions. Typically used when
modifying or importing large
amounts of data.

CREATE Writing Create nodes and relationships.

CREATE CONSTRAINT [existence\ [IF
NOT EXISTS\] FOR (n:Label) REQUIRE
n.property IS NOT NULL [OPTIONS {}\]]

Schema Create a constraint ensuring that all
nodes with a particular label have a
certain property.

CREATE CONSTRAINT [existence\ [IF
NOT EXISTS\] FOR ()-
"["r:REL_TYPE"\]"-() REQUIRE
r.property IS NOT NULL [OPTIONS {}\]]

Schema Create a constraint that ensures all
relationships with a particular type have
a certain property.

CREATE CONSTRAINT [node_key\ [IF
NOT EXISTS\] FOR (n:Label) REQUIRE
(n.prop1[, …, n.propN\]) IS [NODE\] KEY
[OPTIONS {optionKey: optionValue[, …
\]}\]]

Schema Create a constraint that ensures all
nodes with a particular label have all the
specified properties and that the
combination of property values is
unique; i.e. ensures existence and
uniqueness.

931

Clause Category Description

CREATE CONSTRAINT [uniqueness\ [IF
NOT EXISTS\] FOR (n:Label) REQUIRE
(n.prop1[, …, n.propN\]) IS [NODE\]
UNIQUE [OPTIONS {optionKey:
optionValue[, …\]}\]]

Schema Create a constraint that ensures the
uniqueness of the combination of node
label and property values for a particular
property key combination across all
nodes.

CREATE FULLTEXT INDEX [name\ [IF
NOT EXISTS\] FOR (n:Label["|" … "|"
LabelN\]) ON EACH "[" n.property[, …,
n.propertyN\] "\]" [OPTIONS {optionKey:
optionValue[, …\]}\]]

Schema Create a fulltext index on nodes.

CREATE FULLTEXT INDEX [name\ [IF
NOT EXISTS\] FOR ()-"["r:TYPE["|" … "|"
TYPE_N\]"\]"-() ON EACH "["
r.property[, …, r.propertyN\] "\]"
[OPTIONS {optionKey: optionValue[, …
\]}\]]

Schema Create a fulltext index on relationships.

CREATE LOOKUP INDEX [name\ [IF
NOT EXISTS\] FOR (n) ON EACH
labels(n) [OPTIONS {optionKey:
optionValue[, …\]}\]]

Schema Create an index on all nodes with any
label.

CREATE LOOKUP INDEX [name\ [IF
NOT EXISTS\] FOR ()-"["r"\]"-() ON
[EACH\] type(r) [OPTIONS {optionKey:
optionValue[, …\]}\]]

Schema Create an index on all relationships with
any relationship type.

CREATE POINT INDEX [name\ [IF NOT
EXISTS\] FOR (n:Label) ON (n.property)
[OPTIONS {optionKey: optionValue[, …
\]}\]]

Schema Create a point index on nodes.

CREATE POINT INDEX [name\ [IF NOT
EXISTS\] FOR ()-"["r:TYPE"\]"-() ON
(r.property) [OPTIONS {optionKey:
optionValue[, …\]}\]]

Schema Create a point index on relationships.

CREATE [RANGE\ INDEX [name\] [IF
NOT EXISTS\] FOR (n:Label) ON
(n.property[, …, n.propertyN\])
[OPTIONS {optionKey: optionValue[, …
\]}\]]

Schema Create a range index on nodes.

CREATE [RANGE\ INDEX [name\] [IF
NOT EXISTS\] FOR ()-"["r:TYPE"\]"-()
ON (r.property[, …, r.propertyN\])
[OPTIONS {optionKey: optionValue[, …
\]}\]]

Schema Create a range index on relationships.

CREATE TEXT INDEX [name\ [IF NOT
EXISTS\] FOR (n:Label) ON (n.property)
[OPTIONS {optionKey: optionValue[, …
\]}\]]

Schema Create a text index on nodes.

932

Clause Category Description

CREATE TEXT INDEX [name\ [IF NOT
EXISTS\] FOR ()-"["r:TYPE"\]"-() ON
(r.property) [OPTIONS {optionKey:
optionValue[, …\]}\]]

Schema Create a text index on relationships.

DELETE Writing Delete nodes, relationships or paths.
Any node to be deleted must also have
all associated relationships explicitly
deleted.

DETACH DELETE Writing Delete a node or set of nodes. All
associated relationships will
automatically be deleted.

DROP CONSTRAINT name [IF EXISTS\] Schema Drop a constraint using the name.

DROP INDEX name [IF EXISTS\] Schema Drop an index using the name.

FOREACH Writing Update data within a list, whether
components of a path, or the result of
aggregation.

LIMIT Reading sub-clause A sub-clause used to constrain the
number of rows in the output.

LOAD CSV Importing data Use when importing data from CSV
files.

MATCH Reading Specify the patterns to search for in the
database.

MERGE Reading/Writing Ensures that a pattern exists in the
graph. Either the pattern already exists,
or it needs to be created.

ON CREATE Reading/Writing Used in conjunction with MERGE,
specifying the actions to take if the
pattern needs to be created.

ON MATCH Reading/Writing Used in conjunction with MERGE,
specifying the actions to take if the
pattern already exists.

OPTIONAL MATCH Reading Specify the patterns to search for in the
database while using nulls for missing
parts of the pattern.

ORDER BY [ASC[ENDING\ |
DESC[ENDING\]\]]

Reading sub-clause A sub-clause following RETURN or WITH,
specifying that the output should be
sorted in either ascending (the default)
or descending order.

REMOVE Writing Remove properties and labels from
nodes and relationships.

RETURN … [AS\] Projecting Defines what to include in the query
result set.

933

Clause Category Description

SET Writing Update labels on nodes and properties
on nodes and relationships.

SHOW [ALL|UNIQUE[NESS\|NODE
[PROPERTY\]
EXIST[ENCE\]|REL[ATIONSHIP\]
[PROPERTY\]
EXIST[ENCE\]|[PROPERTY\]
EXIST[ENCE\]|NODE KEY\]
CONSTRAINT[S\]]

Schema List constraints in the database, either
all or filtered on type. Also allows WHERE
and YIELD clauses.

SHOW
[ALL|FULLTEXT|LOOKUP|POINT|RANG
E|TEXT\ INDEX[ES\]]

Schema List indexes in the database, either all or
filtered on fulltext, lookup, point, range,
or text indexes. Also allows WHERE and
YIELD clauses.

SHOW [ALL|BUILT IN|USER DEFINED\
FUNCTION[S\] [EXECUTABLE [BY
{CURRENT USER|username}\]\]]

DBMS List functions, either all or filtered.
Available filters are executable by a user
or function type (built-in or user-
defined). Also allows WHERE and YIELD
clauses.

SHOW PROCEDURE[S\ [EXECUTABLE
[BY {CURRENT USER|username}\]\]]

DBMS List procedures, either all or filtered on
executable by a user. Also allows WHERE
and YIELD clauses.

SHOW TRANSACTION[S\ [transaction-
id[, …\]\]]

DBMS List transactions, either all or filtered on
ID. Also allows WHERE and YIELD clauses.

SKIP Reading/Writing A sub-clause defining from which row
to start including the rows in the output.

TERMINATE TRANSACTION[S\
transaction-id[, …\]]

DBMS Terminate transactions with the given
IDs.

UNION Set operations Combines the result of multiple queries.
Duplicates are removed.

UNION ALL Set operations Combines the result of multiple queries.
Duplicates are retained.

UNWIND … [AS\] Projecting Expands a list into a sequence of rows.

USE Multiple graphs Determines which graph a query, or
query part, is executed against.

USING INDEX variable:Label(property) Hint Index hints are used to specify which
index, if any, the planner should use as a
starting point.

USING INDEX SEEK
variable:Label(property)

Hint Index seek hint instructs the planner to
use an index seek for this clause.

USING JOIN ON variable Hint Join hints are used to enforce a join
operation at specified points.

934

Clause Category Description

USING SCAN variable:Label Hint Scan hints are used to force the planner
to do a label scan (followed by a filtering
operation) instead of using an index.

WITH … [AS\] Projecting Allows query parts to be chained
together, piping the results from one to
be used as starting points or criteria in
the next.

WHERE Reading sub-clause A sub-clause used to add constraints to
the patterns in a MATCH or OPTIONAL
MATCH clause, or to filter the results of a
WITH clause.

Operators
Operator Category Description

% Mathematical Modulo division.

* Mathematical Multiplication.

* Temporal Multiplying a duration with a number.

+ Mathematical Addition.

+ String Concatenation.

<<query-operators-property, +⇒> Property Property mutation.

+ List Concatenation

+ Temporal Adding two durations, or a duration and
a temporal instant.

<<query-operators-mathematical, →> Mathematical Subtraction or unary minus.

<<query-operators-temporal, →> Temporal Subtracting a duration from a temporal
instant or from another duration.

. Map Static value access by key.

. Property Static property access.

/ Mathematical Division.

/ Temporal Dividing a duration by a number.

< Comparison Less than.

<<query-operators-comparison, <⇒> Comparison Less than or equal to.

<> Comparison Inequality.

<<query-operators-comparison, ⇒> Comparison Equality.

<<query-operators-property, ⇒> Property Property replacement.

=~ String Regular expression match.

935

Operator Category Description

> Comparison Greater than.

<<query-operators-comparison, >⇒> Comparison Greater than or equal to.

AND Boolean Conjunction.

CONTAINS String comparison Case-sensitive inclusion search.

DISTINCT Aggregation Duplicate removal.

ENDS WITH String comparison Case-sensitive suffix search.

IN List List element existence check.

IS NOT NULL Comparison Non-null check.

IS NULL Comparison null check.

NOT Boolean Negation.

OR Boolean Disjunction.

STARTS WITH String comparison Case-sensitive prefix search.

XOR Boolean Exclusive disjunction.

[\] Map Subscript (dynamic value access by
key).

[\] Property Subscript (dynamic property access).

[\] List Subscript (accessing element(s) in a list).

^ Mathematical Exponentiation.

Functions
Function Category Description

abs() Numeric Returns the absolute value of a number.

acos() Trigonometric Returns the arccosine of a number in
radians.

all() Predicate Tests whether the predicate holds for all
elements in a list.

any() Predicate Tests whether the predicate holds for at
least one element in a list.

asin() Trigonometric Returns the arcsine of a number in
radians.

atan() Trigonometric Returns the arctangent of a number in
radians.

atan2() Trigonometric Returns the arctangent2 of a set of
coordinates in radians.

avg() Aggregating Returns the average of a set of values.

936

Function Category Description

ceil() Numeric Returns the smallest floating point
number that is greater than or equal to a
number and equal to a mathematical
integer.

coalesce() Scalar Returns the first non-null value in a list
of expressions.

collect() Aggregating Returns a list containing the values
returned by an expression.

cos() Trigonometric Returns the cosine of a number.

cot() Trigonometric Returns the cotangent of a number.

count() Aggregating Returns the number of values or rows.

date() Temporal Returns the current Date.

date({year [, month, day\})] Temporal Returns a calendar (Year-Month-Day)
Date.

date({year [, week, dayOfWeek\})] Temporal Returns a week (Year-Week-Day) Date.

date({year [, quarter, dayOfQuarter\})] Temporal Returns a quarter (Year-Quarter-Day)
Date.

date({year [, ordinalDay\})] Temporal Returns an ordinal (Year-Day) Date.

date(string) Temporal Returns a Date by parsing a string.

date({map}) Temporal Returns a Date from a map of another
temporal value’s components.

date.realtime() Temporal Returns the current Date using the
realtime clock.

date.statement() Temporal Returns the current Date using the
statement clock.

date.transaction() Temporal Returns the current Date using the
transaction clock.

date.truncate() Temporal Returns a Date obtained by truncating a
value at a specific component boundary.
Truncation summary.

datetime() Temporal Returns the current DateTime.

datetime({year [, month, day, …\})] Temporal Returns a calendar (Year-Month-Day)
DateTime.

datetime({year [, week, dayOfWeek, …
\})]

Temporal Returns a week (Year-Week-Day)
DateTime.

datetime({year [, quarter, dayOfQuarter,
…\})]

Temporal Returns a quarter (Year-Quarter-Day)
DateTime.

datetime({year [, ordinalDay, …\})] Temporal Returns an ordinal (Year-Day)
DateTime.

937

Function Category Description

datetime(string) Temporal Returns a DateTime by parsing a string.

datetime({map}) Temporal Returns a DateTime from a map of
another temporal value’s components.

datetime({epochSeconds}) Temporal Returns a DateTime from a timestamp.

datetime.realtime() Temporal Returns the current DateTime using the
realtime clock.

datetime.statement() Temporal Returns the current DateTime using the
statement clock.

datetime.transaction() Temporal Returns the current DateTime using the
transaction clock.

datetime.truncate() Temporal Returns a DateTime obtained by
truncating a value at a specific
component boundary. Truncation
summary.

degrees() Trigonometric Converts radians to degrees.

duration({map}) Temporal Returns a Duration from a map of its
components.

duration(string) Temporal Returns a Duration by parsing a string.

duration.between() Temporal Returns a Duration equal to the
difference between two given instants.

duration.inDays() Temporal Returns a Duration equal to the
difference in whole days or weeks
between two given instants.

duration.inMonths() Temporal Returns a Duration equal to the
difference in whole months, quarters or
years between two given instants.

duration.inSeconds() Temporal Returns a Duration equal to the
difference in seconds and fractions of
seconds, or minutes or hours, between
two given instants.

e() Logarithmic Returns the base of the natural
logarithm, e.

endNode() Scalar Returns the end node of a relationship.

exists() Predicate Returns true if a match for the pattern
exists in the graph.

exp() Logarithmic Returns e^n, where e is the base of the
natural logarithm, and n is the value of
the argument expression.

938

Function Category Description

floor() Numeric Returns the largest floating point
number that is less than or equal to a
number and equal to a mathematical
integer.

haversin() Trigonometric Returns half the versine of a number.

head() Scalar Returns the first element in a list.

id() Scalar Returns the id of a relationship or node.

isEmpty() Predicate Returns true if the given list or map
contains no elements or if the given
string contains no characters.

isNaN() Numeric Returns true if the given numeric value
is NaN (Not a Number).

keys() List Returns a list containing the string
representations for all the property
names of a node, relationship, or map.

labels() List Returns a list containing the string
representations for all the labels of a
node.

last() Scalar Returns the last element in a list.

left() String Returns a string containing the specified
number of leftmost characters of the
original string.

length() Scalar Returns the length of a path.

localdatetime() Temporal Returns the current LocalDateTime.

localdatetime({year [, month, day, …\})] Temporal Returns a calendar (Year-Month-Day)
LocalDateTime.

localdatetime({year [, week,
dayOfWeek, …\})]

Temporal Returns a week (Year-Week-Day)
LocalDateTime.

localdatetime({year [, quarter,
dayOfQuarter, …\})]

Temporal Returns a quarter (Year-Quarter-Day)
DateTime.

localdatetime({year [, ordinalDay, …\})] Temporal Returns an ordinal (Year-Day)
LocalDateTime.

localdatetime(string) Temporal Returns a LocalDateTime by parsing a
string.

localdatetime({map}) Temporal Returns a LocalDateTime from a map of
another temporal value’s components.

localdatetime.realtime() Temporal Returns the current LocalDateTime
using the realtime clock.

localdatetime.statement() Temporal Returns the current LocalDateTime
using the statement clock.

939

Function Category Description

localdatetime.transaction() Temporal Returns the current LocalDateTime
using the transaction clock.

localdatetime.truncate() Temporal Returns a LocalDateTime obtained by
truncating a value at a specific
component boundary. Truncation
summary.

localtime() Temporal Returns the current LocalTime.

localtime({hour [, minute, second, …\})] Temporal Returns a LocalTime with the specified
component values.

localtime(string) Temporal Returns a LocalTime by parsing a string.

localtime({time [, hour, …\})] Temporal Returns a LocalTime from a map of
another temporal value’s components.

localtime.realtime() Temporal Returns the current LocalTime using the
realtime clock.

localtime.statement() Temporal Returns the current LocalTime using the
statement clock.

localtime.transaction() Temporal Returns the current LocalTime using the
transaction clock.

localtime.truncate() Temporal Returns a LocalTime obtained by
truncating a value at a specific
component boundary. Truncation
summary.

log() Logarithmic Returns the natural logarithm of a
number.

log10() Logarithmic Returns the common logarithm (base
10) of a number.

lTrim() String Returns the original string with leading
whitespace removed.

max() Aggregating Returns the maximum value in a set of
values.

min() Aggregating Returns the minimum value in a set of
values.

nodes() List Returns a list containing all the nodes in
a path.

none() Predicate Returns true if the predicate holds for no
element in a list.

percentileCont() Aggregating Returns the percentile of the given value
over a group using linear interpolation.

percentileDisc() Aggregating Returns the nearest value to the given
percentile over a group using a rounding
method.

940

Function Category Description

pi() Trigonometric Returns the mathematical constant pi.

point() - Cartesian 2D Spatial Returns a 2D point object, given two
coordinate values in the Cartesian
coordinate system.

point() - Cartesian 3D Spatial Returns a 3D point object, given three
coordinate values in the Cartesian
coordinate system.

point() - WGS 84 2D Spatial Returns a 2D point object, given two
coordinate values in the WGS 84
coordinate system.

point() - WGS 84 3D Spatial Returns a 3D point object, given three
coordinate values in the WGS 84
coordinate system.

point.distance() Spatial Returns true if the provided point is
within the bounding box defined by the
two provided points.

point.withinBBox() Spatial Returns a floating point number
representing the geodesic distance
between any two points in the same
CRS.

properties() Scalar Returns a map containing all the
properties of a node or relationship.

radians() Trigonometric Converts degrees to radians.

rand() Numeric Returns a random floating point number
in the range from 0 (inclusive) to 1
(exclusive); i.e. [0, 1).

randomUUID() Scalar Returns a string value corresponding to
a randomly-generated UUID.

range() List Returns a list comprising all integer
values within a specified range.

reduce() List Runs an expression against individual
elements of a list, storing the result of
the expression in an accumulator.

relationships() List Returns a list containing all the
relationships in a path.

replace() String Returns a string in which all occurrences
of a specified string in the original string
have been replaced by another
(specified) string.

reverse() List Returns a list in which the order of all
elements in the original list have been
reversed.

941

Function Category Description

reverse() String Returns a string in which the order of all
characters in the original string have
been reversed.

right() String Returns a string containing the specified
number of rightmost characters of the
original string.

round() Numeric Returns the floating point value of the
given number rounded to the nearest
mathematical integer, with half-way
values always rounded up.

round(), with precision Numeric Returns the floating point value of the
given number rounded with the
specified precision, with half-values
always being rounded up.

round(), with precision and rounding
mode

Numeric Returns the floating point value of the
given number rounded with the
specified precision and the specified
rounding mode.

rTrim() String Returns the original string with trailing
whitespace removed.

sign() Numeric Returns the signum of a number: 0 if the
number is 0, -1 for any negative number,
and 1 for any positive number.

sin() Trigonometric Returns the sine of a number.

single() Predicate Returns true if the predicate holds for
exactly one of the elements in a list.

size() Scalar Returns the number of items in a list.

size() applied to pattern comprehension Scalar Returns the number of paths matching
the pattern comprehension.

size() applied to string Scalar Returns the number of Unicode
characters in a string.

split() String Returns a list of strings resulting from
the splitting of the original string around
matches of the given delimiter.

sqrt() Logarithmic Returns the square root of a number.

startNode() Scalar Returns the start node of a relationship.

stDev() Aggregating Returns the standard deviation for the
given value over a group for a sample of
a population.

stDevP() Aggregating Returns the standard deviation for the
given value over a group for an entire
population.

942

Function Category Description

substring() String Returns a substring of the original
string, beginning with a 0-based index
start and length.

sum() Aggregating Returns the sum of a set of numeric
values.

tail() List Returns all but the first element in a list.

tan() Trigonometric Returns the tangent of a number.

time() Temporal Returns the current Time.

time({hour [, minute, …\})] Temporal Returns a Time with the specified
component values.

time(string) Temporal Returns a Time by parsing a string.

time({time [, hour, …, timezone\})] Temporal Returns a Time from a map of another
temporal value’s components.

time.realtime() Temporal Returns the current Time using the
realtime clock.

time.statement() Temporal Returns the current Time using the
statement clock.

time.transaction() Temporal Returns the current Time using the
transaction clock.

time.truncate() Temporal Returns a Time obtained by truncating a
value at a specific component boundary.
Truncation summary.

timestamp() Scalar Returns the difference, measured in
milliseconds, between the current time
and midnight, January 1, 1970 UTC.

toBoolean() Scalar Converts a string value to a boolean
value.

toFloat() Scalar Converts an integer or string value to a
floating point number.

toInteger() Scalar Converts a floating point or string value
to an integer value.

toLower() String Returns the original string in lowercase.

toString() String Converts an integer, float, boolean or
temporal (i.e. Date, Time, LocalTime,
DateTime, LocalDateTime or Duration)
value to a string.

toUpper() String Returns the original string in uppercase.

trim() String Returns the original string with leading
and trailing whitespace removed.

943

Function Category Description

type() Scalar Returns the string representation of the
relationship type.

Expressions
Name Description

CASE Expression A generic conditional expression, similar to if/else statements
available in other languages.

EXISTS {…} An EXISTS expression is used to evaluate the existence of a
subquery.

COUNT {…} An expression used to compute the number of results of a
subquery.

Cypher query options
Name Type Description //// Removed in 5.0

CYPHER $version query Version This will force 'query' to use Neo4j
Cypher $version. ////

CYPHER runtime=interpreted query Runtime This will force the query planner to use
the interpreted runtime. This is the only
option in Neo4j Community Edition.

CYPHER runtime=slotted query Runtime This will cause the query planner to use
the slotted runtime. This is only available
in Neo4j Enterprise Edition.

CYPHER runtime=pipelined query Runtime This will cause the query planner to use
the pipelined runtime if it supports
'query'. This is only available in Neo4j
Enterprise Edition.

Administrative commands
The following commands are only executable against the system database:

Command Admin category Description

ALTER ALIAS … [IF EXISTS\ SET
DATABASE …]

Database alias Modifies a database alias.

ALTER CURRENT USER SET
PASSWORD FROM … TO

User and role Change the password of the user that is
currently logged in.

944

Command Admin category Description

ALTER DATABASE … [IF EXISTS\ [SET
ACCESS {READ ONLY | READ
WRITE}\] [SET TOPOLOGY n
PRIMAR{Y|IES} [m
SECONDAR{Y|IES}\]\]]

Database Modifies the database access mode and
/ or topology.

ALTER SERVER … [SET OPTIONS\ {…}] Server management Modifies the options for a server.

ALTER USER … [IF EXISTS\ [SET
[PLAINTEXT | ENCRYPTED\]
PASSWORD {password [CHANGE
[NOT\] REQUIRED\] | CHANGE [NOT\]
REQUIRED}\] [SET STATUS {ACTIVE |
SUSPENDED}\] [SET HOME
DATABASE name\] [REMOVE HOME
DATABASE\]]

User and role Changes a user account. Changes can
include setting a new password, setting
the account status, setting or removing
home database and enabling that the
user should change the password upon
next login.

CREATE [OR REPLACE\ ALIAS … [IF
NOT EXISTS\] FOR DATABASE …]

Database alias Creates a new database alias.

CREATE [OR REPLACE\ COMPOSITE
DATABASE … [IF NOT EXISTS\]
[OPTIONS {}\] [WAIT [n
[SEC[OND[S\]\]\]\]|NOWAIT\]]

Database Creates a new composite database.

CREATE [OR REPLACE\ DATABASE …
[IF NOT EXISTS\] [TOPOLOGY n
PRIMAR{Y|IES} [m
SECONDAR{Y|IES}\]\] [OPTIONS
{optionKey: optionValue[, …\]}\] [WAIT
[n [SEC[OND[S\]\]\]\]|NOWAIT\]]

Database Creates a new database.

CREATE [OR REPLACE\ ROLE … [IF
NOT EXISTS\] [AS COPY OF\]]

User and role Creates new roles.

CREATE [OR REPLACE\ USER … [IF
NOT EXISTS\] SET [PLAINTEXT |
ENCRYPTED\] PASSWORD … [[SET
PASSWORD\] CHANGE [NOT\]
REQUIRED\] [SET STATUS {ACTIVE |
SUSPENDED}\] [SET HOME
DATABASE name\]]

User and role Creates a new user and sets the
password for the new account.
Optionally the account status and home
database can also be set and if the user
should change the password upon first
login.

DEALLOCATE DATABASE(S) FROM
SERVER(S) …

Server management Removes databases from the specified
servers.

DENY [IMMUTABLE\ … ON DATABASE
… TO]

Privilege Denies a database or schema privilege
to one or multiple roles.

DENY [IMMUTABLE\ … ON DBMS TO] Privilege Denies a DBMS privilege to one or
multiple roles.

DENY [IMMUTABLE\ … ON GRAPH …
[NODES | RELATIONSHIPS |
ELEMENTS\] … TO]

Privilege Denies a graph privilege for one or
multiple specified elements to one or
multiple roles.

945

Command Admin category Description

DROP ALIAS … [IF EXISTS\ FOR
DATABASE]

Database alias Deletes a specified database alias.

DROP COMPOSITE DATABASE … [IF
EXISTS\ [DUMP DATA | DESTROY
DATA\] [WAIT [n
[SEC[OND[S\]\]\]\]|NOWAIT\]]

Database Deletes a specified composite database.

DROP DATABASE … [IF EXISTS\
[DUMP DATA | DESTROY DATA\]]

Database Deletes a specified database (either
standard or composite).

DROP ROLE … [IF EXISTS\] User and role Deletes a specified role.

DROP SERVER … Server management Removes a specified server.

DROP USER … [IF EXISTS\] User and role Deletes a specified user.

ENABLE SERVER [OPTIONS\] Server management Enables a specified server.

GRANT [IMMUTABLE\ … ON
DATABASE … TO]

Privilege Assigns a database or schema privilege
to one or multiple roles.

GRANT [IMMUTABLE\ … ON DBMS TO] Privilege Assigns a DBMS privilege to one or
multiple roles.

GRANT [IMMUTABLE\ … ON GRAPH …
[NODES | RELATIONSHIPS |
ELEMENTS\] … TO]

Privilege Assigns a graph privilege for one or
multiple specified elements to one or
multiple roles.

GRANT [IMMUTABLE\ ROLE[S\] … TO] User and role Assigns one or multiple roles to one or
multiple users.

REALLOCATE DATABASE(S) Server management Re-balance databases among all
servers.

RENAME ROLE … [IF EXISTS\ TO …] User and role Changes the name of a role.

RENAME USER … [IF EXISTS\ TO …] User and role Changes the name of a user.

REVOKE [IMMUTABLE\ [GRANT |
DENY\] … ON DATABASE … FROM]

Privilege Removes a database or schema
privilege from one or multiple roles.

REVOKE [IMMUTABLE\ [GRANT |
DENY\] … ON DBMS FROM]

Privilege Removes a DBMS privilege from one or
multiple roles.

REVOKE [IMMUTABLE\ [GRANT |
DENY\] … ON GRAPH … [NODES |
RELATIONSHIPS | ELEMENTS\] …
FROM]

Privilege Removes a graph privilege for one or
multiple specified elements from one or
multiple roles.

REVOKE ROLE[S\ … FROM] User and role Removes one or multiple roles from one
or multiple users.

SHOW ALIASES FOR DATABASE Database alias Returns information about all aliases,
optionally including driver settings.

SHOW [ALL | POPULATED\ ROLES
[WITH USERS\]]

User and role Returns information about all or
populated roles, optionally including the
assigned users.

946

Command Admin category Description

SHOW DATABASE Database Returns information about a specified
database.

SHOW DATABASES Database Returns information about all databases.

SHOW SERVERS Server management Returns information about all servers.

SHOW DEFAULT DATABASE Database Returns information about the default
database.

SHOW HOME DATABASE Database Returns information about the current
users home database.

SHOW [ROLE … | USER … | ALL \
PRIVILEGES [AS [REVOKE\]
COMMAND[S\]\]]

Privilege Returns information about role, user or
all privileges.

SHOW USERS User and role Returns information about all users.

START DATABASE Database Starts up a specified database.

STOP DATABASE Database Stops a specified database.

Privilege Actions
Name Category Description

ACCESS Database Determines whether a user can access a
specific database.

ALL DATABASE PRIVILEGES Database and schema Determines whether a user is allowed to
access, create, drop, and list indexes
and constraints, create new labels,
types and property names on a specific
database.

ALL DBMS PRIVILEGES DBMS Determines whether a user is allowed to
perform role, user, database and
privilege management.

ALL GRAPH PRIVILEGES GRAPH Determines whether a user is allowed to
perform reads and writes.

ALTER ALIAS DBMS Determines whether the user can
modify aliases.

ALTER DATABASE DBMS Determines whether the user can
modify databases and aliases.

ALTER USER DBMS Determines whether the user can
modify users.

ASSIGN PRIVILEGE DBMS Determines whether the user can assign
privileges using the GRANT and DENY
commands.

ASSIGN ROLE DBMS Determines whether the user can grant
roles.

947

Name Category Description

COMPOSITE DATABASE
MANAGEMENT

DBMS Determines whether the user can create
and delete composite databases.

CONSTRAINT MANAGEMENT Schema Determines whether a user is allowed to
create, drop, and list constraints on a
specific database.

CREATE GRAPH Determines whether the user can create
a new element (node, relationship or
both).

CREATE ALIAS DBMS Determines whether the user can create
new aliases.

CREATE COMPOSITE DATABASE DBMS Determines whether the user can create
new composite databases.

CREATE CONSTRAINT Schema Determines whether a user is allowed to
create constraints on a specific
database.

CREATE DATABASE DBMS Determines whether the user can create
new databases and aliases.

CREATE INDEX Schema Determines whether a user is allowed to
create indexes on a specific database.

CREATE NEW NODE LABEL Schema Determines whether a user is allowed to
create new node labels on a specific
database.

CREATE NEW PROPERTY NAME Schema Determines whether a user is allowed to
create new property names on a specific
database.

CREATE NEW RELATIONSHIP TYPE Schema Determines whether a user is allowed to
create new relationship types on a
specific database.

CREATE ROLE DBMS Determines whether the user can create
new roles.

CREATE USER DBMS Determines whether the user can create
new users.

ALIAS MANAGEMENT DBMS Determines whether the user can
create, delete, modify and list aliases.

DATABASE MANAGEMENT DBMS Determines whether the user can
create, delete, and modify databases
and aliases.

DELETE GRAPH Determines whether the user can delete
an element (node, relationship or both).

DROP ALIAS DBMS Determines whether the user can delete
aliases.

948

Name Category Description

DROP COMPOSITE DATABASE DBMS Determines whether the user can delete
composite databases.

DROP CONSTRAINT Schema Determines whether a user is allowed to
drop constraints on a specific database.

DROP DATABASE DBMS Determines whether the user can delete
databases and aliases.

DROP INDEX Schema Determines whether a user is allowed to
drop indexes on a specific database.

DROP ROLE DBMS Determines whether the user can delete
roles.

DROP USER DBMS Determines whether the user can delete
users.

EXECUTE ADMIN PROCEDURE DBMS Determines whether the user can
execute admin procedures.

EXECUTE BOOSTED FUNCTION DBMS Determines whether the user gets
elevated privileges when executing
functions.

EXECUTE BOOSTED PROCEDURE DBMS Determines whether the user gets
elevated privileges when executing
procedures.

EXECUTE FUNCTION DBMS Determines whether the user can
execute functions.

EXECUTE PROCEDURE DBMS Determines whether the user can
execute procedures.

IMPERSONATE DBMS Determines whether a user can
impersonate another one and assume
their privileges.

INDEX MANAGEMENT Schema Determines whether a user is allowed to
create, drop, and list indexes on a
specific database.

MATCH GRAPH Determines whether the properties of
an element (node, relationship or both)
can be read and the element can be
found and traversed while executing
queries on the specified graph.

MERGE GRAPH Determines whether the user can find,
read, create and set properties on an
element (node, relationship or both).

NAME MANAGEMENT Schema Determines whether a user is allowed to
create new labels, types and property
names on a specific database.

PRIVILEGE MANAGEMENT DBMS Determines whether the user can show,
assign and remove privileges.

949

Name Category Description

READ GRAPH Determines whether the properties of
an element (node, relationship or both)
can be read while executing queries on
the specified graph.

REMOVE LABEL GRAPH Determines whether the user can
remove a label from a node using the
REMOVE clause.

REMOVE PRIVILEGE DBMS Determines whether the user can
remove privileges using the REVOKE
command.

REMOVE ROLE DBMS Determines whether the user can revoke
roles.

RENAME ROLE DBMS Determines whether the user can
rename roles.

RENAME USER DBMS Determines whether the user can
rename users.

ROLE MANAGEMENT DBMS Determines whether the user can
create, drop, grant, revoke and show
roles.

SERVER MANAGEMENT DBMS Determines whether the user can
enable, alter, rename, reallocate,
deallocate, drop, and show servers.

SET DATABASE ACCESS DBMS Determines whether the user can
modify the database access mode.

SET LABEL GRAPH Determines whether the user can set a
label to a node using the SET clause.

SET PASSWORDS DBMS Determines whether the user can
modify users' passwords and whether
those passwords must be changed
upon first login.

SET PROPERTY GRAPH Determines whether the user can set a
property to an element (node,
relationship or both) using the SET
clause.

SET USER HOME DATABASE DBMS Determines whether the user can
modify the home database of users.

SET USER STATUS DBMS Determines whether the user can
modify the account status of users.

SHOW ALIAS DBMS Determines whether the user is allowed
to list aliases.

SHOW CONSTRAINT Schema Determines whether the user is allowed
to list constraints.

950

Name Category Description

SHOW INDEX Schema Determines whether the user is allowed
to list indexes.

SHOW PRIVILEGE DBMS Determines whether the user can get
information about privileges assigned to
users and roles.

SHOW ROLE DBMS Determines whether the user can get
information about existing and assigned
roles.

SHOW SERVERS DBMS Determines whether the user can get
information about servers.

SHOW TRANSACTION Database Determines whether a user is allowed to
list transactions and queries.

SHOW USER DBMS Determines whether the user can get
information about existing users.

START Database Determines whether a user can start up
a specific database.

STOP Database Determines whether a user can stop a
specific running database.

TERMINATE TRANSACTION Database Determines whether a user is allowed to
end running transactions and queries.

TRANSACTION MANAGEMENT Database Determines whether a user is allowed to
list and end running transactions and
queries.

TRAVERSE GRAPH Determines whether an element (node,
relationship or both) can be found and
traversed while executing queries on the
specified graph.

USER MANAGEMENT DBMS Determines whether the user can
create, drop, modify and show users.

WRITE GRAPH Determines whether the user can
execute write operations on the
specified graph.

951

Appendix A: Cypher styleguide
The recommended style when writing Cypher queries.

This appendix contains the following:

• General recommendations

• Indentations and line breaks

• Casing

• Spacing

• Patterns

• Meta characters

The purpose of the styleguide is to make the code as easy to read as possible, and thereby contributing to
lower cost of maintenance.

For rules and recommendations for naming of labels, relationship types and properties, please see the
Naming rules and recommendations.

General recommendations
• When using Cypher language constructs in prose, use a monospaced font and follow the styling rules.

• When referring to labels and relationship types, the colon should be included as follows: :Label,
:REL_TYPE.

• When referring to functions, use lower camel case and parentheses should be used as follows:
shortestPath(). Arguments should normally not be included.

• If you are storing Cypher statements in a separate file, use the file extension .cypher.

Indentation and line breaks
• Start a new clause on a new line.

Bad

MATCH (n) WHERE n.name CONTAINS 's' RETURN n.name

Good

MATCH (n)
WHERE n.name CONTAINS 's'
RETURN n.name

• Indent ON CREATE and ON MATCH with two spaces. Put ON CREATE before ON MATCH if both are present.

952

Bad

MERGE (n) ON CREATE SET n.prop = 0
MERGE (a:A)-[:T]-(b:B)
ON MATCH SET b.name = 'you'
ON CREATE SET a.name = 'me'
RETURN a.prop

Good

MERGE (n)
 ON CREATE SET n.prop = 0
MERGE (a:A)-[:T]-(b:B)
 ON CREATE SET a.name = 'me'
 ON MATCH SET b.name = 'you'
RETURN a.prop

• Start a subquery on a new line after the opening brace, indented with two (additional) spaces. Leave
the closing brace on its own line.

Bad

MATCH (a:A)
WHERE
 EXISTS { MATCH (a)-->(b:B) WHERE b.prop = $param }
RETURN a.foo

Also bad

MATCH (a:A)
WHERE EXISTS
{MATCH (a)-->(b:B)
WHERE b.prop = $param}
RETURN a.foo

Good

MATCH (a:A)
WHERE EXISTS {
 MATCH (a)-->(b:B)
 WHERE b.prop = $param
}
RETURN a.foo

• Do not break the line if the simplified subquery form is used.

Bad

MATCH (a:A)
WHERE EXISTS {
 (a)-->(b:B)
}
RETURN a.prop

Good

MATCH (a:A)
WHERE EXISTS { (a)-->(b:B) }
RETURN a.prop

953

Casing
• Write keywords in upper case.

Bad

match (p:Person)
where p.name starts with 'Ma'
return p.name

Good

MATCH (p:Person)
WHERE p.name STARTS WITH 'Ma'
RETURN p.name

• Write the value null in lower case.

Bad

WITH NULL AS n1, Null AS n2
RETURN n1 IS NULL AND n2 IS NOT NULL

Good

WITH null AS n1, null AS n2
RETURN n1 IS NULL AND n2 IS NOT NULL

• Write boolean literals (true and false) in lower case.

Bad

WITH TRUE AS b1, False AS b2
RETURN b1 AND b2

Good

WITH true AS b1, false AS b2
RETURN b1 AND b2

• Use camel case, starting with a lower-case character, for:

◦ functions

◦ properties

◦ variables

◦ parameters

Bad

CREATE (N {Prop: 0})
WITH RAND() AS Rand, $pArAm AS MAP
RETURN Rand, MAP.property_key, Count(N)

954

Good

CREATE (n {prop: 0})
WITH rand() AS rand, $param AS map
RETURN rand, map.propertyKey, count(n)

Spacing
• For literal maps:

◦ No space between the opening brace and the first key

◦ No space between key and colon

◦ One space between colon and value

◦ No space between value and comma

◦ One space between comma and next key

◦ No space between the last value and the closing brace

Bad

WITH { key1 :'value' ,key2 : 42 } AS map
RETURN map

Good

WITH {key1: 'value', key2: 42} AS map
RETURN map

• One space between label/type predicates and property predicates in patterns.

Bad

MATCH (p:Person{property: -1})-[:KNOWS {since: 2016}]->()
RETURN p.name

Good

MATCH (p:Person {property: -1})-[:KNOWS {since: 2016}]->()
RETURN p.name

• No space in patterns.

Bad

MATCH (:Person) --> (:Vehicle)
RETURN count(*)

Good

MATCH (:Person)-->(:Vehicle)
RETURN count(*)

955

• Use a wrapping space around operators.

Bad

MATCH p=(s)-->(e)
WHERE s.name<>e.name
RETURN length(p)

Good

MATCH p = (s)-->(e)
WHERE s.name <> e.name
RETURN length(p)

• No space in label predicates.

Bad

MATCH (person : Person : Owner)
RETURN person.name

Good

MATCH (person:Person:Owner)
RETURN person.name

• Use a space after each comma in lists and enumerations.

Bad

MATCH (),()
WITH ['a','b',3.14] AS list
RETURN list,2,3,4

Good

MATCH (), ()
WITH ['a', 'b', 3.14] AS list
RETURN list, 2, 3, 4

• No padding space within function call parentheses.

Bad

RETURN split('original', 'i')

Good

RETURN split('original', 'i')

• Use padding space within simple subquery expressions.

956

Bad

MATCH (a:A)
WHERE EXISTS {(a)-->(b:B)}
RETURN a.prop

Good

MATCH (a:A)
WHERE EXISTS { (a)-->(b:B) }
RETURN a.prop

Patterns
• When patterns wrap lines, break after arrows, not before.

Bad

MATCH (:Person)-->(vehicle:Car)-->(:Company)
 <--(:Country)
RETURN count(vehicle)

Good

MATCH (:Person)-->(vehicle:Car)-->(:Company)<--
 (:Country)
RETURN count(vehicle)

• Use anonymous nodes and relationships when the variable would not be used.

Bad

CREATE (a:End {prop: 42}),
 (b:End {prop: 3}),
 (c:Begin {prop: elementId(a)})

Good

CREATE (a:End {prop: 42}),
 (:End {prop: 3}),
 (:Begin {prop: elementId(a)})

• Chain patterns together to avoid repeating variables.

Bad

MATCH (:Person)-->(vehicle:Car), (vehicle:Car)-->(:Company)
RETURN count(vehicle)

Good

MATCH (:Person)-->(vehicle:Car)-->(:Company)
RETURN count(vehicle)

• Put named nodes before anonymous nodes.

957

Bad

MATCH ()-->(vehicle:Car)-->(manufacturer:Company)
WHERE manufacturer.foundedYear < 2000
RETURN vehicle.mileage

Good

MATCH (manufacturer:Company)<--(vehicle:Car)<--()
WHERE manufacturer.foundedYear < 2000
RETURN vehicle.mileage

• Keep anchor nodes at the beginning of the MATCH clause.

Bad

MATCH (:Person)-->(vehicle:Car)-->(manufacturer:Company)
WHERE manufacturer.foundedYear < 2000
RETURN vehicle.mileage

Good

MATCH (manufacturer:Company)<--(vehicle:Car)<--(:Person)
WHERE manufacturer.foundedYear < 2000
RETURN vehicle.mileage

• Prefer outgoing (left to right) pattern relationships to incoming pattern relationships.

Bad

MATCH (:Country)-->(:Company)<--(vehicle:Car)<--(:Person)
RETURN vehicle.mileage

Good

MATCH (:Person)-->(vehicle:Car)-->(:Company)<--(:Country)
RETURN vehicle.mileage

Meta-characters
• Use single quotes, ', for literal string values.

Bad

RETURN "Cypher"

Good

RETURN 'Cypher'

◦ Disregard this rule for literal strings that contain a single quote character. If the string has both, use
the form that creates the fewest escapes. In the case of a tie, prefer single quotes.

958

Bad

RETURN 'Cypher\'s a nice language', "Mats' quote: \"statement\""

Good

RETURN "Cypher's a nice language", 'Mats\' quote: "statement"'

• Avoid having to use back-ticks to escape characters and keywords.

Bad

MATCH (`odd-ch@racter$`:`Spaced Label` {`&property`: 42})
RETURN labels(`odd-ch@racter$`)

Good

MATCH (node:NonSpacedLabel {property: 42})
RETURN labels(node)

• Do not use a semicolon at the end of the statement.

Bad

RETURN 1;

Good

RETURN 1

959

License
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

You are free to

Share

copy and redistribute the material in any medium or format

Adapt

remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial

You may not use the material for commercial purposes.

ShareAlike

If you remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

Notices

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for further details. The full license text is available
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

960

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

	The Neo4j Cypher Manual v5
	Table of Contents
	Documentation updates for Neo4j 5
	Introduction
	What is Cypher?
	Neo4j databases and graphs
	Querying, updating and administering
	Transactions
	Cypher path matching
	Clause composition

	Syntax
	Values and types
	Naming rules and recommendations
	Expressions
	Variables
	Reserved keywords
	Parameters
	Operators
	Comments
	Patterns
	Temporal (Date/Time) values
	Spatial values
	Lists
	Maps
	Working with null

	Clauses
	Administration clauses
	Importing data
	Listing functions and procedures
	Multiple graphs
	Projecting clauses
	Reading clauses
	Reading hints
	Reading sub-clauses
	Reading/Writing clauses
	Set operations
	Subquery clauses
	Transaction Commands
	Writing clauses
	MATCH
	OPTIONAL MATCH
	RETURN
	WITH
	UNWIND
	WHERE
	ORDER BY
	SKIP
	LIMIT
	CREATE
	DELETE
	SET
	REMOVE
	FOREACH
	MERGE
	CALL {} (subquery)
	CALL procedure
	UNION
	USE
	LOAD CSV
	SHOW FUNCTIONS
	SHOW PROCEDURES

	Functions
	Predicate functions
	Scalar functions
	Aggregating functions
	List functions
	Mathematical functions - numeric
	Mathematical functions - logarithmic
	Mathematical functions - trigonometric
	String functions
	Temporal functions - instant types
	Temporal functions - duration
	Spatial functions
	LOAD CSV functions
	Graph functions
	User-defined functions

	Indexes for search performance
	Indexes (types and limitations)
	Syntax
	Composite index limitations
	CREATE INDEX
	SHOW INDEXES
	SHOW INDEXES
	DROP INDEX
	DROP INDEX

	Full-text search index
	Full-text search procedures
	Create and configure full-text indexes
	Query full-text indexes
	Handling of Text Array properties
	Drop full-text indexes

	Constraints
	Types of constraint
	Implications on indexes
	Syntax
	Examples

	Database management
	Listing databases
	Creating databases Enterprise edition
	Altering databases Enterprise edition
	Stopping databases Enterprise edition
	Starting databases Enterprise edition
	Deleting databases Enterprise edition
	Wait options Enterprise edition

	Database alias management
	Listing database aliases Enterprise edition
	Creating database aliases Enterprise edition
	Create database aliases in composite databases Enterprise edition
	Altering database aliases
	Deleting database aliases Enterprise edition

	Access control
	Syntax summaries
	Managing users
	Managing roles
	Managing privileges
	Managing servers
	Built-in roles and privileges
	Read privileges
	Write privileges
	Database administration
	DBMS administration
	Limitations
	Immutable privileges

	Query tuning
	Cypher query options
	Profile a query
	The use of indexes
	Basic query tuning example
	Advanced query tuning example
	Planner hints and the USING keyword

	Execution plans
	Database hits
	Execution plan operators
	Execution plan operators in detail
	Shortest path planning

	Deprecations, additions, and compatibility
	Version 5.3
	Version 5.2
	Version 5.1
	Version 5.0
	Version 4.4
	Version 4.3
	Version 4.2
	Version 4.1.3
	Version 4.1
	Version 4.0
	Version 3.5
	Version 3.4
	Version 3.3
	Version 3.2
	Version 3.1
	Version 3.0

	Glossary of keywords
	Clauses
	Operators
	Functions
	Expressions
	Cypher query options
	Administrative commands
	Privilege Actions

	Appendix A: Cypher styleguide
	General recommendations
	Indentation and line breaks
	Casing
	Spacing
	Patterns
	Meta-characters

