
Introduction

Table of Contents
What is Cypher? . 1

The Neo4j Cypher Manual v4.3 . 3

.1. Neo4j databases and graphs . 3

.2. Querying, updating and administering . 5

.3. Transactions . 6

.4. Cypher path matching . 7

1. Syntax . 12

1.1. Values and types . 14

1.2. Naming rules and recommendations . 16

1.3. Expressions . 17

1.4. Variables. 22

1.5. Reserved keywords . 23

1.6. Parameters. 26

1.7. Operators . 30

1.8. Comments . 47

1.9. Patterns . 48

1.10. Temporal (Date/Time) values. 52

1.11. Spatial values . 70

1.12. Lists. 77

1.13. Maps . 82

1.14. Working with null . 84

2. Clauses . 87

2.1. MATCH . 90

2.2. OPTIONAL MATCH. 103

2.3. RETURN. 104

2.4. WITH . 108

2.5. UNWIND . 110

2.6. WHERE . 114

2.7. ORDER BY. 127

2.8. SKIP. 131

2.9. LIMIT . 133

2.10. CREATE . 135

2.11. DELETE . 140

2.12. SET . 142

2.13. REMOVE . 149

2.14. FOREACH . 150

2.15. MERGE. 151

2.16. CALL {} (subquery) . 162

2.17. CALL procedure . 165

2.18. UNION . 170

2.19. USE . 171

2.20. LOAD CSV . 173

2.21. SHOW FUNCTIONS . 180

2.22. SHOW PROCEDURES. 185

3. Functions . 192

3.1. Predicate functions . 202

3.2. Scalar functions . 209

3.3. Aggregating functions . 224

3.4. List functions. 237

3.5. Mathematical functions - numeric . 246

3.6. Mathematical functions - logarithmic. 252

3.7. Mathematical functions - trigonometric . 256

3.8. String functions . 264

3.9. Temporal functions - instant types. 274

3.10. Temporal functions - duration . 333

3.11. Spatial functions . 341

3.12. LOAD CSV functions . 348

3.13. User-defined functions. 349

4. Indexes for search performance . 351

4.1. Indexes (types and limitations) . 351

4.2. Creating indexes. 354

4.3. Create a single-property index for nodes . 354

4.4. Create a single-property index for relationships . 355

4.5. Create a single-property index only if it does not already exist . 355

4.6. Create a single-property index with specified index provider . 355

4.7. Create a single-property index with specified index configuration. 356

4.8. Create a composite index for nodes. 356

4.9. Create a composite index for relationships. 357

4.10. Create a composite index with specified index provider and configuration 357

4.11. Create a node label lookup index . 358

4.12. Create a relationship type lookup index . 358

4.13. Listing indexes . 358

4.14. Listing all indexes . 359

4.15. Listing indexes with filtering . 360

4.16. Deleting indexes . 360

4.17. Drop an index . 361

4.18. Drop a non-existing index . 361

4.19. Deprecated syntax Deprecated . 361

4.20. Drop a single-property index . 361

4.21. Drop a composite index . 362

5. Full-text search index . 363

5.1. Full-text search procedures . 364

5.2. Create and configure full-text indexes . 365

5.3. Query full-text indexes . 368

5.4. Drop full-text indexes . 369

6. Constraints . 370

6.1. Types of constraint . 370

6.2. Implications on indexes. 370

6.3. Syntax. 371

6.4. Examples . 374

7. Database management. 388

7.1. Listing databases . 388

7.2. Creating databases Enterprise edition . 391

7.3. Stopping databases Enterprise edition . 393

7.4. Starting databases Enterprise edition . 393

7.5. Deleting databases Enterprise edition . 394

7.6. Wait options Enterprise edition . 395

8. Access control. 396

8.1. Syntax summaries . 396

8.2. Managing users . 397

8.3. Managing roles . 408

8.4. Managing privileges. 417

8.5. Built-in roles and privileges . 432

8.6. Read privileges . 439

8.7. Write privileges . 441

8.8. Database administration. 447

8.9. DBMS administration . 456

8.10. Limitations. 483

9. Query tuning . 489

9.1. Cypher query options . 490

9.2. Profiling a query . 496

9.3. The use of indexes . 496

9.4. Basic query tuning example. 517

9.5. Advanced query tuning example . 528

9.6. Planner hints and the USING keyword . 546

10. Execution plans . 559

10.1. Execution plan operators at a glance. 560

10.2. Database hits (DbHits) . 570

10.3. Execution plan operators in detail . 571

10.4. Shortest path planning . 668

11. Deprecations, additions and compatibility . 673

11.1. Version 4.3 . 673

11.2. Version 4.2 . 678

11.3. Version 4.1.3. 681

11.4. Version 4.1 . 682

11.5. Version 4.0 . 684

11.6. Version 3.5 . 688

11.7. Version 3.4 . 689

11.8. Version 3.3 . 689

11.9. Version 3.2 . 690

11.10. Version 3.1 . 691

11.11. Version 3.0 . 691

11.12. Compatibility . 692

11.13. Supported language versions. 693

12. Glossary of keywords . 694

12.1. Clauses. 694

12.2. Operators . 697

12.3. Functions . 699

12.4. Expressions. 706

12.5. Cypher query options . 706

12.6. Administrative commands . 706

12.7. Privilege Actions . 708

Appendix A: Cypher styleguide . 713

A.1. General recommendations. 713

A.2. Indentation and line breaks . 713

A.3. Casing . 715

A.4. Spacing . 716

A.5. Patterns . 718

A.6. Meta-characters. 719

What is Cypher?
Cypher is a declarative graph query language that allows for expressive and efficient querying, updating
and administering of the graph. It is designed to be suitable for both developers and operations
professionals. Cypher is designed to be simple, yet powerful; highly complicated database queries can be
easily expressed, enabling you to focus on your domain, instead of getting lost in database access.

Cypher is inspired by a number of different approaches and builds on established practices for expressive
querying. Many of the keywords, such as WHERE and ORDER BY, are inspired by SQL. Pattern matching
borrows expression approaches from SPARQL. Some of the list semantics are borrowed from languages
such as Haskell and Python. Cypher’s constructs, based on English prose and neat iconography, make
queries easy, both to write and to read.

Structure

Cypher borrows its structure from SQL — queries are built up using various clauses.

Clauses are chained together, and they feed intermediate result sets between each other. For example, the
matching variables from one MATCH clause will be the context that the next clause exists in.

The query language is comprised of several distinct clauses. These are discussed in more detail in the
chapter on Clauses.

The following are a few examples of clauses used to read from the graph:

• MATCH: The graph pattern to match. This is the most common way to get data from the graph.

• WHERE: Not a clause in its own right, but rather part of MATCH, OPTIONAL MATCH and WITH. Adds
constraints to a pattern, or filters the intermediate result passing through WITH.

• RETURN: What to return.

Let’s see MATCH and RETURN in action.

Let’s create a simple example graph with the following query:

CREATE (john:Person {name: 'John'})
CREATE (joe:Person {name: 'Joe'})
CREATE (steve:Person {name: 'Steve'})
CREATE (sara:Person {name: 'Sara'})
CREATE (maria:Person {name: 'Maria'})
CREATE (john)-[:FRIEND]->(joe)-[:FRIEND]->(steve)
CREATE (john)-[:FRIEND]->(sara)-[:FRIEND]->(maria)

[alt] | Example-Graph-cypher-intro.svg

Example Graph

For example, here is a query which finds a user called 'John' and 'John’s' friends (though not his direct
friends) before returning both 'John' and any friends-of-friends that are found.

MATCH (john {name: 'John'})-[:FRIEND]->()-[:FRIEND]->(fof)
RETURN john.name, fof.name

1

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/SPARQL

Resulting in:

+----------------------+
| john.name | fof.name |
+----------------------+
| "John" | "Maria" |
| "John" | "Steve" |
+----------------------+
2 rows

Next up we will add filtering to set more parts in motion:

We take a list of user names and find all nodes with names from this list, match their friends and return
only those followed users who have a 'name' property starting with 'S'.

MATCH (user)-[:FRIEND]->(follower)
WHERE user.name IN ['Joe', 'John', 'Sara', 'Maria', 'Steve'] AND follower.name =~ 'S.*'
RETURN user.name, follower.name

Resulting in:

+---------------------------+
| user.name | follower.name |
+---------------------------+
| "John" | "Sara" |
| "Joe" | "Steve" |
+---------------------------+
2 rows

And these are examples of clauses that are used to update the graph:

• CREATE (and DELETE): Create (and delete) nodes and relationships.

• SET (and REMOVE): Set values to properties and add labels on nodes using SET and use REMOVE to remove
them.

• MERGE: Match existing or create new nodes and patterns. This is especially useful together with unique
constraints.

2

The Neo4j Cypher Manual v4.3
© 2022 Neo4j, Inc.

Documentation license: Creative Commons 4.0

This manual covers the following areas:

• Introduction — Introducing the Cypher query language.

• Syntax — Learn Cypher query syntax.

• Clauses — Reference of Cypher query clauses.

• Functions — Reference of Cypher query functions.

• Indexes for search performance — How to manage indexes used for search performance.

• Full-text search index — How to use full-text indexes, to enable full-text search.

• Constraints — How to manage constraints used for ensuring data integrity.

• Database management — How to use Cypher to manage Neo4j databases.

• Access control — How to manage Neo4j role-based access control and fine-grained security.

• Query tuning — Learn to analyze queries and tune them for performance.

• Execution plans — Cypher execution plans and operators.

• Deprecations, additions and compatibility — An overview of language developments across versions.

• Glossary of keywords — A glossary of Cypher keywords, with links to other parts of the Cypher
manual.

• Cypher styleguide — A guide to the recommended style for writing Cypher queries.

Who should read this?

This manual is written for the developer of a Neo4j client application.

.1. Neo4j databases and graphs
Cypher queries are executed against a Neo4j database, but normally apply to specific graphs. It is
important to understand the meaning of these terms and exactly when a graph is not a database.

DBMS

A Neo4j Database Management System is capable of containing and managing multiple graphs
contained in databases. Client applications will connect to the DBMS and open sessions against it. A
client session provides access to any graph in the DBMS.

Graph

This is a data model within a database. Normally there is only one graph within each database, and
many administrative commands that refer to a specific graph do so using the database name.

Cypher queries executed in a session may declare which graph they apply to, or use a default, given by

3

the session.

In Neo4j Fabric it is possible to refer to multiple graphs within the same query.

Database

A database is a storage and retrieval mechanism for collecting data in a defined space on disk and in
memory.

Most of the time Cypher queries are reading or updating queries, which are run against a graph. There are
also administrative commands that apply to a database, or to the entire DBMS. Administrative commands
cannot be run in a session connected to a normal user database, but instead need to be run within a
session connected to the system database.

.1.1. The system database and the default database

All Neo4j servers contain a built-in database called system, which behaves differently than all other
databases. The system database stores system data and you can not perform graph queries against it.

A fresh installation of Neo4j includes two databases:

• system - the system database described above, containing meta-data on the DBMS and security
configuration.

• neo4j - the default database, named using the config option dbms.default_database=neo4j.

For more information about the system database, see the sections on Database management and Access
control.

.1.2. Different editions of Neo4j

Neo4j has two editions, a commercial Enterprise Edition with additional performance and administrative
features, and an open-source Community Edition. Cypher works almost identically between the two
editions, and as such most of this manual will not differentiate between them. In the few cases where
there is a difference in Cypher language support or behaviour between editions, these are highlighted as
described below in Limited Support Features.

However it is worth listing up-front the key areas that are not supported in the open-source edition:

Feature Enterprise Community

Multi-database Any number of user databases Only system and one user database

Role-based security User, role, and privilege management
for flexible access control and sub-
graph access control.

Multi-user management. All users have
full access rights.

Constraints Existence constraints and multi-
property NODE KEY constraints.

Only single property uniqueness
constraints

4

.1.3. Limited Support Features

Some elements of Cypher do not work in all deployments of Neo4j, and we use specific markers to
highlight these cases:

Marker Description Example

deprecated This feature is deprecated and will be
removed in a future version

DROP INDEX ON :Label(property)

enterprise-only This feature only works in the enterprise
edition of Neo4j

CREATE DATABASE foo

fabric This feature only works in a fabric
deployment of Neo4j.

USE fabric.graph(0)

.2. Querying, updating and administering
In the introduction we described the common case of using Cypher to perform read-only queries of the
graph. However, it is also possible to use Cypher to perform updates to the graph, import data into the
graph, and perform administrative actions on graphs, databases and the entire DBMS.

All these various options are described in more detail in later sections, but it is worth summarizing a few
key points first.

.2.1. The structure of administrative queries

Cypher administrative queries cannot be combined with normal reading and writing queries. Each
administrative query will perform either an update action to the system or a read of status information from
the system. Some administrative commands make changes to a specific database, and will therefore be
possible to run only when connected to the database of interest. Others make changes to the state of the
entire DBMS and can only be run against the special system database.

.2.2. The structure of update queries

If you read from the graph and then update the graph, your query implicitly has two parts — the reading is
the first part, and the writing is the second part.

A Cypher query part can either read and match on the graph, or make updates on it, not
both simultaneously.

If your query only performs reads, Cypher will not actually match the pattern until you ask for the results. In
an updating query, the semantics are that all the reading will be done before any writing is performed.

The only pattern where the query parts are implicit is when you first read and then write — any other order
and you have to be explicit about your query parts. The parts are separated using the WITH statement. WITH
is like an event horizon — it’s a barrier between a plan and the finished execution of that plan.

When you want to filter using aggregated data, you have to chain together two reading query parts — the
first one does the aggregating, and the second filters on the results coming from the first one.

5

MATCH (n {name: 'John'})-[:FRIEND]-(friend)
WITH n, count(friend) AS friendsCount
WHERE friendsCount > 3
RETURN n, friendsCount

Using WITH, you specify how you want the aggregation to happen, and that the aggregation has to be
finished before Cypher can start filtering.

Here’s an example of updating the graph, writing the aggregated data to the graph:

MATCH (n {name: 'John'})-[:FRIEND]-(friend)
WITH n, count(friend) AS friendsCount
SET n.friendsCount = friendsCount
RETURN n.friendsCount

You can chain together as many query parts as the available memory permits.

.2.3. Returning data

Any query can return data. If a query only reads, it has to return data. If a read-query doesn’t return any
data, it serves no purpose, and is therefore not a valid Cypher query. Queries that update the graph don’t
have to return anything, but they can.

After all the parts of the query comes one final RETURN clause. RETURN is not part of any query part — it is a
period symbol at the end of a query. The RETURN clause has three sub-clauses that come with it: SKIP/LIMIT
and ORDER BY.

If you return nodes or relationships from a query that has just deleted them — beware, you are holding a
pointer that is no longer valid.

.3. Transactions
All Cypher statements are explicitly run within a transaction. For read-only queries, the transaction will
always succeed. For updating queries it is possible that a failure can occur for some reason, for example if
the query attempts to violate a constraint, in which case the entire transaction is rolled back, and no
changes are made to the graph. Every statement is executed within the context of the transaction, and
nothing will be persisted to disk until that transaction is successfully committed.

In short, an updating query will always either fully succeed, or not succeed at all.

While it is not possible to run a Cypher query outside a transaction, it is possible to run multiple queries
within a single transaction using the following sequence of operations:

1. Open a transaction,

2. Run multiple updating Cypher queries.

3. Commit all of them in one go.

Note that the transaction will hold the changes in memory until the whole query, or whole set of queries,
has finished executing. A query that makes a large number of updates will consequently use large
amounts of memory. For memory configuration in Neo4j, see the Neo4j Operations Manual → Memory

6

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#memory_configuration
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#memory_configuration
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#memory_configuration

configuration.

For examples of the API’s used to start and commit transactions, refer to the API specific documentation:

• For information on using transactions with a Neo4j driver, see The session API in the Neo4j Driver
manuals.

• For information on using transactions over the HTTP API, see the HTTP API documentation → Using
the HTTP API.

• For information on using transactions within the embedded Core API, see the Java Reference →
Executing Cypher queries from Java.

When writing procedures or using Neo4j embedded, remember that all iterators returned from an
execution result should be either fully exhausted or closed. This ensures that the resources bound to them
are properly released.

.3.1. DBMS Transactions

Beginning a transaction while connected to a DBMS will start a DBMS-level transaction. A DBMS-level
transaction is a container for database transactions.

A database transaction is started when the first query to a specific database is issued. Database
transactions opened inside a DBMS-level transaction are committed or rolled back when the DBMS-level
transaction is committed or rolled back.

For an example of how queries to multiple databases can be issued in one transaction, see Databases and
execution context in the Neo4j Driver manuals.

DBMS transactions have the following limitations:

• Only one database can be written to in a DBMS transaction

• Cypher operations fall into the following main categories:

◦ Operations on graphs.

◦ Schema commands.

◦ Administration commands.

It is not possible to combine any of these workloads in a single DBMS transaction.

.4. Cypher path matching
Neo4j Cypher makes use of relationship isomorphism for path matching and is a very effective way of
reducing the result set size and preventing infinite traversals.

In Neo4j, all relationships have a direction. However, you can have the notion of
undirected relationships at query time.

In the case of variable length pattern expressions, it is particularly important to have a constraint check, or

7

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#memory_configuration
https://neo4j.com/docs
https://neo4j.com/docs
https://neo4j.com/docs/pdf/neo4j-http-api-4.3.pdf#http-api-actions
https://neo4j.com/docs/pdf/neo4j-http-api-4.3.pdf#http-api-actions
https://neo4j.com/docs/pdf/neo4j-http-api-4.3.pdf#http-api-actions
https://neo4j.com/docs/pdf/neo4j-http-api-4.3.pdf#http-api-actions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#cypher-java
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#cypher-java
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#cypher-java
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#cypher-java
https://neo4j.com/docs

an infinite number of result records could be found.

To understand this better, let us consider a few alternative options:

Homomorphism

No constraints for path matching.

Node isomorphism

The same node cannot be returned more than once for each path matching record.

Relationship isomorphism

The same relationship cannot be returned more than once for each path matching record. Cypher
makes use of relationship isomorphism for path matching.

.4.1. Homomorphism

Constraints: No constraints for path matching.

Example 1. Homomorphism

The graph is composed of only two nodes (a) and (b), connected by one relationship, (a:Node)-
[r:R]->(b:Node).

If the query is looking for paths of length n and do not care about the direction, a path of length n will
be returned repeating the two nodes over and over.

For example, find all paths with 5 relationships and do not care about the relationship direction:

MATCH p = ()-[*5]-()
RETURN nodes(p)

This will return the two resulting records if homomorphism was used, [a,b,a,b,a,b], as well as
[b,a,b,a,b,a].

.4.2. Node isomorphism

Constraints: The same node cannot be returned more than once for each path matching record.

In another two-node example, such as (a:Node)-[r:R]->(b:Node); only paths of length 1 can be found
with the node isomorphism constraint.

8

Example 2. Node isomorphism

The graph is composed of only two nodes (a) and (b), connected by one relationship, (a:Node)-
[r:R]->(b:Node).

MATCH p = ()-[*1]-()
RETURN nodes(p)

This will return the two resulting records if node isomorphism was used, [a, b], as well as [b, a].

.4.3. Relationship isomorphism

Constraints: The same relationship cannot be returned more than once for each path matching record.

In another two-node example, such as (a:Node)-[r:R]->(b:Node); only paths of length 1 can be found
with the relationship isomorphism constraint.

Example 3. Relationship isomorphism

The graph is composed of only two nodes (a) and (b), connected by one relationship, (a:Node)-
[r:R]->(b:Node).

MATCH p = ()-[*1]-()
RETURN nodes(p)

This will return the two resulting records [a, b], as well as [b, a].

.4.4. Cypher path matching example

Cypher makes use of relationship isomorphism for path matching.

9

Example 4. Friend of friends

Looking for a user’s friends of friends should not return said user.

To demonstrate this, let’s create a few nodes and relationships:

Query 1, create data.

CREATE
 (adam:User {name: 'Adam'}),
 (pernilla:User {name: 'Pernilla'}),
 (david:User {name: 'David'}),
 (adam)-[:FRIEND]->(pernilla),
 (pernilla)-[:FRIEND]->(david)

Nodes created: 3
Relationships created: 2
Properties set: 3

Which gives us the following graph:

[alt] | cypherdoc--13303421.svg

Now let’s look for friends of friends of Adam:

Query 2, friend of friends of Adam.

MATCH (user:User {name: 'Adam'})-[r1:FRIEND]-()-[r2:FRIEND]-(friend_of_a_friend)
RETURN friend_of_a_friend.name AS fofName

+---------+
| fofName |
+---------+
| "David" |
+---------+

Rows: 1

In this query, Cypher makes sure to not return matches where the pattern relationships r1 and r2
point to the same graph relationship.

This is however not always desired. If the query should return the user, it is possible to spread the
matching over multiple MATCH clauses, like so:

Query 3, multiple MATCH clauses.

MATCH (user:User {name: 'Adam'})-[r1:FRIEND]-(friend)
MATCH (friend)-[r2:FRIEND]-(friend_of_a_friend)
RETURN friend_of_a_friend.name AS fofName

10

+---------+
| fofName |
+---------+
| "David" |
| "Adam" |
+---------+

Rows: 2

Note that while the following Query 4 looks similar to Query 3, it is actually equivalent to Query 2.

Query 4, equivalent to query 2.

MATCH
 (user:User {name: 'Adam'})-[r1:FRIEND]-(friend),
 (friend)-[r2:FRIEND]-(friend_of_a_friend)
RETURN friend_of_a_friend.name AS fofName

Here, the MATCH clause has a single pattern with two paths, while the previous query has two distinct
patterns.

+---------+
| fofName |
+---------+
| "David" |
+---------+

Rows: 1

11

Chapter 1. Syntax
• Values and types

• Naming rules and recommendations

• Expressions

◦ Expressions in general

◦ Note on string literals

◦ CASE Expressions

• Variables

• Reserved keywords

• Parameters

◦ String literal

◦ Regular expression

◦ Case-sensitive string pattern matching

◦ Create node with properties

◦ Create multiple nodes with properties

◦ Setting all properties on a node

◦ SKIP and LIMIT

◦ Node id

◦ Multiple node ids

◦ Calling procedures

• Operators

◦ Operators at a glance

◦ Aggregation operators

◦ Property operators

◦ Mathematical operators

◦ Comparison operators

◦ Boolean operators

◦ String operators

◦ Temporal operators

◦ Map operators

◦ List operators

• Comments

• Patterns

◦ Patterns for nodes

12

◦ Patterns for related nodes

◦ Patterns for labels

◦ Specifying properties

◦ Patterns for relationships

◦ Variable-length pattern matching

◦ Assigning to path variables

• Temporal (Date/Time) values

◦ Time zones

◦ Temporal instants

▪ Specifying temporal instants

▪ Specifying dates

▪ Specifying times

▪ Specifying time zones

▪ Examples

▪ Accessing components of temporal instants

◦ Durations

▪ Specifying durations

▪ Examples

▪ Accessing components of durations

◦ Examples

◦ Temporal indexing

• Spatial values

◦ Introduction

◦ Coordinate Reference Systems

▪ Geographic coordinate reference systems

▪ Cartesian coordinate reference systems

◦ Spatial instants

▪ Creating points

▪ Accessing components of points

◦ Spatial index

• Lists

◦ Lists in general

◦ List comprehension

◦ Pattern comprehension

• Maps

13

◦ Literal maps

◦ Map projection

• Working with null

◦ Introduction to null in Cypher

◦ Logical operations with null

◦ The [\ operator and null]

◦ The IN operator and null

◦ Expressions that return null

1.1. Values and types
Cypher provides first class support for a number of data types.

These fall into several categories which will be described in detail in the following subsections:

Property types

Integer, Float, String, Boolean, Point, Date, Time, LocalTime, DateTime, LocalDateTime, and Duration.

Structural types

Node, Relationship, and Path.

Composite types

List and Map.

1.1.1. Property types
☑ Can be returned from Cypher queries

☑ Can be used as parameters

☑ Can be stored as properties

☑ Can be constructed with Cypher literals

The property types:

• Number, an abstract type, which has the subtypes Integer and Float

• String

• Boolean

• The spatial type Point

• Temporal types: Date, Time, LocalTime, DateTime, LocalDateTime and Duration

The adjective numeric, when used in the context of describing Cypher functions or expressions, indicates
that any type of Number applies (Integer or Float).

Homogeneous lists of simple types can also be stored as properties, although lists in general (see

14

Composite types) cannot be stored.

Cypher also provides pass-through support for byte arrays, which can be stored as property values. Byte
arrays are not considered a first class data type by Cypher, so do not have a literal representation.

Sorting of special characters

Strings that contain characters that do not belong to the Basic Multilingual Plane (BMP)
can have inconsistent or non-deterministic ordering in Neo4j. BMP is a subset of all
characters defined in Unicode. Expressed simply, it contains all common characters from
all common languages.

The most significant characters not in BMP are those belonging to the Supplementary
Multilingual Plane or the Supplementary Ideographic Plane. Examples are:

• Historic scripts and symbols and notation used within certain fields such as:
Egyptian hieroglyphs, modern musical notation, mathematical alphanumerics.

• Emojis and other pictographic sets.

• Game symbols for playing cards, Mah Jongg, and dominoes.

• CJK Ideograph that were not included in earlier character encoding standards.

1.1.2. Structural types
☑ Can be returned from Cypher queries

☐ Cannot be used as parameters

☐ Cannot be stored as properties

☐ Cannot be constructed with Cypher literals

The structural types:

• Node

◦ Id

◦ Label(s)

 Labels are not values but are a form of pattern syntax.

◦ Map (of properties)

• Relationship

◦ Id

◦ Type

◦ Map (of properties)

◦ Id of the start node

◦ Id of the end node

15

https://en.wikipedia.org/wiki/Plane_(Unicode)#Basic_Multilingual_Plane
https://en.wikipedia.org/wiki/Plane_(Unicode)#Supplementary_Multilingual_Plane
https://en.wikipedia.org/wiki/Plane_(Unicode)#Supplementary_Multilingual_Plane
https://en.wikipedia.org/wiki/Plane_(Unicode)#Supplementary_Ideographic_Plane

• Path, an alternating sequence of nodes and relationships

Nodes, relationships, and paths are returned as a result of pattern matching. In Neo4j, all
relationships have a direction. However, you can have the notion of undirected
relationships at query time.

1.1.3. Composite types
☑ Can be returned from Cypher queries

☑ Can be used as parameters

☐ Cannot be stored as properties

☑ Can be constructed with Cypher literals

The composite types:

• List, a heterogeneous, ordered collection of values, each of which has any property, structural or
composite type.

• Map, a heterogeneous, unordered collection of (Key, Value) pairs.

◦ Key is a String

◦ Value has any property, structural or composite type

 Composite values can also contain null.

Special care must be taken when using null (see Working with null).

1.2. Naming rules and recommendations

1.2.1. Naming rules

• Alphabetic characters:

◦ Names should begin with an alphabetic character.

◦ This includes "non-English" characters, such as å, ä, ö, ü etc.

• Numbers:

◦ Names should not begin with a number.

◦ To illustrate, 1first is not allowed, whereas first1 is allowed.

• Symbols:

◦ Names should not contain symbols, except for underscore, as in my_variable, or $ as the first
character to denote a parameter, as given by $myParam.

• Length:

◦ Can be very long, up to 65535 (2^16 - 1) or 65534 characters, depending on the version of Neo4j.

16

• Case-sensitive:

◦ Names are case-sensitive and thus, :PERSON, :Person and :person are three different labels, and n
and N are two different variables.

• Whitespace characters:

◦ Leading and trailing whitespace characters will be removed automatically. For example, MATCH (a
) RETURN a is equivalent to MATCH (a) RETURN a.

Non-alphabetic characters, including numbers, symbols and whitespace characters, can
be used in names, but must be escaped using backticks. For example: `^n`, `1first`,
`$$n`, and `my variable has spaces`. Database names are an exception and may
include dots without the need for escaping. For example: naming a database
foo.bar.baz is perfectly valid.

1.2.2. Scoping and namespace rules

• Node labels, relationship types and property names may re-use names.

◦ The following query — with a for the label, type and property name — is valid: CREATE (a:a {a:
'a'})-[r:a]->(b:a {a: 'a'}).

• Variables for nodes and relationships must not re-use names within the same query scope.

◦ The following query is not valid as the node and relationship both have the name a: CREATE (a)-
[a]->(b).

1.2.3. Recommendations

Here are the recommended naming conventions:

Node labels Camel-case, beginning with an upper-
case character

:VehicleOwner rather than
:vehicle_owner etc.

Relationship types Upper-case, using underscore to
separate words

:OWNS_VEHICLE rather than :ownsVehicle
etc.

1.3. Expressions
• Expressions in general

• Note on string literals

• CASE expressions

◦ Simple CASE form: comparing an expression against multiple values

◦ Generic CASE form: allowing for multiple conditionals to be expressed

◦ Distinguishing between when to use the simple and generic CASE forms

17

1.3.1. Expressions in general

Most expressions in Cypher evaluate to null if any of their inner expressions are null.
Notable exceptions are the operators IS NULL and IS NOT NULL.

An expression in Cypher can be:

• A decimal (integer or float) literal: 13, -40000, 3.14

• A decimal (integer or float) literal in scientific notation: 6.022E23.

• A hexadecimal integer literal (starting with 0x): 0x13af, 0xFC3A9, -0x66eff.

• An octal integer literal (starting with 0o or 0): 0o1372, 02127, -0o5671.

• A string literal: 'Hello', "World".

• A boolean literal: true, false.

• A variable: n, x, rel, myFancyVariable, `A name with weird stuff in it[]!`.

• A property: n.prop, x.prop, rel.thisProperty, myFancyVariable.`(weird property name)`.

• A dynamic property: n["prop"], rel[n.city + n.zip], map[coll[0]].

• A parameter: $param, $0.

• A list of expressions: ['a', 'b'], [1, 2, 3], ['a', 2, n.property, $param], [].

• A function call: length(p), nodes(p).

• An aggregate function: avg(x.prop), count(*).

• A path-pattern: (a)-[r]->(b), (a)-[r]-(b), (a)--(b), (a)-->()<--(b).

• An operator application: 1 + 2, 3 < 4.

• A predicate expression is an expression that returns true or false: a.prop = 'Hello', length(p) > 10,
a.name IS NOT NULL.

• An existential subquery is an expression that returns true or false: EXISTS { MATCH (n)-[r]→(p) WHERE
p.name = 'Sven' }.

• A regular expression: a.name =~ 'Tim.*'.

• A case-sensitive string matching expression: a.surname STARTS WITH 'Sven', a.surname ENDS WITH
'son' or a.surname CONTAINS 'son'.

• A CASE expression.

1.3.2. Note on string literals

String literals can contain the following escape sequences:

Escape sequence Character

\t Tab

\b Backspace

\n Newline

18

Escape sequence Character

\r Carriage return

\f Form feed

\' Single quote

\" Double quote

\\ Backslash

\uxxxx Unicode UTF-16 code point (4 hex
digits must follow the \u)

\Uxxxxxxxx Unicode UTF-32 code point (8 hex
digits must follow the \U)

1.3.3. CASE expressions

Generic conditional expressions may be expressed using the CASE construct. Two variants of CASE exist
within Cypher: the simple form, which allows an expression to be compared against multiple values, and
the generic form, which allows multiple conditional statements to be expressed.

CASE can only be used as part of RETURN or WITH if you want to use the result in the
succeeding clause or statement.

The following graph is used for the examples below:

[alt] | `CASE` expressions-1.svg

Graph

Simple CASE form: comparing an expression against multiple values

The expression is calculated, and compared in order with the WHEN clauses until a match is found. If no
match is found, the expression in the ELSE clause is returned. However, if there is no ELSE case and no
match is found, null will be returned.

Syntax:

CASE test
 WHEN value THEN result
 [WHEN ...]
 [ELSE default]
END

Arguments:

Name Description

test A valid expression.

value An expression whose result will be compared to test.

19

Name Description

result This is the expression returned as output if value matches
test.

default If no match is found, default is returned.

Query

MATCH (n)
RETURN
CASE n.eyes
 WHEN 'blue' THEN 1
 WHEN 'brown' THEN 2
 ELSE 3
END AS result

Table 1. Result

result

2

1

3

2

1

Rows: 5

Generic CASE form: allowing for multiple conditionals to be expressed

The predicates are evaluated in order until a true value is found, and the result value is used. If no match is
found, the expression in the ELSE clause is returned. However, if there is no ELSE case and no match is
found, null will be returned.

Syntax:

CASE
 WHEN predicate THEN result
 [WHEN ...]
 [ELSE default]
END

Arguments:

Name Description

predicate A predicate that is tested to find a valid alternative.

result This is the expression returned as output if predicate
evaluates to true.

default If no match is found, default is returned.

20

Query

MATCH (n)
RETURN
CASE
 WHEN n.eyes = 'blue' THEN 1
 WHEN n.age < 40 THEN 2
 ELSE 3
END AS result

Table 2. Result

result

2

1

3

3

1

Rows: 5

Distinguishing between when to use the simple and generic CASE forms

Owing to the close similarity between the syntax of the two forms, sometimes it may not be clear at the
outset as to which form to use. We illustrate this scenario by means of the following query, in which there
is an expectation that age_10_years_ago is -1 if n.age is null:

Query

MATCH (n)
RETURN n.name,
CASE n.age
 WHEN n.age IS NULL THEN -1
 ELSE n.age - 10
END AS age_10_years_ago

However, as this query is written using the simple CASE form, instead of age_10_years_ago being -1 for the
node named Daniel, it is null. This is because a comparison is made between n.age and n.age IS NULL.
As n.age IS NULL is a boolean value, and n.age is an integer value, the WHEN n.age IS NULL THEN -1
branch is never taken. This results in the ELSE n.age - 10 branch being taken instead, returning null.

Table 3. Result

n.name age_10_years_ago

"Alice" 28

"Bob" 15

"Charlie" 43

"Daniel" <null>

"Eskil" 31

Rows: 5

21

The corrected query, behaving as expected, is given by the following generic CASE form:

Query

MATCH (n)
RETURN n.name,
CASE
 WHEN n.age IS NULL THEN -1
 ELSE n.age - 10
END AS age_10_years_ago

We now see that the age_10_years_ago correctly returns -1 for the node named Daniel.

Table 4. Result

n.name age_10_years_ago

"Alice" 28

"Bob" 15

"Charlie" 43

"Daniel" -1

"Eskil" 31

Rows: 5

Using the result of CASE in the succeeding clause or statement

You can use the result of CASE to set properties on a node or relationship. For example, instead of
specifying the node directly, you can set a property for a node selected by an expression:

Query

MATCH (n)
WITH n,
CASE n.eyes
 WHEN 'blue' THEN 1
 WHEN 'brown' THEN 2
 ELSE 3
END AS colourCode
SET n.colourCode = colourCode

For more information about using the SET clause, see SET.

Table 5. Result

(empty result)

Rows: 0
Properties set: 5

1.4. Variables
When you reference parts of a pattern or a query, you do so by naming them. The names you give the
different parts are called variables.

22

In this example:

MATCH (n)-->(b)
RETURN b

The variables are n and b.

Information regarding the naming of variables may be found here.

Variables are only visible in the same query part

Variables are not carried over to subsequent queries. If multiple query parts are chained
together using WITH, variables have to be listed in the WITH clause to be carried over to
the next part. For more information see WITH.

1.5. Reserved keywords
Reserved keywords are words that have a special meaning in Cypher. The listing of the reserved keywords
are grouped by the categories from which they are drawn. In addition to this, there are a number of
keywords that are reserved for future use.

The reserved keywords are not permitted to be used as identifiers in the following contexts:

• Variables

• Function names

• Parameters

If any reserved keyword is escaped — i.e. is encapsulated by backticks `, such as `AND` — it would become
a valid identifier in the above contexts.

1.5.1. Clauses

• CALL

• CREATE

• DELETE

• DETACH

• EXISTS

• FOREACH

• LOAD

• MATCH

• MERGE

• OPTIONAL

• REMOVE

• RETURN

23

• SET

• START

• UNION

• UNWIND

• WITH

1.5.2. Subclauses

• LIMIT

• ORDER

• SKIP

• WHERE

• YIELD

1.5.3. Modifiers

• ASC

• ASCENDING

• ASSERT

• BY

• CSV

• DESC

• DESCENDING

• ON

1.5.4. Expressions

• ALL

• CASE

• ELSE

• END

• THEN

• WHEN

1.5.5. Operators

• AND

• AS

• CONTAINS

24

• DISTINCT

• ENDS

• IN

• IS

• NOT

• OR

• STARTS

• XOR

1.5.6. Schema

• CONSTRAINT

• CREATE

• DROP

• EXISTS

• INDEX

• NODE

• KEY

• UNIQUE

1.5.7. Hints

• INDEX

• JOIN

• PERIODIC

• COMMIT

• SCAN

• USING

1.5.8. Literals

• false

• null

• true

1.5.9. Reserved for future use

• ADD

• DO

25

• FOR

• MANDATORY

• OF

• REQUIRE

• SCALAR

1.6. Parameters

1.6.1. Introduction

Cypher supports querying with parameters. A parameterized query is a query in which placeholders are
used for parameters and the parameter values are supplied at execution time. This means developers do
not have to resort to string building to create a query. Additionally, parameters make caching of execution
plans much easier for Cypher, thus leading to faster query execution times.

Parameters can be used for:

• literals and expressions

• node and relationship ids

Parameters cannot be used for the following constructs, as these form part of the query structure that is
compiled into a query plan:

• property keys; so, MATCH (n) WHERE n.$param = 'something' is invalid

• relationship types

• labels

Parameters may consist of letters and numbers, and any combination of these, but cannot start with a
number or a currency symbol.

Setting parameters when running a query is dependent on the client environment. For example:

• To set a parameter in Cypher Shell use :param name => 'Joe'. For more information refer to
Operations Manual → Cypher Shell - Query Parameters.

• For Neo4j Browser use the same syntax as Cypher Shell, :param name => 'Joe'.

• When using drivers, the syntax is dependent on the language choice. See the examples in
Transactions in the Neo4j Driver manuals.

• For usage via the Neo4j HTTP API, see the HTTP API documentation.

We provide below a comprehensive list of examples of parameter usage. In these examples, parameters
are given in JSON; the exact manner in which they are to be submitted depends upon the driver being
used.

26

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#cypher-shell-parameters
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#cypher-shell-parameters
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#cypher-shell-parameters
https://neo4j.com/docs
https://neo4j.com/docs/pdf/neo4j-http-api-4.3.pdf#http-api

The old parameter syntax {param} was deprecated in Neo4j 3.0 and removed entirely in
Neo4j 4.0. Using it will result in a syntax error. However, it is still possible to use it, with
warnings, if you prefix the query with CYPHER 3.5. See Cypher Compatibility for further
information.

1.6.2. Auto-parameterization

When a query does not use parameters, Cypher will try to infer parameters anyway. Each literal in the
query is replaced with a parameter. This increases the re-usability of the computed plan for queries that
are identical except for the literals. It is not recommended to rely on this behavior - users should rather use
parameters where they think it is appropriate.

If at least one parameter is used in the query, auto-parameterization is turned off for that
query. This means that any remaining literals will not be turned into parameters.

1.6.3. String literal

Parameters

{
 "name" : "Johan"
}

Query

MATCH (n:Person)
WHERE n.name = $name
RETURN n

You can use parameters in this syntax as well:

Parameters

{
 "name" : "Johan"
}

Query

MATCH (n:Person {name: $name})
RETURN n

1.6.4. Regular expression

Parameters

{
 "regex" : ".*h.*"
}

27

Query

MATCH (n:Person)
WHERE n.name =~ $regex
RETURN n.name

1.6.5. Case-sensitive string pattern matching

Parameters

{
 "name" : "Michael"
}

Query

MATCH (n:Person)
WHERE n.name STARTS WITH $name
RETURN n.name

1.6.6. Create node with properties

Parameters

{
 "props" : {
 "name" : "Andy",
 "position" : "Developer"
 }
}

Query

CREATE ($props)

1.6.7. Create multiple nodes with properties

Parameters

{
 "props" : [{
 "awesome" : true,
 "name" : "Andy",
 "position" : "Developer"
 }, {
 "children" : 3,
 "name" : "Michael",
 "position" : "Developer"
 }]
}

Query

UNWIND $props AS properties
CREATE (n:Person)
SET n = properties
RETURN n

28

1.6.8. Setting all properties on a node

Note that this will replace all the current properties.

Parameters

{
 "props" : {
 "name" : "Andy",
 "position" : "Developer"
 }
}

Query

MATCH (n:Person)
WHERE n.name = 'Michaela'
SET n = $props

1.6.9. SKIP and LIMIT

Parameters

{
 "s" : 1,
 "l" : 1
}

Query

MATCH (n:Person)
RETURN n.name
SKIP $s
LIMIT $l

1.6.10. Node id

Parameters

{
 "id" : 0
}

Query

MATCH (n)
WHERE id(n) = $id
RETURN n.name

1.6.11. Multiple node ids

29

Parameters

{
 "ids" : [0, 1, 2]
}

Query

MATCH (n)
WHERE id(n) IN $ids
RETURN n.name

1.6.12. Calling procedures

Parameters

{
 "indexname" : "My index"
}

Query

CALL db.resampleIndex($indexname)

1.7. Operators
• Operators at a glance

• Aggregation operators

◦ Using the DISTINCT operator

• Property operators

◦ Statically accessing a property of a node or relationship using the . operator

◦ Filtering on a dynamically-computed property key using the [\ operator]

◦ Replacing all properties of a node or relationship using the = operator

◦ Mutating specific properties of a node or relationship using the += operator

• Mathematical operators

◦ Using the exponentiation operator ^

◦ Using the unary minus operator -

• Comparison operators

◦ Comparing two numbers

◦ Using STARTS WITH to filter names

◦ Equality and comparison of values

◦ Ordering and comparison of values

◦ Chaining comparison operations

◦

30

Using a regular expression with =~ to filter words

• Boolean operators

◦ Using boolean operators to filter numbers

• String operators

◦ Concatenating two strings using +

• Temporal operators

◦ Adding and subtracting a Duration to or from a temporal instant

◦ Adding and subtracting a Duration to or from another Duration

◦ Multiplying and dividing a Duration with or by a number

• Map operators

◦ Statically accessing the value of a nested map by key using the . operator"

◦ Dynamically accessing the value of a map by key using the [\ operator and a parameter]

• List operators

◦ Concatenating two lists using +

◦ Using IN to check if a number is in a list

◦ Using IN for more complex list membership operations

◦ Accessing elements in a list using the [\ operator]

◦ Dynamically accessing an element in a list using the [\ operator and a parameter]

◦ Using IN with [\ on a nested list]

1.7.1. Operators at a glance

Aggregation operators DISTINCT

Property operators . for static property access, [] for dynamic property access, =
for replacing all properties, += for mutating specific properties

Mathematical operators +, -, *, /, %, ^

Comparison operators =, <>, <, >, <=, >=, IS NULL, IS NOT NULL

String-specific comparison operators STARTS WITH, ENDS WITH, CONTAINS, =~ for regex matching

Boolean operators AND, OR, XOR, NOT

String operators + for concatenation

Temporal operators + and - for operations between durations and temporal
instants/durations, * and / for operations between durations
and numbers

Map operators . for static value access by key, [] for dynamic value access
by key

List operators + for concatenation, IN to check existence of an element in a
list, [] for accessing element(s) dynamically

31

1.7.2. Aggregation operators

The aggregation operators comprise:

• remove duplicates values: DISTINCT

Using the DISTINCT operator

Retrieve the unique eye colors from Person nodes.

Query

CREATE
 (a:Person {name: 'Anne', eyeColor: 'blue'}),
 (b:Person {name: 'Bill', eyeColor: 'brown'}),
 (c:Person {name: 'Carol', eyeColor: 'blue'})
WITH [a, b, c] AS ps
UNWIND ps AS p
RETURN DISTINCT p.eyeColor

Even though both 'Anne' and 'Carol' have blue eyes, 'blue' is only returned once.

Table 6. Result

p.eyeColor

"blue"

"brown"

Rows: 2
Nodes created: 3
Properties set: 6
Labels added: 3

DISTINCT is commonly used in conjunction with aggregating functions.

1.7.3. Property operators

The property operators pertain to a node or a relationship, and comprise:

• statically access the property of a node or relationship using the dot operator: .

• dynamically access the property of a node or relationship using the subscript operator: []

• property replacement = for replacing all properties of a node or relationship

• property mutation operator += for setting specific properties of a node or relationship

Statically accessing a property of a node or relationship using the . operator

32

Query

CREATE
 (a:Person {name: 'Jane', livesIn: 'London'}),
 (b:Person {name: 'Tom', livesIn: 'Copenhagen'})
WITH a, b
MATCH (p:Person)
RETURN p.name

Table 7. Result

p.name

"Jane"

"Tom"

Rows: 2
Nodes created: 2
Properties set: 4
Labels added: 2

Filtering on a dynamically-computed property key using the [] operator

Query

CREATE
 (a:Restaurant {name: 'Hungry Jo', rating_hygiene: 10, rating_food: 7}),
 (b:Restaurant {name: 'Buttercup Tea Rooms', rating_hygiene: 5, rating_food: 6}),
 (c1:Category {name: 'hygiene'}),
 (c2:Category {name: 'food'})
WITH a, b, c1, c2
MATCH (restaurant:Restaurant), (category:Category)
WHERE restaurant["rating_" + category.name] > 6
RETURN DISTINCT restaurant.name

Table 8. Result

restaurant.name

"Hungry Jo"

Rows: 1
Nodes created: 4
Properties set: 8
Labels added: 4

See Basic usage for more details on dynamic property access.

 The behavior of the [] operator with respect to null is detailed here.

Replacing all properties of a node or relationship using the = operator

Query

CREATE (a:Person {name: 'Jane', age: 20})
WITH a
MATCH (p:Person {name: 'Jane'})
SET p = {name: 'Ellen', livesIn: 'London'}
RETURN p.name, p.age, p.livesIn

33

All the existing properties on the node are replaced by those provided in the map; i.e. the name property is
updated from Jane to Ellen, the age property is deleted, and the livesIn property is added.

Table 9. Result

p.name p.age p.livesIn

"Ellen" <null> "London"

Rows: 1
Nodes created: 1
Properties set: 5
Labels added: 1

See Replace all properties using a map and = for more details on using the property replacement operator
=.

Mutating specific properties of a node or relationship using the += operator

Query

CREATE (a:Person {name: 'Jane', age: 20})
WITH a
MATCH (p:Person {name: 'Jane'})
SET p += {name: 'Ellen', livesIn: 'London'}
RETURN p.name, p.age, p.livesIn

The properties on the node are updated as follows by those provided in the map: the name property is
updated from Jane to Ellen, the age property is left untouched, and the livesIn property is added.

Table 10. Result

p.name p.age p.livesIn

"Ellen" 20 "London"

Rows: 1
Nodes created: 1
Properties set: 4
Labels added: 1

See Mutate specific properties using a map and += for more details on using the property mutation
operator +=.

1.7.4. Mathematical operators

The mathematical operators comprise:

• addition: +

• subtraction or unary minus: -

• multiplication: *

• division: /

• modulo division: %

34

• exponentiation: ^

Using the exponentiation operator ^

Query

WITH 2 AS number, 3 AS exponent
RETURN number ^ exponent AS result

Table 11. Result

result

8.0

Rows: 1

Using the unary minus operator -

Query

WITH -3 AS a, 4 AS b
RETURN b - a AS result

Table 12. Result

result

7

Rows: 1

1.7.5. Comparison operators

The comparison operators comprise:

• equality: =

• inequality: <>

• less than: <

• greater than: >

• less than or equal to: <=

• greater than or equal to: >=

• IS NULL

• IS NOT NULL

String-specific comparison operators comprise:

• STARTS WITH: perform case-sensitive prefix searching on strings

• ENDS WITH: perform case-sensitive suffix searching on strings

35

• CONTAINS: perform case-sensitive inclusion searching in strings

• =~: matching a regular expression

Comparing two numbers

Query

WITH 4 AS one, 3 AS two
RETURN one > two AS result

Table 13. Result

result

true

Rows: 1

See Equality and comparison of values for more details on the behavior of comparison operators, and
Using ranges for more examples showing how these may be used.

Using STARTS WITH to filter names

Query

WITH ['John', 'Mark', 'Jonathan', 'Bill'] AS somenames
UNWIND somenames AS names
WITH names AS candidate
WHERE candidate STARTS WITH 'Jo'
RETURN candidate

Table 14. Result

candidate

"John"

"Jonathan"

Rows: 2

String matching contains more information regarding the string-specific comparison operators as well as
additional examples illustrating the usage thereof.

1.7.6. Equality and comparison of values

Equality

Cypher supports comparing values (see Values and types) by equality using the = and <> operators.

Values of the same type are only equal if they are the same identical value (e.g. 3 = 3 and "x" <> "xy").

Maps are only equal if they map exactly the same keys to equal values and lists are only equal if they
contain the same sequence of equal values (e.g. [3, 4] = [1+2, 8/2]).

36

Values of different types are considered as equal according to the following rules:

• Paths are treated as lists of alternating nodes and relationships and are equal to all lists that contain
that very same sequence of nodes and relationships.

• Testing any value against null with both the = and the <> operators always is null. This includes null
= null and null <> null. The only way to reliably test if a value v is null is by using the special v IS
NULL, or v IS NOT NULL equality operators.

All other combinations of types of values cannot be compared with each other. Especially, nodes,
relationships, and literal maps are incomparable with each other.

It is an error to compare values that cannot be compared.

1.7.7. Ordering and comparison of values

The comparison operators <=, < (for ascending) and >=, > (for descending) are used to compare values for
ordering. The following points give some details on how the comparison is performed.

• Numerical values are compared for ordering using numerical order (e.g. 3 < 4 is true).

• The special value java.lang.Double.NaN is regarded as being larger than all other numbers.

• String values are compared for ordering using lexicographic order (e.g. "x" < "xy").

• Boolean values are compared for ordering such that false < true.

• Comparison of spatial values:

◦ Point values can only be compared within the same Coordinate Reference System
(CRS) — otherwise, the result will be null.

◦ For two points a and b within the same CRS, a is considered to be greater than b if a.x > b.x and
a.y > b.y (and a.z > b.z for 3D points).

◦ a is considered less than b if a.x < b.x and a.y < b.y (and a.z < b.z for 3D points).

◦ If none if the above is true, the points are considered incomparable and any comparison operator
between them will return null.

• Ordering of spatial values:

◦ ORDER BY requires all values to be orderable.

◦ Points are ordered after arrays and before temporal types.

◦ Points of different CRS are ordered by the CRS code (the value of SRID field). For the currently
supported set of Coordinate Reference Systems this means the order: 4326, 4979, 7302, 9157

◦ Points of the same CRS are ordered by each coordinate value in turn, x first, then y and finally z.

◦ Note that this order is different to the order returned by the spatial index, which will be the order of
the space filling curve.

• Comparison of temporal values:

◦ Temporal instant values are comparable within the same type. An instant is considered less than
another instant if it occurs before that instant in time, and it is considered greater than if it occurs
after.

37

◦ Instant values that occur at the same point in time — but that have a different time zone — are not
considered equal, and must therefore be ordered in some predictable way. Cypher prescribes that,
after the primary order of point in time, instant values be ordered by effective time zone offset,
from west (negative offset from UTC) to east (positive offset from UTC). This has the effect that
times that represent the same point in time will be ordered with the time with the earliest local time
first. If two instant values represent the same point in time, and have the same time zone offset,
but a different named time zone (this is possible for DateTime only, since Time only has an offset),
these values are not considered equal, and ordered by the time zone identifier, alphabetically, as its
third ordering component. If the type, point in time, offset, and time zone name are all equal, then
the values are equal, and any difference in order is impossible to observe.

◦ Duration values cannot be compared, since the length of a day, month or year is not known
without knowing which day, month or year it is. Since Duration values are not comparable, the
result of applying a comparison operator between two Duration values is null.

• Ordering of temporal values:

◦ ORDER BY requires all values to be orderable.

◦ Temporal instances are ordered after spatial instances and before strings.

◦ Comparable values should be ordered in the same order as implied by their comparison order.

◦ Temporal instant values are first ordered by type, and then by comparison order within the type.

◦ Since no complete comparison order can be defined for Duration values, we define an order for
ORDER BY specifically for Duration:

▪ Duration values are ordered by normalising all components as if all years were 365.2425 days
long (PT8765H49M12S), all months were 30.436875 (1/12 year) days long (PT730H29M06S), and all
days were 24 hours long [1].

• Comparing for ordering when one argument is null (e.g. null < 3 is null).

• Ordering of values with different types:

◦ The ordering is, in ascending order, defined according to the following list:

▪ Map

▪ Node

▪ Relationship

▪ List

▪ Path

▪ DateTime

▪ LocalDateTime

▪ Date

▪ Time

▪ LocalTime

▪ Duration

▪ String

38

▪ Boolean

▪ Number

◦ The value null is considered larger than any value.

• Ordering of composite type values:

◦ For the composite types (e.g. maps and lists), elements of the containers are compared pairwise for
ordering and thus determine the ordering of two container types. For example, [1, 'foo', 3] is
ordered before [1, 2, 'bar'] since 'foo' is ordered before 2.

1.7.8. Chaining comparison operations

Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y AND y <= z.

Formally, if a, b, c, ..., y, z are expressions and op1, op2, ..., opN are comparison operators, then a
op1 b op2 c ... y opN z is equivalent to a op1 b and b op2 c and ... y opN z.

Note that a op1 b op2 c does not imply any kind of comparison between a and c, so that, e.g., x < y > z
is perfectly legal (although perhaps not elegant).

The example:

MATCH (n) WHERE 21 < n.age <= 30 RETURN n

is equivalent to

MATCH (n) WHERE 21 < n.age AND n.age <= 30 RETURN n

Thus, it matches all nodes where the age is between 21 and 30.

This syntax extends to all equality = and inequality <> comparisons, as well as to chains longer than three.

Chains of = and <> are treated in a special way in Cypher.

This means that 1=1=true is equivalent to 1=1 AND 1=true and not to (1=1)=true or
1=(1=true).

For example:

a < b = c <= d <> e

Is equivalent to:

a < b AND b = c AND c <= d AND d <> e

39

1.7.9. Using a regular expression with =~ to filter words

Query

WITH ['mouse', 'chair', 'door', 'house'] AS wordlist
UNWIND wordlist AS word
WITH word
WHERE word =~ '.*ous.*'
RETURN word

Table 15. Result

word

"mouse"

"house"

Rows: 2

Further information and examples regarding the use of regular expressions in filtering can be found in
Regular expressions.

1.7.10. Boolean operators

The boolean operators — also known as logical operators — comprise:

• conjunction: AND

• disjunction: OR,

• exclusive disjunction: XOR

• negation: NOT

Here is the truth table for AND, OR, XOR and NOT.

a b a AND b a OR b a XOR b NOT a

false false false false false true

false null false null null true

false true false true true true

true false false true true false

true null null true null false

true true true true false false

null false false null null null

null null null null null null

null true null true null null

Using boolean operators to filter numbers

40

Query

WITH [2, 4, 7, 9, 12] AS numberlist
UNWIND numberlist AS number
WITH number
WHERE number = 4 OR (number > 6 AND number < 10)
RETURN number

Table 16. Result

number

4

7

9

Rows: 3

1.7.11. String operators

The string operators comprise:

• concatenating strings: +

Concatenating two strings with +

Query

RETURN 'neo' + '4j' AS result

Table 17. Result

result

"neo4j"

Rows: 1

1.7.12. Temporal operators

Temporal operators comprise:

• adding a Duration to either a temporal instant or another Duration: +

• subtracting a Duration from either a temporal instant or another Duration: -

• multiplying a Duration with a number: *

• dividing a Duration by a number: /

The following table shows — for each combination of operation and operand type — the type of the value
returned from the application of each temporal operator:

41

Operator Left-hand operand Right-hand operand Type of result

+ Temporal instant Duration The type of the temporal
instant

+ Duration Temporal instant The type of the temporal
instant

- Temporal instant Duration The type of the temporal
instant

+ Duration Duration Duration

- Duration Duration Duration

* Duration Number Duration

* Number Duration Duration

/ Duration Number Duration

Adding and subtracting a Duration to or from a temporal instant

Query

WITH
 localdatetime({year:1984, month:10, day:11, hour:12, minute:31, second:14}) AS aDateTime,
 duration({years: 12, nanoseconds: 2}) AS aDuration
RETURN aDateTime + aDuration, aDateTime - aDuration

Table 18. Result

aDateTime + aDuration aDateTime - aDuration

1996-10-11T12:31:14.000000002 1972-10-11T12:31:13.999999998

Rows: 1

Components of a Duration that do not apply to the temporal instant are ignored. For example, when
adding a Duration to a Date, the hours, minutes, seconds and nanoseconds of the Duration are ignored
(Time behaves in an analogous manner):

Query

WITH
 date({year:1984, month:10, day:11}) AS aDate,
 duration({years: 12, nanoseconds: 2}) AS aDuration
RETURN aDate + aDuration, aDate - aDuration

Table 19. Result

aDate + aDuration aDate - aDuration

1996-10-11 1972-10-11

Rows: 1

Adding two durations to a temporal instant is not an associative operation. This is because non-existing
dates are truncated to the nearest existing date:

42

Query

RETURN
 (date("2011-01-31") + duration("P1M")) + duration("P12M") AS date1,
 date("2011-01-31") + (duration("P1M") + duration("P12M")) AS date2

Table 20. Result

date1 date2

2012-02-28 2012-02-29

Rows: 1

Adding and subtracting a Duration to or from another Duration

Query

WITH
 duration({years: 12, months: 5, days: 14, hours: 16, minutes: 12, seconds: 70, nanoseconds: 1}) as
duration1,
 duration({months:1, days: -14, hours: 16, minutes: -12, seconds: 70}) AS duration2
RETURN duration1, duration2, duration1 + duration2, duration1 - duration2

Table 21. Result

duration1 duration2 duration1 + duration2 duration1 - duration2

P12Y5M14DT16H13M10.0000000
01S

P1M-14DT15H49M10S P12Y6MT32H2M20.000000001S P12Y4M28DT24M0.000000001S

Rows: 1

Multiplying and dividing a Duration with or by a number

These operations are interpreted simply as component-wise operations with overflow to smaller units
based on an average length of units in the case of division (and multiplication with fractions).

Query

WITH duration({days: 14, minutes: 12, seconds: 70, nanoseconds: 1}) AS aDuration
RETURN aDuration, aDuration * 2, aDuration / 3

Table 22. Result

aDuration aDuration * 2 aDuration / 3

P14DT13M10.000000001S P28DT26M20.000000002S P4DT16H4M23.333333333S

Rows: 1

1.7.13. Map operators

The map operators comprise:

• statically access the value of a map by key using the dot operator: .

43

• dynamically access the value of a map by key using the subscript operator: []

The behavior of the [] operator with respect to null is detailed in The [] operator and
null.

Statically accessing the value of a nested map by key using the . operator

Query

WITH {person: {name: 'Anne', age: 25}} AS p
RETURN p.person.name

Table 23. Result

p.person.name

"Anne"

Rows: 1

Dynamically accessing the value of a map by key using the [] operator and a
parameter

A parameter may be used to specify the key of the value to access:

Parameters

{
 "myKey" : "name"
}

Query

WITH {name: 'Anne', age: 25} AS a
RETURN a[$myKey] AS result

Table 24. Result

result

"Anne"

Rows: 1

More details on maps can be found in Maps.

1.7.14. List operators

The list operators comprise:

• concatenating lists l1 and l2: [l1] + [l2]

• checking if an element e exists in a list l: e IN [l]

• dynamically accessing an element(s) in a list using the subscript operator: []

44

 The behavior of the IN and [] operators with respect to null is detailed here.

Concatenating two lists using +

Query

RETURN [1,2,3,4,5] + [6,7] AS myList

Table 25. Result

myList

[1,2,3,4,5,6,7]

Rows: 1

Using IN to check if a number is in a list

Query

WITH [2, 3, 4, 5] AS numberlist
UNWIND numberlist AS number
WITH number
WHERE number IN [2, 3, 8]
RETURN number

Table 26. Result

number

2

3

Rows: 2

Using IN for more complex list membership operations

The general rule is that the IN operator will evaluate to true if the list given as the right-hand operand
contains an element which has the same type and contents (or value) as the left-hand operand. Lists are
only comparable to other lists, and elements of a list innerList are compared pairwise in ascending order
from the first element in innerList to the last element in innerList.

The following query checks whether or not the list [2, 1] is an element of the list [1, [2, 1], 3]:

Query

RETURN [2, 1] IN [1, [2, 1], 3] AS inList

The query evaluates to true as the right-hand list contains, as an element, the list [1, 2] which is of the
same type (a list) and contains the same contents (the numbers 2 and 1 in the given order) as the left-hand
operand. If the left-hand operator had been [1, 2] instead of [2, 1], the query would have returned
false.

45

Table 27. Result

inList

true

Rows: 1

At first glance, the contents of the left-hand operand and the right-hand operand appear to be the same in
the following query:

Query

RETURN [1, 2] IN [1, 2] AS inList

However, IN evaluates to false as the right-hand operand does not contain an element that is of the same
type — i.e. a list — as the left-hand-operand.

Table 28. Result

inList

false

Rows: 1

The following query can be used to ascertain whether or not a list — obtained from, say, the labels()
function — contains at least one element that is also present in another list:

MATCH (n)
WHERE size([label IN labels(n) WHERE label IN ['Person', 'Employee'] | 1]) > 0
RETURN count(n)

As long as labels(n) returns either Person or Employee (or both), the query will return a value greater than
zero.

Accessing elements in a list using the [] operator

Query

WITH ['Anne', 'John', 'Bill', 'Diane', 'Eve'] AS names
RETURN names[1..3] AS result

The square brackets will extract the elements from the start index 1, and up to (but excluding) the end
index 3.

Table 29. Result

result

["John","Bill"]

Rows: 1

46

Dynamically accessing an element in a list using the [] operator and a parameter

A parameter may be used to specify the index of the element to access:

Parameters

{
 "myIndex" : 1
}

Query

WITH ['Anne', 'John', 'Bill', 'Diane', 'Eve'] AS names
RETURN names[$myIndex] AS result

Table 30. Result

result

"John"

Rows: 1

Using IN with [] on a nested list

IN can be used in conjunction with [] to test whether an element exists in a nested list:

Parameters

{
 "myIndex" : 1
}

Query

WITH [[1, 2, 3]] AS l
RETURN 3 IN l[0] AS result

Table 31. Result

result

true

Rows: 1

More details on lists can be found in Lists in general.

1.8. Comments
A comment begin with double slash (//) and continue to the end of the line. Comments do not execute,
they are for humans to read.

Examples:

47

MATCH (n) RETURN n //This is an end of line comment

MATCH (n)
//This is a whole line comment
RETURN n

MATCH (n) WHERE n.property = '//This is NOT a comment' RETURN n

1.9. Patterns
• Introduction

• Patterns for nodes

• Patterns for related nodes

• Patterns for labels

• Specifying properties

• Patterns for relationships

• Variable-length pattern matching

• Assigning to path variables

1.9.1. Introduction

Patterns and pattern-matching are at the very heart of Cypher, so being effective with Cypher requires a
good understanding of patterns.

Using patterns, you describe the shape of the data you are looking for. For example, in the MATCH clause
you describe the shape with a pattern, and Cypher will figure out how to get that data for you.

The pattern describes the data using a form that is very similar to how one typically draws the shape of
property graph data on a whiteboard: usually as circles (representing nodes) and arrows between them to
represent relationships.

Patterns appear in multiple places in Cypher: in MATCH, CREATE and MERGE clauses, and in pattern
expressions. Each of these is described in more detail in:

• MATCH

• OPTIONAL MATCH

• CREATE

• MERGE

• Using path patterns in WHERE

48

1.9.2. Patterns for nodes

The very simplest 'shape' that can be described in a pattern is a node. A node is described using a pair of
parentheses, and is typically given a name. For example:

(a)

This simple pattern describes a single node, and names that node using the variable a.

1.9.3. Patterns for related nodes

A more powerful construct is a pattern that describes multiple nodes and relationships between them.
Cypher patterns describe relationships by employing an arrow between two nodes. For example:

(a)-->(b)

This pattern describes a very simple data shape: two nodes, and a single relationship from one to the
other. In this example, the two nodes are both named as a and b respectively, and the relationship is
'directed': it goes from a to b.

This manner of describing nodes and relationships can be extended to cover an arbitrary number of nodes
and the relationships between them, for example:

(a)-->(b)<--(c)

Such a series of connected nodes and relationships is called a "path".

Note that the naming of the nodes in these patterns is only necessary should one need to refer to the same
node again, either later in the pattern or elsewhere in the Cypher query. If this is not necessary, then the
name may be omitted, as follows:

(a)-->()<--(c)

1.9.4. Patterns for labels

In addition to simply describing the shape of a node in the pattern, one can also describe attributes. The
most simple attribute that can be described in the pattern is a label that the node must have. For example:

(a:User)-->(b)

One can also describe a node that has multiple labels:

(a:User:Admin)-->(b)

49

1.9.5. Specifying properties

Nodes and relationships are the fundamental structures in a graph. Neo4j uses properties on both of these
to allow for far richer models.

Properties can be expressed in patterns using a map-construct: curly brackets surrounding a number of
key-expression pairs, separated by commas. E.g. a node with two properties on it would look like:

(a {name: 'Andy', sport: 'Brazilian Ju-Jitsu'})

A relationship with expectations on it is given by:

(a)-[{blocked: false}]->(b)

When properties appear in patterns, they add an additional constraint to the shape of the data. In the case
of a CREATE clause, the properties will be set in the newly-created nodes and relationships. In the case of a
MERGE clause, the properties will be used as additional constraints on the shape any existing data must
have (the specified properties must exactly match any existing data in the graph). If no matching data is
found, then MERGE behaves like CREATE and the properties will be set in the newly created nodes and
relationships.

Note that patterns supplied to CREATE may use a single parameter to specify properties, e.g: CREATE (node
$paramName). This is not possible with patterns used in other clauses, as Cypher needs to know the
property names at the time the query is compiled, so that matching can be done effectively.

1.9.6. Patterns for relationships

The simplest way to describe a relationship is by using the arrow between two nodes, as in the previous
examples. Using this technique, you can describe that the relationship should exist and the directionality of
it. If you don’t care about the direction of the relationship, the arrow head can be omitted, as exemplified
by:

(a)--(b)

As with nodes, relationships may also be given names. In this case, a pair of square brackets is used to
break up the arrow and the variable is placed between. For example:

(a)-[r]->(b)

Much like labels on nodes, relationships can have types. To describe a relationship with a specific type, you
can specify this as follows:

(a)-[r:REL_TYPE]->(b)

Unlike labels, relationships can only have one type. But if we’d like to describe some data such that the
relationship could have any one of a set of types, then they can all be listed in the pattern, separating them

50

with the pipe symbol | like this:

(a)-[r:TYPE1|TYPE2]->(b)

Note that this form of pattern can only be used to describe existing data (ie. when using a pattern with
MATCH or as an expression). It will not work with CREATE or MERGE, since it’s not possible to create a
relationship with multiple types.

As with nodes, the name of the relationship can always be omitted, as exemplified by:

(a)-[:REL_TYPE]->(b)

1.9.7. Variable-length pattern matching

Variable length pattern matching in versions 2.1.x and earlier does not enforce
relationship uniqueness for patterns described within a single MATCH clause. This means
that a query such as the following: MATCH (a)-[r]->(b), p = (a)-[]->(c) RETURN *,
relationships(p) AS rs may include r as part of the rs set. This behavior has
changed in versions 2.2.0 and later, in such a way that r will be excluded from
the result set, as this better adheres to the rules of relationship uniqueness
as documented here Cypher path matching. If you have a query pattern that needs
to retrace relationships rather than ignoring them as the relationship
uniqueness rules normally dictate, you can accomplish this using multiple match
clauses, as follows: MATCH (a)-[r]->(b) MATCH p = (a)-[]->(c) RETURN *,
relationships(p). This will work in all versions of Neo4j that support the MATCH clause,
namely 2.0.0 and later.

Rather than describing a long path using a sequence of many node and relationship descriptions in a
pattern, many relationships (and the intermediate nodes) can be described by specifying a length in the
relationship description of a pattern. For example:

(a)-[*2]->(b)

This describes a graph of three nodes and two relationships, all in one path (a path of length 2). This is
equivalent to:

(a)-->()-->(b)

A range of lengths can also be specified: such relationship patterns are called 'variable length
relationships'. For example:

(a)-[*3..5]->(b)

This is a minimum length of 3, and a maximum of 5. It describes a graph of either 4 nodes and 3
relationships, 5 nodes and 4 relationships or 6 nodes and 5 relationships, all connected together in a single
path.

Either bound can be omitted. For example, to describe paths of length 3 or more, use:

51

(a)-[*3..]->(b)

To describe paths of length 5 or less, use:

(a)-[*..5]->(b)

Omitting both bounds is equivalent to specifying a minimum of 1, allowing paths of any positive length to
be described:

(a)-[*]->(b)

As a simple example, let’s take the graph and query below:

[alt] | Patterns-1.svg

Graph

Query

MATCH (me)-[:KNOWS*1..2]-(remote_friend)
WHERE me.name = 'Filipa'
RETURN remote_friend.name

Table 32. Result

remote_friend.name

"Dilshad"

"Anders"

Rows: 2

This query finds data in the graph with a shape that fits the pattern: specifically a node (with the name
property 'Filipa') and then the KNOWS related nodes, one or two hops away. This is a typical example of
finding first and second degree friends.

Note that variable length relationships cannot be used with CREATE and MERGE.

1.9.8. Assigning to path variables

As described above, a series of connected nodes and relationships is called a "path". Cypher allows paths
to be named using an identifer, as exemplified by:

p = (a)-[*3..5]->(b)

You can do this in MATCH, CREATE and MERGE, but not when using patterns as expressions.

1.10. Temporal (Date/Time) values

52

• Refer to Temporal functions - instant types for information regarding temporal
functions allowing for the creation and manipulation of temporal values.

• Refer to Temporal operators for information regarding temporal operators.

• Refer to Ordering and comparison of values for information regarding the
comparison and ordering of temporal values.

The following table lists the temporal value types and supported components:

Type Date support Time support Time zone support

Date

Time

LocalTime

DateTime

LocalDateTime

Duration - - -

Date, Time, LocalTime, DateTime and LocalDateTime are temporal instant types. A temporal instant value
expresses a point in time with varying degrees of precision.

By contrast, Duration is not a temporal instant type. A Duration represents a temporal amount, capturing
the difference in time between two instants, and can be negative. Duration captures the amount of time
between two instants, it does not capture a start time and end time.

1.10.1. Time zones

Time zones are represented either as an offset from UTC, or as a logical identifier of a named time zone
(these are based on the IANA time zone database). In either case the time is stored as UTC internally, and
the time zone offset is only applied when the time is presented. This means that temporal instants can be
ordered without taking time zone into account. If, however, two times are identical in UTC, then they are
ordered by timezone.

When creating a time using a named time zone, the offset from UTC is computed from the rules in the time
zone database to create a time instant in UTC, and to ensure the named time zone is a valid one.

It is possible for time zone rules to change in the IANA time zone database. For example, there could be
alterations to the rules for daylight savings time in a certain area. If this occurs after the creation of a
temporal instant, the presented time could differ from the originally-entered time, insofar as the local
timezone is concerned. However, the absolute time in UTC would remain the same.

There are three ways of specifying a time zone in Cypher:

• Specifying the offset from UTC in hours and minutes (ISO 8601).

• Specifying a named time zone.

• Specifying both the offset and the time zone name (with the requirement that these match).

53

https://www.iana.org/time-zones
https://en.wikipedia.org/wiki/ISO_8601

The named time zone form uses the rules of the IANA time zone database to manage daylight savings
time (DST).

The default time zone of the database can be configured using the configuration option
db.temporal.timezone. This configuration option influences the creation of temporal types for the
following functions:

• Getting the current date and time without specifying a time zone.

• Creating a temporal type from its components without specifying a time zone.

• Creating a temporal type by parsing a string without specifying a time zone.

• Creating a temporal type by combining or selecting values that do not have a time zone component,
and without specifying a time zone.

• Truncating a temporal value that does not have a time zone component, and without specifying a time
zone.

1.10.2. Temporal instants

Specifying temporal instants

A temporal instant consists of three parts; the date, the time, and the timezone. These parts can be
combined to produce the various temporal value types. The character T is a literal character.

Temporal instant type Composition of parts

Date <date>

Time <time><timezone> or T<time><timezone>

LocalTime <time> or T<time>

DateTime* <date>T<time><timezone>

LocalDateTime* <date>T<time>

*When date and time are combined, date must be complete; i.e. fully identify a particular day.

Specifying dates

Component Format Description

Year YYYY Specified with at least four digits
(special rules apply in certain cases).

Month MM Specified with a double digit number
from 01 to 12.

Week ww Always prefixed with W and specified
with a double digit number from 01 to
53.

54

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_db.temporal.timezone

Component Format Description

Quarter q Always prefixed with Q and specified
with a single digit number from 1 to 4.

Day of the month DD Specified with a double digit number
from 01 to 31.

Day of the week D Specified with a single digit number
from 1 to 7.

Day of the quarter DD Specified with a double digit number
from 01 to 92.

Ordinal day of the year DDD Specified with a triple digit number from
001 to 366.

If the year is before 0000 or after 9999, the following additional rules apply:

• Minus sign, - must prefix any year before 0000, (e.g. -3000-01-01).

• Plus sign, + must prefix any year after 9999, (e.g. +11000-01-01).

• The year must be separated with - from the next component:

◦ if the next component is month, (e.g. +11000-01).

◦ if the next component is day of the year, (e.g. +11000-123).

If the year component is prefixed with either - or +, and is separated from the next component, Year is
allowed to contain up to nine digits. Thus, the allowed range of years is between -999,999,999 and
+999,999,999. For all other cases, i.e. the year is between 0000 and 9999 (inclusive), Year must have
exactly four digits (the year component is interpreted as a year of the Common Era (CE)).

The following formats are supported for specifying dates:

Format Description Example Interpretation of example

YYYY-MM-DD Calendar date: Year-Month-
Day

2015-07-21 2015-07-21

YYYYMMDD Calendar date: Year-Month-
Day

20150721 2015-07-21

YYYY-MM Calendar date: Year-Month 2015-07 2015-07-01

YYYYMM Calendar date: Year-Month 201507 2015-07-01

YYYY-Www-D Week date: Year-Week-Day 2015-W30-2 2015-07-21

YYYYWwwD Week date: Year-Week-Day 2015W302 2015-07-21

YYYY-Www Week date: Year-Week 2015-W30 2015-07-20

YYYYWww Week date: Year-Week 2015W30 2015-07-20

YYYY-Qq-DD Quarter date: Year-Quarter-
Day

2015-Q2-60 2015-05-30

YYYYQqDD Quarter date: Year-Quarter-
Day

2015Q260 2015-05-30

55

Format Description Example Interpretation of example

YYYY-Qq Quarter date: Year-Quarter 2015-Q2 2015-04-01

YYYYQq Quarter date: Year-Quarter 2015Q2 2015-04-01

YYYY-DDD Ordinal date: Year-Day 2015-202 2015-07-21

YYYYDDD Ordinal date: Year-Day 2015202 2015-07-21

YYYY Year 2015 2015-01-01

The least significant components can be omitted. Cypher will assume omitted components to have their
lowest possible value. For example, 2013-06 will be interpreted as being the same date as 2013-06-01.

Specifying times

Component Format Description

Hour HH Specified with a double digit number
from 00 to 23.

Minute MM Specified with a double digit number
from 00 to 59.

Second SS Specified with a double digit number
from 00 to 59.

fraction sssssssss Specified with a number from 0 to
999999999. It is not required to specify
trailing zeros. fraction is an optional,
sub-second component of Second. This
can be separated from Second using
either a full stop (.) or a comma (,). The
fraction is in addition to the two digits
of Second.

Cypher does not support leap seconds; UTC-SLS (UTC with Smoothed Leap Seconds) is used to manage
the difference in time between UTC and TAI (International Atomic Time).

The following formats are supported for specifying times:

Format Description Example Interpretation of example

HH:MM:SS.sssssssss Hour:Minute:Second.fractio
n

21:40:32.142 21:40:32.142

HHMMSS.sssssssss Hour:Minute:Second.fractio
n

214032.142 21:40:32.142

HH:MM:SS Hour:Minute:Second 21:40:32 21:40:32.000

HHMMSS Hour:Minute:Second 214032 21:40:32.000

HH:MM Hour:Minute 21:40 21:40:00.000

HHMM Hour:Minute 2140 21:40:00.000

HH Hour 21 21:00:00.000

56

https://www.cl.cam.ac.uk/~mgk25/time/utc-sls/

The least significant components can be omitted. For example, a time may be specified with Hour and
Minute, leaving out Second and fraction. On the other hand, specifying a time with Hour and Second, while
leaving out Minute, is not possible.

Specifying time zones

The time zone is specified in one of the following ways:

• As an offset from UTC.

• Using the Z shorthand for the UTC (±00:00) time zone.

When specifying a time zone as an offset from UTC, the rules below apply:

• The time zone always starts with either a plus (+) or minus (-) sign.

◦ Positive offsets, i.e. time zones beginning with +, denote time zones east of UTC.

◦ Negative offsets, i.e. time zones beginning with -, denote time zones west of UTC.

• A double-digit hour offset follows the +/- sign.

• An optional double-digit minute offset follows the hour offset, optionally separated by a colon (:).

• The time zone of the International Date Line is denoted either by +12:00 or -12:00, depending on
country.

When creating values of the DateTime temporal instant type, the time zone may also be specified using a
named time zone, using the names from the IANA time zone database. This may be provided either in
addition to, or in place of the offset. The named time zone is given last and is enclosed in square brackets
([]). Should both the offset and the named time zone be provided, the offset must match the named time
zone.

The following formats are supported for specifying time zones:

Format Description Example Supported for
DateTime

Supported for
Time

Z UTC Z

±HH:MM Hour:Minute +09:30

±HH:MM[ZoneName] Hour:Minute[ZoneName] +08:45[Australia/Eucla]

±HHMM Hour:Minute +0100

±HHMM[ZoneName] Hour:Minute[ZoneName] +0200[Africa/Johannesburg]

±HH Hour -08

±HH[ZoneName] Hour[ZoneName] +08[Asia/Singapore]

[ZoneName] [ZoneName] [America/Regina]

57

Examples

We show below examples of parsing temporal instant values using various formats. For more details, refer
to An overview of temporal instant type creation.

Parsing a DateTime using the calendar date format:

Query

RETURN datetime('2015-06-24T12:50:35.556+0100') AS theDateTime

Table 33. Result

theDateTime

2015-06-24T12:50:35.556+01:00

Rows: 1

Parsing a LocalDateTime using the ordinal date format:

Query

RETURN localdatetime('2015185T19:32:24') AS theLocalDateTime

Table 34. Result

theLocalDateTime

2015-07-04T19:32:24

Rows: 1

Parsing a Date using the week date format:

Query

RETURN date('+2015-W13-4') AS theDate

Table 35. Result

theDate

2015-03-26

Rows: 1

Parsing a Time:

Query

RETURN time('125035.556+0100') AS theTime

Table 36. Result

58

theTime

12:50:35.556+01:00

Rows: 1

Parsing a LocalTime:

Query

RETURN localtime('12:50:35.556') AS theLocalTime

Table 37. Result

theLocalTime

12:50:35.556

Rows: 1

Accessing components of temporal instants

Components of temporal instant values can be accessed as properties.

Table 38. Components of temporal instant values and where they are supported

Component Description Type Range/Format Date DateTim
e

LocalDat
eTime

Time LocalTim
e

instant.year The year
component
represents the
astronomical year
number of the
instant.[2]

Integer At least 4 digits.
For more
information, see
the rules for using
the Year
component

instant.quarter The quarter-of-
the-year
component.

Integer 1 to 4

instant.month The month-of-the-
year component.

Integer 1 to 12

instant.week The week-of-the-
year component.[3]

Integer 1 to 53

instant.weekYear The year that the
week-of-year
component
belongs to.[4]

Integer At least 4 digits.
For more
information, see
the rules for using
the Year
component

instant.dayOfQuar
ter

The day-of-the-
quarter
component.

Integer 1 to 92

59

https://en.wikipedia.org/wiki/Astronomical_year_numbering
https://en.wikipedia.org/wiki/Astronomical_year_numbering

Component Description Type Range/Format Date DateTim
e

LocalDat
eTime

Time LocalTim
e

instant.quarterDa
y

The day-of-the-
quarter
component. (alias
for
instant.dayOfQuar
ter)

Integer 1 to 92

instant.day The day-of-the-
month component.

Integer 1 to 31

instant.ordinalDa
y

The day-of-the-
year component.

Integer 1 to 366

instant.dayOfWeek The day-of-the-
week component
(the first day of the
week is Monday).

Integer 1 to 7

instant.weekDay The day-of-the-
week component
(alias for
instant.dayOfWeek
).

Integer 1 to 7

instant.hour The hour
component.

Integer 0 to 23

instant.minute The minute
component.

Integer 0 to 59

instant.second The second
component.[5]

Integer 0 to 59

instant.milliseco
nd

The millisecond
component.

Integer 0 to 999

instant.microseco
nd

The microsecond
component.

Integer 0 to 999999

instant.nanosecon
d

The nanosecond
component.

Integer 0 to 999999999

instant.timezone The timezone
component.

String Depending on how
the time zone was
specified, this is
either a time zone
name or an offset
from UTC in the
format ±HHMM

instant.offset The timezone
offset

String ±HHMM

instant.offsetMin
utes

The timezone
offset in minutes

Integer -1080 to +1080

instant.offsetSec
onds

The timezone
offset in seconds

Integer -64800 to +64800

60

Component Description Type Range/Format Date DateTim
e

LocalDat
eTime

Time LocalTim
e

instant.epochMill
is

The number of
milliseconds
between 1970-01-
01T00:00:00+0000
and the instant.[6]

Integer Positive for
instants after and
negative for
instants before
1970-01-
01T00:00:00+0000

instant.epochSeco
nds

The number of
seconds between
1970-01-
01T00:00:00+0000
and the instant.[7]

Integer Positive for
instants after and
negative for
instants before
1970-01-
01T00:00:00+0000

The following query shows how to extract the components of a Date value:

Query

WITH date({year: 1984, month: 10, day: 11}) AS d
RETURN d.year, d.quarter, d.month, d.week, d.weekYear, d.day, d.ordinalDay, d.dayOfWeek, d.dayOfQuarter

Table 39. Result

d.year d.quarter d.month d.week d.weekYear d.day d.ordinalDa
y

d.dayOfWe
ek

d.dayOfQua
rter

1984 4 10 41 1984 11 285 4 11

Rows: 1

The following query shows how to extract the date related components of a DateTime value:

Query

WITH datetime({
 year: 1984, month: 11, day: 11,
 hour: 12, minute: 31, second: 14, nanosecond: 645876123,
 timezone: 'Europe/Stockholm'
}) AS d
RETURN d.year, d.quarter, d.month, d.week, d.weekYear, d.day, d.ordinalDay, d.dayOfWeek, d.dayOfQuarter

Table 40. Result

d.year d.quarter d.month d.week d.weekYear d.day d.ordinalDa
y

d.dayOfWe
ek

d.dayOfQua
rter

1984 4 11 45 1984 11 316 7 42

Rows: 1

The following query shows how to extract the time related components of a DateTime value:

61

Query

WITH datetime({
 year: 1984, month: 11, day: 11,
 hour: 12, minute: 31, second: 14, nanosecond: 645876123,
 timezone: 'Europe/Stockholm'
}) AS d
RETURN d.hour, d.minute, d.second, d.millisecond, d.microsecond, d.nanosecond

Table 41. Result

d.hour d.minute d.second d.millisecond d.microsecond d.nanosecond

12 31 14 645 645876 645876123

Rows: 1

The following query shows how to extract the epoch time and timezone related components of a
DateTime value:

Query

WITH datetime({
 year: 1984, month: 11, day: 11,
 hour: 12, minute: 31, second: 14, nanosecond: 645876123,
 timezone: 'Europe/Stockholm'
}) AS d
RETURN d.timezone, d.offset, d.offsetMinutes, d.epochSeconds, d.epochMillis

Table 42. Result

d.timezone d.offset d.offsetMinutes d.epochSeconds d.epochMillis

"Europe/Stockholm" "+01:00" 60 469020674 469020674645

Rows: 1

1.10.3. Durations

Specifying durations

A Duration represents a temporal amount, capturing the difference in time between two instants, and can
be negative.

The specification of a Duration is prefixed with a P, and can use either a unit-based form or a date-and-
time-based form:

• Unit-based form: P[nY][nM][nW][nD][T[nH][nM][nS]]

◦ The square brackets ([]) denote an optional component (components with a zero value may be
omitted).

◦ The n denotes a numeric value which can be arbitrarily large.

◦ The value of the last — and least significant — component may contain a decimal fraction.

◦ Each component must be suffixed by a component identifier denoting the unit.

◦ The unit-based form uses M as a suffix for both months and minutes. Therefore, time parts must

62

always be preceded with T, even when no components of the date part are given.

• Date-and-time-based form: P<date>T<time>.

◦ Unlike the unit-based form, this form requires each component to be within the bounds of a valid
LocalDateTime.

The following table lists the component identifiers for the unit-based form:

Component identifier Description Comments

Y Years

M Months Must be specified before T.

W Weeks

D Days

H Hours

M Minutes Must be specified after T.

S Seconds

Examples

The following examples demonstrate various methods of parsing Duration values. For more details, refer
to Creating a Duration from a string.

Return a Duration of 14 days, 16 hours and 12 minutes:

Query

RETURN duration('P14DT16H12M') AS theDuration

Table 43. Result

theDuration

P14DT16H12M

Rows: 1

Return a Duration of 5 months, 1 day and 12 hours:

Query

RETURN duration('P5M1.5D') AS theDuration

Table 44. Result

theDuration

P5M1DT12H

Rows: 1

63

Return a Duration of 45 seconds:

Query

RETURN duration('PT0.75M') AS theDuration

Table 45. Result

theDuration

PT45S

Rows: 1

Return a Duration of 2 weeks, 3 days and 12 hours:

Query

RETURN duration('P2.5W') AS theDuration

Table 46. Result

theDuration

P17DT12H

Rows: 1

Accessing components of durations

A Duration can have several components, each categorized into Months, Days, and Seconds groups.

Components of Duration values are truncated within their component groups as follows:

Component Group Component Description Type Details

Months duration.years The total number of
years

Integer Each set of 4 quarters is counted
as 1 year; each set of 12 months
is counted as 1 year.

duration.quarters The total number of
quarters

Integer Each year is counted as 4
quarters; each set of 3 months is
counted as 1 quarter.

duration.months The total number of
months

Integer Each year is counted as 12
months; each_quarter_ is
counted as 3 months.

Days duration.weeks The total number of
weeks

Integer Each set of 7 days is counted as
1 week.

duration.days The total number of
days

Integer Each week is counted as 7 days.

64

Component Group Component Description Type Details

Seconds duration.hours The total number of
hours

Integer Each set of 60 minutes is
counted as 1 hour; each set of
3600 seconds is counted as 1
hour.

duration.minutes The total number of
minutes

Integer Each hour is counted as 60
minutes; each set of 60 seconds
is counted as 1 minute.

duration.seconds The total number of
seconds

Integer Each hour is counted as 3600
seconds; each minute is counted
as 60 seconds.

duration.milliseconds The total number of
milliseconds

Integer Each set of 1000 milliseconds is
counted as 1 second.

duration.microseconds The total number of
microseconds

Integer Each millisecond is counted as
1000 microseconds.

duration.nanoseconds The total number of
nanoseconds

Integer Each microsecond is counted as
1000 nanoseconds.

Please note that:

• Cypher uses UTC-SLS when handling leap seconds.

• There are not always 24 hours in 1 day; when switching to/from daylight savings
time, a day can have 23 or 25 hours.

• There are not always the same number of days in a month.

• Due to leap years, there are not always the same number of days in a year.

It is also possible to access the smaller (less significant) components of a component group bounded by
the largest (most significant) component of the group:

Component Component Group Description Type

duration.quartersOfYear Months The number of quarters in the group
that do not make a whole year

Integer

duration.monthsOfYear Months The number of months in the group that
do not make a whole year

Integer

duration.monthsOfQuarter Months The number of months in the group that
do not make a whole quarter

Integer

duration.daysOfWeek Days The number of days in the group that do
not make a whole week

Integer

duration.minutesOfHour Seconds The number of minutes in the group that
do not make a whole hour

Integer

duration.secondsOfMinute Seconds The number of seconds in the group
that do not make a whole minute

Integer

65

https://www.cl.cam.ac.uk/~mgk25/time/utc-sls/

Component Component Group Description Type

duration.millisecondsOfSecond Seconds The number of milliseconds in the group
that do not make a whole second

Integer

duration.microsecondsOfSecond Seconds The number of microseconds in the
group that do not make a whole second

Integer

duration.nanosecondsOfSecond Seconds The number of nanoseconds in the
group that do not make a whole second

Integer

The following query shows how to extract the month based components of a Duration value:

Query

WITH duration({years: 1, months: 5, days: 111, minutes: 42}) AS d
RETURN d.years, d.quarters, d.quartersOfYear, d.months, d.monthsOfYear, d.monthsOfQuarter

Table 47. Result

d.years d.quarters d.quartersOfYear d.months d.monthsOfYear d.monthsOfQuarte
r

1 5 1 17 5 2

Rows: 1

The following query shows how to extract the day based components of a Duration value:

Query

WITH duration({months: 5, days: 25, hours: 1}) AS d
RETURN d.weeks, d.days, d.daysOfWeek

Table 48. Result

d.weeks d.days d.daysOfWeek

3 25 4

Rows: 1

The following query shows how to extract the most significant second based components of a Duration
value:

Query

WITH duration({
 years: 1, months:1, days:1, hours: 1,
 minutes: 1, seconds: 1, nanoseconds: 111111111
}) AS d
RETURN d.hours, d.minutes, d.seconds, d.milliseconds, d.microseconds, d.nanoseconds

Table 49. Result

d.hours d.minutes d.seconds d.milliseconds d.microseconds d.nanoseconds

1 61 3661 3661111 3661111111 3661111111111

66

d.hours d.minutes d.seconds d.milliseconds d.microseconds d.nanoseconds

Rows: 1

The following query shows how to extract the less significant second based components of a Duration
value:

Query

WITH duration({
 years: 1, months:1, days:1,
 hours: 1, minutes: 1, seconds: 1, nanoseconds: 111111111
}) AS d
RETURN d.minutesOfHour, d.secondsOfMinute, d.millisecondsOfSecond, d.microsecondsOfSecond,
d.nanosecondsOfSecond

Table 50. Result

d.minutesOfHour d.secondsOfMinute d.millisecondsOfSecon
d

d.microsecondsOfSeco
nd

d.nanosecondsOfSeco
nd

1 1 111 111111 111111111

Rows: 1

1.10.4. Examples

The following examples illustrate the use of some of the temporal functions and operators. Refer to
Temporal functions - instant types and Temporal operators for more details.

Create a Duration representing 1.5 days:

Query

RETURN duration({days: 1, hours: 12}) AS theDuration

Table 51. Result

theDuration

P1DT12H

Rows: 1

Compute the Duration between two temporal instants:

Query

RETURN duration.between(date('1984-10-11'), date('2015-06-24')) AS theDuration

Table 52. Result

theDuration

P30Y8M13D

Rows: 1

67

Compute the number of days between two Date values:

Query

RETURN duration.inDays(date('2014-10-11'), date('2015-08-06')) AS theDuration

Table 53. Result

theDuration

P299D

Rows: 1

Get the first Date of the current year:

Query

RETURN date.truncate('year') AS day

Table 54. Result

day

2022-01-01

Rows: 1

Get the Date of the Thursday in the week of a specific date:

Query

RETURN date.truncate('week', date('2019-10-01'), {dayOfWeek: 4}) AS thursday

Table 55. Result

thursday

2019-10-03

Rows: 1

Get the Date of the last day of the next month:

Query

RETURN date.truncate('month', date() + duration('P2M')) - duration('P1D') AS lastDay

Table 56. Result

lastDay

2022-12-31

Rows: 1

Add a Duration to a Date:

68

Query

RETURN time('13:42:19') + duration({days: 1, hours: 12}) AS theTime

Table 57. Result

theTime

01:42:19Z

Rows: 1

Add two Duration values:

Query

RETURN duration({days: 2, hours: 7}) + duration({months: 1, hours: 18}) AS theDuration

Table 58. Result

theDuration

P1M2DT25H

Rows: 1

Multiply a Duration by a number:

Query

RETURN duration({hours: 5, minutes: 21}) * 14 AS theDuration

Table 59. Result

theDuration

PT74H54M

Rows: 1

Divide a Duration by a number:

Query

RETURN duration({hours: 3, minutes: 16}) / 2 AS theDuration

Table 60. Result

theDuration

PT1H38M

Rows: 1

Examine whether two instants are less than one day apart:

69

Query

WITH
 datetime('2015-07-21T21:40:32.142+0100') AS date1,
 datetime('2015-07-21T17:12:56.333+0100') AS date2
RETURN
CASE
 WHEN date1 < date2 THEN date1 + duration("P1D") > date2
 ELSE date2 + duration("P1D") > date1
END AS lessThanOneDayApart

Table 61. Result

lessThanOneDayApart

true

Rows: 1

Return the abbreviated name of the current month:

Query

RETURN ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"][date().month-
1] AS month

Table 62. Result

month

"Nov"

Rows: 1

1.10.5. Temporal indexing

All temporal types can be indexed, and thereby support exact lookups for equality predicates. Indexes for
temporal instant types additionally support range lookups.

1.11. Spatial values
• Introduction

• Coordinate Reference Systems

◦ Geographic coordinate reference systems

◦ Cartesian coordinate reference systems

• Spatial instants

◦ Creating points

◦ Accessing components of points

• Spatial index

• Comparability and Orderability

70

Refer to Spatial functions for information regarding spatial functions allowing for the
creation and manipulation of spatial values.

Refer to Ordering and comparison of values for information regarding the comparison
and ordering of spatial values.

1.11.1. Introduction

Neo4j supports only one type of spatial geometry, the Point with the following characteristics:

• Each point can have either 2 or 3 dimensions. This means it contains either 2 or 3 64-bit floating point
values, which together are called the Coordinate.

• Each point will also be associated with a specific Coordinate Reference System (CRS) that determines
the meaning of the values in the Coordinate.

• Instances of Point and lists of Point can be assigned to node and relationship properties.

• Nodes with Point or List(Point) properties can be indexed using a spatial index. This is true for all CRS
(and for both 2D and 3D). There is no special syntax for creating spatial indexes, as it is supported
using the existing indexes.

• The distance function will work on points in all CRS and in both 2D and 3D but only if the two points
have the same CRS (and therefore also same dimension).

1.11.2. Coordinate Reference Systems

Four Coordinate Reference Systems (CRS) are supported, each of which falls within one of two types:
geographic coordinates modeling points on the earth, or cartesian coordinates modeling points in
euclidean space:

• Geographic coordinate reference systems

◦ WGS-84: longitude, latitude (x, y)

◦ WGS-84-3D: longitude, latitude, height (x, y, z)

• Cartesian coordinate reference systems

◦ Cartesian: x, y

◦ Cartesian 3D: x, y, z

Data within different coordinate systems are entirely incomparable, and cannot be implicitly converted
from one to the other. This is true even if they are both cartesian or both geographic. For example, if you
search for 3D points using a 2D range, you will get no results. However, they can be ordered, as discussed
in more detail in Ordering and comparison of values.

Geographic coordinate reference systems

Two Geographic Coordinate Reference Systems (CRS) are supported, modeling points on the earth:

• WGS 84 2D

71

http://spatialreference.org/ref/epsg/4326/

◦ A 2D geographic point in the WGS 84 CRS is specified in one of two ways:

▪ longitude and latitude (if these are specified, and the crs is not, then the crs is assumed to
be WGS-84)

▪ x and y (in this case the crs must be specified, or will be assumed to be Cartesian)

◦ Specifying this CRS can be done using either the name 'wgs-84' or the SRID 4326 as described in
Point(WGS-84)

• WGS 84 3D

◦ A 3D geographic point in the WGS 84 CRS is specified one of in two ways:

▪ longitude, latitude and either height or z (if these are specified, and the crs is not, then the
crs is assumed to be WGS-84-3D)

▪ x, y and z (in this case the crs must be specified, or will be assumed to be Cartesian-3D)

◦ Specifying this CRS can be done using either the name 'wgs-84-3d' or the SRID 4979 as
described in Point(WGS-84-3D)

The units of the latitude and longitude fields are in decimal degrees, and need to be specified as floating
point numbers using Cypher literals. It is not possible to use any other format, like 'degrees, minutes,
seconds'. The units of the height field are in meters. When geographic points are passed to the distance
function, the result will always be in meters. If the coordinates are in any other format or unit than
supported, it is necessary to explicitly convert them. For example, if the incoming $height is a string field in
kilometers, you would need to type height: toFloat($height) * 1000. Likewise if the results of the
distance function are expected to be returned in kilometers, an explicit conversion is required. For
example: RETURN distance(a,b) / 1000 AS km. An example demonstrating conversion on incoming and
outgoing values is:

Query

WITH
 point({latitude:toFloat('13.43'), longitude:toFloat('56.21')}) AS p1,
 point({latitude:toFloat('13.10'), longitude:toFloat('56.41')}) AS p2
RETURN toInteger(distance(p1, p2)/1000) AS km

Table 63. Result

km

42

Rows: 1

Cartesian coordinate reference systems

Two Cartesian Coordinate Reference Systems (CRS) are supported, modeling points in euclidean space:

• Cartesian 2D

◦ A 2D point in the Cartesian CRS is specified with a map containing x and y coordinate values

◦ Specifying this CRS can be done using either the name 'cartesian' or the SRID 7203 as described
in Point(Cartesian)

72

http://spatialreference.org/ref/epsg/4979/
http://spatialreference.org/ref/sr-org/7203/

• Cartesian 3D

◦ A 3D point in the Cartesian CRS is specified with a map containing x, y and z coordinate values

◦ Specifying this CRS can be done using either the name 'cartesian-3d' or the SRID 9157 as
described in Point(Cartesian-3D)

The units of the x, y and z fields are unspecified and can mean anything the user intends them to mean.
This also means that when two cartesian points are passed to the distance function, the resulting value
will be in the same units as the original coordinates. This is true for both 2D and 3D points, as the
pythagoras equation used is generalized to any number of dimensions. However, just as you cannot
compare geographic points to cartesian points, you cannot calculate the distance between a 2D point and
a 3D point. If you need to do that, explicitly transform the one type into the other. For example:

Query

WITH
 point({x: 3, y: 0}) AS p2d,
 point({x: 0, y: 4, z: 1}) AS p3d
RETURN
 distance(p2d, p3d) AS bad,
 distance(p2d, point({x: p3d.x, y: p3d.y})) AS good

Table 64. Result

bad good

<null> 5.0

Rows: 1

1.11.3. Spatial instants

Creating points

All point types are created from two components:

• The Coordinate containing either 2 or 3 floating point values (64-bit)

• The Coordinate Reference System (or CRS) defining the meaning (and possibly units) of the values in
the Coordinate

For most use cases it is not necessary to specify the CRS explicitly as it will be deduced from the keys used
to specify the coordinate. Two rules are applied to deduce the CRS from the coordinate:

• Choice of keys:

◦ If the coordinate is specified using the keys latitude and longitude the CRS will be assumed to be
Geographic and therefor either WGS-84 or WGS-84-3D.

◦ If instead x and y are used, then the default CRS would be Cartesian or Cartesian-3D

• Number of dimensions:

◦ If there are 2 dimensions in the coordinate, x & y or longitude & latitude the CRS will be a 2D
CRS

73

http://spatialreference.org/ref/sr-org/9157/

◦ If there is a third dimensions in the coordinate, z or height the CRS will be a 3D CRS

All fields are provided to the point function in the form of a map of explicitly named arguments. We
specifically do not support an ordered list of coordinate fields because of the contradictory conventions
between geographic and cartesian coordinates, where geographic coordinates normally list y before x
(latitude before longitude). See for example the following query which returns points created in each of
the four supported CRS. Take particular note of the order and keys of the coordinates in the original point
function calls, and how those values are displayed in the results:

Query

RETURN
 point({x: 3, y: 0}) AS cartesian_2d,
 point({x: 0, y: 4, z: 1}) AS cartesian_3d,
 point({latitude: 12, longitude: 56}) AS geo_2d,
 point({latitude: 12, longitude: 56, height: 1000}) AS geo_3d

Table 65. Result

cartesian_2d cartesian_3d geo_2d geo_3d

point({x: 3.0, y: 0.0,
crs: 'cartesian'})

point({x: 0.0, y: 4.0, z:
1.0, crs: 'cartesian-3d'})

point({x: 56.0, y: 12.0,
crs: 'wgs-84'})

point({x: 56.0, y: 12.0,
z: 1000.0, crs: 'wgs-84-
3d'})

Rows: 1

For the geographic coordinates, it is important to note that the latitude value should always lie in the
interval [-90, 90] and any other value outside this range will throw an exception. The longitude value
should always lie in the interval [-180, 180] and any other value outside this range will be wrapped
around to fit in this range. The height value and any cartesian coordinates are not explicitly restricted, and
any value within the allowed range of the signed 64-bit floating point type will be accepted.

Accessing components of points

Just as we construct points using a map syntax, we can also access components as properties of the
instance.

Table 66. Components of point instances and where they are supported

Component Description Type Range/Forma
t

WGS-84 WGS-84-3D Cartesian Cartesian-3D

instant.x The first
element of the
Coordinate

Float Number
literal, range
depends on
CRS

instant.y The second
element of the
Coordinate

Float Number
literal, range
depends on
CRS

74

Component Description Type Range/Forma
t

WGS-84 WGS-84-3D Cartesian Cartesian-3D

instant.z The third
element of the
Coordinate

Float Number
literal, range
depends on
CRS

instant.lati
tude

The second
element of the
Coordinate for
geographic
CRS, degrees
North of the
equator

Float Number
literal, -90.0
to 90.0

instant.long
itude

The first
element of the
Coordinate for
geographic
CRS, degrees
East of the
prime
meridian

Float Number
literal, -180.0
to 180.0

instant.heig
ht

The third
element of the
Coordinate for
geographic
CRS, meters
above the
ellipsoid
defined by the
datum (WGS-
84)

Float Number
literal, range
limited only
by the
underlying
64-bit floating
point type

instant.crs The name of
the CRS

String One of wgs-
84, wgs-84-3d,
cartesian,
cartesian-3d

instant.srid The internal
Neo4j ID for
the CRS

Integer One of 4326,
4979, 7203,
9157

The following query shows how to extract the components of a Cartesian 2D point value:

Query

WITH point({x: 3, y: 4}) AS p
RETURN
 p.x AS x,
 p.y AS y,
 p.crs AS crs,
 p.srid AS srid

Table 67. Result

75

x y crs srid

3.0 4.0 "cartesian" 7203

Rows: 1

The following query shows how to extract the components of a WGS-84 3D point value:

Query

WITH point({latitude: 3, longitude: 4, height: 4321}) AS p
RETURN
 p.latitude AS latitude,
 p.longitude AS longitude,
 p.height AS height,
 p.x AS x,
 p.y AS y,
 p.z AS z,
 p.crs AS crs,
 p.srid AS srid

Table 68. Result

latitude longitude height x y z crs srid

3.0 4.0 4321.0 4.0 3.0 4321.0 "wgs-84-3d" 4979

Rows: 1

1.11.4. Spatial index

If there is a index on a particular :Label(property) combination, and a spatial point is assigned to that
property on a node with that label, the node will be indexed in a spatial index. For spatial indexing, Neo4j
uses space filling curves in 2D or 3D over an underlying generalized B+Tree. Points will be stored in up to
four different trees, one for each of the four coordinate reference systems. This allows for both equality
and range queries using exactly the same syntax and behaviour as for other property types. If two range
predicates are used, which define minimum and maximum points, this will effectively result in a bounding
box query. In addition, queries using the distance function can, under the right conditions, also use the
index, as described in the section 'Spatial distance searches'.

1.11.5. Comparability and Orderability

Points with different CRS are not comparable. This means that any function operating on two points of
different types will return null. This is true of the distance function as well as inequality comparisons. If
these are used in a predicate, they will cause the associated MATCH to return no results.

Query

WITH
 point({x: 3, y: 0}) AS p2d,
 point({x: 0, y: 4, z: 1}) AS p3d
RETURN
 distance(p2d, p3d),
 p2d < p3d,
 p2d = p3d,
 p2d <> p3d,
 distance(p2d, point({x: p3d.x, y: p3d.y}))

76

Table 69. Result

distance(p2d, p3d) p2d < p3d p2d = p3d p2d <> p3d distance(p2d, point({x:
p3d.x, y: p3d.y}))

<null> <null> false true 5.0

Rows: 1

However, all types are orderable. The Point types will be ordered after Numbers and before Temporal
types. Points with different CRS with be ordered by their SRID numbers. For the current set of four CRS,
this means the order is WGS84, WGS84-3D, Cartesian, Cartesian-3D.

Query

UNWIND [
 point({x: 3, y: 0}),
 point({x: 0, y: 4, z: 1}),
 point({srid: 4326, x: 12, y: 56}),
 point({srid: 4979, x: 12, y: 56, z: 1000})
] AS point
RETURN point ORDER BY point

Table 70. Result

point

point({x: 12.0, y: 56.0, crs: 'wgs-84'})

point({x: 12.0, y: 56.0, z: 1000.0, crs: 'wgs-84-3d'})

point({x: 3.0, y: 0.0, crs: 'cartesian'})

point({x: 0.0, y: 4.0, z: 1.0, crs: 'cartesian-3d'})

Rows: 4

1.12. Lists
• Lists in general

• List comprehension

• Pattern comprehension

Information regarding operators, such as list concatenation (+), element existence
checking (IN), and access ([]) can be found here. The behavior of the IN and []
operators with respect to null is detailed here.

1.12.1. Lists in general

A literal list is created by using brackets and separating the elements in the list with commas.

Query

RETURN [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] AS list

77

Table 71. Result

list

[0,1,2,3,4,5,6,7,8,9]

Rows: 1

In the examples, you use the range function. It gives you a list containing all numbers between given start
and end numbers. Range is inclusive in both ends.

To access individual elements in the list, you can use the square brackets again. This extracts from the
start index and up to, but not including, the end index.

Query

RETURN range(0, 10)[3]

Table 72. Result

range(0, 10)[3]

3

Rows: 1

You can also use negative numbers, to start from the end of the list instead.

Query

RETURN range(0, 10)[-3]

Table 73. Result

range(0, 10)[-3]

8

Rows: 1

Finally, you can use ranges inside the brackets to return ranges of the list.

Query

RETURN range(0, 10)[0..3]

Table 74. Result

range(0, 10)[0..3]

[0,1,2]

Rows: 1

Query

RETURN range(0, 10)[0..-5]

78

Table 75. Result

range(0, 10)[0..-5]

[0,1,2,3,4,5]

Rows: 1

Query

RETURN range(0, 10)[-5..]

Table 76. Result

range(0, 10)[-5..]

[6,7,8,9,10]

Rows: 1

Query

RETURN range(0, 10)[..4]

Table 77. Result

range(0, 10)[..4]

[0,1,2,3]

Rows: 1

 Out-of-bound slices are simply truncated, but out-of-bound single elements return null.

Query

RETURN range(0, 10)[15]

Table 78. Result

range(0, 10)[15]

<null>

Rows: 1

Query

RETURN range(0, 10)[5..15]

Table 79. Result

range(0, 10)[5..15]

[5,6,7,8,9,10]

Rows: 1

79

You can get the size of a list as follows:

Query

RETURN size(range(0, 10)[0..3])

Table 80. Result

size(range(0, 10)[0..3])

3

Rows: 1

1.12.2. List comprehension

List comprehension is a syntactic construct available in Cypher for creating a list based on existing lists. It
follows the form of the mathematical set-builder notation (set comprehension) instead of the use of map
and filter functions.

Query

RETURN [x IN range(0,10) WHERE x % 2 = 0 | x^3] AS result

Table 81. Result

result

[0.0,8.0,64.0,216.0,512.0,1000.0]

Rows: 1

Either the WHERE part, or the expression, can be omitted, if you only want to filter or map respectively.

Query

RETURN [x IN range(0,10) WHERE x % 2 = 0] AS result

Table 82. Result

result

[0,2,4,6,8,10]

Rows: 1

Query

RETURN [x IN range(0,10) | x^3] AS result

Table 83. Result

result

[0.0,1.0,8.0,27.0,64.0,125.0,216.0,343.0,512.0,729.0,1000.0]

80

result

Rows: 1

1.12.3. Pattern comprehension

Pattern comprehension is a syntactic construct available in Cypher for creating a list based on matchings
of a pattern. A pattern comprehension matches the specified pattern like a normal MATCH clause, with
predicates like a normal WHERE clause, but yields a custom projection as specified.

The following graph is used for the pattern comprehension examples:

[alt] | Lists-1.svg

Graph

This example returns a list that contains the year when the movies was released. The pattern matching in
the pattern comprehension looks for Matrix in the movie title and that the node a (Person node with the
name Keanu Reeves) has a relationship with the movie.

Query

MATCH (a:Person {name: 'Keanu Reeves'})
RETURN [(a)-->(b:Movie) WHERE b.title CONTAINS 'Matrix' | b.released] AS years

Table 84. Result

years

[2021,2003,2003,1999]

Rows: 1

The whole predicate, including the WHERE keyword, is optional and may be omitted.

This example returns a sorted list that contains years. The pattern matching in the pattern comprehension
looks for movie nodes that has a relationship with the node a (Person node with the name Keanu Reeves).

Query

MATCH (a:Person {name: 'Keanu Reeves'})
WITH [(a)-->(b:Movie) | b.released] AS years
UNWIND years AS year
WITH year ORDER BY year
RETURN COLLECT(year) AS sorted_years

Table 85. Result

sorted_years

[1995,1997,1999,2000,2003,2003,2003,2021]

Rows: 1

81

1.13. Maps
• Literal maps

• Map projection

◦ Examples of map projection

The following graph is used for the examples below:

[alt] | Maps-1.svg

Graph

Information regarding property access operators such as . and [] can be found here.
The behavior of the [] operator with respect to null is detailed here.

1.13.1. Literal maps

Cypher supports construction of maps. The key names in a map must be of type String. If returned
through an HTTP API call, a JSON object will be returned. If returned in Java, an object of type
java.util.Map<String,Object> will be returned.

Query

RETURN {key: 'Value', listKey: [{inner: 'Map1'}, {inner: 'Map2'}]}

Table 86. Result

{key: 'Value', listKey: [{inner: 'Map1'}, {inner: 'Map2'}]}

{listKey -> [{inner -> "Map1"},{inner -> "Map2"}], key -> "Value"}

Rows: 1

1.13.2. Map projection

Cypher supports a concept called "map projections". It allows for easily constructing map projections from
nodes, relationships and other map values.

A map projection begins with the variable bound to the graph entity to be projected from, and contains a
body of comma-separated map elements, enclosed by { and }.

map_variable {map_element, [, ...n]}

A map element projects one or more key-value pairs to the map projection. There exist four different types
of map projection elements:

• Property selector - Projects the property name as the key, and the value from the map_variable as the
value for the projection.

• Literal entry - This is a key-value pair, with the value being arbitrary expression key: <expression>.

• Variable selector - Projects a variable, with the variable name as the key, and the value the variable is

82

https://neo4j.com/docs/pdf/neo4j-http-api-4.3.pdf#http-api

pointing to as the value of the projection. Its syntax is just the variable.

• All-properties selector - projects all key-value pairs from the map_variable value.

The following conditions apply:

• If the map_variable points to a null value, the whole map projection will evaluate to null.

• The key names in a map must be of type String.

Examples of map projections

Find 'Charlie Sheen' and return data about him and the movies he has acted in. This example shows an
example of map projection with a literal entry, which in turn also uses map projection inside the
aggregating collect().

Query

MATCH (actor:Person {name: 'Charlie Sheen'})-[:ACTED_IN]->(movie:Movie)
RETURN actor{.name, .realName, movies: collect(movie{.title, .year})}

Table 87. Result

actor

{movies -> [{year -> 1979, title -> "Apocalypse Now"},{year -> 1984, title -> "Red Dawn"},{year -> 1987, title
-> "Wall Street"}], realName -> "Carlos Irwin Estévez", name -> "Charlie Sheen"}

Rows: 1

Find all persons that have acted in movies, and show number for each. This example introduces an variable
with the count, and uses a variable selector to project the value.

Query

MATCH (actor:Person)-[:ACTED_IN]->(movie:Movie)
WITH actor, count(movie) AS nbrOfMovies
RETURN actor{.name, nbrOfMovies}

Table 88. Result

actor

{nbrOfMovies -> 2, name -> "Martin Sheen"}

{nbrOfMovies -> 3, name -> "Charlie Sheen"}

Rows: 2

Again, focusing on 'Charlie Sheen', this time returning all properties from the node. Here we use an all-
properties selector to project all the node properties, and additionally, explicitly project the property age.
Since this property does not exist on the node, a null value is projected instead.

Query

MATCH (actor:Person {name: 'Charlie Sheen'})
RETURN actor{.*, .age}

83

Table 89. Result

actor

{realName -> "Carlos Irwin Estévez", name -> "Charlie Sheen", age -> <null>}

Rows: 1

1.14. Working with null
• Introduction to null in Cypher

• Logical operations with null

• The IN operator and null

• The [\ operator and null]

• Expressions that return null

1.14.1. Introduction to null in Cypher

In Cypher, null is used to represent missing or undefined values. Conceptually, null means a missing
unknown value and it is treated somewhat differently from other values. For example getting a property
from a node that does not have said property produces null. Most expressions that take null as input will
produce null. This includes boolean expressions that are used as predicates in the WHERE clause. In this
case, anything that is not true is interpreted as being false.

null is not equal to null. Not knowing two values does not imply that they are the same value. So the
expression null = null yields null and not true.

1.14.2. Logical operations with null

The logical operators (AND, OR, XOR, NOT) treat null as the unknown value of three-valued logic.

Here is the truth table for AND, OR, XOR and NOT.

a b a AND b a OR b a XOR b NOT a

false false false false false true

false null false null null true

false true false true true true

true false false true true false

true null null true null false

true true true true false false

null false false null null null

null null null null null null

null true null true null null

84

1.14.3. The IN operator and null

The IN operator follows similar logic. If Cypher knows that something exists in a list, the result will be true.
Any list that contains a null and doesn’t have a matching element will return null. Otherwise, the result
will be false. Here is a table with examples:

Expression Result

2 IN [1, 2, 3] true

2 IN [1, null, 3] null

2 IN [1, 2, null] true

2 IN [1] false

2 IN [] false

null IN [1, 2, 3] null

null IN [1, null, 3] null

null IN [] false

Using all, any, none, and single follows a similar rule. If the result can be calculated definitely, true or
false is returned. Otherwise null is produced.

1.14.4. The [] operator and null

Accessing a list or a map with null will result in null:

Expression Result

[1, 2, 3][null] null

[1, 2, 3, 4][null..2] null

[1, 2, 3][1..null] null

{age: 25}[null] null

Using parameters to pass in the bounds, such as a[$lower..$upper], may result in a null for the lower or
upper bound (or both). The following workaround will prevent this from happening by setting the absolute
minimum and maximum bound values:

a[coalesce($lower,0)..coalesce($upper,size(a))]

1.14.5. Expressions that return null

• Getting a missing element from a list: [][0], head([])

• Trying to access a property that does not exist on a node or relationship: n.missingProperty

• Comparisons when either side is null: 1 < null

• Arithmetic expressions containing null: 1 + null

85

• Function calls where any arguments are null: sin(null)

[1] The 365.2425 days per year comes from the frequency of leap years. A leap year occurs on a year with an ordinal number
divisible by 4, that is not divisible by 100, unless it divisible by 400. This means that over 400 years there are ((365 * 4 + 1)
* 25 - 1) * 4 + 1 = 146097 days, which means an average of 365.2425 days per year.
[2] This is in accordance with the Gregorian calendar; i.e. years AD/CE start at year 1, and the year before that (year 1
BC/BCE) is 0, while year 2 BCE is -1 etc.
[3] The first week of any year is the week that contains the first Thursday of the year, and thus always contains January 4.
[4] For dates from December 29, this could be the next year, and for dates until January 3 this could be the previous year,
depending on how week 1 begins.
[5] Cypher does not support leap seconds; UTC-SLS (UTC with Smoothed Leap Seconds) is used to manage the difference
in time between UTC and TAI (International Atomic Time).
[6] The expression datetime().epochMillis returns the equivalent value of the timestamp() function.
[7] For the nanosecond part of the epoch offset, the regular nanosecond component (instant.nanosecond) can be used.

86

https://en.wikipedia.org/wiki/Gregorian_calendar
https://en.wikipedia.org/wiki/ISO_week_date#First_week

Chapter 2. Clauses
• Reading clauses

• Projecting clauses

• Reading sub-clauses

• Reading hints

• Writing clauses

• Reading/Writing clauses

• Set operations

• Subquery clauses

• Multiple graphs

• Importing data

• Listing functions and procedures

• Administration clauses

Reading clauses

These comprise clauses that read data from the database.

The flow of data within a Cypher query is an unordered sequence of maps with key-value pairs — a set of
possible bindings between the variables in the query and values derived from the database. This set is
refined and augmented by subsequent parts of the query.

Clause Description

MATCH Specify the patterns to search for in the database.

OPTIONAL MATCH Specify the patterns to search for in the database while using
nulls for missing parts of the pattern.

Projecting clauses

These comprise clauses that define which expressions to return in the result set. The returned expressions
may all be aliased using AS.

Clause Description

RETURN ... [AS\] Defines what to include in the query result set.

WITH ... [AS\] Allows query parts to be chained together, piping the results
from one to be used as starting points or criteria in the next.

UNWIND ... [AS\] Expands a list into a sequence of rows.

Reading sub-clauses

These comprise sub-clauses that must operate as part of reading clauses.

87

Sub-clause Description

WHERE Adds constraints to the patterns in a MATCH or OPTIONAL
MATCH clause or filters the results of a WITH clause.

WHERE EXISTS { ... } An existential sub-query used to filter the results of a MATCH,
OPTIONAL MATCH or WITH clause.

ORDER BY [ASC[ENDING] | DESC[ENDING]] A sub-clause following RETURN or WITH, specifying that the
output should be sorted in either ascending (the default) or
descending order.

SKIP Defines from which row to start including the rows in the
output.

LIMIT Constrains the number of rows in the output.

Reading hints

These comprise clauses used to specify planner hints when tuning a query. More details regarding the
usage of these — and query tuning in general — can be found in Planner hints and the USING keyword.

Hint Description

USING INDEX Index hints are used to specify which index, if any, the
planner should use as a starting point.

USING INDEX SEEK Index seek hint instructs the planner to use an index seek for
this clause.

USING SCAN Scan hints are used to force the planner to do a label scan
(followed by a filtering operation) instead of using an index.

USING JOIN Join hints are used to enforce a join operation at specified
points.

Writing clauses

These comprise clauses that write the data to the database.

Clause Description

CREATE Create nodes and relationships.

DELETE Delete nodes, relationships or paths. Any node to
be deleted must also have all associated
relationships explicitly deleted.

DETACH DELETE Delete a node or set of nodes. All associated
relationships will automatically be deleted.

SET Update labels on nodes and properties on nodes and
relationships.

REMOVE Remove properties and labels from nodes and relationships.

88

Clause Description

FOREACH Update data within a list, whether components of a path, or
the result of aggregation.

Reading/Writing clauses

These comprise clauses that both read data from and write data to the database.

Clause Description

MERGE Ensures that a pattern exists in the graph. Either the pattern
already exists, or it needs to be created.

--- ON CREATE Used in conjunction with MERGE, this write sub-clause
specifies the actions to take if the pattern needs to be
created.

--- ON MATCH Used in conjunction with MERGE, this write sub-clause
specifies the actions to take if the pattern already exists.

CALL ... [YIELD ...] Invokes a procedure deployed in the database and return any
results.

Set operations

Clause Description

UNION Combines the result of multiple queries into a single
result set. Duplicates are removed.

UNION ALL Combines the result of multiple queries into a single
result set. Duplicates are retained.

Subquery clauses

Clause Description

CALL { ... } Evaluates a subquery, typically used for post-union
processing or aggregations.

Multiple graphs

Clause Description

USE Determines which graph a query, or query part, is executed
against.

Importing data

Clause Description

LOAD CSV Use when importing data from CSV files.

89

Clause Description

--- USING PERIODIC COMMIT This query hint may be used to prevent an out-of-memory
error from occurring when importing large amounts of data
using LOAD CSV.

Listing functions and procedures

Clause Description

SHOW FUNCTIONS Lists the available functions.

SHOW PROCEDURES Lists the available procedures.

Administration clauses

These comprise clauses used to manage databases, schema and security; further details can found in
Database management and Access control.

Clause Description

CREATE | DROP | START | STOP DATABASE Create, drop, start or stop a database.

CREATE | DROP INDEX Create or drop an index on all nodes with a particular label
and property.

CREATE | DROP CONSTRAINT Create or drop a constraint pertaining to either a node label
or relationship type, and a property.

Access control Manage users, roles, and privileges for database, graph and
sub-graph access control.

2.1. MATCH
• Introduction

• Basic node finding

◦ Get all nodes

◦ Get all nodes with a label

◦ Related nodes

◦ Match with labels

• Relationship basics

◦ Outgoing relationships

◦ Directed relationships and variable

◦ Match on relationship type

◦ Match on multiple relationship types

◦ Match on relationship type and use a variable

• Relationships in depth

90

◦ Relationship types with uncommon characters

◦ Multiple relationships

◦ Variable length relationships

◦ Variable length relationships with multiple relationship types

◦ Relationship variable in variable length relationships

◦ Match with properties on a variable length path

◦ Zero length paths

◦ Named paths

◦ Matching on a bound relationship

• Shortest path

◦ Single shortest path

◦ Single shortest path with predicates

◦ All shortest paths

• Get node or relationship by id

◦ Node by id

◦ Relationship by id

◦ Multiple nodes by id

2.1.1. Introduction

The MATCH clause allows you to specify the patterns Neo4j will search for in the database. This is the
primary way of getting data into the current set of bindings. It is worth reading up more on the
specification of the patterns themselves in Patterns.

MATCH is often coupled to a WHERE part which adds restrictions, or predicates, to the MATCH patterns, making
them more specific. The predicates are part of the pattern description, and should not be considered a filter
applied only after the matching is done. This means that WHERE should always be put together with the
MATCH clause it belongs to.

MATCH can occur at the beginning of the query or later, possibly after a WITH. If it is the first clause, nothing
will have been bound yet, and Neo4j will design a search to find the results matching the clause and any
associated predicates specified in any WHERE part. This could involve a scan of the database, a search for
nodes having a certain label, or a search of an index to find starting points for the pattern matching. Nodes
and relationships found by this search are available as bound pattern elements, and can be used for
pattern matching of paths. They can also be used in any further MATCH clauses, where Neo4j will use the
known elements, and from there find further unknown elements.

Cypher is declarative, and so usually the query itself does not specify the algorithm to use to perform the
search. Neo4j will automatically work out the best approach to finding start nodes and matching patterns.
Predicates in WHERE parts can be evaluated before pattern matching, during pattern matching, or after
finding matches. However, there are cases where you can influence the decisions taken by the query
compiler. Read more about indexes in Indexes for search performance, and more about specifying hints to

91

force Neo4j to solve a query in a specific way in Planner hints and the USING keyword.

 To understand more about the patterns used in the MATCH clause, read Patterns

The following graph is used for the examples below:

[alt] | MATCH-3.svg

Graph

2.1.2. Basic node finding

Get all nodes

By just specifying a pattern with a single node and no labels, all nodes in the graph will be returned.

Query

MATCH (n)
RETURN n

Returns all the nodes in the database.

Table 90. Result

n

Node[0]{name:"Charlie Sheen"}

Node[1]{name:"Martin Sheen"}

Node[2]{name:"Michael Douglas"}

Node[3]{name:"Oliver Stone"}

Node[4]{name:"Rob Reiner"}

Node[5]{title:"Wall Street"}

Node[6]{title:"The American President"}

Rows: 7

Get all nodes with a label

Getting all nodes with a label on them is done with a single node pattern where the node has a label on it.

Query

MATCH (movie:Movie)
RETURN movie.title

Returns all the movies in the database.

Table 91. Result

92

movie.title

"Wall Street"

"The American President"

Rows: 2

Related nodes

The symbol -- means related to, without regard to type or direction of the relationship.

Query

MATCH (director {name: 'Oliver Stone'})--(movie)
RETURN movie.title

Returns all the movies directed by 'Oliver Stone'.

Table 92. Result

movie.title

"Wall Street"

Rows: 1

Match with labels

To constrain your pattern with labels on nodes, you add it to your pattern nodes, using the label syntax.

Query

MATCH (:Person {name: 'Oliver Stone'})--(movie:Movie)
RETURN movie.title

Returns any nodes connected with the Person 'Oliver' that are labeled Movie.

Table 93. Result

movie.title

"Wall Street"

Rows: 1

2.1.3. Relationship basics

Outgoing relationships

When the direction of a relationship is of interest, it is shown by using --> or <--, like this:

93

Query

MATCH (:Person {name: 'Oliver Stone'})-->(movie)
RETURN movie.title

Returns any nodes connected with the Person 'Oliver' by an outgoing relationship.

Table 94. Result

movie.title

"Wall Street"

Rows: 1

Directed relationships and variable

If a variable is required, either for filtering on properties of the relationship, or to return the relationship, this
is how you introduce the variable.

Query

MATCH (:Person {name: 'Oliver Stone'})-[r]->(movie)
RETURN type(r)

Returns the type of each outgoing relationship from 'Oliver'.

Table 95. Result

type(r)

"DIRECTED"

Rows: 1

Match on relationship type

When you know the relationship type you want to match on, you can specify it by using a colon together
with the relationship type.

Query

MATCH (wallstreet:Movie {title: 'Wall Street'})<-[:ACTED_IN]-(actor)
RETURN actor.name

Returns all actors that ACTED_IN 'Wall Street'.

Table 96. Result

actor.name

"Michael Douglas"

"Martin Sheen"

"Charlie Sheen"

94

actor.name

Rows: 3

Match on multiple relationship types

To match on one of multiple types, you can specify this by chaining them together with the pipe symbol |.

Query

MATCH (wallstreet {title: 'Wall Street'})<-[:ACTED_IN|DIRECTED]-(person)
RETURN person.name

Returns nodes with an ACTED_IN or DIRECTED relationship to 'Wall Street'.

Table 97. Result

person.name

"Oliver Stone"

"Michael Douglas"

"Martin Sheen"

"Charlie Sheen"

Rows: 4

Match on relationship type and use a variable

If you both want to introduce an variable to hold the relationship, and specify the relationship type you
want, just add them both, like this:

Query

MATCH (wallstreet {title: 'Wall Street'})<-[r:ACTED_IN]-(actor)
RETURN r.role

Returns ACTED_IN roles for 'Wall Street'.

Table 98. Result

r.role

"Gordon Gekko"

"Carl Fox"

"Bud Fox"

Rows: 3

2.1.4. Relationships in depth

95

Inside a single pattern, relationships will only be matched once. You can read more about
this in Cypher path matching.

Relationship types with uncommon characters

Sometimes your database will have types with non-letter characters, or with spaces in them. Use `
(backtick) to quote these. To demonstrate this we can add an additional relationship between 'Charlie
Sheen' and 'Rob Reiner':

Query

MATCH
 (charlie:Person {name: 'Charlie Sheen'}),
 (rob:Person {name: 'Rob Reiner'})
CREATE (rob)-[:`TYPE INCLUDING A SPACE`]->(charlie)

Which leads to the following graph:

[alt] | MATCH-1.svg

Graph

Query

MATCH (n {name: 'Rob Reiner'})-[r:`TYPE INCLUDING A SPACE`]->()
RETURN type(r)

Returns a relationship type with spaces in it.

Table 99. Result

type(r)

"TYPE INCLUDING A SPACE"

Rows: 1

Multiple relationships

Relationships can be expressed by using multiple statements in the form of ()--(), or they can be strung
together, like this:

Query

MATCH (charlie {name: 'Charlie Sheen'})-[:ACTED_IN]->(movie)<-[:DIRECTED]-(director)
RETURN movie.title, director.name

Returns the movie 'Charlie Sheen' acted in and its director.

Table 100. Result

movie.title director.name

"Wall Street" "Oliver Stone"

96

movie.title director.name

Rows: 1

Variable length relationships

Nodes that are a variable number of relationship->node hops away can be found using the following
syntax: -[:TYPE*minHops..maxHops]->. minHops and maxHops are optional and default to 1 and infinity
respectively. When no bounds are given the dots may be omitted. The dots may also be omitted when
setting only one bound and this implies a fixed length pattern.

Query

MATCH (charlie {name: 'Charlie Sheen'})-[:ACTED_IN*1..3]-(movie:Movie)
RETURN movie.title

Returns all movies related to 'Charlie Sheen' by 1 to 3 hops.

Table 101. Result

movie.title

"Wall Street"

"The American President"

"The American President"

Rows: 3

Variable length relationships with multiple relationship types

Variable length relationships can be combined with multiple relationship types. In this case the
*minHops..maxHops applies to all relationship types as well as any combination of them.

Query

MATCH (charlie {name: 'Charlie Sheen'})-[:ACTED_IN|DIRECTED*2]-(person:Person)
RETURN person.name

Returns all people related to 'Charlie Sheen' by 2 hops with any combination of the relationship types
ACTED_IN and DIRECTED.

Table 102. Result

person.name

"Oliver Stone"

"Michael Douglas"

"Martin Sheen"

Rows: 3

97

Relationship variable in variable length relationships

When the connection between two nodes is of variable length, the list of relationships comprising the
connection can be returned using the following syntax:

Query

MATCH p = (actor {name: 'Charlie Sheen'})-[:ACTED_IN*2]-(co_actor)
RETURN relationships(p)

Returns a list of relationships.

Table 103. Result

relationships(p)

[:ACTED_IN[0]{role:"Bud Fox"},:ACTED_IN[2]{role:"Gordon Gekko"}]

[:ACTED_IN[0]{role:"Bud Fox"},:ACTED_IN[1]{role:"Carl Fox"}]

Rows: 2

Match with properties on a variable length path

A variable length relationship with properties defined on in it means that all relationships in the path must
have the property set to the given value. In this query, there are two paths between 'Charlie Sheen' and his
father 'Martin Sheen'. One of them includes a 'blocked' relationship and the other does not. In this case we
first alter the original graph by using the following query to add BLOCKED and UNBLOCKED relationships:

Query

MATCH
 (charlie:Person {name: 'Charlie Sheen'}),
 (martin:Person {name: 'Martin Sheen'})
CREATE (charlie)-[:X {blocked: false}]->(:UNBLOCKED)<-[:X {blocked: false}]-(martin)
CREATE (charlie)-[:X {blocked: true}]->(:BLOCKED)<-[:X {blocked: false}]-(martin)

This means that we are starting out with the following graph:

[alt] | MATCH-2.svg

Graph

Query

MATCH p = (charlie:Person)-[* {blocked:false}]-(martin:Person)
WHERE charlie.name = 'Charlie Sheen' AND martin.name = 'Martin Sheen'
RETURN p

Returns the paths between 'Charlie Sheen' and 'Martin Sheen' where all relationships have the blocked
property set to false.

Table 104. Result

p

(0)-[X,7]->(7)<-[X,8]-(1)

98

p

Rows: 1

Zero length paths

Using variable length paths that have the lower bound zero means that two variables can point to the
same node. If the path length between two nodes is zero, they are by definition the same node. Note that
when matching zero length paths the result may contain a match even when matching on a relationship
type not in use.

Query

MATCH (wallstreet:Movie {title: 'Wall Street'})-[*0..1]-(x)
RETURN x

Returns the movie itself as well as actors and directors one relationship away

Table 105. Result

x

Node[5]{title:"Wall Street"}

Node[3]{name:"Oliver Stone"}

Node[2]{name:"Michael Douglas"}

Node[1]{name:"Martin Sheen"}

Node[0]{name:"Charlie Sheen"}

Rows: 5

Named paths

If you want to return or filter on a path in your pattern graph, you can a introduce a named path.

Query

MATCH p = (michael {name: 'Michael Douglas'})-->()
RETURN p

Returns the two paths starting from 'Michael Douglas'

Table 106. Result

p

(2)-[ACTED_IN,2]->(5)

(2)-[ACTED_IN,5]->(6)

Rows: 2

99

Matching on a bound relationship

When your pattern contains a bound relationship, and that relationship pattern does not specify direction,
Cypher will try to match the relationship in both directions.

Query

MATCH (a)-[r]-(b)
WHERE id(r) = 0
RETURN a, b

This returns the two connected nodes, once as the start node, and once as the end node

Table 107. Result

a b

Node[0]{name:"Charlie Sheen"} Node[5]{title:"Wall Street"}

Node[5]{title:"Wall Street"} Node[0]{name:"Charlie Sheen"}

Rows: 2

2.1.5. Shortest path

Single shortest path

Finding a single shortest path between two nodes is as easy as using the shortestPath function. It is done
like this:

Query

MATCH
 (martin:Person {name: 'Martin Sheen'}),
 (oliver:Person {name: 'Oliver Stone'}),
 p = shortestPath((martin)-[*..15]-(oliver))
RETURN p

This means: find a single shortest path between two nodes, as long as the path is max 15 relationships
long. Within the parentheses you define a single link of a path — the starting node, the connecting
relationship and the end node. Characteristics describing the relationship like relationship type, max hops
and direction are all used when finding the shortest path. If there is a WHERE clause following the match of a
shortestPath, relevant predicates will be included in the shortestPath. If the predicate is a none() or all()
on the relationship elements of the path, it will be used during the search to improve performance (see
Shortest path planning).

Table 108. Result

p

(1)-[ACTED_IN,1]->(5)<-[DIRECTED,3]-(3)

Rows: 1

100

Single shortest path with predicates

Predicates used in the WHERE clause that apply to the shortest path pattern are evaluated before deciding
what the shortest matching path is.

Query

MATCH
 (charlie:Person {name: 'Charlie Sheen'}),
 (martin:Person {name: 'Martin Sheen'}),
 p = shortestPath((charlie)-[*]-(martin))
WHERE none(r IN relationships(p) WHERE type(r) = 'FATHER')
RETURN p

This query will find the shortest path between 'Charlie Sheen' and 'Martin Sheen', and the WHERE predicate
will ensure that we do not consider the father/son relationship between the two.

Table 109. Result

p

(0)-[ACTED_IN,0]->(5)<-[ACTED_IN,1]-(1)

Rows: 1

All shortest paths

Finds all the shortest paths between two nodes.

Query

MATCH
 (martin:Person {name: 'Martin Sheen'}),
 (michael:Person {name: 'Michael Douglas'}),
 p = allShortestPaths((martin)-[*]-(michael))
RETURN p

Finds the two shortest paths between 'Martin Sheen' and 'Michael Douglas'.

Table 110. Result

p

(1)-[ACTED_IN,1]->(5)<-[ACTED_IN,2]-(2)

(1)-[ACTED_IN,4]->(6)<-[ACTED_IN,5]-(2)

Rows: 2

2.1.6. Get node or relationship by id

Node by id

Searching for nodes by id can be done with the id() function in a predicate.

101

Neo4j reuses its internal ids when nodes and relationships are deleted. This means that
applications using, and relying on internal Neo4j ids, are brittle or at risk of making
mistakes. It is therefore recommended to rather use application-generated ids.

Query

MATCH (n)
WHERE id(n) = 0
RETURN n

The corresponding node is returned.

Table 111. Result

n

Node[0]{name:"Charlie Sheen"}

Rows: 1

Relationship by id

Search for relationships by id can be done with the id() function in a predicate.

This is not the recommended practice. See Node by id for more information on the use of Neo4j ids.

Query

MATCH ()-[r]->()
WHERE id(r) = 0
RETURN r

The relationship with id 0 is returned.

Table 112. Result

r

:ACTED_IN[0]{role:"Bud Fox"}

Rows: 1

Multiple nodes by id

Multiple nodes are selected by specifying them in an IN clause.

Query

MATCH (n)
WHERE id(n) IN [0, 3, 5]
RETURN n

This returns the nodes listed in the IN expression.

Table 113. Result

102

n

Node[0]{name:"Charlie Sheen"}

Node[3]{name:"Oliver Stone"}

Node[5]{title:"Wall Street"}

Rows: 3

2.2. OPTIONAL MATCH
• Introduction

• Optional relationships

• Properties on optional elements

• Optional typed and named relationship

2.2.1. Introduction

OPTIONAL MATCH matches patterns against your graph database, just like MATCH does. The difference is that
if no matches are found, OPTIONAL MATCH will use a null for missing parts of the pattern. OPTIONAL MATCH
could be considered the Cypher equivalent of the outer join in SQL.

Either the whole pattern is matched, or nothing is matched. Remember that WHERE is part of the pattern
description, and the predicates will be considered while looking for matches, not after. This matters
especially in the case of multiple (OPTIONAL) MATCH clauses, where it is crucial to put WHERE together with the
MATCH it belongs to.

 To understand the patterns used in the OPTIONAL MATCH clause, read Patterns.

The following graph is used for the examples below:

[alt] | OPTIONAL MATCH-1.svg

Graph

2.2.2. Optional relationships

If a relationship is optional, use the OPTIONAL MATCH clause. This is similar to how a SQL outer join works. If
the relationship is there, it is returned. If it’s not, null is returned in its place.

Query

MATCH (a:Movie {title: 'Wall Street'})
OPTIONAL MATCH (a)-->(x)
RETURN x

Returns null, since the node has no outgoing relationships.

Table 114. Result

103

x

<null>

Rows: 1

2.2.3. Properties on optional elements

Returning a property from an optional element that is null will also return null.

Query

MATCH (a:Movie {title: 'Wall Street'})
OPTIONAL MATCH (a)-->(x)
RETURN x, x.name

Returns the element x (null in this query), and null as its name.

Table 115. Result

x x.name

<null> <null>

Rows: 1

2.2.4. Optional typed and named relationship

Just as with a normal relationship, you can decide which variable it goes into, and what relationship type
you need.

Query

MATCH (a:Movie {title: 'Wall Street'})
OPTIONAL MATCH (a)-[r:ACTS_IN]->()
RETURN a.title, r

This returns the title of the node, 'Wall Street', and, since the node has no outgoing ACTS_IN relationships,
null is returned for the relationship denoted by r.

Table 116. Result

a.title r

"Wall Street" <null>

Rows: 1

2.3. RETURN
• Introduction

• Return nodes

• Return relationships

104

• Return property

• Return all elements

• Variable with uncommon characters

• Column alias

• Optional properties

• Other expressions

• Unique results

2.3.1. Introduction

In the RETURN part of your query, you define which parts of the pattern you are interested in. It can be
nodes, relationships, or properties on these.

If what you actually want is the value of a property, make sure to not return the full
node/relationship. This will improve performance.

[alt] | RETURN-1.svg

Graph

2.3.2. Return nodes

To return a node, list it in the RETURN statement.

Query

MATCH (n {name: 'B'})
RETURN n

The example will return the node.

Table 117. Result

n

Node[1]{name:"B"}

Rows: 1

2.3.3. Return relationships

To return a relationship, just include it in the RETURN list.

Query

MATCH (n {name: 'A'})-[r:KNOWS]->(c)
RETURN r

The relationship is returned by the example.

105

Table 118. Result

r

:KNOWS[0]{}

Rows: 1

2.3.4. Return property

To return a property, use the dot separator, like this:

Query

MATCH (n {name: 'A'})
RETURN n.name

The value of the property name gets returned.

Table 119. Result

n.name

"A"

Rows: 1

2.3.5. Return all elements

When you want to return all nodes, relationships and paths found in a query, you can use the * symbol.

Query

MATCH p = (a {name: 'A'})-[r]->(b)
RETURN *

This returns the two nodes, the relationship and the path used in the query.

Table 120. Result

a b p r

Node[0]{name:"A",age:55,ha
ppy:"Yes!"}

Node[1]{name:"B"} (0)-[BLOCKS,1]->(1) :BLOCKS[1]{}

Node[0]{name:"A",age:55,ha
ppy:"Yes!"}

Node[1]{name:"B"} (0)-[KNOWS,0]->(1) :KNOWS[0]{}

Rows: 2

2.3.6. Variable with uncommon characters

To introduce a placeholder that is made up of characters that are not contained in the English alphabet,
you can use the ` to enclose the variable, like this:

106

Query

MATCH (`This isn\'t a common variable`)
WHERE `This isn\'t a common variable`.name = 'A'
RETURN `This isn\'t a common variable`.happy

The node with name "A" is returned.

Table 121. Result

`This isn\'t a common variable`.happy

"Yes!"

Rows: 1

2.3.7. Column alias

If the name of the column should be different from the expression used, you can rename it by using AS
<new name>.

Query

MATCH (a {name: 'A'})
RETURN a.age AS SomethingTotallyDifferent

Returns the age property of a node, but renames the column.

Table 122. Result

SomethingTotallyDifferent

55

Rows: 1

2.3.8. Optional properties

If a property might or might not be there, you can still select it as usual. It will be treated as null if it is
missing.

Query

MATCH (n)
RETURN n.age

This example returns the age when the node has that property, or null if the property is not there.

Table 123. Result

n.age

55

<null>

107

n.age

Rows: 2

2.3.9. Other expressions

Any expression can be used as a return item — literals, predicates, properties, functions, and everything
else.

Query

MATCH (a {name: 'A'})
RETURN a.age > 30, "I'm a literal", (a)-->()

Returns a predicate, a literal and function call with a pattern expression parameter.

Table 124. Result

a.age > 30 "I'm a literal" (a)-->()

true "I'm a literal" [(0)-[BLOCKS,1]->(1),(0)-[KNOWS,0]-
>(1)]

Rows: 1

2.3.10. Unique results

DISTINCT retrieves only unique rows depending on the columns that have been selected to output.

Query

MATCH (a {name: 'A'})-->(b)
RETURN DISTINCT b

The node named "B" is returned by the query, but only once.

Table 125. Result

b

Node[1]{name:"B"}

Rows: 1

2.4. WITH

It is important to note that WITH affects variables in scope. Any variables not included in
the WITH clause are not carried over to the rest of the query.

• Introduction

• Filter on aggregate function results

• Sort results before using collect on them

108

• Limit branching of a path search

2.4.1. Introduction

Using WITH, you can manipulate the output before it is passed on to the following query parts. The
manipulations can be of the shape and/or number of entries in the result set.

One common usage of WITH is to limit the number of entries that are then passed on to other MATCH clauses.
By combining ORDER BY and LIMIT, it’s possible to get the top X entries by some criteria, and then bring in
additional data from the graph.

Another use is to filter on aggregated values. WITH is used to introduce aggregates which can then be used
in predicates in WHERE. These aggregate expressions create new bindings in the results. WITH can also, like
RETURN, alias expressions that are introduced into the results using the aliases as the binding name.

WITH is also used to separate reading from updating of the graph. Every part of a query must be either
read-only or write-only. When going from a writing part to a reading part, the switch must be done with a
WITH clause.

[alt] | WITH-1.svg

Graph

2.4.2. Filter on aggregate function results

Aggregated results have to pass through a WITH clause to be able to filter on.

Query

MATCH (david {name: 'David'})--(otherPerson)-->()
WITH otherPerson, count(*) AS foaf
WHERE foaf > 1
RETURN otherPerson.name

The name of the person connected to 'David' with the at least more than one outgoing relationship will be
returned by the query.

Table 126. Result

otherPerson.name

"Anders"

Rows: 1

2.4.3. Sort results before using collect on them

You can sort your results before passing them to collect, thus sorting the resulting list.

109

Query

MATCH (n)
WITH n
ORDER BY n.name DESC
LIMIT 3
RETURN collect(n.name)

A list of the names of people in reverse order, limited to 3, is returned in a list.

Table 127. Result

collect(n.name)

["George","David","Caesar"]

Rows: 1

2.4.4. Limit branching of a path search

You can match paths, limit to a certain number, and then match again using those paths as a base, as well
as any number of similar limited searches.

Query

MATCH (n {name: 'Anders'})--(m)
WITH m
ORDER BY m.name DESC
LIMIT 1
MATCH (m)--(o)
RETURN o.name

Starting at 'Anders', find all matching nodes, order by name descending and get the top result, then find all
the nodes connected to that top result, and return their names.

Table 128. Result

o.name

"Anders"

"Bossman"

Rows: 2

2.5. UNWIND
• Introduction

• Unwinding a list

• Creating a distinct list

• Using UNWIND with any expression returning a list

• Using UNWIND with a list of lists

• Using UNWIND with an empty list

• Using UNWIND with an expression that is not a list

110

• Creating nodes from a list parameter

2.5.1. Introduction

With UNWIND, you can transform any list back into individual rows. These lists can be parameters that were
passed in, previously collect -ed result or other list expressions.

One common usage of unwind is to create distinct lists. Another is to create data from parameter lists that
are provided to the query.

UNWIND requires you to specify a new name for the inner values.

2.5.2. Unwinding a list

We want to transform the literal list into rows named x and return them.

Query

UNWIND [1, 2, 3, null] AS x
RETURN x, 'val' AS y

Each value of the original list — including null — is returned as an individual row.

Table 129. Result

x y

1 "val"

2 "val"

3 "val"

<null> "val"

Rows: 4

2.5.3. Creating a distinct list

We want to transform a list of duplicates into a set using DISTINCT.

Query

WITH [1, 1, 2, 2] AS coll
UNWIND coll AS x
WITH DISTINCT x
RETURN collect(x) AS setOfVals

Each value of the original list is unwound and passed through DISTINCT to create a unique set.

Table 130. Result

setOfVals

[1,2]

111

setOfVals

Rows: 1

2.5.4. Using UNWIND with any expression returning a list

Any expression that returns a list may be used with UNWIND.

Query

WITH
 [1, 2] AS a,
 [3, 4] AS b
UNWIND (a + b) AS x
RETURN x

The two lists — a and b — are concatenated to form a new list, which is then operated upon by UNWIND.

Table 131. Result

x

1

2

3

4

Rows: 4

2.5.5. Using UNWIND with a list of lists

Multiple UNWIND clauses can be chained to unwind nested list elements.

Query

WITH [[1, 2], [3, 4], 5] AS nested
UNWIND nested AS x
UNWIND x AS y
RETURN y

The first UNWIND results in three rows for x, each of which contains an element of the original list (two of
which are also lists); namely, [1, 2], [3, 4] and 5. The second UNWIND then operates on each of these rows
in turn, resulting in five rows for y.

Table 132. Result

y

1

2

3

4

5

112

y

Rows: 5

2.5.6. Using UNWIND with an empty list

Using an empty list with UNWIND will produce no rows, irrespective of whether or not any rows existed
beforehand, or whether or not other values are being projected.

Essentially, UNWIND [] reduces the number of rows to zero, and thus causes the query to cease its
execution, returning no results. This has value in cases such as UNWIND v, where v is a variable from an
earlier clause that may or may not be an empty list — when it is an empty list, this will behave just as a
MATCH that has no results.

Query

UNWIND [] AS empty
RETURN empty, 'literal_that_is_not_returned'

Table 133. Result

(empty result)

Rows: 0

To avoid inadvertently using UNWIND on an empty list, CASE may be used to replace an empty list with a
null:

WITH [] AS list
UNWIND
 CASE
 WHEN list = [] THEN [null]
 ELSE list
 END AS emptylist
RETURN emptylist

2.5.7. Using UNWIND with an expression that is not a list

Using UNWIND on an expression that does not return a list, will return the same result as using UNWIND on a
list that just contains that expression. As an example, UNWIND 5 is effectively equivalent to UNWIND[5]. The
exception to this is when the expression returns null — this will reduce the number of rows to zero,
causing it to cease its execution and return no results.

Query

UNWIND null AS x
RETURN x, 'some_literal'

Table 134. Result

(empty result)

Rows: 0

113

2.5.8. Creating nodes from a list parameter

Create a number of nodes and relationships from a parameter-list without using FOREACH.

Parameters

{
 "events" : [{
 "year" : 2014,
 "id" : 1
 }, {
 "year" : 2014,
 "id" : 2
 }]
}

Query

UNWIND $events AS event
MERGE (y:Year {year: event.year})
MERGE (y)<-[:IN]-(e:Event {id: event.id})
RETURN e.id AS x ORDER BY x

Each value of the original list is unwound and passed through MERGE to find or create the nodes and
relationships.

Table 135. Result

x

1

2

Rows: 2
Nodes created: 3
Relationships created: 2
Properties set: 3
Labels added: 3

2.6. WHERE
• Introduction

• Basic usage

◦ Boolean operations

◦ Filter on node label

◦ Filter on node property

◦ Filter on relationship property

◦ Filter on dynamically-computed property

◦ Property existence checking

• String matching

◦ Prefix string search using STARTS WITH

114

◦ Suffix string search using ENDS WITH

◦ Substring search using CONTAINS

◦ String matching negation

• Regular expressions

◦ Matching using regular expressions

◦ Escaping in regular expressions

◦ Case-insensitive regular expressions

• Using path patterns in WHERE

◦ Filter on patterns

◦ Filter on patterns using NOT

◦ Filter on patterns with properties

◦ Filter on relationship type

• Using existential subqueries in WHERE

◦ Simple existential subquery

◦ Existential subquery with WHERE clause

◦ Nesting existential subqueries

• Lists

◦ IN operator

• Missing properties and values

◦ Default to false if property is missing

◦ Default to true if property is missing

◦ Filter on null

• Using ranges

◦ Simple range

◦ Composite range

2.6.1. Introduction

WHERE is not a clause in its own right — rather, it’s part of MATCH, OPTIONAL MATCH and WITH.

In the case of WITH, WHERE simply filters the results.

For MATCH and OPTIONAL MATCH on the other hand, WHERE adds constraints to the patterns described. It
should not be seen as a filter after the matching is finished.

In the case of multiple MATCH / OPTIONAL MATCH clauses, the predicate in WHERE is always a
part of the patterns in the directly preceding MATCH / OPTIONAL MATCH. Both results and
performance may be impacted if the WHERE is put inside the wrong MATCH clause.

115

 Indexes may be used to optimize queries using WHERE in a variety of cases.

The following graph is used for the examples below:

[alt] | WHERE-1.svg

Graph

2.6.2. Basic usage

Boolean operations

You can use the boolean operators AND, OR, XOR and NOT. See Working with null for more information on
how this works with null.

Query

MATCH (n:Person)
WHERE n.name = 'Peter' XOR (n.age < 30 AND n.name = 'Timothy') OR NOT (n.name = 'Timothy' OR n.name =
'Peter')
RETURN n.name, n.age

Table 136. Result

n.name n.age

"Andy" 36

"Timothy" 25

"Peter" 35

Rows: 3

Filter on node label

To filter nodes by label, write a label predicate after the WHERE keyword using WHERE n:foo.

Query

MATCH (n)
WHERE n:Swedish
RETURN n.name, n.age

The name and age for the 'Andy' node will be returned.

Table 137. Result

n.name n.age

"Andy" 36

Rows: 1

116

Filter on node property

To filter on a node property, write your clause after the WHERE keyword.

Query

MATCH (n:Person)
WHERE n.age < 30
RETURN n.name, n.age

The name and age values for the 'Timothy' node are returned because he is less than 30 years of age.

Table 138. Result

n.name n.age

"Timothy" 25

Rows: 1

Filter on relationship property

To filter on a relationship property, write your clause after the WHERE keyword.

Query

MATCH (n:Person)-[k:KNOWS]->(f)
WHERE k.since < 2000
RETURN f.name, f.age, f.email

The name, age and email values for the 'Peter' node are returned because Andy has known him since
before 2000.

Table 139. Result

f.name f.age f.email

"Peter" 35 "peter_n@example.com"

Rows: 1

Filter on dynamically-computed node property

To filter on a property using a dynamically computed name, use square bracket syntax.

Query

WITH 'AGE' AS propname
MATCH (n:Person)
WHERE n[toLower(propname)] < 30
RETURN n.name, n.age

The name and age values for the 'Timothy' node are returned because he is less than 30 years of age.

Table 140. Result

117

n.name n.age

"Timothy" 25

Rows: 1

Property existence checking

Use the IS NOT NULL predicate to only include nodes or relationships in which a property exists.

Query

MATCH (n:Person)
WHERE n.belt IS NOT NULL
RETURN n.name, n.belt

The name and belt for the 'Andy' node are returned because he is the only one with a belt property.

The exists() function has been deprecated for property existence checking and has
been superseded by IS NOT NULL.

Table 141. Result

n.name n.belt

"Andy" "white"

Rows: 1

Usage with WITH

As WHERE is not considered a clause in its own right, its scope is not limited by a WITH directly before it.

Query

MATCH (n:Person)
WITH n.name as name
WHERE n.age = 25
RETURN name

The name for the 'Timothy' node is returned because the WHERE clause still acts as a filter on the MATCH. The
WITH reduces the scope for the rest of the query moving forward. In this case 'name' is now the only
variable in scope for the RETURN clause.

Table 142. Result

name

"Timothy"

Rows: 1

2.6.3. String matching

The prefix and suffix of a string can be matched using STARTS WITH and ENDS WITH. To undertake a

118

substring search - i.e. match regardless of location within a string - use CONTAINS. The matching is case-
sensitive. Attempting to use these operators on values which are not strings will return null.

Prefix string search using STARTS WITH

The STARTS WITH operator is used to perform case-sensitive matching on the beginning of a string.

Query

MATCH (n:Person)
WHERE n.name STARTS WITH 'Pet'
RETURN n.name, n.age

The name and age for the 'Peter' node are returned because his name starts with 'Pet'.

Table 143. Result

n.name n.age

"Peter" 35

Rows: 1

Suffix string search using ENDS WITH

The ENDS WITH operator is used to perform case-sensitive matching on the ending of a string.

Query

MATCH (n:Person)
WHERE n.name ENDS WITH 'ter'
RETURN n.name, n.age

The name and age for the 'Peter' node are returned because his name ends with 'ter'.

Table 144. Result

n.name n.age

"Peter" 35

Rows: 1

Substring search using CONTAINS

The CONTAINS operator is used to perform case-sensitive matching regardless of location within a string.

Query

MATCH (n:Person)
WHERE n.name CONTAINS 'ete'
RETURN n.name, n.age

The name and age for the 'Peter' node are returned because his name contains with 'ete'.

Table 145. Result

119

n.name n.age

"Peter" 35

Rows: 1

String matching negation

Use the NOT keyword to exclude all matches on given string from your result:

Query

MATCH (n:Person)
WHERE NOT n.name ENDS WITH 'y'
RETURN n.name, n.age

The name and age for the 'Peter' node are returned because his name does not end with 'y'.

Table 146. Result

n.name n.age

"Peter" 35

Rows: 1

2.6.4. Regular expressions

Cypher supports filtering using regular expressions. The regular expression syntax is inherited from the
Java regular expressions. This includes support for flags that change how strings are matched, including
case-insensitive (?i), multiline (?m) and dotall (?s). Flags are given at the beginning of the regular
expression, for example MATCH (n) WHERE n.name =~ '(?i)Lon.*' RETURN n will return nodes with name
'London' or with name 'LonDoN'.

Matching using regular expressions

You can match on regular expressions by using =~ 'regexp', like this:

Query

MATCH (n:Person)
WHERE n.name =~ 'Tim.*'
RETURN n.name, n.age

The name and age for the 'Timothy' node are returned because his name starts with 'Tim'.

Table 147. Result

n.name n.age

"Timothy" 25

Rows: 1

120

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html

Escaping in regular expressions

Characters like . or * have special meaning in a regular expression. To use these as ordinary characters,
without special meaning, escape them.

Query

MATCH (n:Person)
WHERE n.email =~ '.*\\.com'
RETURN n.name, n.age, n.email

The name, age and email for the 'Peter' node are returned because his email ends with '.com'.

Table 148. Result

n.name n.age n.email

"Peter" 35 "peter_n@example.com"

Rows: 1

Case-insensitive regular expressions

By pre-pending a regular expression with (?i), the whole expression becomes case-insensitive.

Query

MATCH (n:Person)
WHERE n.name =~ '(?i)AND.*'
RETURN n.name, n.age

The name and age for the 'Andy' node are returned because his name starts with 'AND' irrespective of
casing.

Table 149. Result

n.name n.age

"Andy" 36

Rows: 1

2.6.5. Using path patterns in WHERE

Filter on patterns

Patterns are expressions in Cypher, expressions that return a list of paths. List expressions are also
predicates — an empty list represents false, and a non-empty represents true.

So, patterns are not only expressions, they are also predicates. The only limitation to your pattern is that
you must be able to express it in a single path. You cannot use commas between multiple paths like you do
in MATCH. You can achieve the same effect by combining multiple patterns with AND.

Note that you cannot introduce new variables here. Although it might look very similar to the MATCH

121

patterns, the WHERE clause is all about eliminating matched paths. MATCH (a)-[*]->(b) is very different
from WHERE (a)-[*]->(b). The first will produce a path for every path it can find between a and b, whereas
the latter will eliminate any matched paths where a and b do not have a directed relationship chain
between them.

Query

MATCH
 (timothy:Person {name: 'Timothy'}),
 (other:Person)
WHERE other.name IN ['Andy', 'Peter'] AND (other)-->(timothy)
RETURN other.name, other.age

The name and age for nodes that have an outgoing relationship to the 'Timothy' node are returned.

Table 150. Result

other.name other.age

"Andy" 36

Rows: 1

Filter on patterns using NOT

The NOT operator can be used to exclude a pattern.

Query

MATCH
 (person:Person),
 (peter:Person {name: 'Peter'})
WHERE NOT (person)-->(peter)
RETURN person.name, person.age

Name and age values for nodes that do not have an outgoing relationship to the 'Peter' node are returned.

Table 151. Result

person.name person.age

"Timothy" 25

"Peter" 35

Rows: 2

Filter on patterns with properties

You can also add properties to your patterns:

Query

MATCH (n:Person)
WHERE (n)-[:KNOWS]-({name: 'Timothy'})
RETURN n.name, n.age

Finds all name and age values for nodes that have a KNOWS relationship to a node with the name 'Timothy'.

122

Table 152. Result

n.name n.age

"Andy" 36

Rows: 1

Filter on relationship type

You can put the exact relationship type in the MATCH pattern, but sometimes you want to be able to do
more advanced filtering on the type. You can use the special property type to compare the type with
something else. In this example, the query does a regular expression comparison with the name of the
relationship type.

Query

MATCH (n:Person)-[r]->()
WHERE n.name='Andy' AND type(r) =~ 'K.*'
RETURN type(r), r.since

This returns all relationships having a type whose name starts with 'K'.

Table 153. Result

type(r) r.since

"KNOWS" 1999

"KNOWS" 2012

Rows: 2

An existential subquery can be used to find out if a specified pattern exists at least once in the data. It can
be used in the same way as a path pattern but it allows you to use MATCH and WHERE clauses internally. A
subquery has a scope, as indicated by the opening and closing braces, { and }. Any variable that is defined
in the outside scope can be referenced inside the subquery’s own scope. Variables introduced inside the
subquery are not part of the outside scope and therefore can’t be accessed on the outside. If the subquery
evaluates even once to anything that is not null, the whole expression will become true. This also means
that the system only needs to calculate the first occurrence where the subquery evaluates to something
that is not null and can skip the rest of the work.

Syntax:

EXISTS {
 MATCH [Pattern]
 WHERE [Expression]
}

It is worth noting that the MATCH keyword can be omitted in subqueries and that the WHERE clause is
optional.

123

2.6.6. Using existential subqueries in WHERE

Simple existential subquery

Variables introduced by the outside scope can be used in the inner MATCH clause. The following example
shows this:

Query

MATCH (person:Person)
WHERE EXISTS {
 MATCH (person)-[:HAS_DOG]->(:Dog)
}
RETURN person.name AS name

Table 154. Result

name

"Andy"

"Peter"

Rows: 2

Existential subquery with WHERE clause

A WHERE clause can be used in conjunction to the MATCH. Variables introduced by the MATCH clause and the
outside scope can be used in this scope.

Query

MATCH (person:Person)
WHERE EXISTS {
 MATCH (person)-[:HAS_DOG]->(dog:Dog)
 WHERE person.name = dog.name
}
RETURN person.name AS name

Table 155. Result

name

"Andy"

Rows: 1

Nesting existential subqueries

Existential subqueries can be nested like the following example shows. The nesting also affects the
scopes. That means that it is possible to access all variables from inside the subquery which are either on
the outside scope or defined in the very same subquery.

124

Query

MATCH (person:Person)
WHERE EXISTS {
 MATCH (person)-[:HAS_DOG]->(dog:Dog)
 WHERE EXISTS {
 MATCH (dog)-[:HAS_TOY]->(toy:Toy)
 WHERE toy.name = 'Banana'
 }
}
RETURN person.name AS name

Table 156. Result

name

"Peter"

Rows: 1

2.6.7. Lists

IN operator

To check if an element exists in a list, you can use the IN operator.

Query

MATCH (a:Person)
WHERE a.name IN ['Peter', 'Timothy']
RETURN a.name, a.age

This query shows how to check if a property exists in a literal list.

Table 157. Result

a.name a.age

"Timothy" 25

"Peter" 35

Rows: 2

2.6.8. Missing properties and values

Default to false if property is missing

As missing properties evaluate to null, the comparison in the example will evaluate to false for nodes
without the belt property.

Query

MATCH (n:Person)
WHERE n.belt = 'white'
RETURN n.name, n.age, n.belt

125

Only the name, age and belt values of nodes with white belts are returned.

Table 158. Result

n.name n.age n.belt

"Andy" 36 "white"

Rows: 1

Default to true if property is missing

If you want to compare a property on a node or relationship, but only if it exists, you can compare the
property against both the value you are looking for and null, like:

Query

MATCH (n:Person)
WHERE n.belt = 'white' OR n.belt IS NULL
RETURN n.name, n.age, n.belt
ORDER BY n.name

This returns all values for all nodes, even those without the belt property.

Table 159. Result

n.name n.age n.belt

"Andy" 36 "white"

"Peter" 35 <null>

"Timothy" 25 <null>

Rows: 3

Filter on null

Sometimes you might want to test if a value or a variable is null. This is done just like SQL does it, using
IS NULL. Also like SQL, the negative is IS NOT NULL, although NOT(IS NULL x) also works.

Query

MATCH (person:Person)
WHERE person.name = 'Peter' AND person.belt IS NULL
RETURN person.name, person.age, person.belt

The name and age values for nodes that have name 'Peter' but no belt property are returned.

Table 160. Result

person.name person.age person.belt

"Peter" 35 <null>

Rows: 1

126

2.6.9. Using ranges

Simple range

To check for an element being inside a specific range, use the inequality operators <, <=, >=, >.

Query

MATCH (a:Person)
WHERE a.name >= 'Peter'
RETURN a.name, a.age

The name and age values of nodes having a name property lexicographically greater than or equal to
'Peter' are returned.

Table 161. Result

a.name a.age

"Timothy" 25

"Peter" 35

Rows: 2

Composite range

Several inequalities can be used to construct a range.

Query

MATCH (a:Person)
WHERE a.name > 'Andy' AND a.name < 'Timothy'
RETURN a.name, a.age

The name and age values of nodes having a name property lexicographically between 'Andy' and
'Timothy' are returned.

Table 162. Result

a.name a.age

"Peter" 35

Rows: 1

2.7. ORDER BY
• Introduction

• Order nodes by property

• Order nodes by multiple properties

• Order nodes by id

• Order nodes by expression

127

• Order nodes in descending order

• Ordering null

• Ordering in a WITH clause

2.7.1. Introduction

ORDER BY relies on comparisons to sort the output, see Ordering and comparison of values. You can sort on
many different values, e.g. node/relationship properties, the node/relationship ids, or on most expressions.
If you do not specify what to sort on, there is a risk that the results are arbitrarily sorted and therefore it is
best practice to be specific when using ORDER BY.

In terms of scope of variables, ORDER BY follows special rules, depending on if the projecting RETURN or WITH
clause is either aggregating or DISTINCT. If it is an aggregating or DISTINCT projection, only the variables
available in the projection are available. If the projection does not alter the output cardinality (which
aggregation and DISTINCT do), variables available from before the projecting clause are also available.
When the projection clause shadows already existing variables, only the new variables are available.

Lastly, it is not allowed to use aggregating expressions in the ORDER BY sub-clause if they are not also
listed in the projecting clause. This last rule is to make sure that ORDER BY does not change the results, only
the order of them.

The performance of Cypher queries using ORDER BY on node properties can be influenced by the existence
and use of an index for finding the nodes. If the index can provide the nodes in the order requested in the
query, Cypher can avoid the use of an expensive Sort operation. Read more about this capability in The
use of indexes.

The following graph is used for the examples below:

[alt] | ORDER BY-1.svg

Graph

Strings that contain special characters can have inconsistent or non-deterministic
ordering in Neo4j. For details, see Sorting of special characters.

2.7.2. Order nodes by property

ORDER BY is used to sort the output.

Query

MATCH (n)
RETURN n.name, n.age
ORDER BY n.name

The nodes are returned, sorted by their name.

Table 163. Result

128

n.name n.age

"A" 34

"B" 36

"C" 32

Rows: 3

2.7.3. Order nodes by multiple properties

You can order by multiple properties by stating each variable in the ORDER BY clause. Cypher will sort the
result by the first variable listed, and for equals values, go to the next property in the ORDER BY clause, and
so on.

Query

MATCH (n)
RETURN n.name, n.age
ORDER BY n.age, n.name

This returns the nodes, sorted first by their age, and then by their name.

Table 164. Result

n.name n.age

"C" 32

"A" 34

"B" 36

Rows: 3

2.7.4. Order nodes by id

ORDER BY is used to sort the output.

Query

MATCH (n)
RETURN n.name, n.age
ORDER BY id(n)

The nodes are returned, sorted by their internal id.

Table 165. Result

n.name n.age

"A" 34

"B" 36

"C" 32

Rows: 3

129

Keep in mind that Neo4j reuses its internal ids when nodes and relationships are deleted.
This means that applications using, and relying on, internal Neo4j ids, are brittle or at risk
of making mistakes. It is therefore recommended to use application-generated ids
instead.

2.7.5. Order nodes by expression

ORDER BY is used to sort the output.

Query

MATCH (n)
RETURN n.name, n.age, n.length
ORDER BY keys(n)

The nodes are returned, sorted by their properties.

Table 166. Result

n.name n.age n.length

"B" 36 <null>

"A" 34 170

"C" 32 185

Rows: 3

2.7.6. Order nodes in descending order

By adding DESC[ENDING] after the variable to sort on, the sort will be done in reverse order.

Query

MATCH (n)
RETURN n.name, n.age
ORDER BY n.name DESC

The example returns the nodes, sorted by their name in reverse order.

Table 167. Result

n.name n.age

"C" 32

"B" 36

"A" 34

Rows: 3

2.7.7. Ordering null

When sorting the result set, null will always come at the end of the result set for ascending sorting, and

130

first when doing descending sort.

Query

MATCH (n)
RETURN n.length, n.name, n.age
ORDER BY n.length

The nodes are returned sorted by the length property, with a node without that property last.

Table 168. Result

n.length n.name n.age

170 "A" 34

185 "C" 32

<null> "B" 36

Rows: 3

2.7.8. Ordering in a WITH clause

When ORDER BY is present on a WITH clause , the immediately following clause will receive records in the
specified order. The order is not guaranteed to be retained after the following clause, unless that also has
an ORDER BY subclause. The ordering guarantee can be useful to exploit by operations which depend on
the order in which they consume values. For example, this can be used to control the order of items in the
list produced by the collect() aggregating function. The MERGE and SET clauses also have ordering
dependencies which can be controlled this way.

Query

MATCH (n)
WITH n ORDER BY n.age
RETURN collect(n.name) AS names

The list of names built from the collect aggregating function contains the names in order of the age
property.

Table 169. Result

names

["C","A","B"]

Rows: 1

2.8. SKIP
• Introduction

• Skip first three rows

• Return middle two rows

• Using an expression with SKIP to return a subset of the rows

131

2.8.1. Introduction

By using SKIP, the result set will get trimmed from the top. Please note that no guarantees are made on
the order of the result unless the query specifies the ORDER BY clause. SKIP accepts any expression that
evaluates to a positive integer — however the expression cannot refer to nodes or relationships.

[alt] | SKIP-1.svg

Graph

2.8.2. Skip first three rows

To return a subset of the result, starting from the fourth result, use the following syntax:

Query

MATCH (n)
RETURN n.name
ORDER BY n.name
SKIP 3

The first three nodes are skipped, and only the last two are returned in the result.

Table 170. Result

n.name

"D"

"E"

Rows: 2

2.8.3. Return middle two rows

To return a subset of the result, starting from somewhere in the middle, use this syntax:

Query

MATCH (n)
RETURN n.name
ORDER BY n.name
SKIP 1
LIMIT 2

Two nodes from the middle are returned.

Table 171. Result

n.name

"B"

"C"

Rows: 2

132

2.8.4. Using an expression with SKIP to return a subset of the rows

Skip accepts any expression that evaluates to a positive integer as long as it is not referring to any external
variables:

Query

MATCH (n)
RETURN n.name
ORDER BY n.name
SKIP 1 + toInteger(3*rand())

Skip the first row plus randomly 0, 1, or 2. So randomly skip 1, 2, or 3 rows.

Table 172. Result

n.name

"D"

"E"

Rows: 2

2.9. LIMIT
• Introduction

• Return a subset of the rows

• Using an expression with LIMIT to return a subset of the rows

• LIMIT will not stop side effects

2.9.1. Introduction

LIMIT accepts any expression that evaluates to a positive integer — however the expression cannot refer
to nodes or relationships.

[alt] | LIMIT-1.svg

Graph

2.9.2. Return a limited subset of the rows

To return a limited subset of the rows, use this syntax:

Query

MATCH (n)
RETURN n.name
ORDER BY n.name
LIMIT 3

Limit to 3 rows by the example query.

133

Table 173. Result

n.name

"A"

"B"

"C"

Rows: 3

2.9.3. Using an expression with LIMIT to return a subset of the rows

Limit accepts any expression that evaluates to a positive integer as long as it is not referring to any
external variables:

Query

MATCH (n)
RETURN n.name
ORDER BY n.name
LIMIT 1 + toInteger(3 * rand())

Limit 1 row plus randomly 0, 1, or 2. So randomly limit to 1, 2, or 3 rows.

Table 174. Result

n.name

"A"

"B"

Rows: 2

2.9.4. LIMIT will not stop side effects

The use of LIMIT in a query will not stop side effects, like CREATE, DELETE or SET, from happening if the limit
is in the same query part as the side effect. This behaviour was undefined in versions before 4.3.

Query

CREATE (n)
RETURN n
LIMIT 0

This query returns nothing, but creates one node:

Table 175. Result

(empty result)

Rows: 0
Nodes created: 1

134

Query

MATCH (n {name: 'A'})
SET n.age = 60
RETURN n
LIMIT 0

This query returns nothing, but writes one property:

Table 176. Result

(empty result)

Rows: 0
Properties set: 1

If we want to limit the number of updates we can split the query using the WITH clause:

Query

MATCH (n)
WITH n LIMIT 1
SET n.locked = true
RETURN n

Writes locked property on one node and return that node:

Table 177. Result

n

Node[0]{locked:true,name:"A"}

Rows: 1
Properties set: 1

2.10. CREATE
• Create nodes

◦ Create single node

◦ Create multiple nodes

◦ Create a node with a label

◦ Create a node with multiple labels

◦ Create node and add labels and properties

◦ Return created node

• Create relationships

◦ Create a relationship between two nodes

◦ Create a relationship and set properties

• Create a full path

• Use parameters with CREATE

135

◦ Create node with a parameter for the properties

◦ Create multiple nodes with a parameter for their properties

 In the CREATE clause, patterns are used extensively. Read Patterns for an introduction.

2.10.1. Create nodes

Create single node

Creating a single node is done by issuing the following query:

Query

CREATE (n)

Table 178. Result

(empty result)

Rows: 0
Nodes created: 1

Create multiple nodes

Creating multiple nodes is done by separating them with a comma.

Query

CREATE (n), (m)

Table 179. Result

(empty result)

Rows: 0
Nodes created: 2

Create a node with a label

To add a label when creating a node, use the syntax below:

Query

CREATE (n:Person)

Table 180. Result

(empty result)

Rows: 0
Nodes created: 1
Labels added: 1

136

Create a node with multiple labels

To add labels when creating a node, use the syntax below. In this case, we add two labels.

Query

CREATE (n:Person:Swedish)

Table 181. Result

(empty result)

Rows: 0
Nodes created: 1
Labels added: 2

Create node and add labels and properties

When creating a new node with labels, you can add properties at the same time.

Query

CREATE (n:Person {name: 'Andy', title: 'Developer'})

Table 182. Result

(empty result)

Rows: 0
Nodes created: 1
Properties set: 2
Labels added: 1

Return created node

Creating a single node is done by issuing the following query:

Query

CREATE (a {name: 'Andy'})
RETURN a.name

The name of the newly-created node is returned.

Table 183. Result

a.name

"Andy"

Rows: 1
Nodes created: 1
Properties set: 1

137

2.10.2. Create relationships

Create a relationship between two nodes

To create a relationship between two nodes, we first get the two nodes. Once the nodes are loaded, we
simply create a relationship between them.

Query

MATCH
 (a:Person),
 (b:Person)
WHERE a.name = 'A' AND b.name = 'B'
CREATE (a)-[r:RELTYPE]->(b)
RETURN type(r)

The created relationship is returned by the query.

Table 184. Result

type(r)

"RELTYPE"

Rows: 1
Relationships created: 1

Create a relationship and set properties

Setting properties on relationships is done in a similar manner to how it’s done when creating nodes. Note
that the values can be any expression.

Query

MATCH
 (a:Person),
 (b:Person)
WHERE a.name = 'A' AND b.name = 'B'
CREATE (a)-[r:RELTYPE {name: a.name + '<->' + b.name}]->(b)
RETURN type(r), r.name

The type and name of the newly-created relationship is returned by the example query.

Table 185. Result

type(r) r.name

"RELTYPE" "A<->B"

Rows: 1
Relationships created: 1
Properties set: 1

2.10.3. Create a full path

When you use CREATE and a pattern, all parts of the pattern that are not already in scope at this time will

138

be created.

Query

CREATE p = (andy {name:'Andy'})-[:WORKS_AT]->(neo)<-[:WORKS_AT]-(michael {name: 'Michael'})
RETURN p

This query creates three nodes and two relationships in one go, assigns it to a path variable, and returns it.

Table 186. Result

p

(2)-[WORKS_AT,0]->(3)<-[WORKS_AT,1]-(4)

Rows: 1
Nodes created: 3
Relationships created: 2
Properties set: 2

2.10.4. Use parameters with CREATE

Create node with a parameter for the properties

You can also create a graph entity from a map. All the key/value pairs in the map will be set as properties
on the created relationship or node. In this case we add a Person label to the node as well.

Parameters

{
 "props" : {
 "name" : "Andy",
 "position" : "Developer"
 }
}

Query

CREATE (n:Person $props)
RETURN n

Table 187. Result

n

Node[2]{name:"Andy",position:"Developer"}

Rows: 1
Nodes created: 1
Properties set: 2
Labels added: 1

Create multiple nodes with a parameter for their properties

By providing Cypher an array of maps, it will create a node for each map.

139

Parameters

{
 "props" : [{
 "name" : "Andy",
 "position" : "Developer"
 }, {
 "name" : "Michael",
 "position" : "Developer"
 }]
}

Query

UNWIND $props AS map
CREATE (n)
SET n = map

Table 188. Result

(empty result)

Rows: 0
Nodes created: 2
Properties set: 4

2.11. DELETE
• Introduction

• Delete a single node

• Delete all nodes and relationships

• Delete a node with all its relationships

• Delete relationships only

2.11.1. Introduction

For removing properties and labels, see REMOVE. Remember that you cannot delete a node without also
deleting relationships that start or end on said node. Either explicitly delete the relationships, or use DETACH
DELETE.

The examples start out with the following database:

[alt] | DELETE-1.svg

Graph

2.11.2. Delete single node

To delete a node, use the DELETE clause.

140

Query

MATCH (n:Person {name: 'UNKNOWN'})
DELETE n

Table 189. Result

(empty result)

Rows: 0
Nodes deleted: 1

2.11.3. Delete all nodes and relationships

This query is not for deleting large amounts of data, but is useful when experimenting with small example
data sets.

Query

MATCH (n)
DETACH DELETE n

Table 190. Result

(empty result)

Rows: 0
Nodes deleted: 4
Relationships deleted: 2

2.11.4. Delete a node with all its relationships

When you want to delete a node and any relationship going to or from it, use DETACH DELETE.

Query

MATCH (n {name: 'Andy'})
DETACH DELETE n

Table 191. Result

(empty result)

Rows: 0
Nodes deleted: 1
Relationships deleted: 2

For DETACH DELETE for users with restricted security privileges, see Operations Manual →
Fine-grained access control.

2.11.5. Delete relationships only

It is also possible to delete relationships only, leaving the node(s) otherwise unaffected.

141

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#detach-delete-restricted-user

Query

MATCH (n {name: 'Andy'})-[r:KNOWS]->()
DELETE r

This deletes all outgoing KNOWS relationships from the node with the name 'Andy'.

Table 192. Result

(empty result)

Rows: 0
Relationships deleted: 2

2.12. SET
• Introduction

• Set a property

• Update a property

• Remove a property

• Copy properties between nodes and relationships

• Replace all properties using a map and =

• Remove all properties using an empty map and =

• Mutate specific properties using a map and +=

• Set multiple properties using one SET clause

• Set a property using a parameter

• Set all properties using a parameter

• Set a label on a node

• Set multiple labels on a node

2.12.1. Introduction

SET can be used with a map — provided as a literal, a parameter, or a node or relationship — to set
properties.

Setting labels on a node is an idempotent operation — nothing will occur if an attempt is
made to set a label on a node that already has that label. The query statistics will state
whether any updates actually took place.

The examples use this graph as a starting point:

[alt] | SET-1.svg

Graph

142

2.12.2. Set a property

Use SET to set a property on a node or relationship:

Query

MATCH (n {name: 'Andy'})
SET n.surname = 'Taylor'
RETURN n.name, n.surname

The newly-changed node is returned by the query.

Table 193. Result

n.name n.surname

"Andy" "Taylor"

Rows: 1
Properties set: 1

It is possible to set a property on a node or relationship using more complex expressions. For instance, in
contrast to specifying the node directly, the following query shows how to set a property for a node
selected by an expression:

Query

MATCH (n {name: 'Andy'})
SET (CASE WHEN n.age = 36 THEN n END).worksIn = 'Malmo'
RETURN n.name, n.worksIn

Table 194. Result

n.name n.worksIn

"Andy" "Malmo"

Rows: 1
Properties set: 1

No action will be taken if the node expression evaluates to null, as shown in this example:

Query

MATCH (n {name: 'Andy'})
SET (CASE WHEN n.age = 55 THEN n END).worksIn = 'Malmo'
RETURN n.name, n.worksIn

As no node matches the CASE expression, the expression returns a null. As a consequence, no updates
occur, and therefore no worksIn property is set.

Table 195. Result

n.name n.worksIn

"Andy" <null>

143

n.name n.worksIn

Rows: 1

2.12.3. Update a property

SET can be used to update a property on a node or relationship. This query forces a change of type in the
age property:

Query

MATCH (n {name: 'Andy'})
SET n.age = toString(n.age)
RETURN n.name, n.age

The age property has been converted to the string '36'.

Table 196. Result

n.name n.age

"Andy" "36"

Rows: 1
Properties set: 1

2.12.4. Remove a property

Although REMOVE is normally used to remove a property, it’s sometimes convenient to do it using the SET
command. A case in point is if the property is provided by a parameter.

Query

MATCH (n {name: 'Andy'})
SET n.name = null
RETURN n.name, n.age

The name property is now missing.

Table 197. Result

n.name n.age

<null> 36

Rows: 1
Properties set: 1

2.12.5. Copy properties between nodes and relationships

SET can be used to copy all properties from one node or relationship to another. This will remove all other
properties on the node or relationship being copied to.

144

Query

MATCH
 (at {name: 'Andy'}),
 (pn {name: 'Peter'})
SET at = pn
RETURN at.name, at.age, at.hungry, pn.name, pn.age

The 'Andy' node has had all its properties replaced by the properties of the 'Peter' node.

Table 198. Result

at.name at.age at.hungry pn.name pn.age

"Peter" 34 <null> "Peter" 34

Rows: 1
Properties set: 3

2.12.6. Replace all properties using a map and =

The property replacement operator = can be used with SET to replace all existing properties on a node or
relationship with those provided by a map:

Query

MATCH (p {name: 'Peter'})
SET p = {name: 'Peter Smith', position: 'Entrepreneur'}
RETURN p.name, p.age, p.position

This query updated the name property from Peter to Peter Smith, deleted the age property, and added the
position property to the 'Peter' node.

Table 199. Result

p.name p.age p.position

"Peter Smith" <null> "Entrepreneur"

Rows: 1
Properties set: 3

2.12.7. Remove all properties using an empty map and =

All existing properties can be removed from a node or relationship by using SET with = and an empty map
as the right operand:

Query

MATCH (p {name: 'Peter'})
SET p = {}
RETURN p.name, p.age

This query removed all the existing properties — namely, name and age — from the 'Peter' node.

Table 200. Result

145

p.name p.age

<null> <null>

Rows: 1
Properties set: 2

2.12.8. Mutate specific properties using a map and +=

The property mutation operator += can be used with SET to mutate properties from a map in a fine-grained
fashion:

• Any properties in the map that are not on the node or relationship will be added.

• Any properties not in the map that are on the node or relationship will be left as is.

• Any properties that are in both the map and the node or relationship will be replaced in the node or
relationship. However, if any property in the map is null, it will be removed from the node or
relationship.

Query

MATCH (p {name: 'Peter'})
SET p += {age: 38, hungry: true, position: 'Entrepreneur'}
RETURN p.name, p.age, p.hungry, p.position

This query left the name property unchanged, updated the age property from 34 to 38, and added the hungry
and position properties to the 'Peter' node.

Table 201. Result

p.name p.age p.hungry p.position

"Peter" 38 true "Entrepreneur"

Rows: 1
Properties set: 3

In contrast to the property replacement operator =, providing an empty map as the right operand to += will
not remove any existing properties from a node or relationship. In line with the semantics detailed above,
passing in an empty map with += will have no effect:

Query

MATCH (p {name: 'Peter'})
SET p += {}
RETURN p.name, p.age

Table 202. Result

p.name p.age

"Peter" 34

Rows: 1

146

2.12.9. Set multiple properties using one SET clause

Set multiple properties at once by separating them with a comma:

Query

MATCH (n {name: 'Andy'})
SET n.position = 'Developer', n.surname = 'Taylor'

Table 203. Result

(empty result)

Rows: 0
Properties set: 2

2.12.10. Set a property using a parameter

Use a parameter to set the value of a property:

Parameters

{
 "surname" : "Taylor"
}

Query

MATCH (n {name: 'Andy'})
SET n.surname = $surname
RETURN n.name, n.surname

A surname property has been added to the 'Andy' node.

Table 204. Result

n.name n.surname

"Andy" "Taylor"

Rows: 1
Properties set: 1

2.12.11. Set all properties using a parameter

This will replace all existing properties on the node with the new set provided by the parameter.

Parameters

{
 "props" : {
 "name" : "Andy",
 "position" : "Developer"
 }
}

147

Query

MATCH (n {name: 'Andy'})
SET n = $props
RETURN n.name, n.position, n.age, n.hungry

The 'Andy' node has had all its properties replaced by the properties in the props parameter.

Table 205. Result

n.name n.position n.age n.hungry

"Andy" "Developer" <null> <null>

Rows: 1
Properties set: 4

2.12.12. Set a label on a node

Use SET to set a label on a node:

Query

MATCH (n {name: 'Stefan'})
SET n:German
RETURN n.name, labels(n) AS labels

The newly-labeled node is returned by the query.

Table 206. Result

n.name labels

"Stefan" ["German"]

Rows: 1
Labels added: 1

2.12.13. Set multiple labels on a node

Set multiple labels on a node with SET and use : to separate the different labels:

Query

MATCH (n {name: 'George'})
SET n:Swedish:Bossman
RETURN n.name, labels(n) AS labels

The newly-labeled node is returned by the query.

Table 207. Result

n.name labels

"George" ["Swedish","Bossman"]

148

n.name labels

Rows: 1
Labels added: 2

2.13. REMOVE
• Introduction

• Remove a property

• Remove all properties

• Remove a label from a node

• Remove multiple labels from a node

2.13.1. Introduction

For deleting nodes and relationships, see DELETE.

Removing labels from a node is an idempotent operation: if you try to remove a label
from a node that does not have that label on it, nothing happens. The query statistics will
tell you if something needed to be done or not.

The examples use the following database:

[alt] | REMOVE-1.svg

Graph

2.13.2. Remove a property

Neo4j doesn’t allow storing null in properties. Instead, if no value exists, the property is just not there. So,
REMOVE is used to remove a property value from a node or a relationship.

Query

MATCH (a {name: 'Andy'})
REMOVE a.age
RETURN a.name, a.age

The node is returned, and no property age exists on it.

Table 208. Result

a.name a.age

"Andy" <null>

Rows: 1
Properties set: 1

149

2.13.3. Remove all properties

REMOVE cannot be used to remove all existing properties from a node or relationship. Instead, using SET
with = and an empty map as the right operand will clear all properties from the node or relationship.

2.13.4. Remove a label from a node

To remove labels, you use REMOVE.

Query

MATCH (n {name: 'Peter'})
REMOVE n:German
RETURN n.name, labels(n)

Table 209. Result

n.name labels(n)

"Peter" ["Swedish"]

Rows: 1
Labels removed: 1

2.13.5. Remove multiple labels from a node

To remove multiple labels, you use REMOVE.

Query

MATCH (n {name: 'Peter'})
REMOVE n:German:Swedish
RETURN n.name, labels(n)

Table 210. Result

n.name labels(n)

"Peter" []

Rows: 1
Labels removed: 2

2.14. FOREACH

2.14.1. Introduction

Lists and paths are key concepts in Cypher. The FOREACH clause can be used to update data, such as
executing update commands on elements in a path, or on a list created by aggregation.

The variable context within the FOREACH parenthesis is separate from the one outside it. This means that if
you CREATE a node variable within a FOREACH, you will not be able to use it outside of the foreach statement,
unless you match to find it.

150

Within the FOREACH parentheses, you can do any of the updating commands — SET, REMOVE, CREATE, MERGE,
DELETE, and FOREACH.

If you want to execute an additional MATCH for each element in a list then the UNWIND clause would be a
more appropriate command.

[alt] | FOREACH-1.svg

Graph

2.14.2. Mark all nodes along a path

This query will set the property marked to true on all nodes along a path.

Query

MATCH p=(start)-[*]->(finish)
WHERE start.name = 'A' AND finish.name = 'D'
FOREACH (n IN nodes(p) | SET n.marked = true)

Table 211. Result

(empty result)

Rows: 0
Properties set: 4

2.15. MERGE
• Introduction

• Merge nodes

◦ Merge single node with a label

◦ Merge single node with properties

◦ Merge single node specifying both label and property

◦ Merge single node derived from an existing node property

• Use ON CREATE and ON MATCH

◦ Merge with ON CREATE

◦ Merge with ON MATCH

◦ Merge with ON CREATE and ON MATCH

◦ Merge with ON MATCH setting multiple properties

• Merge relationships

◦ Merge on a relationship

◦ Merge on multiple relationships

◦ Merge on an undirected relationship

◦ Merge on a relationship between two existing nodes

151

◦ Merge on a relationship between an existing node and a merged node derived from a node
property

• Using unique constraints with MERGE

◦ Merge using unique constraints creates a new node if no node is found

◦ Merge using unique constraints matches an existing node

◦ Merge with unique constraints and partial matches

◦ Merge with unique constraints and conflicting matches

• Using map parameters with MERGE

2.15.1. Introduction

MERGE either matches existing nodes and binds them, or it creates new data and binds that. It’s like a
combination of MATCH and CREATE that additionally allows you to specify what happens if the data was
matched or created.

For example, you can specify that the graph must contain a node for a user with a certain name. If there
isn’t a node with the correct name, a new node will be created and its name property set.

For performance reasons, creating a schema index on the label or property is highly
recommended when using MERGE. See Indexes for search performance for more
information.

When using MERGE on full patterns, the behavior is that either the whole pattern matches, or the whole
pattern is created. MERGE will not partially use existing patterns — it is all or nothing. If partial matches are
needed, this can be accomplished by splitting a pattern up into multiple MERGE clauses.

Under concurrent updates, MERGE only guarantees existence of the MERGE pattern, but not
uniqueness. To guarantee uniqueness of nodes with certain properties, a unique
constraint should be used. See Using unique constraints with MERGE to see how MERGE
can be used in combination with a unique constraint.

As with MATCH, MERGE can match multiple occurrences of a pattern. If there are multiple matches, they will
all be passed on to later stages of the query.

The last part of MERGE is the ON CREATE and ON MATCH. These allow a query to express additional changes to
the properties of a node or relationship, depending on if the element was matched (MATCH) in the database
or if it was created (CREATE).

The following graph is used for the examples below:

[alt] | MERGE-1.svg

Graph

152

2.15.2. Merge nodes

Merge single node with a label

Merging a single node with the given label.

Query

MERGE (robert:Critic)
RETURN robert, labels(robert)

A new node is created because there are no nodes labeled Critic in the database.

Table 212. Result

robert labels(robert)

Node[7]{} ["Critic"]

Rows: 1
Nodes created: 1
Labels added: 1

Merge single node with properties

Merging a single node with properties where not all properties match any existing node.

Query

MERGE (charlie {name: 'Charlie Sheen', age: 10})
RETURN charlie

A new node with the name 'Charlie Sheen' will be created since not all properties matched the existing
'Charlie Sheen' node.

Table 213. Result

charlie

Node[7]{age:10,name:"Charlie Sheen"}

Rows: 1
Nodes created: 1
Properties set: 2

Merge single node specifying both label and property

Merging a single node with both label and property matching an existing node.

Query

MERGE (michael:Person {name: 'Michael Douglas'})
RETURN michael.name, michael.bornIn

153

'Michael Douglas' will be matched and the name and bornIn properties returned.

Table 214. Result

michael.name michael.bornIn

"Michael Douglas" "New Jersey"

Rows: 1

As mentioned previously, MERGE queries can greatly benefit from schema indexes. In this example, the
following would significantly improve the performance of the MERGE clause:

CREATE INDEX PersonIndex FOR (n:Person) ON (n.name)

Merge single node derived from an existing node property

For some property 'p' in each bound node in a set of nodes, a single new node is created for each unique
value for 'p'.

Query

MATCH (person:Person)
MERGE (city:City {name: person.bornIn})
RETURN person.name, person.bornIn, city

Three nodes labeled City are created, each of which contains a name property with the value of 'New York',
'Ohio', and 'New Jersey', respectively. Note that even though the MATCH clause results in three bound nodes
having the value 'New York' for the bornIn property, only a single 'New York' node (i.e. a City node with a
name of 'New York') is created. As the 'New York' node is not matched for the first bound node, it is
created. However, the newly-created 'New York' node is matched and bound for the second and third
bound nodes.

Table 215. Result

person.name person.bornIn city

"Charlie Sheen" "New York" Node[7]{name:"New York"}

"Martin Sheen" "Ohio" Node[8]{name:"Ohio"}

"Michael Douglas" "New Jersey" Node[9]{name:"New Jersey"}

"Oliver Stone" "New York" Node[7]{name:"New York"}

"Rob Reiner" "New York" Node[7]{name:"New York"}

Rows: 5
Nodes created: 3
Properties set: 3
Labels added: 3

2.15.3. Use ON CREATE and ON MATCH

154

Merge with ON CREATE

Merge a node and set properties if the node needs to be created.

Query

MERGE (keanu:Person {name: 'Keanu Reeves'})
ON CREATE
 SET keanu.created = timestamp()
RETURN keanu.name, keanu.created

The query creates the 'keanu' node and sets a timestamp on creation time.

Table 216. Result

keanu.name keanu.created

"Keanu Reeves" 1668159308277

Rows: 1
Nodes created: 1
Properties set: 2
Labels added: 1

Merge with ON MATCH

Merging nodes and setting properties on found nodes.

Query

MERGE (person:Person)
ON MATCH
 SET person.found = true
RETURN person.name, person.found

The query finds all the Person nodes, sets a property on them, and returns them.

Table 217. Result

person.name person.found

"Charlie Sheen" true

"Martin Sheen" true

"Michael Douglas" true

"Oliver Stone" true

"Rob Reiner" true

Rows: 5
Properties set: 5

Merge with ON CREATE and ON MATCH

155

Query

MERGE (keanu:Person {name: 'Keanu Reeves'})
ON CREATE
 SET keanu.created = timestamp()
ON MATCH
 SET keanu.lastSeen = timestamp()
RETURN keanu.name, keanu.created, keanu.lastSeen

The query creates the 'keanu' node, and sets a timestamp on creation time. If 'keanu' had already existed,
a different property would have been set.

Table 218. Result

keanu.name keanu.created keanu.lastSeen

"Keanu Reeves" 1668159309958 <null>

Rows: 1
Nodes created: 1
Properties set: 2
Labels added: 1

Merge with ON MATCH setting multiple properties

If multiple properties should be set, simply separate them with commas.

Query

MERGE (person:Person)
ON MATCH
 SET
 person.found = true,
 person.lastAccessed = timestamp()
RETURN person.name, person.found, person.lastAccessed

Table 219. Result

person.name person.found person.lastAccessed

"Charlie Sheen" true 1668159310891

"Martin Sheen" true 1668159310891

"Michael Douglas" true 1668159310891

"Oliver Stone" true 1668159310891

"Rob Reiner" true 1668159310891

Rows: 5
Properties set: 10

2.15.4. Merge relationships

Merge on a relationship

MERGE can be used to match or create a relationship.

156

Query

MATCH
 (charlie:Person {name: 'Charlie Sheen'}),
 (wallStreet:Movie {title: 'Wall Street'})
MERGE (charlie)-[r:ACTED_IN]->(wallStreet)
RETURN charlie.name, type(r), wallStreet.title

'Charlie Sheen' had already been marked as acting in 'Wall Street', so the existing relationship is found
and returned. Note that in order to match or create a relationship when using MERGE, at least one bound
node must be specified, which is done via the MATCH clause in the above example.

Table 220. Result

charlie.name type(r) wallStreet.title

"Charlie Sheen" "ACTED_IN" "Wall Street"

Rows: 1

Merge on multiple relationships

Query

MATCH
 (oliver:Person {name: 'Oliver Stone'}),
 (reiner:Person {name: 'Rob Reiner'})
MERGE (oliver)-[:DIRECTED]->(movie:Movie)<-[:ACTED_IN]-(reiner)
RETURN movie

In our example graph, 'Oliver Stone' and 'Rob Reiner' have never worked together. When we try to MERGE
a "movie between them, Neo4j will not use any of the existing movies already connected to either person.
Instead, a new 'movie' node is created.

Table 221. Result

movie

Node[7]{}

Rows: 1
Nodes created: 1
Relationships created: 2
Labels added: 1

Merge on an undirected relationship

MERGE can also be used with an undirected relationship. When it needs to create a new one, it will pick a
direction.

Query

MATCH
 (charlie:Person {name: 'Charlie Sheen'}),
 (oliver:Person {name: 'Oliver Stone'})
MERGE (charlie)-[r:KNOWS]-(oliver)
RETURN r

157

As 'Charlie Sheen' and 'Oliver Stone' do not know each other this MERGE query will create a KNOWS
relationship between them. The direction of the created relationship is arbitrary.

Table 222. Result

r

:KNOWS[8]{}

Rows: 1
Relationships created: 1

Merge on a relationship between two existing nodes

MERGE can be used in conjunction with preceding MATCH and MERGE clauses to create a relationship between
two bound nodes 'm' and 'n', where 'm' is returned by MATCH and 'n' is created or matched by the earlier
MERGE.

Query

MATCH (person:Person)
MERGE (city:City {name: person.bornIn})
MERGE (person)-[r:BORN_IN]->(city)
RETURN person.name, person.bornIn, city

This builds on the example from Merge single node derived from an existing node property. The second
MERGE creates a BORN_IN relationship between each person and a city corresponding to the value of the
person’s bornIn property. 'Charlie Sheen', 'Rob Reiner' and 'Oliver Stone' all have a BORN_IN relationship to
the 'same' City node ('New York').

Table 223. Result

person.name person.bornIn city

"Charlie Sheen" "New York" Node[7]{name:"New York"}

"Martin Sheen" "Ohio" Node[8]{name:"Ohio"}

"Michael Douglas" "New Jersey" Node[9]{name:"New Jersey"}

"Oliver Stone" "New York" Node[7]{name:"New York"}

"Rob Reiner" "New York" Node[7]{name:"New York"}

Rows: 5
Nodes created: 3
Relationships created: 5
Properties set: 3
Labels added: 3

Merge on a relationship between an existing node and a merged node derived
from a node property

MERGE can be used to simultaneously create both a new node 'n' and a relationship between a bound node
'm' and 'n'.

158

Query

MATCH (person:Person)
MERGE (person)-[r:HAS_CHAUFFEUR]->(chauffeur:Chauffeur {name: person.chauffeurName})
RETURN person.name, person.chauffeurName, chauffeur

As MERGE found no matches — in our example graph, there are no nodes labeled with Chauffeur and no
HAS_CHAUFFEUR relationships — MERGE creates five nodes labeled with Chauffeur, each of which contains a
name property whose value corresponds to each matched Person node’s chauffeurName property value.
MERGE also creates a HAS_CHAUFFEUR relationship between each Person node and the newly-created
corresponding Chauffeur node. As 'Charlie Sheen' and 'Michael Douglas' both have a chauffeur with the
same name — 'John Brown' — a new node is created in each case, resulting in 'two' Chauffeur nodes
having a name of 'John Brown', correctly denoting the fact that even though the name property may be
identical, these are two separate people. This is in contrast to the example shown above in Merge on a
relationship between two existing nodes, where we used the first MERGE to bind the City nodes to prevent
them from being recreated (and thus duplicated) in the second MERGE.

Table 224. Result

person.name person.chauffeurName chauffeur

"Charlie Sheen" "John Brown" Node[7]{name:"John Brown"}

"Martin Sheen" "Bob Brown" Node[8]{name:"Bob Brown"}

"Michael Douglas" "John Brown" Node[9]{name:"John Brown"}

"Oliver Stone" "Bill White" Node[10]{name:"Bill White"}

"Rob Reiner" "Ted Green" Node[11]{name:"Ted Green"}

Rows: 5
Nodes created: 5
Relationships created: 5
Properties set: 5
Labels added: 5

2.15.5. Using unique constraints with MERGE

Cypher prevents getting conflicting results from MERGE when using patterns that involve unique
constraints. In this case, there must be at most one node that matches that pattern.

For example, given two unique constraints on :Person(id) and :Person(ssn), a query such as MERGE
(n:Person {id: 12, ssn: 437}) will fail, if there are two different nodes (one with id 12 and one with ssn
437) or if there is only one node with only one of the properties. In other words, there must be exactly one
node that matches the pattern, or no matching nodes.

Note that the following examples assume the existence of unique constraints that have been created
using:

CREATE CONSTRAINT ON (n:Person) ASSERT n.name IS UNIQUE;
CREATE CONSTRAINT ON (n:Person) ASSERT n.role IS UNIQUE;

159

Merge using unique constraints creates a new node if no node is found

Merge using unique constraints creates a new node if no node is found.

Query

MERGE (laurence:Person {name: 'Laurence Fishburne'})
RETURN laurence.name

The query creates the 'laurence' node. If 'laurence' had already existed, MERGE would just match the
existing node.

Table 225. Result

laurence.name

"Laurence Fishburne"

Rows: 1
Nodes created: 1
Properties set: 1
Labels added: 1

Merge using unique constraints matches an existing node

Merge using unique constraints matches an existing node.

Query

MERGE (oliver:Person {name: 'Oliver Stone'})
RETURN oliver.name, oliver.bornIn

The 'oliver' node already exists, so MERGE just matches it.

Table 226. Result

oliver.name oliver.bornIn

"Oliver Stone" "New York"

Rows: 1

Merge with unique constraints and partial matches

Merge using unique constraints fails when finding partial matches.

Query

MERGE (michael:Person {name: 'Michael Douglas', role: 'Gordon Gekko'})
 #RETURN michael

While there is a matching unique 'michael' node with the name 'Michael Douglas', there is no unique node
with the role of 'Gordon Gekko' and MERGE fails to match.

160

Error message

Merge did not find a matching node michael and can not create a new node due to
conflicts with existing unique nodes

If we want to give Michael Douglas the role of Gordon Gekko, we can use the SET clause instead:

Query

MERGE (michael:Person {name: 'Michael Douglas'})
SET michael.role = 'Gordon Gekko'

Merge with unique constraints and conflicting matches

Merge using unique constraints fails when finding conflicting matches.

Query

MERGE (oliver:Person {name: 'Oliver Stone', role: 'Gordon Gekko'})
RETURN oliver

While there is a matching unique 'oliver' node with the name 'Oliver Stone', there is also another unique
node with the role of 'Gordon Gekko' and MERGE fails to match.

Error message

Merge did not find a matching node oliver and can not create a new node due to
conflicts with existing unique nodes

Using map parameters with MERGE

MERGE does not support map parameters the same way CREATE does. To use map parameters with MERGE, it
is necessary to explicitly use the expected properties, such as in the following example. For more
information on parameters, see Parameters.

Parameters

{
 "param" : {
 "name" : "Keanu Reeves",
 "role" : "Neo"
 }
}

Query

MERGE (person:Person {name: $param.name, role: $param.role})
RETURN person.name, person.role

Table 227. Result

person.name person.role

"Keanu Reeves" "Neo"

161

person.name person.role

Rows: 1
Nodes created: 1
Properties set: 2
Labels added: 1

2.16. CALL {} (subquery)
• Introduction

• Importing variables into subqueries

• Post-union processing

• Aggregation and side-effects

• Aggregation on imported variables

2.16.1. Introduction

CALL allows to execute subqueries, i.e. queries inside of other queries. Subqueries allow you to compose
queries, which is especially useful when working with UNION or aggregations.

The CALL clause is also used for calling procedures. For descriptions of the CALL clause in
this context, refer to CALL procedure.

A subquery is evaluated for each incoming input row and may produce an arbitrary number of output
rows. Every output row is then combined with the input row to build the result of the subquery. That
means that a subquery will influence the number of rows. If the subquery does not return any rows, there
will be no rows available after the subquery.

There are restrictions on what queries are allowed as subqueries and how they interact with the enclosing
query:

• A subquery must end with a RETURN clause.

• A subquery can only refer to variables from the enclosing query if they are explicitly imported.

• A subquery cannot return variables with the same names as variables in the enclosing query.

• All variables that are returned from a subquery are afterwards available in the enclosing query.

The following graph is used for the examples below:

[alt] | CALL {} (subquery)-1.svg

Graph

2.16.2. Importing variables into subqueries

Variables are imported into a subquery using an importing WITH clause. As the subquery is evaluated for
each incoming input row, the imported variables get bound to the corresponding values from the input row
in each evaluation.

162

Query

UNWIND [0, 1, 2] AS x
CALL {
 WITH x
 RETURN x * 10 AS y
}
RETURN x, y

Table 228. Result

x y

0 0

1 10

2 20

Rows: 3

An importing WITH clause must:

• Consist only of simple references to outside variables - e.g. WITH x, y, z. Aliasing or expressions are
not supported in importing WITH clauses - e.g. WITH a AS b or WITH a+1 AS b.

• Be the first clause of a subquery (or the second clause, if directly following a USE clause).

2.16.3. Post-union processing

Subqueries can be used to process the results of a UNION query further. This example query finds the
youngest and the oldest person in the database and orders them by name.

Query

CALL {
 MATCH (p:Person)
 RETURN p
 ORDER BY p.age ASC
 LIMIT 1
UNION
 MATCH (p:Person)
 RETURN p
 ORDER BY p.age DESC
 LIMIT 1
}
RETURN p.name, p.age
ORDER BY p.name

Table 229. Result

p.name p.age

"Alice" 20

"Charlie" 65

Rows: 2

If different parts of a result should be matched differently, with some aggregation over the whole results,
subqueries need to be used. This example query finds friends and/or parents for each person.
Subsequently the number of friends and parents are counted together.

163

Query

MATCH (p:Person)
CALL {
 WITH p
 OPTIONAL MATCH (p)-[:FRIEND_OF]->(other:Person)
 RETURN other
UNION
 WITH p
 OPTIONAL MATCH (p)-[:CHILD_OF]->(other:Parent)
 RETURN other
}
RETURN DISTINCT p.name, count(other)

Table 230. Result

p.name count(other)

"Alice" 2

"Bob" 0

"Charlie" 0

"Dora" 0

Rows: 4

2.16.4. Aggregation and side-effects

Subqueries can be useful to do aggregations for each row and to isolate side-effects. This example query
creates five Clone nodes for each existing person. The aggregation ensures that cardinality is not changed
by the subquery. Without this, the result would be five times as many rows.

Query

MATCH (p:Person)
CALL {
 UNWIND range(1, 5) AS i
 CREATE (c:Clone)
 RETURN count(c) AS numberOfClones
}
RETURN p.name, numberOfClones

Table 231. Result

p.name numberOfClones

"Alice" 5

"Bob" 5

"Charlie" 5

"Dora" 5

Rows: 4
Nodes created: 20
Labels added: 20

164

2.16.5. Aggregation on imported variables

Aggregations in subqueries are scoped to the subquery evaluation, also for imported variables. The
following example counts the number of younger persons for each person in the graph:

Query

MATCH (p:Person)
CALL {
 WITH p
 MATCH (other:Person)
 WHERE other.age < p.age
 RETURN count(other) AS youngerPersonsCount
}
RETURN p.name, youngerPersonsCount

Table 232. Result

p.name youngerPersonsCount

"Alice" 0

"Bob" 1

"Charlie" 3

"Dora" 2

Rows: 4

2.17. CALL procedure

2.17.1. Introduction

Procedures are called using the CALL clause.

The CALL clause is also used to evaluate a subquery. For descriptions of the CALL clause
in this context, refer to CALL {} (subquery).

Each procedure call needs to specify all required procedure arguments. This may be done either explicitly,
by using a comma-separated list wrapped in parentheses after the procedure name, or implicitly by using
available query parameters as procedure call arguments. The latter form is available only in a so-called
standalone procedure call, when the whole query consists of a single CALL clause.

Most procedures return a stream of records with a fixed set of result fields, similar to how running a
Cypher query returns a stream of records. The YIELD sub-clause is used to explicitly select which of the
available result fields are returned as newly-bound variables from the procedure call to the user or for
further processing by the remaining query. Thus, in order to be able to use YIELD for explicit columns, the
names (and types) of the output parameters need be known in advance. Each yielded result field may
optionally be renamed using aliasing (i.e., resultFieldName AS newName). All new variables bound by a
procedure call are added to the set of variables already bound in the current scope. It is an error if a
procedure call tries to rebind a previously bound variable (i.e., a procedure call cannot shadow a variable
that was previously bound in the current scope). In a standalone procedure call, YIELD * can be used to
select all columns. In this case, the name of the output parameters does not need to be known in advance.

165

For more information on how to determine the input parameters for the CALL procedure and the output
parameters for the YIELD procedure, see View the signature for a procedure.

Inside a larger query, the records returned from a procedure call with an explicit YIELD may be further
filtered using a WHERE sub-clause followed by a predicate (similar to WITH ... WHERE ...).

If the called procedure declares at least one result field, YIELD may generally not be omitted. However
YIELD may always be omitted in a standalone procedure call. In this case, all result fields are yielded as
newly-bound variables from the procedure call to the user.

Neo4j supports the notion of VOID procedures. A VOID procedure is a procedure that does not declare any
result fields and returns no result records and that has explicitly been declared as VOID. Calling a VOID
procedure may only have a side effect and thus does neither allow nor require the use of YIELD. Calling a
VOID procedure in the middle of a larger query will simply pass on each input record (i.e., it acts like WITH *
in terms of the record stream).

Neo4j comes with a number of built-in procedures. For a list of these, see Operations
Manual → Procedures.

Users can also develop custom procedures and deploy to the database. See Java
Reference → User-defined procedures for details.

2.17.2. Call a procedure using CALL

This calls the built-in procedure db.labels, which lists all labels used in the database.

Query

CALL db.labels()

Table 233. Result

label

"User"

"Administrator"

Rows: 2

Cypher allows the omission of parentheses on procedures of arity-0 (no arguments).

 Best practice is to use parentheses for procedures.

Query

CALL db.labels

Table 234. Result

166

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-procedures
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-procedures
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-procedures
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-procedures

label

"User"

"Administrator"

Rows: 2

2.17.3. View the signature for a procedure

To CALL a procedure, its input parameters need to be known, and to use YIELD, its output parameters need
to be known. The built-in procedure dbms.procedures returns the name, signature and description for all
procedures. The following query can be used to return the signature for a particular procedure:

Query

CALL dbms.procedures() YIELD name, signature
WHERE name='dbms.listConfig'
RETURN signature

We can see that the dbms.listConfig has one input parameter, searchString, and three output
parameters, name, description and value.

Table 235. Result

signature

"dbms.listConfig(searchString = :: STRING?) :: (name :: STRING?, description :: STRING?, value :: STRING?,
dynamic :: BOOLEAN?)"

Rows: 1

2.17.4. Call a procedure using a quoted namespace and name

This calls the built-in procedure db.labels, which lists all labels used in the database.

Query

CALL `db`.`labels()`

Query

CALL `db`.`labels`

2.17.5. Call a procedure with literal arguments

This calls the example procedure dbms.security.createUser using literal arguments. The arguments are
written out directly in the statement text.

Query

CALL dbms.security.createUser('example_username', 'example_password', false)

167

Since our example procedure does not return any result, the result is empty.

2.17.6. Call a procedure with parameter arguments

This calls the example procedure dbms.security.createUser using parameters as arguments. Each
procedure argument is taken to be the value of a corresponding statement parameter with the same name
(or null if no such parameter has been given).

Examples that use parameter arguments shows the given parameters in JSON format;
the exact manner in which they are to be submitted depends upon the driver being used.
See Parameters, for more about querying with parameters

Parameters

{
 "username" : "example_username",
 "password" : "example_password",
 "requirePasswordChange" : false
}

Query

CALL dbms.security.createUser($username, $password, $requirePasswordChange)

Since our example procedure does not return any result, the result is empty.

Cypher allows the omission of parentheses for procedures with arity-n (n arguments), Cypher implicitly
passes the parameter arguments.

Best practice is to use parentheses for procedures. Omission of parantheses is available
only in a so-called standalone procedure call, when the whole query consists of a single
CALL clause.

Parameters

{
 "username" : "example_username",
 "password" : "example_password",
 "requirePasswordChange" : false
}

Query

CALL dbms.security.createUser

Since our example procedure does not return any result, the result is empty.

2.17.7. Call a procedure with mixed literal and parameter arguments

This calls the example procedure dbms.security.createUser using both literal and parameter arguments.

168

Parameters

{
 "password" : "example_password"
}

Query

CALL dbms.security.createUser('example_username', $password, false)

Since our example procedure does not return any result, the result is empty.

2.17.8. Call a procedure with literal and default arguments

This calls the example procedure dbms.security.createUser using literal arguments. That is, arguments
that are written out directly in the statement text, and a trailing default argument that is provided by the
procedure itself.

Query

CALL dbms.security.createUser('example_username', 'example_password')

Since our example procedure does not return any result, the result is empty.

2.17.9. Call a procedure using CALL YIELD *

This calls the built-in procedure db.labels to count all labels used in the database.

Query

CALL db.labels() YIELD *

If the procedure has deprecated return columns, those columns are also returned.

2.17.10. Call a procedure within a complex query using CALL YIELD

This calls the built-in procedure db.labels to count all labels used in the database.

Query

CALL db.labels() YIELD label
RETURN count(label) AS numLabels

Since the procedure call is part of a larger query, all outputs must be named explicitly.

2.17.11. Call a procedure and filter its results

This calls the built-in procedure db.labels to count all in-use labels in the database that contain the word
'User'.

169

Query

CALL db.labels() YIELD label
WHERE label CONTAINS 'User'
RETURN count(label) AS numLabels

Since the procedure call is part of a larger query, all outputs must be named explicitly.

2.17.12. Call a procedure within a complex query and rename its
outputs

This calls the built-in procedure db.propertyKeys as part of counting the number of nodes per property key
that is currently used in the database.

Query

CALL db.propertyKeys() YIELD propertyKey AS prop
MATCH (n)
WHERE n[prop] IS NOT NULL
RETURN prop, count(n) AS numNodes

Since the procedure call is part of a larger query, all outputs must be named explicitly.

2.18. UNION
• Introduction

• Combine two queries and retain duplicates

• Combine two queries and remove duplicates

2.18.1. Introduction

UNION combines the results of two or more queries into a single result set that includes all the rows that
belong to all queries in the union.

The number and the names of the columns must be identical in all queries combined by using UNION.

To keep all the result rows, use UNION ALL. Using just UNION will combine and remove duplicates from the
result set.

[alt] | UNION-1.svg

Graph

2.18.2. Combine two queries and retain duplicates

Combining the results from two queries is done using UNION ALL.

170

Query

MATCH (n:Actor)
RETURN n.name AS name
UNION ALL
MATCH (n:Movie)
RETURN n.title AS name

The combined result is returned, including duplicates.

Table 236. Result

name

"Anthony Hopkins"

"Helen Mirren"

"Hitchcock"

"Hitchcock"

Rows: 4

2.18.3. Combine two queries and remove duplicates

By not including ALL in the UNION, duplicates are removed from the combined result set

Query

MATCH (n:Actor)
RETURN n.name AS name
UNION
MATCH (n:Movie)
RETURN n.title AS name

The combined result is returned, without duplicates.

Table 237. Result

name

"Anthony Hopkins"

"Helen Mirren"

"Hitchcock"

Rows: 3

2.19. USE
• Introduction

• Syntax

• Examples

◦ Query remote graph by name

◦ Query remote graph by graph ID

171

2.19.1. Introduction

The USE clause determines which graph a query, or query part, is executed against. It is supported for
queries and schema commands.

 The USE clause can not be used together with the PERIODIC COMMIT clause.

2.19.2. Syntax

The USE clause can only appear as the prefix of schema commands, or as the first clause of queries:

USE <graph>
<other clauses>

Where <graph> refers to the name of a database in the DBMS.

Fabric syntax Fabric

When running queries against a Fabric database, the USE clause can also appear as the first clause of:

• Union parts:

USE <graph>
<other clauses>
 UNION
USE <graph>
<other clauses>

• Subqueries:

CALL {
 USE <graph>
 <other clauses>
}

In subqueries, a USE clause may appear as the second clause, if directly following an importing WITH
clause

When executing queries against a Fabric database, in addition to referring to databases in the DBMS, the
<graph> may also refer to a graph mounted through the Fabric configuration. For more information, see
Operations Manual → Fabric.

2.19.3. Examples

Query a graph by name

In this example we assume that your DBMS contains a database named myDatabase:

172

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#fabric
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#fabric
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#fabric

Query.

USE myDatabase
MATCH (n) RETURN n

Query a Fabric graph by name Fabric

In this example we assume that we have configured a Fabric database called exampleFabricSetup. The
graph that we wish to query is named exampleDatabaseName:

Query.

USE exampleFabricSetup.exampleDatabaseName
MATCH (n) RETURN n

Query a Fabric graph by graph ID Fabric

This examples continues with a Fabric database called exampleFabricSetup.

The graph we wish to query is configured with the graph id 0, which is why we can refer to it using the
built-in function graph() with the argument 0:

Query.

USE exampleFabricSetup.graph(0)
MATCH (n) RETURN n

2.20. LOAD CSV
• Introduction

• CSV file format

• Import data from a CSV file

• Import data from a remote CSV file

• Import data from a CSV file containing headers

• Import data from a CSV file with a custom field delimiter

• Importing large amounts of data

• Setting the rate of periodic commits

• Import data containing escaped characters

• Using linenumber() with LOAD CSV

• Using file() with LOAD CSV

2.20.1. Introduction

• The URL of the CSV file is specified by using FROM followed by an arbitrary expression evaluating to the
URL in question.

173

• It is required to specify a variable for the CSV data using AS.

• CSV files can be stored on the database server and are then accessible using a file:/// URL.
Alternatively, LOAD CSV also supports accessing CSV files via HTTPS, HTTP, and FTP.

• LOAD CSV supports resources compressed with gzip and Deflate. Additionally LOAD CSV supports locally
stored CSV files compressed with ZIP.

• LOAD CSV will follow HTTP redirects but for security reasons it will not follow redirects that changes the
protocol, for example if the redirect is going from HTTPS to HTTP.

• LOAD CSV is often used in conjunction with the query hint PERIODIC COMMIT; more information on this
may be found in PERIODIC COMMIT query hint.

Configuration settings for file URLs

dbms.security.allow_csv_import_from_file_urls

This setting determines if Cypher will allow the use of file:/// URLs when loading data using LOAD
CSV. Such URLs identify files on the filesystem of the database server. Default is true. Setting
dbms.security.allow_csv_import_from_file_urls=false will completely disable access to the file
system for LOAD CSV.

dbms.directories.import

Sets the root directory for file:/// URLs used with the Cypher LOAD CSV clause. This should be set to a
single directory relative to the Neo4j installation path on the database server. All requests to load from
file:/// URLs will then be relative to the specified directory. The default value set in the config
settings is import. This is a security measure which prevents the database from accessing files outside
the standard import directory, similar to how a Unix chroot operates. Setting this to an empty field will
allow access to all files within the Neo4j installation folder. Commenting out this setting will disable the
security feature, allowing all files in the local system to be imported. This is definitely not recommended.

File URLs will be resolved relative to the dbms.directories.import directory. For example, a file URL will
typically look like file:///myfile.csv or file:///myproject/myfile.csv.

• When using file:/// URLs, spaces and other non-alphanumeric characters need to be URL encoded.
[8].

• If dbms.directories.import is set to the default value import, using the above URLs in LOAD CSV would
read from <NEO4J_HOME>/import/myfile.csv and <NEO4J_HOME>/import/myproject/myfile.csv
respectively.

• If it is set to /data/csv, using the above URLs in LOAD CSV would read from
<NEO4J_HOME>/data/csv/myfile.csv and <NEO4J_HOME>/data/csv/myproject/myfile.csv respectively.

The file location is relative to the import. The config setting dbms.directories.import
only applies to local disc and not to remote URLs.

See the examples below for further details.

2.20.2. CSV file format

The CSV file to use with LOAD CSV must have the following characteristics:

174

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_dbms.security.allow_csv_import_from_file_urls
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_dbms.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#file_locations

• the character encoding is UTF-8;

• the end line termination is system dependent, e.g., it is \n on unix or \r\n on windows;

• the default field terminator is ,;

• the field terminator character can be change by using the option FIELDTERMINATOR available in the LOAD
CSV command;

• quoted strings are allowed in the CSV file and the quotes are dropped when reading the data;

• the character for string quotation is double quote ";

• if dbms.import.csv.legacy_quote_escaping is set to the default value of true, \ is used as an escape
character;

• a double quote must be in a quoted string and escaped, either with the escape character or a second
double quote.

2.20.3. Import data from a CSV file

To import data from a CSV file into Neo4j, you can use LOAD CSV to get the data into your query. Then you
write it to your database using the normal updating clauses of Cypher.

artists.csv

// tag::neo4j-cypher-docs/docs/dev/ql/load-csv/csv-files/artists.csv[]
1,ABBA,1992
2,Roxette,1986
3,Europe,1979
4,The Cardigans,1992
// end::neo4j-cypher-docs/docs/dev/ql/load-csv/csv-files/artists.csv[]

Query

LOAD CSV FROM 'file:///artists.csv' AS line
CREATE (:Artist {name: line[1], year: toInteger(line[2])})

A new node with the Artist label is created for each row in the CSV file. In addition, two columns from the
CSV file are set as properties on the nodes.

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 4
Properties set: 8
Labels added: 4

2.20.4. Import data from a remote CSV file

Accordingly, you can import data from a CSV file in a remote location into Neo4j. Note that this applies to
all variations of CSV files (see examples below for other variations).

175

data.neo4j.com/bands/artists.csv

1,ABBA,1992
2,Roxette,1986
3,Europe,1979
4,The Cardigans,1992

Query

LOAD CSV FROM 'https://data.neo4j.com/bands/artists.csv' AS line CREATE (:Artist {name: line[1],
 year: toInteger(line[2])})

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 4
Properties set: 8
Labels added: 4

2.20.5. Import data from a CSV file containing headers

When your CSV file has headers, you can view each row in the file as a map instead of as an array of
strings.

artists-with-headers.csv

// tag::neo4j-cypher-docs/docs/dev/ql/load-csv/csv-files/artists-with-headers.csv[]
Id,Name,Year
1,ABBA,1992
2,Roxette,1986
3,Europe,1979
4,The Cardigans,1992
// end::neo4j-cypher-docs/docs/dev/ql/load-csv/csv-files/artists-with-headers.csv[]

Query

LOAD CSV WITH HEADERS FROM 'file:///artists-with-headers.csv' AS line
CREATE (:Artist {name: line.Name, year: toInteger(line.Year)})

This time, the file starts with a single row containing column names. Indicate this using WITH HEADERS and
you can access specific fields by their corresponding column name.

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 4
Properties set: 8
Labels added: 4

2.20.6. Import data from a CSV file with a custom field delimiter

Sometimes, your CSV file has other field delimiters than commas. You can specify which delimiter your file
uses, using FIELDTERMINATOR. Hexadecimal representation of the unicode character encoding can be used

176

if prepended by \u. The encoding must be written with four digits. For example, \u003B is equivalent to ;
(SEMICOLON).

artists-fieldterminator.csv

// tag::neo4j-cypher-docs/docs/dev/ql/load-csv/csv-files/artists-fieldterminator.csv[]
1;ABBA;1992
2;Roxette;1986
3;Europe;1979
4;The Cardigans;1992
// end::neo4j-cypher-docs/docs/dev/ql/load-csv/csv-files/artists-fieldterminator.csv[]

Query

LOAD CSV FROM 'file:///artists-fieldterminator.csv' AS line FIELDTERMINATOR ';'
CREATE (:Artist {name: line[1], year: toInteger(line[2])})

As values in this file are separated by a semicolon, a custom FIELDTERMINATOR is specified in the LOAD CSV
clause.

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 4
Properties set: 8
Labels added: 4

2.20.7. Importing large amounts of data

If the CSV file contains a significant number of rows (approaching hundreds of thousands or millions),
USING PERIODIC COMMIT can be used to instruct Neo4j to perform a commit after a number of rows. This
reduces the memory overhead of the transaction state. By default, the commit will happen every 1000
rows. For more information, see PERIODIC COMMIT query hint.

Note: The USE clause can not be used together with the PERIODIC COMMIT clause.

Query

USING PERIODIC COMMIT LOAD CSV FROM 'file:///artists.csv' AS line
CREATE (:Artist {name: line[1], year: toInteger(line[2])})

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 4
Properties set: 8
Labels added: 4

2.20.8. Setting the rate of periodic commits

You can set the number of rows as in the example, where it is set to 500 rows.

177

Query

USING PERIODIC COMMIT 500 LOAD CSV FROM 'file:///artists.csv' AS line
CREATE (:Artist {name: line[1], year: toInteger(line[2])})

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 4
Properties set: 8
Labels added: 4

2.20.9. Import data containing escaped characters

In this example, we both have additional quotes around the values, as well as escaped quotes inside one
value.

artists-with-escaped-char.csv

// tag::neo4j-cypher-docs/docs/dev/ql/load-csv/csv-files/artists-with-escaped-char.csv[]
"1","The ""Symbol""","1992"
// end::neo4j-cypher-docs/docs/dev/ql/load-csv/csv-files/artists-with-escaped-char.csv[]

Query

LOAD CSV FROM 'file:///artists-with-escaped-char.csv' AS line
CREATE (a:Artist {name: line[1], year: toInteger(line[2])})
RETURN
 a.name AS name,
 a.year AS year,
 size(a.name) AS size

Note that strings are wrapped in quotes in the output here. You can see that when comparing to the
length of the string in this case!

Result

+------------------------------+
| name | year | size |
+------------------------------+
| "The "Symbol"" | 1992 | 12 |
+------------------------------+
1 row
Nodes created: 1
Properties set: 2
Labels added: 1

2.20.10. Using linenumber() with LOAD CSV

For certain scenarios, like debugging a problem with a csv file, it may be useful to get the current line
number that LOAD CSV is operating on. The linenumber() function provides exactly that or null if called
without a LOAD CSV context.

178

artists.csv

// tag::neo4j-cypher-docs/docs/dev/ql/load-csv/csv-files/artists.csv[]
1,ABBA,1992
2,Roxette,1986
3,Europe,1979
4,The Cardigans,1992
// end::neo4j-cypher-docs/docs/dev/ql/load-csv/csv-files/artists.csv[]

Query

LOAD CSV FROM 'file:///artists.csv' AS line
RETURN linenumber() AS number, line

Result

+---------------------------------------+
| number | line |
+---------------------------------------+
1	["1","ABBA","1992"]
2	["2","Roxette","1986"]
3	["3","Europe","1979"]
4	["4","The Cardigans","1992"]
+---------------------------------------+
4 rows

2.20.11. Using file() with LOAD CSV

For certain scenarios, like debugging a problem with a csv file, it may be useful to get the absolute path of
the file that LOAD CSV is operating on. The file() function provides exactly that or null if called without a
LOAD CSV context.

artists.csv

1,ABBA,1992
2,Roxette,1986
3,Europe,1979
4,The Cardigans,1992

Query

LOAD CSV FROM 'file:///artists.csv' AS line
RETURN DISTINCT file() AS path

Since LOAD CSV can temporary download a file to process it, it is important to note that file() will always
return the path on disk. If LOAD CSV is invoked with a file:/// URL that points to your disk file() will
return that same path.

Result

+--+
| path |
+--+
| "/home/example/neo4j/import/artists.csv" |
+--+
1 row

179

file:///

2.21. SHOW FUNCTIONS
Listing the available functions can be done with SHOW FUNCTIONS.

The command SHOW FUNCTIONS only outputs the default output; for a full output use the
optional YIELD command. Full output: SHOW FUNCTIONS YIELD *.

This command will produce a table with the following columns:

Table 238. List functions output

Column Description

name The name of the function. Default output

category The function category, for example scalar or string. Default
output

description The function description. Default output

signature The signature of the function.

isBuiltIn Whether the function is built-in or user-defined.

argumentDescription List of the arguments for the function, as map of strings with
name, type, default, and description.

returnDescription The return value type.

aggregating Whether the function is aggregating or not.

rolesExecution List of roles permitted to execute this function. Is null without
the SHOW ROLE privilege.

rolesBoostedExecution List of roles permitted to use boosted mode when executing
this function. Is null without the SHOW ROLE privilege.

2.21.1. Syntax

List functions, either all or only built-in or user-defined

SHOW [ALL|BUILT IN|USER DEFINED] FUNCTION[S]
[YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

180

 When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

List functions that the current user can execute

SHOW [ALL|BUILT IN|USER DEFINED] FUNCTION[S] EXECUTABLE [BY CURRENT USER]
[YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

 When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

List functions that the specified user can execute

SHOW [ALL|BUILT IN|USER DEFINED] FUNCTION[S] EXECUTABLE BY username
[YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Required privilege SHOW USER. This command cannot be used for LDAP users.

 When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

2.21.2. Listing all functions

To list all available functions with the default output columns, the SHOW FUNCTIONS command can be used. If
all columns are required, use SHOW FUNCTIONS YIELD *.

Query

SHOW FUNCTIONS

Table 239. Result

name category description

"abs" "Numeric" "Returns the absolute value of an
integer."

"abs" "Numeric" "Returns the absolute value of a
floating point number."

"acos" "Trigonometric" "Returns the arccosine of a number
in radians."

"all" "Predicate" "Returns true if the predicate holds
for all elements in the given list."

"any" "Predicate" "Returns true if the predicate holds
for at least one element in the
given list."

"asin" "Trigonometric" "Returns the arcsine of a number in
radians."

"atan" "Trigonometric" "Returns the arctangent of a number
in radians."

"atan2" "Trigonometric" "Returns the arctangent2 of a set of
coordinates in radians."

181

name category description

"avg" "Aggregating" "Returns the average of a set of
integer values."

"avg" "Aggregating" "Returns the average of a set of
floating point values."

"avg" "Aggregating" "Returns the average of a set of
duration values."

"ceil" "Numeric" "Returns the smallest floating point
number that is greater than or equal
to a number and equal to a
mathematical integer."

"coalesce" "Scalar" "Returns the first non-null value in
a list of expressions."

"collect" "Aggregating" "Returns a list containing the
values returned by an expression."

"cos" "Trigonometric" "Returns the cosine of a number."

"cot" "Trigonometric" "Returns the cotangent of a number."

"count" "Aggregating" "Returns the number of values or
rows."

"date" "Temporal" "Create a Date instant."

"date.realtime" "Temporal" "Get the current Date instant using
the realtime clock."

"date.statement" "Temporal" "Get the current Date instant using
the statement clock."

Rows: 20

2.21.3. Listing functions with filtering on output columns

The listed functions can be filtered in multiple ways. One way is through the type keywords, BUILT IN and
USER DEFINED. A more flexible way is to use the WHERE clause. For example, getting the name of all built-in
functions starting with the letter 'a':

Query

SHOW BUILT IN FUNCTIONS YIELD name, isBuiltIn
WHERE name STARTS WITH 'a'

Table 240. Result

name isBuiltIn

"abs" true

"abs" true

"acos" true

"all" true

"any" true

"asin" true

"atan" true

182

name isBuiltIn

"atan2" true

"avg" true

"avg" true

"avg" true

Rows: 11

2.21.4. Listing functions with other filtering

The listed functions can also be filtered on whether a user can execute them. This filtering is only available
through the EXECUTABLE clause and not through the WHERE clause. This is due to using the user’s privileges
instead of filtering on the available output columns.

There are two options, how to use the EXECUTABLE clause. The first option, is to filter for the current user:

Query

SHOW FUNCTIONS EXECUTABLE BY CURRENT USER YIELD *

Table 241. Result

name category description rolesExecution rolesBoostedExecu
tion

...

"abs" "Numeric" "Returns the
absolute value of
an integer."

<null> <null>

"abs" "Numeric" "Returns the
absolute value of
a floating point
number."

<null> <null>

"acos" "Trigonometric" "Returns the
arccosine of a
number in
radians."

<null> <null>

"all" "Predicate" "Returns true if
the predicate
holds for all
elements in the
given list."

<null> <null>

"any" "Predicate" "Returns true if
the predicate
holds for at
least one element
in the given
list."

<null> <null>

"asin" "Trigonometric" "Returns the
arcsine of a
number in
radians."

<null> <null>

"atan" "Trigonometric" "Returns the
arctangent of a
number in
radians."

<null> <null>

183

name category description rolesExecution rolesBoostedExecu
tion

...

"atan2" "Trigonometric" "Returns the
arctangent2 of a
set of
coordinates in
radians."

<null> <null>

"avg" "Aggregating" "Returns the
average of a set
of integer
values."

<null> <null>

"avg" "Aggregating" "Returns the
average of a set
of floating point
values."

<null> <null>

Rows: 10

Notice that the two roles columns are empty due to missing the SHOW ROLE privilege.

The second option, is to filter for a specific user:

Query

SHOW FUNCTIONS EXECUTABLE BY jake

Table 242. Result

name category description

"abs" "Numeric" "Returns the absolute value of an
integer."

"abs" "Numeric" "Returns the absolute value of a
floating point number."

"acos" "Trigonometric" "Returns the arccosine of a number
in radians."

"all" "Predicate" "Returns true if the predicate holds
for all elements in the given list."

"any" "Predicate" "Returns true if the predicate holds
for at least one element in the
given list."

"asin" "Trigonometric" "Returns the arcsine of a number in
radians."

"atan" "Trigonometric" "Returns the arctangent of a number
in radians."

"atan2" "Trigonometric" "Returns the arctangent2 of a set of
coordinates in radians."

"avg" "Aggregating" "Returns the average of a set of
integer values."

"avg" "Aggregating" "Returns the average of a set of
floating point values."

Rows: 10

184

2.22. SHOW PROCEDURES
Listing the available procedures can be done with SHOW PROCEDURES.

The command SHOW PROCEDURES only outputs the default output; for a full output use the
optional YIELD command. Full output: SHOW PROCEDURES YIELD *.

This command will produce a table with the following columns:

Table 243. List procedures output

Column Description

name The name of the procedure. Default output

description The procedure description. Default output

mode The procedure mode, for example READ or WRITE. Default
output

worksOnSystem Whether the procedure can be run on the system database or
not. Default output

signature The signature of the procedure.

argumentDescription List of the arguments for the procedure, as map of strings with
name, type, default, and description.

returnDescription List of the returned values for the procedure, as map of strings
with name, type, and description.

admin true if this procedure is an admin procedure.

rolesExecution List of roles permitted to execute this procedure. Is null
without the SHOW ROLE privilege.

rolesBoostedExecution List of roles permitted to use boosted mode when executing
this procedure. Is null without the SHOW ROLE privilege.

option Map of extra output, e.g. if the procedure is deprecated.

2.22.1. Syntax

185

List all procedures

SHOW PROCEDURE[S]
[YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

 When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

List procedures that the current user can execute

SHOW PROCEDURE[S] EXECUTABLE [BY CURRENT USER]
[YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

 When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

List procedures that the specified user can execute

SHOW PROCEDURE[S] EXECUTABLE BY username
[YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Requires the privilege SHOW USER. This command cannot be used for LDAP users.

 When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

2.22.2. Listing all procedures

To list all available procedures with the default output columns, the SHOW PROCEDURES command can be
used. If all columns are required, use SHOW PROCEDURES YIELD *.

Query

SHOW PROCEDURES

Table 244. Result

name description mode worksOnSystem

"db.awaitIndex" "Wait for an index to come
online (for example: CALL
db.awaitIndex("MyIndex",
300))."

"READ" true

"db.awaitIndexes" "Wait for all indexes to
come online (for example:
CALL
db.awaitIndexes(300))."

"READ" true

186

name description mode worksOnSystem

"db.checkpoint" "Initiate and wait for a
new check point, or wait
any already on-going check
point to complete. Note
that this temporarily
disables the
`dbms.checkpoint.iops.limi
t` setting in order to
make the check point
complete faster. This
might cause transaction
throughput to degrade
slightly, due to increased
IO load."

"DBMS" true

"db.clearQueryCaches" "Clears all query caches." "DBMS" true

"db.constraints" "List all constraints in
the database."

"READ" true

"db.createIndex" "Create a named schema
index with specified index
provider and configuration
(optional). Yield: name,
labels, properties,
providerName, status"

"SCHEMA" false

"db.createLabel" "Create a label" "WRITE" false

"db.createNodeKey" "Create a named node key
constraint. Backing index
will use specified index
provider and configuration
(optional). Yield: name,
labels, properties,
providerName, status"

"SCHEMA" false

"db.createProperty" "Create a Property" "WRITE" false

"db.createRelationshipType
"

"Create a
RelationshipType"

"WRITE" false

"db.createUniquePropertyCo
nstraint"

"Create a named unique
property constraint.
Backing index will use
specified index provider
and configuration
(optional). Yield: name,
labels, properties,
providerName, status"

"SCHEMA" false

"db.index.fulltext.awaitEv
entuallyConsistentIndexRef
resh"

"Wait for the updates from
recently committed
transactions to be applied
to any eventually-
consistent full-text
indexes."

"READ" true

187

name description mode worksOnSystem

"db.index.fulltext.createN
odeIndex"

"Create a node full-text
index for the given labels
and properties. The
optional 'config' map
parameter can be used to
supply settings to the
index. Supported settings
are 'analyzer', for
specifying what analyzer
to use when indexing and
querying. Use the
`db.index.fulltext.listAva
ilableAnalyzers` procedure
to see what options are
available. And
'eventually_consistent'
which can be set to 'true'
to make this index
eventually consistent,
such that updates from
committing transactions
are applied in a
background thread."

"SCHEMA" false

"db.index.fulltext.createR
elationshipIndex"

"Create a relationship
full-text index for the
given relationship types
and properties. The
optional 'config' map
parameter can be used to
supply settings to the
index. Supported settings
are 'analyzer', for
specifying what analyzer
to use when indexing and
querying. Use the
`db.index.fulltext.listAva
ilableAnalyzers` procedure
to see what options are
available. And
'eventually_consistent'
which can be set to 'true'
to make this index
eventually consistent,
such that updates from
committing transactions
are applied in a
background thread."

"SCHEMA" false

"db.index.fulltext.drop" "Drop the specified
index."

"SCHEMA" false

Rows: 15

2.22.3. Listing procedures with filtering on output columns

The listed procedures can be filtered in multiple ways, one way is to use the WHERE clause. For example,
returning the names of all admin procedures:

Query

SHOW PROCEDURES YIELD name, admin
WHERE admin

188

Table 245. Result

name admin

"db.clearQueryCaches" true

"db.listLocks" true

"db.prepareForReplanning" true

"db.stats.clear" true

"db.stats.collect" true

"db.stats.retrieve" true

"db.stats.retrieveAllAnonymized" true

Rows: 7

2.22.4. Listing procedures with other filtering

The listed procedures can also be filtered by whether a user can execute them. This filtering is only
available through the EXECUTABLE clause and not through the WHERE clause. This is due to using the user’s
privileges instead of filtering on the available output columns.

There are two options, how to use the EXECUTABLE clause. The first option, is to filter for the current user:

Query

SHOW PROCEDURES EXECUTABLE BY CURRENT USER YIELD *

Table 246. Result

name description rolesExecution rolesBoostedExecution ...

"db.awaitIndex" "Wait for an index to
come online (for
example: CALL
db.awaitIndex("MyInde
x", 300))."

<null> <null>

"db.awaitIndexes" "Wait for all indexes
to come online (for
example: CALL
db.awaitIndexes(300))
."

<null> <null>

"db.checkpoint" "Initiate and wait
for a new check
point, or wait any
already on-going
check point to
complete. Note that
this temporarily
disables the
`dbms.checkpoint.iops
.limit` setting in
order to make the
check point complete
faster. This might
cause transaction
throughput to degrade
slightly, due to
increased IO load."

<null> <null>

189

name description rolesExecution rolesBoostedExecution ...

"db.constraints" "List all constraints
in the database."

<null> <null>

"db.createIndex" "Create a named
schema index with
specified index
provider and
configuration
(optional). Yield:
name, labels,
properties,
providerName, status"

<null> <null>

"db.createLabel" "Create a label" <null> <null>

"db.createNodeKey" "Create a named node
key constraint.
Backing index will
use specified index
provider and
configuration
(optional). Yield:
name, labels,
properties,
providerName, status"

<null> <null>

"db.createProperty" "Create a Property" <null> <null>

"db.createRelationshi
pType"

"Create a
RelationshipType"

<null> <null>

"db.createUniquePrope
rtyConstraint"

"Create a named
unique property
constraint. Backing
index will use
specified index
provider and
configuration
(optional). Yield:
name, labels,
properties,
providerName, status"

<null> <null>

Rows: 10

Note that the two roles columns are empty due to missing the SHOW ROLE privilege.

The second option, filters the list to only contain procedures executable by a specific user:

Query

SHOW PROCEDURES EXECUTABLE BY jake

Table 247. Result

name description mode worksOnSystem

"db.awaitIndex" "Wait for an index to come
online (for example: CALL
db.awaitIndex("MyIndex",
300))."

"READ" true

190

name description mode worksOnSystem

"db.awaitIndexes" "Wait for all indexes to
come online (for example:
CALL
db.awaitIndexes(300))."

"READ" true

"db.checkpoint" "Initiate and wait for a
new check point, or wait
any already on-going check
point to complete. Note
that this temporarily
disables the
`dbms.checkpoint.iops.limi
t` setting in order to
make the check point
complete faster. This
might cause transaction
throughput to degrade
slightly, due to increased
IO load."

"DBMS" true

"db.constraints" "List all constraints in
the database."

"READ" true

"db.createIndex" "Create a named schema
index with specified index
provider and configuration
(optional). Yield: name,
labels, properties,
providerName, status"

"SCHEMA" false

"db.createLabel" "Create a label" "WRITE" false

"db.createNodeKey" "Create a named node key
constraint. Backing index
will use specified index
provider and configuration
(optional). Yield: name,
labels, properties,
providerName, status"

"SCHEMA" false

"db.createProperty" "Create a Property" "WRITE" false

"db.createRelationshipType
"

"Create a
RelationshipType"

"WRITE" false

"db.createUniquePropertyCo
nstraint"

"Create a named unique
property constraint.
Backing index will use
specified index provider
and configuration
(optional). Yield: name,
labels, properties,
providerName, status"

"SCHEMA" false

Rows: 10

[8] See https://developer.mozilla.org/en-US/docs/Glossary/percent-encoding

191

https://developer.mozilla.org/en-US/docs/Glossary/percent-encoding

Chapter 3. Functions
• Predicate functions [Summary|Detail]

• Scalar functions [Summary|Detail]

• Aggregating functions [Summary|Detail]

• List functions [Summary|Detail]

• Mathematical functions - numeric [Summary|Detail]

• Mathematical functions - logarithmic [Summary|Detail]

• Mathematical functions - trigonometric [Summary|Detail]

• String functions [Summary|Detail]

• Temporal functions - instant types [Summary|Detail]

• Temporal functions - duration [Summary|Detail]

• Spatial functions [Summary|Detail]

• LOAD CSV functions [Summary|Detail]

• User-defined functions [Summary|Detail]

Related information may be found in Operators.

Please note

• Functions in Cypher return null if an input parameter is null.

• Functions taking a string as input all operate on Unicode characters rather than on a standard char[].
For example, the size() function applied to any Unicode character will return 1, even if the character
does not fit in the 16 bits of one char.

Example 5. List available functions

To list the available functions, run the following Cypher query:

SHOW FUNCTIONS

Predicate functions

These functions return either true or false for the given arguments.

Function Signature Description

all() all(variable :: VARIABLE IN list ::
LIST OF ANY? WHERE predicate ::
ANY?) :: (BOOLEAN?)

Returns true if the predicate holds for all
elements in the given list.

any() any(variable :: VARIABLE IN list ::
LIST OF ANY? WHERE predicate ::
ANY?) :: (BOOLEAN?)

Returns true if the predicate holds for at
least one element in the given list.

192

Function Signature Description

exists() exists(input :: ANY?) :: (BOOLEAN?) Returns true if a match for the pattern
exists in the graph, or if the specified
property exists in the node, relationship
or map.

isEmpty() isEmpty(input :: LIST? OF ANY?) ::
(BOOLEAN?)

Checks whether a list is empty.

isEmpty(input :: MAP?) :: (BOOLEAN?) Checks whether a map is empty.

isEmpty(input :: STRING?) ::
(BOOLEAN?)

Checks whether a string is empty.

none() none(variable :: VARIABLE IN list ::
LIST OF ANY? WHERE predicate ::
ANY?) :: (BOOLEAN?)

Returns true if the predicate holds for no
element in the given list.

single() single(variable :: VARIABLE IN list
:: LIST OF ANY? WHERE predicate ::
ANY?) :: (BOOLEAN?)

Returns true if the predicate holds for
exactly one of the elements in the given
list.

Scalar functions

These functions return a single value.

Function Signature Description

coalesce() coalesce(input :: ANY?) :: (ANY?) Returns the first non-null value in a list
of expressions.

endNode() endNode(input :: RELATIONSHIP?) ::
(NODE?)

Returns the end node of a relationship.

head() head(list :: LIST? OF ANY?) ::
(ANY?)

Returns the first element in a list.

id() id(input :: NODE?) :: (INTEGER?) Returns the id of a node.

id(input :: RELATIONSHIP?) ::
(INTEGER?)

Returns the id of a relationship.

last() last(list :: LIST? OF ANY?) ::
(ANY?)

Returns the last element in a list.

length() length(input :: PATH?) :: (INTEGER?) Returns the length of a path.

properties() properties(input :: MAP?) :: (MAP?) Returns a map containing all the
properties of a map.

properties(input :: NODE?) :: (MAP?) Returns a map containing all the
properties of a node.

properties(input :: RELATIONSHIP?)
:: (MAP?)

Returns a map containing all the
properties of a relationship.

randomUUID() randomUUID() :: (STRING?) Generates a random UUID.

size() size(input :: LIST? OF ANY?) ::
(INTEGER?)

Returns the number of items in a list.

size(input :: STRING?) :: (INTEGER?) Returns the number of Unicode
characters in a string.

193

Function Signature Description

startNode() startNode(input :: RELATIONSHIP?) ::
(NODE?)

Returns the start node of a relationship.

toBoolean() toBoolean(input :: STRING?) ::
(BOOLEAN?)

Converts a string value to a boolean
value.

toBoolean(input :: BOOLEAN?) ::
(BOOLEAN?)

Converts a boolean value to a boolean
value.

toBoolean(input :: INTEGER?) ::
(BOOLEAN?)

Converts an integer value to a boolean
value.

toBooleanOrNull() toBooleanOrNull(input :: ANY?) ::
(BOOLEAN?)

Converts a value to a boolean value, or
null if the value cannot be converted.

toFloat() toFloat(input :: NUMBER?) ::
(FLOAT?)

Converts a number value to a floating
point value.

toFloat(input :: STRING?) ::
(FLOAT?)

Converts a string value to a floating
point value.

toFloatOrNull() toFloatOrNull(input :: ANY?) ::
(FLOAT?)

Converts a value to a floating point
value, or null if the value cannot be
converted.

toInteger() toInteger(input :: NUMBER?) ::
(INTEGER?)

Converts a number value to an integer
value.

toInteger(input :: BOOLEAN?) ::
(INTEGER?)

Converts a boolean value to an integer
value.

toInteger(input :: STRING?) ::
(INTEGER?)

Converts a string value to an integer
value.

toIntegerOrNull() toIntegerOrNull(input :: ANY?) ::
(INTEGER?)

Converts a value to an integer value, or
null if the value cannot be converted.

type() type(input :: RELATIONSHIP?) ::
(STRING?)

Returns the string representation of the
relationship type.

Aggregating functions

These functions take multiple values as arguments, and calculate and return an aggregated value from
them.

Function Signature Description

avg() avg(input :: DURATION?) ::
(DURATION?)

Returns the average of a set of duration
values.

avg(input :: FLOAT?) :: (FLOAT?) Returns the average of a set of floating
point values.

avg(input :: INTEGER?) :: (INTEGER?) Returns the average of a set of integer
values.

collect() collect(input :: ANY?) :: (LIST? OF
ANY?)

Returns a list containing the values
returned by an expression.

194

Function Signature Description

count() count(input :: ANY?) :: (INTEGER?) Returns the number of values or rows.

max() max(input :: ANY?) :: (ANY?) Returns the maximum value in a set of
values.

min() min(input :: ANY?) :: (ANY?) Returns the minimum value in a set of
values.

percentileCont() percentileCont(input :: FLOAT?,
percentile :: FLOAT?) :: (FLOAT?)

Returns the percentile of a value over a
group using linear interpolation.

percentileDisc() percentileDisc(input :: FLOAT?,
percentile :: FLOAT?) :: (FLOAT?)

Returns the nearest floating point value
to the given percentile over a group
using a rounding method.

percentileDisc(input :: INTEGER?,
percentile :: FLOAT?) :: (INTEGER?)

Returns the nearest integer value to the
given percentile over a group using a
rounding method.

stdev() stdev(input :: FLOAT?) :: (FLOAT?) Returns the standard deviation for the
given value over a group for a sample of
a population.

stdevp() stdevp(input :: FLOAT?) :: (FLOAT?) Returns the standard deviation for the
given value over a group for an entire
population.

sum() sum(input :: DURATION?) ::
(DURATION?)

Returns the sum of a set of durations

sum(input :: FLOAT?) :: (FLOAT?) Returns the sum of a set of floats

sum(input :: INTEGER?) :: (INTEGER?) Returns the sum of a set of integers

List functions

These functions return lists of other values. Further details and examples of lists may be found in Lists.

Function Signature Description

keys() keys(input :: MAP?) :: (LIST? OF
STRING?)

Returns a list containing the string
representations for all the property
names of a map.

keys(input :: NODE?) :: (LIST? OF
STRING?)

Returns a list containing the string
representations for all the property
names of a node.

keys(input :: RELATIONSHIP?) ::
(LIST? OF STRING?)

Returns a list containing the string
representations for all the property
names of a relationship

labels() labels(input :: NODE?) :: (LIST? OF
STRING?)

Returns a list containing the string
representations for all the labels of a
node.

nodes() nodes(input :: PATH?) :: (LIST? OF
NODE?)

Returns a list containing all the nodes in
a path.

195

Function Signature Description

range() range(start :: INTEGER?, end ::
INTEGER?) :: (LIST? OF INTEGER?)

Returns a list comprising all integer
values within a specified range.

range(start :: INTEGER?, end ::
INTEGER?, step :: INTEGER?) ::
(LIST? OF INTEGER?)

Returns a list comprising all integer
values within a specified range created
with step length.

reduce() reduce(accumulator :: VARIABLE =
initial :: ANY?, variable ::
VARIABLE IN list :: LIST OF ANY? |
expression :: ANY) :: (ANY?)

Runs an expression against individual
elements of a list, storing the result of
the expression in an accumulator.

relationships() relationships(input :: PATH?) ::
(LIST? OF RELATIONSHIP?)

Returns a list containing all the
relationships in a path.

reverse() reverse(input :: LIST? OF ANY?) ::
(LIST? OF ANY?)

Returns a list in which the order of all
elements in the original list have been
reversed.

tail() tail(input :: LIST? OF ANY?) ::
(LIST? OF ANY?)

Returns all but the first element in a list.

toBooleanList() toBooleanList(input :: LIST? OF
ANY?) :: (LIST? OF BOOLEAN?)

Converts a list of values to a list of
boolean values. If any values are not
convertible to boolean they will be null
in the list returned.

toFloatList() toFloatList(input :: LIST? OF ANY?)
:: (LIST? OF FLOAT?)

Converts a list of values to a list of
floating point values. If any values are
not convertible to floating point they will
be null in the list returned.

toIntegerList() toIntegerList(input :: LIST? OF
ANY?) :: (LIST? OF INTEGER?)

Converts a list of values to a list of
integer values. If any values are not
convertible to integer they will be null in
the list returned.

toStringList() toStringList(input :: LIST? OF ANY?)
:: (LIST? OF STRING?)

Converts a list of values to a list of string
values. If any values are not convertible
to string they will be null in the list
returned.

Numeric functions

These functions all operate on numerical expressions only, and will return an error if used on any other
values.

Function Signature Description

abs() abs(input :: FLOAT?) :: (FLOAT?) Returns the absolute value of a floating
point number.

abs(input :: INTEGER?) :: (INTEGER?) Returns the absolute value of an integer.

ceil() ceil(input :: FLOAT?) :: (FLOAT?) Returns the smallest floating point
number that is greater than or equal to a
number and equal to a mathematical
integer.

196

Function Signature Description

floor() floor(input :: FLOAT?) :: (FLOAT?) Returns the largest floating point
number that is less than or equal to a
number and equal to a mathematical
integer.

rand() rand() :: (FLOAT?) Returns a random floating point number
in the range from 0 (inclusive) to 1
(exclusive); i.e. [0,1).

round() round(input :: FLOAT?) :: (FLOAT?) Returns the value of a number rounded
to the nearest integer.

round(value :: FLOAT?, precision ::
NUMBER?) :: (FLOAT?)

Returns the value of a number rounded
to the specified precision using rounding
mode HALF_UP.

round(value :: FLOAT?, precision ::
NUMBER?, mode :: STRING?) ::
(FLOAT?)

Returns the value of a number rounded
to the specified precision with the
specified rounding mode.

sign() sign(input :: FLOAT?) :: (INTEGER?) Returns the signum of a floating point
number: 0 if the number is 0, -1 for any
negative number, and 1 for any positive
number.

sign(input :: INTEGER?) ::
(INTEGER?)

Returns the signum of an integer
number: 0 if the number is 0, -1 for any
negative number, and 1 for any positive
number.

Logarithmic functions

These functions all operate on numerical expressions only, and will return an error if used on any other
values.

Function Signature Description

e() e() :: (FLOAT?) Returns the base of the natural
logarithm, e.

exp() exp(input :: FLOAT?) :: (FLOAT?) Returns e^n, where e is the base of the
natural logarithm, and n is the value of
the argument expression.

log() log(input :: FLOAT?) :: (FLOAT?) Returns the natural logarithm of a
number.

log10() log10(input :: FLOAT?) :: (FLOAT?) Returns the common logarithm (base
10) of a number.

sqrt() sqrt(input :: FLOAT?) :: (FLOAT?) Returns the square root of a number.

Trigonometric functions

These functions all operate on numerical expressions only, and will return an error if used on any other
values.

197

All trigonometric functions operate on radians, unless otherwise specified.

Function Signature Description

acos() acos(input :: FLOAT?) :: (FLOAT?) Returns the arccosine of a number in
radians.

asin() asin(input :: FLOAT?) :: (FLOAT?) Returns the arcsine of a number in
radians.

atan() atan(input :: FLOAT?) :: (FLOAT?) Returns the arctangent of a number in
radians.

atan2() atan2(y :: FLOAT?, x :: FLOAT?) ::
(FLOAT?)

Returns the arctangent2 of a set of
coordinates in radians.

cos() cos(input :: FLOAT?) :: (FLOAT?) Returns the cosine of a number.

cot() cot(input :: FLOAT?) :: (FLOAT?) Returns the cotangent of a number.

degrees() degrees(input :: FLOAT?) :: (FLOAT?) Converts radians to degrees.

haversin() haversin(input :: FLOAT?) ::
(FLOAT?)

Returns half the versine of a number.

pi() pi() :: (FLOAT?) Returns the mathematical constant pi.

radians() radians(input :: FLOAT?) :: (FLOAT?) Converts degrees to radians.

sin() sin(input :: FLOAT?) :: (FLOAT?) Returns the sine of a number.

tan() tan(input :: FLOAT?) :: (FLOAT?) Returns the tangent of a number.

String functions

These functions are used to manipulate strings or to create a string representation of another value.

Function Signature Description

left() left(original :: STRING?, length ::
INTEGER?) :: (STRING?)

Returns a string containing the specified
number of leftmost characters of the
original string.

ltrim() ltrim(input :: STRING?) :: (STRING?) Returns the original string with leading
whitespace removed.

replace() replace(original :: STRING?, search
:: STRING?, replace :: STRING?) ::
(STRING?)

Returns a string in which all occurrences
of a specified search string in the
original string have been replaced by
another (specified) replace string.

reverse() reverse(input :: STRING?) ::
(STRING?)

Returns a string in which the order of all
characters in the original string have
been reversed.

right() right(original :: STRING?, length ::
INTEGER?) :: (STRING?)

Returns a string containing the specified
number of rightmost characters of the
original string.

rtrim() rtrim(input :: STRING?) :: (STRING?) Returns the original string with trailing
whitespace removed.

198

Function Signature Description

split() split(original :: STRING?,
splitDelimiter :: STRING?) :: (LIST?
OF STRING?)

Returns a list of strings resulting from
the splitting of the original string around
matches of the given delimiter.

split(original :: STRING?,
splitDelimiters :: LIST? OF STRING?)
:: (LIST? OF STRING?)

Returns a list of strings resulting from
the splitting of the original string around
matches of any of the given delimiters.

substring() substring(original :: STRING?, start
:: INTEGER?) :: (STRING?)

Returns a substring of the original
string, beginning with a 0-based index
start.

substring(original :: STRING?, start
:: INTEGER?, length :: INTEGER?) ::
(STRING?)

Returns a substring of length 'length' of
the original string, beginning with a 0-
based index start.

toLower() toLower(input :: STRING?) ::
(STRING?)

Returns the original string in lowercase.

toString() toString(input :: ANY?) :: (STRING?) Converts an integer, float, boolean, point
or temporal type (i.e. Date, Time,
LocalTime, DateTime, LocalDateTime or
Duration) value to a string.

toStringOrNull() toStringOrNull(input :: ANY?) ::
(STRING?)

Converts an integer, float, boolean, point
or temporal type (i.e. Date, Time,
LocalTime, DateTime, LocalDateTime or
Duration) value to a string, or null if the
value cannot be converted.

toUpper() toUpper(input :: STRING?) ::
(STRING?)

Returns the original string in uppercase.

trim() trim(input :: STRING?) :: (STRING?) Returns the original string with leading
and trailing whitespace removed.

Temporal instant types functions

Values of the temporal types — Date, Time, LocalTime, DateTime, and LocalDateTime — can be created
manipulated using the following functions:

Function Signature Description

date() date(input =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATE?)

Create a Date instant.

date.realtime() date.realtime(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATE?)

Get the current Date instant using the
realtime clock.

date.statement() date.statement(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATE?)

Get the current Date instant using the
statement clock.

date.transaction() date.transaction(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATE?)

Get the current Date instant using the
transaction clock.

199

Function Signature Description

date.truncate() date.truncate(unit :: STRING?, input
= DEFAULT_TEMPORAL_ARGUMENT :: ANY?,
fields = null :: MAP?) :: (DATE?)

Truncate the input temporal value to a
Date instant using the specified unit.

datetime() datetime(input =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATETIME?)

Create a DateTime instant.

datetime.fromepoch() datetime.fromepoch(seconds ::
NUMBER?, nanoseconds :: NUMBER?) ::
(DATETIME?)

Create a DateTime given the seconds
and nanoseconds since the start of the
epoch.

datetime.fromepochmillis() datetime.fromepochmillis(millisecond
s :: NUMBER?) :: (DATETIME?)

Create a DateTime given the
milliseconds since the start of the epoch.

datetime.realtime() datetime.realtime(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATETIME?)

Get the current DateTime instant using
the realtime clock.

datetime.statement() datetime.statement(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATETIME?)

Get the current DateTime instant using
the statement clock.

datetime.transaction() datetime.transaction(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (DATETIME?)

Get the current DateTime instant using
the transaction clock.

datetime.truncate() datetime.truncate(unit :: STRING?,
input = DEFAULT_TEMPORAL_ARGUMENT ::
ANY?, fields = null :: MAP?) ::
(DATETIME?)

Truncate the input temporal value to a
DateTime instant using the specified
unit.

localdatetime() localdatetime(input =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALDATETIME?)

Create a LocalDateTime instant.

localdatetime.realtime() localdatetime.realtime(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALDATETIME?)

Get the current LocalDateTime instant
using the realtime clock.

localdatetime.statement() localdatetime.statement(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALDATETIME?)

Get the current LocalDateTime instant
using the statement clock.

localdatetime.transaction() localdatetime.transaction(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALDATETIME?)

Get the current LocalDateTime instant
using the transaction clock.

localdatetime.truncate() localdatetime.truncate(unit ::
STRING?, input =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?,
fields = null :: MAP?) ::
(LOCALDATETIME?)

Truncate the input temporal value to a
LocalDateTime instant using the
specified unit.

localtime() localtime(input =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALTIME?)

Create a LocalTime instant.

localtime.realtime() localtime.realtime(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALTIME?)

Get the current LocalTime instant using
the realtime clock.

localtime.statement() localtime.statement(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALTIME?)

Get the current LocalTime instant using
the statement clock.

localtime.transaction() localtime.transaction(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (LOCALTIME?)

Get the current LocalTime instant using
the transaction clock.

200

Function Signature Description

localtime.truncate() localtime.truncate(unit :: STRING?,
input = DEFAULT_TEMPORAL_ARGUMENT ::
ANY?, fields = null :: MAP?) ::
(LOCALTIME?)

Truncate the input temporal value to a
LocalTime instant using the specified
unit.

time() time(input =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (TIME?)

Create a Time instant.

time.realtime() time.realtime(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (TIME?)

Get the current Time instant using the
realtime clock.

time.statement() time.statement(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (TIME?)

Get the current Time instant using the
statement clock.

time.transaction() time.transaction(timezone =
DEFAULT_TEMPORAL_ARGUMENT :: ANY?)
:: (TIME?)

Get the current Time instant using the
transaction clock.

time.truncate() time.truncate(unit :: STRING?, input
= DEFAULT_TEMPORAL_ARGUMENT :: ANY?,
fields = null :: MAP?) :: (TIME?)

Truncate the input temporal value to a
Time instant using the specified unit.

Temporal duration functions

Duration values of the temporal types can be created manipulated using the following functions:

Function Signature Description

duration() duration(input :: ANY?) ::
(DURATION?)

Construct a Duration value.

duration.between() duration.between(from :: ANY?, to ::
ANY?) :: (DURATION?)

Compute the duration between the
'from' instant (inclusive) and the 'to'
instant (exclusive) in logical units.

duration.inDays() duration.inDays(from :: ANY?, to ::
ANY?) :: (DURATION?)

Compute the duration between the
'from' instant (inclusive) and the 'to'
instant (exclusive) in days.

duration.inMonths() duration.inMonths(from :: ANY?, to
:: ANY?) :: (DURATION?)

Compute the duration between the
'from' instant (inclusive) and the 'to'
instant (exclusive) in months.

duration.inSeconds() duration.inSeconds(from :: ANY?, to
:: ANY?) :: (DURATION?)

Compute the duration between the
'from' instant (inclusive) and the 'to'
instant (exclusive) in seconds.

Spatial functions

These functions are used to specify 2D or 3D points in a geographic or cartesian Coordinate Reference
System and to calculate the geodesic distance between two points.

201

Function Signature Description

distance() distance(from :: POINT?, to ::
POINT?) :: (FLOAT?)

Returns a floating point number
representing the geodesic distance
between any two points in the same
CRS.

point() - Cartesian 2D point(input :: MAP?) :: (POINT?) Returns a 2D point object, given two
coordinate values in the Cartesian
coordinate system.

point() - Cartesian 3D point(input :: MAP?) :: (POINT?) Returns a 3D point object, given three
coordinate values in the Cartesian
coordinate system.

point() - WGS 84 2D point(input :: MAP?) :: (POINT?) Returns a 2D point object, given two
coordinate values in the WGS 84
geographic coordinate system.

`point() - WGS 84 3D point(input :: MAP?) :: (POINT?) Returns a 3D point object, given three
coordinate values in the WGS 84
geographic coordinate system.

LOAD CSV functions

LOAD CSV functions can be used to get information about the file that is processed by LOAD CSV.

Function Signature Description

file() file() :: (STRING?) Returns the absolute path of the file that
LOAD CSV is using.

linenumber() linenumber() :: (INTEGER?) Returns the line number that LOAD CSV
is currently using.

User-defined functions

User-defined functions are written in Java, deployed into the database and are called in the same way as
any other Cypher function. There are two main types of functions that can be developed and used:

Type Description Usage Developing

Scalar For each row the function
takes parameters and returns
a result

Using UDF Extending Neo4j (UDF)

Aggregating Consumes many rows and
produces an aggregated
result

Using aggregating UDF Extending Neo4j
(Aggregating UDF)

3.1. Predicate functions
Functions:

• all()

202

https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-aggregation-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-aggregation-functions

• any()

• exists()

• isEmpty()

• none()

• single()

[alt] | Predicate functions-1.svg

Graph

3.1.1. all()

The function all() returns true if the predicate holds for all elements in the given list. null is returned if
the list is null or all of its elements are null.

Syntax: all(variable IN list WHERE predicate)

Returns:

A Boolean.

Arguments:

Name Description

list An expression that returns a list. A single element cannot be
explicitly passed as a literal in the cypher statement.
However, an implicit conversion will happen for single
elements when passing node properties during cypher
execution.

variable A variable that can be used from within the predicate.

predicate A predicate that is tested against all items in the list.

Query

MATCH p = (a)-[*1..3]->(b)
WHERE
 a.name = 'Alice'
 AND b.name = 'Daniel'
 AND all(x IN nodes(p) WHERE x.age > 30)
RETURN p

All nodes in the returned paths will have a property age with a value larger than 30.

Table 248. Result

p

(0)-[KNOWS,1]->(2)-[KNOWS,3]->(3)

Rows: 1

203

3.1.2. any()

The function any() returns true if the predicate holds for at least one element in the given list. null is
returned if the list is null or all of its elements are null.

Syntax: any(variable IN list WHERE predicate)

Returns:

A Boolean.

Arguments:

Name Description

list An expression that returns a list. A single element cannot be
explicitly passed as a literal in the cypher statement.
However, an implicit conversion will happen for single
elements when passing node properties during cypher
execution.

variable A variable that can be used from within the predicate.

predicate A predicate that is tested against all items in the list.

Query

MATCH (n)
WHERE any(color IN n.liked_colors WHERE color = 'yellow')
RETURN n

The query returns nodes with the property liked_colors (as a list), where at least one element has the
value 'yellow'.

Table 249. Result

n

Node[4]{eyes:"blue",liked_colors:["pink","yellow","black"],name:"Eskil",age:41}

Rows: 1

3.1.3. exists()

The function exists() returns true if a match for the given pattern exists in the graph, or if the specified
property exists in the node, relationship or map. null is returned if the input argument is null.

Syntax: exists(pattern-or-property)

Returns:

A Boolean.

Arguments:

204

Name Description

pattern-or-property A pattern or a property (in the form 'variable.prop').

Query

MATCH (n)
WHERE n.name IS NOT NULL
RETURN
 n.name AS name,
 exists((n)-[:MARRIED]->()) AS is_married

The names of all nodes with the name property are returned, along with a boolean (true or false) indicating
if they are married.

Table 250. Result

name is_married

"Alice" false

"Bob" true

"Charlie" false

"Daniel" false

"Eskil" false

Rows: 5

Query

MATCH
 (a),
 (b)
WHERE
 exists(a.name)
 AND NOT exists(b.name)
OPTIONAL MATCH (c:DoesNotExist)
RETURN
 a.name AS a_name,
 b.name AS b_name,
 exists(b.name) AS b_has_name,
 c.name AS c_name,
 exists(c.name) AS c_has_name
ORDER BY a_name, b_name, c_name
LIMIT 1

Three nodes are returned: one with a property name, one without a property name, and one that does not
exist (e.g., is null). This query exemplifies the behavior of exists() when operating on null nodes.

Table 251. Result

a_name b_name b_has_name c_name c_has_name

"Alice" <null> false <null> <null>

Rows: 1

Note that the exists() function is deprecated for property input. Please use the IS NOT
NULL predicate instead.

205

3.1.4. isEmpty()

The function isEmpty() returns true if the given list or map contains no elements or if the given string
contains no characters.

Syntax: isEmpty(list)

Returns:

A Boolean.

Arguments:

Name Description

list An expression that returns a list.

Query

MATCH (n)
WHERE NOT isEmpty(n.liked_colors)
RETURN n

The nodes with the property liked_colors being non-empty are returned.

Table 252. Result

n

Node[4]{eyes:"blue",liked_colors:["pink","yellow","black"],name:"Eskil",age:41}

Node[5]{eyes:"",liked_colors:["blue","green"],alias:"Frank",age:61}

Rows: 2

Syntax: isEmpty(map)

Returns:

A Boolean.

Arguments:

Name Description

map An expression that returns a map.

Query

MATCH (n)
WHERE isEmpty(properties(n))
RETURN n

Nodes that does not have any properties are returned.

206

Table 253. Result

n

Node[6]{}

Rows: 1

Syntax: isEmpty(string)

Returns:

A Boolean.

Arguments:

Name Description

string An expression that returns a string.

Query

MATCH (n)
WHERE isEmpty(n.eyes)
RETURN n.age AS age

The age are returned for each node that has a property eyes where the value evaulates to be empty
(empty string).

Table 254. Result

age

61

Rows: 1

The function isEmpty(), like most other Cypher functions, returns null if null is passed
in to the function. That means that a predicate `isEmpty(n.eyes) will filter out all
nodes where the eyes property is not set. Thus, isEmpty() is not suited to test for null
values. IS NULL or IS NOT NULL should be used for that purpose.

3.1.5. none()

The function none() returns true if the predicate does not hold for any element in the given list. null is
returned if the list is null or all of its elements are null.

Syntax: none(variable IN list WHERE predicate)

Returns:

A Boolean.

207

Arguments:

Name Description

list An expression that returns a list. A single element cannot be
explicitly passed as a literal in the cypher statement.
However, an implicit conversion will happen for single
elements when passing node properties during cypher
execution.

variable A variable that can be used from within the predicate.

predicate A predicate that is tested against all items in the list.

Query

MATCH p = (n)-[*1..3]->(b)
WHERE
 n.name = 'Alice'
 AND none(x IN nodes(p) WHERE x.age = 25)
RETURN p

No node in the returned paths has a property age with the value 25.

Table 255. Result

p

(0)-[KNOWS,1]->(2)

(0)-[KNOWS,1]->(2)-[KNOWS,3]->(3)

Rows: 2

3.1.6. single()

The function single() returns true if the predicate holds for exactly one of the elements in the given list.
null is returned if the list is null or all of its elements are null.

Syntax: single(variable IN list WHERE predicate)

Returns:

A Boolean.

Arguments:

Name Description

list An expression that returns a list.

variable A variable that can be used from within the predicate.

predicate A predicate that is tested against all items in the list.

208

Query

MATCH p = (n)-->(b)
WHERE
 n.name = 'Alice'
 AND single(var IN nodes(p) WHERE var.eyes = 'blue')
RETURN p

In every returned path there is exactly one node that has a property eyes with the value 'blue'.

Table 256. Result

p

(0)-[KNOWS,0]->(1)

Rows: 1

3.2. Scalar functions
Functions:

• coalesce()

• endNode()

• head()

• id()

• last()

• length()

• properties()

• randomUUID()

• size()

• Size of pattern expression

• Size of string

• startNode()

• timestamp()

• toBoolean()

• toBooleanOrNull()

• toFloat()

• toFloatOrNull()

• toInteger()

• toIntegerOrNull()

• type()

209

The length() and size() functions are quite similar, and so it is important to take note of
the difference.

Function length()

Only works for paths.

Function size()

Only works for the three types: strings, lists, and pattern expressions.

[alt] | Scalar functions-1.svg

Graph

3.2.1. coalesce()

The function coalesce() returns the first non-null value in the given list of expressions.

Syntax: coalesce(expression [, expression]*)

Returns:

The type of the value returned will be that of the first non-null expression.

Arguments:

Name Description

expression An expression that may return null.

Considerations:

null will be returned if all the arguments are null.

Query

MATCH (a)
WHERE a.name = 'Alice'
RETURN coalesce(a.hairColor, a.eyes)

Table 257. Result

coalesce(a.hairColor, a.eyes)

"brown"

Rows: 1

3.2.2. endNode()

The function endNode() returns the end node of a relationship.

Syntax: endNode(relationship)

210

Returns:

A Node.

Arguments:

Name Description

relationship An expression that returns a relationship.

Considerations:

endNode(null) returns null.

Query

MATCH (x:Developer)-[r]-()
RETURN endNode(r)

Table 258. Result

endNode(r)

Node[2]{name:"Charlie",age:53,eyes:"green"}

Node[1]{name:"Bob",age:25,eyes:"blue"}

Rows: 2

3.2.3. head()

The function head() returns the first element in a list.

Syntax: head(expression)

Returns:

The type of the value returned will be that of the first element of the list.

Arguments:

Name Description

expression An expression that returns a list.

Considerations:

head(null) returns null.

head([]) returns null.

If the first element in list is null, head(list) will return null.

211

Query

MATCH (a)
WHERE a.name = 'Eskil'
RETURN a.liked_colors, head(a.liked_colors)

The first element in the list is returned.

Table 259. Result

a.liked_colors head(a.liked_colors)

["pink","yellow","black"] "pink"

Rows: 1

3.2.4. id()

The function id() returns a node or a relationship identifier, unique by an object type and a database.
Therefore, it is perfectly allowable for id() to return the same value for both nodes and relationships in the
same database. For examples on how to get a node and a relationship by ID, see Get node or relationship
by id.

Neo4j implements the id so that:

Node

Every node in a database has an identifier. The identifier for a node is guaranteed to
be unique among other nodes' identifiers in the same database, within the scope of a
single transaction.

Relationship

Every relationship in a database has an identifier. The identifier for a relationship is
guaranteed to be unique among other relationships' identifiers in the same database,
within the scope of a single transaction.

Syntax: id(expression)

Returns:

An Integer.

Arguments:

Name Description

expression An expression that returns a node or a relationship.

Considerations:

id(null) returns null.

212

Query

MATCH (a)
RETURN id(a)

The node identifier for each of the nodes is returned.

Table 260. Result

id(a)

0

1

2

3

4

Rows: 5

3.2.5. last()

The function last() returns the last element in a list.

Syntax: last(expression)

Returns:

The type of the value returned will be that of the last element of the list.

Arguments:

Name Description

expression An expression that returns a list.

Considerations:

last(null) returns null.

last([]) returns null.

If the last element in list is null, last(list) will return null.

Query

MATCH (a)
WHERE a.name = 'Eskil'
RETURN a.liked_colors, last(a.liked_colors)

The last element in the list is returned.

Table 261. Result

213

a.liked_colors last(a.liked_colors)

["pink","yellow","black"] "black"

Rows: 1

3.2.6. length()

The function length() returns the length of a path.

Syntax: length(path)

Returns:

An Integer.

Arguments:

Name Description

path An expression that returns a path.

Considerations:

length(null) returns null.

Query

MATCH p = (a)-->(b)-->(c)
WHERE a.name = 'Alice'
RETURN length(p)

The length of the path p is returned.

Table 262. Result

length(p)

2

2

2

Rows: 3

3.2.7. properties()

The function properties() returns a map containing all the properties; the function can be utilized for a
relationship or a node. If the argument is already a map, it is returned unchanged.

Syntax: properties(expression)

Returns:

214

A Map.

Arguments:

Name Description

expression An expression that returns a relationship, a node, or a map.

Considerations:

properties(null) returns null.

Query

CREATE (p:Person {name: 'Stefan', city: 'Berlin'})
RETURN properties(p)

Table 263. Result

properties(p)

{city -> "Berlin", name -> "Stefan"}

Rows: 1
Nodes created: 1
Properties set: 2
Labels added: 1

3.2.8. randomUUID()

The function randomUUID() returns a randomly-generated Universally Unique Identifier (UUID), also known
as a Globally Unique Identifier (GUID). This is a 128-bit value with strong guarantees of uniqueness.

Syntax: randomUUID()

Returns:

A String.

Query

RETURN randomUUID() AS uuid

Table 264. Result

uuid

"9c45ba13-84e5-4e8c-bb9e-3cb612fa9c08"

Rows: 1

A randomly-generated UUID is returned.

215

3.2.9. size()

The function size() returns the number of elements in a list.

Syntax: size(list)

Returns:

An Integer.

Arguments:

Name Description

list An expression that returns a list.

Considerations:

size(null) returns null.

Query

RETURN size(['Alice', 'Bob'])

Table 265. Result

size(['Alice', 'Bob'])

2

Rows: 1

The number of elements in the list is returned.

3.2.10. size() applied to pattern expression

This is the same function size() as described above, but you pass in a pattern expression, instead of a list.
The function size will then calculate on a list of paths.

Syntax: size(pattern expression)

Arguments:

Name Description

pattern expression A pattern expression that returns a list.

Query

MATCH (a)
WHERE a.name = 'Alice'
RETURN size((a)-->()-->()) AS fof

216

Table 266. Result

fof

3

Rows: 1

The number of paths matching the pattern expression is returned. (The size of the list of paths).

3.2.11. size() applied to string

The function size() returns the number of Unicode characters in a string.

Syntax: size(string)

Returns:

An Integer.

Arguments:

Name Description

string An expression that returns a string value.

Considerations:

size(null) returns null.

Query

MATCH (a)
WHERE size(a.name) > 6
RETURN size(a.name)

Table 267. Result

size(a.name)

7

Rows: 1

The number of characters in the string 'Charlie' is returned.

3.2.12. startNode()

The function startNode() returns the start node of a relationship.

Syntax: startNode(relationship)

Returns:

217

A Node.

Arguments:

Name Description

relationship An expression that returns a relationship.

Considerations:

startNode(null) returns null.

Query

MATCH (x:Developer)-[r]-()
RETURN startNode(r)

Table 268. Result

startNode(r)

Node[0]{name:"Alice",age:38,eyes:"brown"}

Node[0]{name:"Alice",age:38,eyes:"brown"}

Rows: 2

3.2.13. timestamp()

The function timestamp() returns the difference, measured in milliseconds, between the current time and
midnight, January 1, 1970 UTC.

 It is the equivalent of datetime().epochMillis.

Syntax: timestamp()

Returns:

An Integer.

Considerations:

timestamp() will return the same value during one entire query, even for long-running queries.

Query

RETURN timestamp()

The time in milliseconds is returned.

Table 269. Result

218

timestamp()

1668159154237

Rows: 1

3.2.14. toBoolean()

The function toBoolean() converts a string, integer or boolean value to a boolean value.

Syntax: toBoolean(expression)

Returns:

A Boolean.

Arguments:

Name Description

expression An expression that returns a boolean, string or integer value.

Considerations:

toBoolean(null) returns null.

If expression is a boolean value, it will be returned unchanged.

If the parsing fails, null will be returned.

If expression is the integer value 0, false will be returned. For any other integer value true will be returned.

This function will return an error if provided with an expression that is not a string, integer or boolean value.

Query

RETURN toBoolean('true'), toBoolean('not a boolean'), toBoolean(0)

Table 270. Result

toBoolean('true') toBoolean('not a boolean') toBoolean(0)

true <null> false

Rows: 1

3.2.15. toBooleanOrNull()

The function toBooleanOrNull() converts a string, integer or boolean value to a boolean value. For any
other input value, null will be returned.

Syntax: toBooleanOrNull(expression)

Returns:

219

A Boolean or null.

Arguments:

Name Description

expression Any expression that returns a value.

Considerations:

toBooleanOrNull(null) returns null.

If expression is a boolean value, it will be returned unchanged.

If the parsing fails, null will be returned.

If expression is the integer value 0, false will be returned. For any other integer value true will be returned.

If the expression is not a string, integer or boolean value, null will be returned.

Query

RETURN toBooleanOrNull('true'), toBooleanOrNull('not a boolean'), toBooleanOrNull(0), toBooleanOrNull(1.5)

Table 271. Result

toBooleanOrNull('true') toBooleanOrNull('not a
boolean')

toBooleanOrNull(0) toBooleanOrNull(1.5)

true <null> false <null>

Rows: 1

3.2.16. toFloat()

The function toFloat() converts an integer, floating point or a string value to a floating point number.

Syntax: toFloat(expression)

Returns:

A Float.

Arguments:

Name Description

expression An expression that returns a numeric or a string value.

Considerations:

toFloat(null) returns null.

If expression is a floating point number, it will be returned unchanged.

220

If the parsing fails, null will be returned.

This function will return an error if provided with an expression that is not an integer, floating point or a string value.

Query

RETURN toFloat('11.5'), toFloat('not a number')

Table 272. Result

toFloat('11.5') toFloat('not a number')

11.5 <null>

Rows: 1

3.2.17. toFloatOrNull()

The function toFloatOrNull() converts an integer, floating point or a string value to a floating point
number. For any other input value, null will be returned.

Syntax: toFloatOrNull(expression)

Returns:

A Float or null.

Arguments:

Name Description

expression Any expression that returns a value.

Considerations:

toFloatOrNull(null) returns null.

If expression is a floating point number, it will be returned unchanged.

If the parsing fails, null will be returned.

If the expression is not an integer, floating point or a string value, null will be returned.

Query

RETURN toFloatOrNull('11.5'), toFloatOrNull('not a number'), toFloatOrNull(true)

Table 273. Result

toFloatOrNull('11.5') toFloatOrNull('not a number') toFloatOrNull(true)

11.5 <null> <null>

Rows: 1

221

3.2.18. toInteger()

The function toInteger() converts a boolean, integer, floating point or a string value to an integer value.

Syntax: toInteger(expression)

Returns:

An Integer.

Arguments:

Name Description

expression An expression that returns a boolean, numeric or a string
value.

Considerations:

toInteger(null) returns null.

If expression is an integer value, it will be returned unchanged.

If the parsing fails, null will be returned.

If expression is the boolean value false, 0 will be returned. If expression is the boolean value true, 1 will be returned.

This function will return an error if provided with an expression that is not a boolean, floating point, integer or a string value.

Query

RETURN toInteger('42'), toInteger('not a number'), toInteger(true)

Table 274. Result

toInteger('42') toInteger('not a number') toInteger(true)

42 <null> 1

Rows: 1

3.2.19. toIntegerOrNull()

The function toIntegerOrNull() converts a boolean, integer, floating point or a string value to an integer
value. For any other input value, null will be returned.

Syntax: toIntegerOrNull(expression)

Returns:

An Integer or null.

Arguments:

222

Name Description

expression Any expression that returns a value.

Considerations:

toIntegerOrNull(null) returns null.

If expression is an integer value, it will be returned unchanged.

If the parsing fails, null will be returned.

If expression is the boolean value false, 0 will be returned. If expression is the boolean value true, 1 will be returned.

If the expression is not a boolean, floating point, integer or a string value, null will be returned.

Query

RETURN toIntegerOrNull('42'), toIntegerOrNull('not a number'), toIntegerOrNull(true), toIntegerOrNull([
'A', 'B', 'C'])

Table 275. Result

toIntegerOrNull('42') toIntegerOrNull('not a
number')

toIntegerOrNull(true) toIntegerOrNull(['A', 'B', 'C'])

42 <null> 1 <null>

Rows: 1

3.2.20. type()

The function type() returns the string representation of the relationship type.

Syntax: type(relationship)

Returns:

A String.

Arguments:

Name Description

relationship An expression that returns a relationship.

Considerations:

type(null) returns null.

Query

MATCH (n)-[r]->()
WHERE n.name = 'Alice'
RETURN type(r)

223

The relationship type of r is returned.

Table 276. Result

type(r)

"KNOWS"

"KNOWS"

Rows: 2

3.3. Aggregating functions
Functions:

• avg() - Numeric values

• avg() - Durations

• collect()

• count()

• max()

• min()

• percentileCont()

• percentileDisc()

• stDev()

• stDevP()

• sum() - Numeric values

• sum() - Durations

Aggregation can be computed over all the matching paths, or it can be further divided by introducing
grouping keys. Grouping keys are non-aggregate expressions, that are used to group the values going into
the aggregate functions.

Assume we have the following return statement:

RETURN n, count(*)

We have two return expressions: n, and count(*). The first, n, is not an aggregate function, so it will be the
grouping key. The latter, count(*) is an aggregate expression. The matching paths will be divided into
different buckets, depending on the grouping key. The aggregate function will then be run on these
buckets, calculating an aggregate value per bucket.

To use aggregations to sort the result set, the aggregation must be included in the RETURN to be used in the
ORDER BY.

The DISTINCT operator works in conjunction with aggregation. It is used to make all values unique before
running them through an aggregate function. More information about DISTINCT may be found in Syntax →

224

Aggregation operators.

The following graph is used for the examples below:

[alt] | Aggregating functions-1.svg

Graph

3.3.1. avg() - Numeric values

The function avg() returns the average of a set of numeric values.

Syntax: avg(expression)

Returns:

Either an Integer or a Float, depending on the values returned by expression and whether or not the calculation overflows.

Arguments:

Name Description

expression An expression returning a set of numeric values.

Considerations:

Any null values are excluded from the calculation.

avg(null) returns null.

Query

MATCH (n:Person)
RETURN avg(n.age)

The average of all the values in the property age is returned.

Table 277. Result

avg(n.age)

30.0

Rows: 1

3.3.2. avg() - Durations

The function avg() returns the average of a set of Durations.

Syntax: avg(expression)

Returns:

225

A Duration.

Arguments:

Name Description

expression An expression returning a set of Durations.

Considerations:

Any null values are excluded from the calculation.

avg(null) returns null.

Query

UNWIND [duration('P2DT3H'), duration('PT1H45S')] AS dur
RETURN avg(dur)

The average of the two supplied Durations is returned.

Table 278. Result

avg(dur)

P1DT2H22.5S

Rows: 1

3.3.3. collect()

The function collect() returns a single aggregated list containing the values returned by an expression.

Syntax: collect(expression)

Returns:

A list containing heterogeneous elements; the types of the elements are determined by the values returned by expression.

Arguments:

Name Description

expression An expression returning a set of values.

Considerations:

Any null values are ignored and will not be added to the list.

collect(null) returns an empty list.

226

Query

MATCH (n:Person)
RETURN collect(n.age)

All the values are collected and returned in a single list.

Table 279. Result

collect(n.age)

[13,33,44]

Rows: 1

3.3.4. count()

The function count() returns the number of values or rows, and appears in two variants:

count(*)

returns the number of matching rows.

count(expr)

returns the number of non-null values returned by an expression.

Syntax: count(expression)

Returns:

An Integer.

Arguments:

Name Description

expression An expression.

Considerations:

count(*) includes rows returning null.

count(expr) ignores null values.

count(null) returns 0.

Using count(*) to return the number of nodes

The function count(*) can be used to return the number of nodes; for example, the number of nodes
connected to some node n.

227

Query

MATCH (n {name: 'A'})-->(x)
RETURN labels(n), n.age, count(*)

The labels and age property of the start node n and the number of nodes related to n are returned.

Table 280. Result

labels(n) n.age count(*)

["Person"] 13 4

Rows: 1

Using count(*) to group and count relationship types

The function count(*) can be used to group the type of matched relationships and return the number.

Query

MATCH (n {name: 'A'})-[r]->()
RETURN type(r), count(*)

The type of matched relationships are grouped and the group count are returned.

Table 281. Result

type(r) count(*)

"KNOWS" 3

"READS" 1

Rows: 2

Using count(expression) to return the number of values

Instead of simply returning the number of rows with count(*), it may be more useful to return the actual
number of values returned by an expression.

Query

MATCH (n {name: 'A'})-->(x)
RETURN count(x)

The number of nodes that are connected directly (one relationship) to the node, with the name 'A', is
returned.

Table 282. Result

count(x)

4

Rows: 1

228

Counting non-null values

The function count(expression) can be used to return the number of non-null values returned by the
expression.

Query

MATCH (n:Person)
RETURN count(n.age)

The number of nodes with the label Person and a property age is returned. (If you want the sum, use
sum(n.age))

Table 283. Result

count(n.age)

3

Rows: 1

Counting with and without duplicates

In this example we are trying to find all our friends of friends, and count them:

count(DISTINCT friend_of_friend)

Will only count a friend_of_friend once, as DISTINCT removes the duplicates.

count(friend_of_friend)

Will consider the same friend_of_friend multiple times.

Query

MATCH (me:Person)-->(friend:Person)-->(friend_of_friend:Person)
WHERE me.name = 'A'
RETURN count(DISTINCT friend_of_friend), count(friend_of_friend)

Both B and C know D and thus D will get counted twice when not using DISTINCT.

Table 284. Result

count(DISTINCT friend_of_friend) count(friend_of_friend)

1 2

Rows: 1

3.3.5. max()

The function max() returns the maximum value in a set of values.

Syntax: max(expression)

Returns:

229

A property type, or a list, depending on the values returned by expression.

Arguments:

Name Description

expression An expression returning a set containing any combination of
property types and lists thereof.

Considerations:

Any null values are excluded from the calculation.

In a mixed set, any numeric value is always considered to be higher than any string value, and any string value is always
considered to be higher than any list.

Lists are compared in dictionary order, i.e. list elements are compared pairwise in ascending order from the start of the list to
the end.

max(null) returns null.

Query

UNWIND [1, 'a', null, 0.2, 'b', '1', '99'] AS val
RETURN max(val)

The highest of all the values in the mixed set — in this case, the numeric value 1 — is returned.

The value '99' (a string), is considered to be a lower value than 1 (an integer), because
'99' is a string.

Table 285. Result

max(val)

1

Rows: 1

Query

UNWIND [[1, 'a', 89], [1, 2]] AS val
RETURN max(val)

The highest of all the lists in the set — in this case, the list [1, 2] — is returned, as the number 2 is
considered to be a higher value than the string 'a', even though the list [1, 'a', 89] contains more
elements.

Table 286. Result

max(val)

[1,2]

Rows: 1

230

Query

MATCH (n:Person)
RETURN max(n.age)

The highest of all the values in the property age is returned.

Table 287. Result

max(n.age)

44

Rows: 1

3.3.6. min()

The function min() returns the minimum value in a set of values.

Syntax: min(expression)

Returns:

A property type, or a list, depending on the values returned by expression.

Arguments:

Name Description

expression An expression returning a set containing any combination of
property types and lists thereof.

Considerations:

Any null values are excluded from the calculation.

In a mixed set, any string value is always considered to be lower than any numeric value, and any list is always considered to
be lower than any string.

Lists are compared in dictionary order, i.e. list elements are compared pairwise in ascending order from the start of the list to
the end.

min(null) returns null.

Query

UNWIND [1, 'a', null, 0.2, 'b', '1', '99'] AS val
RETURN min(val)

The lowest of all the values in the mixed set — in this case, the string value "1" — is returned. Note that the
(numeric) value 0.2, which may appear at first glance to be the lowest value in the list, is considered to be
a higher value than "1" as the latter is a string.

Table 288. Result

231

min(val)

"1"

Rows: 1

Query

UNWIND ['d', [1, 2], ['a', 'c', 23]] AS val
RETURN min(val)

The lowest of all the values in the set — in this case, the list ['a', 'c', 23] — is returned, as (i) the two
lists are considered to be lower values than the string "d", and (ii) the string "a" is considered to be a lower
value than the numerical value 1.

Table 289. Result

min(val)

["a","c",23]

Rows: 1

Query

MATCH (n:Person)
RETURN min(n.age)

The lowest of all the values in the property age is returned.

Table 290. Result

min(n.age)

13

Rows: 1

3.3.7. percentileCont()

The function percentileCont() returns the percentile of the given value over a group, with a percentile
from 0.0 to 1.0. It uses a linear interpolation method, calculating a weighted average between two values if
the desired percentile lies between them. For nearest values using a rounding method, see
percentileDisc.

Syntax: percentileCont(expression, percentile)

Returns:

A Float.

Arguments:

232

Name Description

expression A numeric expression.

percentile A numeric value between 0.0 and 1.0

Considerations:

Any null values are excluded from the calculation.

percentileCont(null, percentile) returns null.

Query

MATCH (n:Person)
RETURN percentileCont(n.age, 0.4)

The 40th percentile of the values in the property age is returned, calculated with a weighted average.

Table 291. Result

percentileCont(n.age, 0.4)

29.0

Rows: 1

3.3.8. percentileDisc()

The function percentileDisc() returns the percentile of the given value over a group, with a percentile
from 0.0 to 1.0. It uses a rounding method and calculates the nearest value to the percentile. For
interpolated values, see percentileCont.

Syntax: percentileDisc(expression, percentile)

Returns:

Either an Integer or a Float, depending on the values returned by expression and whether or not the calculation overflows.

Arguments:

Name Description

expression A numeric expression.

percentile A numeric value between 0.0 and 1.0

Considerations:

Any null values are excluded from the calculation.

percentileDisc(null, percentile) returns null.

233

Query

MATCH (n:Person)
RETURN percentileDisc(n.age, 0.5)

The 50th percentile of the values in the property age is returned.

Table 292. Result

percentileDisc(n.age, 0.5)

33

Rows: 1

3.3.9. stDev()

The function stDev() returns the standard deviation for the given value over a group. It uses a standard
two-pass method, with N - 1 as the denominator, and should be used when taking a sample of the
population for an unbiased estimate. When the standard variation of the entire population is being
calculated, stdDevP should be used.

Syntax: stDev(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

Any null values are excluded from the calculation.

stDev(null) returns 0.

Query

MATCH (n)
WHERE n.name IN ['A', 'B', 'C']
RETURN stDev(n.age)

The standard deviation of the values in the property age is returned.

Table 293. Result

stDev(n.age)

15.716233645501712

Rows: 1

234

3.3.10. stDevP()

The function stDevP() returns the standard deviation for the given value over a group. It uses a standard
two-pass method, with N as the denominator, and should be used when calculating the standard deviation
for an entire population. When the standard variation of only a sample of the population is being
calculated, stDev should be used.

Syntax: stDevP(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

Any null values are excluded from the calculation.

stDevP(null) returns 0.

Query

MATCH (n)
WHERE n.name IN ['A', 'B', 'C']
RETURN stDevP(n.age)

The population standard deviation of the values in the property age is returned.

Table 294. Result

stDevP(n.age)

12.832251036613439

Rows: 1

3.3.11. sum() - Numeric values

The function sum() returns the sum of a set of numeric values.

Syntax: sum(expression)

Returns:

Either an Integer or a Float, depending on the values returned by expression.

Arguments:

235

Name Description

expression An expression returning a set of numeric values.

Considerations:

Any null values are excluded from the calculation.

sum(null) returns 0.

Query

MATCH (n:Person)
RETURN sum(n.age)

The sum of all the values in the property age is returned.

Table 295. Result

sum(n.age)

90

Rows: 1

3.3.12. sum() - Durations

The function sum() returns the sum of a set of durations.

Syntax: sum(expression)

Returns:

A Duration.

Arguments:

Name Description

expression An expression returning a set of Durations.

Considerations:

Any null values are excluded from the calculation.

Query

UNWIND [duration('P2DT3H'), duration('PT1H45S')] AS dur
RETURN sum(dur)

The sum of the two supplied Durations is returned.

Table 296. Result

236

sum(dur)

P2DT4H45S

Rows: 1

3.4. List functions
Further details and examples of lists may be found in Lists and List operators.

Functions:

• keys()

• labels()

• nodes()

• range()

• reduce()

• relationships()

• reverse()

• tail()

• toBooleanList()

• toFloatList()

• toIntegerList()

• toStringList()

Person, Developer

name = 'Alice'
age = 38
eyes = 'brown'

name = 'Charlie'
age = 53
eyes = 'green'

KNOWS

name = 'Bob'
age = 25
eyes = 'blue'

KNOWS

name = 'Daniel'
age = 54
eyes = 'brown'

KNOWS KNOWS

eyes = 'blue'
array = ['one', 'two', 'three']
name = 'Eskil'
age = 41

MARRIED

3.4.1. keys()

keys returns a list containing the string representations for all the property names of a node, relationship,
or map.

237

Syntax: keys(expression)

Returns:

A list containing String elements.

Arguments:

Name Description

expression An expression that returns a node, a relationship, or a map.

Considerations:

keys(null) returns null.

Query

MATCH (a) WHERE a.name = 'Alice'
RETURN keys(a)

A list containing the names of all the properties on the node bound to a is returned.

Table 297. Result

keys(a)

["name","age","eyes"]

Rows: 1

3.4.2. labels()

labels returns a list containing the string representations for all the labels of a node.

Syntax: labels(node)

Returns:

A list containing String elements.

Arguments:

Name Description

node An expression that returns a single node.

Considerations:

labels(null) returns null.

238

Query

MATCH (a) WHERE a.name = 'Alice'
RETURN labels(a)

A list containing all the labels of the node bound to a is returned.

Table 298. Result

labels(a)

["Person","Developer"]

Rows: 1

3.4.3. nodes()

nodes() returns a list containing all the nodes in a path.

Syntax: nodes(path)

Returns:

A list containing Node elements.

Arguments:

Name Description

path An expression that returns a path.

Considerations:

nodes(null) returns null.

Query

MATCH p = (a)-->(b)-->(c)
WHERE a.name = 'Alice' AND c.name = 'Eskil'
RETURN nodes(p)

A list containing all the nodes in the path p is returned.

Table 299. Result

nodes(p)

[Node[0]{name:"Alice",age:38,eyes:"brown"},Node[1]{name:"Bob",age:25,eyes:"blue"},Node[4]{eyes:"blue",array:["
one","two","three"],name:"Eskil",age:41}]

Rows: 1

239

3.4.4. range()

range() returns a list comprising all integer values within a range bounded by a start value start and end
value end, where the difference step between any two consecutive values is constant; i.e. an arithmetic
progression. To create ranges with decreasing integer values, use a negative value step. The range is
inclusive for non-empty ranges, and the arithmetic progression will therefore always contain start
and — depending on the values of start, step and end — end. The only exception where the range does
not contain start are empty ranges. An empty range will be returned if the value step is negative and
start - end is positive, or vice versa, e.g. range(0, 5, -1).

Syntax: range(start, end [, step])

Returns:

A list of Integer elements.

Arguments:

Name Description

start An expression that returns an integer value.

end An expression that returns an integer value.

step A numeric expression defining the difference between any
two consecutive values, with a default of 1.

Query

RETURN range(0, 10), range(2, 18, 3), range(0, 5, -1)

Three lists of numbers in the given ranges are returned.

Table 300. Result

range(0, 10) range(2, 18, 3) range(0, 5, -1)

[0,1,2,3,4,5,6,7,8,9,10] [2,5,8,11,14,17] []

Rows: 1

3.4.5. reduce()

reduce() returns the value resulting from the application of an expression on each successive element in a
list in conjunction with the result of the computation thus far. This function will iterate through each
element e in the given list, run the expression on e — taking into account the current partial result — and
store the new partial result in the accumulator. This function is analogous to the fold or reduce method in
functional languages such as Lisp and Scala.

Syntax: reduce(accumulator = initial, variable IN list | expression)

Returns:

240

The type of the value returned depends on the arguments provided, along with the semantics of expression.

Arguments:

Name Description

accumulator A variable that will hold the result and the partial results as
the list is iterated.

initial An expression that runs once to give a starting value to the
accumulator.

list An expression that returns a list.

variable The closure will have a variable introduced in its context. We
decide here which variable to use.

expression This expression will run once per value in the list, and
produce the result value.

Query

MATCH p = (a)-->(b)-->(c)
WHERE a.name = 'Alice' AND b.name = 'Bob' AND c.name = 'Daniel'
RETURN reduce(totalAge = 0, n IN nodes(p) | totalAge + n.age) AS reduction

The age property of all nodes in the path are summed and returned as a single value.

Table 301. Result

reduction

117

Rows: 1

3.4.6. relationships()

relationships() returns a list containing all the relationships in a path.

Syntax: relationships(path)

Returns:

A list containing Relationship elements.

Arguments:

Name Description

path An expression that returns a path.

Considerations:

relationships(null) returns null.

241

Query

MATCH p = (a)-->(b)-->(c)
WHERE a.name = 'Alice' AND c.name = 'Eskil'
RETURN relationships(p)

A list containing all the relationships in the path p is returned.

Table 302. Result

relationships(p)

[:KNOWS[0]{},:MARRIED[4]{}]

Rows: 1

3.4.7. reverse()

reverse() returns a list in which the order of all elements in the original list have been reversed.

Syntax: reverse(original)

Returns:

A list containing homogeneous or heterogeneous elements; the types of the elements are determined by the elements
within original.

Arguments:

Name Description

original An expression that returns a list.

Considerations:

Any null element in original is preserved.

Query

WITH [4923,'abc',521, null, 487] AS ids
RETURN reverse(ids)

Table 303. Result

reverse(ids)

[487,<null>,521,"abc",4923]

Rows: 1

3.4.8. tail()

tail() returns a list lresult containing all the elements, excluding the first one, from a list list.

242

Syntax: tail(list)

Returns:

A list containing heterogeneous elements; the types of the elements are determined by the elements in list.

Arguments:

Name Description

list An expression that returns a list.

Query

MATCH (a) WHERE a.name = 'Eskil'
RETURN a.array, tail(a.array)

The property named array and a list comprising all but the first element of the array property are returned.

Table 304. Result

a.array tail(a.array)

["one","two","three"] ["two","three"]

Rows: 1

3.4.9. toBooleanList()

toBooleanList() converts a list of values and returns a list of boolean values. If any values are not
convertible to boolean they will be null in the list returned.

Syntax: toBooleanList(list)

Returns:

A list containing the converted elements; depending on the input value a converted value is either a boolean value or null.

Arguments:

Name Description

list An expression that returns a list.

Considerations:

Any null element in list is preserved.

Any boolean value in list is preserved.

If the list is null, null will be returned.

If the list is not a list, an error will be returned.

243

The conversion for each value in list is done according to the toBooleanOrNull() function.

Query

RETURN toBooleanList(null) as noList,
toBooleanList([null, null]) as nullsInList,
toBooleanList(['a string', true, 'false', null, ['A','B']]) as mixedList

Table 305. Result

noList nullsInList mixedList

<null> [<null>,<null>] [<null>,true,false,<null>,<null>]

Rows: 1

3.4.10. toFloatList()

toFloatList() converts a list of values and returns a list of floating point values. If any values are not
convertible to floating point they will be null in the list returned.

Syntax: toFloatList(list)

Returns:

A list containing the converted elements; depending on the input value a converted value is either a floating point value or
null.

Arguments:

Name Description

list An expression that returns a list.

Considerations:

Any null element in list is preserved.

Any floating point value in list is preserved.

If the list is null, null will be returned.

If the list is not a list, an error will be returned.

The conversion for each value in list is done according to the toFloatOrNull() function.

Query

RETURN toFloatList(null) as noList,
toFloatList([null, null]) as nullsInList,
toFloatList(['a string', 2.5, '3.14159', null, ['A','B']]) as mixedList

Table 306. Result

244

noList nullsInList mixedList

<null> [<null>,<null>] [<null>,2.5,3.14159,<null>,<null>]

Rows: 1

3.4.11. toIntegerList()

toIntegerList() converts a list of values and returns a list of integer values. If any values are not
convertible to integer they will be null in the list returned.

Syntax: toIntegerList(list)

Returns:

A list containing the converted elements; depending on the input value a converted value is either a integer value or null.

Arguments:

Name Description

list An expression that returns a list.

Considerations:

Any null element in list is preserved.

Any integer value in list is preserved.

If the list is null, null will be returned.

If the list is not a list, an error will be returned.

The conversion for each value in list is done according to the toIntegerOrNull() function.

Query

RETURN toIntegerList(null) as noList,
toIntegerList([null, null]) as nullsInList,
toIntegerList(['a string', 2, '5', null, ['A','B']]) as mixedList

Table 307. Result

noList nullsInList mixedList

<null> [<null>,<null>] [<null>,2,5,<null>,<null>]

Rows: 1

3.4.12. toStringList()

toStringList() converts a list of values and returns a list of string values. If any values are not convertible
to string they will be null in the list returned.

Syntax: toStringList(list)

245

Returns:

A list containing the converted elements; depending on the input value a converted value is either a string value or null.

Arguments:

Name Description

list An expression that returns a list.

Considerations:

Any null element in list is preserved.

Any string value in list is preserved.

If the list is null, null will be returned.

If the list is not a list, an error will be returned.

The conversion for each value in list is done according to the toStringOrNull() function.

Query

RETURN toStringList(null) as noList,
toStringList([null, null]) as nullsInList,
toStringList(['already a string', 2, date({year:1955, month:11, day:5}), null, ['A','B']]) as mixedList

Table 308. Result

noList nullsInList mixedList

<null> [<null>,<null>] ["already a string","2","1955-11-
05",<null>,<null>]

Rows: 1

3.5. Mathematical functions - numeric
Functions:

• abs()

• ceil()

• floor()

• rand()

• round()

• round(), with precision

• round(), with precision and rounding mode

• sign()

The following graph is used for the examples below:

246

[alt] | Mathematical functions - numeric-1.svg

Graph

3.5.1. abs()

abs() returns the absolute value of the given number.

Syntax: abs(expression)

Returns:

The type of the value returned will be that of expression.

Arguments:

Name Description

expression A numeric expression.

Considerations:

abs(null) returns null.

If expression is negative, -(expression) (i.e. the negation of expression) is returned.

Query

MATCH (a), (e) WHERE a.name = 'Alice' AND e.name = 'Eskil' RETURN a.age, e.age, abs(a.age - e.age)

The absolute value of the age difference is returned.

Table 309. Result

a.age e.age abs(a.age - e.age)

38 41 3

Rows: 1

3.5.2. ceil()

ceil() returns the smallest floating point number that is greater than or equal to the given number and
equal to a mathematical integer.

Syntax: ceil(expression)

Returns:

A Float.

Arguments:

247

Name Description

expression A numeric expression.

Considerations:

ceil(null) returns null.

Query

RETURN ceil(0.1)

The ceil of 0.1 is returned.

Table 310. Result

ceil(0.1)

1.0

Rows: 1

3.5.3. floor()

floor() returns the largest floating point number that is less than or equal to the given number and equal
to a mathematical integer.

Syntax: floor(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

floor(null) returns null.

Query

RETURN floor(0.9)

The floor of 0.9 is returned.

Table 311. Result

248

floor(0.9)

0.0

Rows: 1

3.5.4. rand()

rand() returns a random floating point number in the range from 0 (inclusive) to 1 (exclusive); i.e. [0,1).
The numbers returned follow an approximate uniform distribution.

Syntax: rand()

Returns:

A Float.

Query

RETURN rand()

A random number is returned.

Table 312. Result

rand()

0.07513909421715392

Rows: 1

3.5.5. round()

round() returns the value of the given number rounded to the nearest integer, with half-way values always
rounded up.

Syntax: round(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression to be rounded.

Considerations:

round(null) returns null.

249

Query

RETURN round(3.141592)

3.0 is returned.

Table 313. Result

round(3.141592)

3.0

Rows: 1

3.5.6. round(), with precision

round() returns the value of the given number rounded with the specified precision, with half-values
always being rounded up.

Syntax: round(expression, precision)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression to be rounded.

precision A numeric expression specifying precision.

Considerations:

round(null) returns null.

Query

RETURN round(3.141592, 3)

3.142 is returned.

Table 314. Result

round(3.141592, 3)

3.142

Rows: 1

250

3.5.7. round(), with precision and rounding mode

round() returns the value of the given number rounded with the specified precision and the specified
rounding mode.

Syntax: round(expression, precision, mode)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression to be rounded.

precision A numeric expression specifying precision.

mode A string expression specifying rounding mode.

Modes:

Mode Description

CEILING Round towards positive infinity.

DOWN Round towards zero.

FLOOR Round towards zero.

HALF_DOWN Round towards closest value of given precision, with half-
values always being rounded down.

HALF_EVEN Round towards closest value of given precision, with half-
values always being rounded to the even neighbor.

HALF_UP Round towards closest value of given precision, with half-
values always being rounded up.

UP Round away from zero.

Considerations:

round(null) returns null.

Query

RETURN round(3.141592, 2, 'CEILING')

3.15 is returned.

Table 315. Result

251

round(3.141592, 2, 'CEILING')

3.15

Rows: 1

3.5.8. sign()

sign() returns the signum of the given number: 0 if the number is 0, -1 for any negative number, and 1 for
any positive number.

Syntax: sign(expression)

Returns:

An Integer.

Arguments:

Name Description

expression A numeric expression.

Considerations:

sign(null) returns null.

Query

RETURN sign(-17), sign(0.1)

The signs of -17 and 0.1 are returned.

Table 316. Result

sign(-17) sign(0.1)

-1 1

Rows: 1

3.6. Mathematical functions - logarithmic
Functions:

• e()

• exp()

• log()

• log10()

• sqrt()

252

3.6.1. e()

e() returns the base of the natural logarithm, e.

Syntax: e()

Returns:

A Float.

Query

RETURN e()

The base of the natural logarithm, e, is returned.

Table 317. Result

e()

2.718281828459045

Rows: 1

3.6.2. exp()

exp() returns e^n, where e is the base of the natural logarithm, and n is the value of the argument
expression.

Syntax: e(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

exp(null) returns null.

Query

RETURN exp(2)

e to the power of 2 is returned.

Table 318. Result

253

exp(2)

7.38905609893065

Rows: 1

3.6.3. log()

log() returns the natural logarithm of a number.

Syntax: log(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

log(null) returns null.

log(0) returns null.

Query

RETURN log(27)

The natural logarithm of 27 is returned.

Table 319. Result

log(27)

3.295836866004329

Rows: 1

3.6.4. log10()

log10() returns the common logarithm (base 10) of a number.

Syntax: log10(expression)

Returns:

A Float.

Arguments:

254

Name Description

expression A numeric expression.

Considerations:

log10(null) returns null.

log10(0) returns null.

Query

RETURN log10(27)

The common logarithm of 27 is returned.

Table 320. Result

log10(27)

1.4313637641589874

Rows: 1

3.6.5. sqrt()

sqrt() returns the square root of a number.

Syntax: sqrt(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression.

Considerations:

sqrt(null) returns null.

sqrt(<any negative number>) returns null

Query

RETURN sqrt(256)

The square root of 256 is returned.

Table 321. Result

255

sqrt(256)

16.0

Rows: 1

3.7. Mathematical functions - trigonometric
Functions:

• acos()

• asin()

• atan()

• atan2()

• cos()

• cot()

• degrees()

• haversin()

• Spherical distance using the haversin() function

• pi()

• radians()

• sin()

• tan()

3.7.1. acos()

acos() returns the arccosine of a number in radians.

Syntax: acos(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

acos(null) returns null.

If (expression < -1) or (expression > 1), then (acos(expression)) returns null.

256

Query

RETURN acos(0.5)

The arccosine of 0.5 is returned.

Table 322. Result

acos(0.5)

1.0471975511965979

Rows: 1

3.7.2. asin()

asin() returns the arcsine of a number in radians.

Syntax: asin(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

asin(null) returns null.

If (expression < -1) or (expression > 1), then (asin(expression)) returns null.

Query

RETURN asin(0.5)

The arcsine of 0.5 is returned.

Table 323. Result

asin(0.5)

0.5235987755982989

Rows: 1

3.7.3. atan()

atan() returns the arctangent of a number in radians.

257

Syntax: atan(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

atan(null) returns null.

Query

RETURN atan(0.5)

The arctangent of 0.5 is returned.

Table 324. Result

atan(0.5)

0.4636476090008061

Rows: 1

3.7.4. atan2()

atan2() returns the arctangent2 of a set of coordinates in radians.

Syntax: atan2(expression1, expression2)

Returns:

A Float.

Arguments:

Name Description

expression1 A numeric expression for y that represents the angle in
radians.

expression2 A numeric expression for x that represents the angle in
radians.

Considerations:

258

atan2(null, null), atan2(null, expression2) and atan(expression1, null) all return null.

Query

RETURN atan2(0.5, 0.6)

The arctangent2 of 0.5 and 0.6 is returned.

Table 325. Result

atan2(0.5, 0.6)

0.6947382761967033

Rows: 1

3.7.5. cos()

cos() returns the cosine of a number.

Syntax: cos(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

cos(null) returns null.

Query

RETURN cos(0.5)

The cosine of 0.5 is returned.

Table 326. Result

cos(0.5)

0.8775825618903728

Rows: 1

259

3.7.6. cot()

cot() returns the cotangent of a number.

Syntax: cot(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

cot(null) returns null.

cot(0) returns null.

Query

RETURN cot(0.5)

The cotangent of 0.5 is returned.

Table 327. Result

cot(0.5)

1.830487721712452

Rows: 1

3.7.7. degrees()

degrees() converts radians to degrees.

Syntax: degrees(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

260

Considerations:

degrees(null) returns null.

Query

RETURN degrees(3.14159)

The number of degrees in something close to pi is returned.

Table 328. Result

degrees(3.14159)

179.9998479605043

Rows: 1

3.7.8. haversin()

haversin() returns half the versine of a number.

Syntax: haversin(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

haversin(null) returns null.

Query

RETURN haversin(0.5)

The haversine of 0.5 is returned.

Table 329. Result

haversin(0.5)

0.06120871905481362

Rows: 1

261

3.7.9. Spherical distance using the haversin() function

The haversin() function may be used to compute the distance on the surface of a sphere between two
points (each given by their latitude and longitude). In this example the spherical distance (in km) between
Berlin in Germany (at lat 52.5, lon 13.4) and San Mateo in California (at lat 37.5, lon -122.3) is calculated
using an average earth radius of 6371 km.

Query

CREATE (ber:City {lat: 52.5, lon: 13.4}), (sm:City {lat: 37.5, lon: -122.3})
RETURN 2 * 6371 * asin(sqrt(haversin(radians(sm.lat - ber.lat))
 + cos(radians(sm.lat)) * cos(radians(ber.lat)) *
 haversin(radians(sm.lon - ber.lon)))) AS dist

The estimated distance between 'Berlin' and 'San Mateo' is returned.

Table 330. Result

dist

9129.969740051658

Rows: 1
Nodes created: 2
Properties set: 4
Labels added: 2

3.7.10. pi()

pi() returns the mathematical constant pi.

Syntax: pi()

Returns:

A Float.

Query

RETURN pi()

The constant pi is returned.

Table 331. Result

pi()

3.141592653589793

Rows: 1

3.7.11. radians()

radians() converts degrees to radians.

262

Syntax: radians(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in degrees.

Considerations:

radians(null) returns null.

Query

RETURN radians(180)

The number of radians in 180 degrees is returned (pi).

Table 332. Result

radians(180)

3.141592653589793

Rows: 1

3.7.12. sin()

sin() returns the sine of a number.

Syntax: sin(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

sin(null) returns null.

263

Query

RETURN sin(0.5)

The sine of 0.5 is returned.

Table 333. Result

sin(0.5)

0.479425538604203

Rows: 1

3.7.13. tan()

tan() returns the tangent of a number.

Syntax: tan(expression)

Returns:

A Float.

Arguments:

Name Description

expression A numeric expression that represents the angle in radians.

Considerations:

tan(null) returns null.

Query

RETURN tan(0.5)

The tangent of 0.5 is returned.

Table 334. Result

tan(0.5)

0.5463024898437905

Rows: 1

3.8. String functions
Functions taking a string as input all operate on Unicode characters rather than on a standard char[]. For
example, the size() function applied to any Unicode character will return 1, even if the character does not
fit in the 16 bits of one char.

264

When toString() is applied to a temporal value, it returns a string representation
suitable for parsing by the corresponding temporal functions. This string will therefore
be formatted according to the ISO 8601 format.

See also String operators.

Functions:

• left()

• lTrim()

• replace()

• reverse()

• right()

• rTrim()

• split()

• substring()

• toLower()

• toString()

• toStringOrNull()

• toUpper()

• trim()

3.8.1. left()

left() returns a string containing the specified number of leftmost characters of the original string.

Syntax: left(original, length)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

n An expression that returns a positive integer.

Considerations:

left(null, length) and left(null, null) both return null

left(original, null) will raise an error.

265

https://en.wikipedia.org/wiki/ISO_8601

If length is not a positive integer, an error is raised.

If length exceeds the size of original, original is returned.

Query

RETURN left('hello', 3)

Table 335. Result

left('hello', 3)

"hel"

Rows: 1

3.8.2. ltrim()

lTrim() returns the original string with leading whitespace removed.

Syntax: lTrim(original)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

Considerations:

lTrim(null) returns null

Query

RETURN lTrim(' hello')

Table 336. Result

lTrim(' hello')

"hello"

Rows: 1

3.8.3. replace()

replace() returns a string in which all occurrences of a specified string in the original string have been
replaced by another (specified) string.

266

Syntax: replace(original, search, replace)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

search An expression that specifies the string to be replaced in
original.

replace An expression that specifies the replacement string.

Considerations:

If any argument is null, null will be returned.

If search is not found in original, original will be returned.

Query

RETURN replace("hello", "l", "w")

Table 337. Result

replace("hello", "l", "w")

"hewwo"

Rows: 1

3.8.4. reverse()

reverse() returns a string in which the order of all characters in the original string have been reversed.

Syntax: reverse(original)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

Considerations:

267

reverse(null) returns null.

Query

RETURN reverse('anagram')

Table 338. Result

reverse('anagram')

"margana"

Rows: 1

3.8.5. right()

right() returns a string containing the specified number of rightmost characters of the original string.

Syntax: right(original, length)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

n An expression that returns a positive integer.

Considerations:

right(null, length) and right(null, null) both return null

right(original, null) will raise an error.

If length is not a positive integer, an error is raised.

If length exceeds the size of original, original is returned.

Query

RETURN right('hello', 3)

Table 339. Result

right('hello', 3)

"llo"

Rows: 1

268

3.8.6. rtrim()

rTrim() returns the original string with trailing whitespace removed.

Syntax: rTrim(original)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

Considerations:

rTrim(null) returns null

Query

RETURN rTrim('hello ')

Table 340. Result

rTrim('hello ')

"hello"

Rows: 1

3.8.7. split()

split() returns a list of strings resulting from the splitting of the original string around matches of the
given delimiter.

Syntax: split(original, splitDelimiter)

Returns:

A list of Strings.

Arguments:

Name Description

original An expression that returns a string.

splitDelimiter The string with which to split original.

Considerations:

269

split(null, splitDelimiter) and split(original, null) both return null

Query

RETURN split('one,two', ',')

Table 341. Result

split('one,two', ',')

["one","two"]

Rows: 1

3.8.8. substring()

substring() returns a substring of the original string, beginning with a 0-based index start and length.

Syntax: substring(original, start [, length])

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

start An expression that returns a positive integer, denoting the
position at which the substring will begin.

length An expression that returns a positive integer, denoting how
many characters of original will be returned.

Considerations:

start uses a zero-based index.

If length is omitted, the function returns the substring starting at the position given by start and extending to the end of
original.

If original is null, null is returned.

If either start or length is null or a negative integer, an error is raised.

If start is 0, the substring will start at the beginning of original.

If length is 0, the empty string will be returned.

Query

RETURN substring('hello', 1, 3), substring('hello', 2)

270

Table 342. Result

substring('hello', 1, 3) substring('hello', 2)

"ell" "llo"

Rows: 1

3.8.9. toLower()

toLower() returns the original string in lowercase.

Syntax: toLower(original)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

Considerations:

toLower(null) returns null

Query

RETURN toLower('HELLO')

Table 343. Result

toLower('HELLO')

"hello"

Rows: 1

3.8.10. toString()

toString() converts an integer, float, boolean, string, point, duration, date, time, localtime, localdatetime or
datetime value to a string.

Syntax: toString(expression)

Returns:

A String.

Arguments:

271

Name Description

expression An expression that returns a number, a boolean, string,
temporal or spatial value.

Considerations:

toString(null) returns null

If expression is a string, it will be returned unchanged.

This function will return an error if provided with an expression that is not an integer, float, string, boolean, point, duration,
date, time, localtime, localdatetime or datetime value.

Query

RETURN toString(11.5),
toString('already a string'),
toString(true),
toString(date({year:1984, month:10, day:11})) AS dateString,
toString(datetime({year:1984, month:10, day:11, hour:12, minute:31, second:14, millisecond: 341, timezone:
'Europe/Stockholm'})) AS datetimeString,
toString(duration({minutes: 12, seconds: -60})) AS durationString

Table 344. Result

toString(11.5) toString('already a
string')

toString(true) dateString datetimeString durationString

"11.5" "already a
string"

"true" "1984-10-11" "1984-10-
11T12:31:14.341+0
1:00[Europe/Stock
holm]"

"PT11M"

Rows: 1

3.8.11. toStringOrNull()

The function toStringOrNull() converts an integer, float, boolean, string, point, duration, date, time,
localtime, localdatetime or datetime value to a string.

Syntax: toStringOrNull(expression)

Returns:

A String or null.

Arguments:

Name Description

expression Any expression that returns a value.

Considerations:

toStringOrNull(null) returns null.

272

If the expression is not an integer, float, string, boolean, point, duration, date, time, localtime, localdatetime or datetime
value, null will be returned.

Query

RETURN toStringOrNull(11.5),
toStringOrNull('already a string'),
toStringOrNull(true),
toStringOrNull(date({year:1984, month:10, day:11})) AS dateString,
toStringOrNull(datetime({year:1984, month:10, day:11, hour:12, minute:31, second:14, millisecond: 341,
timezone: 'Europe/Stockholm'})) AS datetimeString,
toStringOrNull(duration({minutes: 12, seconds: -60})) AS durationString,
toStringOrNull(['A', 'B', 'C']) AS list

Table 345. Result

toStringOrNull(
11.5)

toStringOrNull('
already a
string')

toStringOrNull(t
rue)

dateString datetimeString durationString list

"11.5" "already a
string"

"true" "1984-10-11" "1984-10-
11T12:31:14.34
1+01:00[Europe
/Stockholm]"

"PT11M" <null>

Rows: 1

3.8.12. toUpper()

toUpper() returns the original string in uppercase.

Syntax: toUpper(original)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

Considerations:

toUpper(null) returns null

Query

RETURN toUpper('hello')

Table 346. Result

toUpper('hello')

"HELLO"

273

toUpper('hello')

Rows: 1

3.8.13. trim()

trim() returns the original string with leading and trailing whitespace removed.

Syntax: trim(original)

Returns:

A String.

Arguments:

Name Description

original An expression that returns a string.

Considerations:

trim(null) returns null

Query

RETURN trim(' hello ')

Table 347. Result

trim(' hello ')

"hello"

Rows: 1

3.9. Temporal functions - instant types

 See also Temporal (Date/Time) values and Temporal operators.

3.9.1. Temporal instant types

An overview of temporal instant type creation

Each function bears the same name as the type, and construct the type they correspond to in one of four
ways:

• Capturing the current time

• Composing the components of the type

274

• Parsing a string representation of the temporal value

• Selecting and composing components from another temporal value by

◦ either combining temporal values (such as combining a Date with a Time to create a DateTime), or

◦ selecting parts from a temporal value (such as selecting the Date from a DateTime); the
extractors — groups of components which can be selected — are:

▪ date — contains all components for a Date (conceptually year, month and day).

▪ time — contains all components for a Time (hour, minute, second, and sub-seconds; namely
millisecond, microsecond and nanosecond). If the type being created and the type from which
the time component is being selected both contain timezone (and a timezone is not explicitly
specified) the timezone is also selected.

▪ datetime — selects all components, and is useful for overriding specific components.
Analogously to time, if the type being created and the type from which the time component is
being selected both contain timezone (and a timezone is not explicitly specified) the timezone is
also selected.

◦ In effect, this allows for the conversion between different temporal types, and allowing for
'missing' components to be specified.

Table 348. Temporal instant type creation functions

Function Date Time LocalTime DateTime LocalDateTime

Getting the current
value

X X X X X

Creating a
calendar-based
(Year-Month-Day)
value

X X X

Creating a week-
based (Year-
Week-Day) value

X X X

Creating a quarter-
based (Year-
Quarter-Day) value

X X X

Creating an ordinal
(Year-Day) value

X X X

Creating a value
from time
components

X X

Creating a value
from other
temporal values
using extractors
(i.e. converting
between different
types)

X X X X X

275

Function Date Time LocalTime DateTime LocalDateTime

Creating a value
from a string

X X X X X

Creating a value
from a timestamp

X

All the temporal instant types — including those that do not contain time zone
information support such as Date, LocalTime and DateTime — allow for a time zone to
specified for the functions that retrieve the current instant. This allows for the retrieval of
the current instant in the specified time zone.

Controlling which clock to use

The functions which create temporal instant values based on the current instant use the statement clock
as default. However, there are three different clocks available for more fine-grained control:

• transaction: The same instant is produced for each invocation within the same transaction. A different
time may be produced for different transactions.

• statement: The same instant is produced for each invocation within the same statement. A different
time may be produced for different statements within the same transaction.

• realtime: The instant produced will be the live clock of the system.

The following table lists the different sub-functions for specifying the clock to be used when creating the
current temporal instant value:

Type default transaction statement realtime

Date date() date.transaction() date.statement() date.realtime()

Time time() time.transaction() time.statement() time.realtime()

LocalTime localtime() localtime.transaction() localtime.statement() localtime.realtime()

DateTime datetime() datetime.transaction() datetime.statement() datetime.realtime()

LocalDateTime localdatetime() localdatetime.transactio
n()

localdatetime.statemen
t()

localdatetime.realtime()

Truncating temporal values

A temporal instant value can be created by truncating another temporal instant value at the nearest
preceding point in time at a specified component boundary (namely, a truncation unit). A temporal instant
value created in this way will have all components which are less significant than the specified truncation
unit set to their default values.

It is possible to supplement the truncated value by providing a map containing components which are less
significant than the truncation unit. This will have the effect of overriding the default values which would
otherwise have been set for these less significant components.

276

The following truncation units are supported:

• millennium: Select the temporal instant corresponding to the millenium of the given instant.

• century: Select the temporal instant corresponding to the century of the given instant.

• decade: Select the temporal instant corresponding to the decade of the given instant.

• year: Select the temporal instant corresponding to the year of the given instant.

• weekYear: Select the temporal instant corresponding to the first day of the first week of the week-year
of the given instant.

• quarter: Select the temporal instant corresponding to the quarter of the year of the given instant.

• month: Select the temporal instant corresponding to the month of the given instant.

• week: Select the temporal instant corresponding to the week of the given instant.

• day: Select the temporal instant corresponding to the month of the given instant.

• hour: Select the temporal instant corresponding to the hour of the given instant.

• minute: Select the temporal instant corresponding to the minute of the given instant.

• second: Select the temporal instant corresponding to the second of the given instant.

• millisecond: Select the temporal instant corresponding to the millisecond of the given instant.

• microsecond: Select the temporal instant corresponding to the microsecond of the given instant.

The following table lists the supported truncation units and the corresponding sub-functions:

Truncation unit Date Time LocalTime DateTime LocalDateTime

millennium date.truncate('mille
nnium', input)

datetime.truncate('
millennium', input)

localdatetime.trunc
ate('millennium',
input)

century date.truncate('cent
ury', input)

datetime.truncate('
century', input)

localdatetime.trunc
ate('century', input)

decade date.truncate('deca
de', input)

datetime.truncate('
decade', input)

localdatetime.trunc
ate('decade', input)

year date.truncate('year'
, input)

datetime.truncate('
year', input)

localdatetime.trunc
ate('year', input)

weekYear date.truncate('wee
kYear', input)

datetime.truncate('
weekYear', input)

localdatetime.trunc
ate('weekYear',
input)

quarter date.truncate('quar
ter', input)

datetime.truncate('
quarter', input)

localdatetime.trunc
ate('quarter', input)

month date.truncate('mon
th', input)

datetime.truncate('
month', input)

localdatetime.trunc
ate('month', input)

week date.truncate('wee
k', input)

datetime.truncate('
week', input)

localdatetime.trunc
ate('week', input)

day date.truncate('day',
input)

time.truncate('day',
input)

localtime.truncate('
day', input)

datetime.truncate('
day', input)

localdatetime.trunc
ate('day', input)

277

Truncation unit Date Time LocalTime DateTime LocalDateTime

hour time.truncate('hour'
, input)

localtime.truncate('
hour', input)

datetime.truncate('
hour', input)

localdatetime.trunc
ate('hour',input)

minute time.truncate('minu
te', input)

localtime.truncate('
minute', input)

datetime.truncate('
minute', input)

localdatetime.trunc
ate('minute', input)

second time.truncate('seco
nd', input)

localtime.truncate('
second', input)

datetime.truncate('
second', input)

localdatetime.trunc
ate('second', input)

millisecond time.truncate('millis
econd', input)

localtime.truncate('
millisecond', input)

datetime.truncate('
millisecond', input)

localdatetime.trunc
ate('millisecond',
input)

microsecond time.truncate('micr
osecond', input)

localtime.truncate('
microsecond',
input)

datetime.truncate('
microsecond',
input)

localdatetime.trunc
ate('microsecond',
input)

3.9.2. Date: date()

• Getting the current Date

• Creating a calendar (Year-Month-Day) Date

• Creating a week (Year-Week-Day) Date

• Creating a quarter (Year-Quarter-Day) Date

• Creating an ordinal (Year-Day) Date

• Creating a Date from a string

• Creating a Date using other temporal values as components

• Truncating a Date

Getting the current Date

date() returns the current Date value. If no time zone parameter is specified, the local time zone will be
used.

Syntax: date([{timezone}])

Returns:

A Date.

Arguments:

Name Description

A single map consisting of the following:

timezone A string expression that represents the time zone

Considerations:

278

If no parameters are provided, date() must be invoked (date({}) is invalid).

Query

RETURN date() AS currentDate

The current date is returned.

Table 349. Result

currentDate

2022-11-11

Rows: 1

Query

RETURN date({timezone: 'America/Los Angeles'}) AS currentDateInLA

The current date in California is returned.

Table 350. Result

currentDateInLA

2022-11-11

Rows: 1

date.transaction()

date.transaction() returns the current Date value using the transaction clock. This value will be the
same for each invocation within the same transaction. However, a different value may be produced for
different transactions.

Syntax: date.transaction([{timezone}])

Returns:

A Date.

Arguments:

Name Description

timezone A string expression that represents the time zone

Query

RETURN date.transaction() AS currentDate

279

Table 351. Result

currentDate

2022-11-11

Rows: 1

date.statement()

date.statement() returns the current Date value using the statement clock. This value will be the same for
each invocation within the same statement. However, a different value may be produced for different
statements within the same transaction.

Syntax: date.statement([{timezone}])

Returns:

A Date.

Arguments:

Name Description

timezone A string expression that represents the time zone

Query

RETURN date.statement() AS currentDate

Table 352. Result

currentDate

2022-11-11

Rows: 1

date.realtime()

date.realtime() returns the current Date value using the realtime clock. This value will be the live clock of
the system.

Syntax: date.realtime([{timezone}])

Returns:

A Date.

Arguments:

280

Name Description

timezone A string expression that represents the time zone

Query

RETURN date.realtime() AS currentDate

Table 353. Result

currentDate

2022-11-11

Rows: 1

Query

RETURN date.realtime('America/Los Angeles') AS currentDateInLA

Table 354. Result

currentDateInLA

2022-11-11

Rows: 1

Creating a calendar (Year-Month-Day) Date

date() returns a Date value with the specified year, month and day component values.

Syntax: date({year [, month, day]})

Returns:

A Date.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

month An integer between 1 and 12 that specifies the month.

day An integer between 1 and 31 that specifies the day of the
month.

Considerations:

The day of the month component will default to 1 if day is omitted.

281

The month component will default to 1 if month is omitted.

If month is omitted, day must also be omitted.

Query

UNWIND [
 date({year:1984, month:10, day:11}),
 date({year:1984, month:10}),
 date({year:1984})
] as theDate
RETURN theDate

Table 355. Result

theDate

1984-10-11

1984-10-01

1984-01-01

Rows: 3

Creating a week (Year-Week-Day) Date

date() returns a Date value with the specified year, week and dayOfWeek component values.

Syntax: date({year [, week, dayOfWeek]})

Returns:

A Date.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

week An integer between 1 and 53 that specifies the week.

dayOfWeek An integer between 1 and 7 that specifies the day of the
week.

Considerations:

The day of the week component will default to 1 if dayOfWeek is omitted.

The week component will default to 1 if week is omitted.

If week is omitted, dayOfWeek must also be omitted.

282

Query

UNWIND [
 date({year:1984, week:10, dayOfWeek:3}),
 date({year:1984, week:10}),
 date({year:1984})
] as theDate
RETURN theDate

Table 356. Result

theDate

1984-03-07

1984-03-05

1984-01-01

Rows: 3

Creating a quarter (Year-Quarter-Day) Date

date() returns a Date value with the specified year, quarter and dayOfQuarter component values.

Syntax: date({year [, quarter, dayOfQuarter]})

Returns:

A Date.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

quarter An integer between 1 and 4 that specifies the quarter.

dayOfQuarter An integer between 1 and 92 that specifies the day of the
quarter.

Considerations:

The day of the quarter component will default to 1 if dayOfQuarter is omitted.

The quarter component will default to 1 if quarter is omitted.

If quarter is omitted, dayOfQuarter must also be omitted.

283

Query

UNWIND [
 date({year:1984, quarter:3, dayOfQuarter: 45}),
 date({year:1984, quarter:3}),
 date({year:1984})
] as theDate
RETURN theDate

Table 357. Result

theDate

1984-08-14

1984-07-01

1984-01-01

Rows: 3

Creating an ordinal (Year-Day) Date

date() returns a Date value with the specified year and ordinalDay component values.

Syntax: date({year [, ordinalDay]})

Returns:

A Date.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

ordinalDay An integer between 1 and 366 that specifies the ordinal day
of the year.

Considerations:

The ordinal day of the year component will default to 1 if ordinalDay is omitted.

Query

UNWIND [
 date({year:1984, ordinalDay:202}),
 date({year:1984})
] as theDate
RETURN theDate

The date corresponding to 11 February 1984 is returned.

Table 358. Result

284

theDate

1984-07-20

1984-01-01

Rows: 2

Creating a Date from a string

date() returns the Date value obtained by parsing a string representation of a temporal value.

Syntax: date(temporalValue)

Returns:

A Date.

Arguments:

Name Description

temporalValue A string representing a temporal value.

Considerations:

temporalValue must comply with the format defined for dates.

temporalValue must denote a valid date; i.e. a temporalValue denoting 30 February 2001 is invalid.

date(null) returns null.

Query

UNWIND [
 date('2015-07-21'),
 date('2015-07'),
 date('201507'),
 date('2015-W30-2'),
 date('2015202'),
 date('2015')
] as theDate
RETURN theDate

Table 359. Result

theDate

2015-07-21

2015-07-01

2015-07-01

2015-07-21

2015-07-21

2015-01-01

285

theDate

Rows: 6

Creating a Date using other temporal values as components

date() returns the Date value obtained by selecting and composing components from another temporal
value. In essence, this allows a DateTime or LocalDateTime value to be converted to a Date, and for
"missing" components to be provided.

Syntax: date({date [, year, month, day, week, dayOfWeek, quarter, dayOfQuarter, ordinalDay]})

Returns:

A Date.

Arguments:

Name Description

A single map consisting of the following:

date A Date value.

year An expression consisting of at least four digits that specifies
the year.

month An integer between 1 and 12 that specifies the month.

day An integer between 1 and 31 that specifies the day of the
month.

week An integer between 1 and 53 that specifies the week.

dayOfWeek An integer between 1 and 7 that specifies the day of the
week.

quarter An integer between 1 and 4 that specifies the quarter.

dayOfQuarter An integer between 1 and 92 that specifies the day of the
quarter.

ordinalDay An integer between 1 and 366 that specifies the ordinal day
of the year.

Considerations:

If any of the optional parameters are provided, these will override the corresponding components of date.

date(dd) may be written instead of date({date: dd}).

286

Query

UNWIND [
 date({year:1984, month:11, day:11}),
 localdatetime({year:1984, month:11, day:11, hour:12, minute:31, second:14}),
 datetime({year:1984, month:11, day:11, hour:12, timezone: '+01:00'})
] as dd
RETURN date({date: dd}) AS dateOnly,
 date({date: dd, day: 28}) AS dateDay

Table 360. Result

dateOnly dateDay

1984-11-11 1984-11-28

1984-11-11 1984-11-28

1984-11-11 1984-11-28

Rows: 3

Truncating a Date

date.truncate() returns the Date value obtained by truncating a specified temporal instant value at the
nearest preceding point in time at the specified component boundary (which is denoted by the truncation
unit passed as a parameter to the function). In other words, the Date returned will have all components
that are less significant than the specified truncation unit set to their default values.

It is possible to supplement the truncated value by providing a map containing components which are less
significant than the truncation unit. This will have the effect of overriding the default values which would
otherwise have been set for these less significant components. For example, day — with some value
x — may be provided when the truncation unit is year in order to ensure the returned value has the day set
to x instead of the default day (which is 1).

Syntax: date.truncate(unit [, temporalInstantValue [, mapOfComponents]])

Returns:

A Date.

Arguments:

Name Description

unit A string expression evaluating to one of the following:
{millennium, century, decade, year, weekYear, quarter, month,
week, day}.

temporalInstantValue An expression of one of the following types: {DateTime,
LocalDateTime, Date}.

mapOfComponents An expression evaluating to a map containing components
less significant than unit.

Considerations:

287

Any component that is provided in mapOfComponents must be less significant than unit; i.e. if unit is 'day', mapOfComponents
cannot contain information pertaining to a month.

Any component that is not contained in mapOfComponents and which is less significant than unit will be set to its minimal
value.

If mapOfComponents is not provided, all components of the returned value which are less significant than unit will be set to
their default values.

If temporalInstantValue is not provided, it will be set to the current date, i.e. date.truncate(unit) is equivalent of
date.truncate(unit, date()).

Query

WITH datetime({year:2017, month:11, day:11, hour:12, minute:31, second:14, nanosecond: 645876123,
timezone: '+01:00'}) AS d
RETURN date.truncate('millennium', d) AS truncMillenium,
 date.truncate('century', d) AS truncCentury,
 date.truncate('decade', d) AS truncDecade,
 date.truncate('year', d, {day:5}) AS truncYear,
 date.truncate('weekYear', d) AS truncWeekYear,
 date.truncate('quarter', d) AS truncQuarter,
 date.truncate('month', d) AS truncMonth,
 date.truncate('week', d, {dayOfWeek:2}) AS truncWeek,
 date.truncate('day', d) AS truncDay

Table 361. Result

truncMilleni
um

truncCentur
y

truncDecad
e

truncYear truncWeekY
ear

truncQuarte
r

truncMonth truncWeek truncDay

2000-01-01 2000-01-01 2010-01-01 2017-01-05 2017-01-02 2017-10-01 2017-11-01 2017-11-07 2017-11-11

Rows: 1

3.9.3. DateTime: datetime()

• Getting the current DateTime

• Creating a calendar (Year-Month-Day) DateTime

• Creating a week (Year-Week-Day) DateTime

• Creating a quarter (Year-Quarter-Day) DateTime

• Creating an ordinal (Year-Day) DateTime

• Creating a DateTime from a string

• Creating a DateTime using other temporal values as components

• Creating a DateTime from a timestamp

• Truncating a DateTime

Getting the current DateTime

datetime() returns the current DateTime value. If no time zone parameter is specified, the default time
zone will be used.

Syntax: datetime([{timezone}])

288

Returns:

A DateTime.

Arguments:

Name Description

A single map consisting of the following:

timezone A string expression that represents the time zone

Considerations:

If no parameters are provided, datetime() must be invoked (datetime({}) is invalid).

Query

RETURN datetime() AS currentDateTime

The current date and time using the local time zone is returned.

Table 362. Result

currentDateTime

2022-11-11T09:29:40.370Z

Rows: 1

Query

RETURN datetime({timezone: 'America/Los Angeles'}) AS currentDateTimeInLA

The current date and time of day in California is returned.

Table 363. Result

currentDateTimeInLA

2022-11-11T01:29:40.389-08:00[America/Los_Angeles]

Rows: 1

datetime.transaction()

datetime.transaction() returns the current DateTime value using the transaction clock. This value will
be the same for each invocation within the same transaction. However, a different value may be produced
for different transactions.

Syntax: datetime.transaction([{timezone}])

Returns:

289

A DateTime.

Arguments:

Name Description

timezone A string expression that represents the time zone

Query

RETURN datetime.transaction() AS currentDateTime

Table 364. Result

currentDateTime

2022-11-11T09:29:40.415Z

Rows: 1

Query

RETURN datetime.transaction('America/Los Angeles') AS currentDateTimeInLA

Table 365. Result

currentDateTimeInLA

2022-11-11T01:29:40.437-08:00[America/Los_Angeles]

Rows: 1

datetime.statement()

datetime.statement() returns the current DateTime value using the statement clock. This value will be the
same for each invocation within the same statement. However, a different value may be produced for
different statements within the same transaction.

Syntax: datetime.statement([{timezone}])

Returns:

A DateTime.

Arguments:

Name Description

timezone A string expression that represents the time zone

290

Query

RETURN datetime.statement() AS currentDateTime

Table 366. Result

currentDateTime

2022-11-11T09:29:40.460Z

Rows: 1

datetime.realtime()

datetime.realtime() returns the current DateTime value using the realtime clock. This value will be the
live clock of the system.

Syntax: datetime.realtime([{timezone}])

Returns:

A DateTime.

Arguments:

Name Description

timezone A string expression that represents the time zone

Query

RETURN datetime.realtime() AS currentDateTime

Table 367. Result

currentDateTime

2022-11-11T09:29:40.500026Z

Rows: 1

Creating a calendar (Year-Month-Day) DateTime

datetime() returns a DateTime value with the specified year, month, day, hour, minute, second,
millisecond, microsecond, nanosecond and timezone component values.

Syntax: datetime({year [, month, day, hour, minute, second, millisecond, microsecond,
nanosecond, timezone]})

Returns:

A DateTime.

291

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

month An integer between 1 and 12 that specifies the month.

day An integer between 1 and 31 that specifies the day of the
month.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

The month component will default to 1 if month is omitted.

The day of the month component will default to 1 if day is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

The timezone component will default to the configured default time zone if timezone is omitted.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, month, day, hour, minute, and second may be omitted; i.e. it is possible to
specify only year, month and day, but specifying year, month, day and minute is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

292

Query

UNWIND [
 datetime({year:1984, month:10, day:11, hour:12, minute:31, second:14, millisecond: 123, microsecond:
456, nanosecond: 789}),
 datetime({year:1984, month:10, day:11, hour:12, minute:31, second:14, millisecond: 645, timezone:
'+01:00'}),
 datetime({year:1984, month:10, day:11, hour:12, minute:31, second:14, nanosecond: 645876123, timezone:
'Europe/Stockholm'}),
 datetime({year:1984, month:10, day:11, hour:12, minute:31, second:14, timezone: '+01:00'}),
 datetime({year:1984, month:10, day:11, hour:12, minute:31, second:14}),
 datetime({year:1984, month:10, day:11, hour:12, minute:31, timezone: 'Europe/Stockholm'}),
 datetime({year:1984, month:10, day:11, hour:12, timezone: '+01:00'}),
 datetime({year:1984, month:10, day:11, timezone: 'Europe/Stockholm'})
] as theDate
RETURN theDate

Table 368. Result

theDate

1984-10-11T12:31:14.123456789Z

1984-10-11T12:31:14.645+01:00

1984-10-11T12:31:14.645876123+01:00[Europe/Stockholm]

1984-10-11T12:31:14+01:00

1984-10-11T12:31:14Z

1984-10-11T12:31+01:00[Europe/Stockholm]

1984-10-11T12:00+01:00

1984-10-11T00:00+01:00[Europe/Stockholm]

Rows: 8

Creating a week (Year-Week-Day) DateTime

datetime() returns a DateTime value with the specified year, week, dayOfWeek, hour, minute, second,
millisecond, microsecond, nanosecond and timezone component values.

Syntax: datetime({year [, week, dayOfWeek, hour, minute, second, millisecond, microsecond,
nanosecond, timezone]})

Returns:

A DateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

week An integer between 1 and 53 that specifies the week.

293

Name Description

dayOfWeek An integer between 1 and 7 that specifies the day of the
week.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

The week component will default to 1 if week is omitted.

The day of the week component will default to 1 if dayOfWeek is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

The timezone component will default to the configured default time zone if timezone is omitted.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, week, dayOfWeek, hour, minute, and second may be omitted; i.e. it is possible
to specify only year, week and dayOfWeek, but specifying year, week, dayOfWeek and minute is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

294

Query

UNWIND [
 datetime({year:1984, week:10, dayOfWeek:3, hour:12, minute:31, second:14, millisecond: 645}),
 datetime({year:1984, week:10, dayOfWeek:3, hour:12, minute:31, second:14, microsecond: 645876, timezone:
'+01:00'}),
 datetime({year:1984, week:10, dayOfWeek:3, hour:12, minute:31, second:14, nanosecond: 645876123,
timezone: 'Europe/Stockholm'}),
 datetime({year:1984, week:10, dayOfWeek:3, hour:12, minute:31, second:14, timezone:
'Europe/Stockholm'}),
 datetime({year:1984, week:10, dayOfWeek:3, hour:12, minute:31, second:14}),
 datetime({year:1984, week:10, dayOfWeek:3, hour:12, timezone: '+01:00'}),
 datetime({year:1984, week:10, dayOfWeek:3, timezone: 'Europe/Stockholm'})
] as theDate
RETURN theDate

Table 369. Result

theDate

1984-03-07T12:31:14.645Z

1984-03-07T12:31:14.645876+01:00

1984-03-07T12:31:14.645876123+01:00[Europe/Stockholm]

1984-03-07T12:31:14+01:00[Europe/Stockholm]

1984-03-07T12:31:14Z

1984-03-07T12:00+01:00

1984-03-07T00:00+01:00[Europe/Stockholm]

Rows: 7

Creating a quarter (Year-Quarter-Day) DateTime

datetime() returns a DateTime value with the specified year, quarter, dayOfQuarter, hour, minute, second,
millisecond, microsecond, nanosecond and timezone component values.

Syntax: datetime({year [, quarter, dayOfQuarter, hour, minute, second, millisecond,
microsecond, nanosecond, timezone]})

Returns:

A DateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

quarter An integer between 1 and 4 that specifies the quarter.

dayOfQuarter An integer between 1 and 92 that specifies the day of the
quarter.

295

Name Description

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

The quarter component will default to 1 if quarter is omitted.

The day of the quarter component will default to 1 if dayOfQuarter is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

The timezone component will default to the configured default time zone if timezone is omitted.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, quarter, dayOfQuarter, hour, minute, and second may be omitted; i.e. it is
possible to specify only year, quarter and dayOfQuarter, but specifying year, quarter, dayOfQuarter and minute is not
permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

Query

UNWIND [
 datetime({year:1984, quarter:3, dayOfQuarter: 45, hour:12, minute:31, second:14, microsecond: 645876}),
 datetime({year:1984, quarter:3, dayOfQuarter: 45, hour:12, minute:31, second:14, timezone: '+01:00'}),
 datetime({year:1984, quarter:3, dayOfQuarter: 45, hour:12, timezone: 'Europe/Stockholm'}),
 datetime({year:1984, quarter:3, dayOfQuarter: 45})
] as theDate
RETURN theDate

Table 370. Result

theDate

1984-08-14T12:31:14.645876Z

296

theDate

1984-08-14T12:31:14+01:00

1984-08-14T12:00+02:00[Europe/Stockholm]

1984-08-14T00:00Z

Rows: 4

Creating an ordinal (Year-Day) DateTime

datetime() returns a DateTime value with the specified year, ordinalDay, hour, minute, second,
millisecond, microsecond, nanosecond and timezone component values.

Syntax: datetime({year [, ordinalDay, hour, minute, second, millisecond, microsecond,
nanosecond, timezone]})

Returns:

A DateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

ordinalDay An integer between 1 and 366 that specifies the ordinal day
of the year.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

The ordinal day of the year component will default to 1 if ordinalDay is omitted.

297

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

The timezone component will default to the configured default time zone if timezone is omitted.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, ordinalDay, hour, minute, and second may be omitted; i.e. it is possible to
specify only year and ordinalDay, but specifying year, ordinalDay and minute is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

Query

UNWIND [
 datetime({year:1984, ordinalDay:202, hour:12, minute:31, second:14, millisecond: 645}),
 datetime({year:1984, ordinalDay:202, hour:12, minute:31, second:14, timezone: '+01:00'}),
 datetime({year:1984, ordinalDay:202, timezone: 'Europe/Stockholm'}),
 datetime({year:1984, ordinalDay:202})
] as theDate
RETURN theDate

Table 371. Result

theDate

1984-07-20T12:31:14.645Z

1984-07-20T12:31:14+01:00

1984-07-20T00:00+02:00[Europe/Stockholm]

1984-07-20T00:00Z

Rows: 4

Creating a DateTime from a string

datetime() returns the DateTime value obtained by parsing a string representation of a temporal value.

Syntax: datetime(temporalValue)

Returns:

A DateTime.

Arguments:

Name Description

temporalValue A string representing a temporal value.

Considerations:

298

temporalValue must comply with the format defined for dates, times and time zones.

The timezone component will default to the configured default time zone if it is omitted.

temporalValue must denote a valid date and time; i.e. a temporalValue denoting 30 February 2001 is invalid.

datetime(null) returns null.

Query

UNWIND [
 datetime('2015-07-21T21:40:32.142+0100'),
 datetime('2015-W30-2T214032.142Z'),
 datetime('2015T214032-0100'),
 datetime('20150721T21:40-01:30'),
 datetime('2015-W30T2140-02'),
 datetime('2015202T21+18:00'),
 datetime('2015-07-21T21:40:32.142[Europe/London]'),
 datetime('2015-07-21T21:40:32.142-04[America/New_York]')
] AS theDate
RETURN theDate

Table 372. Result

theDate

2015-07-21T21:40:32.142+01:00

2015-07-21T21:40:32.142Z

2015-01-01T21:40:32-01:00

2015-07-21T21:40-01:30

2015-07-20T21:40-02:00

2015-07-21T21:00+18:00

2015-07-21T21:40:32.142+01:00[Europe/London]

2015-07-21T21:40:32.142-04:00[America/New_York]

Rows: 8

Creating a DateTime using other temporal values as components

datetime() returns the DateTime value obtained by selecting and composing components from another
temporal value. In essence, this allows a Date, LocalDateTime, Time or LocalTime value to be converted to
a DateTime, and for "missing" components to be provided.

Syntax: datetime({datetime [, year, …, timezone]}) | datetime({date [, year, …, timezone]}) |
datetime({time [, year, …, timezone]}) | datetime({date, time [, year, …, timezone]})

Returns:

A DateTime.

Arguments:

Name Description

A single map consisting of the following:

299

Name Description

datetime A DateTime value.

date A Date value.

time A Time value.

year An expression consisting of at least four digits that specifies
the year.

month An integer between 1 and 12 that specifies the month.

day An integer between 1 and 31 that specifies the day of the
month.

week An integer between 1 and 53 that specifies the week.

dayOfWeek An integer between 1 and 7 that specifies the day of the
week.

quarter An integer between 1 and 4 that specifies the quarter.

dayOfQuarter An integer between 1 and 92 that specifies the day of the
quarter.

ordinalDay An integer between 1 and 366 that specifies the ordinal day
of the year.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

If any of the optional parameters are provided, these will override the corresponding components of datetime, date and/or
time.

datetime(dd) may be written instead of datetime({datetime: dd}).

Selecting a Time or DateTime value as the time component also selects its time zone. If a LocalTime or LocalDateTime is
selected instead, the default time zone is used. In any case, the time zone can be overridden explicitly.

Selecting a DateTime as the datetime component and overwriting the time zone will adjust the local time to keep the same
point in time.

300

Selecting a DateTime or Time as the time component and overwriting the time zone will adjust the local time to keep the
same point in time.

The following query shows the various usages of datetime({date [, year, …, timezone]})

Query

WITH date({year:1984, month:10, day:11}) AS dd
RETURN datetime({date:dd, hour: 10, minute: 10, second: 10}) AS dateHHMMSS,
 datetime({date:dd, hour: 10, minute: 10, second: 10, timezone:'+05:00'}) AS dateHHMMSSTimezone,
 datetime({date:dd, day: 28, hour: 10, minute: 10, second: 10}) AS dateDDHHMMSS,
 datetime({date:dd, day: 28, hour: 10, minute: 10, second: 10, timezone:'Pacific/Honolulu'}) AS
dateDDHHMMSSTimezone

Table 373. Result

dateHHMMSS dateHHMMSSTimezone dateDDHHMMSS dateDDHHMMSSTimezone

1984-10-11T10:10:10Z 1984-10-11T10:10:10+05:00 1984-10-28T10:10:10Z 1984-10-28T10:10:10-
10:00[Pacific/Honolulu]

Rows: 1

The following query shows the various usages of datetime({time [, year, …, timezone]})

Query

WITH time({hour:12, minute:31, second:14, microsecond: 645876, timezone: '+01:00'}) AS tt
RETURN datetime({year:1984, month:10, day:11, time:tt}) AS YYYYMMDDTime,
 datetime({year:1984, month:10, day:11, time:tt, timezone:'+05:00'}) AS YYYYMMDDTimeTimezone,
 datetime({year:1984, month:10, day:11, time:tt, second: 42}) AS YYYYMMDDTimeSS,
 datetime({year:1984, month:10, day:11, time:tt, second: 42, timezone:'Pacific/Honolulu'}) AS
YYYYMMDDTimeSSTimezone

Table 374. Result

YYYYMMDDTime YYYYMMDDTimeTimezone YYYYMMDDTimeSS YYYYMMDDTimeSSTimezon
e

1984-10-
11T12:31:14.645876+01:00

1984-10-
11T16:31:14.645876+05:00

1984-10-
11T12:31:42.645876+01:00

1984-10-
11T01:31:42.645876-
10:00[Pacific/Honolulu]

Rows: 1

The following query shows the various usages of datetime({date, time [, year, …, timezone]}); i.e.
combining a Date and a Time value to create a single DateTime value:

Query

WITH date({year:1984, month:10, day:11}) AS dd,
 localtime({hour:12, minute:31, second:14, millisecond: 645}) AS tt
RETURN datetime({date:dd, time:tt}) as dateTime,
 datetime({date:dd, time:tt, timezone:'+05:00'}) AS dateTimeTimezone,
 datetime({date:dd, time:tt, day: 28, second: 42}) AS dateTimeDDSS,
 datetime({date:dd, time:tt, day: 28, second: 42, timezone:'Pacific/Honolulu'}) AS
dateTimeDDSSTimezone

Table 375. Result

301

dateTime dateTimeTimezone dateTimeDDSS dateTimeDDSSTimezone

1984-10-11T12:31:14.645Z 1984-10-
11T12:31:14.645+05:00

1984-10-28T12:31:42.645Z 1984-10-28T12:31:42.645-
10:00[Pacific/Honolulu]

Rows: 1

The following query shows the various usages of datetime({datetime [, year, …, timezone]})

Query

WITH datetime({year:1984, month:10, day:11, hour:12, timezone: 'Europe/Stockholm'}) AS dd
RETURN datetime({datetime:dd}) AS dateTime,
 datetime({datetime:dd, timezone:'+05:00'}) AS dateTimeTimezone,
 datetime({datetime:dd, day: 28, second: 42}) AS dateTimeDDSS,
 datetime({datetime:dd, day: 28, second: 42, timezone:'Pacific/Honolulu'}) AS dateTimeDDSSTimezone

Table 376. Result

dateTime dateTimeTimezone dateTimeDDSS dateTimeDDSSTimezone

1984-10-
11T12:00+01:00[Europe/Stoc
kholm]

1984-10-11T16:00+05:00 1984-10-
28T12:00:42+01:00[Europe/S
tockholm]

1984-10-28T01:00:42-
10:00[Pacific/Honolulu]

Rows: 1

Creating a DateTime from a timestamp

datetime() returns the DateTime value at the specified number of seconds or milliseconds from the UNIX
epoch in the UTC time zone.

Conversions to other temporal instant types from UNIX epoch representations can be achieved by
transforming a DateTime value to one of these types.

Syntax: datetime({ epochSeconds | epochMillis })

Returns:

A DateTime.

Arguments:

Name Description

A single map consisting of the following:

epochSeconds A numeric value representing the number of seconds from
the UNIX epoch in the UTC time zone.

epochMillis A numeric value representing the number of milliseconds
from the UNIX epoch in the UTC time zone.

Considerations:

epochSeconds/epochMillis may be used in conjunction with nanosecond

302

Query

RETURN datetime({epochSeconds:timestamp() / 1000, nanosecond: 23}) AS theDate

Table 377. Result

theDate

2022-11-11T09:29:41.000000023Z

Rows: 1

Query

RETURN datetime({epochMillis: 424797300000}) AS theDate

Table 378. Result

theDate

1983-06-18T15:15Z

Rows: 1

Truncating a DateTime

datetime.truncate() returns the DateTime value obtained by truncating a specified temporal instant value
at the nearest preceding point in time at the specified component boundary (which is denoted by the
truncation unit passed as a parameter to the function). In other words, the DateTime returned will have all
components that are less significant than the specified truncation unit set to their default values.

It is possible to supplement the truncated value by providing a map containing components which are less
significant than the truncation unit. This will have the effect of overriding the default values which would
otherwise have been set for these less significant components. For example, day — with some value
x — may be provided when the truncation unit is year in order to ensure the returned value has the day set
to x instead of the default day (which is 1).

Syntax: datetime.truncate(unit [, temporalInstantValue [, mapOfComponents]])

Returns:

A DateTime.

Arguments:

Name Description

unit A string expression evaluating to one of the following:
{millennium, century, decade, year, weekYear, quarter, month,
week, day, hour, minute, second, millisecond, microsecond}.

temporalInstantValue An expression of one of the following types: {DateTime,
LocalDateTime, Date}.

303

Name Description

mapOfComponents An expression evaluating to a map containing components
less significant than unit. During truncation, a time zone can
be attached or overridden using the key timezone.

Considerations:

temporalInstantValue cannot be a Date value if unit is one of {hour, minute, second, millisecond, microsecond}.

The time zone of temporalInstantValue may be overridden; for example, datetime.truncate('minute', input,
{timezone:'+0200'}).

If temporalInstantValue is one of {Time, DateTime} — a value with a time zone — and the time zone is overridden, no time
conversion occurs.

If temporalInstantValue is one of {LocalDateTime, Date} — a value without a time zone — and the time zone is not
overridden, the configured default time zone will be used.

Any component that is provided in mapOfComponents must be less significant than unit; i.e. if unit is 'day', mapOfComponents
cannot contain information pertaining to a month.

Any component that is not contained in mapOfComponents and which is less significant than unit will be set to its minimal
value.

If mapOfComponents is not provided, all components of the returned value which are less significant than unit will be set to
their default values.

If temporalInstantValue is not provided, it will be set to the current date, time and timezone, i.e. datetime.truncate(unit) is
equivalent of datetime.truncate(unit, datetime()).

Query

WITH datetime({year:2017, month:11, day:11, hour:12, minute:31, second:14, nanosecond: 645876123,
timezone: '+03:00'}) AS d
RETURN datetime.truncate('millennium', d, {timezone:'Europe/Stockholm'}) AS truncMillenium,
 datetime.truncate('year', d, {day:5}) AS truncYear,
 datetime.truncate('month', d) AS truncMonth,
 datetime.truncate('day', d, {millisecond:2}) AS truncDay,
 datetime.truncate('hour', d) AS truncHour,
 datetime.truncate('second', d) AS truncSecond

Table 379. Result

truncMillenium truncYear truncMonth truncDay truncHour truncSecond

2000-01-
01T00:00+01:00[Eu
rope/Stockholm]

2017-01-
05T00:00+03:00

2017-11-
01T00:00+03:00

2017-11-
11T00:00:00.002+0
3:00

2017-11-
11T12:00+03:00

2017-11-
11T12:31:14+03:00

Rows: 1

3.9.4. LocalDateTime: localdatetime()

• Getting the current LocalDateTime

• Creating a calendar (Year-Month-Day) LocalDateTime

• Creating a week (Year-Week-Day) LocalDateTime

304

• Creating a quarter (Year-Quarter-Day) LocalDateTime

• Creating an ordinal (Year-Day) LocalDateTime

• Creating a LocalDateTime from a string

• Creating a LocalDateTime using other temporal values as components

• Truncating a LocalDateTime

Getting the current LocalDateTime

localdatetime() returns the current LocalDateTime value. If no time zone parameter is specified, the local
time zone will be used.

Syntax: localdatetime([{timezone}])

Returns:

A LocalDateTime.

Arguments:

Name Description

A single map consisting of the following:

timezone A string expression that represents the time zone

Considerations:

If no parameters are provided, localdatetime() must be invoked (localdatetime({}) is invalid).

Query

RETURN localdatetime() AS now

The current local date and time (i.e. in the local time zone) is returned.

Table 380. Result

now

2022-11-11T09:29:41.360

Rows: 1

Query

RETURN localdatetime({timezone: 'America/Los Angeles'}) AS now

The current local date and time in California is returned.

Table 381. Result

305

now

2022-11-11T01:29:41.380

Rows: 1

localdatetime.transaction()

localdatetime.transaction() returns the current LocalDateTime value using the transaction clock. This
value will be the same for each invocation within the same transaction. However, a different value may be
produced for different transactions.

Syntax: localdatetime.transaction([{timezone}])

Returns:

A LocalDateTime.

Arguments:

Name Description

timezone A string expression that represents the time zone

Query

RETURN localdatetime.transaction() AS now

Table 382. Result

now

2022-11-11T09:29:41.401

Rows: 1

localdatetime.statement()

localdatetime.statement() returns the current LocalDateTime value using the statement clock. This value
will be the same for each invocation within the same statement. However, a different value may be
produced for different statements within the same transaction.

Syntax: localdatetime.statement([{timezone}])

Returns:

A LocalDateTime.

Arguments:

306

Name Description

timezone A string expression that represents the time zone

Query

RETURN localdatetime.statement() AS now

Table 383. Result

now

2022-11-11T09:29:41.420

Rows: 1

localdatetime.realtime()

localdatetime.realtime() returns the current LocalDateTime value using the realtime clock. This value
will be the live clock of the system.

Syntax: localdatetime.realtime([{timezone}])

Returns:

A LocalDateTime.

Arguments:

Name Description

timezone A string expression that represents the time zone

Query

RETURN localdatetime.realtime() AS now

Table 384. Result

now

2022-11-11T09:29:41.455735

Rows: 1

Query

RETURN localdatetime.realtime('America/Los Angeles') AS nowInLA

Table 385. Result

nowInLA

2022-11-11T01:29:41.475850

307

nowInLA

Rows: 1

Creating a calendar (Year-Month-Day) LocalDateTime

localdatetime() returns a LocalDateTime value with the specified year, month, day, hour, minute, second,
millisecond, microsecond and nanosecond component values.

Syntax: localdatetime({year [, month, day, hour, minute, second, millisecond, microsecond,
nanosecond]})

Returns:

A LocalDateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

month An integer between 1 and 12 that specifies the month.

day An integer between 1 and 31 that specifies the day of the
month.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

The month component will default to 1 if month is omitted.

The day of the month component will default to 1 if day is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

308

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, month, day, hour, minute, and second may be omitted; i.e. it is possible to
specify only year, month and day, but specifying year, month, day and minute is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

Query

RETURN localdatetime({year:1984, month:10, day:11, hour:12, minute:31, second:14, millisecond: 123,
microsecond: 456, nanosecond: 789}) AS theDate

Table 386. Result

theDate

1984-10-11T12:31:14.123456789

Rows: 1

Creating a week (Year-Week-Day) LocalDateTime

localdatetime() returns a LocalDateTime value with the specified year, week, dayOfWeek, hour, minute,
second, millisecond, microsecond and nanosecond component values.

Syntax: localdatetime({year [, week, dayOfWeek, hour, minute, second, millisecond, microsecond,
nanosecond]})

Returns:

A LocalDateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

week An integer between 1 and 53 that specifies the week.

dayOfWeek An integer between 1 and 7 that specifies the day of the
week.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

309

Name Description

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

The week component will default to 1 if week is omitted.

The day of the week component will default to 1 if dayOfWeek is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, week, dayOfWeek, hour, minute, and second may be omitted; i.e. it is possible
to specify only year, week and dayOfWeek, but specifying year, week, dayOfWeek and minute is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

Query

RETURN localdatetime({year:1984, week:10, dayOfWeek:3, hour:12, minute:31, second:14, millisecond: 645})
AS theDate

Table 387. Result

theDate

1984-03-07T12:31:14.645

Rows: 1

Creating a quarter (Year-Quarter-Day) DateTime

localdatetime() returns a LocalDateTime value with the specified year, quarter, dayOfQuarter, hour,
minute, second, millisecond, microsecond and nanosecond component values.

Syntax: localdatetime({year [, quarter, dayOfQuarter, hour, minute, second, millisecond,
microsecond, nanosecond]})

Returns:

310

A LocalDateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

quarter An integer between 1 and 4 that specifies the quarter.

dayOfQuarter An integer between 1 and 92 that specifies the day of the
quarter.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

The quarter component will default to 1 if quarter is omitted.

The day of the quarter component will default to 1 if dayOfQuarter is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, quarter, dayOfQuarter, hour, minute, and second may be omitted; i.e. it is
possible to specify only year, quarter and dayOfQuarter, but specifying year, quarter, dayOfQuarter and minute is not
permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

311

Query

RETURN localdatetime({year:1984, quarter:3, dayOfQuarter: 45, hour:12, minute:31, second:14, nanosecond:
645876123}) AS theDate

Table 388. Result

theDate

1984-08-14T12:31:14.645876123

Rows: 1

Creating an ordinal (Year-Day) LocalDateTime

localdatetime() returns a LocalDateTime value with the specified year, ordinalDay, hour, minute, second,
millisecond, microsecond and nanosecond component values.

Syntax: localdatetime({year [, ordinalDay, hour, minute, second, millisecond, microsecond,
nanosecond]})

Returns:

A LocalDateTime.

Arguments:

Name Description

A single map consisting of the following:

year An expression consisting of at least four digits that specifies
the year.

ordinalDay An integer between 1 and 366 that specifies the ordinal day
of the year.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

312

The ordinal day of the year component will default to 1 if ordinalDay is omitted.

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set year, ordinalDay, hour, minute, and second may be omitted; i.e. it is possible to
specify only year and ordinalDay, but specifying year, ordinalDay and minute is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

Query

RETURN localdatetime({year:1984, ordinalDay:202, hour:12, minute:31, second:14, microsecond: 645876}) AS
theDate

Table 389. Result

theDate

1984-07-20T12:31:14.645876

Rows: 1

Creating a LocalDateTime from a string

localdatetime() returns the LocalDateTime value obtained by parsing a string representation of a
temporal value.

Syntax: localdatetime(temporalValue)

Returns:

A LocalDateTime.

Arguments:

Name Description

temporalValue A string representing a temporal value.

Considerations:

temporalValue must comply with the format defined for dates and times.

temporalValue must denote a valid date and time; i.e. a temporalValue denoting 30 February 2001 is invalid.

localdatetime(null) returns null.

313

Query

UNWIND [
 localdatetime('2015-07-21T21:40:32.142'),
 localdatetime('2015-W30-2T214032.142'),
 localdatetime('2015-202T21:40:32'),
 localdatetime('2015202T21')
] AS theDate
RETURN theDate

Table 390. Result

theDate

2015-07-21T21:40:32.142

2015-07-21T21:40:32.142

2015-07-21T21:40:32

2015-07-21T21:00

Rows: 4

Creating a LocalDateTime using other temporal values as components

localdatetime() returns the LocalDateTime value obtained by selecting and composing components from
another temporal value. In essence, this allows a Date, DateTime, Time or LocalTime value to be converted
to a LocalDateTime, and for "missing" components to be provided.

Syntax: localdatetime({datetime [, year, …, nanosecond]}) | localdatetime({date [, year, …,
nanosecond]}) | localdatetime({time [, year, …, nanosecond]}) | localdatetime({date, time [,
year, …, nanosecond]})

Returns:

A LocalDateTime.

Arguments:

Name Description

A single map consisting of the following:

datetime A DateTime value.

date A Date value.

time A Time value.

year An expression consisting of at least four digits that specifies
the year.

month An integer between 1 and 12 that specifies the month.

day An integer between 1 and 31 that specifies the day of the
month.

week An integer between 1 and 53 that specifies the week.

314

Name Description

dayOfWeek An integer between 1 and 7 that specifies the day of the
week.

quarter An integer between 1 and 4 that specifies the quarter.

dayOfQuarter An integer between 1 and 92 that specifies the day of the
quarter.

ordinalDay An integer between 1 and 366 that specifies the ordinal day
of the year.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

If any of the optional parameters are provided, these will override the corresponding components of datetime, date and/or
time.

localdatetime(dd) may be written instead of localdatetime({datetime: dd}).

The following query shows the various usages of localdatetime({date [, year, …, nanosecond]})

Query

WITH date({year:1984, month:10, day:11}) AS dd
RETURN localdatetime({date:dd, hour: 10, minute: 10, second: 10}) AS dateHHMMSS,
 localdatetime({date:dd, day: 28, hour: 10, minute: 10, second: 10}) AS dateDDHHMMSS

Table 391. Result

dateHHMMSS dateDDHHMMSS

1984-10-11T10:10:10 1984-10-28T10:10:10

Rows: 1

The following query shows the various usages of localdatetime({time [, year, …, nanosecond]})

315

Query

WITH time({hour:12, minute:31, second:14, microsecond: 645876, timezone: '+01:00'}) AS tt
RETURN localdatetime({year:1984, month:10, day:11, time:tt}) AS YYYYMMDDTime,
 localdatetime({year:1984, month:10, day:11, time:tt, second: 42}) AS YYYYMMDDTimeSS

Table 392. Result

YYYYMMDDTime YYYYMMDDTimeSS

1984-10-11T12:31:14.645876 1984-10-11T12:31:42.645876

Rows: 1

The following query shows the various usages of localdatetime({date, time [, year, …,
nanosecond]}); i.e. combining a Date and a Time value to create a single LocalDateTime value:

Query

WITH date({year:1984, month:10, day:11}) AS dd,
 time({hour:12, minute:31, second:14, microsecond: 645876, timezone: '+01:00'}) AS tt
RETURN localdatetime({date:dd, time:tt}) AS dateTime,
 localdatetime({date:dd, time:tt, day: 28, second: 42}) AS dateTimeDDSS

Table 393. Result

dateTime dateTimeDDSS

1984-10-11T12:31:14.645876 1984-10-28T12:31:42.645876

Rows: 1

The following query shows the various usages of localdatetime({datetime [, year, …, nanosecond]})

Query

WITH datetime({year:1984, month:10, day:11, hour:12, timezone: '+01:00'}) as dd
RETURN localdatetime({datetime:dd}) as dateTime,
 localdatetime({datetime:dd, day: 28, second: 42}) as dateTimeDDSS

Table 394. Result

dateTime dateTimeDDSS

1984-10-11T12:00 1984-10-28T12:00:42

Rows: 1

Truncating a LocalDateTime

localdatetime.truncate() returns the LocalDateTime value obtained by truncating a specified temporal
instant value at the nearest preceding point in time at the specified component boundary (which is
denoted by the truncation unit passed as a parameter to the function). In other words, the LocalDateTime
returned will have all components that are less significant than the specified truncation unit set to their
default values.

It is possible to supplement the truncated value by providing a map containing components which are less

316

significant than the truncation unit. This will have the effect of overriding the default values which would
otherwise have been set for these less significant components. For example, day — with some value
x — may be provided when the truncation unit is year in order to ensure the returned value has the day set
to x instead of the default day (which is 1).

Syntax: localdatetime.truncate(unit [, temporalInstantValue [, mapOfComponents]])

Returns:

A LocalDateTime.

Arguments:

Name Description

unit A string expression evaluating to one of the following:
{millennium, century, decade, year, weekYear, quarter, month,
week, day, hour, minute, second, millisecond, microsecond}.

temporalInstantValue An expression of one of the following types: {DateTime,
LocalDateTime, Date}.

mapOfComponents An expression evaluating to a map containing components
less significant than unit.

Considerations:

temporalInstantValue cannot be a Date value if unit is one of {hour, minute, second, millisecond, microsecond}.

Any component that is provided in mapOfComponents must be less significant than unit; i.e. if unit is 'day', mapOfComponents
cannot contain information pertaining to a month.

Any component that is not contained in mapOfComponents and which is less significant than unit will be set to its minimal
value.

If mapOfComponents is not provided, all components of the returned value which are less significant than unit will be set to
their default values.

If temporalInstantValue is not provided, it will be set to the current date and time, i.e. localdatetime.truncate(unit) is
equivalent of localdatetime.truncate(unit, localdatetime()).

Query

WITH localdatetime({year:2017, month:11, day:11, hour:12, minute:31, second:14, nanosecond: 645876123}) AS
d
RETURN localdatetime.truncate('millennium', d) AS truncMillenium,
 localdatetime.truncate('year', d, {day:2}) AS truncYear,
 localdatetime.truncate('month', d) AS truncMonth,
 localdatetime.truncate('day', d) AS truncDay,
 localdatetime.truncate('hour', d, {nanosecond:2}) AS truncHour,
 localdatetime.truncate('second', d) AS truncSecond

Table 395. Result

317

truncMillenium truncYear truncMonth truncDay truncHour truncSecond

2000-01-01T00:00 2017-01-02T00:00 2017-11-01T00:00 2017-11-11T00:00 2017-11-
11T12:00:00.00000
0002

2017-11-
11T12:31:14

Rows: 1

3.9.5. LocalTime: localtime()

• Getting the current LocalTime

• Creating a LocalTime

• Creating a LocalTime from a string

• Creating a LocalTime using other temporal values as components

• Truncating a LocalTime

Getting the current LocalTime

localtime() returns the current LocalTime value. If no time zone parameter is specified, the local time zone
will be used.

Syntax: localtime([{timezone}])

Returns:

A LocalTime.

Arguments:

Name Description

A single map consisting of the following:

timezone A string expression that represents the time zone

Considerations:

If no parameters are provided, localtime() must be invoked (localtime({}) is invalid).

Query

RETURN localtime() AS now

The current local time (i.e. in the local time zone) is returned.

Table 396. Result

now

09:29:41.873

Rows: 1

318

Query

RETURN localtime({timezone: 'America/Los Angeles'}) AS nowInLA

The current local time in California is returned.

Table 397. Result

nowInLA

01:29:41.892

Rows: 1

localtime.transaction()

localtime.transaction() returns the current LocalTime value using the transaction clock. This value will
be the same for each invocation within the same transaction. However, a different value may be produced
for different transactions.

Syntax: localtime.transaction([{timezone}])

Returns:

A LocalTime.

Arguments:

Name Description

timezone A string expression that represents the time zone

Query

RETURN localtime.transaction() AS now

Table 398. Result

now

09:29:41.916

Rows: 1

localtime.statement()

localtime.statement() returns the current LocalTime value using the statement clock. This value will be
the same for each invocation within the same statement. However, a different value may be produced for
different statements within the same transaction.

Syntax: localtime.statement([{timezone}])

319

Returns:

A LocalTime.

Arguments:

Name Description

timezone A string expression that represents the time zone

Query

RETURN localtime.statement() AS now

Table 399. Result

now

09:29:41.942

Rows: 1

Query

RETURN localtime.statement('America/Los Angeles') AS nowInLA

Table 400. Result

nowInLA

01:29:41.963

Rows: 1

localtime.realtime()

localtime.realtime() returns the current LocalTime value using the realtime clock. This value will be the
live clock of the system.

Syntax: localtime.realtime([{timezone}])

Returns:

A LocalTime.

Arguments:

Name Description

timezone A string expression that represents the time zone

320

Query

RETURN localtime.realtime() AS now

Table 401. Result

now

09:29:42.007675

Rows: 1

Creating a LocalTime

localtime() returns a LocalTime value with the specified hour, minute, second, millisecond, microsecond
and nanosecond component values.

Syntax: localtime({hour [, minute, second, millisecond, microsecond, nanosecond]})

Returns:

A LocalTime.

Arguments:

Name Description

A single map consisting of the following:

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

321

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set hour, minute, and second may be omitted; i.e. it is possible to specify only hour
and minute, but specifying hour and second is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

Query

UNWIND [
 localtime({hour:12, minute:31, second:14, nanosecond: 789, millisecond: 123, microsecond: 456}),
 localtime({hour:12, minute:31, second:14}),
 localtime({hour:12})
] as theTime
RETURN theTime

Table 402. Result

theTime

12:31:14.123456789

12:31:14

12:00

Rows: 3

Creating a LocalTime from a string

localtime() returns the LocalTime value obtained by parsing a string representation of a temporal value.

Syntax: localtime(temporalValue)

Returns:

A LocalTime.

Arguments:

Name Description

temporalValue A string representing a temporal value.

Considerations:

temporalValue must comply with the format defined for times.

temporalValue must denote a valid time; i.e. a temporalValue denoting 13:46:64 is invalid.

localtime(null) returns null.

322

Query

UNWIND [
 localtime('21:40:32.142'),
 localtime('214032.142'),
 localtime('21:40'),
 localtime('21')
] AS theTime
RETURN theTime

Table 403. Result

theTime

21:40:32.142

21:40:32.142

21:40

21:00

Rows: 4

Creating a LocalTime using other temporal values as components

localtime() returns the LocalTime value obtained by selecting and composing components from another
temporal value. In essence, this allows a DateTime, LocalDateTime or Time value to be converted to a
LocalTime, and for "missing" components to be provided.

Syntax: localtime({time [, hour, …, nanosecond]})

Returns:

A LocalTime.

Arguments:

Name Description

A single map consisting of the following:

time A Time value.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

323

Name Description

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

Considerations:

If any of the optional parameters are provided, these will override the corresponding components of time.

localtime(tt) may be written instead of localtime({time: tt}).

Query

WITH time({hour:12, minute:31, second:14, microsecond: 645876, timezone: '+01:00'}) AS tt
RETURN localtime({time:tt}) AS timeOnly,
 localtime({time:tt, second: 42}) AS timeSS

Table 404. Result

timeOnly timeSS

12:31:14.645876 12:31:42.645876

Rows: 1

Truncating a LocalTime

localtime.truncate() returns the LocalTime value obtained by truncating a specified temporal instant
value at the nearest preceding point in time at the specified component boundary (which is denoted by the
truncation unit passed as a parameter to the function). In other words, the LocalTime returned will have all
components that are less significant than the specified truncation unit set to their default values.

It is possible to supplement the truncated value by providing a map containing components which are less
significant than the truncation unit. This will have the effect of overriding the default values which would
otherwise have been set for these less significant components. For example, minute — with some value
x — may be provided when the truncation unit is hour in order to ensure the returned value has the minute
set to x instead of the default minute (which is 1).

Syntax: localtime.truncate(unit [, temporalInstantValue [, mapOfComponents]])

Returns:

A LocalTime.

Arguments:

Name Description

unit A string expression evaluating to one of the following: {day,
hour, minute, second, millisecond, microsecond}.

temporalInstantValue An expression of one of the following types: {DateTime,
LocalDateTime, Time, LocalTime}.

324

Name Description

mapOfComponents An expression evaluating to a map containing components
less significant than unit.

Considerations:

Truncating time to day — i.e. unit is 'day'  — is supported, and yields midnight at the start of the day (00:00), regardless of
the value of temporalInstantValue. However, the time zone of temporalInstantValue is retained.

Any component that is provided in mapOfComponents must be less significant than unit; i.e. if unit is 'second',
mapOfComponents cannot contain information pertaining to a minute.

Any component that is not contained in mapOfComponents and which is less significant than unit will be set to its minimal
value.

If mapOfComponents is not provided, all components of the returned value which are less significant than unit will be set to
their default values.

If temporalInstantValue is not provided, it will be set to the current time, i.e. localtime.truncate(unit) is equivalent of
localtime.truncate(unit, localtime()).

Query

WITH time({hour:12, minute:31, second:14, nanosecond: 645876123, timezone: '-01:00'}) AS t
RETURN localtime.truncate('day', t) AS truncDay,
 localtime.truncate('hour', t) AS truncHour,
 localtime.truncate('minute', t, {millisecond:2}) AS truncMinute,
 localtime.truncate('second', t) AS truncSecond,
 localtime.truncate('millisecond', t) AS truncMillisecond,
 localtime.truncate('microsecond', t) AS truncMicrosecond

Table 405. Result

truncDay truncHour truncMinute truncSecond truncMillisecond truncMicrosecond

00:00 12:00 12:31:00.002 12:31:14 12:31:14.645 12:31:14.645876

Rows: 1

3.9.6. Time: time()

• Getting the current Time

• Creating a Time

• Creating a Time from a string

• Creating a Time using other temporal values as components

• Truncating a Time

Getting the current Time

time() returns the current Time value. If no time zone parameter is specified, the local time zone will be
used.

Syntax: time([{timezone}])

325

Returns:

A Time.

Arguments:

Name Description

A single map consisting of the following:

timezone A string expression that represents the time zone

Considerations:

If no parameters are provided, time() must be invoked (time({}) is invalid).

Query

RETURN time() AS currentTime

The current time of day using the local time zone is returned.

Table 406. Result

currentTime

09:29:42.214Z

Rows: 1

Query

RETURN time({timezone: 'America/Los Angeles'}) AS currentTimeInLA

The current time of day in California is returned.

Table 407. Result

currentTimeInLA

01:29:42.233-08:00

Rows: 1

time.transaction()

time.transaction() returns the current Time value using the transaction clock. This value will be the
same for each invocation within the same transaction. However, a different value may be produced for
different transactions.

Syntax: time.transaction([{timezone}])

Returns:

326

A Time.

Arguments:

Name Description

timezone A string expression that represents the time zone

Query

RETURN time.transaction() AS currentTime

Table 408. Result

currentTime

09:29:42.255Z

Rows: 1

time.statement()

time.statement() returns the current Time value using the statement clock. This value will be the same for
each invocation within the same statement. However, a different value may be produced for different
statements within the same transaction.

Syntax: time.statement([{timezone}])

Returns:

A Time.

Arguments:

Name Description

timezone A string expression that represents the time zone

Query

RETURN time.statement() AS currentTime

Table 409. Result

currentTime

09:29:42.274Z

Rows: 1

327

Query

RETURN time.statement('America/Los Angeles') AS currentTimeInLA

Table 410. Result

currentTimeInLA

01:29:42.293-08:00

Rows: 1

time.realtime()

time.realtime() returns the current Time value using the realtime clock. This value will be the live clock
of the system.

Syntax: time.realtime([{timezone}])

Returns:

A Time.

Arguments:

Name Description

timezone A string expression that represents the time zone

Query

RETURN time.realtime() AS currentTime

Table 411. Result

currentTime

09:29:42.331163Z

Rows: 1

Creating a Time

time() returns a Time value with the specified hour, minute, second, millisecond, microsecond,
nanosecond and timezone component values.

Syntax: time({hour [, minute, second, millisecond, microsecond, nanosecond, timezone]})

Returns:

A Time.

328

Arguments:

Name Description

A single map consisting of the following:

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

The hour component will default to 0 if hour is omitted.

The minute component will default to 0 if minute is omitted.

The second component will default to 0 if second is omitted.

Any missing millisecond, microsecond or nanosecond values will default to 0.

The timezone component will default to the configured default time zone if timezone is omitted.

If millisecond, microsecond and nanosecond are given in combination (as part of the same set of parameters), the individual
values must be in the range 0 to 999.

The least significant components in the set hour, minute, and second may be omitted; i.e. it is possible to specify only hour
and minute, but specifying hour and second is not permitted.

One or more of millisecond, microsecond and nanosecond can only be specified as long as second is also specified.

Query

UNWIND [
 time({hour:12, minute:31, second:14, millisecond: 123, microsecond: 456, nanosecond: 789}),
 time({hour:12, minute:31, second:14, nanosecond: 645876123}),
 time({hour:12, minute:31, second:14, microsecond: 645876, timezone: '+01:00'}),
 time({hour:12, minute:31, timezone: '+01:00'}),
 time({hour:12, timezone: '+01:00'})
] AS theTime
RETURN theTime

Table 412. Result

theTime

12:31:14.123456789Z

329

theTime

12:31:14.645876123Z

12:31:14.645876+01:00

12:31+01:00

12:00+01:00

Rows: 5

Creating a Time from a string

time() returns the Time value obtained by parsing a string representation of a temporal value.

Syntax: time(temporalValue)

Returns:

A Time.

Arguments:

Name Description

temporalValue A string representing a temporal value.

Considerations:

temporalValue must comply with the format defined for times and time zones.

The timezone component will default to the configured default time zone if it is omitted.

temporalValue must denote a valid time; i.e. a temporalValue denoting 15:67 is invalid.

time(null) returns null.

Query

UNWIND [
 time('21:40:32.142+0100'),
 time('214032.142Z'),
 time('21:40:32+01:00'),
 time('214032-0100'),
 time('21:40-01:30'),
 time('2140-00:00'),
 time('2140-02'),
 time('22+18:00')
] AS theTime
RETURN theTime

Table 413. Result

theTime

21:40:32.142+01:00

21:40:32.142Z

330

theTime

21:40:32+01:00

21:40:32-01:00

21:40-01:30

21:40Z

21:40-02:00

22:00+18:00

Rows: 8

Creating a Time using other temporal values as components

time() returns the Time value obtained by selecting and composing components from another temporal
value. In essence, this allows a DateTime, LocalDateTime or LocalTime value to be converted to a Time,
and for "missing" components to be provided.

Syntax: time({time [, hour, …, timezone]})

Returns:

A Time.

Arguments:

Name Description

A single map consisting of the following:

time A Time value.

hour An integer between 0 and 23 that specifies the hour of the
day.

minute An integer between 0 and 59 that specifies the number of
minutes.

second An integer between 0 and 59 that specifies the number of
seconds.

millisecond An integer between 0 and 999 that specifies the number of
milliseconds.

microsecond An integer between 0 and 999,999 that specifies the number
of microseconds.

nanosecond An integer between 0 and 999,999,999 that specifies the
number of nanoseconds.

timezone An expression that specifies the time zone.

Considerations:

If any of the optional parameters are provided, these will override the corresponding components of time.

331

time(tt) may be written instead of time({time: tt}).

Selecting a Time or DateTime value as the time component also selects its time zone. If a LocalTime or LocalDateTime is
selected instead, the default time zone is used. In any case, the time zone can be overridden explicitly.

Selecting a DateTime or Time as the time component and overwriting the time zone will adjust the local time to keep the
same point in time.

Query

WITH localtime({hour:12, minute:31, second:14, microsecond: 645876}) AS tt
RETURN time({time:tt}) AS timeOnly,
 time({time:tt, timezone:'+05:00'}) AS timeTimezone,
 time({time:tt, second: 42}) AS timeSS,
 time({time:tt, second: 42, timezone:'+05:00'}) AS timeSSTimezone

Table 414. Result

timeOnly timeTimezone timeSS timeSSTimezone

12:31:14.645876Z 12:31:14.645876+05:00 12:31:42.645876Z 12:31:42.645876+05:00

Rows: 1

Truncating a Time

time.truncate() returns the Time value obtained by truncating a specified temporal instant value at the
nearest preceding point in time at the specified component boundary (which is denoted by the truncation
unit passed as a parameter to the function). In other words, the Time returned will have all components
that are less significant than the specified truncation unit set to their default values.

It is possible to supplement the truncated value by providing a map containing components which are less
significant than the truncation unit. This will have the effect of overriding the default values which would
otherwise have been set for these less significant components. For example, minute — with some value
x — may be provided when the truncation unit is hour in order to ensure the returned value has the minute
set to x instead of the default minute (which is 1).

Syntax: time.truncate(unit [, temporalInstantValue [, mapOfComponents]])

Returns:

A Time.

Arguments:

Name Description

unit A string expression evaluating to one of the following: {day,
hour, minute, second, millisecond, microsecond}.

temporalInstantValue An expression of one of the following types: {DateTime,
LocalDateTime, Time, LocalTime}.

332

Name Description

mapOfComponents An expression evaluating to a map containing components
less significant than unit. During truncation, a time zone can
be attached or overridden using the key timezone.

Considerations:

Truncating time to day — i.e. unit is 'day'  — is supported, and yields midnight at the start of the day (00:00), regardless of
the value of temporalInstantValue. However, the time zone of temporalInstantValue is retained.

The time zone of temporalInstantValue may be overridden; for example, time.truncate('minute', input,
{timezone:'+0200'}).

If temporalInstantValue is one of {Time, DateTime} — a value with a time zone — and the time zone is overridden, no time
conversion occurs.

If temporalInstantValue is one of {LocalTime, LocalDateTime, Date} — a value without a time zone — and the time zone is
not overridden, the configured default time zone will be used.

Any component that is provided in mapOfComponents must be less significant than unit; i.e. if unit is 'second',
mapOfComponents cannot contain information pertaining to a minute.

Any component that is not contained in mapOfComponents and which is less significant than unit will be set to its minimal
value.

If mapOfComponents is not provided, all components of the returned value which are less significant than unit will be set to
their default values.

If temporalInstantValue is not provided, it will be set to the current time and timezone, i.e. time.truncate(unit) is
equivalent of time.truncate(unit, time()).

Query

WITH time({hour:12, minute:31, second:14, nanosecond: 645876123, timezone: '-01:00'}) AS t
RETURN time.truncate('day', t) AS truncDay,
 time.truncate('hour', t) AS truncHour,
 time.truncate('minute', t) AS truncMinute,
 time.truncate('second', t) AS truncSecond,
 time.truncate('millisecond', t, {nanosecond:2}) AS truncMillisecond,
 time.truncate('microsecond', t) AS truncMicrosecond

Table 415. Result

truncDay truncHour truncMinute truncSecond truncMillisecond truncMicrosecond

00:00-01:00 12:00-01:00 12:31-01:00 12:31:14-01:00 12:31:14.64500000
2-01:00

12:31:14.645876-
01:00

Rows: 1

3.10. Temporal functions - duration

 See also Temporal (Date/Time) values and Temporal operators.

duration():

• Creating a Duration from duration components

333

• Creating a Duration from a string

• Computing the Duration between two temporal instants

Information regarding specifying and accessing components of a Duration value can be found here.

3.10.1. Creating a Duration from duration components

duration() can construct a Duration from a map of its components in the same way as the temporal
instant types.

• years

• quarters

• months

• weeks

• days

• hours

• minutes

• seconds

• milliseconds

• microseconds

• nanoseconds

Syntax: duration([{years, quarters, months, weeks, days, hours, minutes, seconds,
milliseconds, microseconds, nanoseconds}])

Returns:

A Duration.

Arguments:

Name Description

A single map consisting of the following:

years A numeric expression.

quarters A numeric expression.

months A numeric expression.

weeks A numeric expression.

days A numeric expression.

hours A numeric expression.

minutes A numeric expression.

seconds A numeric expression.

334

Name Description

milliseconds A numeric expression.

microseconds A numeric expression.

nanoseconds A numeric expression.

Considerations:

At least one parameter must be provided (duration() and duration({}) are invalid).

There is no constraint on how many of the parameters are provided.

It is possible to have a Duration where the amount of a smaller unit (e.g. seconds) exceeds the threshold of a larger unit (e.g.
days).

The values of the parameters may be expressed as decimal fractions.

The values of the parameters may be arbitrarily large.

The values of the parameters may be negative.

Query

UNWIND [
 duration({days: 14, hours:16, minutes: 12}),
 duration({months: 5, days: 1.5}),
 duration({months: 0.75}),
 duration({weeks: 2.5}),
 duration({minutes: 1.5, seconds: 1, milliseconds: 123, microseconds: 456, nanoseconds: 789}),
 duration({minutes: 1.5, seconds: 1, nanoseconds: 123456789})
] AS aDuration
RETURN aDuration

Table 416. Result

aDuration

P14DT16H12M

P5M1DT12H

P22DT19H51M49.5S

P17DT12H

PT1M31.123456789S

PT1M31.123456789S

Rows: 6

3.10.2. Creating a Duration from a string

duration() returns the Duration value obtained by parsing a string representation of a temporal amount.

Syntax: duration(temporalAmount)

Returns:

335

A Duration.

Arguments:

Name Description

temporalAmount A string representing a temporal amount.

Considerations:

temporalAmount must comply with either the unit based form or date-and-time based form defined for Durations.

Query

UNWIND [
 duration("P14DT16H12M"),
 duration("P5M1.5D"),
 duration("P0.75M"),
 duration("PT0.75M"),
 duration("P2012-02-02T14:37:21.545")
] AS aDuration
RETURN aDuration

Table 417. Result

aDuration

P14DT16H12M

P5M1DT12H

P22DT19H51M49.5S

PT45S

P2012Y2M2DT14H37M21.545S

Rows: 5

3.10.3. Computing the Duration between two temporal instants

duration() has sub-functions which compute the logical difference (in days, months, etc) between two
temporal instant values:

• duration.between(a, b): Computes the difference in multiple components between instant a and
instant b. This captures month, days, seconds and sub-seconds differences separately.

• duration.inMonths(a, b): Computes the difference in whole months (or quarters or years) between
instant a and instant b. This captures the difference as the total number of months. Any difference
smaller than a whole month is disregarded.

• duration.inDays(a, b): Computes the difference in whole days (or weeks) between instant a and
instant b. This captures the difference as the total number of days. Any difference smaller than a whole
day is disregarded.

• duration.inSeconds(a, b): Computes the difference in seconds (and fractions of seconds, or minutes
or hours) between instant a and instant b. This captures the difference as the total number of seconds.

336

duration.between()

duration.between() returns the Duration value equal to the difference between the two given instants.

Syntax: duration.between(instant1, instant2)

Returns:

A Duration.

Arguments:

Name Description

instant1 An expression returning any temporal instant type (Date etc)
that represents the starting instant.

instant2 An expression returning any temporal instant type (Date etc)
that represents the ending instant.

Considerations:

If instant2 occurs earlier than instant1, the resulting Duration will be negative.

If instant1 has a time component and instant2 does not, the time component of instant2 is assumed to be midnight, and
vice versa.

If instant1 has a time zone component and instant2 does not, the time zone component of instant2 is assumed to be the
same as that of instant1, and vice versa.

If instant1 has a date component and instant2 does not, the date component of instant2 is assumed to be the same as that
of instant1, and vice versa.

Query

UNWIND [
 duration.between(date("1984-10-11"), date("1985-11-25")),
 duration.between(date("1985-11-25"), date("1984-10-11")),
 duration.between(date("1984-10-11"), datetime("1984-10-12T21:40:32.142+0100")),
 duration.between(date("2015-06-24"), localtime("14:30")),
 duration.between(localtime("14:30"), time("16:30+0100")),
 duration.between(localdatetime("2015-07-21T21:40:32.142"), localdatetime("2016-07-21T21:45:22.142")),
 duration.between(datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/Stockholm'}),
datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/London'}))
] AS aDuration
RETURN aDuration

Table 418. Result

aDuration

P1Y1M14D

P-1Y-1M-14D

P1DT21H40M32.142S

PT14H30M

PT2H

337

aDuration

P1YT4M50S

PT1H

Rows: 7

duration.inMonths()

duration.inMonths() returns the Duration value equal to the difference in whole months, quarters or years
between the two given instants.

Syntax: duration.inMonths(instant1, instant2)

Returns:

A Duration.

Arguments:

Name Description

instant1 An expression returning any temporal instant type (Date etc)
that represents the starting instant.

instant2 An expression returning any temporal instant type (Date etc)
that represents the ending instant.

Considerations:

If instant2 occurs earlier than instant1, the resulting Duration will be negative.

If instant1 has a time component and instant2 does not, the time component of instant2 is assumed to be midnight, and
vice versa.

If instant1 has a time zone component and instant2 does not, the time zone component of instant2 is assumed to be the
same as that of instant1, and vice versa.

If instant1 has a date component and instant2 does not, the date component of instant2 is assumed to be the same as that
of instant1, and vice versa.

Any difference smaller than a whole month is disregarded.

Query

UNWIND [
 duration.inMonths(date("1984-10-11"), date("1985-11-25")),
 duration.inMonths(date("1985-11-25"), date("1984-10-11")),
 duration.inMonths(date("1984-10-11"), datetime("1984-10-12T21:40:32.142+0100")),
 duration.inMonths(date("2015-06-24"), localtime("14:30")),
 duration.inMonths(localdatetime("2015-07-21T21:40:32.142"), localdatetime("2016-07-21T21:45:22.142")),
 duration.inMonths(datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/Stockholm'}),
datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/London'}))
] AS aDuration
RETURN aDuration

Table 419. Result

338

aDuration

P1Y1M

P-1Y-1M

PT0S

PT0S

P1Y

PT0S

Rows: 6

duration.inDays()

duration.inDays() returns the Duration value equal to the difference in whole days or weeks between the
two given instants.

Syntax: duration.inDays(instant1, instant2)

Returns:

A Duration.

Arguments:

Name Description

instant1 An expression returning any temporal instant type (Date etc)
that represents the starting instant.

instant2 An expression returning any temporal instant type (Date etc)
that represents the ending instant.

Considerations:

If instant2 occurs earlier than instant1, the resulting Duration will be negative.

If instant1 has a time component and instant2 does not, the time component of instant2 is assumed to be midnight, and
vice versa.

If instant1 has a time zone component and instant2 does not, the time zone component of instant2 is assumed to be the
same as that of instant1, and vice versa.

If instant1 has a date component and instant2 does not, the date component of instant2 is assumed to be the same as that
of instant1, and vice versa.

Any difference smaller than a whole day is disregarded.

339

Query

UNWIND [
 duration.inDays(date("1984-10-11"), date("1985-11-25")),
 duration.inDays(date("1985-11-25"), date("1984-10-11")),
 duration.inDays(date("1984-10-11"), datetime("1984-10-12T21:40:32.142+0100")),
 duration.inDays(date("2015-06-24"), localtime("14:30")),
 duration.inDays(localdatetime("2015-07-21T21:40:32.142"), localdatetime("2016-07-21T21:45:22.142")),
 duration.inDays(datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/Stockholm'}),
datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/London'}))
] AS aDuration
RETURN aDuration

Table 420. Result

aDuration

P410D

P-410D

P1D

PT0S

P366D

PT0S

Rows: 6

duration.inSeconds()

duration.inSeconds() returns the Duration value equal to the difference in seconds and fractions of
seconds, or minutes or hours, between the two given instants.

Syntax: duration.inSeconds(instant1, instant2)

Returns:

A Duration.

Arguments:

Name Description

instant1 An expression returning any temporal instant type (Date etc)
that represents the starting instant.

instant2 An expression returning any temporal instant type (Date etc)
that represents the ending instant.

Considerations:

If instant2 occurs earlier than instant1, the resulting Duration will be negative.

If instant1 has a time component and instant2 does not, the time component of instant2 is assumed to be midnight, and
vice versa.

340

If instant1 has a time zone component and instant2 does not, the time zone component of instant2 is assumed to be the
same as that of instant1, and vice versa.

If instant1 has a date component and instant2 does not, the date component of instant2 is assumed to be the same as that
of instant1, and vice versa.

Query

UNWIND [
 duration.inSeconds(date("1984-10-11"), date("1984-10-12")),
 duration.inSeconds(date("1984-10-12"), date("1984-10-11")),
 duration.inSeconds(date("1984-10-11"), datetime("1984-10-12T01:00:32.142+0100")),
 duration.inSeconds(date("2015-06-24"), localtime("14:30")),
 duration.inSeconds(datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/Stockholm'}),
datetime({year: 2017, month: 10, day: 29, hour: 0, timezone: 'Europe/London'}))
] AS aDuration
RETURN aDuration

Table 421. Result

aDuration

PT24H

PT-24H

PT25H32.142S

PT14H30M

PT1H

Rows: 5

3.11. Spatial functions
Functions:

• distance()

• point() - WGS 84 2D

• point() - WGS 84 3D

• point() - Cartesian 2D

• point() - Cartesian 3D

The following graph is used for some of the examples below.

[alt] | Spatial functions-1.svg

Graph

3.11.1. distance()

distance() returns a floating point number representing the geodesic distance between two points in the
same Coordinate Reference System (CRS).

• If the points are in the Cartesian CRS (2D or 3D), then the units of the returned distance will be the

341

same as the units of the points, calculated using Pythagoras' theorem.

• If the points are in the WGS-84 CRS (2D), then the units of the returned distance will be meters, based
on the haversine formula over a spherical earth approximation.

• If the points are in the WGS-84 CRS (3D), then the units of the returned distance will be meters.

◦ The distance is calculated in two steps.

▪ First, a haversine formula over a spherical earth is used, at the average height of the two
points.

▪ To account for the difference in height, Pythagoras' theorem is used, combining the previously
calculated spherical distance with the height difference.

◦ This formula works well for points close to the earth’s surface; for instance, it is well-suited for
calculating the distance of an airplane flight. It is less suitable for greater heights, however, such as
when calculating the distance between two satellites.

Syntax: distance(point1, point2)

Returns:

A Float.

Arguments:

Name Description

point1 A point in either a geographic or cartesian coordinate system.

point2 A point in the same CRS as 'point1'.

Considerations:

distance(null, null), distance(null, point2) and distance(point1, null) all return null.

Attempting to use points with different Coordinate Reference Systems (such as WGS 84 2D and WGS 84 3D) will return
null.

Query

WITH point({x: 2.3, y: 4.5, crs: 'cartesian'}) AS p1, point({x: 1.1, y: 5.4, crs: 'cartesian'}) AS p2
RETURN distance(p1,p2) AS dist

The distance between two 2D points in the Cartesian CRS is returned.

Table 422. Result

dist

1.5

Rows: 1

342

Query

WITH point({longitude: 12.78, latitude: 56.7, height: 100}) as p1, point({latitude: 56.71, longitude:
12.79, height: 100}) as p2
RETURN distance(p1,p2) as dist

The distance between two 3D points in the WGS 84 CRS is returned.

Table 423. Result

dist

1269.9148706779097

Rows: 1

Query

MATCH (t:TrainStation)-[:TRAVEL_ROUTE]->(o:Office)
WITH point({longitude: t.longitude, latitude: t.latitude}) AS trainPoint, point({longitude: o.longitude,
latitude: o.latitude}) AS officePoint
RETURN round(distance(trainPoint, officePoint)) AS travelDistance

The distance between the train station in Copenhagen and the Neo4j office in Malmo is returned.

Table 424. Result

travelDistance

27842.0

Rows: 1

Query

RETURN distance(null, point({longitude: 56.7, latitude: 12.78})) AS d

If null is provided as one or both of the arguments, null is returned.

Table 425. Result

d

<null>

Rows: 1

3.11.2. point() - WGS 84 2D

point({longitude | x, latitude | y [, crs][, srid]}) returns a 2D point in the WGS 84 CRS
corresponding to the given coordinate values.

Syntax: point({longitude | x, latitude | y [, crs][, srid]})

Returns:

A 2D point in WGS 84.

343

Arguments:

Name Description

A single map consisting of the following:

longitude/x A numeric expression that represents the longitude/x value in
decimal degrees

latitude/y A numeric expression that represents the latitude/y value in
decimal degrees

crs The optional string 'WGS-84'

srid The optional number 4326

Considerations:

If any argument provided to point() is null, null will be returned.

If the coordinates are specified using latitude and longitude, the crs or srid fields are optional and inferred to be 'WGS-84'
(srid=4326).

If the coordinates are specified using x and y, then either the crs or srid field is required if a geographic CRS is desired.

Query

RETURN point({longitude: 56.7, latitude: 12.78}) AS point

A 2D point with a longitude of 56.7 and a latitude of 12.78 in the WGS 84 CRS is returned.

Table 426. Result

point

point({x: 56.7, y: 12.78, crs: 'wgs-84'})

Rows: 1

Query

RETURN point({x: 2.3, y: 4.5, crs: 'WGS-84'}) AS point

x and y coordinates may be used in the WGS 84 CRS instead of longitude and latitude, respectively,
providing crs is set to 'WGS-84', or srid is set to 4326.

Table 427. Result

point

point({x: 2.3, y: 4.5, crs: 'wgs-84'})

Rows: 1

344

Query

MATCH (p:Office)
RETURN point({longitude: p.longitude, latitude: p.latitude}) AS officePoint

A 2D point representing the coordinates of the city of Malmo in the WGS 84 CRS is returned.

Table 428. Result

officePoint

point({x: 12.994341, y: 55.611784, crs: 'wgs-84'})

Rows: 1

Query

RETURN point(null) AS p

If null is provided as the argument, null is returned.

Table 429. Result

p

<null>

Rows: 1

3.11.3. point() - WGS 84 3D

point({longitude | x, latitude | y, height | z, [, crs][, srid]}) returns a 3D point in the WGS
84 CRS corresponding to the given coordinate values.

Syntax: point({longitude | x, latitude | y, height | z, [, crs][, srid]})

Returns:

A 3D point in WGS 84.

Arguments:

Name Description

A single map consisting of the following:

longitude/x A numeric expression that represents the longitude/x value in
decimal degrees

latitude/y A numeric expression that represents the latitude/y value in
decimal degrees

height/z A numeric expression that represents the height/z value in
meters

crs The optional string 'WGS-84-3D'

345

Name Description

srid The optional number 4979

Considerations:

If any argument provided to point() is null, null will be returned.

If the height/z key and value is not provided, a 2D point in the WGS 84 CRS will be returned.

If the coordinates are specified using latitude and longitude, the crs or srid fields are optional and inferred to be 'WGS-84-
3D' (srid=4979).

If the coordinates are specified using x and y, then either the crs or srid field is required if a geographic CRS is desired.

Query

RETURN point({longitude: 56.7, latitude: 12.78, height: 8}) AS point

A 3D point with a longitude of 56.7, a latitude of 12.78 and a height of 8 meters in the WGS 84 CRS is
returned.

Table 430. Result

point

point({x: 56.7, y: 12.78, z: 8.0, crs: 'wgs-84-3d'})

Rows: 1

3.11.4. point() - Cartesian 2D

point({x, y [, crs][, srid]}) returns a 2D point in the Cartesian CRS corresponding to the given
coordinate values.

Syntax: point({x, y [, crs][, srid]})

Returns:

A 2D point in Cartesian.

Arguments:

Name Description

A single map consisting of the following:

x A numeric expression

y A numeric expression

crs The optional string 'cartesian'

srid The optional number 7203

Considerations:

346

If any argument provided to point() is null, null will be returned.

The crs or srid fields are optional and default to the Cartesian CRS (which means srid:7203).

Query

RETURN point({x: 2.3, y: 4.5}) AS point

A 2D point with an x coordinate of 2.3 and a y coordinate of 4.5 in the Cartesian CRS is returned.

Table 431. Result

point

point({x: 2.3, y: 4.5, crs: 'cartesian'})

Rows: 1

3.11.5. point() - Cartesian 3D

point({x, y, z, [, crs][, srid]}) returns a 3D point in the Cartesian CRS corresponding to the given
coordinate values.

Syntax: point({x, y, z, [, crs][, srid]})

Returns:

A 3D point in Cartesian.

Arguments:

Name Description

A single map consisting of the following:

x A numeric expression

y A numeric expression

z A numeric expression

crs The optional string 'cartesian-3D'

srid The optional number 9157

Considerations:

If any argument provided to point() is null, null will be returned.

If the z key and value is not provided, a 2D point in the Cartesian CRS will be returned.

The crs or srid fields are optional and default to the 3D Cartesian CRS (which means srid:9157).

347

Query

RETURN point({x: 2.3, y: 4.5, z: 2}) AS point

A 3D point with an x coordinate of 2.3, a y coordinate of 4.5 and a z coordinate of 2 in the Cartesian CRS
is returned.

Table 432. Result

point

point({x: 2.3, y: 4.5, z: 2.0, crs: 'cartesian-3d'})

Rows: 1

3.12. LOAD CSV functions

The functions described on this page are only useful when run on a query that uses LOAD
CSV. In all other contexts they will always return null.

Functions:

• linenumber()

• file()

3.12.1. linenumber()

linenumber() returns the line number that LOAD CSV is currently using.

Syntax: linenumber()

Returns:

An Integer.

Considerations:

null will be returned if this function is called without a LOAD CSV context.

If the CSV file contains headers, the headers will be linenumber 1 and the 1st row of data will have a linenumber of 2.

3.12.2. file()

file() returns the absolute path of the file that LOAD CSV is using.

Syntax: file()

Returns:

A String.

348

Considerations:

null will be returned if this function is called without a LOAD CSV context.

3.13. User-defined functions
There are two main types of functions that can be developed and used:

Type Description Usage Developing

Scalar For each row the function
takes parameters and returns
a result

Using UDF Extending Neo4j (UDF)

Aggregating Consumes many rows and
produces an aggregated
result

Using aggregating UDF Extending Neo4j
(Aggregating UDF)

3.13.1. User-defined scalar functions

For each incoming row the function takes parameters and returns a single result.

This example shows how you invoke a user-defined function called join from Cypher.

Call a user-defined function

This calls the user-defined function org.neo4j.procedure.example.join().

Query

MATCH (n:Member) RETURN org.neo4j.function.example.join(collect(n.name)) AS members

Table 433. Result

members

"John,Paul,George,Ringo"

Rows: 1

For developing and deploying user-defined functions in Neo4j, see Extending Neo4j → User-defined
functions.

3.13.2. User-defined aggregation functions

Aggregating functions consume many rows and produces a single aggregated result.

This example shows how you invoke a user-defined aggregation function called longestString from
Cypher.

349

https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-aggregation-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-aggregation-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions

Call a user-defined aggregation function

This calls the user-defined function org.neo4j.function.example.longestString().

Query

MATCH (n:Member)
RETURN org.neo4j.function.example.longestString(n.name) AS member

Table 434. Result

member

"George"

Rows: 1

350

Chapter 4. Indexes for search performance
This section describes how to manage indexes. For query performance purposes, it is important to also
understand how the indexes are used by the Cypher planner. Refer to Query tuning for examples and in-
depth discussions on how query plans result from different index and query scenarios. See specifically The
use of indexes for examples of how various index scenarios result in different query plans.

For information on index configuration and limitations, refer to Operations Manual → Index configuration.

4.1. Indexes (types and limitations)
A database index is a redundant copy of some of the data in the database for the purpose of making
searches of related data more efficient. This comes at the cost of additional storage space and slower
writes, so deciding what to index and what not to index is an important and often non-trivial task.

Once an index has been created, it will be managed and kept up to date by the DBMS. Neo4j will
automatically pick up and start using the index once it has been created and brought online.

Cypher enables the creation of indexes on one or more properties for all nodes or relationships that have a
given label or relationship type:

• An index that is created on a single property for any given label or relationship type is called a single-
property index.

• An index that is created on more than one property for any given label or relationship type is called a
composite index.

Differences in the usage patterns between composite and single-property indexes are described in
Composite index limitations.

The following is true for indexes:

• Best practice is to give the index a name when it is created. If the index is not explicitly named, it will
get an auto-generated name.

• The index name must be unique among both indexes and constraints.

• Index creation is by default not idempotent, and an error will be thrown if you attempt to create the
same index twice. Using the keyword IF NOT EXISTS makes the command idempotent, and no error
will be thrown if you attempt to create the same index twice.

4.1.1. Syntax

Table 435. Syntax for managing indexes

351

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#performance_configuration
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#performance_configuration
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#performance_configuration

Command Description Comment

CREATE [BTREE] INDEX [index_name] [IF NOT
EXISTS]
FOR (n:LabelName)
ON (n.propertyName)
[OPTIONS "{" option: value[, ...] "}"]

Create a single-property index
on nodes.

Index provider and configuration
can be specified using the
OPTIONS clause.

Best practice is to give the
index a name when it is
created. If the index is not
explicitly named, it will get
an auto-generated name.

The index name must be
unique among both indexes
and constraints.

The command is optionally
idempotent, with the
default behavior to throw
an error if you attempt to
create the same index
twice. With IF NOT EXISTS,
no error is thrown and
nothing happens should an
index with the same name,
schema or both already
exist. It may still throw an
error if conflicting
constraints exist, such as
constraints with the same
name or schema.

CREATE [BTREE] INDEX [index_name] [IF NOT
EXISTS]
FOR ()-"["r:TYPE_NAME"]"-()
ON (r.propertyName)
[OPTIONS "{" option: value[, ...] "}"]

Create a single-property index
on relationships.

Index provider and configuration
can be specified using the
OPTIONS clause.

CREATE [BTREE] INDEX [index_name] [IF NOT
EXISTS]
FOR (n:LabelName)
ON (n.propertyName_1,
 n.propertyName_2,
 …
 n.propertyName_n)
[OPTIONS "{" option: value[, ...] "}"]

Create a composite index on
nodes.

Index provider and configuration
can be specified using the
OPTIONS clause.

CREATE [BTREE] INDEX [index_name] [IF NOT
EXISTS]
FOR ()-"["r:TYPE_NAME"]"-()
ON (r.propertyName_1,
 r.propertyName_2,
 …
 r.propertyName_n)
[OPTIONS "{" option: value[, ...] "}"]

Create a composite index on
relationships.

Index provider and configuration
can be specified using the
OPTIONS clause.

CREATE LOOKUP INDEX [index_name] [IF NOT
EXISTS]
FOR (n)
ON EACH labels(n)

Create a node label lookup
index.

Token lookup indexes do not
support any OPTIONS values.

CREATE LOOKUP INDEX [index_name] [IF NOT
EXISTS]
FOR ()-"["r"]"-()
ON [EACH] type(r)

Create a relationship type lookup
index.

Token lookup indexes do not
support any OPTIONS values.

DROP INDEX index_name [IF EXISTS]
Drop an index, either a b-tree,
fulltext, or token lookup index.

The command is optionally
idempotent, with the
default behavior to throw
an error if you attempt to
drop the same index twice.
With IF EXISTS, no error is
thrown and nothing
happens should the index
not exist.

352

Command Description Comment

SHOW [ALL|BTREE|FULLTEXT|LOOKUP] INDEX[ES]
 [YIELD { * | field[, ...] } [ORDER BY
field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[,
...]] [SKIP n] [LIMIT n]]

List indexes in the database,
either all or filtered on b-tree,
fulltext, or token lookup indexes.

When using the RETURN
clause, the YIELD clause is
mandatory and may not be
omitted.

DROP INDEX ON :LabelName(propertyName)
Drop a single-property index on
nodes without specifying a
name.

This syntax is deprecated.
DROP INDEX ON :LabelName (n.propertyName_1,
n.propertyName_2,
…
n.propertyName_n)

Drop a composite index on
nodes without specifying a
name.

Creating an index requires the CREATE INDEX privilege, while dropping an index requires the DROP INDEX
privilege and listing indexes require the SHOW INDEX privilege.

Planner hints and the USING keyword describes how to make the Cypher planner use specific indexes
(especially in cases where the planner would not necessarily have used them).

4.1.2. Composite index limitations

Like single-property indexes, composite indexes support all predicates:

• equality check: n.prop = value

• list membership check: n.prop IN list

• existence check: n.prop IS NOT NULL

• range search: n.prop > value

• prefix search: STARTS WITH

• suffix search: ENDS WITH

• substring search: CONTAINS

 For details about each operator, see Operators.

However, predicates might be planned as existence check and a filter. For most predicates, this can be
avoided by following these restrictions:

• If there is any equality check and list membership check predicates, they need to be for the first
properties defined by the index.

• There can be up to one range search or prefix search predicate.

• There can be any number of existence check predicates.

• Any predicate after a range search, prefix search or existence check predicate has to be an

353

existence check predicate.

However, the suffix search and substring search predicates are always planned as existence check and
a filter and any predicates following after will therefore also be planned as such.

For example, an index on nodes with :Label(prop1,prop2,prop3,prop4,prop5,prop6) and predicates:

WHERE n.prop1 = 'x' AND n.prop2 = 1 AND n.prop3 > 5 AND n.prop4 < 'e' AND n.prop5 = true AND n.prop6 IS
NOT NULL

will be planned as:

WHERE n.prop1 = 'x' AND n.prop2 = 1 AND n.prop3 > 5 AND n.prop4 IS NOT NULL AND n.prop5 IS NOT NULL AND
n.prop6 IS NOT NULL

with filters on n.prop4 < 'e' and n.prop5 = true, since n.prop3 has a range search predicate.

And an index on nodes with :Label(prop1,prop2) with predicates:

WHERE n.prop1 ENDS WITH 'x' AND n.prop2 = false

will be planned as:

WHERE n.prop1 IS NOT NULL AND n.prop2 IS NOT NULL

with filters on n.prop1 ENDS WITH 'x' and n.prop2 = false, since n.prop1 has a suffix search predicate.

Composite indexes require predicates on all properties indexed. If there are predicates on only a subset of
the indexed properties, it will not be possible to use the composite index. To get this kind of fallback
behavior, it is necessary to create additional indexes on the relevant sub-set of properties or on single
properties.

4.2. Creating indexes

4.3. Create a single-property index for nodes
A named index on a single property for all nodes that have a particular label can be created with CREATE
INDEX index_name FOR (n:Label) ON (n.property). Note that the index is not immediately available, but
is created in the background.

Query

CREATE INDEX node_index_name FOR (n:Person) ON (n.surname)

Note that the index name needs to be unique.

354

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

4.4. Create a single-property index for relationships
A named index on a single property for all relationships that have a particular relationship type can be
created with CREATE INDEX index_name FOR ()-[r:TYPE]-() ON (r.property). Note that the index is not
immediately available, but is created in the background.

Query

CREATE INDEX rel_index_name FOR ()-[r:KNOWS]-() ON (r.since)

Note that the index name needs to be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

4.5. Create a single-property index only if it does not already
exist
If it is unknown if an index exists or not but we want to make sure it does, we add IF NOT EXISTS.

Query

CREATE INDEX node_index_name IF NOT EXISTS FOR (n:Person) ON (n.surname)

Note that the index will not be created if there already exists an index with the same name, same schema
or both.

Result

+--+
| No data returned, and nothing was changed. |
+--+

4.6. Create a single-property index with specified index
provider
To create a single property index with a specific index provider, the OPTIONS clause is used. Valid values for
the index provider is native-btree-1.0 and lucene+native-3.0, default if nothing is specified is native-
btree-1.0.

355

Query

CREATE BTREE INDEX index_with_provider FOR ()-[r:TYPE]-() ON (r.prop1) OPTIONS {indexProvider:
 'native-btree-1.0'}

Can be combined with specifying index configuration.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

4.7. Create a single-property index with specified index
configuration
To create a single property index with a specific index configuration, the OPTIONS clause is used. Valid
configuration settings are spatial.cartesian.min, spatial.cartesian.max, spatial.cartesian-3d.min,
spatial.cartesian-3d.max, spatial.wgs-84.min, spatial.wgs-84.max, spatial.wgs-84-3d.min, and
spatial.wgs-84-3d.max. Non-specified settings get their respective default values.

Query

CREATE BTREE INDEX index_with_config FOR (n:Label) ON (n.prop2)
OPTIONS {indexConfig: {`spatial.cartesian.min`: [-100.0, -100.0], `spatial.cartesian.max`: [100.0,
 100.0]}}

Can be combined with specifying index provider.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

4.8. Create a composite index for nodes
A named index on multiple properties for all nodes that have a particular label — i.e. a composite
index — can be created with CREATE INDEX index_name FOR (n:Label) ON (n.prop1, …, n.propN). Only
nodes labeled with the specified label and which contain all the properties in the index definition will be
added to the index. Note that the composite index is not immediately available, but is created in the
background. The following statement will create a named composite index on all nodes labeled with
Person and which have both an age and country property:

Query

CREATE INDEX node_index_name FOR (n:Person) ON (n.age, n.country)

Note that the index name needs to be unique.

356

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

4.9. Create a composite index for relationships
A named index on multiple properties for all relationships that have a particular relationship type — i.e. a
composite index — can be created with CREATE INDEX index_name FOR ()-[r:TYPE]-() ON (r.prop1, …,
r.propN). Only relationships labeled with the specified type and which contain all the properties in the
index definition will be added to the index. Note that the composite index is not immediately available, but
is created in the background. The following statement will create a named composite index on all
relationships labeled with PURCHASED and which have both a date and amount property:

Query

CREATE INDEX rel_index_name FOR ()-[r:PURCHASED]-() ON (r.date, r.amount)

Note that the index name needs to be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

4.10. Create a composite index with specified index provider
and configuration
To create a composite index with a specific index provider and configuration, the OPTIONS clause is used.
Valid values for the index provider is native-btree-1.0 and lucene+native-3.0, default if nothing is
specified is native-btree-1.0. Valid configuration settings are spatial.cartesian.min,
spatial.cartesian.max, spatial.cartesian-3d.min, spatial.cartesian-3d.max, spatial.wgs-84.min,
spatial.wgs-84.max, spatial.wgs-84-3d.min, and spatial.wgs-84-3d.max. Non-specified settings get their
respective default values.

Query

CREATE INDEX index_with_options FOR (n:Label) ON (n.prop1, n.prop2)
OPTIONS {
 indexProvider: 'lucene+native-3.0',
 indexConfig: {`spatial.wgs-84.min`: [-100.0, -80.0], `spatial.wgs-84.max`: [100.0, 80.0]}
}

Specifying index provider and configuration can be done individually.

357

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

4.11. Create a node label lookup index
A named token lookup index for all nodes with one or more labels can be created with CREATE LOOKUP
INDEX index_name FOR (n) ON EACH labels(n). Note that the index is not immediately available, but is
created in the background.

Query

CREATE LOOKUP INDEX node_label_lookup_index FOR (n) ON EACH labels(n)

Note that it can only be created once and that the index name must be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

4.12. Create a relationship type lookup index
A named token lookup index for all relationships with any relationship type can be created with CREATE
LOOKUP INDEX index_name FOR ()-[r]-() ON EACH type(r). Note that the index is not immediately
available, but is created in the background.

Query

CREATE LOOKUP INDEX rel_type_lookup_index FOR ()-[r]-() ON EACH type(r)

Note that it can only be created once and that the index name must be unique.

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

4.13. Listing indexes
Listing indexes can be done with SHOW INDEXES, which will produce a table with the following columns:

Table 436. List indexes output

358

Column Description Default output Full output

id The id of the index.
+

+

name Name of the index (explicitly set by the user or automatically
assigned). +

+

state Current state of the index.
+

+

populationPe
rcent

% of index population.
+

+

uniqueness Tells if the index is only meant to allow one value per key.
+

+

type The IndexType of this index (BTREE, FULLTEXT, or LOOKUP).
+

+

entityType Type of entities this index represents (nodes or relationship).
+

+

labelsOrType
s

The labels or relationship types of this index.
+

+

properties The properties of this index.
+

+

indexProvide
r

The index provider for this index.
+

+

options The options passed to CREATE command. +

failureMessa
ge

The failure description of a failed index. +

createStatem
ent

Statement used to create the index. +

Listing indexes also allows for WHERE and YIELD clauses to filter the returned rows and columns.

The deprecated built-in procedures for listing indexes, such as db.indexes, work as
before and are not affected by the SHOW INDEXES privilege.

4.13.1. Listing indexes examples

4.14. Listing all indexes
To list all indexes with the default output columns, the SHOW INDEXES command can be used. If all columns
are required, use SHOW INDEXES YIELD *.

359

Query

SHOW INDEXES

One of the output columns from SHOW INDEXES is the name of the index. This can be used to drop the index
with the DROP INDEX command.

Result

+---
---------------------------------------+
| id | name | state | populationPercent | uniqueness | type | entityType |
labelsOrTypes | properties | indexProvider |
+---
---------------------------------------+
| 4 | "index_58a1c03e" | "ONLINE" | 100.0 | "NONUNIQUE" | "BTREE" | "NODE" | ["Person"]
| ["location"] | "native-btree-1.0" |
| 5 | "index_d7c12ba3" | "ONLINE" | 100.0 | "NONUNIQUE" | "BTREE" | "NODE" | ["Person"]
| ["highScore"] | "native-btree-1.0" |
| 3 | "index_deeafdb2" | "ONLINE" | 100.0 | "NONUNIQUE" | "BTREE" | "NODE" | ["Person"]
| ["firstname"] | "native-btree-1.0" |
+---
---------------------------------------+
3 rows

4.15. Listing indexes with filtering
One way of filtering the output from SHOW INDEXES by index type is the use of type keywords, listed in the
syntax table. For example, to show only b-tree indexes, use SHOW BTREE INDEXES. Another more flexible
way of filtering the output is to use the WHERE clause. An example is to only show indexes not belonging to
constraints.

Query

SHOW BTREE INDEXES WHERE uniqueness = 'NONUNIQUE'

This will only return the default output columns. To get all columns, use SHOW INDEXES YIELD * WHERE ….

Result

+---
---+
| id | name | state | populationPercent | uniqueness | type | entityType |
labelsOrTypes | properties | indexProvider |
+---
---+
| 4 | "index_58a1c03e" | "ONLINE" | 100.0 | "NONUNIQUE" | "BTREE" | "NODE" |
["Person"] | ["location"] | "native-btree-1.0" |
| 6 | "index_c207e3e6" | "ONLINE" | 100.0 | "NONUNIQUE" | "BTREE" | "RELATIONSHIP" |
["KNOWS"] | ["since"] | "native-btree-1.0" |
| 5 | "index_d7c12ba3" | "ONLINE" | 100.0 | "NONUNIQUE" | "BTREE" | "NODE" |
["Person"] | ["highScore"] | "native-btree-1.0" |
| 3 | "index_deeafdb2" | "ONLINE" | 100.0 | "NONUNIQUE" | "BTREE" | "NODE" |
["Person"] | ["firstname"] | "native-btree-1.0" |
+---
---+
4 rows

4.16. Deleting indexes

360

4.17. Drop an index
An index can be dropped using the name with the DROP INDEX index_name command. This command can
drop b-tree, fulltext, or token lookup indexes. The name of the index can be found using the SHOW INDEXES
command, given in the output column name.

Query

DROP INDEX index_name

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes removed: 1

4.18. Drop a non-existing index
If it is uncertain if an index exists and you want to drop it if it does but not get an error should it not, use:

Query

DROP INDEX missing_index_name IF EXISTS

Result

+--+
| No data returned, and nothing was changed. |
+--+

4.19. Deprecated syntax Deprecated

This syntax does not support dropping relationship property indexes, these can only be
dropped by name.

4.20. Drop a single-property index
An index on all nodes that have a label and single property combination can be dropped with DROP INDEX
ON :Label(property).

Query

DROP INDEX ON :Person(firstname)

361

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes removed: 1

4.21. Drop a composite index
A composite index on all nodes that have a label and multiple property combination can be dropped with
DROP INDEX ON :Label(prop1, …, propN). The following statement will drop a composite index on all
nodes labeled with Person and which have both an age and country property:

Query

DROP INDEX ON :Person(age, country)

Result

+-------------------+
| No data returned. |
+-------------------+
Indexes removed: 1

362

Chapter 5. Full-text search index
Full-text indexes are powered by the Apache Lucene indexing and search library, and can be used to index
nodes and relationships by string properties. A full-text index allows you to write queries that match
within the contents of indexed string properties. For instance, the b-tree indexes described in previous
sections can only do exact matching or prefix matches on strings. A full-text index will instead tokenize the
indexed string values, so it can match terms anywhere within the strings. How the indexed strings are
tokenized and broken into terms, is determined by what analyzer the full-text index is configured with. For
instance, the swedish analyzer knows how to tokenize and stem Swedish words, and will avoid indexing
Swedish stop words. The complete list of stop words for each analyzer is included in the result of the
db.index.fulltext.listAvailableAnalyzers procedure.

Full-text indexes:

• support the indexing of both nodes and relationships.

• support configuring custom analyzers, including analyzers that are not included with Lucene itself.

• can be queried using the Lucene query language.

• can return the score for each result from a query.

• are kept up to date automatically, as nodes and relationships are added, removed, and modified.

• will automatically populate newly created indexes with the existing data in a store.

• can be checked by the consistency checker, and they can be rebuilt if there is a problem with them.

• are a projection of the store, and can only index nodes and relationships by the contents of their
properties.

• can support any number of documents in a single index.

• are created, dropped, and updated transactionally, and is automatically replicated throughout a cluster.

• can be accessed via Cypher procedures.

• can be configured to be eventually consistent, in which index updating is moved from the commit path
to a background thread. Using this feature, it is possible to work around the slow Lucene writes from
the performance critical commit process, thus removing the main bottlenecks for Neo4j write
performance.

At first sight, the construction of full-text indexes can seem similar to regular indexes. However there are
some things that are interesting to note: In contrast to b-tree indexes, a full-text index can be:

• applied to more than one label.

• applied to more than one relationship type.

• applied to more than one property at a time (similar to a composite index) but with an important
difference: While a composite index applies only to entities that match the indexed label and all of the
indexed properties, full-text index will index entities that have at least one of the indexed labels or
relationship types, and at least one of the indexed properties.

For information on how to configure full-text indexes, refer to Operations Manual → Indexes to support full-
text search.

363

https://lucene.apache.org/
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#index-configuration-fulltext
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#index-configuration-fulltext
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#index-configuration-fulltext
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#index-configuration-fulltext

5.1. Full-text search procedures
Full-text indexes are managed through commands and used through built-in procedures, see Operations
Manual → Procedures for a complete reference.

The commands and procedures for full-text indexes are listed in the table below:

Usage Procedure/Command Description

Create full-text node index CREATE FULLTEXT INDEX … Create a node fulltext index for the
given labels and properties. The optional
'options' map can be used to supply
provider and settings to the index.
Supported settings are
'fulltext.analyzer', for specifying what
analyzer to use when indexing and
querying. Use the
db.index.fulltext.listAvailableAnaly
zers procedure to see what options are
available. And
'fulltext.eventually_consistent' which
can be set to 'true' to make this index
eventually consistent, such that updates
from committing transactions are
applied in a background thread.

Create full-text relationship index CREATE FULLTEXT INDEX … Create a relationship fulltext index for
the given relationship types and
properties. The optional 'options' map
can be used to supply provider and
settings to the index. Supported
settings are 'fulltext.analyzer', for
specifying what analyzer to use when
indexing and querying. Use the
db.index.fulltext.listAvailableAnaly
zers procedure to see what options are
available. And
'fulltext.eventually_consistent' which
can be set to 'true' to make this index
eventually consistent, such that updates
from committing transactions are
applied in a background thread.

List available analyzers db.index.fulltext.listAvailableAnaly
zers

List the available analyzers that the full-
text indexes can be configured with.

Use full-text node index db.index.fulltext.queryNodes Query the given full-text index. Returns
the matching nodes and their Lucene
query score, ordered by score.

Use full-text relationship index db.index.fulltext.queryRelationships Query the given full-text index. Returns
the matching relationships and their
Lucene query score, ordered by score.

Drop full-text index DROP INDEX … Drop the specified index.

364

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#procedures
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#procedures

Usage Procedure/Command Description

Eventually consistent indexes db.index.fulltext.awaitEventuallyCon
sistentIndexRefresh

Wait for the updates from recently
committed transactions to be applied to
any eventually-consistent full-text
indexes.

Listing all fulltext indexes SHOW FULLTEXT INDEXES Lists all fulltext indexes, see the SHOW
INDEXES command for details.

5.2. Create and configure full-text indexes
Full-text indexes are created with the CREATE FULLTEXT INDEX command. An index can be given a unique
name when created (or get a generated one), which is used to reference the specific index when querying
or dropping it. A full-text index applies to a list of labels or a list of relationship types, for node and
relationship indexes respectively, and then a list of property names.

Table 437. Syntax for creating fulltext indexes

365

Command Description Comment

CREATE FULLTEXT INDEX [index_name] [IF NOT
EXISTS]
FOR (n:LabelName["|" ...])
ON EACH "[" n.propertyName[, ...] "]"
[OPTIONS "{" option: value[, ...] "}"]

Create a fulltext index on nodes. Best practice is to give the
index a name when it is
created. This name is
needed for both dropping
and querying the index. If
the index is not explicitly
named, it will get an auto-
generated name.

The index name must be
unique among all indexes
and constraints.

Index provider and
configuration can be
specified using the OPTIONS
clause.

The command is optionally
idempotent, with the
default behavior to throw
an error if you attempt to
create the same index
twice. With IF NOT EXISTS,
no error is thrown and
nothing happens should an
index with the same name,
schema or both already
exist. It may still throw an
error should a constraint
with the same name exist.

CREATE FULLTEXT INDEX [index_name] [IF NOT
EXISTS]
FOR ()-"["r:TYPE_NAME["|" ...]"]"-()
ON EACH "[" r.propertyName[, ...] "]"
[OPTIONS "{" option: value[, ...] "}"]

Create a fulltext index on
relationships.

For instance, if we have a movie with a title.

Query

CREATE (m:Movie {title: "The Matrix"}) RETURN m.title

Table 438. Result

m.title

"The Matrix"

Rows: 1
Nodes created: 1
Properties set: 1
Labels added: 1

366

And we have a full-text index on the title and description properties of movies and books.

Query

CREATE FULLTEXT INDEX titlesAndDescriptions FOR (n:Movie|Book) ON EACH [n.title, n.description]

Then our movie node from above will be included in the index, even though it only has one of the indexed
labels, and only one of the indexed properties:

Query

CALL db.index.fulltext.queryNodes("titlesAndDescriptions", "matrix") YIELD node, score
RETURN node.title, node.description, score

Table 439. Result

node.title node.description score

"The Matrix" <null> 0.7799721956253052

Rows: 1

The same is true for full-text indexes on relationships. Though a relationship can only have one type, a
relationship full-text index can index multiple types, and all relationships will be included that match one of
the relationship types, and at least one of the indexed properties.

The CREATE FULLTEXT INDEX command take an optional clause, called options. This have two parts, the
indexProvider and indexConfig. The provider can only have the default value, 'fulltext-1.0'. The
indexConfig is a map from string to string and booleans, and can be used to set index-specific
configuration settings. The fulltext.analyzer setting can be used to configure an index-specific analyzer.
The possible values for the fulltext.analyzer setting can be listed with the
db.index.fulltext.listAvailableAnalyzers procedure. The fulltext.eventually_consistent setting, if
set to true, will put the index in an eventually consistent update mode. This means that updates will be
applied in a background thread "as soon as possible", instead of during transaction commit like other
indexes.

Query

CREATE FULLTEXT INDEX taggedByRelationshipIndex FOR ()-[r:TAGGED_AS]-() ON EACH [r.taggedByUser] OPTIONS
{indexConfig: {`fulltext.analyzer`: 'url_or_email', `fulltext.eventually_consistent`: true}}

In this example, an eventually consistent relationship full-text index is created for the TAGGED_AS
relationship type, and the taggedByUser property, and the index uses the url_or_email analyzer. This
could, for instance, be a system where people are assigning tags to documents, and where the index on
the taggedByUser property will allow them to quickly find all of the documents they have tagged. Had it not
been for the relationship index, one would have had to add artificial connective nodes between the tags
and the documents in the data model, just so these nodes could be indexed.

Table 440. Result

(empty result)

367

Rows: 0
Indexes added: 1

5.3. Query full-text indexes
Full-text indexes will, in addition to any exact matches, also return approximate matches to a given query.
Both the property values that are indexed, and the queries to the index, are processed through the
analyzer such that the index can find that don’t exactly matches. The score that is returned alongside each
result entry, represents how well the index thinks that entry matches the given query. The results are
always returned in descending score order, where the best matching result entry is put first. To illustrate,
in the example below, we search our movie database for "Full Metal Jacket", and even though there is
an exact match as the first result, we also get three other less interesting results:

Query

CALL db.index.fulltext.queryNodes("titlesAndDescriptions", "Full Metal Jacket") YIELD node, score
RETURN node.title, score

Table 441. Result

node.title score

"Full Metal Jacket" 1.411118507385254

"Full Moon High" 0.44524085521698

"Yellow Jacket" 0.3509605824947357

"The Jacket" 0.3509605824947357

Rows: 4

Full-text indexes are powered by the Apache Lucene indexing and search library. This means that we can
use Lucene’s full-text query language to express what we wish to search for. For instance, if we are only
interested in exact matches, then we can quote the string we are searching for.

Query

CALL db.index.fulltext.queryNodes("titlesAndDescriptions", '"Full Metal Jacket"') YIELD node, score
RETURN node.title, score

When we put "Full Metal Jacket" in quotes, Lucene only gives us exact matches.

Table 442. Result

node.title score

"Full Metal Jacket" 1.411118507385254

Rows: 1

Lucene also allows us to use logical operators, such as AND and OR, to search for terms:

368

https://lucene.apache.org/

Query

CALL db.index.fulltext.queryNodes("titlesAndDescriptions", 'full AND metal') YIELD node, score
RETURN node.title, score

Only the Full Metal Jacket movie in our database has both the words full and metal.

Table 443. Result

node.title score

"Full Metal Jacket" 1.1113792657852173

Rows: 1

It is also possible to search for only specific properties, by putting the property name and a colon in front of
the text being searched for.

Query

CALL db.index.fulltext.queryNodes("titlesAndDescriptions", 'description:"surreal adventure"') YIELD node,
score
RETURN node.title, node.description, score

Table 444. Result

node.title node.description score

"Metallica Through The Never" "The movie follows the young roadie
Trip through his surreal adventure
with the band."

0.2615291476249695

Rows: 1

A complete description of the Lucene query syntax can be found in the Lucene documentation.

5.4. Drop full-text indexes
A full-text node index is dropped by using the same command as for other indexes, DROP INDEX.

In the following example, we will drop the taggedByRelationshipIndex that we created previously:

Query

DROP INDEX taggedByRelationshipIndex

Table 445. Result

(empty result)

Rows: 0
Indexes removed: 1

369

https://lucene.apache.org/core/8_2_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package.description

Chapter 6. Constraints

6.1. Types of constraint
The following constraint types are available:

Unique node property constraints

Unique property constraints ensure that property values are unique for all nodes with a specific label.
Unique constraints do not mean that all nodes have to have a unique value for the properties — nodes
without the property are not subject to this rule.

Node property existence constraints

Node property existence constraints ensure that a property exists for all nodes with a specific label.
Queries that try to create new nodes of the specified label, but without this property, will fail. The same
is true for queries that try to remove the mandatory property.

Relationship property existence constraints

Property existence constraints ensure that a property exists for all relationships with a specific type. All
queries that try to create relationships of the specified type, but without this property, will fail. The
same is true for queries that try to remove the mandatory property.

Node key constraints

Node key constraints ensure that, for a given label and set of properties:

i. All the properties exist on all the nodes with that label.

ii. The combination of the property values is unique.

Queries attempting to do any of the following will fail:

• Create new nodes without all the properties or where the combination of property values is not
unique.

• Remove one of the mandatory properties.

• Update the properties so that the combination of property values is no longer unique.

Node key constraints, node property existence constraints and relationship property
existence constraints are only available in Neo4j Enterprise Edition. Databases
containing one of these constraint types cannot be opened using Neo4j Community
Edition.

6.2. Implications on indexes
Creating a constraint has the following implications on indexes:

• Adding a unique property constraint on a property will also add a single-property index on that
property, so such an index cannot be added separately.

370

• Adding a node key constraint for a set of properties will also add a composite index on those
properties, so such an index cannot be added separately.

• Cypher will use these indexes for lookups just like other indexes. Refer to Indexes for search
performance for more details on indexes.

• If a unique property constraint is dropped and the single-property index on the property is still
required, the index will need to be created explicitly.

• If a node key constraint is dropped and the composite-property index on the properties is still required,
the index will need to be created explicitly.

Additionally, the following is true for constraints:

• A given label can have multiple constraints, and unique and property existence constraints can be
combined on the same property.

• Adding constraints is an atomic operation that can take a while — all existing data has to be scanned
before Neo4j can turn the constraint 'on'.

• Best practice is to give the constraint a name when it is created. If the constraint is not explicitly
named, it will get an auto-generated name.

• The constraint name must be unique among both indexes and constraints.

• Constraint creation is by default not idempotent, and an error will be thrown if you attempt to create
the same constraint twice. Using the keyword IF NOT EXISTS makes the command idempotent, and no
error will be thrown if you attempt to create the same constraint twice.

6.3. Syntax

6.3.1. Syntax for creating constraints

Best practice when creating a constraint is to give the constraint a name. This name must be unique
among both indexes and constraints. If a name is not explicitly given, a unique name will be auto-
generated.

The create constraint command is optionally idempotent, with the default behavior to throw an error if you
attempt to create the same constraint twice. With the IF NOT EXISTS flag, no error is thrown and nothing
happens should a constraint with the same name or same schema and constraint type already exist. It may
still throw an error if conflicting data, indexes, or constraints exist. Examples of this are nodes with missing
properties, indexes with the same name, or constraints with same schema but a different constraint type.

For constraints that are backed by an index, the index provider and configuration for the backing index can
be specified using the OPTIONS clause.

Creating a constraint requires the CREATE CONSTRAINT privilege.

Create a unique node property constraint

This command creates a uniqueness constraint on nodes with the specified label and property.

371

CREATE CONSTRAINT [constraint_name] [IF NOT EXISTS]
ON (n:LabelName)
ASSERT n.propertyName IS UNIQUE
[OPTIONS "{" option: value[, ...] "}"]

Create a node property existence constraint

This command creates a property existence constraint on nodes with the specified label and property.

CREATE CONSTRAINT [constraint_name] [IF NOT EXISTS]
ON (n:LabelName)
ASSERT n.propertyName IS NOT NULL

Create a relationship property existence constraint

This command creates a property existence constraint on relationships with the specified relationship type
and property.

CREATE CONSTRAINT [constraint_name] [IF NOT EXISTS]
ON ()-"["R:RELATIONSHIP_TYPE"]"-()
ASSERT R.propertyName IS NOT NULL

Create a node key constraint

This command creates a node key constraint on nodes with the specified label and properties.

CREATE CONSTRAINT [constraint_name] [IF NOT EXISTS]
ON (n:LabelName)
ASSERT (n.propertyName_1,
n.propertyName_2,
…
n.propertyName_n)
IS NODE KEY
[OPTIONS "{" option: value[, ...] "}"]

6.3.2. Syntax for dropping constraints

Drop a constraint

The preferred way of dropping a constraint is by the name of the constraint.

This drop command is optionally idempotent, with the default behavior to throw an error if you attempt to
drop the same constraint twice. With the IF EXISTS flag, no error is thrown and nothing happens should
the constraint not exist.

Dropping a constraint requires the DROP CONSTRAINT privilege.

DROP CONSTRAINT constraint_name [IF EXISTS]

Drop a unique constraint without specifying a name

372

An old way of dropping a uniqueness constraint was to drop the constraint by specifying the schema of
the constraint.

DROP CONSTRAINT
ON (n:LabelName)
ASSERT n.propertyName IS UNIQUE

Drop a node property existence constraint without specifying a name

An old way of dropping a node property existence constraint was to drop the constraint by specifying the
schema of the constraint.

DROP CONSTRAINT
ON (n:LabelName)
ASSERT EXISTS (n.propertyName)

Drop a relationship property existence constraint without specifying a name

An old way of dropping a relationship property existence constraint was to drop the constraint by
specifying the schema of the constraint.

DROP CONSTRAINT
ON ()-"["R:RELATIONSHIP_TYPE"]"-()
ASSERT EXISTS (R.propertyName)

Drop a node key constraint without specifying a name

An old way of dropping a node key constraint was to drop the constraint by specifying the schema of the
constraint.

DROP CONSTRAINT
ON (n:LabelName)
ASSERT (n.propertyName_1,
n.propertyName_2,
…
n.propertyName_n)
IS NODE KEY

6.3.3. Syntax for listing constraints

List constraints in the database, either all or filtered on constraint type. This requires the SHOW CONSTRAINT
privilege.

The simple version of the command allows for a WHERE clause and will give back the default set of output
columns:

SHOW [ALL|UNIQUE|NODE [PROPERTY] EXIST[ENCE]|REL[ATIONSHIP] [PROPERTY] EXIST[ENCE]|[PROPERTY] EXIST[ENCE]
|NODE KEY] CONSTRAINT[S]
 [WHERE expression]

To get the full set of output columns, a yield clause is needed:

373

SHOW [ALL|UNIQUE|NODE [PROPERTY] EXIST[ENCE]|REL[ATIONSHIP] [PROPERTY] EXIST[ENCE]|[PROPERTY] EXIST[ENCE]
|NODE KEY] CONSTRAINT[S]
 YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

The returned columns from the show command is:

Table 446. List constraints output

Column Description Default
output

Full output

id The id of the constraint.

name Name of the constraint (explicitly set by the user or
automatically assigned).

type The ConstraintType of this constraint (UNIQUENESS,
NODE_PROPERTY_EXISTENCE, NODE_KEY, or
RELATIONSHIP_PROPERTY_EXISTENCE).

entityType Type of entities this constraint represents (nodes or
relationship).

labelsOrTypes The labels or relationship types of this constraint.

properties The properties of this constraint.

ownedIndexId The id of the index associated to the constraint, or
null if no index is associated with the constraint.

options The options passed to CREATE command, for the
index associated to the constraint, or null if no
index is associated with the constraint.

createStatement Statement used to create the constraint.

The deprecated built-in procedures for listing constraints, such as db.constraints, work
as before and are not affected by the SHOW CONSTRAINTS privilege.

6.4. Examples

374

6.4.1. Unique node property constraints

Create a unique constraint

When creating a unique constraint, a name can be provided. The constraint ensures that your database
will never contain more than one node with a specific label and one property value.

Query

CREATE CONSTRAINT constraint_name ON (book:Book) ASSERT book.isbn IS UNIQUE

Result

+-------------------+
| No data returned. |
+-------------------+
Unique constraints added: 1

Create a unique constraint only if it does not already exist

If it is unknown if a constraint exists or not but we want to make sure it does, we add the IF NOT EXISTS.
The uniqueness constraint ensures that your database will never contain more than one node with a
specific label and one property value.

Query

CREATE CONSTRAINT constraint_name IF NOT EXISTS ON (book:Book) ASSERT book.isbn IS UNIQUE

Note no constraint will be created if any other constraint with that name or another uniqueness constraint
on the same schema already exists. Assuming no such constraints existed:

Result

+-------------------+
| No data returned. |
+-------------------+
Unique constraints added: 1

Create a unique constraint with specified index provider and
configuration

To create a unique constraint with a specific index provider and configuration for the backing index, the
OPTIONS clause is used. Valid values for the index provider is native-btree-1.0 and lucene+native-3.0,
default if nothing is specified is native-btree-1.0. Valid configuration settings are spatial.cartesian.min,
spatial.cartesian.max, spatial.cartesian-3d.min, spatial.cartesian-3d.max, spatial.wgs-84.min,
spatial.wgs-84.max, spatial.wgs-84-3d.min, and spatial.wgs-84-3d.max. Non-specified settings get their
respective default values.

375

Query

CREATE CONSTRAINT constraint_with_options ON (n:Label) ASSERT n.prop IS UNIQUE
OPTIONS {
 indexProvider: 'lucene+native-3.0',
 indexConfig: {`spatial.wgs-84.min`: [-100.0, -80.0], `spatial.wgs-84.max`: [100.0, 80.0]}
}

Specifying index provider and configuration can be done individually.

Result

+-------------------+
| No data returned. |
+-------------------+
Unique constraints added: 1

Create a node that complies with unique property constraints

Create a Book node with an isbn that isn’t already in the database.

Query

CREATE (book:Book {isbn: '1449356265', title: 'Graph Databases'})

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 1
Properties set: 2
Labels added: 1

Create a node that violates a unique property constraint

Create a Book node with an isbn that is already used in the database.

Query

CREATE (book:Book {isbn: '1449356265', title: 'Graph Databases'})

In this case the node isn’t created in the graph.

Error message

Node(0) already exists with label `Book` and property `isbn` = '1449356265'

Failure to create a unique property constraint due to conflicting nodes

Create a unique property constraint on the property isbn on nodes with the Book label when there are two
nodes with the same isbn.

376

Query

CREATE CONSTRAINT ON (book:Book) ASSERT book.isbn IS UNIQUE

In this case the constraint can’t be created because it is violated by existing data. We may choose to use
Indexes for search performance instead or remove the offending nodes and then re-apply the constraint.

Error message

Unable to create Constraint(name='constraint_ca412c3d', type='UNIQUENESS',
schema=(:Book {isbn})):
Both Node(0) and Node(1) have the label `Book` and property `isbn` = '1449356265'

6.4.2. Node property existence constraints Enterprise edition

Create a node property existence constraint

When creating a node property existence constraint, a name can be provided. The constraint ensures that
all nodes with a certain label have a certain property.

Query

CREATE CONSTRAINT constraint_name ON (book:Book) ASSERT book.isbn IS NOT NULL

Result

+-------------------+
| No data returned. |
+-------------------+
Property existence constraints added: 1

Create a node property existence constraint only if it does not already
exist

If it is unknown if a constraint exists or not but we want to make sure it does, we add the IF NOT EXISTS.
The node property existence constraint ensures that all nodes with a certain label have a certain property.

Query

CREATE CONSTRAINT constraint_name IF NOT EXISTS ON (book:Book) ASSERT book.isbn IS NOT NULL

Note no constraint will be created if any other constraint with that name or another node property
existence constraint on the same schema already exists. Assuming a constraint with the name
constraint_name already existed:

Result

+--+
| No data returned, and nothing was changed. |
+--+

377

Create a node that complies with property existence constraints

Create a Book node with an isbn property.

Query

CREATE (book:Book {isbn: '1449356265', title: 'Graph Databases'})

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 1
Properties set: 2
Labels added: 1

Create a node that violates a property existence constraint

Trying to create a Book node without an isbn property, given a property existence constraint on
:Book(isbn).

Query

CREATE (book:Book {title: 'Graph Databases'})

In this case the node isn’t created in the graph.

Error message

Node(0) with label `Book` must have the property `isbn`

Removing an existence constrained node property

Trying to remove the isbn property from an existing node book, given a property existence constraint on
:Book(isbn).

Query

MATCH (book:Book {title: 'Graph Databases'}) REMOVE book.isbn

In this case the property is not removed.

Error message

Node(0) with label `Book` must have the property `isbn`

Failure to create a node property existence constraint due to existing
node

Create a constraint on the property isbn on nodes with the Book label when there already exists a node

378

without an isbn.

Query

CREATE CONSTRAINT ON (book:Book) ASSERT book.isbn IS NOT NULL

In this case the constraint can’t be created because it is violated by existing data. We may choose to
remove the offending nodes and then re-apply the constraint.

Error message

Unable to create Constraint(type='NODE PROPERTY EXISTENCE', schema=(:Book
{isbn})):
Node(0) with label `Book` must have the property `isbn`

6.4.3. Relationship property existence constraints Enterprise edition

Create a relationship property existence constraint

When creating a relationship property existence constraint, a name can be provided. The constraint
ensures all relationships with a certain type have a certain property.

Query

CREATE CONSTRAINT constraint_name ON ()-[like:LIKED]-() ASSERT like.day IS NOT NULL

Result

+-------------------+
| No data returned. |
+-------------------+
Property existence constraints added: 1

Create a relationship property existence constraint only if it does not
already exist

If it is unknown if a constraint exists or not but we want to make sure it does, we add the IF NOT EXISTS.
The relationship property existence constraint ensures all relationships with a certain type have a certain
property.

Query

CREATE CONSTRAINT constraint_name IF NOT EXISTS ON ()-[like:LIKED]-() ASSERT like.day IS NOT NULL

Note no constraint will be created if any other constraint with that name or another relationship property
existence constraint on the same schema already exists. Assuming a constraint with the name
constraint_name already existed:

379

Result

+--+
| No data returned, and nothing was changed. |
+--+

Create a relationship that complies with property existence constraints

Create a LIKED relationship with a day property.

Query

CREATE (user:User)-[like:LIKED {day: 'yesterday'}]->(book:Book)

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 2
Relationships created: 1
Properties set: 1
Labels added: 2

Create a relationship that violates a property existence constraint

Trying to create a LIKED relationship without a day property, given a property existence constraint
:LIKED(day).

Query

CREATE (user:User)-[like:LIKED]->(book:Book)

In this case the relationship isn’t created in the graph.

Error message

Relationship(0) with type `LIKED` must have the property `day`

Removing an existence constrained relationship property

Trying to remove the day property from an existing relationship like of type LIKED, given a property
existence constraint :LIKED(day).

Query

MATCH (user:User)-[like:LIKED]->(book:Book) REMOVE like.day

In this case the property is not removed.

380

Error message

Relationship(0) with type `LIKED` must have the property `day`

Failure to create a relationship property existence constraint due to
existing relationship

Create a constraint on the property day on relationships with the LIKED type when there already exists a
relationship without a property named day.

Query

CREATE CONSTRAINT ON ()-[like:LIKED]-() ASSERT like.day IS NOT NULL

In this case the constraint can’t be created because it is violated by existing data. We may choose to
remove the offending relationships and then re-apply the constraint.

Error message

Unable to create Constraint(type='RELATIONSHIP PROPERTY EXISTENCE',
schema=-[:LIKED {day}]-):
Relationship(0) with type `LIKED` must have the property `day`

6.4.4. Node key constraints Enterprise edition

Create a node key constraint

When creating a node key constraint, a name can be provided. The constraint ensures that all nodes with a
particular label have a set of defined properties whose combined value is unique and all properties in the
set are present.

Query

CREATE CONSTRAINT constraint_name ON (n:Person) ASSERT (n.firstname, n.surname) IS NODE KEY

Result

+-------------------+
| No data returned. |
+-------------------+
Node key constraints added: 1

Create a node key constraint only if it does not already exist

If it is unknown if a constraint exists or not but we want to make sure it does, we add the IF NOT EXISTS.
The node key constraint ensures that all nodes with a particular label have a set of defined properties
whose combined value is unique and all properties in the set are present.

381

Query

CREATE CONSTRAINT constraint_name IF NOT EXISTS ON (n:Person) ASSERT (n.firstname,
 n.surname) IS NODE KEY

Note no constraint will be created if any other constraint with that name or another node key constraint on
the same schema already exists. Assuming a node key constraint on (:Person {firstname, surname})
already existed:

Result

+--+
| No data returned, and nothing was changed. |
+--+

Create a node key constraint with specified index provider

To create a node key constraint with a specific index provider for the backing index, the OPTIONS clause is
used. Valid values for the index provider is native-btree-1.0 and lucene+native-3.0, default if nothing is
specified is native-btree-1.0.

Query

CREATE CONSTRAINT constraint_with_provider ON (n:Label) ASSERT (n.prop1) IS NODE KEY OPTIONS
 {indexProvider: 'native-btree-1.0'}

Can be combined with specifying index configuration.

Result

+-------------------+
| No data returned. |
+-------------------+
Node key constraints added: 1

Create a node key constraint with specified index configuration

To create a node key constraint with a specific index configuration for the backing index, the OPTIONS
clause is used. Valid configuration settings are spatial.cartesian.min, spatial.cartesian.max,
spatial.cartesian-3d.min, spatial.cartesian-3d.max, spatial.wgs-84.min, spatial.wgs-84.max,
spatial.wgs-84-3d.min, and spatial.wgs-84-3d.max. Non-specified settings get their respective default
values.

Query

CREATE CONSTRAINT constraint_with_config ON (n:Label) ASSERT (n.prop2) IS NODE KEY
OPTIONS {indexConfig: {`spatial.cartesian.min`: [-100.0, -100.0], `spatial.cartesian.max`: [100.0,
 100.0]}}

Can be combined with specifying index provider.

382

Result

+-------------------+
| No data returned. |
+-------------------+
Node key constraints added: 1

Create a node that complies with node key constraints

Create a Person node with both a firstname and surname property.

Query

CREATE (p:Person {firstname: 'John', surname: 'Wood', age: 55})

Result

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 1
Properties set: 3
Labels added: 1

Create a node that violates a node key constraint

Trying to create a Person node without a surname property, given a node key constraint on
:Person(firstname, surname), will fail.

Query

CREATE (p:Person {firstname: 'Jane', age: 34})

In this case the node isn’t created in the graph.

Error message

Node(0) with label `Person` must have the properties (firstname, surname)

Removing a NODE KEY-constrained property

Trying to remove the surname property from an existing node Person, given a NODE KEY constraint on
:Person(firstname, surname).

Query

MATCH (p:Person {firstname: 'John', surname: 'Wood'}) REMOVE p.surname

In this case the property is not removed.

383

Error message

Node(0) with label `Person` must have the properties (firstname, surname)

Failure to create a node key constraint due to existing node

Trying to create a node key constraint on the property surname on nodes with the Person label will fail
when a node without a surname already exists in the database.

Query

CREATE CONSTRAINT ON (n:Person) ASSERT (n.firstname, n.surname) IS NODE KEY

In this case the node key constraint can’t be created because it is violated by existing data. We may
choose to remove the offending nodes and then re-apply the constraint.

Error message

Unable to create Constraint(name='constraint_c57fc9b0', type='NODE KEY',
schema=(:Person {firstname, surname})):
Failed during property existence validation: Unable to create constraint
org.neo4j.internal.schema.constraints.ConstraintDescriptorImplementation@12000642:
Node(0) does not satisfy Constraint(type='NODE PROPERTY EXISTENCE',
schema=(:Person {firstname, surname})).

6.4.5. Drop a constraint by name

Drop a constraint

A constraint can be dropped using the name with the DROP CONSTRAINT constraint_name command. It is
the same command for unique property, property existence and node key constraints. The name of the
constraint can be found using the SHOW CONSTRAINTS command, given in the output column name.

Query

DROP CONSTRAINT constraint_name

Result

+-------------------+
| No data returned. |
+-------------------+
Named constraints removed: 1

Drop a non-existing constraint

If it is uncertain if any constraint with a given name exists and you want to drop it if it does but not get an
error should it not, use IF EXISTS. It is the same command for unique property, property existence and
node key constraints.

384

Query

DROP CONSTRAINT missing_constraint_name IF EXISTS

Result

+--+
| No data returned, and nothing was changed. |
+--+

6.4.6. Listing constraints

Listing all constraints

To list all constraints with the default output columns, the SHOW CONSTRAINTS command can be used. If all
columns are required, use SHOW CONSTRAINTS YIELD *.

Query

SHOW CONSTRAINTS

One of the output columns from SHOW CONSTRAINTS is the name of the constraint. This can be used to drop
the constraint with the DROP CONSTRAINT command.

Result

+--+
| id | name | type | entityType | labelsOrTypes | properties | ownedIndexId |
+--+
| 4 | "constraint_ca412c3d" | "UNIQUENESS" | "NODE" | ["Book"] | ["isbn"] | 3 |
+--+
1 row

Listing constraints with filtering

One way of filtering the output from SHOW CONSTRAINTS by constraint type is the use of type keywords,
listed in Syntax for listing constraints. For example, to show only unique node property constraints, use
SHOW UNIQUE CONSTRAINTS. Another more flexible way of filtering the output is to use the WHERE clause. An
example is to only show constraints on relationships.

Query

SHOW EXISTENCE CONSTRAINTS WHERE entityType = 'RELATIONSHIP'

This will only return the default output columns. To get all columns, use SHOW INDEXES YIELD * WHERE ….

385

Result

+---
--------------------+
| id | name | type | entityType | labelsOrTypes |
properties | ownedIndexId |
+---
--------------------+
| 7 | "constraint_f076a74d" | "RELATIONSHIP_PROPERTY_EXISTENCE" | "RELATIONSHIP" | ["KNOWS"] |
["since"] | <null> |
+---
--------------------+
1 row

6.4.7. Deprecated syntax Deprecated

Drop a unique constraint

By using DROP CONSTRAINT, you remove a constraint from the database.

Query

DROP CONSTRAINT ON (book:Book) ASSERT book.isbn IS UNIQUE

Result

+-------------------+
| No data returned. |
+-------------------+
Unique constraints removed: 1

Drop a node property existence constraint

By using DROP CONSTRAINT, you remove a constraint from the database.

Query

DROP CONSTRAINT ON (book:Book) ASSERT exists(book.isbn)

Result

+-------------------+
| No data returned. |
+-------------------+
Property existence constraints removed: 1

Drop a relationship property existence constraint

To remove a constraint from the database, use DROP CONSTRAINT.

Query

DROP CONSTRAINT ON ()-[like:LIKED]-() ASSERT exists(like.day)

386

Result

+-------------------+
| No data returned. |
+-------------------+
Property existence constraints removed: 1

Drop a node key constraint

Use DROP CONSTRAINT to remove a node key constraint from the database.

Query

DROP CONSTRAINT ON (n:Person) ASSERT (n.firstname, n.surname) IS NODE KEY

Result

+-------------------+
| No data returned. |
+-------------------+
Node key constraints removed: 1

387

Chapter 7. Database management
Neo4j supports the management of multiple databases within the same DBMS. The metadata for these
databases, including the associated security model, is maintained in a special database called the system
database. All multi-database administrative commands must be run against the system database. These
administrative commands are automatically routed to the system database when connected to the DBMS
over Bolt.

The syntax of the database management commands is as follows:

Table 447. Database management command syntax

Command Syntax

Show Database
SHOW { DATABASE name | DATABASES | DEFAULT DATABASE | HOME DATABASE }
[WHERE expression]

SHOW { DATABASE name | DATABASES | DEFAULT DATABASE | HOME DATABASE }
YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]
[WHERE expression]
[RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Create Database
CREATE DATABASE name [IF NOT EXISTS]
[OPTIONS "{" option: value[, ...] "}"]
[WAIT [n [SEC[OND[S]]]]|NOWAIT]

CREATE OR REPLACE DATABASE name [WAIT [n [SEC[OND[S]]]]|NOWAIT]

Stop Database
STOP DATABASE name [WAIT [n [SEC[OND[S]]]]|NOWAIT]

Start Database
START DATABASE name [WAIT [n [SEC[OND[S]]]]|NOWAIT]

Drop Database
DROP DATABASE name [IF EXISTS] [{DUMP|DESTROY} [DATA]] [WAIT [n [SEC[OND[S]]]]|NOWAIT]

7.1. Listing databases
There are three different commands for listing databases. Listing all databases, listing a particular
database or listing the default database.

All available databases can be seen using the command SHOW DATABASES.

Query

SHOW DATABASES

388

Table 448. Result

name address role requestedStat
us

currentStatus error default home

"movies" "localhost:7
687"

"standalone" "online" "online" "" false false

"neo4j" "localhost:7
687"

"standalone" "online" "online" "" true true

"northwind-
graph"

"localhost:7
687"

"standalone" "online" "online" "" false false

"system" "localhost:7
687"

"standalone" "online" "online" "" false false

Rows: 4

Note that the results of this command are filtered according to the ACCESS privileges the
user has. However, a user with CREATE/DROP DATABASE or DATABASE MANAGEMENT privileges
can see all databases regardless of their ACCESS privileges. If a user has not been granted
ACCESS privilege to any databases, the command can still be executed but will only return
the system database, which is always visible.

The number of databases can be seen using a count() aggregation with YIELD and RETURN.

Query

SHOW DATABASES YIELD * RETURN count(*) as count

Table 449. Result

count

4

Rows: 1

A particular database can be seen using the command SHOW DATABASE name.

Query

SHOW DATABASE system

Table 450. Result

name address role requestedStat
us

currentStatus error default home

"system" "localhost:7
687"

"standalone" "online" "online" "" false false

Rows: 1

The default database can be seen using the command SHOW DEFAULT DATABASE.

389

Query

SHOW DEFAULT DATABASE

Table 451. Result

name address role requestedStatus currentStatus error

"neo4j" "localhost:7687" "standalone" "online" "online" ""

Rows: 1

The home database for the current user can be seen using the command SHOW HOME DATABASE.

Query

SHOW HOME DATABASE

Table 452. Result

name address role requestedStatus currentStatus error

"neo4j" "localhost:7687" "standalone" "online" "online" ""

Rows: 1

It is also possible to filter and sort the results by using YIELD, ORDER BY and WHERE.

Query

SHOW DATABASES YIELD name, currentStatus, requestedStatus ORDER BY currentStatus WHERE name CONTAINS 'e'

In this example:

• The number of columns returned has been reduced with the YIELD clause.

• The order of the returned columns has been changed.

• The results have been filtered to only show database names containing 'e'.

• The results are ordered by the 'currentStatus' column using ORDER BY.

It is also possible to use SKIP and LIMIT to paginate the results.

Table 453. Result

name currentStatus requestedStatus

"neo4j" "online" "online"

"system" "online" "online"

"movies" "online" "online"

Rows: 3

390

Note that for failed databases, the currentStatus and requestedStatus are different.
This often implies an error, but does not always. For example, a database may take a
while to transition from offline to online due to performing recovery. Or, during normal
operation a database’s currentStatus may be transiently different from its
requestedStatus due to a necessary automatic process, such as one Neo4j instance
copying store files from another. The possible statuses are initial, online, offline,
store copying and unknown.

7.2. Creating databases Enterprise edition
Databases can be created using CREATE DATABASE.

Query

CREATE DATABASE customers

0 rows, System updates: 1

Database names are subject to the standard Cypher restrictions on valid identifiers. The
following naming rules apply:

• Database name length must be between 3 and 63 characters.

• The first character must be an ASCII alphabetic character.

• Subsequent characters can be ASCII alphabetic (mydatabase), numeric characters
(mydatabase2), dots (main.db), and dashes (enclosed within backticks, e.g., CREATE
DATABASE `main-db`).

• Names cannot end with dots or dashes.

• Names that begin with an underscore or with the prefix system are reserved for
internal use.

When a database has been created, it will show up in the listing provided by the command SHOW
DATABASES.

Query

SHOW DATABASES

Table 454. Result

name address role requestedStat
us

currentStatus error default home

"customers" "localhost:7
687"

"standalone" "online" "online" "" false false

"movies" "localhost:7
687"

"standalone" "online" "online" "" false false

"neo4j" "localhost:7
687"

"standalone" "online" "online" "" true true

391

name address role requestedStat
us

currentStatus error default home

"northwind-
graph"

"localhost:7
687"

"standalone" "online" "online" "" false false

"system" "localhost:7
687"

"standalone" "online" "online" "" false false

Rows: 5

7.2.1. Handling Existing Databases Enterprise edition

This command is optionally idempotent, with the default behavior to throw an exception if the database
already exists. Appending IF NOT EXISTS to the command will ensure that no exception is thrown and
nothing happens should the database already exist. Adding OR REPLACE to the command will result in any
existing database being deleted and a new one created.

Query

CREATE DATABASE customers IF NOT EXISTS

Query

CREATE OR REPLACE DATABASE customers

This is equivalent to running DROP DATABASE customers IF EXISTS followed by CREATE DATABASE
customers.

 The IF NOT EXISTS and OR REPLACE parts of this command cannot be used together.

7.2.2. Options Enterprise edition

The create database command can have a map of options, e.g. OPTIONS { key : 'value'}

Key Value Description

existingData use Controls how the system handles
existing data on disk when creating the
database. Currently this is only
supported with
existingDataSeedInstance and must be
set to use which indicates the existing
data files should be used for the new
database.

existingDataSeedInstance instance ID of the cluster node Defines which instance is used for
seeding the data of the created
database. The instance id can be taken
from the id column of the
dbms.cluster.overview() procedure.
Can only be used in clusters.

392

The existingData and existingDataSeedInstance options cannot be combined with the
OR REPLACE part of this command.

7.3. Stopping databases Enterprise edition
Databases can be stopped using the command STOP DATABASE.

Query

STOP DATABASE customers

0 rows, System updates: 1

The status of the stopped database can be seen using the command SHOW DATABASE name.

Query

SHOW DATABASE customers

Table 455. Result

name address role requestedStat
us

currentStatus error default home

"customers" "localhost:7
687"

"standalone" "offline" "offline" "" false false

Rows: 1

7.4. Starting databases Enterprise edition
Databases can be started using the command START DATABASE.

Query

START DATABASE customers

0 rows, System updates: 1

The status of the started database can be seen using the command SHOW DATABASE name.

Query

SHOW DATABASE customers

Table 456. Result

name address role requestedStat
us

currentStatus error default home

"customers" "localhost:7
687"

"standalone" "online" "online" "" false false

393

name address role requestedStat
us

currentStatus error default home

Rows: 1

7.5. Deleting databases Enterprise edition
Databases can be deleted using the command DROP DATABASE.

Query

DROP DATABASE customers

0 rows, System updates: 1

When a database has been deleted, it will no longer show up in the listing provided by the command SHOW
DATABASES.

Query

SHOW DATABASES

Table 457. Result

name address role requestedStat
us

currentStatus error default home

"movies" "localhost:7
687"

"standalone" "online" "online" "" false false

"neo4j" "localhost:7
687"

"standalone" "online" "online" "" true true

"northwind-
graph"

"localhost:7
687"

"standalone" "online" "online" "" false false

"system" "localhost:7
687"

"standalone" "online" "online" "" false false

Rows: 4

This command is optionally idempotent, with the default behavior to throw an exception if the database
does not exists. Appending IF EXISTS to the command will ensure that no exception is thrown and
nothing happens should the database not exist.

Query

DROP DATABASE customers IF EXISTS

The DROP DATABASE command will remove a database entirely. However, you can request that a dump of
the store files is produced first, and stored in the path configured using the dbms.directories.dumps.root
setting (by default <neo4j-home>/data/dumps). This can be achieved by appending DUMP DATA to the
command (or DESTROY DATA to explicitly request the default behavior). These dumps are equivalent to those
produced by neo4j-admin dump and can be similarly restored using neo4j-admin load.

394

Query

DROP DATABASE customers DUMP DATA

The options IF EXISTS and DUMP DATA/ DESTROY DATA can also be combined. An example could look like
this:

Query

DROP DATABASE customers IF EXISTS DUMP DATA

7.6. Wait options Enterprise edition
Aside from SHOW DATABASES, all database management commands accept an optional WAIT/NOWAIT clause.
The WAIT/NOWAIT clause allows you to specify a time limit in which the command must complete and return.
The options are:

• WAIT n SECONDS - Return once completed or when the specified time limit of n seconds is up.

• WAIT - Return once completed or when the default time limit of 300 seconds is up.

• NOWAIT - Return immediately.

A command using a WAIT clause will automatically commit the current transaction when it executes
successfully, as the command needs to run immediately for it to be possible to WAIT for it to complete. Any
subsequent commands executed will therefore be performed in a new transaction. This is different to the
usual transactional behavior, and for this reason it is recommended that these commands be run in their
own transaction. The default behavior is NOWAIT, so if no clause is specified the transaction will behave
normally and the action is performed in the background post-commit.

Query

CREATE DATABASE slow WAIT 5 SECONDS

Table 458. Result

address state message success

"localhost:7687" "CaughtUp" "caught up" true

Rows: 1

The success column provides an aggregate status of whether or not the command is considered
successful and thus every row will have the same value. The intention of this column is to make it easy to
determine, for example in a script, whether or not the command completed successfully without timing
out.

A command with a WAIT clause may be interrupted whilst it is waiting to complete. In
this event the command will continue to execute in the background and will not be
aborted.

395

Chapter 8. Access control
Neo4j has a complex security model stored in the system graph, maintained in a special database called
the system database. All administrative commands need to be executing against the system database.
When connected to the DBMS over bolt, administrative commands are automatically routed to the system
database. For more information on how to manage multiple databases, refer to the section on
administering databases.

Neo4j 3.1 introduced the concept of role-based access control. It was possible to create users and assign
them to roles to control whether the users could read, write and administer the database. In Neo4j 4.0 this
model was enhanced significantly with the addition of privileges, which are the underlying access-control
rules by which the users rights are defined.

The original built-in roles still exist with almost the exact same access rights, but they are no-longer
statically defined (see Built-in roles). Instead they are defined in terms of their underlying privileges and
they can be modified by adding an removing these access rights.

In addition, any new roles created can by assigned any combination of privileges to create the specific
access control desired. A major additional capability is sub-graph access control whereby read-access to
the graph can be limited to specific combinations of label, relationship-type and property.

8.1. Syntax summaries
Almost all administration commands have variations in the commands. Parts of the command that are
optional or can have multiple values are most common. To show all versions of a command, a summary of
the syntax will be presented. These summaries will use some special characters to indicate such variations.

The special characters and their meaning are as follows:

Table 459. Special characters in syntax summaries

Character Meaning Example

| Or, used to indicate alternative parts of a
command. Needs to be part of a grouping.

If the syntax needs to specify either a name
or *, this can be indicated with * | name.

{ and } Used to group parts of the command,
common together with |.

To use the or in the syntax summary it
needs to be in a group, {* | name}.

[and] Used to indicate an optional part of the
command. It also groups alternatives
together, when there can be either of the
alternatives or nothing.

If a keyword in the syntax can either be in
singular or plural, we can indicate that the S
is optional with GRAPH[S].

… Repeated pattern, the command part
immediately before this is repeated.

A comma separated list of names would be
name[, …].

396

Character Meaning Example

" When a special character is part of the
syntax itself, we surround it with " to
indicate this.

To include { in the syntax use "{" { * |
name } "}", here we get either {*} or
{name}.

The special characters in the table above are the only ones that need to be escaped using " in the syntax
summaries.

An example that uses all special characters is granting the READ privilege:

GRANT READ
 "{" { * | property[, ...] } "}"
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

Some things to notice about this command is that it includes { and } in the syntax, and between them has
a grouping of either a list of properties or the character *. It also has multiple optional parts, including the
entity part of the command which is the grouping following the graph name.

In difference, there is no need to escape any characters in the node property existence constraint creation
command. This is because (and) are not special characters, and the [and] indicate that the constraint
name is optional, and are not part of the command.

CREATE CONSTRAINT [constraint_name] [IF NOT EXISTS]
ON (n:LabelName)
ASSERT n.propertyName IS NOT NULL

8.2. Managing users
Users can be created and managed using a set of Cypher administration commands executed against the
system database. When connected to the DBMS over bolt, administration commands are automatically
routed to the system database.

8.2.1. User management command syntax

Command SHOW CURRENT USER

Syntax
SHOW CURRENT USER
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

397

Description Lists the current user.

When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

For more information, see Listing current user.

Required
privilege

None

Command SHOW USERS

Syntax
SHOW USERS
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description List all users.

When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

For more information, see Listing users.

Required
privilege

GRANT SHOW USER

(see DBMS USER MANAGEMENT privileges)

Command SHOW USER PRIVILEGES

Syntax
SHOW USER[S] [name[, ...]] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description List the privileges granted to the specified users or the current user if no user is specified.

When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

For more information, see Listing privileges.

Required
privilege

GRANT SHOW PRIVILEGE

(see DBMS PRIVILEGE MANAGEMENT privileges)

GRANT SHOW USER

(see DBMS USER MANAGEMENT privileges)

Command CREATE USER

398

Syntax
CREATE USER name [IF NOT EXISTS]
 SET [PLAINTEXT | ENCRYPTED] PASSWORD 'password'
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]
 [SET HOME DATABASE name]

Description Create a new user.

For more information, see Creating users.

Required
privilege

GRANT CREATE USER

(see DBMS USER MANAGEMENT privileges)

Command CREATE OR REPLACE USER

Syntax
CREATE OR REPLACE USER name
 SET [PLAINTEXT | ENCRYPTED] PASSWORD 'password'
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]
 [SET HOME DATABASE name]

Description Create a new user, or if a user with the same name exists, replace it.

For more information, see Creating users.

Required
privilege

GRANT CREATE USER and GRANT DROP USER

(see DBMS USER MANAGEMENT privileges)

Command RENAME USER

Syntax
RENAME USER name [IF EXISTS] TO otherName

Description Change the name of a user.

For more information, see Renaming users.

Required
privilege

GRANT RENAME USER

(see DBMS USER MANAGEMENT privileges)

Command ALTER USER

399

Syntax
ALTER USER name [IF EXISTS]
 [SET [PLAINTEXT | ENCRYPTED] PASSWORD 'password']
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]
 [SET HOME DATABASE name]
 [REMOVE HOME DATABASE]

Description Modify the settings for an existing user. At least one SET or REMOVE clause is required. SET
and REMOVE clauses cannot be combined in the same command.

For more information, see Modifying users.

Required
privilege

GRANT SET PASSWORD, GRANT SET USER STATUS, and/or GRANT SET USER HOME DATABASE

(see DBMS USER MANAGEMENT privileges)

Command ALTER CURRENT USER SET PASSWORD

Syntax
ALTER CURRENT USER SET PASSWORD FROM 'oldPassword' TO 'newPassword'

Description Change the current user’s password.

For more information, see Changing the current user’s password.

Required
privilege

None

Command DROP USER

Syntax
DROP USER name [IF EXISTS]

Description Remove an existing user.

For more information, see Delete users.

Required
privilege

GRANT DROP USER

(see DBMS USER MANAGEMENT privileges)

The SHOW USER[S] PRIVILEGES command is only available in Neo4j Enterprise Edition.
Enterprise edition

8.2.2. Listing current user

The currently logged-in user can be seen using SHOW CURRENT USER which will produce a table with the

400

following columns:

Column Description Community
Edition

Enterprise
Edition

user User name

roles Roles granted to the user.

passwordChangeRequir
ed

If true, the user must change their password at the next
login.

suspended If true, the user is currently suspended (cannot log in).

home The home database configured for the user, or null if no
home database has been configured. If this database is
unavailable, and the user does not specify a database to use
they will not be able to log in.

SHOW CURRENT USER

Table 460. Result

user roles passwordChangeRequired suspended home

"jake" ["PUBLIC"] false false <null>

Rows: 1

This command is only supported for a logged-in user and will return an empty result if
authorization has been disabled.

8.2.3. Listing users

Available users can be seen using SHOW USERS which will produce a table of users with the following
columns:

Column Description Community
Edition

Enterprise
Edition

user User name

roles Roles granted to the user.

passwordChangeRequir
ed

If true, the user must change their password at the next
login.

401

Column Description Community
Edition

Enterprise
Edition

suspended If true, the user is currently suspended (cannot log in).

home The home database configured for the user, or null if no
home database has been configured. If this database is
unavailable, and the user does not specify a database to use
they will not be able to log in.

SHOW USERS

Table 461. Result

user roles passwordChangeRequired suspended home

"neo4j" ["admin","PUBLIC"] true false <null>

Rows: 1

When first starting a Neo4j DBMS, there is always a single default user neo4j with administrative
privileges. It is possible to set the initial password using neo4j-admin dbms set-initial-password
<password>, otherwise it is necessary to change the password after the first login.

Example 6. Show user

This example show how:

• Reorder the columns using a YIELD clause.

• Filter the results using a WHERE clause.

SHOW USERS YIELD user, suspended, passwordChangeRequired, roles, home
WHERE user = 'jake'

Example 7. Show user

It is possible to add a RETURN clause to further manipulate the results after filtering. In this example,
the RETURN clause is used to filter out the roles column and rename the user column to adminUser.

SHOW USERS YIELD roles, user
WHERE 'admin' IN roles
RETURN user AS adminUser

 The SHOW USER name PRIVILEGES command is described in Listing privileges.

402

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#set_initial_password
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#set_initial_password

8.2.4. Creating users

Users can be created using CREATE USER.

CREATE USER name [IF NOT EXISTS]
 SET [PLAINTEXT | ENCRYPTED] PASSWORD 'password'
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]
 [SET HOME DATABASE name]

Users can be created or replaced using CREATE OR REPLACE USER.

CREATE OR REPLACE USER name
 SET [PLAINTEXT | ENCRYPTED] PASSWORD 'password'
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]
 [SET HOME DATABASE name]

• For SET PASSWORD:

◦ The password can either be a string value or a string parameter.

◦ All passwords are encrypted (hashed) when stored in the Neo4j system database. PLAINTEXT and
ENCRYPTED just refer to the format of the password in the Cypher command, i.e., whether Neo4j
needs to hash it or it has already been hashed. Therefore, it is never possible to get the plaintext of
a password back out of the database. A password can be set in either fashion at any time.

◦ The optional PLAINTEXT in SET PLAINTEXT PASSWORD has the same behavior as SET PASSWORD.

◦ The optional ENCRYPTED is used to recreate an existing user when the plaintext password is
unknown, but the encrypted password is available in the
data/scripts/databasename/restore_metadata.cypher file of a database backup. See Operations
Manual → Restore a database backup → Example.
With ENCRYPTED, the password string is expected to be in the format of <encryption-
version>,<hash>,<salt>, where, for example:

▪ 0 is the first version and refers to the SHA-256 cryptographic hash function with iterations 1.

▪ 1 is the second version and refers to the SHA-256 cryptographic hash function with iterations
1024.

• If the optional SET PASSWORD CHANGE [NOT] REQUIRED is omitted, the default is CHANGE REQUIRED. The
SET PASSWORD part is only optional if it directly follows the SET PASSWORD clause.

• The default for SET STATUS is ACTIVE.

• SET HOME DATABASE can be used to configure a home database for a user. If no home database is set,
the DBMS default database is used as the home database for the user.

• The SET PASSWORD CHANGE [NOT] REQUIRED, SET STATUS, and SET HOME DATABASE clauses can be applied
in any order.

403

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#restore-backup-example

User names are case sensitive. The created user will appear on the list provided by SHOW
USERS.

• In Neo4j Community Edition there are no roles, but all users have implied
administrator privileges.

• In Neo4j Enterprise Edition all users are automatically assigned the PUBLIC role,
giving them a base set of privileges.

Example 8. Create user

For example, you can create the user jake in a suspended state, with the home database anotherDb,
and the requirement to change the password, using the command:

CREATE USER jake
SET PASSWORD 'abc' CHANGE REQUIRED
SET STATUS SUSPENDED
SET HOME DATABASE anotherDb

Example 9. Create user

Or, you can recreate the user jake in an active state, with an encrypted password (taken from the
data/scripts/databasename/restore_metadata.cypher of a database backup), and the requirement not
to change the password, by running:

CREATE USER jake
SET ENCRYPTED PASSWORD
'1,6d57a5e0b3317055454e455f96c98c750c77fb371f3f0634a1b8ff2a55c5b825,190ae47c661e0668a0c8be8a21ff78a4a
34cdf918cae3c407e907b73932bd16c' CHANGE NOT REQUIRED
SET STATUS ACTIVE

The SET STATUS {ACTIVE | SUSPENDED} and SET HOME DATABASE parts of the commands
are only available in Neo4j Enterprise Edition. Enterprise edition

The CREATE USER command is optionally idempotent, with the default behavior to throw an exception if the
user already exists. Appending IF NOT EXISTS to the CREATE USER command will ensure that no exception
is thrown and nothing happens should the user already exist.

Example 10. Create user if not exists

CREATE USER jake IF NOT EXISTS
SET PLAINTEXT PASSWORD 'xyz'

The CREATE OR REPLACE USER command will result in any existing user being deleted and a new one
created.

404

Example 11. Create or replace user

CREATE OR REPLACE USER jake
SET PLAINTEXT PASSWORD 'xyz'

This is equivalent to running DROP USER jake IF EXISTS followed by CREATE USER jake SET PASSWORD
'xyz'.

 The CREATE OR REPLACE USER command does not allow you to use the IF NOT EXISTS.

8.2.5. Renaming users

Users can be renamed using the RENAME USER command.

RENAME USER jake TO bob

SHOW USERS

Table 462. Result

user roles passwordChangeRequired suspended home

"bob" ["PUBLIC"] true false <null>

"neo4j" ["admin","PUBLIC"] true false <null>

Rows: 2

The RENAME USER command is only available when using native authentication and
authorization.

8.2.6. Modifying users

Users can be modified using ALTER USER.

ALTER USER name [IF EXISTS]
 [SET [PLAINTEXT | ENCRYPTED] PASSWORD 'password']
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]
 [SET HOME DATABASE name]
 [REMOVE HOME DATABASE name]

• At least one SET or REMOVE clause is required for the command.

• SET and REMOVE clauses cannot be combined in the same command.

• The SET PASSWORD CHANGE [NOT] REQUIRED, SET STATUS, and SET HOME DATABASE clauses can be applied
in any order. The SET PASSWORD clause must come first if used.

• For SET PASSWORD:

405

◦ The password can either be a string value or a string parameter.

◦ All passwords are encrypted (hashed) when stored in the Neo4j system database. PLAINTEXT and
ENCRYPTED just refer to the format of the password in the Cypher command, i.e., whether Neo4j
needs to hash it or it has already been hashed. Therefore, it is never possible to get the plaintext of
a password back out of the database. A password can be set in either fashion at any time.

◦ The optional PLAINTEXT in SET PLAINTEXT PASSWORD has the same behavior as SET PASSWORD.

◦ The optional ENCRYPTED is used to update an existing user’s password when the plaintext
password is unknown, but the encrypted password is available in the
data/scripts/databasename/restore_metadata.cypher file of a database backup. See Operations
Manual → Restore a database backup → Example.
With ENCRYPTED, the password string is expected to be in the format of <encryption-
version>,<hash>,<salt>, where, for example:

▪ 0 is the first version and refers to the SHA-256 cryptographic hash function with iterations 1.

▪ 1 is the second version and refers to the SHA-256 cryptographic hash function with iterations
1024.

• If the optional SET PASSWORD CHANGE [NOT] REQUIRED is omitted, the default is CHANGE REQUIRED. The
SET PASSWORD part is only optional if it directly follows the SET PASSWORD clause.

• For SET PASSWORD CHANGE [NOT] REQUIRED, the SET PASSWORD is only optional if it directly follows the
SET PASSWORD clause.

• SET HOME DATABASE can be used to configure a home database for a user. If no home database is set,
the DBMS default database is used as the home database for the user.

• REMOVE HOME DATABASE is used to unset the home database for a user. This results in the DBMS default
database being used as the home database for the user.

For example, you can modify the user bob with a new password and active status, and remove the
requirement to change his password:

ALTER USER bob SET PASSWORD 'abc123' CHANGE NOT REQUIRED SET STATUS ACTIVE

Or, you may decide to assign the user bob a different home database:

ALTER USER bob SET HOME DATABASE anotherDb

Or, remove the home database from the user bob:

ALTER USER bob REMOVE HOME DATABASE

When altering a user it is only necessary to specify the changes required. For example,
leaving out the CHANGE [NOT] REQUIRED part of the query will leave that unchanged.

The SET STATUS {ACTIVE | SUSPENDED}, SET HOME DATABASE, and REMOVE HOME DATABASE
parts of the command are only available in Neo4j Enterprise Edition. Enterprise edition

406

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#restore-backup-example
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#restore-backup-example

The changes to the user will appear on the list provided by SHOW USERS:

SHOW USERS

Table 463. Result

user roles passwordChangeRequired suspended home

"bob" ["PUBLIC"] false false <null>

"neo4j" ["admin","PUBLIC"] true false <null>

Rows: 2

The default behavior of this command is to throw an exception if the user does not exist. Appending an
optional parameter IF EXISTS to the command makes it idempotent and ensures that no exception is
thrown and nothing happens should the user not exist.

ALTER USER nonExistingUser IF EXISTS SET PASSWORD 'abc123'

8.2.7. Changing the current user’s password

Users can change their password using ALTER CURRENT USER SET PASSWORD. The old password is required
in addition to the new one, and either or both can be a string value or a string parameter. When a user
executes this command it will change their password as well as set the CHANGE NOT REQUIRED flag.

ALTER CURRENT USER SET PASSWORD FROM 'abc123' TO '123xyz'

 This command works only for a logged-in user and cannot be run with auth disabled.

8.2.8. Delete users

Users can be deleted using DROP USER.

DROP USER bob

Deleting a user will not automatically terminate associated connections, sessions, transactions, or queries.

When a user has been deleted, it will no longer appear on the list provided by SHOW USERS:

SHOW USERS

Table 464. Result

user roles passwordChangeRequired suspended home

"neo4j" ["admin","PUBLIC"] true false <null>

407

user roles passwordChangeRequired suspended home

Rows: 1

8.3. Managing roles
Roles can be created and managed using a set of Cypher administration commands executed against the
system database.

When connected to the DBMS over bolt, administration commands are automatically routed to the system
database.

8.3.1. Role management command syntax

Command SHOW ROLES

Syntax
SHOW [ALL|POPULATED] ROLES
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description List roles.

When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

For more information, see Listing roles.

Required
privilege

GRANT SHOW ROLE

(see DBMS ROLE MANAGEMENT privileges)

Command SHOW ROLES WITH USERS

Syntax
SHOW [ALL|POPULATED] ROLES WITH USERS
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description List roles and users assigned to them.

When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

For more information, see Listing roles.

408

Required
privilege

GRANT SHOW ROLE

(see DBMS ROLE MANAGEMENT privileges)

GRANT SHOW USER

(see DBMS USER MANAGEMENT privileges)

Command SHOW ROLE PRIVILEGES

Syntax
SHOW ROLE[S] name[, ...] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

Description List the privileges granted to the specified roles.

When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

For more information, see Listing privileges.

Required
privilege

GRANT SHOW PRIVILEGE

(see DBMS PRIVILEGE MANAGEMENT privileges)

Command CREATE ROLE

Syntax
CREATE ROLE name [IF NOT EXISTS] [AS COPY OF otherName]

Description Create a new role.

For more information, see Creating roles.

Required
privilege

GRANT CREATE ROLE

(see DBMS ROLE MANAGEMENT privileges)

Command CREATE OR REPLACE ROLE

Syntax
CREATE OR REPLACE ROLE name [AS COPY OF otherName]

Description Create a new role, or if a role with the same name exists, replace it.

For more information, see Creating roles.

409

Required
privilege

GRANT CREATE ROLE and GRANT DROP ROLE

(see DBMS ROLE MANAGEMENT privileges)

Command RENAME ROLE

Syntax
RENAME ROLE name [IF EXISTS] TO otherName

Description Change the name of a role.

For more information, see Renaming roles.

Required
privilege

GRANT RENAME ROLE

(see DBMS ROLE MANAGEMENT privileges)

Command DROP ROLE

Syntax
DROP ROLE name [IF EXISTS]

Description Remove a role.

For more information, see Deleting roles.

Required
privilege

GRANT DROP ROLE

(see DBMS ROLE MANAGEMENT privileges)

Command GRANT ROLE TO

Syntax
GRANT ROLE[S] name[, ...] TO user[, ...]

Description Assign roles to users.

For more information, see Assigning roles to users.

Required
privilege

GRANT ASSIGN ROLE

(see DBMS ROLE MANAGEMENT privileges)

Command REVOKE ROLE

410

Syntax
REVOKE ROLE[S] name[, ...] FROM user[, ...]

Description Remove roles from users.

For more information, see Revoking roles from users.

Required
privilege

GRANT REMOVE ROLE

(see DBMS ROLE MANAGEMENT privileges)

8.3.2. Listing roles

Available roles can be seen using SHOW ROLES:

SHOW ROLES

This is the same command as SHOW ALL ROLES.

When first starting a Neo4j DBMS there are a number of built-in roles:

• PUBLIC - a role that all users have granted, by default it gives access to the home database and execute
privileges for procedures and functions.

• reader - can perform traverse and read operations on all databases except system.

• editor - can perform traverse, read, and write operations on all databases except system, but cannot
make new labels or relationship types.

• publisher - can do the same as editor, but also create new labels and relationship types.

• architect - can do the same as publisher as well as create and manage indexes and constraints.

• admin - can do the same as all the above, as well as manage databases, users, roles, and privileges.

Table 465. Result

role

"PUBLIC"

"admin"

"architect"

"editor"

"publisher"

"reader"

Rows: 6

More information about the built-in roles can be found in Operations Manual → Built-in roles

411

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#built_in_roles
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#built_in_roles
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#built_in_roles

There are multiple versions of this command, the default being SHOW ALL ROLES. To only show roles that
are assigned to users, the command is SHOW POPULATED ROLES. To see which users are assigned to roles
WITH USERS can be appended to the commands. This will give one result row for each user, so if a role is
assigned to two users then it will show up twice in the result.

SHOW POPULATED ROLES WITH USERS

The table of results will show information about the role and what database it belongs to:

Table 466. Result

role member

"PUBLIC" "neo4j"

"PUBLIC" "bob"

"PUBLIC" "user1"

"PUBLIC" "user2"

"PUBLIC" "user3"

"admin" "neo4j"

Rows: 6

It is also possible to filter and sort the results by using YIELD, ORDER BY and WHERE:

SHOW ROLES YIELD role ORDER BY role WHERE role ENDS WITH 'r'

In this example:

• The results have been filtered to only return the roles ending in 'r'.

• The results are ordered by the 'action' column using ORDER BY.

It is also possible to use SKIP and LIMIT to paginate the results.

Table 467. Result

role

"editor"

"publisher"

"reader"

Rows: 3

 The SHOW ROLE name PRIVILEGES command is found in Listing privileges.

412

8.3.3. Creating roles

Roles can be created using CREATE ROLE.

CREATE ROLE name [IF NOT EXISTS] [AS COPY OF otherName]

Roles can be created or replaced by using CREATE OR REPLACE ROLE.

CREATE OR REPLACE ROLE name [AS COPY OF otherName]

The following naming rules apply:

• The first character must be an ASCII alphabetic character.

• Subsequent characters can be ASCII alphabetic, numeric characters, and underscore.

• Role names are case sensitive.

A role can be copied, keeping its privileges, using CREATE ROLE name AS COPY OF otherName.

Example 12. Copy a role

CREATE ROLE mysecondrole AS COPY OF myrole

Created roles will appear on the list provided by SHOW ROLES.

Example 13. List roles

SHOW ROLES

Table 468. Result

role

"PUBLIC"

"admin"

"architect"

"editor"

"myrole"

"mysecondrole"

"publisher"

"reader"

Rows: 8

413

The CREATE ROLE command is optionally idempotent, with the default behavior to throw an exception if the
role already exists. Appending IF NOT EXISTS to the CREATE ROLE command will ensure that no exception
is thrown and nothing happens should the role already exist.

Example 14. Create role if not exists

CREATE ROLE myrole IF NOT EXISTS

The CREATE OR REPLACE ROLE command will result in any existing role being deleted and a new one
created.

Example 15. Create or replace role

CREATE OR REPLACE ROLE myrole

This is equivalent to running DROP ROLE myrole IF EXISTS followed by CREATE ROLE myrole.

• The CREATE OR REPLACE ROLE command does not allow you to use the IF NOT
EXISTS.

8.3.4. Renaming roles

Roles can be renamed using RENAME ROLE command:

RENAME ROLE mysecondrole TO mythirdrole

SHOW ROLES

Table 469. Result

role

"PUBLIC"

"admin"

"architect"

"editor"

"myrole"

"mythirdrole"

"publisher"

"reader"

Rows: 8

414

The RENAME ROLE command is only available when using native authentication and
authorization.

8.3.5. Assigning roles to users

Users can be given access rights by assigning them roles using GRANT ROLE:

GRANT ROLE myrole TO bob

The roles assigned to each user can be seen in the list provided by SHOW USERS:

SHOW USERS

Table 470. Result

user roles passwordChangeRequired suspended home

"bob" ["myrole","PUBLIC"] false false <null>

"neo4j" ["admin","PUBLIC"] true false <null>

"user1" ["PUBLIC"] true false <null>

"user2" ["PUBLIC"] true false <null>

"user3" ["PUBLIC"] true false <null>

Rows: 5

It is possible to assign multiple roles to multiple users in one command:

GRANT ROLES role1, role2 TO user1, user2, user3

SHOW USERS

Table 471. Result

user roles passwordChangeRequired suspended home

"bob" ["myrole","PUBLIC"] false false <null>

"neo4j" ["admin","PUBLIC"] true false <null>

"user1" ["role1","role2","PUBLIC"] true false <null>

"user2" ["role1","role2","PUBLIC"] true false <null>

"user3" ["role1","role2","PUBLIC"] true false <null>

Rows: 5

415

8.3.6. Revoking roles from users

Users can lose access rights by revoking their role using REVOKE ROLE:

REVOKE ROLE myrole FROM bob

The roles revoked from users can no longer be seen in the list provided by SHOW USERS:

SHOW USERS

Table 472. Result

user roles passwordChangeRequired suspended home

"bob" ["PUBLIC"] false false <null>

"neo4j" ["admin","PUBLIC"] true false <null>

"user1" ["role1","role2","PUBLIC"] true false <null>

"user2" ["role1","role2","PUBLIC"] true false <null>

"user3" ["role1","role2","PUBLIC"] true false <null>

Rows: 5

It is possible to revoke multiple roles from multiple users in one command:

REVOKE ROLES role1, role2 FROM user1, user2, user3

8.3.7. Deleting roles

Roles can be deleted using DROP ROLE command:

DROP ROLE mythirdrole

When a role has been deleted, it will no longer appear on the list provided by SHOW ROLES:

SHOW ROLES

Table 473. Result

role

"PUBLIC"

"admin"

"architect"

"editor"

"myrole"

"publisher"

416

role

"reader"

Rows: 8

This command is optionally idempotent, with the default behavior to throw an exception if the role does
not exists. Appending IF EXISTS to the command will ensure that no exception is thrown and nothing
happens should the role not exist:

DROP ROLE mythirdrole IF EXISTS

8.4. Managing privileges
Privileges control the access rights to graph elements using a combined allowlist/denylist mechanism. It is
possible to grant access, or deny access, or a combination of the two. The user will be able to access the
resource if they have a grant (whitelist) and do not have a deny (blacklist) relevant to that resource. All
other combinations of GRANT and DENY will result in the matching path being inaccessible. What this means
in practice depends on whether we are talking about a read privilege or a write privilege.

• If a entity is not accessible due to read privileges, the data will become invisible to attempts to read it.
It will appear to the user as if they have a smaller database (smaller graph).

• If an entity is not accessible due to write privileges, an error will occur on any attempt to write that
data.

In this document we will often use the terms 'allows' and 'enables' in seemingly identical
ways. However, there is a subtle difference. We will use 'enables' to refer to the
consequences of read privileges where a restriction will not cause an error, only a
reduction in the apparent graph size. We will use 'allows' to refer to the consequence of
write privileges where a restriction can result in an error.

If a user was not also provided with the database ACCESS privilege then access to the
entire database will be denied. Information about the database access privilege can be
found in The ACCESS privilege.

8.4.1. Graph privilege commands (GRANT, DENY and REVOKE) Enterprise
edition

Administrators can use Cypher commands to manage Neo4j graph administrative rights. The components
of the graph privilege commands are:

• the command:

◦ GRANT – gives privileges to roles.

◦ DENY – denies privileges to roles.

◦ REVOKE – removes granted or denied privilege from roles.

417

• graph-privilege

◦ Can be either a read privilege or write privilege.

• name

◦ The graph or graphs to associate the privilege with. Because in Neo4j 4.3 you can have only one
graph per database, this command uses the database name to refer to that graph.

If you delete a database and create a new one with the same name, the new one
will NOT have the privileges assigned to the deleted graph.

◦ It can be * which means all graphs. Graphs created after this command execution will also be
associated with these privileges.

◦ HOME GRAPH refers to the graph associated with the home database for that user. The default
database will be used as home database if a user does not have a home database configured. If the
user’s home database changes for any reason after privileges have been created then these
privileges will be associated with the graph attached to the new database. This can be quite
powerful as it allows permissions to be switched from one graph to another simply by changing a
user’s home database.

• entity

◦ The graph elements this privilege applies to:

▪ NODES label (nodes with the specified label(s)).

▪ RELATIONSHIPS type (relationships of the specific type(s)).

▪ ELEMENTS label (both nodes and relationships).

◦ The label or type can be * which means all labels or types.

◦ Multiple labels or types can be specified, comma-separated.

◦ Defaults to ELEMENTS * if omitted.

◦ Some of the commands for write privileges do not allow an entity part, see Write privileges for
details.

• role[, …]

◦ The role or roles to associate the privilege with, comma-separated.

Table 474. General graph privilege command syntax

Command Description

GRANT graph-privilege ON {HOME GRAPH | GRAPH[S] {* | name[, ...]}}
[entity] TO role[, ...]

Grant a privilege to one or
multiple roles.

DENY graph-privilege ON {HOME GRAPH | GRAPH[S] {* | name[, ...]}}
[entity] TO role[, ...]

Deny a privilege to one or multiple
roles.

418

Command Description

REVOKE GRANT graph-privilege ON {HOME GRAPH | GRAPH[S] {* | name[,
...]}} [entity] FROM role[, ...]

Revoke a granted privilege from
one or multiple roles.

REVOKE DENY graph-privilege ON {HOME GRAPH | GRAPH[S] {* | name[,
...]}} [entity] FROM role[, ...]

Revoke a denied privilege from
one or multiple roles.

REVOKE graph-privilege ON {HOME GRAPH | GRAPH[S] {* | name[, ...]}}
[entity] FROM role[, ...]

Revoke a granted or denied
privilege from one or multiple
roles.

DENY does NOT erase a granted privilege; they both exist. Use REVOKE if you want to
remove a privilege.

The general grant and deny syntax is illustrated in the following image:

Figure 1. GRANT and DENY Syntax

A more detailed syntax illustration would be the following image for graph privileges:

Figure 2. Syntax of GRANT and DENY Graph Privileges. The { and } are part of the syntax and not used
for grouping.

The following image shows the hierarchy between the different graph privileges:

419

Figure 3. Graph privileges hierarchy

8.4.2. Listing privileges Enterprise edition

Available privileges can be displayed using the different SHOW PRIVILEGES commands.

Table 475. Show privileges command syntax

Command Description

SHOW [ALL] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP
n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n]
[LIMIT n]]

List all privileges.

SHOW ROLE[S] name[, ...] PRIVILEGE[S] [AS [REVOKE] COMMAND[
S]]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP
n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n]
[LIMIT n]]

List privileges for a specific role.

420

Command Description

SHOW USER[S] [name[, ...]] PRIVILEGE[S] [AS [REVOKE] COMMAND
[S]]
 [YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP
n] [LIMIT n]]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n]
[LIMIT n]]

List privileges for a specific user, or the
current user.

Please note that it is
only possible for a user
to show their own
privileges. Therefore, if
a non-native auth
provider like LDAP is in
use, SHOW USER
PRIVILEGES will only
work in a limited
capacity.

Other users' privileges
cannot be listed when
using a non-native
auth provider.

When using the RETURN clause, the YIELD clause is mandatory and may not be omitted.

For an easy overview of the existing privileges, it is recommended to use the AS COMMANDS version of the
show command. This returns the privileges as the commands that are granted or denied.

Omitting the AS COMMANDS clause instead gives the result as multiple columns describing the privilege:

• access: whether the privilege is granted or denied.

• action: which type of privilege this is, for example traverse, read, index management, or role
management.

• resource: what type of scope this privilege applies to: the entire dbms, a database, a graph or sub-
graph access.

• graph: the specific database or graph this privilege applies to.

• segment: when applicable, the scope this privilege applies to: labels, relationship types, procedures,
functions, or transactions.

• role: the role the privilege is granted to.

Examples for listing all privileges Enterprise edition

Available privileges can be displayed using the different SHOW PRIVILEGES commands.

421

Command syntax

SHOW [ALL] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [WHERE expression]

SHOW [ALL] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

SHOW PRIVILEGES

Lists all privileges for all roles:

Table 476. Result

access action resource graph segment role

"GRANTED" "execute" "database" "*" "FUNCTION(*)" "PUBLIC"

"GRANTED" "execute" "database" "*" "PROCEDURE(*)" "PUBLIC"

"GRANTED" "access" "database" "DEFAULT" "database" "PUBLIC"

"GRANTED" "match" "all_properties" "*" "NODE(*)" "admin"

"GRANTED" "write" "graph" "*" "NODE(*)" "admin"

"GRANTED" "match" "all_properties" "*" "RELATIONSHIP(*)" "admin"

"GRANTED" "write" "graph" "*" "RELATIONSHIP(*)" "admin"

"GRANTED" "transaction_mana
gement"

"database" "*" "USER(*)" "admin"

"GRANTED" "access" "database" "*" "database" "admin"

"GRANTED" "constraint" "database" "*" "database" "admin"

"GRANTED" "dbms_actions" "database" "*" "database" "admin"

"GRANTED" "index" "database" "*" "database" "admin"

"GRANTED" "start_database" "database" "*" "database" "admin"

"GRANTED" "stop_database" "database" "*" "database" "admin"

"GRANTED" "token" "database" "*" "database" "admin"

"GRANTED" "match" "all_properties" "*" "NODE(*)" "architect"

"GRANTED" "write" "graph" "*" "NODE(*)" "architect"

"GRANTED" "match" "all_properties" "*" "RELATIONSHIP(*)" "architect"

"GRANTED" "write" "graph" "*" "RELATIONSHIP(*)" "architect"

"GRANTED" "access" "database" "*" "database" "architect"

"GRANTED" "constraint" "database" "*" "database" "architect"

"GRANTED" "index" "database" "*" "database" "architect"

"GRANTED" "token" "database" "*" "database" "architect"

"GRANTED" "match" "all_properties" "*" "NODE(*)" "editor"

"GRANTED" "write" "graph" "*" "NODE(*)" "editor"

"GRANTED" "match" "all_properties" "*" "RELATIONSHIP(*)" "editor"

422

access action resource graph segment role

"GRANTED" "write" "graph" "*" "RELATIONSHIP(*)" "editor"

"GRANTED" "access" "database" "*" "database" "editor"

"DENIED" "access" "database" "neo4j" "database" "noAccessUsers"

"GRANTED" "match" "all_properties" "*" "NODE(*)" "publisher"

"GRANTED" "write" "graph" "*" "NODE(*)" "publisher"

"GRANTED" "match" "all_properties" "*" "RELATIONSHIP(*)" "publisher"

"GRANTED" "write" "graph" "*" "RELATIONSHIP(*)" "publisher"

"GRANTED" "access" "database" "*" "database" "publisher"

"GRANTED" "token" "database" "*" "database" "publisher"

"GRANTED" "match" "all_properties" "*" "NODE(*)" "reader"

"GRANTED" "match" "all_properties" "*" "RELATIONSHIP(*)" "reader"

"GRANTED" "access" "database" "*" "database" "reader"

"GRANTED" "access" "database" "neo4j" "database" "regularUsers"

Rows: 39

 The token action corresponds to the NAME MANAGEMENT privilege.

It is also possible to filter and sort the results by using YIELD, ORDER BY and WHERE:

SHOW PRIVILEGES YIELD role, access, action, segment ORDER BY action WHERE role = 'admin'

In this example:

• The number of columns returned has been reduced with the YIELD clause.

• The order of the returned columns has been changed.

• The results have been filtered to only return the admin role using a WHERE clause.

• The results are ordered by the action column using ORDER BY.

SKIP and LIMIT can also be used to paginate the results.

Table 477. Result

role access action segment

"admin" "GRANTED" "access" "database"

"admin" "GRANTED" "constraint" "database"

"admin" "GRANTED" "dbms_actions" "database"

"admin" "GRANTED" "index" "database"

"admin" "GRANTED" "match" "NODE(*)"

"admin" "GRANTED" "match" "RELATIONSHIP(*)"

423

role access action segment

"admin" "GRANTED" "start_database" "database"

"admin" "GRANTED" "stop_database" "database"

"admin" "GRANTED" "token" "database"

"admin" "GRANTED" "transaction_management" "USER(*)"

"admin" "GRANTED" "write" "NODE(*)"

"admin" "GRANTED" "write" "RELATIONSHIP(*)"

Rows: 12

 The token action corresponds to the NAME MANAGEMENT privilege.

WHERE can be used without YIELD:

SHOW PRIVILEGES WHERE graph <> '*'

In this example, the WHERE clause is used to filter privileges down to those that target specific graphs only.

Table 478. Result

access action graph resource role segment

"GRANTED" "access" "DEFAULT" "database" "PUBLIC" "database"

"DENIED" "access" "neo4j" "database" "noAccessUsers" "database"

"GRANTED" "access" "neo4j" "database" "regularUsers" "database"

Rows: 3

Aggregations in the RETURN clause can be used to group privileges. In this case, by user and granted /
denied:

SHOW PRIVILEGES YIELD * RETURN role, access, collect([graph, resource, segment, action]) as privileges

Table 479. Result

role access privileges

"PUBLIC" "GRANTED" [["*","database","FUNCTION(*)","execute"],["*","database","PROCED
URE(*)","execute"],["DEFAULT","database","database","access"]]

"admin" "GRANTED" [["*","all_properties","NODE(*)","match"],["*","graph","NODE(*)",
"write"],["*","all_properties","RELATIONSHIP(*)","match"],["*","g
raph","RELATIONSHIP(*)","write"],["*","database","USER(*)","trans
action_management"],["*","database","database","access"],["*","da
tabase","database","constraint"],["*","database","database","dbms
_actions"],["*","database","database","index"],["*","database","d
atabase","start_database"],["*","database","database","stop_datab
ase"],["*","database","database","token"]]

424

role access privileges

"architect" "GRANTED" [["*","all_properties","NODE(*)","match"],["*","graph","NODE(*)",
"write"],["*","all_properties","RELATIONSHIP(*)","match"],["*","g
raph","RELATIONSHIP(*)","write"],["*","database","database","acce
ss"],["*","database","database","constraint"],["*","database","da
tabase","index"],["*","database","database","token"]]

"editor" "GRANTED" [["*","all_properties","NODE(*)","match"],["*","graph","NODE(*)",
"write"],["*","all_properties","RELATIONSHIP(*)","match"],["*","g
raph","RELATIONSHIP(*)","write"],["*","database","database","acce
ss"]]

"noAccessUsers" "DENIED" [["neo4j","database","database","access"]]

"publisher" "GRANTED" [["*","all_properties","NODE(*)","match"],["*","graph","NODE(*)",
"write"],["*","all_properties","RELATIONSHIP(*)","match"],["*","g
raph","RELATIONSHIP(*)","write"],["*","database","database","acce
ss"],["*","database","database","token"]]

"reader" "GRANTED" [["*","all_properties","NODE(*)","match"],["*","all_properties","
RELATIONSHIP(*)","match"],["*","database","database","access"]]

"regularUsers" "GRANTED" [["neo4j","database","database","access"]]

Rows: 8

 The token action corresponds to the NAME MANAGEMENT privilege.

The RETURN clause can also be used to order and paginate the results, which is useful when combined with
YIELD and WHERE. In this example the query returns privileges for display five-per-page, and skips the first
five to display the second page.

SHOW PRIVILEGES YIELD * RETURN * ORDER BY role SKIP 5 LIMIT 5

Table 480. Result

access action graph resource role segment

"GRANTED" "match" "*" "all_properties" "admin" "RELATIONSHIP(*)"

"GRANTED" "write" "*" "graph" "admin" "RELATIONSHIP(*)"

"GRANTED" "transaction_manageme
nt"

"*" "database" "admin" "USER(*)"

"GRANTED" "access" "*" "database" "admin" "database"

"GRANTED" "constraint" "*" "database" "admin" "database"

Rows: 5

Available privileges can also be output as Cypher commands, by appending AS COMMAND[S] to the show
command:

SHOW PRIVILEGES AS COMMANDS

Table 481. Result

425

command

"DENY ACCESS ON DATABASE neo4j TO `noAccessUsers`"

"GRANT ACCESS ON DATABASE * TO `admin`"

"GRANT ACCESS ON DATABASE * TO `architect`"

"GRANT ACCESS ON DATABASE * TO `editor`"

"GRANT ACCESS ON DATABASE * TO `publisher`"

"GRANT ACCESS ON DATABASE * TO `reader`"

"GRANT ACCESS ON DATABASE neo4j TO `regularUsers`"

"GRANT ACCESS ON HOME DATABASE TO `PUBLIC`"

"GRANT ALL DBMS PRIVILEGES ON DBMS TO `admin`"

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `admin`"

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `architect`"

"GRANT EXECUTE FUNCTION * ON DBMS TO `PUBLIC`"

"GRANT EXECUTE PROCEDURE * ON DBMS TO `PUBLIC`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `admin`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `architect`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `admin`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `architect`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `editor`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `publisher`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `reader`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `admin`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `architect`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `editor`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `publisher`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `reader`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `admin`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `architect`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `publisher`"

"GRANT START ON DATABASE * TO `admin`"

"GRANT STOP ON DATABASE * TO `admin`"

"GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO `admin`"

"GRANT WRITE ON GRAPH * TO `admin`"

"GRANT WRITE ON GRAPH * TO `architect`"

"GRANT WRITE ON GRAPH * TO `editor`"

"GRANT WRITE ON GRAPH * TO `publisher`"

Rows: 35

426

Like other SHOW commands, the output can also be processed using YIELD / WHERE / RETURN:

SHOW PRIVILEGES AS COMMANDS WHERE command CONTAINS 'MANAGEMENT'

Table 482. Result

command

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `admin`"

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `architect`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `admin`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `architect`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `admin`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `architect`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `publisher`"

"GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO `admin`"

Rows: 8

It is also possible to get the privilege commands formatted for revoking instead of granting or denying the
privileges:

SHOW PRIVILEGES AS REVOKE COMMANDS

Table 483. Result

command

"REVOKE DENY ACCESS ON DATABASE neo4j FROM `noAccessUsers`"

"REVOKE GRANT ACCESS ON DATABASE * FROM `admin`"

"REVOKE GRANT ACCESS ON DATABASE * FROM `architect`"

"REVOKE GRANT ACCESS ON DATABASE * FROM `editor`"

"REVOKE GRANT ACCESS ON DATABASE * FROM `publisher`"

"REVOKE GRANT ACCESS ON DATABASE * FROM `reader`"

"REVOKE GRANT ACCESS ON DATABASE neo4j FROM `regularUsers`"

"REVOKE GRANT ACCESS ON HOME DATABASE FROM `PUBLIC`"

"REVOKE GRANT ALL DBMS PRIVILEGES ON DBMS FROM `admin`"

"REVOKE GRANT CONSTRAINT MANAGEMENT ON DATABASE * FROM `admin`"

"REVOKE GRANT CONSTRAINT MANAGEMENT ON DATABASE * FROM `architect`"

"REVOKE GRANT EXECUTE FUNCTION * ON DBMS FROM `PUBLIC`"

"REVOKE GRANT EXECUTE PROCEDURE * ON DBMS FROM `PUBLIC`"

"REVOKE GRANT INDEX MANAGEMENT ON DATABASE * FROM `admin`"

"REVOKE GRANT INDEX MANAGEMENT ON DATABASE * FROM `architect`"

"REVOKE GRANT MATCH {*} ON GRAPH * NODE * FROM `admin`"

427

command

"REVOKE GRANT MATCH {*} ON GRAPH * NODE * FROM `architect`"

"REVOKE GRANT MATCH {*} ON GRAPH * NODE * FROM `editor`"

"REVOKE GRANT MATCH {*} ON GRAPH * NODE * FROM `publisher`"

"REVOKE GRANT MATCH {*} ON GRAPH * NODE * FROM `reader`"

"REVOKE GRANT MATCH {*} ON GRAPH * RELATIONSHIP * FROM `admin`"

"REVOKE GRANT MATCH {*} ON GRAPH * RELATIONSHIP * FROM `architect`"

"REVOKE GRANT MATCH {*} ON GRAPH * RELATIONSHIP * FROM `editor`"

"REVOKE GRANT MATCH {*} ON GRAPH * RELATIONSHIP * FROM `publisher`"

"REVOKE GRANT MATCH {*} ON GRAPH * RELATIONSHIP * FROM `reader`"

"REVOKE GRANT NAME MANAGEMENT ON DATABASE * FROM `admin`"

"REVOKE GRANT NAME MANAGEMENT ON DATABASE * FROM `architect`"

"REVOKE GRANT NAME MANAGEMENT ON DATABASE * FROM `publisher`"

"REVOKE GRANT START ON DATABASE * FROM `admin`"

"REVOKE GRANT STOP ON DATABASE * FROM `admin`"

"REVOKE GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * FROM `admin`"

"REVOKE GRANT WRITE ON GRAPH * FROM `admin`"

"REVOKE GRANT WRITE ON GRAPH * FROM `architect`"

"REVOKE GRANT WRITE ON GRAPH * FROM `editor`"

"REVOKE GRANT WRITE ON GRAPH * FROM `publisher`"

Rows: 35

For more info about revoking privileges, please see The REVOKE command.

Examples for listing privileges for specific roles Enterprise edition

Available privileges for specific roles can be displayed using SHOW ROLE name PRIVILEGES.

SHOW ROLE[S] name[, ...] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [WHERE expression]

SHOW ROLE[S] name[, ...] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

SHOW ROLE regularUsers PRIVILEGES

Lists all privileges for role regularUsers.

Table 484. Result

428

access action graph resource role segment

"GRANTED" "access" "database" "neo4j" "database" "regularUsers"

Rows: 1

SHOW ROLES regularUsers, noAccessUsers PRIVILEGES

Lists all privileges for roles regularUsers and noAccessUsers.

Table 485. Result

access action graph resource role segment

"DENIED" "access" "database" "neo4j" "database" "noAccessUsers"

"GRANTED" "access" "database" "neo4j" "database" "regularUsers"

Rows: 2

Similar to the other show privilege commands, the available privileges for roles can also be output as
Cypher commands with the optional AS COMMAND[S].

Table 486. Result

command

"GRANT ACCESS ON DATABASE * TO `admin`"

"GRANT ALL DBMS PRIVILEGES ON DBMS TO `admin`"

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `admin`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `admin`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `admin`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `admin`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `admin`"

"GRANT START ON DATABASE * TO `admin`"

"GRANT STOP ON DATABASE * TO `admin`"

"GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO `admin`"

"GRANT WRITE ON GRAPH * TO `admin`"

Rows: 11

The output can be processed using YIELD / WHERE / RETURN here as well.

SHOW ROLE architect PRIVILEGES AS COMMANDS WHERE command CONTAINS 'MATCH'

Table 487. Result

429

command

"GRANT MATCH {*} ON GRAPH * NODE * TO `architect`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `architect`"

Rows: 2

Again, is it possible to get the privilege commands formatted for revoking instead of granting or denying
the privileges. For more info about revoking privileges, please see The REVOKE command.

SHOW ROLE reader PRIVILEGES AS REVOKE COMMANDS

Table 488. Result

command

"REVOKE GRANT ACCESS ON DATABASE * FROM `reader`"

"REVOKE GRANT MATCH {*} ON GRAPH * NODE * FROM `reader`"

"REVOKE GRANT MATCH {*} ON GRAPH * RELATIONSHIP * FROM `reader`"

Rows: 3

Examples for listing privileges for specific users Enterprise edition

Available privileges for specific users can be displayed using SHOW USER name PRIVILEGES.

Please note that if a non-native auth provider like LDAP is in use, SHOW USER PRIVILEGES
will only work in a limited capacity; It is only possible for a user to show their own
privileges. Other users' privileges cannot be listed when using a non-native auth
provider.

SHOW USER[S] [name[, ...]] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 [WHERE expression]

SHOW USER[S] [name[, ...]] PRIVILEGE[S] [AS [REVOKE] COMMAND[S]]
 YIELD { * | field[, ...] } [ORDER BY field[, ...]] [SKIP n] [LIMIT n]
 [WHERE expression]
 [RETURN field[, ...] [ORDER BY field[, ...]] [SKIP n] [LIMIT n]]

SHOW USER jake PRIVILEGES

Lists all privileges for user jake.

Table 489. Result

access action resource graph resource role segment

"GRANTED" "execute" "database" "*" "FUNCTION(*)" "PUBLIC" "jake"

"GRANTED" "execute" "database" "*" "PROCEDURE(*)" "PUBLIC" "jake"

"GRANTED" "access" "database" "DEFAULT" "database" "PUBLIC" "jake"

430

access action resource graph resource role segment

"GRANTED" "access" "database" "neo4j" "database" "regularUsers" "jake"

Rows: 4

SHOW USERS jake, joe PRIVILEGES

Lists all privileges for users jake and joe.

Table 490. Result

access action resource graph resource role segment

"GRANTED" "execute" "database" "*" "FUNCTION(*)" "PUBLIC" "jake"

"GRANTED" "execute" "database" "*" "PROCEDURE(*)" "PUBLIC" "jake"

"GRANTED" "access" "database" "DEFAULT" "database" "PUBLIC" "jake"

"GRANTED" "access" "database" "neo4j" "database" "regularUsers" "jake"

"GRANTED" "execute" "database" "*" "FUNCTION(*)" "PUBLIC" "joe"

"GRANTED" "execute" "database" "*" "PROCEDURE(*)" "PUBLIC" "joe"

"GRANTED" "access" "database" "DEFAULT" "database" "PUBLIC" "joe"

"DENIED" "access" "database" "neo4j" "database" "noAccessUsers
"

"joe"

Rows: 8

The same command can be used at all times to review available privileges for the current user. For this
purpose, a shorter form of the the command also exists: SHOW USER PRIVILEGES

SHOW USER PRIVILEGES

As for the other privilege commands, available privileges for users can also be output as Cypher
commands with the optional AS COMMAND[S].

When showing user privileges as commands, the roles in the Cypher commands are
replaced with a parameter. This can be used to quickly create new roles based on the
privileges of specific users.

SHOW USER jake PRIVILEGES AS COMMANDS

Table 491. Result

command

"GRANT ACCESS ON DATABASE neo4j TO $role"

"GRANT ACCESS ON HOME DATABASE TO $role"

"GRANT EXECUTE FUNCTION * ON DBMS TO $role"

431

command

"GRANT EXECUTE PROCEDURE * ON DBMS TO $role"

Rows: 4

Like other SHOW commands, the output can also be processed using YIELD / WHERE / RETURN. Additionally,
similar to the other show privilege commands, it is also possible to show the commands for revoking the
privileges.

SHOW USER jake PRIVILEGES AS REVOKE COMMANDS WHERE command CONTAINS 'EXECUTE'

Table 492. Result

command

"REVOKE GRANT EXECUTE FUNCTION * ON DBMS FROM $role"

"REVOKE GRANT EXECUTE PROCEDURE * ON DBMS FROM $role"

Rows: 2

8.4.3. Revoking privileges Enterprise edition

Privileges that were granted or denied earlier can be revoked using the REVOKE command:

REVOKE
 [GRANT | DENY] graph-privilege
 FROM role[, ...]

An example usage of the REVOKE command is given here:

REVOKE GRANT TRAVERSE ON HOME GRAPH NODES Post FROM regularUsers

While it can be explicitly specified that revoke should remove a GRANT or DENY, it is also possible to revoke
either one by not specifying at all as the next example demonstrates. Because of this, if there happen to be
a GRANT and a DENY on the same privilege, it would remove both.

REVOKE TRAVERSE ON HOME GRAPH NODES Payments FROM regularUsers

8.5. Built-in roles and privileges
All of the commands described in this chapter require that the user executing the commands has the rights
to do so. The privileges listed in the following sections are the default set of privileges for each built-in role:

• The PUBLIC role

• The reader role

• The editor role

432

• The publisher role

• The architect role

• The admin role

8.5.1. The PUBLIC role

All users are granted the PUBLIC role, and it can not be revoked or dropped. By default, it gives access to
the default database and allows executing all procedures and user defined functions.

The PUBLIC role cannot be dropped or revoked from any user, but the specific privileges
for the role may be modified. In contrast to the PUBLIC role, the other built-in roles can be
granted, revoked, dropped, and re-created.

Listing PUBLIC role privileges

SHOW ROLE PUBLIC PRIVILEGES AS COMMANDS

Table 493. Result

command

"GRANT ACCESS ON HOME DATABASE TO `PUBLIC`"

"GRANT EXECUTE FUNCTION * ON DBMS TO `PUBLIC`"

"GRANT EXECUTE PROCEDURE * ON DBMS TO `PUBLIC`"

Rows: 3

Recreating the PUBLIC role

The PUBLIC role can not be dropped and thus there is no need to recreate the role itself. To restore the role
to its original capabilities, two steps are needed. First, all GRANT or DENY privileges on this role should be
revoked (see output of SHOW ROLE PUBLIC PRIVILEGES AS REVOKE COMMANDS on what to revoke). Secondly,
the following queries must be run:

GRANT ACCESS ON HOME DATABASE TO PUBLIC

GRANT EXECUTE PROCEDURES * ON DBMS TO PUBLIC

GRANT EXECUTE USER DEFINED FUNCTIONS * ON DBMS TO PUBLIC

The resulting PUBLIC role now has the same privileges as the original built-in PUBLIC role.

433

8.5.2. The reader role

The reader role can perform read-only queries on all graphs except for the system database.

Listing reader role privileges

SHOW ROLE reader PRIVILEGES AS COMMANDS

Table 494. Result

command

"GRANT ACCESS ON DATABASE * TO `reader`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `reader`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `reader`"

Rows: 3

Recreating the reader role

To restore the role to its original capabilities two steps are needed. First, if not already done, execute DROP
ROLE reader. Secondly, the following queries must be run:

CREATE ROLE reader

GRANT ACCESS ON DATABASE * TO reader

GRANT MATCH {*} ON GRAPH * TO reader

The resulting reader role now has the same privileges as the original built-in reader role.

8.5.3. The editor role

The editor role can perform read and write operations on all graphs except for the system database, but
can not make new labels, property keys or relationship types.

Listing editor role privileges

SHOW ROLE editor PRIVILEGES AS COMMANDS

Table 495. Result

command

"GRANT ACCESS ON DATABASE * TO `editor`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `editor`"

434

command

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `editor`"

"GRANT WRITE ON GRAPH * TO `editor`"

Rows: 4

Recreating the editor role

To restore the role to its original capabilities two steps are needed. First, if not already done, execute DROP
ROLE editor. Secondly, the following queries must be run:

CREATE ROLE editor

GRANT ACCESS ON DATABASE * TO editor

GRANT MATCH {*} ON GRAPH * TO editor

GRANT WRITE ON GRAPH * TO editor

The resulting editor role now has the same privileges as the original built-in editor role.

8.5.4. The publisher role

The publisher role can do the same as editor, but can also create new labels, property keys and
relationship types.

Listing publisher role privileges

SHOW ROLE publisher PRIVILEGES AS COMMANDS

Table 496. Result

command

"GRANT ACCESS ON DATABASE * TO `publisher`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `publisher`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `publisher`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `publisher`"

"GRANT WRITE ON GRAPH * TO `publisher`"

Rows: 5

435

Recreating the publisher role

To restore the role to its original capabilities two steps are needed. First, if not already done, execute DROP
ROLE publisher. Secondly, the following queries must be run:

CREATE ROLE publisher

GRANT ACCESS ON DATABASE * TO publisher

GRANT MATCH {*} ON GRAPH * TO publisher

GRANT WRITE ON GRAPH * TO publisher

GRANT NAME MANAGEMENT ON DATABASE * TO publisher

The resulting publisher role now has the same privileges as the original built-in publisher role.

8.5.5. The architect role

The architect role can do the same as the publisher, as well as create and manage indexes and
constraints.

Listing architect role privileges

SHOW ROLE architect PRIVILEGES AS COMMANDS

Table 497. Result

command

"GRANT ACCESS ON DATABASE * TO `architect`"

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `architect`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `architect`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `architect`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `architect`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `architect`"

"GRANT WRITE ON GRAPH * TO `architect`"

Rows: 7

Recreating the architect role

To restore the role to its original capabilities two steps are needed. First, if not already done, execute DROP
ROLE architect. Secondly, the following queries must be run:

436

GRANT ACCESS ON DATABASE * TO architect

GRANT MATCH {*} ON GRAPH * TO architect

GRANT WRITE ON GRAPH * TO architect

GRANT NAME MANAGEMENT ON DATABASE * TO architect

GRANT INDEX MANAGEMENT ON DATABASE * TO architect

GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO architect

The resulting architect role now has the same privileges as the original built-in architect role.

8.5.6. The admin role

The admin role can do the same as the architect, as well as manage databases, users, roles and privileges.

The admin role has the ability to perform administrative tasks. These include the rights to perform the
following classes of tasks:

• Manage database security for controlling the rights to perform actions on specific databases:

◦ Manage access to a database and the right to start and stop a database

◦ Manage indexes and constraints

◦ Allow the creation of labels, relationship types or property names

◦ Manage transactions

• Manage DBMS security for controlling the rights to perform actions on the entire system:

◦ Manage multiple databases

◦ Manage users and roles

◦ Change configuration parameters

◦ Manage sub-graph privileges

◦ Manage procedure security

These rights are conferred using privileges that can be managed using GRANT, DENY and REVOKE commands.

Listing admin role privileges

SHOW ROLE admin PRIVILEGES AS COMMANDS

Table 498. Result

437

command

"GRANT ACCESS ON DATABASE * TO `admin`"

"GRANT ALL DBMS PRIVILEGES ON DBMS TO `admin`"

"GRANT CONSTRAINT MANAGEMENT ON DATABASE * TO `admin`"

"GRANT INDEX MANAGEMENT ON DATABASE * TO `admin`"

"GRANT MATCH {*} ON GRAPH * NODE * TO `admin`"

"GRANT MATCH {*} ON GRAPH * RELATIONSHIP * TO `admin`"

"GRANT NAME MANAGEMENT ON DATABASE * TO `admin`"

"GRANT START ON DATABASE * TO `admin`"

"GRANT STOP ON DATABASE * TO `admin`"

"GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO `admin`"

"GRANT WRITE ON GRAPH * TO `admin`"

Rows: 11

If the built-in admin role has been altered or dropped, and needs to be restored to its original state, see
Operations Manual → Password and user recovery.

Recreating the admin role

To restore the role to its original capabilities two steps are needed. First, if not already done, execute DROP
ROLE admin. Secondly, the following queries must be run in order to set up the privileges:

CREATE ROLE admin

GRANT ALL DBMS PRIVILEGES ON DBMS TO admin

GRANT TRANSACTION MANAGEMENT ON DATABASE * TO admin

GRANT START ON DATABASE * TO admin

GRANT STOP ON DATABASE * TO admin

GRANT MATCH {*} ON GRAPH * TO admin

GRANT WRITE ON GRAPH * TO admin

GRANT ALL ON DATABASE * TO admin

The resulting admin role now has the same privileges as the original built-in admin role.

438

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#password_and_user_recovery
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#password_and_user_recovery
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#password_and_user_recovery

Additional information about restoring the admin role can be found in the Operations Manual → Recover
the admin role.

8.6. Read privileges
There are three separate read privileges:

• TRAVERSE - enables the specified entities to be found.

• READ - enables the specified properties on the found entities to be read.

• MATCH - combines both TRAVERSE and READ, enabling an entity to be found and its properties read.

8.6.1. The TRAVERSE privilege

Users can be granted the right to find nodes and relationships using the GRANT TRAVERSE privilege.

GRANT TRAVERSE
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, we can enable the user jake, who has role 'regularUsers' to find all nodes with the label Post.

GRANT TRAVERSE ON GRAPH neo4j NODES Post TO regularUsers

The TRAVERSE privilege can also be denied.

DENY TRAVERSE
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, we can disable the user jake, who has role 'regularUsers' from finding all nodes with the
label Payments.

DENY TRAVERSE ON HOME GRAPH NODES Payments TO regularUsers

8.6.2. The READ privilege

Users can be granted the right to do property reads on nodes and relationships using the GRANT READ
privilege. It is very important to note that users can only read properties on entities that they are enabled to
find in the first place.

439

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#recover-admin-role
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#recover-admin-role
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#recover-admin-role
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#recover-admin-role

GRANT READ
 "{" { * | property[, ...] } "}"
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, we can enable the user jake, who has role 'regularUsers' to read all properties on nodes with
the label Post. The * implies that the ability to read all properties also extends to properties that might be
added in the future.

GRANT READ { * } ON GRAPH neo4j NODES Post TO regularUsers

Granting property READ access does not imply that the entities with that property can be
found. For example, if there is also a DENY TRAVERSE present on the same entity as a
GRANT READ, the entity will not be found by a Cypher MATCH statement.

The READ privilege can also be denied.

DENY READ
 "{" { * | property[, ...] } "}"
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

Although we just granted the user 'jake' the right to read all properties, we may want to hide the secret
property. The following example shows how to do that.

DENY READ { secret } ON GRAPH neo4j NODES Post TO regularUsers

8.6.3. The MATCH privilege

Users can be granted the right to find and do property reads on nodes and relationships using the GRANT
MATCH privilege This is semantically the same as having both TRAVERSE and READ privileges.

GRANT MATCH
 "{" { * | property[, ...] } "}"
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example if you want to grant the ability to read the properties language and length for nodes with the
label Message, as well as the ability to find these nodes, to a role regularUsers you can use the following

440

GRANT MATCH query.

GRANT MATCH { language, length } ON GRAPH neo4j NODES Message TO regularUsers

Like all other privileges, the MATCH privilege can also be denied.

DENY MATCH
 "{" { * | property[, ...] } "}"
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

Please note that the effect of denying a MATCH privilege depends on whether concrete property keys are
specified or a *. If you specify concrete property keys then DENY MATCH will only deny reading those
properties. Finding the elements to traverse would still be enabled. If you specify * instead then both
traversal of the element and all property reads will be disabled. The following queries will show examples
for this.

Denying to read the property ´content´ on nodes with the label Message for the role regularUsers would
look like the following query. Although not being able to read this specific property, nodes with that label
can still be traversed (and, depending on other grants, other properties on it could still be read).

DENY MATCH { content } ON GRAPH neo4j NODES Message TO regularUsers

The following query exemplifies how it would look like if you want to deny both reading all properties and
traversing nodes labeled with Account.

DENY MATCH { * } ON GRAPH neo4j NODES Account TO regularUsers

8.7. Write privileges
Write privileges are defined for different parts of the graph:

• CREATE - allows creating nodes and relationships.

• DELETE - allows deleting nodes and relationships.

• SET LABEL - allows setting the specified node labels using the SET clause.

• REMOVE LABEL - allows removing the specified node labels using the REMOVE clause.

• SET PROPERTY - allows setting properties on nodes and relationships.

There are also compound privileges which combine the above specific privileges:

• MERGE - allows match, create and set property to permit the MERGE command.

• WRITE - allows all write operations on an entire graph.

• ALL GRAPH PRIVILEGES - allows all read and write operation on an entire graph.

441

8.7.1. The CREATE privilege

The CREATE privilege allows a user to create new node and relationship elements in a graph. See the
Cypher CREATE clause.

GRANT CREATE ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, granting the ability to create elements on the graph neo4j to the role regularUsers would be
achieved using:

GRANT CREATE ON GRAPH neo4j ELEMENTS * TO regularUsers

The CREATE privilege can also be denied.

DENY CREATE ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, denying the ability to create nodes with the label foo on all graphs to the role regularUsers
would be achieved using:

DENY CREATE ON GRAPH * NODES foo TO regularUsers

If the user attempts to create nodes with a label that does not already exist in the
database, then the user must also possess the CREATE NEW LABEL privilege. The
same applies to new relationships - the CREATE NEW RELATIONSHIP TYPE privilege is
required.

8.7.2. The DELETE privilege

The DELETE privilege allows a user to delete node and relationship elements in a graph. See the Cypher
DELETE clause.

GRANT DELETE ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, granting the ability to delete elements on the graph neo4j to the role regularUsers would be

442

achieved using:

GRANT DELETE ON GRAPH neo4j ELEMENTS * TO regularUsers

The DELETE privilege can also be denied.

DENY DELETE ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, denying the ability to delete relationships with the relationship type bar on all graphs to the
role regularUsers would be achieved using:

DENY DELETE ON GRAPH * RELATIONSHIPS bar TO regularUsers

Users with DELETE privilege, but restricted TRAVERSE privileges, will not be able to do
DETACH DELETE in all cases. See Operations Manual → Fine-grained access control for
more info.

8.7.3. The SET LABEL privilege

The SET LABEL privilege allows you to set labels on a node using the SET clause.

GRANT SET LABEL { * | label[, ...] }
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 TO role[, ...]

For example, granting the ability to set any label on nodes of the graph neo4j to the role regularUsers
would be achieved using:

GRANT SET LABEL * ON GRAPH neo4j TO regularUsers

Unlike many of the other read and write privileges, it is not possible to restrict the SET
LABEL privilege to specific ELEMENTS, NODES or RELATIONSHIPS.

The SET LABEL privilege can also be denied.

DENY SET LABEL { * | label[, ...] }
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 TO role[, ...]

For example, denying the ability to set the label foo on nodes of all graphs to the role regularUsers would
be achieved using:

443

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#detach-delete-restricted-user

DENY SET LABEL foo ON GRAPH * TO regularUsers

If no instances of this label exist in the database, then the CREATE NEW LABEL
privilege is also required.

8.7.4. The REMOVE LABEL privilege

The REMOVE LABEL privilege allows you to remove labels from a node using the REMOVE clause.

GRANT REMOVE LABEL { * | label[, ...] }
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 TO role[, ...]

For example, granting the ability to remove any label from nodes of the graph neo4j to the role
regularUsers would be achieved using:

GRANT REMOVE LABEL * ON GRAPH neo4j TO regularUsers

Unlike many of the other read and write privileges, it is not possible to restrict the REMOVE
LABEL privilege to specific ELEMENTS, NODES or RELATIONSHIPS.

The REMOVE LABEL privilege can also be denied.

DENY REMOVE LABEL { * | label[, ...] }
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 TO role[, ...]

For example, denying the ability to remove the label foo from nodes of all graphs to the role regularUsers
would be achieved using:

DENY REMOVE LABEL foo ON GRAPH * TO regularUsers

8.7.5. The SET PROPERTY privilege

The SET PROPERTY privilege allows a user to set a property on a node or relationship element in a graph
using the SET clause.

GRANT SET PROPERTY "{" { * | property[, ...] } "}"
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, granting the ability to set any property on all elements of the graph neo4j to the role
regularUsers would be achieved using:

444

GRANT SET PROPERTY {*} ON HOME GRAPH ELEMENTS * TO regularUsers

The SET PROPERTY privilege can also be denied.

DENY SET PROPERTY "{" { * | property[, ...] } "}"
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, denying the ability to set the property foo on nodes with the label bar on all graphs to the
role regularUsers would be achieved using:

DENY SET PROPERTY { foo } ON GRAPH * NODES bar TO regularUsers

If the users attempts to set a property with a property name that does not already exist
in the database the user must also possess the CREATE NEW PROPERTY NAME
privilege.

8.7.6. The MERGE privilege

The MERGE privilege is a compound privilege that combines TRAVERSE and READ (i.e. MATCH) with CREATE and
SET PROPERTY. This is intended to permit use of the MERGE command but is applicable to all reads and
writes that require these privileges.

GRANT MERGE "{" { * | property[, ...] } "}"
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 [
 ELEMENT[S] { * | label-or-rel-type[, ...] }
 | NODE[S] { * | label[, ...] }
 | RELATIONSHIP[S] { * | rel-type[, ...] }
]
 TO role[, ...]

For example, granting MERGE on all elements of the graph neo4j to the role regularUsers would be
achieved using:

GRANT MERGE {*} ON GRAPH neo4j ELEMENTS * TO regularUsers

It is not possible to deny the MERGE privilege. If it is desirable to prevent a users from creating elements and
setting properties, use DENY CREATE or DENY SET PROPERTY.

If the users attempts to create nodes with a label that does not already exist in the
database the user must also possess the CREATE NEW LABEL privilege. The same
applies to new relationships and properties - the CREATE NEW RELATIONSHIP TYPE
or CREATE NEW PROPERTY NAME privileges are required.

445

8.7.7. The WRITE privilege

The WRITE privilege allows the user to execute any write command on a graph.

GRANT WRITE
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 TO role[, ...]

For example, granting the ability to write on the graph neo4j to the role regularUsers would be achieved
using:

GRANT WRITE ON GRAPH neo4j TO regularUsers

Unlike the more specific write commands, it is not possible to restrict WRITE privileges to
specific ELEMENTS, NODES or RELATIONSHIPS. If it is desirable to prevent a user from
writing to a subset of database objects, a GRANT WRITE can be combined with more
specific DENY commands to target these elements.

The WRITE privilege can also be denied.

DENY WRITE
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 TO role[, ...]

For example, denying the ability to write on the graph neo4j to the role regularUsers would be achieved
using:

DENY WRITE ON GRAPH neo4j TO regularUsers

Users with WRITE privilege but restricted TRAVERSE privileges will not be able to do DETACH
DELETE in all cases. See Operations Manual → Fine-grained access control for more info.

8.7.8. The ALL GRAPH PRIVILEGES privilege

The ALL GRAPH PRIVILEGES privilege allows the user to execute any command on a graph.

GRANT ALL [[GRAPH] PRIVILEGES]
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 TO role[, ...]

For example, granting all graph privileges on the graph neo4j to the role regularUsers would be achieved
using:

GRANT ALL GRAPH PRIVILEGES ON GRAPH neo4j TO regularUsers

446

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#detach-delete-restricted-user
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#detach-delete-restricted-user

Unlike the more specific read and write commands, it is not possible to restrict ALL GRAPH
PRIVILEGES privileges to specific ELEMENTS, NODES or RELATIONSHIPS. If it is
desirable to prevent a user from reading or writing to a subset of database objects, a
GRANT ALL GRAPH PRIVILEGES can be combined with more specific DENY commands to
target these elements.

The ALL GRAPH PRIVILEGES privilege does not allow creating new labels, relationship
types, or property names. These are instead managed by the NAME MANAGEMENT privileges.

The ALL GRAPH PRIVILEGES privilege can also be denied.

DENY ALL [[GRAPH] PRIVILEGES]
 ON {HOME GRAPH | GRAPH[S] { * | name[, ...] }}
 TO role[, ...]

For example, denying all graph privileges on the graph neo4j to the role regularUsers would be achieved
using:

DENY ALL GRAPH PRIVILEGES ON GRAPH neo4j TO regularUsers

8.8. Database administration
The administrators can use the following Cypher commands to manage Neo4j database administrative
rights. The components of the database privilege commands are:

• the command:

◦ GRANT – gives privileges to roles.

◦ DENY – denies privileges to roles.

◦ REVOKE – removes granted or denied privilege from roles.

• database-privilege

◦ ACCESS - allows access to a specific database.

◦ START - allows the specified database to be started.

◦ STOP - allows the specified database to be stopped.

◦ CREATE INDEX - allows indexes to be created on the specified database.

◦ DROP INDEX - allows indexes to be deleted on the specified database.

◦ SHOW INDEX - allows indexes to be listed on the specified database.

◦ INDEX [MANAGEMENT] - allows indexes to be created, deleted, and listed on the specified database.

◦ CREATE CONSTRAINT - allows constraints to be created on the specified database.

◦ DROP CONSTRAINT - allows constraints to be deleted on the specified database.

◦ SHOW CONSTRAINT - allows constraints to be listed on the specified database.

◦ CONSTRAINT [MANAGEMENT] - allows constraints to be created, deleted, and listed on the specified

447

database.

◦ CREATE NEW [NODE] LABEL - allows labels to be created so that future nodes can be assigned them.

◦ CREATE NEW [RELATIONSHIP] TYPE - allows relationship types to be created, so that future
relationships can be created with these types.

◦ CREATE NEW [PROPERTY] NAME - allows property names to be created, so that nodes and
relationships can have properties with these names assigned.

◦ NAME [MANAGEMENT] - allows all of the name management capabilities: node labels, relationship
types, and property names.

◦ ALL [[DATABASE] PRIVILEGES] - allows access, index, constraint, and name management for the
specified database.

◦ SHOW TRANSACTION - allows listing transactions and queries for the specified users on the specified
database.

◦ TERMINATE TRANSACTION - allows ending transactions and queries for the specified users on the
specified database.

◦ TRANSACTION [MANAGEMENT] - allows listing and ending transactions and queries for the specified
users on the specified database.

• name

◦ The database to associate the privilege with.

If you delete a database and create a new one with the same name, the new one
will NOT have the privileges assigned to the deleted database.

◦ The name component can be *, which means all databases. Databases created after this command
execution will also be associated with these privileges.

◦ The DATABASE[S] name part of the command can be replaced by HOME DATABASE. This refers to the
home database configured for a user or, if that user does not have a home database configured,
the default database. If the user’s home database changes for any reason after this command
execution, the new one will be associated with these privileges. This can be quite powerful as it
allows permissions to be switched from one database to another simply by changing a user’s
home database.

• role[, …]

◦ The role or roles to associate the privilege with, comma-separated.

Table 499. General database privilege command syntax

Command Description

GRANT database-privilege ON {HOME DATABASE | DATABASE[S] {* |
name[, ...]}} TO role[, ...]

Grant a privilege to one or multiple roles.

DENY database-privilege ON {HOME DATABASE | DATABASE[S] {* |
name[, ...]}} TO role[, ...]

Deny a privilege to one or multiple roles.

448

Command Description

REVOKE GRANT database-privilege ON {HOME DATABASE | DATABASE
[S] {* | name[, ...]}} FROM role[, ...]

Revoke a granted privilege from one or multiple
roles.

REVOKE DENY database-privilege ON {HOME DATABASE | DATABASE[
S] {* | name[, ...]}} FROM role[, ...]

Revoke a denied privilege from one or multiple
roles.

REVOKE database-privilege ON {HOME DATABASE | DATABASE[S] {*
| name[, ...]}} FROM role[, ...]

Revoke a granted or denied privilege from one or
multiple roles.

DENY does NOT erase a granted privilege; they both exist. Use REVOKE if you want to
remove a privilege.

The hierarchy between the different database privileges is shown in the image below.

Figure 4. Database privileges hierarchy

Table 500. Database privilege command syntax

Command Description

GRANT ACCESS
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Grant the specified roles the privilege to access
the home database, specific database(s), or all
databases.

GRANT {START | STOP}
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Grant the specified roles the privilege to start
and stop the home database, specific
database(s), or all databases.

GRANT {CREATE | DROP | SHOW} INDEX[ES]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Grant the specified roles the privilege to create,
delete, or show indexes on the home database,
specific database(s), or all databases.

449

Command Description

GRANT INDEX[ES] [MANAGEMENT]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Grant the specified roles the privilege to manage
indexes on the home database, specific
database(s), or all databases.

GRANT {CREATE | DROP | SHOW} CONSTRAINT[S]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Grant the specified roles the privilege to create,
delete, or show constraints on the home
database, specific database(s), or all databases.

GRANT CONSTRAINT[S] [MANAGEMENT]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Grant the specified roles the privilege to manage
constraints on the home database, specific
database(s), or all databases.

GRANT CREATE NEW [NODE] LABEL[S]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Grant the specified roles the privilege to create
new node labels in the home database, specific
database(s), or all databases.

GRANT CREATE NEW [RELATIONSHIP] TYPE[S]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Grant the specified roles the privilege to create
new relationships types in the home database,
specific database(s), or all databases.

GRANT CREATE NEW [PROPERTY] NAME[S]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Grant the specified roles the privilege to create
new property names in the home database,
specific database(s), or all databases.

GRANT NAME [MANAGEMENT]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Grant the specified roles the privilege to manage
new labels, relationship types, and property
names in the home database, specific
database(s), or all databases.

GRANT ALL [[DATABASE] PRIVILEGES]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Grant the specified roles all privileges for the
home database, specific database(s), or all
databases.

GRANT {SHOW | TERMINATE} TRANSACTION[S] [({* | user[, ...]}
)]
ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
TO role[, ...]

Grant the specified roles the privilege to list and
end the transactions and queries of all users or a
particular user(s) in the home database, specific
database(s), or all databases.

GRANT TRANSACTION [MANAGEMENT] [({* | user[, ...]})]
ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
TO role[, ...]

Grant the specified roles the privilege to manage
the transactions and queries of all users or a
particular user(s) in the home database, specific
database(s), or all databases.

450

Figure 5. Syntax of GRANT and DENY Database Privileges

8.8.1. The database ACCESS privilege

The ACCESS privilege enables users to connect to a database. With ACCESS you can run calculations, for
example, RETURN 2*5 AS answer or call functions RETURN timestamp() AS time.

GRANT ACCESS
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

For example, granting the ability to access the database neo4j to the role regularUsers is done using the
following query.

GRANT ACCESS ON DATABASE neo4j TO regularUsers

The ACCESS privilege can also be denied.

DENY ACCESS
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

For example, denying the ability to access to the database neo4j to the role regularUsers is done using the
following query.

DENY ACCESS ON DATABASE neo4j TO regularUsers

The privileges granted can be seen using the SHOW PRIVILEGES command:

SHOW ROLE regularUsers PRIVILEGES AS COMMANDS

Table 501. Result

command

"DENY ACCESS ON DATABASE neo4j TO `regularUsers`"

451

command

"GRANT ACCESS ON DATABASE neo4j TO `regularUsers`"

Rows: 2

8.8.2. The database START/STOP privileges

The START privilege can be used to enable the ability to start a database.

GRANT START
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

For example, granting the ability to start the database neo4j to the role regularUsers is done using the
following query.

GRANT START ON DATABASE neo4j TO regularUsers

The START privilege can also be denied.

DENY START
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

For example, denying the ability to start to the database neo4j to the role regularUsers is done using the
following query.

DENY START ON DATABASE system TO regularUsers

The STOP privilege can be used to enable the ability to stop a database.

GRANT STOP
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

For example, granting the ability to stop the database neo4j to the role regularUsers is done using the
following query.

GRANT STOP ON DATABASE neo4j TO regularUsers

The STOP privilege can also be denied.

DENY STOP
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

For example, denying the ability to stop to the database neo4j to the role regularUsers is done using the
following query.

452

DENY STOP ON DATABASE system TO regularUsers

The privileges granted can be seen using the SHOW PRIVILEGES command:

SHOW ROLE regularUsers PRIVILEGES AS COMMANDS

Table 502. Result

command

"DENY ACCESS ON DATABASE neo4j TO `regularUsers`"

"DENY START ON DATABASE system TO `regularUsers`"

"DENY STOP ON DATABASE system TO `regularUsers`"

"GRANT ACCESS ON DATABASE neo4j TO `regularUsers`"

"GRANT START ON DATABASE neo4j TO `regularUsers`"

"GRANT STOP ON DATABASE neo4j TO `regularUsers`"

Rows: 6

 Note that START and STOP privileges are not included in the ALL DATABASE PRIVILEGES.

8.8.3. The INDEX MANAGEMENT privileges

Indexes can be created, deleted, or listed with the CREATE INDEX, DROP INDEX, and SHOW INDEXES
commands. The privilege to do this can be granted with GRANT CREATE INDEX, GRANT DROP INDEX, and GRANT
SHOW INDEX commands. The privilege to do all three can be granted with GRANT INDEX MANAGEMENT
command.

Table 503. Index management command syntax

Command Description

GRANT {CREATE | DROP | SHOW} INDEX[ES]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Enable the specified roles to create, delete, or
show indexes in the home database, specific
database(s), or all databases.

GRANT INDEX[ES] [MANAGEMENT]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Enable the specified roles to manage indexes in
the home database, specific database(s), or all
databases.

For example, granting the ability to create indexes on the database neo4j to the role regularUsers is done
using the following query.

GRANT CREATE INDEX ON DATABASE neo4j TO regularUsers

The SHOW INDEXES privilege only affects the SHOW INDEXES command, and not the older procedures for

453

listing indexes, such as db.indexes.

8.8.4. The CONSTRAINT MANAGEMENT privileges

Constraints can be created, deleted, or listed with the CREATE CONSTRAINT, DROP CONSTRAINT and SHOW
CONSTRAINTS commands. The privilege to do this can be granted with GRANT CREATE CONSTRAINT, GRANT
DROP CONSTRAINT, GRANT SHOW CONSTRAINT commands. The privilege to do all three can be granted with
GRANT CONSTRAINT MANAGEMENT command.

Table 504. Constraint management command syntax

Command Description

GRANT {CREATE | DROP | SHOW} CONSTRAINT[S]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Enable the specified roles to create, delete, or
show constraints on the home database, specific
database(s), or all databases.

GRANT CONSTRAINT[S] [MANAGEMENT]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Enable the specified roles to manage constraints
on the home database, specific database(s), or
all databases.

For example, granting the ability to create constraints on the database neo4j to the role regularUsers is
done using the following query.

GRANT CREATE CONSTRAINT ON DATABASE neo4j TO regularUsers

The SHOW CONSTRAINTS privilege only affects the SHOW CONSTRAINTS command, and not the older procedures
for listing constraints, such as db.constraints.

8.8.5. The NAME MANAGEMENT privileges

The right to create new labels, relationship types, and property names is different from the right to create
nodes, relationships, and properties. The latter is managed using database WRITE privileges, while the
former is managed using specific GRANT/DENY CREATE NEW … commands for each type.

Table 505. Label, relationship type and property name management command syntax

Command Description

GRANT CREATE NEW [NODE] LABEL[S]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Enable the specified roles to create new node
labels in the home database, specific
database(s), or all databases.

GRANT CREATE NEW [RELATIONSHIP] TYPE[S]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Enable the specified roles to create new
relationship types in the home database, specific
database(s), or all databases.

454

Command Description

GRANT CREATE NEW [PROPERTY] NAME[S]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Enable the specified roles to create new property
names in the home database, specific
database(s), or all databases.

GRANT NAME [MANAGEMENT]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Enable the specified roles to create new labels,
relationship types, and property names in the
home database, specific database(s), or all
databases.

For example, granting the ability to create new properties on nodes or relationships in the database neo4j
to the role regularUsers is done using the following query.

GRANT CREATE NEW PROPERTY NAME ON DATABASE neo4j TO regularUsers

The SHOW PRIVILEGES commands return the NAME MANAGEMENT privilege as the action
token, when not using AS COMMANDS.

8.8.6. Granting ALL DATABASE PRIVILEGES

The right to access a database, create and drop indexes and constraints and create new labels,
relationship types or property names can be achieved with a single command:

GRANT ALL [[DATABASE] PRIVILEGES]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Note that the privileges for starting and stopping all databases, and transaction
management, are not included in the ALL DATABASE PRIVILEGES grant. These privileges
are associated with administrators while other database privileges are of use to domain
and application developers.

For example, granting the abilities above on the database neo4j to the role databaseAdminUsers is done
using the following query.

GRANT ALL DATABASE PRIVILEGES ON DATABASE neo4j TO databaseAdminUsers

The privileges granted can be seen using the SHOW PRIVILEGES command:

SHOW ROLE databaseAdminUsers PRIVILEGES AS COMMANDS

Table 506. Result

command

"GRANT ALL DATABASE PRIVILEGES ON DATABASE neo4j TO `databaseAdminUsers`"

455

command

Rows: 1

8.8.7. Granting TRANSACTION MANAGEMENT privileges

The right to run the procedures dbms.listTransactions, dbms.listQueries, dbms.killQuery,
dbms.killQueries, dbms.killTransaction and dbms.killTransactions are managed through the SHOW
TRANSACTION and TERMINATE TRANSACTION privileges.

Table 507. Transaction management command syntax

Command Description

GRANT SHOW TRANSACTION[S] [({* | user[, ...]})]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Enable the specified roles to list transactions and
queries for user(s) or all users in the home
database, specific database(s), or all databases.

GRANT TERMINATE TRANSACTION[S] [({* | user[, ...]})]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Enable the specified roles to end running
transactions and queries for user(s) or all users
in the home database, specific database(s), or all
databases.

GRANT TRANSACTION [MANAGEMENT] [({* | user[, ...]})]
 ON {HOME DATABASE | DATABASE[S] {* | name[, ...]}}
 TO role[, ...]

Enable the specified roles to manage
transactions and queries for user(s) or all users
in the home database, specific database(s), or all
databases.

Note that the TRANSACTION MANAGEMENT privileges are not included in the ALL DATABASE
PRIVILEGES.

For example, granting the ability to list transactions for user jake in the database neo4j to the role
regularUsers is done using the following query.

GRANT SHOW TRANSACTION (jake) ON DATABASE neo4j TO regularUsers

8.9. DBMS administration
All DBMS privileges are relevant system-wide. Like user management, they do not belong to one specific
database or graph. For more details on the differences between graphs, databases and the DBMS, refer to
Neo4j databases and graphs.

456

Figure 6. Syntax of GRANT and DENY DBMS Privileges

Figure 7. DBMS privileges hierarchy

The admin role has a number of built-in privileges. These include:

• Create and drop databases.

• Change configuration parameters.

• Manage transactions.

• Manage users and roles.

• Manage sub-graph privileges.

• Manage procedure security.

The easiest way to enable a user to perform these tasks is to grant them the admin role. All of these
privileges are also assignable using Cypher commands. See the sections on role management, user
management, database management, privilege management, transaction management and procedure and
user defined function security for details. It is possible to make a custom role with a subset of these
privileges.

457

8.9.1. Using a custom role to manage DBMS privileges

If it is desired to have an administrator with a subset of privileges that includes all DBMS privileges, but
not all database privileges, this can be achieved in multiple ways. One way is to copy the admin role and
revoking or denying the unwanted privileges. A second option is to build a custom administrator from
scratch by granting the wanted privileges instead.

As an example, let’s create an administrator that can only manage users and roles by using the latter
option.

1. First we create the new role:

CREATE ROLE usermanager

2. Then we grant the privilege to manage users:

GRANT USER MANAGEMENT ON DBMS TO usermanager

3. And to manage roles:

GRANT ROLE MANAGEMENT ON DBMS TO usermanager

The resulting role has privileges that only allow user and role management:

SHOW ROLE usermanager PRIVILEGES AS COMMANDS

Lists all privileges for role usermanager:

Table 508. Result

command

"GRANT ROLE MANAGEMENT ON DBMS TO `usermanager`"

"GRANT USER MANAGEMENT ON DBMS TO `usermanager`"

Rows: 2

However, this role doesn’t allow all DBMS capabilities. For example, the role is missing privilege
management, creating and dropping databases as well as executing admin procedures. We can make a
more powerful administrator by granting a different set of privileges. Let’s create an administrator that can
perform almost all DBMS capabilities, excluding database management, but also with some limited
database capabilities, such as managing transactions:

1. Again, we start by creating a new role:

CREATE ROLE customAdministrator

458

2. Then we grant the privilege for all DBMS capabilities:

GRANT ALL DBMS PRIVILEGES ON DBMS TO customAdministrator

3. And explicitly deny the privilege to manage databases:

DENY DATABASE MANAGEMENT ON DBMS TO customAdministrator

4. Thereafter we grant the transaction management privilege:

GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO customAdministrator

The resulting role has privileges that allow all DBMS privileges except creating and dropping databases, as
well as managing transactions:

SHOW ROLE customAdministrator PRIVILEGES AS COMMANDS

Lists all privileges for role customAdministrator:

Table 509. Result

command

"DENY DATABASE MANAGEMENT ON DBMS TO `customAdministrator`"

"GRANT ALL DBMS PRIVILEGES ON DBMS TO `customAdministrator`"

"GRANT TRANSACTION MANAGEMENT (*) ON DATABASE * TO `customAdministrator`"

Rows: 3

8.9.2. The DBMS ROLE MANAGEMENT privileges

The DBMS privileges for role management are assignable using Cypher administrative commands. They
can be granted, denied and revoked like other privileges.

Table 510. Role management privileges command syntax

Command Description

GRANT CREATE ROLE
 ON DBMS
 TO role[, ...]

Enable the specified roles to create new roles.

GRANT RENAME ROLE
 ON DBMS
 TO role[, ...]

Enable the specified roles to change the name of
roles.

459

Command Description

GRANT DROP ROLE
 ON DBMS
 TO role[, ...]

Enable the specified roles to delete roles.

GRANT ASSIGN ROLE
 ON DBMS
 TO role[, ...]

Enable the specified roles to assign roles to
users.

GRANT REMOVE ROLE
 ON DBMS
 TO role[, ...]

Enable the specified roles to remove roles from
users.

GRANT SHOW ROLE
 ON DBMS
 TO role[, ...]

Enable the specified roles to list roles.

GRANT ROLE MANAGEMENT
 ON DBMS
 TO role[, ...]

Enable the specified roles to create, delete,
assign, remove, and list roles.

The ability to add roles can be granted via the CREATE ROLE privilege. The following query shows an
example of this:

GRANT CREATE ROLE ON DBMS TO roleAdder

The resulting role has privileges that only allow adding roles:

SHOW ROLE roleAdder PRIVILEGES AS COMMANDS"

Lists all privileges for role roleAdder:

Table 511. Result

command

"GRANT CREATE ROLE ON DBMS TO `roleAdder`"

Rows: 1

The ability to rename roles can be granted via the RENAME ROLE privilege. The following query shows an
example of this:

GRANT RENAME ROLE ON DBMS TO roleNameModifier

460

The resulting role has privileges that only allow renaming roles:

SHOW ROLE roleNameModifier PRIVILEGES AS COMMANDS

Lists all privileges for role roleNameModifier:

Table 512. Result

command

"GRANT RENAME ROLE ON DBMS TO `roleNameModifier`"

Rows: 1

The ability to delete roles can be granted via the DROP ROLE privilege. The following query shows an
example of this:

GRANT DROP ROLE ON DBMS TO roleDropper

The resulting role has privileges that only allow deleting roles:

SHOW ROLE roleDropper PRIVILEGES AS COMMANDS

Lists all privileges for role roleDropper:

Table 513. Result

command

"GRANT DROP ROLE ON DBMS TO `roleDropper`"

Rows: 1

The ability to assign roles to users can be granted via the ASSIGN ROLE privilege. The following query
shows an example of this:

GRANT ASSIGN ROLE ON DBMS TO roleAssigner

The resulting role has privileges that only allow assigning/granting roles:

SHOW ROLE roleAssigner PRIVILEGES AS COMMANDS"

Lists all privileges for role roleAssigner:

Table 514. Result

command

"GRANT ASSIGN ROLE ON DBMS TO `roleAssigner`"

461

command

Rows: 1

The ability to remove roles from users can be granted via the REMOVE ROLE privilege. The following query
shows an example of this:

GRANT REMOVE ROLE ON DBMS TO roleRemover

The resulting role has privileges that only allow removing/revoking roles:

SHOW ROLE roleRemover PRIVILEGES AS COMMANDS

Lists all privileges for role roleRemover:

Table 515. Result

command

"GRANT REMOVE ROLE ON DBMS TO `roleRemover`"

Rows: 1

The ability to show roles can be granted via the SHOW ROLE privilege. A user with this privilege is allowed to
execute the SHOW ROLES and SHOW POPULATED ROLES administration commands. For the SHOW ROLES WITH
USERS and SHOW POPULATED ROLES WITH USERS administration commands, both this privilege and the SHOW
USER privilege are required. The following query shows an example of how to grant the SHOW ROLE privilege:

GRANT SHOW ROLE ON DBMS TO roleShower

The resulting role has privileges that only allow showing roles:

SHOW ROLE roleShower PRIVILEGES AS COMMANDS

Lists all privileges for role roleShower:

Table 516. Result

command

"GRANT SHOW ROLE ON DBMS TO `roleShower`"

Rows: 1

The privileges to create, rename, delete, assign, remove, and list roles can be granted via the ROLE
MANAGEMENT privilege. The following query shows an example of this:

GRANT ROLE MANAGEMENT ON DBMS TO roleManager

462

The resulting role has all privileges to manage roles:

SHOW ROLE roleManager PRIVILEGES AS COMMANDS

Lists all privileges for role roleManager:

Table 517. Result

command

"GRANT ROLE MANAGEMENT ON DBMS TO `roleManager`"

Rows: 1

8.9.3. The DBMS USER MANAGEMENT privileges

The DBMS privileges for user management are assignable using Cypher administrative commands. They
can be granted, denied and revoked like other privileges.

Table 518. User management privileges command syntax

Command Description

GRANT CREATE USER
 ON DBMS
 TO role[, ...]

Enable the specified roles to create new users.

GRANT RENAME USER
 ON DBMS
 TO role[, ...]

Enable the specified roles to change the name of
users.

GRANT ALTER USER
 ON DBMS
 TO role[, ...]

Enable the specified roles to modify users.

GRANT SET PASSWORD[S]
 ON DBMS
 TO role[, ...]

Enable the specified roles to modify users'
passwords and whether those passwords must
be changed upon first login.

GRANT SET USER HOME DATABASE
 ON DBMS
 TO role[, ...]

Enable the specified roles to modify users' home
database.

GRANT SET USER STATUS
 ON DBMS
 TO role[, ...]

Enable the specified roles to modify the account
status of users.

463

Command Description

GRANT DROP USER
 ON DBMS
 TO role[, ...]

Enable the specified roles to delete users.

GRANT SHOW USER
 ON DBMS
 TO role[, ...]

Enable the specified roles to list users.

GRANT USER MANAGEMENT
 ON DBMS
 TO role[, ...]

Enable the specified roles to create, delete,
modify, and list users.

The ability to add users can be granted via the CREATE USER privilege. The following query shows an
example of this:

GRANT CREATE USER ON DBMS TO userAdder

The resulting role has privileges that only allow adding users:

SHOW ROLE userAdder PRIVILEGES AS COMMANDS

Lists all privileges for role userAdder:

Table 519. Result

command

"GRANT CREATE USER ON DBMS TO `userAdder`"

Rows: 1

The ability to rename users can be granted via the RENAME USER privilege. The following query shows an
example of this:

GRANT RENAME USER ON DBMS TO userNameModifier

The resulting role has privileges that only allow renaming users:

SHOW ROLE userNameModifier PRIVILEGES AS COMMANDS

Lists all privileges for role userNameModifier:

Table 520. Result

464

command

"GRANT RENAME USER ON DBMS TO `userNameModifier`"

Rows: 1

The ability to modify users can be granted via the ALTER USER privilege. The following query shows an
example of this:

GRANT ALTER USER ON DBMS TO userModifier

The resulting role has privileges that only allow modifying users:

SHOW ROLE userModifier PRIVILEGES AS COMMANDS

Lists all privileges for role userModifier:

Table 521. Result

command

"GRANT ALTER USER ON DBMS TO `userModifier`"

Rows: 1

A user that is granted ALTER USER is allowed to run the ALTER USER administration command with one or
several of the SET PASSWORD, SET PASSWORD CHANGE [NOT] REQUIRED and SET STATUS parts:

ALTER USER jake SET PASSWORD 'secret' SET STATUS SUSPENDED

The ability to modify users' passwords and whether those passwords must be changed upon first login
can be granted via the SET PASSWORDS privilege. The following query shows an example of this:

GRANT SET PASSWORDS ON DBMS TO passwordModifier

The resulting role has privileges that only allow modifying users' passwords and whether those passwords
must be changed upon first login:

SHOW ROLE passwordModifier PRIVILEGES AS COMMANDS

Lists all privileges for role passwordModifier:

Table 522. Result

command

"GRANT SET PASSWORD ON DBMS TO `passwordModifier`"

Rows: 1

465

A user that is granted SET PASSWORDS is allowed to run the ALTER USER administration command with one
or both of the SET PASSWORD and SET PASSWORD CHANGE [NOT] REQUIRED parts:

ALTER USER jake SET PASSWORD 'abc123' CHANGE NOT REQUIRED

The ability to modify the account status of users can be granted via the SET USER STATUS privilege. The
following query shows an example of this:

GRANT SET USER STATUS ON DBMS TO statusModifier

The resulting role has privileges that only allow modifying the account status of users:

SHOW ROLE statusModifier PRIVILEGES AS COMMANDS

Lists all privileges for role statusModifier:

Table 523. Result

command

"GRANT SET USER STATUS ON DBMS TO `statusModifier`"

Rows: 1

A user that is granted SET USER STATUS is allowed to run the ALTER USER administration command with
only the SET STATUS part:

ALTER USER jake SET STATUS ACTIVE

The ability to modify the home database of users can be granted via the SET USER HOME DATABASE privilege.
The following query shows an example of this:

GRANT SET USER HOME DATABASE ON DBMS TO statusModifier

The resulting role has privileges that only allow modifying the home database of users:

SHOW ROLE statusModifier PRIVILEGES AS COMMANDS

Lists all privileges for role statusModifier:

Table 524. Result

command

"GRANT SET USER HOME DATABASE ON DBMS TO `statusModifier`"

"GRANT SET USER STATUS ON DBMS TO `statusModifier`"

Rows: 2

466

A user that is granted SET USER HOME DATABASE is allowed to run the ALTER USER administration command
with only the SET HOME DATABASE or REMOVE HOME DATABASE part:

ALTER USER jake SET HOME DATABASE otherDb

ALTER USER jake REMOVE HOME DATABASE

Note that the combination of the SET PASSWORDS, SET USER STATUS, and the SET USER
HOME DATABASE privilege actions is equivalent to the ALTER USER privilege action.

The ability to delete users can be granted via the DROP USER privilege. The following query shows an
example of this:

GRANT DROP USER ON DBMS TO userDropper

The resulting role has privileges that only allow deleting users:

SHOW ROLE userDropper PRIVILEGES AS COMMANDS

Lists all privileges for role userDropper:

Table 525. Result

command

"GRANT DROP USER ON DBMS TO `userDropper`"

Rows: 1

The ability to show users can be granted via the SHOW USER privilege. The following query shows an
example of this:

GRANT SHOW USER ON DBMS TO userShower

The resulting role has privileges that only allow showing users:

SHOW ROLE userShower PRIVILEGES AS COMMANDS

Lists all privileges for role userShower:

Table 526. Result

command

"GRANT SHOW USER ON DBMS TO `userShower`"

Rows: 1

467

The privileges to create, rename, modify, delete, and list users can be granted via the USER MANAGEMENT
privilege. The following query shows an example of this:

GRANT USER MANAGEMENT ON DBMS TO userManager

The resulting role has all privileges to manage users:

SHOW ROLE userManager PRIVILEGES AS COMMANDS

8.9.4. The DBMS DATABASE MANAGEMENT privileges

The DBMS privileges for database management are assignable using Cypher administrative commands.
They can be granted, denied and revoked like other privileges.

Table 527. Database management privileges command syntax

Command Description

GRANT CREATE DATABASE
 ON DBMS
 TO role[, ...]

Enable the specified roles to create new
databases.

GRANT DROP DATABASE
 ON DBMS
 TO role[, ...]

Enable the specified roles to delete databases.

GRANT DATABASE MANAGEMENT
 ON DBMS
 TO role[, ...]

Enable the specified roles to create and delete
databases.

The ability to create databases can be granted via the CREATE DATABASE privilege. The following query
shows an example of this:

GRANT CREATE DATABASE ON DBMS TO databaseAdder

The resulting role has privileges that only allow creating databases:

SHOW ROLE databaseAdder PRIVILEGES AS COMMANDS

Lists all privileges for role databaseAdder:

Table 528. Result

command

"GRANT CREATE DATABASE ON DBMS TO `databaseAdder`"

468

command

Rows: 1

The ability to delete databases can be granted via the DROP DATABASE privilege. The following query shows
an example of this:

GRANT DROP DATABASE ON DBMS TO databaseDropper

The resulting role has privileges that only allow deleting databases:

SHOW ROLE databaseDropper PRIVILEGES AS COMMANDS

Lists all privileges for role databaseDropper:

Table 529. Result

command

"GRANT DROP DATABASE ON DBMS TO `databaseDropper`"

Rows: 1

The privileges to create and delete databases can be granted via the DATABASE MANAGEMENT privilege. The
following query shows an example of this:

GRANT DATABASE MANAGEMENT ON DBMS TO databaseManager

The resulting role has all privileges to manage databases:

SHOW ROLE databaseManager PRIVILEGES AS COMMANDS

Lists all privileges for role databaseManager:

Table 530. Result

command

"GRANT DATABASE MANAGEMENT ON DBMS TO `databaseManager`"

Rows: 1

8.9.5. The DBMS PRIVILEGE MANAGEMENT privileges

The DBMS privileges for privilege management are assignable using Cypher administrative commands.
They can be granted, denied and revoked like other privileges.

Table 531. Privilege management privileges command syntax

469

Command Description

GRANT SHOW PRIVILEGE
 ON DBMS
 TO role[, ...]

Enable the specified roles to list privileges.

GRANT ASSIGN PRIVILEGE
 ON DBMS
 TO role[, ...]

Enable the specified roles to assign privileges
using the GRANT and DENY commands.

GRANT REMOVE PRIVILEGE
 ON DBMS
 TO role[, ...]

Enable the specified roles to remove privileges
using the REVOKE command.

GRANT PRIVILEGE MANAGEMENT
 ON DBMS
 TO role[, ...]

Enable the specified roles to list, assign, and
remove privileges.

The ability to list privileges can be granted via the SHOW PRIVILEGE privilege. A user with this privilege is
allowed to execute the SHOW PRIVILEGES and SHOW ROLE roleName PRIVILEGES administration commands. "
For the SHOW USER username PRIVILEGES administration command, both this privilege and the SHOW USER
privilege are required. The following query shows an example of how to grant the SHOW PRIVILEGE
privilege:

GRANT SHOW PRIVILEGE ON DBMS TO privilegeShower

The resulting role has privileges that only allow showing privileges:

SHOW ROLE privilegeShower PRIVILEGES AS COMMANDS

Lists all privileges for role privilegeShower:

Table 532. Result

command

"GRANT SHOW PRIVILEGE ON DBMS TO `privilegeShower`"

Rows: 1

Note that no specific privileges are required for showing the current user’s privileges
using either SHOW USER username PRIVILEGES, or SHOW USER PRIVILEGES.

Please note that if a non-native auth provider like LDAP is in use, SHOW USER PRIVILEGES
will only work in a limited capacity; It is only possible for a user to show their own
privileges. Other users' privileges cannot be listed when using a non-native auth
provider.

470

The ability to assign privileges to roles can be granted via the ASSIGN PRIVILEGE privilege. A user with this
privilege is allowed to execute GRANT and DENY administration commands. The following query shows
an example of how to grant this privilege:

GRANT ASSIGN PRIVILEGE ON DBMS TO privilegeAssigner

The resulting role has privileges that only allow assigning privileges:

SHOW ROLE privilegeAssigner PRIVILEGES AS COMMANDS

Lists all privileges for role privilegeAssigner:

Table 533. Result

command

"GRANT ASSIGN PRIVILEGE ON DBMS TO `privilegeAssigner`"

Rows: 1

The ability to remove privileges from roles can be granted via the REMOVE PRIVILEGE privilege. A user with
this privilege is allowed to execute REVOKE administration commands. The following query shows an
example of how to grant this privilege:

GRANT REMOVE PRIVILEGE ON DBMS TO privilegeRemover

The resulting role has privileges that only allow removing privileges:

SHOW ROLE privilegeRemover PRIVILEGES AS COMMANDS

Lists all privileges for role privilegeRemover:

Table 534. Result

command

"GRANT REMOVE PRIVILEGE ON DBMS TO `privilegeRemover`"

Rows: 1

The privileges to list, assign, and remove privileges can be granted via the PRIVILEGE MANAGEMENT privilege.
The following query shows an example of this:

GRANT PRIVILEGE MANAGEMENT ON DBMS TO privilegeManager

The resulting role has all privileges to manage privileges:

SHOW ROLE privilegeManager PRIVILEGES AS COMMANDS

471

Lists all privileges for role privilegeManager:

Table 535. Result

command

"GRANT PRIVILEGE MANAGEMENT ON DBMS TO `privilegeManager`"

Rows: 1

8.9.6. The DBMS EXECUTE privileges

The DBMS privileges for procedure and user defined function execution are assignable using Cypher
administrative commands. They can be granted, denied and revoked like other privileges.

Table 536. Execute privileges command syntax

Command Description

GRANT EXECUTE PROCEDURE[S] name-globbing[, ...]
 ON DBMS
 TO role[, ...]

Enable the specified roles to execute the given
procedures.

GRANT EXECUTE BOOSTED PROCEDURE[S] name-globbing[, ...]
 ON DBMS
 TO role[, ...]

Enable the specified roles to execute the given
procedures with elevated privileges.

GRANT EXECUTE ADMIN[ISTRATOR] PROCEDURES
 ON DBMS
 TO role[, ...]

Enable the specified roles to execute procedures
annotated with @Admin. The procedures are
executed with elevated privileges.

GRANT EXECUTE [USER [DEFINED]] FUNCTION[S] name-globbing[,
...]
 ON DBMS
 TO role[, ...]

Enable the specified roles to execute the given
user defined functions.

GRANT EXECUTE BOOSTED [USER [DEFINED]] FUNCTION[S] name-
globbing[, ...]
 ON DBMS
 TO role[, ...]

Enable the specified roles to execute the given
user defined functions with elevated privileges.

The EXECUTE BOOSTED privileges replace the dbms.security.procedures.default_allowed and
dbms.security.procedures.roles configuration parameters for procedures and user defined functions. The
configuration parameters are still honoured as a set of temporary privileges. These cannot be revoked, but
will be updated on each restart with the current configuration values.

472

The EXECUTE PROCEDURE privilege

The ability to execute a procedure can be granted via the EXECUTE PROCEDURE privilege. A user with this
privilege is allowed to execute the procedures matched by the name-globbing. The following query shows
an example of how to grant this privilege:

GRANT EXECUTE PROCEDURE db.schema.* ON DBMS TO procedureExecutor

Users with the role 'procedureExecutor' can then run any procedure in the db.schema namespace. The
procedure is run using the user’s own privileges. The resulting role has privileges that only allow executing
procedures in the db.schema namespace:

SHOW ROLE procedureExecutor PRIVILEGES AS COMMANDS

Lists all privileges for role procedureExecutor:

Table 537. Result

command

"GRANT EXECUTE PROCEDURE db.schema.* ON DBMS TO `procedureExecutor`"

Rows: 1

If we want to allow executing all but a few procedures, we can grant EXECUTE PROCEDURES * and deny the
unwanted procedures. For example, the following queries allow for executing all procedures, except those
starting with dbms.killTransaction:

GRANT EXECUTE PROCEDURE * ON DBMS TO deniedProcedureExecutor

DENY EXECUTE PROCEDURE dbms.killTransaction* ON DBMS TO deniedProcedureExecutor

The resulting role has privileges that only allow executing all procedures except those starting with
dbms.killTransaction:

SHOW ROLE deniedProcedureExecutor PRIVILEGES AS COMMANDS

Lists all privileges for role deniedProcedureExecutor:

Table 538. Result

command

"DENY EXECUTE PROCEDURE dbms.killTransaction* ON DBMS TO `deniedProcedureExecutor`"

"GRANT EXECUTE PROCEDURE * ON DBMS TO `deniedProcedureExecutor`"

Rows: 2

473

The dbms.killTransaction and dbms.killTransactions are blocked, as well as any other procedures
starting with dbms.killTransaction.

The EXECUTE BOOSTED PROCEDURE privilege

The ability to execute a procedure with elevated privileges can be granted via the EXECUTE BOOSTED
PROCEDURE privilege. A user with this privilege is allowed to execute the procedures matched by the name-
globbing without the execution being restricted to their other privileges. There is no need to grant an
individual EXECUTE PROCEDURE privilege for the procedures either, as granting the EXECUTE BOOSTED
PROCEDURE includes an implicit EXECUTE PROCEDURE grant for them. A denied EXECUTE PROCEDURE still denies
executing the procedure. The following query shows an example of how to grant this privilege:

GRANT EXECUTE BOOSTED PROCEDURE db.labels, db.relationshipTypes ON DBMS TO boostedProcedureExecutor

Users with the role boostedProcedureExecutor can then run db.labels and db.relationshipTypes with full
privileges, seeing everything in the graph not just the labels and types that the user has TRAVERSE privilege
on.

The resulting role has privileges that only allow executing procedures db.labels and
db.relationshipTypes, but with elevated execution:

SHOW ROLE boostedProcedureExecutor PRIVILEGES AS COMMANDS

Lists all privileges for role boostedProcedureExecutor:

Table 539. Result

command

"GRANT EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO `boostedProcedureExecutor`"

"GRANT EXECUTE BOOSTED PROCEDURE db.relationshipTypes ON DBMS TO `boostedProcedureExecutor`"

Rows: 2

Granting EXECUTE BOOSTED PROCEDURE on its own allows the procedure to be both executed (because of the
implicit EXECUTE PROCEDURE grant) and given elevated privileges during the execution. A denied EXECUTE
BOOSTED PROCEDURE on its own behaves slightly differently, and only denies the elevation and not the
execution of the procedure. However, a role with only a granted EXECUTE BOOSTED PROCEDURE and a denied
EXECUTE BOOSTED PROCEDURE will deny the execution as well. This is explained through the following
examples:

474

Example 16. Grant EXECUTE PROCEDURE and deny EXECUTE BOOSTED PROCEDURE

GRANT EXECUTE PROCEDURE * ON DBMS TO deniedBoostedProcedureExecutor1

DENY EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO deniedBoostedProcedureExecutor1

The resulting role has privileges that allow executing all procedures using the user’s own privileges,
as well as blocking db.labels from being elevated. The deny EXECUTE BOOSTED PROCEDURE does not
block execution of db.labels.

SHOW ROLE deniedBoostedProcedureExecutor1 PRIVILEGES AS COMMANDS

Lists all privileges for role deniedBoostedProcedureExecutor1:

Table 540. Result

command

"DENY EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO `deniedBoostedProcedureExecutor1`"

"GRANT EXECUTE PROCEDURE * ON DBMS TO `deniedBoostedProcedureExecutor1`"

Rows: 2

Example 17. Grant EXECUTE BOOSTED PROCEDURE and deny EXECUTE PROCEDURE

GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO deniedBoostedProcedureExecutor2

DENY EXECUTE PROCEDURE db.labels ON DBMS TO deniedBoostedProcedureExecutor2

The resulting role has privileges that allow executing all procedures with elevated privileges except
db.labels which is not allowed to execute at all:

SHOW ROLE deniedBoostedProcedureExecutor2 PRIVILEGES AS COMMANDS

Lists all privileges for role deniedBoostedProcedureExecutor2:

Table 541. Result

command

"DENY EXECUTE PROCEDURE db.labels ON DBMS TO `deniedBoostedProcedureExecutor2`"

"GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO `deniedBoostedProcedureExecutor2`"

Rows: 2

475

Example 18. Grant EXECUTE BOOSTED PROCEDURE and deny EXECUTE BOOSTED PROCEDURE

GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO deniedBoostedProcedureExecutor3

DENY EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO deniedBoostedProcedureExecutor3

The resulting role has privileges that allow executing all procedures with elevated privileges except
db.labels which is not allowed to execute at all:

SHOW ROLE deniedBoostedProcedureExecutor3 PRIVILEGES AS COMMANDS

Lists all privileges for role deniedBoostedProcedureExecutor3:

Table 542. Result

command

"DENY EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO `deniedBoostedProcedureExecutor3`"

"GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO `deniedBoostedProcedureExecutor3`"

Rows: 2

Example 19. Grant EXECUTE PROCEDURE and EXECUTE BOOSTED PROCEDURE and deny EXECUTE BOOSTED
PROCEDURE

GRANT EXECUTE PROCEDURE db.labels ON DBMS TO deniedBoostedProcedureExecutor4

GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO deniedBoostedProcedureExecutor4

DENY EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO deniedBoostedProcedureExecutor4

The resulting role has privileges that allow executing all procedures with elevated privileges except
db.labels which is only allowed to execute using the user’s own privileges:

SHOW ROLE deniedBoostedProcedureExecutor4 PRIVILEGES AS COMMANDS

Table 543. Result

command

"DENY EXECUTE BOOSTED PROCEDURE db.labels ON DBMS TO `deniedBoostedProcedureExecutor4`"

"GRANT EXECUTE BOOSTED PROCEDURE * ON DBMS TO `deniedBoostedProcedureExecutor4`"

"GRANT EXECUTE PROCEDURE db.labels ON DBMS TO `deniedBoostedProcedureExecutor4`"

Rows: 3

476

Example 20. How would the privileges from Examples 1 to 4 affect the output of a procedure?

Let’s assume there exists a procedure called myProc.

This procedure gives the result A and B for a user with EXECUTE PROCEDURE privilege and A, B and C for
a user with EXECUTE BOOSTED PROCEDURE privilege.

Now, let’s adapt the privileges in examples 1 to 4 to apply to this procedure and show what is
returned. With the privileges from example 1, granted EXECUTE PROCEDURE * and denied EXECUTE
BOOSTED PROCEDURE myProc, the myProc procedure returns the result A and B.

With the privileges from example 2, granted EXECUTE BOOSTED PROCEDURE * and denied EXECUTE
PROCEDURE myProc, execution of the myProc procedure is not allowed.

With the privileges from example 3, granted EXECUTE BOOSTED PROCEDURE * and denied EXECUTE
BOOSTED PROCEDURE myProc, execution of the myProc procedure is not allowed.

With the privileges from example 4, granted EXECUTE PROCEDURE myProc and EXECUTE BOOSTED
PROCEDURE * and denied EXECUTE BOOSTED PROCEDURE myProc, the myProc procedure returns the result
A and B.

For comparison, when only granted EXECUTE BOOSTED PROCEDURE myProc, the myProc procedure
returns the result A, B and C, without needing to be granted the EXECUTE PROCEDURE myProc privilege.

The EXECUTE ADMIN PROCEDURE privilege

The ability to execute admin procedures (annotated with @Admin) can be granted via the EXECUTE ADMIN
PROCEDURES privilege. This privilege is equivalent with granting the EXECUTE BOOSTED PROCEDURE privilege on
each of the admin procedures. Any new admin procedures that gets added are automatically included in
this privilege. The following query shows an example of how to grant this privilege:

GRANT EXECUTE ADMIN PROCEDURES ON DBMS TO adminProcedureExecutor

Users with the role adminProcedureExecutor can then run any admin procedure with elevated privileges.

The resulting role has privileges that allow executing all admin procedures:

SHOW ROLE adminProcedureExecutor PRIVILEGES AS COMMANDS

Lists all privileges for role adminProcedureExecutor:

Table 544. Result

command

"GRANT EXECUTE ADMIN PROCEDURES ON DBMS TO `adminProcedureExecutor`"

Rows: 1

477

To compare this with the EXECUTE PROCEDURE and EXECUTE BOOSTED PROCEDURE privileges, let’s revisit the
myProc procedure. This time as an admin procedure, which gives the result A, B and C when allowed to
execute.

Let’s start with a user only granted the EXECUTE PROCEDURE myProc privilege, execution of the myProc
procedure is not allowed.

However, for a user granted EXECUTE BOOSTED PROCEDURE myProc or EXECUTE ADMIN PROCEDURES, the myProc
procedure returns the result A, B and C.

Any denied execute privilege results in the procedure not being allowed to execute. It does not matter
whether EXECUTE PROCEDURE, EXECUTE BOOSTED PROCEDURE or EXECUTE ADMIN PROCEDURES is denied.

The EXECUTE USER DEFINED FUNCTION privilege

The ability to execute a user defined function (UDF) can be granted via the EXECUTE USER DEFINED
FUNCTION privilege. A user with this privilege is allowed to execute the UDFs matched by the name-
globbing.

The EXECUTE USER DEFINED FUNCTION privilege does not apply to built-in functions, which
are always executable.

Example 21. Execute user defined function

The following query shows an example of how to grant this privilege:

GRANT EXECUTE USER DEFINED FUNCTION apoc.coll.* ON DBMS TO functionExecutor

Or in short form:

GRANT EXECUTE FUNCTION apoc.coll.* ON DBMS TO functionExecutor

Users with the role functionExecutor can then run any UDF in the apoc.coll namespace. The
function is run using the user’s own privileges.

The resulting role has privileges that only allow executing UDFs in the apoc.coll namespace:

SHOW ROLE functionExecutor PRIVILEGES AS COMMANDS

Lists all privileges for role functionExecutor:

Table 545. Result

command

"GRANT EXECUTE FUNCTION apoc.coll.* ON DBMS TO `functionExecutor`"

Rows: 1

478

If you want to allow executing all but a few UDFs, you can grant EXECUTE USER DEFINED FUNCTIONS * and
deny the unwanted functions.

Example 22. Execute user defined functions

The following queries allow for executing all UDFs except those starting with apoc.any.prop:

GRANT EXECUTE USER DEFINED FUNCTIONS * ON DBMS TO deniedFunctionExecutor

DENY EXECUTE USER DEFINED FUNCTION apoc.any.prop* ON DBMS TO deniedFunctionExecutor

Or in short form:

GRANT EXECUTE FUNCTIONS * ON DBMS TO deniedFunctionExecutor

DENY EXECUTE FUNCTION apoc.any.prop* ON DBMS TO deniedFunctionExecutor

The resulting role has privileges that only allow executing all procedures except those starting with
apoc.any.prop:

SHOW ROLE deniedFunctionExecutor PRIVILEGES AS COMMANDS

Lists all privileges for role deniedFunctionExecutor:

Table 546. Result

command

"DENY EXECUTE FUNCTION apoc.any.prop* ON DBMS TO `deniedFunctionExecutor`"

"GRANT EXECUTE FUNCTION * ON DBMS TO `deniedFunctionExecutor`"

Rows: 2

The apoc.any.property and apoc.any.properties is blocked, as well as any other procedures starting
with apoc.any.prop.

The EXECUTE BOOSTED USER DEFINED FUNCTION privilege

The ability to execute a user defined function (UDF) with elevated privileges can be granted via the
EXECUTE BOOSTED USER DEFINED FUNCTION privilege. A user with this privilege is allowed to execute the
UDFs matched by the name-globbing without the execution being restricted to their other privileges.
There is no need to grant an individual EXECUTE USER DEFINED FUNCTION privilege for the functions either,
as granting the EXECUTE BOOSTED USER DEFINED FUNCTION includes an implicit EXECUTE USER DEFINED
FUNCTION grant for them. A denied EXECUTE USER DEFINED FUNCTION still denies executing the function.

479

The EXECUTE BOOSTED USER DEFINED FUNCTION privilege does not apply to built-in
functions, as they have no concept of elevated privileges.

Granting EXECUTE BOOSTED USER DEFINED FUNCTION on its own allows the UDF to be both executed
(because of the implicit EXECUTE USER DEFINED FUNCTION grant) and given elevated privileges during the
execution. A denied EXECUTE BOOSTED USER DEFINED FUNCTION on its own behaves slightly differently, and
only denies the elevation and not the execution of the UDF. However, a role with only a granted EXECUTE
BOOSTED USER DEFINED FUNCTION and a denied EXECUTE BOOSTED USER DEFINED FUNCTION denies the
execution as well. This is the same behavior as for the EXECUTE BOOSTED PROCEDURE privilege.

Example 23. Execute boosted user defined function

The following query shows an example of how to grant the EXECUTE BOOSTED USER DEFINED FUNCTION
privilege:

GRANT EXECUTE BOOSTED USER DEFINED FUNCTION apoc.any.properties ON DBMS TO boostedFunctionExecutor

Or in short form:

GRANT EXECUTE BOOSTED FUNCTION apoc.any.properties ON DBMS TO boostedFunctionExecutor

Users with the role boostedFunctionExecutor can then run apoc.any.properties with full privileges,
seeing every property on the node/relationship not just the properties that the user has READ privilege
on.

The resulting role has privileges that only allow executing the UDF apoc.any.properties, but with
elevated execution:

SHOW ROLE boostedFunctionExecutor PRIVILEGES AS COMMANDS

Lists all privileges for role boostedFunctionExecutor:

Table 547. Result

command

"GRANT EXECUTE BOOSTED FUNCTION apoc.any.properties ON DBMS TO `boostedFunctionExecutor`"

Rows: 1

Procedure and user-defined function name-globbing

The name-globbing for procedure and user defined function names is a simplified version of globbing for
filename expansions, only allowing two wildcard characters; * and ?. They are used for multiple and single
character matches, where * means 0 or more characters and ? matches exactly one character.

480

The name-globbing is subject to the standard Cypher restrictions on valid identifiers,
with the exception that it may include dots, stars, and question marks without the need
for escaping using backticks. Each part of the name-globbing separated by dots may be
individually escaped, for example, mine.`procedureWith%` but not
mine.procedure`With%`. Also good to keep in mind is that the wildcard characters
behave as wildcards even when escaped. As an example, using `*` is equivalent to
using *, and thus allows executing all functions or procedures and not only the
procedure or function named *.

The examples below only use procedures but the same rules apply to user defined function names. For the
examples below, assume we have the following procedures:

• mine.public.exampleProcedure

• mine.public.exampleProcedure1

• mine.public.exampleProcedure2

• mine.public.with#Special§Characters

• mine.private.exampleProcedure

• mine.private.exampleProcedure1

• mine.private.exampleProcedure2

• mine.private.with#Special§Characters

• your.exampleProcedure

GRANT EXECUTE PROCEDURE * ON DBMS TO globbing1

Users with the role globbing1 can then run procedures all the procedures.

GRANT EXECUTE PROCEDURE mine.*.exampleProcedure ON DBMS TO globbing2

Users with the role globbing2 can then run procedures mine.public.exampleProcedure and
mine.private.exampleProcedure, but none of the others.

GRANT EXECUTE PROCEDURE mine.*.exampleProcedure? ON DBMS TO globbing3

Users with the role globbing3 can then run procedures mine.public.exampleProcedure1,
mine.private.exampleProcedure1 and mine.private.exampleProcedure2, but none of the others.

GRANT EXECUTE PROCEDURE *.exampleProcedure ON DBMS TO globbing4

Users with the role globbing4 can then run procedures your.exampleProcedure,
mine.public.exampleProcedure and mine.private.exampleProcedure, but none of the others.

GRANT EXECUTE PROCEDURE mine.public.exampleProcedure* ON DBMS TO globbing5

481

Users with the role globbing5 can then run procedures mine.public.exampleProcedure,
mine.public.exampleProcedure1 and mine.public.exampleProcedure42, but none of the others.

GRANT EXECUTE PROCEDURE `mine.public.with#*§Characters`, mine.private.`with#Spec???§Characters` ON DBMS TO
globbing6

Users with the role globbing6 can then run procedures mine.public.with#Special§Characters and
mine.private.with#Special§Characters, but none of the others.

The name-globbing may be fully or partially escaped, and both the * and ? are
interpreted as wildcards either way.

8.9.7. Granting ALL DBMS PRIVILEGES

The right to perform the following privileges can be achieved with a single command:

• create roles

• drop roles

• assign roles

• remove roles

• show roles

• create users

• alter users

• drop users

• show users

• create databases

• drop databases

• show privileges

• assign privileges

• remove privileges

• execute all procedures with elevated privileges

• execute all user defined functions with elevated privileges

GRANT ALL [[DBMS] PRIVILEGES]
 ON DBMS
 TO role[, ...]

For example, granting the abilities above to the role dbmsManager is done using the following query.

GRANT ALL DBMS PRIVILEGES ON DBMS TO dbmsManager

The privileges granted can be seen using the SHOW PRIVILEGES command:

482

SHOW ROLE dbmsManager PRIVILEGES AS COMMANDS

Table 548. Result

command

"GRANT ALL DBMS PRIVILEGES ON DBMS TO `dbmsManager`"

Rows: 1

8.10. Limitations

8.10.1. Security and Indexes

As described in Indexes for search performance, Neo4j 4.3 supports the creation and use of indexes to
improve the performance of Cypher queries. The Neo4j security model will impact the results of queries
(regardless if the indexes are used). When using non full-text Neo4j indexes, a Cypher query will always
return the same results it would have if no index existed. This means that if the security model causes
fewer results to be returned due to restricted read access in Graph and sub-graph access control, the
index will also return the same fewer results.

However, this rule is not fully obeyed by Indexes for full-text search. These specific indexes are backed by
Lucene internally. It is therefore not possible to know for certain whether a security violation occurred for
each specific entry returned from the index. As a result, Neo4j will return zero results from full-text indexes
if it is determined that any result might violate the security privileges active for that query.

Since full-text indexes are not automatically used by Cypher, this does not lead to the case where the
same Cypher query would return different results simply because such an index got created. Users need to
explicitly call procedures to use these indexes. The problem is only that if this behavior is not understood
by the user, they might expect the full text index to return the same results that a different, but
semantically similar, Cypher query does.

Example with denied properties

Consider the following example. The database has nodes with labels :User and :Person, and these have
properties name and surname. We have indexes on both properties:

CREATE INDEX singleProp FOR (n:User) ON (n.name);
CREATE INDEX composite FOR (n:User) ON (n.name, n.surname);
CREATE FULLTEXT INDEX userNames FOR (n:User|Person) ON EACH [n.name, n.surname];

Full-text indexes support multiple labels. See Indexes for full-text search for more details
on creating and using full-text indexes.

After creating these indexes, it would appear that the latter two indexes accomplish the same thing.
However, this is not completely accurate. The composite and fulltext indexes behave in different ways and
are focused on different use cases. A key difference is that full-text indexes are backed by Lucene, and will
use the Lucene syntax for querying the index.

483

This has consequences for users restricted on the labels or properties involved in the indexes. Ideally, if the
labels and properties in the index are denied, we can correctly return zero results from both native indexes
and full-text indexes. However, there are borderline cases where this is not as simple.

Imagine the following nodes were added to the database:

CREATE (:User {name:'Sandy'});
CREATE (:User {name:'Mark', surname:'Andy'});
CREATE (:User {name:'Andy', surname:'Anderson'});
CREATE (:User:Person {name:'Mandy', surname:'Smith'});
CREATE (:User:Person {name:'Joe', surname:'Andy'});

Consider denying the label :Person.

DENY TRAVERSE Person ON GRAPH * TO users;

If the user runs a query that uses the native single property index on name:

MATCH (n:User) WHERE n.name CONTAINS 'ndy' RETURN n.name;

This query performs several checks:

• do a scan on the index to create a stream of results of nodes with the name property, which leads to
five results

• filter the results to include only nodes where n.name CONTAINS 'ndy', filtering out Mark and Joe so we
have three results

• filter the results to exclude nodes that also have the denied label :Person, filtering out Mandy so we
have two results

For the above dataset, we can see we will get two results and that only one of these has the surname
property.

To use the native composite index on name and surname, the query needs to include a predicate on the
surname property as well:

MATCH (n:User) WHERE n.name CONTAINS 'ndy' AND n.surname IS NOT NULL RETURN n.name;

This query performs several checks, almost identical to the single property index query:

• do a scan on the index to create a stream of results of nodes with the name and surname property,
which leads to four results

• filter the results to include only nodes where n.name CONTAINS 'ndy', filtering out Mark and Joe so we
have two results

• filter the results to exclude nodes that also have the denied label :Person, filtering out Mandy so we only
have one result

For the above dataset, we can see we will get one result.

484

What if we query this with the full-text index:

CALL db.index.fulltext.queryNodes("userNames", "ndy") YIELD node, score
RETURN node.name

The problem now is that we do not know if the results provided by the index were because of a match to
the name or the surname property. The steps taken by the query engine would be:

• run a Lucene query on the full-text index to produce results containing ndy in either property, leading
to five results.

• filter the results to exclude nodes that also have the label :Person, filtering out Mandy and Joe so we
have three results.

This difference in results is due to the OR relationship between the two properties in the index creation.

Denying properties

Now consider denying access on properties, like the surname property:

DENY READ {surname} ON GRAPH * TO users;

Now we run the same queries again:

MATCH (n:User) WHERE n.name CONTAINS 'ndy' RETURN n.name;

This query operates exactly as before, returning the same two results, because nothing in this query
relates to the denied property.

However, for the query targeting the composite index, things have changed.

MATCH (n:User) WHERE n.name CONTAINS 'ndy' AND n.surname IS NOT NULL RETURN n.name;

Since the surname property is denied, it will appear to always be null and the composite index empty.
Therefore, the query returns no result.

Now consider the full-text index query:

CALL db.index.fulltext.queryNodes("userNames", "ndy") YIELD node, score
RETURN node.name

The problem remains, we do not know if the results provided by the index were because of a match on the
name or the surname property. Results from the surname now need to be excluded by the security rules,
because they require that the user cannot see any surname properties. However, the security model is not
able to introspect the Lucene query to know what it will actually do, whether it works only on the allowed
name property, or also on the disallowed surname property. We know that the earlier query returned a
match for Joe Andy which should now be filtered out. So, in order to never return results the user should
not be able to see, we have to block all results. The steps taken by the query engine would be:

485

• Determine if the full-text index includes denied properties

• If yes, return an empty results stream, otherwise process as before

The query will therefore return zero results in this case, rather than simply returning the results Andy and
Sandy which might be expected.

8.10.2. Security and labels

Traversing the graph with multi-labeled nodes

The general influence of access control privileges on graph traversal is described in detail in Graph and
sub-graph access control. The following section will only focus on nodes because of their ability to have
multiple labels. Relationships can only ever have one type and thus they do not exhibit the behavior this
section aims to clarify. While this section will not mention relationships further, the general function of the
traverse privilege also applies to them.

For any node that is traversable, due to GRANT TRAVERSE or GRANT MATCH, the user can get information about
the labels attached to the node by calling the built-in labels() function. In the case of nodes with multiple
labels, this can seemingly result in labels being returned to which the user wasn’t directly granted access
to.

To give an illustrative example, imagine a graph with three nodes: one labeled :A, one labeled :B and one
with :A :B. We also have a user with a role custom as defined by:

GRANT TRAVERSE ON GRAPH * NODES A TO custom;

If that user were to execute

MATCH (n:A) RETURN n, labels(n);

they would be returned two nodes: the node that was labeled with :A and the node with labels :A :B.

In contrast, executing

MATCH (n:B) RETURN n, labels(n);

will return only the one node that has both labels: :A :B. Even though :B was not allowed access for
traversal, there is one node with that label accessible in the data because of the allowlisted label :A that is
attached to the same node.

If a user is denied traverse on a label they will never get results from any node that has this label attached
to it. Thus, the label name will never show up for them. For our example this can be done by executing:

DENY TRAVERSE ON GRAPH * NODES B TO custom;

The query

486

MATCH (n:A) RETURN n, labels(n);

will now return the node only labeled with :A, while the query

MATCH (n:B) RETURN n, labels(n);

will now return no nodes.

The db.labels() procedure

In contrast to the normal graph traversal described in the previous section, the built-in db.labels()
procedure is not processing the data graph itself but the security rules defined on the system graph. That
means:

• if a label is explicitly whitelisted (granted), it will be returned by this procedure.

• if a label is denied or isn’t explicitly allowed it will not be returned by this procedure.

To reuse the example of the previous section: imagine a graph with three nodes: one labeled :A, one
labeled :B and one with :A :B. We also have a user with a role custom as defined by:

GRANT TRAVERSE ON GRAPH * NODES A TO custom;

This means that only label :A is explicitly allowlisted. Thus, executing

CALL db.labels();

will only return label :A because that is the only label for which traversal was granted.

8.10.3. Security and count store operations

The rules of a security model may impact some of the database operations. This comes down to necessary
additional security checks that incur additional data accesses. Especially in regards to count store
operations, as they are usually very fast lookups, the difference might be noticeable.

Let’s look at the following security rules that set up a restricted and a free role as an example:

GRANT TRAVERSE ON GRAPH * NODES Person TO restricted;
DENY TRAVERSE ON GRAPH * NODES Customer TO restricted;
GRANT TRAVERSE ON GRAPH * ELEMENTS * TO free;

Now, let’s look at what the database needs to do in order to execute the following query:

MATCH (n:Person) RETURN count(n);

For both roles the execution plan will look like this:

487

+--------------------------+
| Operator |
+--------------------------+
| +ProduceResults |
| | +
| +NodeCountFromCountStore |
+--------------------------+

Internally however, very different operations need to be executed. The following table illustrates the
difference.

User with free role User with restricted role

The database can access the count store and retrieve the
total number of nodes with the label :Person.

This is a very quick operation.

The database cannot just access the count store because it
must make sure that only traversable nodes with the desired
label :Person are counted. Due to this, each node with the
:Person label needs to be accessed and examined to make
sure that it does not also have a denylisted label, such as
:Customer.

Due to the additional data accesses that the security checks
need to do, this operation will be slower compared to
executing the query as an unrestricted user.

488

Chapter 9. Query tuning
Neo4j aims to execute queries as fast as possible.

However, when optimizing for maximum query execution performance, it may be helpful to rephrase
queries using knowledge about the domain and the application.

The overall goal of manual query performance optimization is to ensure that only necessary data is
retrieved from the graph. At the very least, data should get filtered out as early as possible in order to
reduce the amount of work that has to be done in the later stages of query execution. This also applies to
what gets returned: returning whole nodes and relationships ought to be avoided in favour of selecting
and returning only the data that is needed. You should also make sure to set an upper limit on variable
length patterns, so they don’t cover larger portions of the dataset than needed.

Each Cypher query gets optimized and transformed into an execution plan by the Cypher query planner.
To minimize the resources used for this, try to use parameters instead of literals when possible. This allows
Cypher to re-use your queries instead of having to parse and build new execution plans.

To read more about the execution plan operators mentioned in this chapter, see Execution plans.

• Cypher query options

◦ Cypher version

◦ Cypher runtime

◦ Cypher connect-components planner

◦ Cypher update strategy

◦ Cypher expression engine

◦ Cypher operator engine

◦ Cypher interpreted pipes fallback

◦ Cypher replanning

• Profiling a query

• The use of indexes

• Basic query tuning example

• Advanced query tuning example

◦ The data set

◦ Index-backed property-lookup

◦ Index-backed order by

• Planner hints and the USING keyword

◦ Introduction

◦ Index hints

◦ Scan hints

489

◦ Join hints

◦ PERIODIC COMMIT query hint

9.1. Cypher query options
Query execution can be fine-tuned through the use of query options. In order to use one or more of these
options, the query must be prepended with CYPHER, followed by the query option(s), as exemplified thus:
CYPHER query-option [further-query-options] query.

9.1.1. Cypher version

Occasionally, there is a requirement to use a previous version of the Cypher compiler when running a
query. Here we detail the available versions:

Query option Description Default

3.5 This will force the query to use Neo4j Cypher 3.5.

4.2 This will force the query to use Neo4j Cypher 4.2.

4.3 This will force the query to use Neo4j Cypher 4.3. As this is
the default version, it is not necessary to use this option
explicitly.

In Neo4j 4.3, the support for Cypher 3.5 is provided only at the parser level. The
consequence is that some underlying features available in Neo4j 3.5 are no longer
available and will result in runtime errors.

Please refer to the discussion in Cypher Compatibility for more information on which
features are affected.

9.1.2. Cypher runtime

Using the execution plan, the query is executed — and records returned — by the Cypher runtime.
Depending on whether Neo4j Enterprise Edition or Neo4j Community Edition is used, there are three
different runtimes available:

Interpreted

In this runtime, the operators in the execution plan are chained together in a tree, where each non-leaf
operator feeds from one or two child operators. The tree thus comprises nested iterators, and the
records are streamed in a pipelined manner from the top iterator, which pulls from the next iterator and
so on.

Slotted

This is very similar to the interpreted runtime, except that there are additional optimizations regarding

490

the way in which the records are streamed through the iterators. This results in improvements to both
the performance and memory usage of the query. In effect, this can be thought of as the 'faster
interpreted' runtime.

Pipelined

The pipelined runtime was introduced in Neo4j 4.0 as a replacement for the older compiled runtime
used in the Neo4j 3.x versions. It combines some of the advantages of the compiled runtime in a new
architecture that allows for support of a wider range of queries.

Algorithms are employed to intelligently group the operators in the execution plan in order to generate
new combinations and orders of execution which are optimised for performance and memory usage.
While this should lead to superior performance in most cases (over both the interpreted and slotted
runtimes), it is still under development and does not support all possible operators or queries (the
slotted runtime covers all operators and queries).

Option Description Default

runtime=interpreted This will force the query planner to use
the interpreted runtime.

This is not used in
Enterprise Edition
unless explicitly
asked for. It is the
only option for all
queries in
Community
Edition—it is not
necessary to
specify this option
in Community
Edition.

runtime=slotted This will cause the query planner to use
the slotted runtime.

This is the default
option for all
queries which are
not supported by
runtime=pipelined
in Enterprise
Edition.

runtime=pipelined This will cause the query planner to use
the pipelined runtime if it supports the
query. If the pipelined runtime does not
support the query, the planner will fall
back to the slotted runtime.

This is the default
option for some
queries in
Enterprise Edition.

In Enterprise Edition, the Cypher query planner selects the runtime, falling back to alternative runtimes as
follows:

491

• Try the pipelined runtime first.

• If the pipelined runtime does not support the query, then fall back to use the slotted runtime.

• Finally, if the slotted runtime does not support the query, fall back to the interpreted runtime. The
interpreted runtime supports all queries, and is the only option in Neo4j Community Edition.

9.1.3. Cypher planner

The Cypher planner takes a Cypher query and computes an execution plan that solves it. For any given
query there is likely a number of execution plan candidates that each solve the query in a different way.
The planner uses a search algorithm to find the execution plan with the lowest estimated execution cost.

This table describes the available planner options:

Query option Description Default

planner=cost Use cost based planning with default limits on plan
search space and time.

planner=idp Synonym for planner=cost.

planner=dp Use cost based planning without limits on plan
search space and time to perform an exhaustive
search for the best execution plan.

Using this option can significantly
increase the planning time of the
query.

9.1.4. Cypher connect-components planner

One part of the Cypher planner is responsible for combining sub-plans for separate patterns into larger
plans - a task referred to as connecting components.

This table describes the available query options for the connect-components planner:

Query option Description Default

connectComponentsPlanner=greedy Use a greedy approach when combining sub-plans.

Using this option can significantly
reduce the planning time of the
query.

492

Query option Description Default

connectComponentsPlanner=idp Use the cost based IDP search algorithm when
combining sub-plans.

Using this option can significantly
increase the planning time of the
query but usually finds better
plans.

9.1.5. Cypher update strategy

This option affects the eagerness of updating queries.

The possible values are:

Query option Description Default

updateStrategy=default Update queries are executed eagerly when needed.

updateStrategy=eager Update queries are always executed eagerly.

9.1.6. Cypher expression engine

This option affects how the runtime evaluates expressions.

The possible values are:

Query option Description Default

expressionEngine=default Compile expressions and use the compiled
expression engine when needed.

expressionEngine=interpreted Always use the interpreted expression engine.

expressionEngine=compiled Always compile expressions and use the compiled
expression engine.

Cannot be used together with
runtime=interpreted.

9.1.7. Cypher operator engine

This query option affects whether the pipelined runtime attempts to generate compiled code for groups of
operators.

493

The possible values are:

Query option Description Default

operatorEngine=default Attempt to generate compiled operators when
applicable.

operatorEngine=interpreted Never attempt to generate compiled operators.

operatorEngine=compiled Always attempt to generate compiled operators.

Cannot be used together with runtime=interpreted
or runtime=slotted.

9.1.8. Cypher interpreted pipes fallback

This query option affects how the pipelined runtime behaves for operators it does not directly support.

The available options are:

Query option Description Default

interpretedPipesFallback=default Equivalent to
interpretedPipesFallback=whitelisted_plans_onl
y

interpretedPipesFallback=disabled If the plan contains any operators not supported by
the pipelined runtime then another runtime is
chosen to execute the entire plan.

Cannot be used together with runtime=interpreted
or runtime=slotted

interpretedPipesFallback=whitelisted
_plans_only

Parts of the execution plan can be executed on
another runtime. Only certain operators are allowed
to execute on another runtime.

Cannot be used together with runtime=interpreted
or runtime=slotted.

494

Query option Description Default

interpretedPipesFallback=all Parts of the execution plan may be executed on
another runtime. Any operator is allowed to execute
on another runtime. Queries with this option set
might produce incorrect results, or fail.

Cannot be used together with runtime=interpreted
or runtime=slotted.

This setting is experimental, and
using it in a production
environment is discouraged.

9.1.9. Cypher replanning

Cypher replanning occurs in the following circumstances:

• When the query is not in the cache. This can either be when the server is first started or restarted, if
the cache has recently been cleared, or if dbms.query_cache_size was exceeded.

• When the time has past the cypher.statistics_divergence_threshold value.

There may be situations where Cypher query planning can occur at a non-ideal time. For example, when a
query must be as fast as possible and a valid plan is already in place.

Replanning is not performed for all queries at once; it is performed in the same thread as
running the query, and can block the query. However, replanning one query does not
replan any other queries.

There are three different replan options available:

Option Description Default

replan=default This is the planning and replanning option as
described above.

replan=force This will force a replan, even if the plan is valid
according to the planning rules. Once the new plan
is complete, it replaces the existing one in the query
cache.

replan=skip If a valid plan already exists, it will be used even if
the planning rules would normally dictate that it
should be replanned.

The replan option is prepended to queries. For example:

495

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_dbms.query_cache_size
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_cypher.statistics_divergence_threshold

CYPHER replan=force MATCH ...

In a mixed workload, you can force replanning by using the Cypher EXPLAIN commands. This can be useful
to schedule replanning of queries which are expensive to plan, at known times of low load. Using EXPLAIN
will make sure the query is only planned, but not executed. For example:

CYPHER replan=force EXPLAIN MATCH ...

During times of known high load, replan=skip can be useful to not introduce unwanted latency spikes.

9.2. Profiling a query
There are two options to choose from when you want to analyze a query by looking at its execution plan:

EXPLAIN

If you want to see the execution plan but not run the statement, prepend your Cypher statement with
EXPLAIN. The statement will always return an empty result and make no changes to the database.

PROFILE

If you want to run the statement and see which operators are doing most of the work, use PROFILE. This
will run your statement and keep track of how many rows pass through each operator, and how much
each operator needs to interact with the storage layer to retrieve the necessary data. Note that profiling
your query uses more resources, so you should not profile unless you are actively working on a query.

See Execution plans for a detailed explanation of each of the operators contained in an execution plan.

Being explicit about what types and labels you expect relationships and nodes to have in
your query helps Neo4j use the best possible statistical information, which leads to
better execution plans. This means that when you know that a relationship can only be
of a certain type, you should add that to the query. The same goes for labels, where
declaring labels on both the start and end nodes of a relationship helps Neo4j find the
best way to execute the statement.

9.3. The use of indexes
The task of tuning calls for different indexes depending on what the queries look like. Therefore, it is
important to have a fundamental understanding of how the indexes operate. This section describes the
query plans that result from different index scenarios.

Node indexes and relationship indexes operate in the same way. Therefore, node and relationship indexes
are used interchangeably in this section.

Please refer to Indexes for search performance for instructions on how to create and maintain the indexes
themselves.

496

9.3.1. Node index example

In the example below, the query uses a Person(firstname) node index, if it exists.

Query

MATCH (person:Person {firstname: 'Andy'}) RETURN person

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | person | 1 | 1 |
0 | | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +NodeIndexSeek | person:Person(firstname) WHERE firstname = $autostring_0 | 1 | 1 |
2 | 72 | 2/1 | 0.976 | Fused in Pipeline 0 |
+-----------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 136

9.3.2. Relationship index example

In this example, the query uses a KNOWS(since) relationship index, if it exists.

Query

MATCH (person)-[relationship:KNOWS { since: 1992 }]->(friend) RETURN person, friend

497

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--------------------------------
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+--------------------------------
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | person, friend
| 1 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+---+----------------+------
+---------+----------------+ | +---------------------+
| +DirectedRelationshipIndexSeek | (person)-[relationship:KNOWS(since)]->(friend) WHERE since = $autoint_0
| 1 | 1 | 3 | 72 | 2/1 | 0.473 | Fused in
Pipeline 0 |
+--------------------------------
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 3, total allocated memory: 136

9.3.3. Equality check using WHERE (single-property index)

A query containing equality comparisons of a single indexed property in the WHERE clause is backed
automatically by the index. It is also possible for a query with multiple OR predicates to use multiple
indexes, if indexes exist on the properties. For example, if indexes exist on both :Label(p1) and
:Label(p2), MATCH (n:Label) WHERE n.p1 = 1 OR n.p2 = 2 RETURN n will use both indexes.

Query

MATCH (person:Person) WHERE person.firstname = 'Andy' RETURN person

498

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | person | 1 | 1 |
0 | | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +NodeIndexSeek | person:Person(firstname) WHERE firstname = $autostring_0 | 1 | 1 |
2 | 72 | 2/1 | 0.514 | Fused in Pipeline 0 |
+-----------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 136

9.3.4. Equality check using WHERE (composite index)

A query containing equality comparisons for all the properties of a composite index will automatically be
backed by the same index. However, the query does not need to have equality on all properties. It can
have ranges and existence predicates as well. But in these cases rewrites might happen depending on
which properties have which predicates, see composite index limitations. The following query will use the
composite index defined earlier:

Query

MATCH (n:Person) WHERE n.age = 35 AND n.country = 'UK' RETURN n

However, the query MATCH (n:Person) WHERE n.age = 35 RETURN n will not be backed by the composite
index, as the query does not contain a predicate on the country property. It will only be backed by an index
on the Person label and age property defined thus: :Person(age); i.e. a single-property index.

Result

+---+
| n |
+---+
| Node[0]{country:"UK",firstname:"John",highScore:54321,surname:"Smith",name:"john",age:35} |
+---+
1 row

9.3.5. Range comparisons using WHERE (single-property index)

Single-property indexes are also automatically used for inequality (range) comparisons of an indexed
property in the WHERE clause.

499

Query

MATCH (friend)<-[r:KNOWS]-(person) WHERE r.since < 2011 RETURN friend, person

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---------------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+---------------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | friend, person |
1 | 1 | 0 | | | | Fused in Pipeline 0 |
| | +--
+----------------+------+---------+----------------+ |
+---------------------+
| +DirectedRelationshipIndexSeekByRange | (person)-[r:KNOWS(since)]->(friend) WHERE since < $autoint_0 |
1 | 1 | 3 | 72 | 2/1 | 0.543 | Fused in Pipeline 0 |
+---------------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 3, total allocated memory: 136

9.3.6. Range comparisons using WHERE (composite index)

Composite indexes are also automatically used for inequality (range) comparisons of indexed properties in
the WHERE clause. Equality or list membership check predicates may precede the range predicate. However,
predicates after the range predicate may be rewritten as an existence check predicate and a filter as
described in composite index limitations.

Query

MATCH ()-[r:KNOWS]-() WHERE r.since < 2011 AND r.lastMet > 2019 RETURN r.since

500

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+----------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+----------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | `r.since`
| 4 | 2 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +Projection | cache[r.since] AS `r.since`
| 4 | 2 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +Filter | cache[r.lastMet] > $autoint_1
| 4 | 2 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +UndirectedRelationshipIndexSeek | (anon_0)-[r:KNOWS(since, lastMet)]-(anon_1) WHERE since < $autoint_0
AND lastMet IS NOT NULL, cache[| 7 | 2 | 3 | 72 |
1/1 | 1.207 | Fused in Pipeline 0 |
| | r.since], cache[r.lastMet]
| | | | | | |
|
+----------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 3, total allocated memory: 136

9.3.7. Multiple range comparisons using WHERE (single-property index)

When the WHERE clause contains multiple inequality (range) comparisons for the same property, these can
be combined in a single index range seek.

Query

MATCH (person:Person) WHERE 10000 < person.highScore < 20000 RETURN person

501

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | person
| 1 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+--+----------------
+------+---------+----------------+ | +---------------------+
| +NodeIndexSeekByRange | person:Person(highScore) WHERE highScore > $autoint_0 AND highScore < $autoint_1
| 1 | 1 | 2 | 72 | 2/1 | 0.471 | Fused in
Pipeline 0 |
+-----------------------
+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 136

9.3.8. Multiple range comparisons using WHERE (composite index)

When the WHERE clause contains multiple inequality (range) comparisons for the same property, these can
be combined in a single index range seek. That single range seek created in the following query will then
use the composite index Person(highScore, name) if it exists.

Query

MATCH (person:Person) WHERE 10000 < person.highScore < 20000 AND person.name IS NOT NULL RETURN
 person

502

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person
| 1 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +NodeIndexSeek | person:Person(highScore, name) WHERE highScore > $autoint_0 AND highScore < $autoint_1
AND name IS N | 1 | 1 | 2 | 72 | 2/1 | 13.696 |
Fused in Pipeline 0 |
| | OT NULL
| | | | | | |
|
+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 136

9.3.9. List membership check using IN (single-property index)

The IN predicate on r.since in the following query will use the single-property index KNOWS(since) if it
exists.

Query

MATCH (person)-[r:KNOWS]->(friend) WHERE r.since IN [1992, 2017] RETURN person, friend

503

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+--------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person, friend |
1 | 1 | 0 | | | | Fused in Pipeline 0 |
| | +--
+----------------+------+---------+----------------+ |
+---------------------+
| +DirectedRelationshipIndexSeek | (person)-[r:KNOWS(since)]->(friend) WHERE since IN $autolist_0 |
1 | 1 | 4 | 72 | 3/1 | 1.206 | Fused in Pipeline 0 |
+--------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 4, total allocated memory: 136

9.3.10. List membership check using IN (composite index)

The IN predicates on r.since and r.lastMet in the following query will use the composite index
KNOWS(since, lastMet) if it exists.

Query

MATCH (person)-[r:KNOWS]->(friend) WHERE r.since IN [1992, 2017] AND r.lastMet IN [2002,
 2021] RETURN person, friend

504

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+--------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person, friend
| 5 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +DirectedRelationshipIndexSeek | (person)-[r:KNOWS(since, lastMet)]->(friend) WHERE since IN $autolist_0
AND lastMet IN $autolist_1 | 5 | 1 | 6 | 72 | 5/1 |
5.452 | Fused in Pipeline 0 |
+--------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 6, total allocated memory: 136

9.3.11. Prefix search using STARTS WITH (single-property index)

The STARTS WITH predicate on person.firstname in the following query will use the Person(firstname)
index, if it exists.

Query

MATCH (person:Person) WHERE person.firstname STARTS WITH 'And' RETURN person

505

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person |
2 | 1 | 0 | | | | Fused in Pipeline 0 |
| | +--
+----------------+------+---------+----------------+ |
+---------------------+
| +NodeIndexSeekByRange | person:Person(firstname) WHERE firstname STARTS WITH $autostring_0 |
2 | 1 | 2 | 72 | 3/0 | 0.514 | Fused in Pipeline 0 |
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 136

9.3.12. Prefix search using STARTS WITH (composite index)

The STARTS WITH predicate on person.firstname in the following query will use the
Person(firstname,surname) index, if it exists. Any (non-existence check) predicate on person.surname will
be rewritten as existence check with a filter. However, if the predicate on person.firstname is a equality
check then a STARTS WITH on person.surname would also use the index (without rewrites). More
information about how the rewriting works can be found in composite index limitations.

Query

MATCH (person:Person) WHERE person.firstname STARTS WITH 'And' AND person.surname IS NOT NULL RETURN
 person

506

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+-----------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person
| 1 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+---
+----------------+------+---------+----------------+ |
+---------------------+
| +NodeIndexSeek | person:Person(firstname, surname) WHERE firstname STARTS WITH $autostring_0 AND
surname IS NOT NULL | 1 | 1 | 2 | 72 | 3/0 |
2.998 | Fused in Pipeline 0 |
+-----------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 136

9.3.13. Suffix search using ENDS WITH (single-property index)

The ENDS WITH predicate on r.metIn in the following query uses the KNOWS(metIn) index, if it exists. All
values stored in the KNOWS(metIn) index are searched, and entries ending with 'mo' are returned. This
means that although the search is not optimized to the extent of queries using =, IN, >, < or STARTS WITH, it
is still faster than not using an index in the first place.

Query

MATCH (person)-[r:KNOWS]->(friend) WHERE r.metIn ENDS WITH 'mo' RETURN person, friend

507

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+--
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | person, friend
| 0 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+---+----------------+------
+---------+----------------+ | +---------------------+
| +DirectedRelationshipIndexEndsWithScan | (person)-[r:KNOWS(metIn)]->(friend) WHERE metIn ENDS WITH
$autostring_0 | 0 | 1 | 3 | 72 | 2/1 | 0.517 |
Fused in Pipeline 0 |
+--
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 3, total allocated memory: 136

9.3.14. Suffix search using ENDS WITH (composite index)

The ENDS WITH predicate on r.metIn in the following query uses the KNOWS(metIn,lastMetIn) index, if it
exists. However, it is rewritten as existence check and a filter due to the index not supporting actual suffix
searches for composite indexes, this is still faster than not using an index in the first place. Any (non-
existence check) predicate on KNOWS.lastMetIn is also rewritten as existence check with a filter. More
information about how the rewriting works can be found in composite index limitations.

Query

MATCH (person)-[r:KNOWS]->(friend) WHERE r.metIn ENDS WITH 'mo' AND r.lastMetIn IS NOT NULL RETURN
 person,
 friend

508

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+--------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person, friend
| 1 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +Filter | cache[r.metIn] ENDS WITH $autostring_0
| 1 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +DirectedRelationshipIndexScan | (person)-[r:KNOWS(metIn, lastMetIn)]->(friend) WHERE metIn IS NOT NULL
AND lastMetIn IS NOT NULL, ca | 6 | 1 | 3 | 72 | 2/1
| 0.490 | Fused in Pipeline 0 |
| | che[r.metIn]
| | | | | | |
|
+--------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 3, total allocated memory: 136

9.3.15. Substring search using CONTAINS (single-property index)

The CONTAINS predicate on person.firstname in the following query will use the Person(firstname) index,
if it exists. All values stored in the Person(firstname) index will be searched, and entries containing 'h'
will be returned. This means that although the search will not be optimized to the extent of queries using =,
IN, >, < or STARTS WITH, it is still faster than not using an index in the first place. Composite indexes are
currently not able to support CONTAINS.

Query

MATCH (person:Person) WHERE person.firstname CONTAINS 'h' RETURN person

509

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person |
2 | 1 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +NodeIndexContainsScan | person:Person(firstname) WHERE firstname CONTAINS $autostring_0 |
2 | 1 | 2 | 72 | 3/0 | 0.953 | Fused in Pipeline 0 |
+------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 136

9.3.16. Substring search using CONTAINS (composite index)

The CONTAINS predicate on person.surname in the following query will use the Person(surname,age) index,
if it exists. However, it will be rewritten as existence check and a filter due to the index not supporting
actual suffix searches for composite indexes, this is still faster than not using an index in the first place.
Any (non-existence check) predicate on person.age will also be rewritten as existence check with a filter.
More information about how the rewriting works can be found in composite index limitations.

Query

MATCH (person:Person) WHERE person.surname CONTAINS '300' AND person.age IS NOT NULL RETURN person

510

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person
| 11 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +Filter | cache[person.surname] CONTAINS $autostring_0
| 11 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +NodeIndexScan | person:Person(surname, age) WHERE surname IS NOT NULL AND age IS NOT NULL,
cache[person.surname] | 111 | 303 | 304 | 72 | 5/0 |
2.546 | Fused in Pipeline 0 |
+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 304, total allocated memory: 136

9.3.17. Existence check using IS NOT NULL (single-property index)

The r.since IS NOT NULL predicate in the following query uses the KNOWS(since) index, if it exists.

Query

MATCH (person)-[r:KNOWS]->(friend) WHERE r.since IS NOT NULL RETURN person, friend

511

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+--------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person, friend |
1 | 1 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +DirectedRelationshipIndexScan | (person)-[r:KNOWS(since)]->(friend) WHERE since IS NOT NULL |
1 | 1 | 3 | 72 | 2/1 | 0.417 | Fused in Pipeline 0 |
+--------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 3, total allocated memory: 136

9.3.18. Existence check using IS NOT NULL (composite index)

The p.firstname IS NOT NULL and p.surname IS NOT NULL predicates in the following query will use the
Person(firstname,surname) index, if it exists. Any (non-existence check) predicate on person.surname will
be rewritten as existence check with a filter.

Query

MATCH (p:Person) WHERE p.firstname IS NOT NULL AND p.surname IS NOT NULL RETURN p

512

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+-----------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | p |
1 | 2 | 0 | | | | Fused in Pipeline 0 |
| | +--
+----------------+------+---------+----------------+ |
+---------------------+
| +NodeIndexScan | p:Person(firstname, surname) WHERE firstname IS NOT NULL AND surname IS NOT NULL |
1 | 2 | 3 | 72 | 2/1 | 0.633 | Fused in Pipeline 0 |
+-----------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 3, total allocated memory: 136

9.3.19. Spatial distance searches (single-property index)

If a property with point values is indexed, the index is used for spatial distance searches as well as for
range queries.

Query

MATCH ()-[r:KNOWS]->() WHERE distance(r.lastMetPoint, point({x: 1, y: 2})) < 2 RETURN r.lastMetPoint

513

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---------------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+---------------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | `r.lastMetPoint`
| 13 | 9 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +Projection | cache[r.lastMetPoint] AS `r.lastMetPoint`
| 13 | 9 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +Filter | distance(cache[r.lastMetPoint], point({x: $autoint_0, y:
$autoint_1})) < $autoint_2 | 13 | 9 | 0 | |
| | Fused in Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +DirectedRelationshipIndexSeekByRange | (anon_0)-[r:KNOWS(lastMetPoint)]->(anon_1) WHERE
distance(lastMetPoint, point($autoint_0, $autoint_1 | 13 | 9 | 19 | 72 |
5/3 | 1.774 | Fused in Pipeline 0 |
| |)) < $autoint_2, cache[r.lastMetPoint]
| | | | | | |
|
+---------------------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 19, total allocated memory: 136

9.3.20. Spatial distance searches (composite index)

If a property with point values is indexed, the index is used for spatial distance searches as well as for
range queries. Any following (non-existence check) predicates (here on property p.name for index
:Person(place,name)) will be rewritten as existence check with a filter.

Query

MATCH (p:Person) WHERE distance(p.place, point({x: 1,
 y: 2})) < 2 AND p.name IS NOT NULL RETURN p.place

514

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+-----------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | `p.place`
| 72 | 9 | 0 | | | | Fused in
Pipeline 0 |
| |
+---
+----------------+------+---------+----------------+ |
+---------------------+
| +Projection | cache[p.place] AS `p.place`
| 72 | 9 | 0 | | | | Fused in
Pipeline 0 |
| |
+---
+----------------+------+---------+----------------+ |
+---------------------+
| +Filter | distance(cache[p.place], point({x: $autoint_0, y: $autoint_1})) < $autoint_2
| 72 | 9 | 0 | | | | Fused in
Pipeline 0 |
| |
+---
+----------------+------+---------+----------------+ |
+---------------------+
| +NodeIndexSeek | p:Person(place, name) WHERE distance(place, point($autoint_0, $autoint_1)) <
$autoint_2 AND name IS | 72 | 9 | 10 | 72 | 6/0 |
2.964 | Fused in Pipeline 0 |
| | NOT NULL, cache[p.place]
| | | | | | |
|
+-----------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 10, total allocated memory: 136

9.3.21. Spatial bounding box searches (single-property index)

The ability to do index seeks on bounded ranges works even with the 2D and 3D spatial Point types.

Query

MATCH (person:Person) WHERE point({x: 1, y: 5}) < person.location < point({x: 2, y: 6}) RETURN person

515

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+-----------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person
| 0 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +NodeIndexSeekByRange | person:Person(location) WHERE location > point({x: $autoint_0, y: $autoint_1})
AND location < point(| 0 | 1 | 2 | 72 | 8/0 |
11.041 | Fused in Pipeline 0 |
| | {x: $autoint_2, y: $autoint_3})
| | | | | | |
|
+-----------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 136

9.3.22. Spatial bounding box searches (composite index)

The ability to do index seeks on bounded ranges works even with the 2D and 3D spatial Point types. Any
following (non-existence check) predicates (here on property p.firstname for index
:Person(place,firstname)) will be rewritten as existence check with a filter. For index
:Person(firstname,place), if the predicate on firstname is equality or list membership then the bounded
range is handled as a range itself. If the predicate on firstname is anything else then the bounded range is
rewritten to existence and filter.

Query

MATCH (person:Person) WHERE point({x: 1, y: 5}) < person.place < point({x: 2,
 y: 6}) AND person.firstname IS NOT NULL RETURN person

516

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | person
| 0 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +NodeIndexSeek | person:Person(place, firstname) WHERE place > point({x: $autoint_0, y: $autoint_1})
AND place < poin | 0 | 1 | 2 | 72 | 8/0 | 1.554 |
Fused in Pipeline 0 |
| | t({x: $autoint_2, y: $autoint_3}) AND firstname IS NOT NULL
| | | | | | |
|
+-----------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 2, total allocated memory: 136

9.4. Basic query tuning example
We’ll start with a basic example to help you get the hang of profiling queries. The following examples will
use a movies data set.

9.4.1. The data set

In this section, examples demonstrates the impact native indexes can have on query performance under
certain conditions. You will use a movies dataset to illustrate this more advanced query tuning.

In this tutorial, you import data from the following CSV files:

• movies.csv

• actors.csv

• directors.csv

Movies

The movies.csv file contains two columns title, released and tagline.

The content of the movies.csv file:

517

movies.csv

title,released,tagline
Something's Gotta Give,1975,null
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Devil's Advocate,1997,Evil has its winning ways
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
V for Vendetta,2006,Freedom! Forever!
Cloud Atlas,2012,Everything is connected
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
Speed Racer,2008,Speed has no limits
Cloud Atlas,2012,Everything is connected
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
Ninja Assassin,2009,Prepare to enter a secret world of assassins
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
Cloud Atlas,2012,Everything is connected
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
Ninja Assassin,2009,Prepare to enter a secret world of assassins
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
The Matrix,1999,Welcome to the Real World
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
The Devil's Advocate,1997,Evil has its winning ways
The Devil's Advocate,1997,Evil has its winning ways
The Devil's Advocate,1997,Evil has its winning ways
Jerry Maguire,2000,The rest of his life begins now.
Top Gun,1986,"I feel the need, the need for speed."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Something's Gotta Give,1975,null
One Flew Over the Cuckoo's Nest,1975,"If he's crazy, what does that make you?"
Hoffa,1992,He didn't want law. He wanted justice.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Apollo 13,1995,"Houston, we have a problem."
Frost/Nixon,2008,400 million people were waiting for the truth.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
What Dreams May Come,1998,After life there is more. The end is just the beginning.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
Jerry Maguire,2000,The rest of his life begins now.

518

A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Hoffa,1992,He didn't want law. He wanted justice.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Ninja Assassin,2009,Prepare to enter a secret world of assassins
V for Vendetta,2006,Freedom! Forever!
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
When Harry Met Sally,1998,At odds in life... in love on-line.
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
When Harry Met Sally,1998,At odds in life... in love on-line.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
When Harry Met Sally,1998,At odds in life... in love on-line.
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
You've Got Mail,1998,At odds in life... in love on-line.
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
The Green Mile,1999,Walk a mile you'll never forget.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Cast Away,2000,"At the edge of the world, his journey begins."
Twister,1996,Don't Breathe. Don't Look Back.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
You've Got Mail,1998,At odds in life... in love on-line.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
Snow Falling on Cedars,1999,First loves last. Forever.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Bicentennial Man,1999,One robot's 200 year journey to become an ordinary man.
The Birdcage,1996,Come as you are
What Dreams May Come,1998,After life there is more. The end is just the beginning.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
Snow Falling on Cedars,1999,First loves last. Forever.
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Snow Falling on Cedars,1999,First loves last. Forever.

519

The Green Mile,1999,Walk a mile you'll never forget.
Snow Falling on Cedars,1999,First loves last. Forever.
Snow Falling on Cedars,1999,First loves last. Forever.
You've Got Mail,1998,At odds in life... in love on-line.
You've Got Mail,1998,At odds in life... in love on-line.
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
You've Got Mail,1998,At odds in life... in love on-line.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
The Polar Express,2004,This Holiday Season… Believe
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
Cast Away,2000,"At the edge of the world, his journey begins."
Apollo 13,1995,"Houston, we have a problem."
The Green Mile,1999,Walk a mile you'll never forget.
The Da Vinci Code,2006,Break The Codes
Cloud Atlas,2012,Everything is connected
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
You've Got Mail,1998,At odds in life... in love on-line.
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
You've Got Mail,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
The Birdcage,1996,Come as you are
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
When Harry Met Sally,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
Unforgiven,1992,"It's a hell of a thing, killing a man"
The Birdcage,1996,Come as you are
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Twister,1996,Don't Breathe. Don't Look Back.
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
The Birdcage,1996,Come as you are
Unforgiven,1992,"It's a hell of a thing, killing a man"
Unforgiven,1992,"It's a hell of a thing, killing a man"
Unforgiven,1992,"It's a hell of a thing, killing a man"
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Cloud Atlas,2012,Everything is connected
Cloud Atlas,2012,Everything is connected
Cloud Atlas,2012,Everything is connected
The Da Vinci Code,2006,Break The Codes
The Da Vinci Code,2006,Break The Codes
The Da Vinci Code,2006,Break The Codes
Apollo 13,1995,"Houston, we have a problem."
Frost/Nixon,2008,400 million people were waiting for the truth.
The Da Vinci Code,2006,Break The Codes
V for Vendetta,2006,Freedom! Forever!
V for Vendetta,2006,Freedom! Forever!
V for Vendetta,2006,Freedom! Forever!

520

Ninja Assassin,2009,Prepare to enter a secret world of assassins
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Speed Racer,2008,Speed has no limits
Ninja Assassin,2009,Prepare to enter a secret world of assassins
The Green Mile,1999,Walk a mile you'll never forget.
The Green Mile,1999,Walk a mile you'll never forget.
Frost/Nixon,2008,400 million people were waiting for the truth.
The Green Mile,1999,Walk a mile you'll never forget.
Apollo 13,1995,"Houston, we have a problem."
The Green Mile,1999,Walk a mile you'll never forget.
The Green Mile,1999,Walk a mile you'll never forget.
The Green Mile,1999,Walk a mile you'll never forget.
Frost/Nixon,2008,400 million people were waiting for the truth.
Frost/Nixon,2008,400 million people were waiting for the truth.
Bicentennial Man,1999,One robot's 200 year journey to become an ordinary man.
Frost/Nixon,2008,400 million people were waiting for the truth.
One Flew Over the Cuckoo's Nest,1975,"If he's crazy, what does that make you?"
Hoffa,1992,He didn't want law. He wanted justice.
Hoffa,1992,He didn't want law. He wanted justice.
Hoffa,1992,He didn't want law. He wanted justice.
Apollo 13,1995,"Houston, we have a problem."
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
Twister,1996,Don't Breathe. Don't Look Back.
Apollo 13,1995,"Houston, we have a problem."
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
Twister,1996,Don't Breathe. Don't Look Back.
Twister,1996,Don't Breathe. Don't Look Back.
The Polar Express,2004,This Holiday Season… Believe
Cast Away,2000,"At the edge of the world, his journey begins."
One Flew Over the Cuckoo's Nest,1975,"If he's crazy, what does that make you?"
Something's Gotta Give,1975,null
Something's Gotta Give,1975,null
Something's Gotta Give,1975,null
Something's Gotta Give,1975,null
Bicentennial Man,1999,One robot's 200 year journey to become an ordinary man.
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Da Vinci Code,2006,Break The Codes
The Birdcage,1996,Come as you are
Unforgiven,1992,"It's a hell of a thing, killing a man"
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
Cloud Atlas,2012,Everything is connected
The Da Vinci Code,2006,Break The Codes
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"

Actors

The actors.csv file contains two columns title, roles, name and born.

The content of the actors.csv file:

actors.csv

title,roles,name,born
Something's Gotta Give,Julian Mercer,Keanu Reeves,1964
Johnny Mnemonic,Johnny Mnemonic,Keanu Reeves,1964
The Replacements,Shane Falco,Keanu Reeves,1964
The Devil's Advocate,Kevin Lomax,Keanu Reeves,1964
The Matrix Revolutions,Neo,Keanu Reeves,1964

521

The Matrix Reloaded,Neo,Keanu Reeves,1964
The Matrix,Neo,Keanu Reeves,1964
The Matrix Revolutions,Trinity,Carrie-Anne Moss,1967
The Matrix Reloaded,Trinity,Carrie-Anne Moss,1967
The Matrix,Trinity,Carrie-Anne Moss,1967
The Matrix Revolutions,Morpheus,Laurence Fishburne,1961
The Matrix Reloaded,Morpheus,Laurence Fishburne,1961
The Matrix,Morpheus,Laurence Fishburne,1961
V for Vendetta,V,Hugo Weaving,1960
Cloud Atlas,Bill Smoke;Haskell Moore;Tadeusz Kesselring;Nurse Noakes;Boardman Mephi;Old Georgie,Hugo
Weaving,1960
The Matrix Revolutions,Agent Smith,Hugo Weaving,1960
The Matrix Reloaded,Agent Smith,Hugo Weaving,1960
The Matrix,Agent Smith,Hugo Weaving,1960
The Matrix,Emil,Emil Eifrem,1978
That Thing You Do,Tina,Charlize Theron,1975
The Devil's Advocate,Mary Ann Lomax,Charlize Theron,1975
The Devil's Advocate,John Milton,Al Pacino,1940
Jerry Maguire,Jerry Maguire,Tom Cruise,1962
Top Gun,Maverick,Tom Cruise,1962
A Few Good Men,Lt. Daniel Kaffee,Tom Cruise,1962
Something's Gotta Give,Harry Sanborn,Jack Nicholson,1937
One Flew Over the Cuckoo's Nest,Randle McMurphy,Jack Nicholson,1937
Hoffa,Hoffa,Jack Nicholson,1937
As Good as It Gets,Melvin Udall,Jack Nicholson,1937
A Few Good Men,Col. Nathan R. Jessup,Jack Nicholson,1937
A Few Good Men,Lt. Cdr. JoAnne Galloway,Demi Moore,1962
Apollo 13,Jack Swigert,Kevin Bacon,1958
Frost/Nixon,Jack Brennan,Kevin Bacon,1958
A Few Good Men,Capt. Jack Ross,Kevin Bacon,1958
Stand By Me,Ace Merrill,Kiefer Sutherland,1966
A Few Good Men,Lt. Jonathan Kendrick,Kiefer Sutherland,1966
A Few Good Men,Cpl. Jeffrey Barnes,Noah Wyle,1971
What Dreams May Come,Albert Lewis,Cuba Gooding Jr.,1968
As Good as It Gets,Frank Sachs,Cuba Gooding Jr.,1968
Jerry Maguire,Rod Tidwell,Cuba Gooding Jr.,1968
A Few Good Men,Cpl. Carl Hammaker,Cuba Gooding Jr.,1968
A Few Good Men,Lt. Sam Weinberg,Kevin Pollak,1957
Hoffa,Frank Fitzsimmons,J.T. Walsh,1943
A Few Good Men,Lt. Col. Matthew Andrew Markinson,J.T. Walsh,1943
A Few Good Men,Pfc. Louden Downey,James Marshall,1967
A Few Good Men,Dr. Stone,Christopher Guest,1948
A Few Good Men,Man in Bar,Aaron Sorkin,1961
Top Gun,Charlie,Kelly McGillis,1957
Top Gun,Iceman,Val Kilmer,1959
Top Gun,Goose,Anthony Edwards,1962
Top Gun,Viper,Tom Skerritt,1933
When Harry Met Sally,Sally Albright,Meg Ryan,1961
Joe Versus the Volcano,DeDe;Angelica Graynamore;Patricia Graynamore,Meg Ryan,1961
Sleepless in Seattle,Annie Reed,Meg Ryan,1961
You've Got Mail,Kathleen Kelly,Meg Ryan,1961
Top Gun,Carole,Meg Ryan,1961
Jerry Maguire,Dorothy Boyd,Renee Zellweger,1969
Jerry Maguire,Avery Bishop,Kelly Preston,1962
Stand By Me,Vern Tessio,Jerry O'Connell,1974
Jerry Maguire,Frank Cushman,Jerry O'Connell,1974
Jerry Maguire,Bob Sugar,Jay Mohr,1970
The Green Mile,Jan Edgecomb,Bonnie Hunt,1961
Jerry Maguire,Laurel Boyd,Bonnie Hunt,1961
Jerry Maguire,Marcee Tidwell,Regina King,1971
Jerry Maguire,Ray Boyd,Jonathan Lipnicki,1990
Stand By Me,Chris Chambers,River Phoenix,1970
Stand By Me,Teddy Duchamp,Corey Feldman,1971
Stand By Me,Gordie Lachance,Wil Wheaton,1972
Stand By Me,Denny Lachance,John Cusack,1966
RescueDawn,Admiral,Marshall Bell,1942
Stand By Me,Mr. Lachance,Marshall Bell,1942
Cast Away,Kelly Frears,Helen Hunt,1963
Twister,Dr. Jo Harding,Helen Hunt,1963
As Good as It Gets,Carol Connelly,Helen Hunt,1963
You've Got Mail,Frank Navasky,Greg Kinnear,1963
As Good as It Gets,Simon Bishop,Greg Kinnear,1963
What Dreams May Come,Simon Bishop,Annabella Sciorra,1960
Snow Falling on Cedars,Nels Gudmundsson,Max von Sydow,1929
What Dreams May Come,The Tracker,Max von Sydow,1929
What Dreams May Come,The Face,Werner Herzog,1942
Bicentennial Man,Andrew Marin,Robin Williams,1951

522

The Birdcage,Armand Goldman,Robin Williams,1951
What Dreams May Come,Chris Nielsen,Robin Williams,1951
Snow Falling on Cedars,Ishmael Chambers,Ethan Hawke,1970
Ninja Assassin,Takeshi,Rick Yune,1971
Snow Falling on Cedars,Kazuo Miyamoto,Rick Yune,1971
The Green Mile,Warden Hal Moores,James Cromwell,1940
Snow Falling on Cedars,Judge Fielding,James Cromwell,1940
You've Got Mail,Patricia Eden,Parker Posey,1968
You've Got Mail,Kevin Jackson,Dave Chappelle,1973
RescueDawn,Duane,Steve Zahn,1967
You've Got Mail,George Pappas,Steve Zahn,1967
A League of Their Own,Jimmy Dugan,Tom Hanks,1956
The Polar Express,Hero Boy;Father;Conductor;Hobo;Scrooge;Santa Claus,Tom Hanks,1956
Charlie Wilson's War,Rep. Charlie Wilson,Tom Hanks,1956
Cast Away,Chuck Noland,Tom Hanks,1956
Apollo 13,Jim Lovell,Tom Hanks,1956
The Green Mile,Paul Edgecomb,Tom Hanks,1956
The Da Vinci Code,Dr. Robert Langdon,Tom Hanks,1956
Cloud Atlas,Zachry;Dr. Henry Goose;Isaac Sachs;Dermot Hoggins,Tom Hanks,1956
That Thing You Do,Mr. White,Tom Hanks,1956
Joe Versus the Volcano,Joe Banks,Tom Hanks,1956
Sleepless in Seattle,Sam Baldwin,Tom Hanks,1956
You've Got Mail,Joe Fox,Tom Hanks,1956
Sleepless in Seattle,Suzy,Rita Wilson,1956
Sleepless in Seattle,Walter,Bill Pullman,1953
Sleepless in Seattle,Greg,Victor Garber,1949
A League of Their Own,Doris Murphy,Rosie O'Donnell,1962
Sleepless in Seattle,Becky,Rosie O'Donnell,1962
The Birdcage,Albert Goldman,Nathan Lane,1956
Joe Versus the Volcano,Baw,Nathan Lane,1956
When Harry Met Sally,Harry Burns,Billy Crystal,1948
When Harry Met Sally,Marie,Carrie Fisher,1956
When Harry Met Sally,Jess,Bruno Kirby,1949
That Thing You Do,Faye Dolan,Liv Tyler,1977
The Replacements,Annabelle Farrell,Brooke Langton,1970
Unforgiven,Little Bill Daggett,Gene Hackman,1930
The Birdcage,Sen. Kevin Keeley,Gene Hackman,1930
The Replacements,Jimmy McGinty,Gene Hackman,1930
The Replacements,Clifford Franklin,Orlando Jones,1968
RescueDawn,Dieter Dengler,Christian Bale,1974
Twister,Eddie,Zach Grenier,1954
RescueDawn,Squad Leader,Zach Grenier,1954
Unforgiven,English Bob,Richard Harris,1930
Unforgiven,Bill Munny,Clint Eastwood,1930
Johnny Mnemonic,Takahashi,Takeshi Kitano,1947
Johnny Mnemonic,Jane,Dina Meyer,1968
Johnny Mnemonic,J-Bone,Ice-T,1958
Cloud Atlas,Luisa Rey;Jocasta Ayrs;Ovid;Meronym,Halle Berry,1966
Cloud Atlas,Vyvyan Ayrs;Captain Molyneux;Timothy Cavendish,Jim Broadbent,1949
The Da Vinci Code,Sir Leight Teabing,Ian McKellen,1939
The Da Vinci Code,Sophie Neveu,Audrey Tautou,1976
The Da Vinci Code,Silas,Paul Bettany,1971
V for Vendetta,Evey Hammond,Natalie Portman,1981
V for Vendetta,Eric Finch,Stephen Rea,1946
V for Vendetta,High Chancellor Adam Sutler,John Hurt,1940
Ninja Assassin,Ryan Maslow,Ben Miles,1967
Speed Racer,Cass Jones,Ben Miles,1967
V for Vendetta,Dascomb,Ben Miles,1967
Speed Racer,Speed Racer,Emile Hirsch,1985
Speed Racer,Pops,John Goodman,1960
Speed Racer,Mom,Susan Sarandon,1946
Speed Racer,Racer X,Matthew Fox,1966
Speed Racer,Trixie,Christina Ricci,1980
Ninja Assassin,Raizo,Rain,1982
Speed Racer,Taejo Togokahn,Rain,1982
Ninja Assassin,Mika Coretti,Naomie Harris,null
The Green Mile,John Coffey,Michael Clarke Duncan,1957
The Green Mile,Brutus 'Brutal' Howell,David Morse,1953
Frost/Nixon,"James Reston, Jr.",Sam Rockwell,1968
The Green Mile,'Wild Bill' Wharton,Sam Rockwell,1968
Apollo 13,Ken Mattingly,Gary Sinise,1955
The Green Mile,Burt Hammersmith,Gary Sinise,1955
The Green Mile,Melinda Moores,Patricia Clarkson,1959
Frost/Nixon,Richard Nixon,Frank Langella,1938
Frost/Nixon,David Frost,Michael Sheen,1969
Bicentennial Man,Rupert Burns,Oliver Platt,1960
Frost/Nixon,Bob Zelnick,Oliver Platt,1960

523

One Flew Over the Cuckoo's Nest,Martini,Danny DeVito,1944
Hoffa,Robert 'Bobby' Ciaro,Danny DeVito,1944
Hoffa,Peter 'Pete' Connelly,John C. Reilly,1965
Apollo 13,Gene Kranz,Ed Harris,1950
A League of Their Own,Bob Hinson,Bill Paxton,1955
Twister,Bill Harding,Bill Paxton,1955
Apollo 13,Fred Haise,Bill Paxton,1955
Charlie Wilson's War,Gust Avrakotos,Philip Seymour Hoffman,1967
Twister,Dustin 'Dusty' Davis,Philip Seymour Hoffman,1967
Something's Gotta Give,Erica Barry,Diane Keaton,1946
Charlie Wilson's War,Joanne Herring,Julia Roberts,1967
A League of Their Own,'All the Way' Mae Mordabito,Madonna,1954
A League of Their Own,Dottie Hinson,Geena Davis,1956
A League of Their Own,Kit Keller,Lori Petty,1963

Directors

The directors.csv file contains two columns title, name and born.

The content of the directors.csv file:

directors.csv

title,name,born
Speed Racer,Andy Wachowski,1967
Cloud Atlas,Andy Wachowski,1967
The Matrix Revolutions,Andy Wachowski,1967
The Matrix Reloaded,Andy Wachowski,1967
The Matrix,Andy Wachowski,1967
Speed Racer,Lana Wachowski,1965
Cloud Atlas,Lana Wachowski,1965
The Matrix Revolutions,Lana Wachowski,1965
The Matrix Reloaded,Lana Wachowski,1965
The Matrix,Lana Wachowski,1965
The Devil's Advocate,Taylor Hackford,1944
Ninja Assassin,James Marshall,1967
V for Vendetta,James Marshall,1967
When Harry Met Sally,Rob Reiner,1947
Stand By Me,Rob Reiner,1947
A Few Good Men,Rob Reiner,1947
Top Gun,Tony Scott,1944
Jerry Maguire,Cameron Crowe,1957
As Good as It Gets,James L. Brooks,1940
RescueDawn,Werner Herzog,1942
What Dreams May Come,Vincent Ward,1956
Snow Falling on Cedars,Scott Hicks,1953
That Thing You Do,Tom Hanks,1956
Sleepless in Seattle,Nora Ephron,1941
You've Got Mail,Nora Ephron,1941
Joe Versus the Volcano,John Patrick Stanley,1950
The Replacements,Howard Deutch,1950
Charlie Wilson's War,Mike Nichols,1931
The Birdcage,Mike Nichols,1931
Unforgiven,Clint Eastwood,1930
Johnny Mnemonic,Robert Longo,1953
Cloud Atlas,Tom Tykwer,1965
Apollo 13,Ron Howard,1954
Frost/Nixon,Ron Howard,1954
The Da Vinci Code,Ron Howard,1954
The Green Mile,Frank Darabont,1959
Hoffa,Danny DeVito,1944
Twister,Jan de Bont,1943
The Polar Express,Robert Zemeckis,1951
Cast Away,Robert Zemeckis,1951
One Flew Over the Cuckoo's Nest,Milos Forman,1932
Something's Gotta Give,Nancy Meyers,1949
Bicentennial Man,Chris Columbus,1958
A League of Their Own,Penny Marshall,1943

524

9.4.2. Prerequisites

The example uses the Linux or macOS tarball installation. It assumes that your current work directory is
the <neo4j-home> directory of the tarball installation, and the CSV files are placed in the default import
directory.

• For the default directory of other installations see, Operations Manual → File locations.

• The import location can be configured with Operations Manual →
dbms.directories.import.

9.4.3. Importing the data

Import the movies.csv file

LOAD CSV WITH HEADERS FROM 'file:///movies.csv' AS line
MERGE (m:Movie {title: line.title})
ON CREATE SET
 m.released = toInteger(line.released),
 m.tagline = line.tagline

Added 38 nodes, Set 114 properties, Added 38 labels

Import the actors.csv file

LOAD CSV WITH HEADERS FROM 'file:///actors.csv' AS line
MATCH (m:Movie {title: line.title})
MERGE (p:Person {name: line.name})
ON CREATE SET p.born = toInteger(line.born)
MERGE (p)-[:ACTED_IN {roles:split(line.roles, ';')}]->(m)

Added 102 nodes, Created 172 relationships, Set 375 properties, Added 102 labels

Import the directors.csv file

LOAD CSV WITH HEADERS FROM 'file:///directors.csv' AS line
MATCH (m:Movie {title: line.title})
MERGE (p:Person {name: line.name})
ON CREATE SET p.born = toInteger(line.born)
MERGE (p)-[:DIRECTED]->(m)

Added 23 nodes, Created 44 relationships, Set 46 properties, Added 23 labels

9.4.4. Profile query

Let’s say you want to write a query to find 'Tom Hanks'.

The naive way of doing this would be to write the following:

MATCH (p {name: 'Tom Hanks'})
RETURN p

525

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#file_locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#file_locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#file_locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_dbms.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_dbms.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_dbms.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_dbms.directories.import

This query will find the 'Tom Hanks' node but as the number of nodes in the database increase it will
become slower and slower. We can profile the query to find out why that is.

You can learn more about the options for profiling queries in Query tuning but in this case we’re going to
prefix our query with PROFILE:

PROFILE
MATCH (p {name: 'Tom Hanks'})
RETURN p

+---+
| p |
+---+
| (:Person {name: "Tom Hanks", born: 1956}) |
+---+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 26 | 406 | 1 | 136 |
+--+

+-----------------------+------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page
Cache Hits/Misses | Time (ms) | Other |
+-----------------------+------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults@neo4j | p | 8 | 1 | 3 | |
| | Fused in Pipeline 0 |
| | +------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +Filter@neo4j | p.name = $autostring_0 | 8 | 1 | 239 | |
| | Fused in Pipeline 0 |
| | +------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +AllNodesScan@neo4j | p | 163 | 163 | 164 | 72 |
4/0 | 1.705 | Fused in Pipeline 0 |
+-----------------------+------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

1 row

The first thing to keep in mind when reading execution plans is that you need to read from the bottom up.

In that vein, starting from the last row, the first thing we notice is that the value in the Rows column seems
high given there is only one node with the name property 'Tom Hanks' in the database. If we look across
to the Operator column we’ll see that AllNodesScan has been used which means that the query planner
scanned through all the nodes in the database.

The Filter operator which will check the name property on each of the nodes passed through by
AllNodesScan.

This seems like an inefficient way of finding 'Tom Hanks' given that we are looking at many nodes that
aren’t even people and therefore aren’t what we’re looking for.

The solution to this problem is that whenever we’re looking for a node we should specify a label to help
the query planner narrow down the search space.

For this query we’d need to add a Person label.

526

MATCH (p:Person {name: 'Tom Hanks'})
RETURN p

This query will be faster than the first one but as the number of people in our database increase we again
notice that the query slows down.

Again we can profile the query to work out why:

PROFILE
MATCH (p:Person {name: 'Tom Hanks'})
RETURN p

+---+
| p |
+---+
| (:Person {name: "Tom Hanks", born: 1956}) |
+---+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 33 | 379 | 1 | 136 |
+--+

+------------------------+------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) |
Page Cache Hits/Misses | Time (ms) | Other |
+------------------------+------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults@neo4j | p | 6 | 1 | 3 | |
| | Fused in Pipeline 0 |
| | +------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +Filter@neo4j | p.name = $autostring_0 | 6 | 1 | 250 | |
| | Fused in Pipeline 0 |
| | +------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +NodeByLabelScan@neo4j | p:Person | 125 | 125 | 126 | 72 |
4/0 | 0.901 | Fused in Pipeline 0 |
+------------------------+------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

1 row

This time the Rows value on the last row has reduced so we’re not scanning some nodes that we were
before which is a good start. The NodeByLabelScan operator indicates that we achieved this by first doing
a linear scan of all the Person nodes in the database.

Once we’ve done that we again scan through all those nodes using the Filter operator, comparing the
name property of each one.

This might be acceptable in some cases but if we’re going to be looking up people by name frequently
then we’ll see better performance if we create an index on the name property for the Person label:

CREATE INDEX FOR (p:Person)
ON (p.name)

Added 1 indexes

527

CALL db.awaitIndexes

Now if we run the query again it will run more quickly:

MATCH (p:Person {name: 'Tom Hanks'})
RETURN p

Let’s profile the query to see why that is:

PROFILE
MATCH (p:Person {name: 'Tom Hanks'})
RETURN p

+---+
| p |
+---+
| (:Person {name: "Tom Hanks", born: 1956}) |
+---+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 17 | 5 | 1 | 136 |
+--+

+-----------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults@neo4j | p | 1 | 1 | 3 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeIndexSeek@neo4j | p:Person(name) WHERE name = $autostring_0 | 1 | 1 | 2 |
72 | 2/1 | 0.494 | Fused in Pipeline 0 |
+-----------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

1 row

Our execution plan is down to a single row and uses the Node Index Seek operator which does an index
seek (see Indexes for search performance) to find the appropriate node.

9.5. Advanced query tuning example
One of the most important and useful ways of optimizing Cypher queries involves creating appropriate
indexes. This is described in more detail in Indexes for search performance, and demonstrated in Basic
query tuning example. In summary, an index will be based on the combination of a Label and a property.
Any Cypher query that searches for nodes with a specific label and some predicate on the property
(equality, range or existence) will be planned to use the index if the cost planner deems that to be the most
efficient solution.

In order to benefit from enhancements provided by native indexes, it is useful to understand when index-
backed property lookup and index-backed order by will come into play. Let’s explain how to use these
features with a more advanced query tuning example.

528

If you are upgrading an existing store to 4.3.21, it may be necessary to drop and re-
create existing indexes. For information on native index support and upgrade
considerations regarding indexes, see Operations Manual → Indexes.

9.5.1. The data set

In this section, examples demonstrates the impact native indexes can have on query performance under
certain conditions. You will use a movies dataset to illustrate this more advanced query tuning.

In this tutorial, you import data from the following CSV files:

• movies.csv

• actors.csv

• directors.csv

Movies

The movies.csv file contains two columns title, released and tagline.

The content of the movies.csv file:

movies.csv

title,released,tagline
Something's Gotta Give,1975,null
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Devil's Advocate,1997,Evil has its winning ways
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
V for Vendetta,2006,Freedom! Forever!
Cloud Atlas,2012,Everything is connected
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
Speed Racer,2008,Speed has no limits
Cloud Atlas,2012,Everything is connected
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
Ninja Assassin,2009,Prepare to enter a secret world of assassins
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
Cloud Atlas,2012,Everything is connected
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
Ninja Assassin,2009,Prepare to enter a secret world of assassins
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Speed Racer,2008,Speed has no limits

529

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#index-configuration-btree
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#index-configuration-btree
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#index-configuration-btree

V for Vendetta,2006,Freedom! Forever!
The Matrix Revolutions,2003,Everything that has a beginning has an end
The Matrix Reloaded,2003,Free your mind
The Matrix,1999,Welcome to the Real World
The Matrix,1999,Welcome to the Real World
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
The Devil's Advocate,1997,Evil has its winning ways
The Devil's Advocate,1997,Evil has its winning ways
The Devil's Advocate,1997,Evil has its winning ways
Jerry Maguire,2000,The rest of his life begins now.
Top Gun,1986,"I feel the need, the need for speed."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Something's Gotta Give,1975,null
One Flew Over the Cuckoo's Nest,1975,"If he's crazy, what does that make you?"
Hoffa,1992,He didn't want law. He wanted justice.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Apollo 13,1995,"Houston, we have a problem."
Frost/Nixon,2008,400 million people were waiting for the truth.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
What Dreams May Come,1998,After life there is more. The end is just the beginning.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
Jerry Maguire,2000,The rest of his life begins now.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Hoffa,1992,He didn't want law. He wanted justice.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Ninja Assassin,2009,Prepare to enter a secret world of assassins
V for Vendetta,2006,Freedom! Forever!
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
When Harry Met Sally,1998,At odds in life... in love on-line.
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
When Harry Met Sally,1998,At odds in life... in love on-line.
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
A Few Good Men,1992,"In the heart of the nation's capital, in a courthouse of the U.S. government, one man
will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
When Harry Met Sally,1998,At odds in life... in love on-line.
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
You've Got Mail,1998,At odds in life... in love on-line.
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Top Gun,1986,"I feel the need, the need for speed."
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
The Green Mile,1999,Walk a mile you'll never forget.

530

Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Jerry Maguire,2000,The rest of his life begins now.
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Stand By Me,1995,"For some, it's the last real taste of innocence, and the first real taste of life. But
for everyone, it's the time that memories are made of."
Cast Away,2000,"At the edge of the world, his journey begins."
Twister,1996,Don't Breathe. Don't Look Back.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
You've Got Mail,1998,At odds in life... in love on-line.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
As Good as It Gets,1997,A comedy from the heart that goes for the throat.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
Snow Falling on Cedars,1999,First loves last. Forever.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Bicentennial Man,1999,One robot's 200 year journey to become an ordinary man.
The Birdcage,1996,Come as you are
What Dreams May Come,1998,After life there is more. The end is just the beginning.
What Dreams May Come,1998,After life there is more. The end is just the beginning.
Snow Falling on Cedars,1999,First loves last. Forever.
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Snow Falling on Cedars,1999,First loves last. Forever.
The Green Mile,1999,Walk a mile you'll never forget.
Snow Falling on Cedars,1999,First loves last. Forever.
Snow Falling on Cedars,1999,First loves last. Forever.
You've Got Mail,1998,At odds in life... in love on-line.
You've Got Mail,1998,At odds in life... in love on-line.
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
You've Got Mail,1998,At odds in life... in love on-line.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
The Polar Express,2004,This Holiday Season… Believe
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
Cast Away,2000,"At the edge of the world, his journey begins."
Apollo 13,1995,"Houston, we have a problem."
The Green Mile,1999,Walk a mile you'll never forget.
The Da Vinci Code,2006,Break The Codes
Cloud Atlas,2012,Everything is connected
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
You've Got Mail,1998,At odds in life... in love on-line.
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
You've Got Mail,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
Sleepless in Seattle,1993,"What if someone you never met, someone you never saw, someone you never knew
was the only someone for you?"
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
The Birdcage,1996,Come as you are
Joe Versus the Volcano,1990,"A story of love, lava and burning desire."
When Harry Met Sally,1998,At odds in life... in love on-line.

531

When Harry Met Sally,1998,At odds in life... in love on-line.
When Harry Met Sally,1998,At odds in life... in love on-line.
That Thing You Do,1996,In every life there comes a time when that thing you dream becomes that thing you
do
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
Unforgiven,1992,"It's a hell of a thing, killing a man"
The Birdcage,1996,Come as you are
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Twister,1996,Don't Breathe. Don't Look Back.
RescueDawn,2006,Based on the extraordinary true story of one man's fight for freedom
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
The Birdcage,1996,Come as you are
Unforgiven,1992,"It's a hell of a thing, killing a man"
Unforgiven,1992,"It's a hell of a thing, killing a man"
Unforgiven,1992,"It's a hell of a thing, killing a man"
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Johnny Mnemonic,1995,The hottest data on earth. In the coolest head in town
Cloud Atlas,2012,Everything is connected
Cloud Atlas,2012,Everything is connected
Cloud Atlas,2012,Everything is connected
The Da Vinci Code,2006,Break The Codes
The Da Vinci Code,2006,Break The Codes
The Da Vinci Code,2006,Break The Codes
Apollo 13,1995,"Houston, we have a problem."
Frost/Nixon,2008,400 million people were waiting for the truth.
The Da Vinci Code,2006,Break The Codes
V for Vendetta,2006,Freedom! Forever!
V for Vendetta,2006,Freedom! Forever!
V for Vendetta,2006,Freedom! Forever!
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Speed Racer,2008,Speed has no limits
V for Vendetta,2006,Freedom! Forever!
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Speed Racer,2008,Speed has no limits
Ninja Assassin,2009,Prepare to enter a secret world of assassins
Speed Racer,2008,Speed has no limits
Ninja Assassin,2009,Prepare to enter a secret world of assassins
The Green Mile,1999,Walk a mile you'll never forget.
The Green Mile,1999,Walk a mile you'll never forget.
Frost/Nixon,2008,400 million people were waiting for the truth.
The Green Mile,1999,Walk a mile you'll never forget.
Apollo 13,1995,"Houston, we have a problem."
The Green Mile,1999,Walk a mile you'll never forget.
The Green Mile,1999,Walk a mile you'll never forget.
The Green Mile,1999,Walk a mile you'll never forget.
Frost/Nixon,2008,400 million people were waiting for the truth.
Frost/Nixon,2008,400 million people were waiting for the truth.
Bicentennial Man,1999,One robot's 200 year journey to become an ordinary man.
Frost/Nixon,2008,400 million people were waiting for the truth.
One Flew Over the Cuckoo's Nest,1975,"If he's crazy, what does that make you?"
Hoffa,1992,He didn't want law. He wanted justice.
Hoffa,1992,He didn't want law. He wanted justice.
Hoffa,1992,He didn't want law. He wanted justice.
Apollo 13,1995,"Houston, we have a problem."
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
Twister,1996,Don't Breathe. Don't Look Back.
Apollo 13,1995,"Houston, we have a problem."
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
Twister,1996,Don't Breathe. Don't Look Back.
Twister,1996,Don't Breathe. Don't Look Back.
The Polar Express,2004,This Holiday Season… Believe
Cast Away,2000,"At the edge of the world, his journey begins."
One Flew Over the Cuckoo's Nest,1975,"If he's crazy, what does that make you?"
Something's Gotta Give,1975,null
Something's Gotta Give,1975,null
Something's Gotta Give,1975,null
Something's Gotta Give,1975,null

532

Bicentennial Man,1999,One robot's 200 year journey to become an ordinary man.
Charlie Wilson's War,2007,A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring
down the Soviet empire.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
A League of Their Own,1992,Once in a lifetime you get a chance to do something different.
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
The Da Vinci Code,2006,Break The Codes
The Birdcage,1996,Come as you are
Unforgiven,1992,"It's a hell of a thing, killing a man"
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"
Cloud Atlas,2012,Everything is connected
The Da Vinci Code,2006,Break The Codes
The Replacements,2000,"Pain heals, Chicks dig scars... Glory lasts forever"

Actors

The actors.csv file contains two columns title, roles, name and born.

The content of the actors.csv file:

actors.csv

title,roles,name,born
Something's Gotta Give,Julian Mercer,Keanu Reeves,1964
Johnny Mnemonic,Johnny Mnemonic,Keanu Reeves,1964
The Replacements,Shane Falco,Keanu Reeves,1964
The Devil's Advocate,Kevin Lomax,Keanu Reeves,1964
The Matrix Revolutions,Neo,Keanu Reeves,1964
The Matrix Reloaded,Neo,Keanu Reeves,1964
The Matrix,Neo,Keanu Reeves,1964
The Matrix Revolutions,Trinity,Carrie-Anne Moss,1967
The Matrix Reloaded,Trinity,Carrie-Anne Moss,1967
The Matrix,Trinity,Carrie-Anne Moss,1967
The Matrix Revolutions,Morpheus,Laurence Fishburne,1961
The Matrix Reloaded,Morpheus,Laurence Fishburne,1961
The Matrix,Morpheus,Laurence Fishburne,1961
V for Vendetta,V,Hugo Weaving,1960
Cloud Atlas,Bill Smoke;Haskell Moore;Tadeusz Kesselring;Nurse Noakes;Boardman Mephi;Old Georgie,Hugo
Weaving,1960
The Matrix Revolutions,Agent Smith,Hugo Weaving,1960
The Matrix Reloaded,Agent Smith,Hugo Weaving,1960
The Matrix,Agent Smith,Hugo Weaving,1960
The Matrix,Emil,Emil Eifrem,1978
That Thing You Do,Tina,Charlize Theron,1975
The Devil's Advocate,Mary Ann Lomax,Charlize Theron,1975
The Devil's Advocate,John Milton,Al Pacino,1940
Jerry Maguire,Jerry Maguire,Tom Cruise,1962
Top Gun,Maverick,Tom Cruise,1962
A Few Good Men,Lt. Daniel Kaffee,Tom Cruise,1962
Something's Gotta Give,Harry Sanborn,Jack Nicholson,1937
One Flew Over the Cuckoo's Nest,Randle McMurphy,Jack Nicholson,1937
Hoffa,Hoffa,Jack Nicholson,1937
As Good as It Gets,Melvin Udall,Jack Nicholson,1937
A Few Good Men,Col. Nathan R. Jessup,Jack Nicholson,1937
A Few Good Men,Lt. Cdr. JoAnne Galloway,Demi Moore,1962
Apollo 13,Jack Swigert,Kevin Bacon,1958
Frost/Nixon,Jack Brennan,Kevin Bacon,1958
A Few Good Men,Capt. Jack Ross,Kevin Bacon,1958
Stand By Me,Ace Merrill,Kiefer Sutherland,1966
A Few Good Men,Lt. Jonathan Kendrick,Kiefer Sutherland,1966
A Few Good Men,Cpl. Jeffrey Barnes,Noah Wyle,1971
What Dreams May Come,Albert Lewis,Cuba Gooding Jr.,1968
As Good as It Gets,Frank Sachs,Cuba Gooding Jr.,1968
Jerry Maguire,Rod Tidwell,Cuba Gooding Jr.,1968
A Few Good Men,Cpl. Carl Hammaker,Cuba Gooding Jr.,1968
A Few Good Men,Lt. Sam Weinberg,Kevin Pollak,1957
Hoffa,Frank Fitzsimmons,J.T. Walsh,1943
A Few Good Men,Lt. Col. Matthew Andrew Markinson,J.T. Walsh,1943
A Few Good Men,Pfc. Louden Downey,James Marshall,1967
A Few Good Men,Dr. Stone,Christopher Guest,1948

533

A Few Good Men,Man in Bar,Aaron Sorkin,1961
Top Gun,Charlie,Kelly McGillis,1957
Top Gun,Iceman,Val Kilmer,1959
Top Gun,Goose,Anthony Edwards,1962
Top Gun,Viper,Tom Skerritt,1933
When Harry Met Sally,Sally Albright,Meg Ryan,1961
Joe Versus the Volcano,DeDe;Angelica Graynamore;Patricia Graynamore,Meg Ryan,1961
Sleepless in Seattle,Annie Reed,Meg Ryan,1961
You've Got Mail,Kathleen Kelly,Meg Ryan,1961
Top Gun,Carole,Meg Ryan,1961
Jerry Maguire,Dorothy Boyd,Renee Zellweger,1969
Jerry Maguire,Avery Bishop,Kelly Preston,1962
Stand By Me,Vern Tessio,Jerry O'Connell,1974
Jerry Maguire,Frank Cushman,Jerry O'Connell,1974
Jerry Maguire,Bob Sugar,Jay Mohr,1970
The Green Mile,Jan Edgecomb,Bonnie Hunt,1961
Jerry Maguire,Laurel Boyd,Bonnie Hunt,1961
Jerry Maguire,Marcee Tidwell,Regina King,1971
Jerry Maguire,Ray Boyd,Jonathan Lipnicki,1990
Stand By Me,Chris Chambers,River Phoenix,1970
Stand By Me,Teddy Duchamp,Corey Feldman,1971
Stand By Me,Gordie Lachance,Wil Wheaton,1972
Stand By Me,Denny Lachance,John Cusack,1966
RescueDawn,Admiral,Marshall Bell,1942
Stand By Me,Mr. Lachance,Marshall Bell,1942
Cast Away,Kelly Frears,Helen Hunt,1963
Twister,Dr. Jo Harding,Helen Hunt,1963
As Good as It Gets,Carol Connelly,Helen Hunt,1963
You've Got Mail,Frank Navasky,Greg Kinnear,1963
As Good as It Gets,Simon Bishop,Greg Kinnear,1963
What Dreams May Come,Simon Bishop,Annabella Sciorra,1960
Snow Falling on Cedars,Nels Gudmundsson,Max von Sydow,1929
What Dreams May Come,The Tracker,Max von Sydow,1929
What Dreams May Come,The Face,Werner Herzog,1942
Bicentennial Man,Andrew Marin,Robin Williams,1951
The Birdcage,Armand Goldman,Robin Williams,1951
What Dreams May Come,Chris Nielsen,Robin Williams,1951
Snow Falling on Cedars,Ishmael Chambers,Ethan Hawke,1970
Ninja Assassin,Takeshi,Rick Yune,1971
Snow Falling on Cedars,Kazuo Miyamoto,Rick Yune,1971
The Green Mile,Warden Hal Moores,James Cromwell,1940
Snow Falling on Cedars,Judge Fielding,James Cromwell,1940
You've Got Mail,Patricia Eden,Parker Posey,1968
You've Got Mail,Kevin Jackson,Dave Chappelle,1973
RescueDawn,Duane,Steve Zahn,1967
You've Got Mail,George Pappas,Steve Zahn,1967
A League of Their Own,Jimmy Dugan,Tom Hanks,1956
The Polar Express,Hero Boy;Father;Conductor;Hobo;Scrooge;Santa Claus,Tom Hanks,1956
Charlie Wilson's War,Rep. Charlie Wilson,Tom Hanks,1956
Cast Away,Chuck Noland,Tom Hanks,1956
Apollo 13,Jim Lovell,Tom Hanks,1956
The Green Mile,Paul Edgecomb,Tom Hanks,1956
The Da Vinci Code,Dr. Robert Langdon,Tom Hanks,1956
Cloud Atlas,Zachry;Dr. Henry Goose;Isaac Sachs;Dermot Hoggins,Tom Hanks,1956
That Thing You Do,Mr. White,Tom Hanks,1956
Joe Versus the Volcano,Joe Banks,Tom Hanks,1956
Sleepless in Seattle,Sam Baldwin,Tom Hanks,1956
You've Got Mail,Joe Fox,Tom Hanks,1956
Sleepless in Seattle,Suzy,Rita Wilson,1956
Sleepless in Seattle,Walter,Bill Pullman,1953
Sleepless in Seattle,Greg,Victor Garber,1949
A League of Their Own,Doris Murphy,Rosie O'Donnell,1962
Sleepless in Seattle,Becky,Rosie O'Donnell,1962
The Birdcage,Albert Goldman,Nathan Lane,1956
Joe Versus the Volcano,Baw,Nathan Lane,1956
When Harry Met Sally,Harry Burns,Billy Crystal,1948
When Harry Met Sally,Marie,Carrie Fisher,1956
When Harry Met Sally,Jess,Bruno Kirby,1949
That Thing You Do,Faye Dolan,Liv Tyler,1977
The Replacements,Annabelle Farrell,Brooke Langton,1970
Unforgiven,Little Bill Daggett,Gene Hackman,1930
The Birdcage,Sen. Kevin Keeley,Gene Hackman,1930
The Replacements,Jimmy McGinty,Gene Hackman,1930
The Replacements,Clifford Franklin,Orlando Jones,1968
RescueDawn,Dieter Dengler,Christian Bale,1974
Twister,Eddie,Zach Grenier,1954
RescueDawn,Squad Leader,Zach Grenier,1954

534

Unforgiven,English Bob,Richard Harris,1930
Unforgiven,Bill Munny,Clint Eastwood,1930
Johnny Mnemonic,Takahashi,Takeshi Kitano,1947
Johnny Mnemonic,Jane,Dina Meyer,1968
Johnny Mnemonic,J-Bone,Ice-T,1958
Cloud Atlas,Luisa Rey;Jocasta Ayrs;Ovid;Meronym,Halle Berry,1966
Cloud Atlas,Vyvyan Ayrs;Captain Molyneux;Timothy Cavendish,Jim Broadbent,1949
The Da Vinci Code,Sir Leight Teabing,Ian McKellen,1939
The Da Vinci Code,Sophie Neveu,Audrey Tautou,1976
The Da Vinci Code,Silas,Paul Bettany,1971
V for Vendetta,Evey Hammond,Natalie Portman,1981
V for Vendetta,Eric Finch,Stephen Rea,1946
V for Vendetta,High Chancellor Adam Sutler,John Hurt,1940
Ninja Assassin,Ryan Maslow,Ben Miles,1967
Speed Racer,Cass Jones,Ben Miles,1967
V for Vendetta,Dascomb,Ben Miles,1967
Speed Racer,Speed Racer,Emile Hirsch,1985
Speed Racer,Pops,John Goodman,1960
Speed Racer,Mom,Susan Sarandon,1946
Speed Racer,Racer X,Matthew Fox,1966
Speed Racer,Trixie,Christina Ricci,1980
Ninja Assassin,Raizo,Rain,1982
Speed Racer,Taejo Togokahn,Rain,1982
Ninja Assassin,Mika Coretti,Naomie Harris,null
The Green Mile,John Coffey,Michael Clarke Duncan,1957
The Green Mile,Brutus 'Brutal' Howell,David Morse,1953
Frost/Nixon,"James Reston, Jr.",Sam Rockwell,1968
The Green Mile,'Wild Bill' Wharton,Sam Rockwell,1968
Apollo 13,Ken Mattingly,Gary Sinise,1955
The Green Mile,Burt Hammersmith,Gary Sinise,1955
The Green Mile,Melinda Moores,Patricia Clarkson,1959
Frost/Nixon,Richard Nixon,Frank Langella,1938
Frost/Nixon,David Frost,Michael Sheen,1969
Bicentennial Man,Rupert Burns,Oliver Platt,1960
Frost/Nixon,Bob Zelnick,Oliver Platt,1960
One Flew Over the Cuckoo's Nest,Martini,Danny DeVito,1944
Hoffa,Robert 'Bobby' Ciaro,Danny DeVito,1944
Hoffa,Peter 'Pete' Connelly,John C. Reilly,1965
Apollo 13,Gene Kranz,Ed Harris,1950
A League of Their Own,Bob Hinson,Bill Paxton,1955
Twister,Bill Harding,Bill Paxton,1955
Apollo 13,Fred Haise,Bill Paxton,1955
Charlie Wilson's War,Gust Avrakotos,Philip Seymour Hoffman,1967
Twister,Dustin 'Dusty' Davis,Philip Seymour Hoffman,1967
Something's Gotta Give,Erica Barry,Diane Keaton,1946
Charlie Wilson's War,Joanne Herring,Julia Roberts,1967
A League of Their Own,'All the Way' Mae Mordabito,Madonna,1954
A League of Their Own,Dottie Hinson,Geena Davis,1956
A League of Their Own,Kit Keller,Lori Petty,1963

Directors

The directors.csv file contains two columns title, name and born.

The content of the directors.csv file:

535

directors.csv

title,name,born
Speed Racer,Andy Wachowski,1967
Cloud Atlas,Andy Wachowski,1967
The Matrix Revolutions,Andy Wachowski,1967
The Matrix Reloaded,Andy Wachowski,1967
The Matrix,Andy Wachowski,1967
Speed Racer,Lana Wachowski,1965
Cloud Atlas,Lana Wachowski,1965
The Matrix Revolutions,Lana Wachowski,1965
The Matrix Reloaded,Lana Wachowski,1965
The Matrix,Lana Wachowski,1965
The Devil's Advocate,Taylor Hackford,1944
Ninja Assassin,James Marshall,1967
V for Vendetta,James Marshall,1967
When Harry Met Sally,Rob Reiner,1947
Stand By Me,Rob Reiner,1947
A Few Good Men,Rob Reiner,1947
Top Gun,Tony Scott,1944
Jerry Maguire,Cameron Crowe,1957
As Good as It Gets,James L. Brooks,1940
RescueDawn,Werner Herzog,1942
What Dreams May Come,Vincent Ward,1956
Snow Falling on Cedars,Scott Hicks,1953
That Thing You Do,Tom Hanks,1956
Sleepless in Seattle,Nora Ephron,1941
You've Got Mail,Nora Ephron,1941
Joe Versus the Volcano,John Patrick Stanley,1950
The Replacements,Howard Deutch,1950
Charlie Wilson's War,Mike Nichols,1931
The Birdcage,Mike Nichols,1931
Unforgiven,Clint Eastwood,1930
Johnny Mnemonic,Robert Longo,1953
Cloud Atlas,Tom Tykwer,1965
Apollo 13,Ron Howard,1954
Frost/Nixon,Ron Howard,1954
The Da Vinci Code,Ron Howard,1954
The Green Mile,Frank Darabont,1959
Hoffa,Danny DeVito,1944
Twister,Jan de Bont,1943
The Polar Express,Robert Zemeckis,1951
Cast Away,Robert Zemeckis,1951
One Flew Over the Cuckoo's Nest,Milos Forman,1932
Something's Gotta Give,Nancy Meyers,1949
Bicentennial Man,Chris Columbus,1958
A League of Their Own,Penny Marshall,1943

9.5.2. Prerequisites

The example uses the Linux or macOS tarball installation. It assumes that your current work directory is
the <neo4j-home> directory of the tarball installation, and the CSV files are placed in the default import
directory.

• For the default directory of other installations see, Operations Manual → File locations.

• The import location can be configured with Operations Manual →
dbms.directories.import.

9.5.3. Importing the data

Import the movies.csv file

536

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#file_locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#file_locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#file_locations
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_dbms.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_dbms.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_dbms.directories.import
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_dbms.directories.import

LOAD CSV WITH HEADERS FROM 'file:///movies.csv' AS line
MERGE (m:Movie {title: line.title})
ON CREATE SET
 m.released = toInteger(line.released),
 m.tagline = line.tagline

Added 38 nodes, Set 114 properties, Added 38 labels

Import the actors.csv file

LOAD CSV WITH HEADERS FROM 'file:///actors.csv' AS line
MATCH (m:Movie {title: line.title})
MERGE (p:Person {name: line.name})
ON CREATE SET p.born = toInteger(line.born)
MERGE (p)-[:ACTED_IN {roles:split(line.roles, ';')}]->(m)

Added 102 nodes, Created 172 relationships, Set 375 properties, Added 102 labels

Import the directors.csv file

LOAD CSV WITH HEADERS FROM 'file:///directors.csv' AS line
MATCH (m:Movie {title: line.title})
MERGE (p:Person {name: line.name})
ON CREATE SET p.born = toInteger(line.born)
MERGE (p)-[:DIRECTED]->(m)

Added 23 nodes, Created 44 relationships, Set 46 properties, Added 23 labels

Create an index for nodes with the Person label

CREATE INDEX FOR (p:Person)
ON (p.name)

Added 1 indexes

CALL db.awaitIndexes

9.5.4. Index-backed property-lookup

In this example you want to write a query to find persons with the name 'Tom' that acted in a movie.

MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
WHERE p.name STARTS WITH 'Tom'
RETURN
 p.name AS name,
 count(m) AS count

537

+---------------------------+
| name | count |
+---------------------------+
"Tom Cruise"	3
"Tom Hanks"	12
"Tom Skerritt"	1
+---------------------------+
3 rows

The query request the database to return all the actors with the first name 'Tom'. There are three of them:
'Tom Cruise', 'Tom Skerritt' and 'Tom Hanks'. With native indexes, however, you can leverage the fact that
indexes store the property values. In this case, it means that the names can be looked up directly from the
index. This allows Cypher to avoid the second call to the database to find the property, which can save
time on very large queries.

If we profile the above query, we see that the NodeIndexSeekByRange in the Details column contains
cache[p.name], which means that p.name is retrieved from the index. We can also see that the
OrderedAggregation has no DB Hits, which means it does not have to access the database again.

PROFILE
MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
WHERE p.name STARTS WITH 'Tom'
RETURN
 p.name AS name,
 count(m) AS count

538

+------------------------+
| name | count |
+------------------------+
"Tom Cruise"	3
"Tom Hanks"	12
"Tom Skerritt"	1
+------------------------+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 2 | 43 | 3 | 1768 |
+--+

+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by | Other
|
+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +ProduceResults@neo4j | name, count |
1 | 3 | 0 | | 0/0 | 0.049 | name ASC | In Pipeline 1
|
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +OrderedAggregation@neo4j | cache[p.name] AS name, count(m) AS count |
1 | 3 | 0 | 1688 | 0/0 | 0.188 | name ASC | In Pipeline 1
|
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +Filter@neo4j | m:Movie |
1 | 16 | 16 | | | | p.name ASC | Fused in Pipeline
0 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +Expand(All)@neo4j | (p)-[anon_16:ACTED_IN]->(m) |
1 | 16 | 22 | | | | p.name ASC | Fused in Pipeline
0 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +NodeIndexSeekByRange@neo4j | p:Person(name) WHERE name STARTS WITH $autostring_0, cache[p.name] |
1 | 4 | 5 | 72 | 4/0 | 0.340 | p.name ASC | Fused in Pipeline
0 |
+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+

3 rows

If we change the query, such that it can no longer use an index, we will see that there will be no
cache[p.name] in the Details column, and that the EagerAggregation now has DB Hits, since it accesses
the database again to retrieve the name.

PROFILE
MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
RETURN
 p.name AS name,
 count(m) AS count

+----------------------------------+
| name | count |
+----------------------------------+
| "Diane Keaton" | 1 |

539

"Jack Nicholson"	5
"Keanu Reeves"	7
"Ice-T"	1
"Takeshi Kitano"	1
"Dina Meyer"	1
"Brooke Langton"	1
"Gene Hackman"	3
"Orlando Jones"	1
"Al Pacino"	1
"Charlize Theron"	2
"Hugo Weaving"	5
"Laurence Fishburne"	3
"Carrie-Anne Moss"	3
"Emil Eifrem"	1
"John Hurt"	1
"Stephen Rea"	1
"Natalie Portman"	1
"Ben Miles"	3
"Jim Broadbent"	1
"Tom Hanks"	12
"Halle Berry"	1
"John Goodman"	1
"Susan Sarandon"	1
"Christina Ricci"	1
"Rain"	2
"Emile Hirsch"	1
"Matthew Fox"	1
"Rick Yune"	2
"Naomie Harris"	1
"Liv Tyler"	1
"Kelly Preston"	1
"Bonnie Hunt"	2
"Jerry O'Connell"	2
"Renee Zellweger"	1
"Jay Mohr"	1
"Jonathan Lipnicki"	1
"Cuba Gooding Jr."	4
"Regina King"	1
"Tom Cruise"	3
"Kelly McGillis"	1
"Anthony Edwards"	1
"Tom Skerritt"	1
"Meg Ryan"	5
"Val Kilmer"	1
"Kiefer Sutherland"	2
"Kevin Bacon"	3
"Aaron Sorkin"	1
"Christopher Guest"	1
"Noah Wyle"	1
"James Marshall"	1
"Kevin Pollak"	1
"J.T. Walsh"	2
"Demi Moore"	1
"Danny DeVito"	2
"John C. Reilly"	1
"Helen Hunt"	3
"Greg Kinnear"	2
"Ed Harris"	1
"Bill Paxton"	3
"Gary Sinise"	2
"Oliver Platt"	2
"Frank Langella"	1
"Michael Sheen"	1
"Sam Rockwell"	2
"John Cusack"	1
"Wil Wheaton"	1
"Corey Feldman"	1
"River Phoenix"	1
"Marshall Bell"	2
"Max von Sydow"	2
"Annabella Sciorra"	1
"Werner Herzog"	1
"Robin Williams"	3
"Billy Crystal"	1
"Carrie Fisher"	1
"Bruno Kirby"	1
"Nathan Lane"	2

540

"Rita Wilson"	1
"Rosie O'Donnell"	2
"Bill Pullman"	1
"Victor Garber"	1
"Steve Zahn"	2
"Dave Chappelle"	1
"Parker Posey"	1
"James Cromwell"	2
"Patricia Clarkson"	1
"Michael Clarke Duncan"	1
"David Morse"	1
"Zach Grenier"	2
"Christian Bale"	1
"Philip Seymour Hoffman"	2
"Ethan Hawke"	1
"Geena Davis"	1
"Madonna"	1
"Lori Petty"	1
"Julia Roberts"	1
"Ian McKellen"	1
"Paul Bettany"	1
"Audrey Tautou"	1
"Clint Eastwood"	1
"Richard Harris"	1
+----------------------------------+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 70 | 809 | 102 | 17376 |
+--+

+-------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults@neo4j | name, count | 13 | 102 | 0 |
| 0/0 | 0.536 | In Pipeline 1 |
| | +-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +EagerAggregation@neo4j | p.name AS name, count(m) AS count | 13 | 102 | 344 |
17296 | | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Filter@neo4j | p:Person | 172 | 172 | 172 |
| | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Expand(All)@neo4j | (m)<-[anon_16:ACTED_IN]-(p) | 172 | 172 | 254 |
| | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeByLabelScan@neo4j | m:Movie | 38 | 38 | 39 |
72 | 5/0 | 12.818 | Fused in Pipeline 0 |
+-------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

102 rows

For non-native indexes there will still be a second database access to retrieve those values.

Predicates that can be used to enable this optimization are:

• Existence (e.g. WHERE n.name IS NOT NULL)

• Equality (e.g. WHERE n.name = 'Tom Hanks')

• Range (e.g. WHERE n.uid > 1000 AND n.uid < 2000)

• Prefix (e.g. WHERE n.name STARTS WITH 'Tom')

541

• Suffix (e.g. WHERE n.name ENDS WITH 'Hanks')

• Substring (e.g. WHERE n.name CONTAINS 'a')

• Several predicates of the above types combined using OR, given that all of them are on the same
property (e.g. WHERE n.prop < 10 OR n.prop = 'infinity')

If there is an existence constraint on the property, no predicate is required to trigger the
optimization. For example, CREATE CONSTRAINT constraint_name ON (p:Person) ASSERT
p.name IS NOT NULL.

Aggregating functions

For all built-in aggregating functions in Cypher, the index-backed property-lookup optimization can be
used even without a predicate.

Consider this query which returns the number of distinct names of people in the movies dataset:

PROFILE
MATCH (p:Person)
RETURN count(DISTINCT p.name) AS numberOfNames

+---------------+
| numberOfNames |
+---------------+
| 125 |
+---------------+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 45 | 126 | 1 | 9952 |
+--+

+-------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults@neo4j | numberOfNames | 1 | 1 |
0 | | 0/0 | 0.048 | In Pipeline 1 |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +EagerAggregation@neo4j | count(DISTINCT cache[p.name]) AS numberOfNames | 1 | 1 |
0 | 9888 | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +NodeIndexScan@neo4j | p:Person(name) WHERE name IS NOT NULL, cache[p.name] | 125 | 125 |
126 | 72 | 1/0 | 1.569 | Fused in Pipeline 0 |
+-------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

1 row

Note that the NodeIndexScan in the Details column contains cache[p.name] and that the EagerAggregation
has no DB Hits. In this case, the semantics of aggregating functions works like an implicit existence
predicate because Person nodes without the property name will not affect the result of an aggregation.

542

9.5.5. Index-backed order by

Now consider the following refinement to the query:

PROFILE
MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
WHERE p.name STARTS WITH 'Tom'
RETURN
 p.name AS name,
 count(m) AS count
ORDER BY name

+------------------------+
| name | count |
+------------------------+
"Tom Cruise"	3
"Tom Hanks"	12
"Tom Skerritt"	1
+------------------------+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 48 | 43 | 3 | 1768 |
+--+

+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by | Other
|
+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +ProduceResults@neo4j | name, count |
1 | 3 | 0 | | 0/0 | 0.045 | name ASC | In Pipeline 1
|
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +OrderedAggregation@neo4j | cache[p.name] AS name, count(m) AS count |
1 | 3 | 0 | 1688 | 0/0 | 0.173 | name ASC | In Pipeline 1
|
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +Filter@neo4j | m:Movie |
1 | 16 | 16 | | | | p.name ASC | Fused in Pipeline
0 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +Expand(All)@neo4j | (p)-[anon_16:ACTED_IN]->(m) |
1 | 16 | 22 | | | | p.name ASC | Fused in Pipeline
0 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+
| +NodeIndexSeekByRange@neo4j | p:Person(name) WHERE name STARTS WITH $autostring_0, cache[p.name] |
1 | 4 | 5 | 72 | 4/0 | 0.459 | p.name ASC | Fused in Pipeline
0 |
+-----------------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------------+

3 rows

We are asking for the results in ascending alphabetical order. The native index happens to store String

543

properties in ascending alphabetical order, and Cypher knows this. In Neo4j 3.5 and later, the Cypher
planner will recognize that the index already returns data in the correct order, and skip the Sort operation.

The Order by column describes the order of rows after each operator. We see that the Order by column
contains p.name ASC from the index seek operation, meaning that the rows are ordered by p.name in
ascending order.

Index-backed order by can also be used for queries that expect their results is descending order, but with
slightly lower performance.

In cases where the Cypher planner is unable to remove the Sort operator, the planner
can utilize knowledge of the ORDER BY clause to plan the Sort operator at a point in the
plan with optimal cardinality.

min() and max()

For the min and max functions, the index-backed order by optimization can be used to avoid aggregation
and instead utilize the fact that the minimum/maximum value is the first/last one in a sorted index.
Consider the following query which returns the fist actor in alphabetical order:

PROFILE
MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
RETURN min(p.name) AS name

544

+----------------+
| name |
+----------------+
| "Aaron Sorkin" |
+----------------+

+--+
| Plan | Statement | Version | Planner | Runtime | Time | DbHits | Rows | Memory (Bytes) |
+--+
| "PROFILE" | "READ_ONLY" | "CYPHER 4.3" | "COST" | "PIPELINED" | 38 | 809 | 1 | 184 |
+--+

+-------------------------+-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes)
| Page Cache Hits/Misses | Time (ms) | Other |
+-------------------------+-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults@neo4j | name | 1 | 1 | 0 |
| 0/0 | 0.041 | In Pipeline 1 |
| | +-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +EagerAggregation@neo4j | min(p.name) AS name | 1 | 1 | 344 | 32
| | | Fused in Pipeline 0 |
| | +-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Filter@neo4j | p:Person | 172 | 172 | 172 |
| | | Fused in Pipeline 0 |
| | +-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Expand(All)@neo4j | (m)<-[anon_16:ACTED_IN]-(p) | 172 | 172 | 254 |
| | | Fused in Pipeline 0 |
| | +-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeByLabelScan@neo4j | m:Movie | 38 | 38 | 39 | 72
| 5/0 | 1.636 | Fused in Pipeline 0 |
+-------------------------+-----------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

1 row

Aggregations are usually using the EagerAggregation operation. This would mean scanning all nodes in
the index to find the name that is first in alphabetic order. Instead, the query is planned with Projection,
followed by Limit, followed by Optional. This will simply pick the first value from the index.

For large datasets, this can improve performance dramatically.

Index-backed order by can also be used for corresponding queries with the max function, but with slightly
lower performance.

Restrictions

The optimization can only work on native indexes. It does not work for predicates only querying for the
spatial type Point.

Predicates that can be used to enable this optimization are:

• Existence (e.g.WHERE n.name IS NOT NULL)

• Equality (e.g. WHERE n.name = 'Tom Hanks')

• Range (e.g. WHERE n.uid > 1000 AND n.uid < 2000)

• Prefix (e.g. WHERE n.name STARTS WITH 'Tom')

545

• Suffix (e.g. WHERE n.name ENDS WITH 'Hanks')

• Substring (e.g. WHERE n.name CONTAINS 'a')

Predicates that will not work:

• Several predicates combined using OR

• Equality or range predicates querying for points (e.g. WHERE n.place > point({ x: 1, y: 2 }))

• Spatial distance predicates (e.g. WHERE distance(n.place, point({ x: 1, y: 2 })) < 2)

If there is an existence constraint on the property, no predicate is required to trigger the
optimization. For example, CREATE CONSTRAINT constraint_name ON (p:Person) ASSERT
p.name IS NOT NULL

As of Neo4j 4.3.21, predicates with parameters, such as WHERE n.prop > $param, can
trigger index-backed order by. The only exception are queries with parameters of type
Point.

9.6. Planner hints and the USING keyword

Forcing planner behavior is an advanced feature, and should be used with caution by
experienced developers and/or database administrators only, as it may cause queries to
perform poorly.

• Introduction

• Index hints

• Scan hints

• Join hints

• PERIODIC COMMIT query hint

9.6.1. Introduction

When executing a query, Neo4j needs to decide where in the query graph to start matching. This is done
by looking at the MATCH clause and the WHERE conditions and using that information to find useful indexes,
or other starting points.

However, the selected index might not always be the best choice. Sometimes multiple indexes are possible
candidates, and the query planner picks the suboptimal one from a performance point of view. Moreover,
in some circumstances (albeit rarely) it is better not to use an index at all.

Neo4j can be forced to use a specific starting point through the USING keyword. This is called giving a
planner hint. There are four types of planner hints: index hints, scan hints, join hints, and the PERIODIC
COMMIT query hint.

546

Query

MATCH (s:Scientist {born: 1850})-[:RESEARCHED]->(sc:Science)<-[i:INVENTED_BY {year: 560}]-(p:Pioneer {
born: 525})-[:LIVES_IN]->(c:City)-[:PART_OF]->(cc:Country {formed: 411}) RETURN *

The query above will be used in some of the examples on this page. Without any hints, one index and no
join is used.

Query plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c, cc, i, p, s, sc | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | s.born = $autoint_0 AND s:Scientist | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (sc)<-[anon_0:RESEARCHED]-(s) | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | i.year = $autoint_1 AND sc:Science | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (p)-[i:INVENTED_BY]->(sc) | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | p.born = $autoint_2 AND p:Pioneer | 0 | 0 | 2 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (c)<-[anon_1:LIVES_IN]-(p) | 1 | 1 | 3 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | c:City | 1 | 1 | 1 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (cc)<-[anon_2:PART_OF]-(c) | 1 | 1 | 2 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +NodeIndexSeek | cc:Country(formed) WHERE formed = $autoint_3 | 1 | 1 | 2 |
72 | 6/1 | 0.718 | Fused in Pipeline 0 |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 10, total allocated memory: 160

547

9.6.2. Index hints

Index hints are used to specify which index, the planner should use as a starting point. This can be
beneficial in cases where the index statistics are not accurate for the specific values that the query at hand
is known to use, which would result in the planner picking a non-optimal index. To supply an index hint,
use USING INDEX variable:Label(property) or USING INDEX SEEK variable:Label(property) after the
applicable MATCH clause for node indexes, and USING INDEX variable:RELATIONSHIP_TYPE(property) or
USING INDEX SEEK variable:RELATIONSHIP_TYPE(property) for relationship indexes.

USING INDEX can be fulfilled by any of the following plans: NodeIndexScan,
DirectedRelationshipIndexScan, UndirectedRelationshipIndexScan, NodeIndexSeek,
DirectedRelationshipIndexSeek, UndirectedRelationshipIndexSeek. USING INDEX SEEK can only be
fulfilled by NodeIndexSeek, DirectedRelationshipIndexSeek or UndirectedRelationshipIndexSeek.

It is possible to supply several index hints, but keep in mind that several starting points will require the use
of a potentially expensive join later in the query plan.

Query using a node index hint

The query above can be tuned to pick a different index as the starting point.

Query

MATCH (s:Scientist {born: 1850})-[:RESEARCHED]->(sc:Science)<-[i:INVENTED_BY {year: 560}]-(p:Pioneer {
born: 525})-[:LIVES_IN]->(c:City)-[:PART_OF]->(cc:Country {formed: 411})
USING INDEX p:Pioneer(born)
RETURN *

548

Query plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c, cc, i, p, s, sc | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | cc.formed = $autoint_3 AND cc:Country | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (c)-[anon_2:PART_OF]->(cc) | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | c:City | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (p)-[anon_1:LIVES_IN]->(c) | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | s.born = $autoint_0 AND s:Scientist | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (sc)<-[anon_0:RESEARCHED]-(s) | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | i.year = $autoint_1 AND sc:Science | 0 | 0 | 2 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (p)-[i:INVENTED_BY]->(sc) | 2 | 2 | 6 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +NodeIndexSeek | p:Pioneer(born) WHERE born = $autoint_2 | 2 | 2 | 3 |
72 | 4/1 | 0.665 | Fused in Pipeline 0 |
+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 11, total allocated memory: 160

Query using a relationship index hint

The query above can be tuned to pick a relationship index as the starting point.

Query

MATCH (s:Scientist {born: 1850})-[:RESEARCHED]->(sc:Science)<-[i:INVENTED_BY {year: 560}]-(p:Pioneer {
born: 525})-[:LIVES_IN]->(c:City)-[:PART_OF]->(cc:Country {formed: 411})
USING INDEX i:INVENTED_BY(year)
RETURN *

549

Query plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+--------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | c, cc, i, p, s, sc |
0 | 0 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +Filter | cc.formed = $autoint_3 AND cc:Country |
0 | 0 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +Expand(All) | (c)-[anon_2:PART_OF]->(cc) |
0 | 0 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +Filter | c:City |
0 | 0 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +Expand(All) | (p)-[anon_1:LIVES_IN]->(c) |
0 | 0 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +Filter | s.born = $autoint_0 AND s:Scientist |
0 | 0 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +Expand(All) | (sc)<-[anon_0:RESEARCHED]-(s) |
0 | 0 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +Filter | p.born = $autoint_2 AND sc:Science AND p:Pioneer |
0 | 0 | 4 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +DirectedRelationshipIndexSeek | (p)-[i:INVENTED_BY(year)]->(sc) WHERE year = $autoint_1 |
2 | 2 | 5 | 72 | 5/1 | 0.517 | Fused in Pipeline 0 |
+--------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 9, total allocated memory: 160

Query using multiple index hints

Supplying one index hint changed the starting point of the query, but the plan is still linear, meaning it only
has one starting point. If we give the planner yet another index hint, we force it to use two starting points,
one at each end of the match. It will then join these two branches using a join operator.

550

Query

MATCH (s:Scientist {born: 1850})-[:RESEARCHED]->(sc:Science)<-[i:INVENTED_BY {year: 560}]-(p:Pioneer {
born: 525})-[:LIVES_IN]->(c:City)-[:PART_OF]->(cc:Country {formed: 411})
USING INDEX s:Scientist(born)
USING INDEX cc:Country(formed)
RETURN *

Query plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c, cc, i, p, s, sc | 0 | 0 | 0 |
| 0/0 | 0.000 | In Pipeline 2 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeHashJoin | sc | 0 | 0 | 0 |
432 | | | In Pipeline 2 |
| |\ +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Expand(All) | (s)-[anon_0:RESEARCHED]->(sc) | 1 | 0 | 0 |
| | | Fused in Pipeline 1 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +NodeIndexSeek | s:Scientist(born) WHERE born = $autoint_0 | 1 | 0 | 0 |
72 | 0/0 | 0.000 | Fused in Pipeline 1 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Filter | i.year = $autoint_1 AND sc:Science | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (p)-[i:INVENTED_BY]->(sc) | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | p.born = $autoint_2 AND p:Pioneer | 0 | 0 | 2 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (c)<-[anon_1:LIVES_IN]-(p) | 1 | 1 | 3 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | c:City | 1 | 1 | 1 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (cc)<-[anon_2:PART_OF]-(c) | 1 | 1 | 2 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +NodeIndexSeek | cc:Country(formed) WHERE formed = $autoint_3 | 1 | 1 | 2 |
72 | 7/0 | 0.553 | Fused in Pipeline 0 |
+------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 10, total allocated memory: 672

551

9.6.3. Scan hints

If your query matches large parts of an index, it might be faster to scan the label or relationship type and
filter out rows that do not match. To do this, you can use USING SCAN variable:Label after the applicable
MATCH clause for node indexes, and USING SCAN variable:RELATIONSHIP_TYPE for relationship indexes. This
will force Cypher to not use an index that could have been used, and instead do a label scan/relationship
type scan. You can use the same hint to enforce a starting point where no index is applicable.

Hinting a label scan

Query

MATCH (s:Scientist {born: 1850})-[:RESEARCHED]->(sc:Science)<-[i:INVENTED_BY {year: 560}]-(p:Pioneer {
born: 525})-[:LIVES_IN]->(c:City)-[:PART_OF]->(cc:Country {formed: 411})
USING SCAN s:Scientist
RETURN *

552

Query plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c, cc, i, p, s, sc | 0 | 0 |
0 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | cc.formed = $autoint_3 AND cc:Country | 0 | 0 |
0 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +Expand(All) | (c)-[anon_2:PART_OF]->(cc) | 0 | 0 |
0 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | c:City | 0 | 0 |
0 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +Expand(All) | (p)-[anon_1:LIVES_IN]->(c) | 0 | 0 |
0 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | i.year = $autoint_1 AND p.born = $autoint_2 AND p:Pioneer | 0 | 0 |
1 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +Expand(All) | (sc)<-[i:INVENTED_BY]-(p) | 1 | 1 |
3 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | sc:Science | 1 | 1 |
1 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +Expand(All) | (s)-[anon_0:RESEARCHED]->(sc) | 1 | 1 |
2 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | s.born = $autoint_0 | 1 | 1 |
200 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +NodeByLabelScan | s:Scientist | 100 | 100 |
101 | 72 | 10/0 | 0.988 | Fused in Pipeline 0 |
+------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 308, total allocated memory: 168

Hinting a relationship type scan

Query

MATCH (s:Scientist {born: 1850})-[:RESEARCHED]->(sc:Science)<-[i:INVENTED_BY {year: 560}]-(p:Pioneer {
born: 525})-[:LIVES_IN]->(c:City)-[:PART_OF]->(cc:Country {formed: 411})
USING SCAN i:INVENTED_BY
RETURN *

553

Query plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+-------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c, cc, i, p, s, sc
| 0 | 0 | 0 | | | | Fused in
Pipeline 0 |
| |
+--+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | cc.formed = $autoint_3 AND cc:Country
| 0 | 0 | 0 | | | | Fused in
Pipeline 0 |
| |
+--+----------------+------
+---------+----------------+ | +---------------------+
| +Expand(All) | (c)-[anon_2:PART_OF]->(cc)
| 0 | 0 | 0 | | | | Fused in
Pipeline 0 |
| |
+--+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | c:City
| 0 | 0 | 0 | | | | Fused in
Pipeline 0 |
| |
+--+----------------+------
+---------+----------------+ | +---------------------+
| +Expand(All) | (p)-[anon_1:LIVES_IN]->(c)
| 0 | 0 | 0 | | | | Fused in
Pipeline 0 |
| |
+--+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | s.born = $autoint_0 AND s:Scientist
| 0 | 0 | 0 | | | | Fused in
Pipeline 0 |
| |
+--+----------------+------
+---------+----------------+ | +---------------------+
| +Expand(All) | (sc)<-[anon_0:RESEARCHED]-(s)
| 0 | 0 | 0 | | | | Fused in
Pipeline 0 |
| |
+--+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | i.year = $autoint_1 AND p.born = $autoint_2 AND sc:Science AND p:Pioneer
| 0 | 0 | 204 | | | | Fused in
Pipeline 0 |
| |
+--+----------------+------
+---------+----------------+ | +---------------------+
| +DirectedRelationshipTypeScan | (p)-[i:INVENTED_BY]->(sc)
| 100 | 100 | 201 | 72 | 10/0 | 1.417 | Fused in
Pipeline 0 |
+-------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 405, total allocated memory: 160

554

9.6.4. Join hints

Join hints are the most advanced type of hints, and are not used to find starting points for the query
execution plan, but to enforce that joins are made at specified points. This implies that there has to be
more than one starting point (leaf) in the plan, in order for the query to be able to join the two branches
ascending from these leaves. Due to this nature, joins, and subsequently join hints, will force the planner to
look for additional starting points, and in the case where there are no more good ones, potentially pick a
very bad starting point. This will negatively affect query performance. In other cases, the hint might force
the planner to pick a seemingly bad starting point, which in reality proves to be a very good one.

Hinting a join on a single node

In the example above using multiple index hints, we saw that the planner chose to do a join, but not on the
p node. By supplying a join hint in addition to the index hints, we can enforce the join to happen on the p
node.

Query

MATCH (s:Scientist {born: 1850})-[:RESEARCHED]->(sc:Science)<-[i:INVENTED_BY {year: 560}]-(p:Pioneer {
born: 525})-[:LIVES_IN]->(c:City)-[:PART_OF]->(cc:Country {formed: 411})
USING INDEX s:Scientist(born)
USING INDEX cc:Country(formed)
USING JOIN ON p
RETURN *

555

Query plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows |
Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | c, cc, i, p, s, sc | 0 |
0 | 0 | | 0/0 | 0.000 | In Pipeline 2 |
| | +--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +NodeHashJoin | p | 0 |
0 | 0 | 432 | | | In Pipeline 2 |
| |\ +--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| | +Filter | cache[p.born] = $autoint_2 | 1 |
0 | 0 | | | | Fused in Pipeline 1 |
| | | +--+----------------
+------+---------+----------------+ | +---------------------+
| | +Expand(All) | (c)<-[anon_1:LIVES_IN]-(p) | 1 |
0 | 0 | | | | Fused in Pipeline 1 |
| | | +--+----------------
+------+---------+----------------+ | +---------------------+
| | +Filter | c:City | 1 |
0 | 0 | | | | Fused in Pipeline 1 |
| | | +--+----------------
+------+---------+----------------+ | +---------------------+
| | +Expand(All) | (cc)<-[anon_2:PART_OF]-(c) | 1 |
0 | 0 | | | | Fused in Pipeline 1 |
| | | +--+----------------
+------+---------+----------------+ | +---------------------+
| | +NodeIndexSeek | cc:Country(formed) WHERE formed = $autoint_3 | 1 |
0 | 0 | 72 | 0/0 | 0.000 | Fused in Pipeline 1 |
| | +--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +Filter | i.year = $autoint_1 AND cache[p.born] = $autoint_2 AND p:Pioneer | 0 |
0 | 1 | | | | Fused in Pipeline 0 |
| | +--+----------------
+------+---------+----------------+ | +---------------------+
| +Expand(All) | (sc)<-[i:INVENTED_BY]-(p) | 1 |
1 | 3 | | | | Fused in Pipeline 0 |
| | +--+----------------
+------+---------+----------------+ | +---------------------+
| +Filter | sc:Science | 1 |
1 | 1 | | | | Fused in Pipeline 0 |
| | +--+----------------
+------+---------+----------------+ | +---------------------+
| +Expand(All) | (s)-[anon_0:RESEARCHED]->(sc) | 1 |
1 | 2 | | | | Fused in Pipeline 0 |
| | +--+----------------
+------+---------+----------------+ | +---------------------+
| +NodeIndexSeek | s:Scientist(born) WHERE born = $autoint_0 | 1 |
1 | 2 | 72 | 6/1 | 0.753 | Fused in Pipeline 0 |
+------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 9, total allocated memory: 672

Hinting a join for an OPTIONAL MATCH

A join hint can also be used to force the planner to pick a NodeLeftOuterHashJoin or
NodeRightOuterHashJoin to solve an OPTIONAL MATCH. In most cases, the planner will rather use an
OptionalExpand.

556

Query

MATCH (s:Scientist {born: 1850})
OPTIONAL MATCH (s)-[:RESEARCHED]->(sc:Science)
RETURN *

Without any hint, the planner did not use a join to solve the OPTIONAL MATCH.

Query plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+----------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits
| Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+----------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | s, sc | 1 | 1 | 0
| | | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +OptionalExpand(All) | (s)-[anon_0:RESEARCHED]->(sc) WHERE sc:Science | 1 | 1 | 3
| | | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +NodeIndexSeek | s:Scientist(born) WHERE born = $autoint_0 | 1 | 1 | 2
| 72 | 6/0 | 0.630 | Fused in Pipeline 0 |
+----------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 5, total allocated memory: 136

Query

MATCH (s:Scientist {born: 1850})
OPTIONAL MATCH (s)-[:RESEARCHED]->(sc:Science)
USING JOIN ON s
RETURN *

Now the planner uses a join to solve the OPTIONAL MATCH.

557

Query plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | s, sc | 1 | 1 | 0 |
| 2/0 | 0.123 | In Pipeline 2 |
| | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeLeftOuterHashJoin | s | 1 | 1 | 0 |
3096 | | 7.145 | In Pipeline 2 |
| |\ +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Expand(All) | (sc)<-[anon_0:RESEARCHED]-(s) | 100 | 100 | 300 |
| | | Fused in Pipeline 1 |
| | | +---+----------------+------+---------
+----------------+ | +---------------------+
| | +NodeByLabelScan | sc:Science | 100 | 100 | 101 |
72 | 4/0 | 0.812 | Fused in Pipeline 1 |
| | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeIndexSeek | s:Scientist(born) WHERE born = $autoint_0 | 1 | 1 | 2 |
72 | 1/0 | 0.926 | In Pipeline 0 |
+------------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 403, total allocated memory: 3176

9.6.5. PERIODIC COMMIT query hint

Importing large amounts of data using LOAD CSV with a single Cypher query may fail due to memory
constraints. This will manifest itself as an OutOfMemoryError.

For this situation only, Cypher provides the global USING PERIODIC COMMIT query hint for updating queries
using LOAD CSV. If required, the limit for the number of rows per commit may be set as follows: USING
PERIODIC COMMIT 500.

PERIODIC COMMIT will process the rows until the number of rows reaches a limit. Then the current
transaction will be committed and replaced with a newly opened transaction. If no limit is set, a default
value will be used.

See Importing large amounts of data in LOAD CSV for examples of USING PERIODIC COMMIT with and
without setting the number of rows per commit.

Using PERIODIC COMMIT will prevent running out of memory when importing large
amounts of data. However, it will also break transactional isolation and thus it should
only be used where needed.

 The USE clause can not be used together with the PERIODIC COMMIT clause.

558

Chapter 10. Execution plans

 For information on replanning, see Cypher replanning.

Introduction

The task of executing a query is decomposed into operators, each of which implements a specific piece of
work. The operators are combined into a tree-like structure called an execution plan. Each operator in the
execution plan is represented as a node in the tree. Each operator takes as input zero or more rows, and
produces as output zero or more rows. This means that the output from one operator becomes the input
for the next operator. Operators that join two branches in the tree combine input from two incoming
streams and produce a single output.

Evaluation model

Evaluation of the execution plan begins at the leaf nodes of the tree. Leaf nodes have no input rows and
generally comprise operators such as scans and seeks. These operators obtain the data directly from the
storage engine, thus incurring database hits. Any rows produced by leaf nodes are then piped into their
parent nodes, which in turn pipe their output rows to their parent nodes and so on, all the way up to the
root node. The root node produces the final results of the query.

Eager and lazy evaluation

In general, query evaluation is lazy: most operators pipe their output rows to their parent operators as soon
as they are produced. This means that a child operator may not be fully exhausted before the parent
operator starts consuming the input rows produced by the child.

However, some operators, such as those used for aggregation and sorting, need to aggregate all their
rows before they can produce output. Such operators need to complete execution in its entirety before any
rows are sent to their parents as input. These operators are called eager operators, and are denoted as
such in Execution plan operators at a glance. Eagerness can cause high memory usage and may therefore
be the cause of query performance issues.

Statistics

Each operator is annotated with statistics.

Rows

The number of rows that the operator produced. This is only available if the query was profiled.

EstimatedRows

This is the estimated number of rows that is expected to be produced by the operator. The estimate is
an approximate number based on the available statistical information. The compiler uses this estimate
to choose a suitable execution plan.

DbHits

Each operator will ask the Neo4j storage engine to do work such as retrieving or updating data. A
database hit is an abstract unit of this storage engine work. The actions triggering a database hit are
listed in Database hits (DbHits).

559

Page Cache Hits, Page Cache Misses, Page Cache Hit Ratio

These metrics are only shown for some queries when using Neo4j Enterprise Edition. The page cache is
used to cache data and avoid accessing disk, so having a high number of hits and a low number of
misses will typically make the query run faster. Whenever several operators are fused together for more
efficient execution we can no longer associate this metric with a given operator and then nothing will
appear here.

Time

Time is only shown for some operators when using the pipelined runtime. The number shown is the
time in milliseconds it took to execute the given operator. Whenever several operators are fused
together for more efficient execution we can no longer associate a duration with a given operator and
then nothing will appear here.

To produce an efficient plan for a query, the Cypher query planner requires information about the Neo4j
database. This information includes which indexes and constraints are available, as well as various
statistics maintained by the database. The Cypher query planner uses this information to determine which
access patterns will produce the best execution plan.

The statistical information maintained by Neo4j is:

1. The number of nodes having a certain label.

2. The number of relationships by type.

3. Selectivity per index.

4. The number of relationships by type, ending with or starting from a node with a specific label.

Information about how the statistics are kept up to date, as well as configuration options for managing
query replanning and caching, can be found in the Operations Manual → Statistics and execution plans.

Query tuning describes how to tune Cypher queries. In particular, see Query tuning for how to view the
execution plan for a query and Planner hints and the USING keyword for how to use hints to influence the
decisions of the planner when building an execution plan for a query.

For a deeper understanding of how each operator works, refer to Execution plan operators at a glance and
the linked sections per operator. Please remember that the statistics of the particular database where the
queries run will decide the plan used. There is no guarantee that a specific query will always be solved
with the same plan.

10.1. Execution plan operators at a glance
This table comprises all the execution plan operators ordered lexicographically.

• Leaf operators, in most cases, locate the starting nodes and relationships required in order to execute
the query.

• Updating operators are used in queries that update the graph.

• Eager operators accumulate all their rows before piping them to the next operator.

560

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#statistics_execution_plans
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#statistics_execution_plans
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#statistics_execution_plans

Name Description Leaf? Updating? Considerations

AllNodesScan Reads all nodes from the node
store.

Yes

AntiSemiApply Performs a nested loop. Tests for
the absence of a pattern predicate.

Apply Performs a nested loop. Yields rows
from both the left-hand and right-
hand side operators.

Argument Indicates the variable to be used as
an argument to the right-hand side
of an Apply operator.

Yes

AssertSameNode Used to ensure that no unique
constraints are violated.

AssertingMultiNodeIndexSeek Used to ensure that no unique
constraints are violated.

CacheProperties Reads node or relationship
properties and caches them.

CartesianProduct Produces a cartesian product of the
inputs from the left-hand and right-
hand operators.

CreateIndex Creates an index for either nodes or
relationships.

Yes

CreateNodeKeyConstraint Creates a node key constraint on a
set of properties for all nodes
having a certain label.

Yes

Create Creates nodes and relationships. Yes

CreateNodePropertyExistenceCons
traint

Creates an existence constraint on
a property for all nodes having a
certain label.

Yes

561

Name Description Leaf? Updating? Considerations

CreateRelationshipPropertyExisten
ceConstraint

Creates an existence constraint on
a property for all relationships of a
certain type.

Yes

CreateUniqueConstraint Creates a unique constraint on a
property for all nodes having a
certain label.

Yes

Delete Deletes a node or relationship. Yes

DetachDelete Deletes a node and its
relationships.

Yes

DirectedRelationshipByIdSeek Reads one or more relationships by
id from the relationship store.

Yes

DirectedRelationshipIndexContains
Scan

Examines all values stored in an
index, searching for entries
containing a specific string; for
example, in queries including
CONTAINS.

DirectedRelationshipIndexEndsWit
hScan

Examines all values stored in an
index, searching for entries ending
in a specific string; for example, in
queries containing ENDS WITH.

DirectedRelationshipIndexScan Examines all values stored in an
index, returning all relationships
and their start and end nodes with
a particular relationship type and a
specified property.

DirectedRelationshipIndexSeek Finds relationships and their start
and end nodes using an index seek.

DirectedRelationshipIndexSeekByR
ange

Finds relationships and their start
and end nodes using an index seek
where the value of the property
matches a given prefix string.

562

Name Description Leaf? Updating? Considerations

DirectedRelationshipTypeScan Fetches all relationships and their
start and end nodes with a specific
type from the relationship type
index.

Distinct Drops duplicate rows from the
incoming stream of rows.

Eager

DoNothingIfExists(CONSTRAINT) Checks if a constraint already
exists, if it does then it stops the
execution, if not it continues.

Yes

DoNothingIfExists(INDEX) Checks if an index already exists, if
it does then it stops the execution,
if not it continues.

Yes

DropIndex Drops an index from a property for
all nodes having a certain label.

Yes Yes Deprecated

DropIndex Drops an index using its name. Yes Yes

DropConstraint Drops a constraint using its name. Yes Yes

DropNodeKeyConstraint Drops a node key constraint from a
set of properties for all nodes
having a certain label.

Yes Yes Deprecated

DropNodePropertyExistenceConstr
aint

Drops an existence constraint from
a property for all nodes having a
certain label.

Yes Yes Deprecated

DropRelationshipPropertyExistence
Constraint

Drops an existence constraint from
a property for all relationships of a
certain type.

Yes Yes Deprecated

DropUniqueConstraint Drops a unique constraint from a
property for all nodes having a
certain label.

Yes Yes Deprecated

563

Name Description Leaf? Updating? Considerations

Eager For isolation purposes, Eager
ensures that operations affecting
subsequent operations are
executed fully for the whole dataset
before continuing execution.

Eager

EagerAggregation Evaluates a grouping expression. Eager

EmptyResult Eagerly loads all incoming data and
discards it.

EmptyRow Returns a single row with no
columns.

Yes

Expand(All) Traverses incoming or outgoing
relationships from a given node.

Expand(Into) Finds all relationships between two
nodes.

Filter Filters each row coming from the
child operator, only passing through
rows that evaluate the predicates to
true.

Foreach Performs a nested loop. Yields rows
from the left-hand operator and
discards rows from the right-hand
operator.

LetAntiSemiApply Performs a nested loop. Tests for
the absence of a pattern predicate
in queries containing multiple
pattern predicates.

LetSelectOrSemiApply Performs a nested loop. Tests for
the presence of a pattern predicate
that is combined with other
predicates.

564

Name Description Leaf? Updating? Considerations

LetSelectOrAntiSemiApply Performs a nested loop. Tests for
the absence of a pattern predicate
that is combined with other
predicates.

LetSemiApply Performs a nested loop. Tests for
the presence of a pattern predicate
in queries containing multiple
pattern predicates.

Limit Returns the first 'n' rows from the
incoming input.

LoadCSV Loads data from a CSV source into
the query.

Yes

LockingMerge Similar to the Merge operator but
will lock the start and end node
when creating a relationship if
necessary.

Merge The Merge operator will either read
or create nodes and/or
relationships.

NodeByIdSeek Reads one or more nodes by ID
from the node store.

Yes

NodeByLabelScan Fetches all nodes with a specific
label from the node label index.

Yes

NodeCountFromCountStore Uses the count store to answer
questions about node counts.

Yes

NodeHashJoin Executes a hash join on node ID. Eager

NodeIndexContainsScan Examines all values stored in an
index, searching for entries
containing a specific string.

Yes

565

Name Description Leaf? Updating? Considerations

NodeIndexEndsWithScan Examines all values stored in an
index, searching for entries ending
in a specific string.

Yes

NodeIndexScan Examines all values stored in an
index, returning all nodes with a
particular label having a specified
property.

Yes

NodeIndexSeek Finds nodes using an index seek. Yes

NodeIndexSeekByRange Finds nodes using an index seek
where the value of the property
matches the given prefix string.

Yes

NodeLeftOuterHashJoin Executes a left outer hash join. Eager

NodeRightOuterHashJoin Executes a right outer hash join. Eager

NodeUniqueIndexSeek Finds nodes using an index seek
within a unique index.

Yes

NodeUniqueIndexSeekByRange Finds nodes using an index seek
within a unique index where the
value of the property matches the
given prefix string.

Yes

OrderedAggregation Like EagerAggregation but relies on
the ordering of incoming rows. Is
not eager.

OrderedDistinct Like Distinct but relies on the
ordering of incoming rows.

Optional Yields a single row with all columns
set to null if no data is returned by
its source.

566

Name Description Leaf? Updating? Considerations

OptionalExpand(All) Traverses relationships from a
given node, producing a single row
with the relationship and end node
set to null if the predicates are not
fulfilled.

OptionalExpand(Into) Traverses all relationships between
two nodes, producing a single row
with the relationship and end node
set to null if no matching
relationships are found (the start
node will be the node with the
smallest degree).

PartialSort Sorts a row by multiple columns if
there is already an ordering.

PartialTop Returns the first 'n' rows sorted by
multiple columns if there is already
an ordering.

ProcedureCall Calls a procedure.

ProduceResults Prepares the result so that it is
consumable by the user.

ProjectEndpoints Projects the start and end node of a
relationship.

Projection Evaluates a set of expressions,
producing a row with the results
thereof.

Yes

RelationshipCountFromCountStore Uses the count store to answer
questions about relationship
counts.

Yes

RemoveLabels Deletes labels from a node. Yes

567

Name Description Leaf? Updating? Considerations

RollUpApply Performs a nested loop. Executes a
pattern expression or pattern
comprehension.

SelectOrAntiSemiApply Performs a nested loop. Tests for
the absence of a pattern predicate if
an expression predicate evaluates
to false.

SelectOrSemiApply Performs a nested loop. Tests for
the presence of a pattern predicate
if an expression predicate evaluates
to false.

SemiApply Performs a nested loop. Tests for
the presence of a pattern predicate.

SetLabels Sets labels on a node. Yes

SetNodePropertiesFromMap Sets properties from a map on a
node.

Yes

SetProperty Sets a property on a node or
relationship.

Yes

SetRelationshipPropertiesFromMap Sets properties from a map on a
relationship.

Yes

ShowConstraints Lists the available constraints. Yes

ShowFunctions Lists the available functions. Yes

ShowIndexes Lists the available indexes. Yes

ShowProcedures Lists the available procedures. Yes

Skip Skips 'n' rows from the incoming
rows.

Sort Sorts rows by a provided key. Eager

568

Name Description Leaf? Updating? Considerations

Top Returns the first 'n' rows sorted by
a provided key.

Eager

TriadicSelection Solves triangular queries, such as
the very common 'find my friend-
of-friends that are not already my
friend'.

UndirectedRelationshipByIdSeek Reads one or more relationships by
ID from the relationship store.

Yes

UndirectedRelationshipIndexContai
nsScan

Examines all values stored in an
index, searching for entries
containing a specific string; for
example, in queries including
CONTAINS.

UndirectedRelationshipIndexEnds
WithScan

Examines all values stored in an
index, searching for entries ending
in a specific string; for example, in
queries containing ENDS WITH.

UndirectedRelationshipIndexScan Examines all values stored in an
index, returning all relationships
and their start and end nodes with
a particular relationship type and a
specified property.

UndirectedRelationshipIndexSeek Finds relationships and their start
and end nodes using an index seek.

UndirectedRelationshipIndexSeekB
yRange

Finds relationships and their start
and end nodes using an index seek
where the value of the property
matches a given prefix string.

UndirectedRelationshipTypeScan Fetches all relationships and their
start and end nodes with a specific
type from the relationship type
index.

569

Name Description Leaf? Updating? Considerations

Union Concatenates the results from the
right-hand operator with the results
from the left-hand operator.

Unwind Returns one row per item in a list.

ValueHashJoin Executes a hash join on arbitrary
values.

Eager

VarLengthExpand(All) Traverses variable-length
relationships from a given node.

VarLengthExpand(Into) Finds all variable-length
relationships between two nodes.

VarLengthExpand(Pruning) Traverses variable-length
relationships from a given node and
only returns unique end nodes.

10.2. Database hits (DbHits)
Each operator will send a request to the storage engine to do work such as retrieving or updating data. A
database hit is an abstract unit of this storage engine work.

We list below all the actions that trigger one or more database hits:

• Create actions

◦ Create a node

◦ Create a relationship

◦ Create a new node label

◦ Create a new relationship type

◦ Create a new ID for property keys with the same name

• Delete actions

◦ Delete a node

◦ Delete a relationship

• Update actions

◦ Set one or more labels on a node

◦ Remove one or more labels from a node

• Node-specific actions

570

◦ Get a node by its ID

◦ Get the degree of a node

◦ Determine whether a node is dense

◦ Determine whether a label is set on a node

◦ Get the labels of a node

◦ Get a property of a node

◦ Get an existing node label

◦ Get the name of a label by its ID, or its ID by its name

• Relationship-specific actions

◦ Get a relationship by its ID

◦ Get a property of a relationship

◦ Get an existing relationship type

◦ Get a relationship type name by its ID, or its ID by its name

• General actions

◦ Get the name of a property key by its ID, or its ID by the key name

◦ Find a node or relationship through an index seek or index scan

◦ Find a path in a variable-length expand

◦ Find a shortest path

◦ Ask the count store for a value

• Schema actions

◦ Add an index

◦ Drop an index

◦ Get the reference of an index

◦ Create a constraint

◦ Drop a constraint

• Call a procedure

• Call a user-defined function

The presented value can vary slightly depending on the Cypher runtime that was used to
execute the query. In the pipelined runtime the number of database hits will typically be
higher since it uses a more accurate way of measuring.

10.3. Execution plan operators in detail
Certain operators are only used by a subset of the runtimes that Cypher can choose from. If that is the
case, the example queries will be prefixed with an option to choose one of these runtimes.

571

10.3.1. All Nodes Scan

The AllNodesScan operator reads all nodes from the node store. The variable that will contain the nodes is
seen in the arguments. Any query using this operator is likely to encounter performance problems on a
non-trivial database.

Query

MATCH (n) RETURN n

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+---------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses |
Time (ms) | Other |
+-----------------+---------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+
| +ProduceResults | n | 35 | 35 | 0 | | |
| Fused in Pipeline 0 |
| | +---------+----------------+------+---------+----------------+ |
+---------------------+
| +AllNodesScan | n | 35 | 35 | 36 | 72 | 3/0 |
0.830 | Fused in Pipeline 0 |
+-----------------+---------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+

Total database accesses: 36, total allocated memory: 136

10.3.2. Directed Relationship Index Scan

The DirectedRelationshipIndexScan operator examines all values stored in an index, returning all
relationships and their start and end nodes with a particular relationship type and a specified property.

Query

MATCH ()-[r: WORKS_IN]->() WHERE r.title IS NOT NULL RETURN r

572

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+--------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | r |
15 | 15 | 0 | | | | Fused in Pipeline 0 |
| | +--
+----------------+------+---------+----------------+ |
+---------------------+
| +DirectedRelationshipIndexScan | (anon_0)-[r:WORKS_IN(title)]->(anon_1) WHERE title IS NOT NULL |
15 | 15 | 31 | 72 | 3/1 | 2.512 | Fused in Pipeline 0 |
+--------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 31, total allocated memory: 136

10.3.3. Undirected Relationship Index Scan

The UndirectedRelationshipIndexScan operator examines all values stored in an index, returning all
relationships and their start and end nodes with a particular relationship type and a specified property.

Query

MATCH ()-[r: WORKS_IN]-() WHERE r.title IS NOT NULL RETURN r

573

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+----------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+----------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | r |
30 | 30 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +UndirectedRelationshipIndexScan | (anon_0)-[r:WORKS_IN(title)]-(anon_1) WHERE title IS NOT NULL |
30 | 30 | 31 | 72 | 3/1 | 1.938 | Fused in Pipeline 0 |
+----------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 31, total allocated memory: 136

10.3.4. Directed Relationship Index Seek

The DirectedRelationshipIndexSeek operator finds relationships and their start and end nodes using an
index seek. The relationship variable and the index used are shown in the arguments of the operator.

Query

MATCH (candidate)-[r:WORKS_IN]->() WHERE r.title = 'chief architect' RETURN candidate

574

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+--------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | candidate |
2 | 1 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +DirectedRelationshipIndexSeek | (candidate)-[r:WORKS_IN(title)]->(anon_0) WHERE title = $autostring_0 |
2 | 1 | 3 | 72 | 3/1 | 1.031 | Fused in Pipeline 0 |
+--------------------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 3, total allocated memory: 136

10.3.5. Undirected Relationship Index Seek

The UndirectedRelationshipIndexSeek operator finds relationships and their start and end nodes using an
index seek. The relationship variable and the index used are shown in the arguments of the operator.

Query

MATCH (candidate)-[r:WORKS_IN]-() WHERE r.title = 'chief architect' RETURN candidate

575

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+----------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+----------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | candidate
| 4 | 2 | 0 | | | | Fused in
Pipeline 0 |
| | +--
+----------------+------+---------+----------------+ |
+---------------------+
| +UndirectedRelationshipIndexSeek | (candidate)-[r:WORKS_IN(title)]-(anon_0) WHERE title = $autostring_0
| 4 | 2 | 3 | 72 | 3/1 | 0.671 | Fused in
Pipeline 0 |
+----------------------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 3, total allocated memory: 136

10.3.6. Directed Relationship By Id Seek

The DirectedRelationshipByIdSeek operator reads one or more relationships by id from the relationship
store, and produces both the relationship and the nodes on either side.

Query

MATCH (n1)-[r]->()
 WHERE id(r) = 0
 RETURN r, n1

576

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-------------------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-------------------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r, n1 | 1 | 1 |
0 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +DirectedRelationshipByIdSeek | (n1)-[r]->(anon_0) WHERE id(r) = $autoint_0 | 1 | 1 |
1 | 72 | 4/0 | 0.416 | Fused in Pipeline 0 |
+-------------------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 136

10.3.7. Undirected Relationship By Id Seek

The UndirectedRelationshipByIdSeek operator reads one or more relationships by id from the relationship
store. As the direction is unspecified, two rows are produced for each relationship as a result of alternating
the combination of the start and end node.

Query

MATCH (n1)-[r]-()
 WHERE id(r) = 1
 RETURN r, n1

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---------------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+---------------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r, n1 | 1 | 2 |
0 | | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +UndirectedRelationshipByIdSeek | (n1)-[r]-(anon_0) WHERE id(r) = $autoint_0 | 1 | 2 |
1 | 72 | 4/0 | 1.461 | Fused in Pipeline 0 |
+---------------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 136

577

10.3.8. Directed Relationship Index Contains Scan

The DirectedRelationshipIndexContainsScan operator examines all values stored in an index, searching
for entries containing a specific string; for example, in queries including CONTAINS. Although this is slower
than an index seek (since all entries need to be examined), it is still faster than the indirection resulting
from a type scan using DirectedRelationshipTypeScan, and a property store filter.

Query

MATCH ()-[r: WORKS_IN]->() WHERE r.title CONTAINS 'senior' RETURN r

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+--
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r
| 0 | 4 | 0 | | | | Fused in
Pipeline 0 |
| |
+---+----------------+------
+---------+----------------+ | +---------------------+
| +DirectedRelationshipIndexContainsScan | (anon_0)-[r:WORKS_IN(title)]->(anon_1) WHERE title CONTAINS
$autostring_0 | 0 | 4 | 9 | 72 | 3/1 | 0.919 |
Fused in Pipeline 0 |
+--
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 9, total allocated memory: 136

10.3.9. Undirected Relationship Index Contains Scan

The UndirectedRelationshipIndexContainsScan operator examines all values stored in an index, searching
for entries containing a specific string; for example, in queries including CONTAINS. Although this is slower
than an index seek (since all entries need to be examined), it is still faster than the indirection resulting
from a type scan using DirectedRelationshipTypeScan, and a property store filter.

Query

MATCH ()-[r: WORKS_IN]-() WHERE r.title CONTAINS 'senior' RETURN r

578

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+--
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r
| 0 | 8 | 0 | | | | Fused in
Pipeline 0 |
| |
+--+----------------+------
+---------+----------------+ | +---------------------+
| +UndirectedRelationshipIndexContainsScan | (anon_0)-[r:WORKS_IN(title)]-(anon_1) WHERE title CONTAINS
$autostring_0 | 0 | 8 | 9 | 72 | 3/1 | 1.384 |
Fused in Pipeline 0 |
+--
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 9, total allocated memory: 136

10.3.10. Directed Relationship Index Ends With Scan

The DirectedRelationshipIndexEndsWithScan operator examines all values stored in an index, searching
for entries ending in a specific string; for example, in queries containing ENDS WITH. Although this is slower
than an index seek (since all entries need to be examined), it is still faster than the indirection resulting
from a label scan using NodeByLabelScan, and a property store filter.

Query

MATCH ()-[r: WORKS_IN]->() WHERE r.title ENDS WITH 'developer' RETURN r

579

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+--
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r
| 0 | 8 | 0 | | | | Fused in
Pipeline 0 |
| |
+--+----------------+------
+---------+----------------+ | +---------------------+
| +DirectedRelationshipIndexEndsWithScan | (anon_0)-[r:WORKS_IN(title)]->(anon_1) WHERE title ENDS WITH
$autostring_0 | 0 | 8 | 17 | 72 | 3/1 | 1.065 |
Fused in Pipeline 0 |
+--
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 17, total allocated memory: 136

10.3.11. Undirected Relationship Index Ends With Scan

The UndirectedRelationshipIndexEndsWithScan operator examines all values stored in an index, searching
for entries ending in a specific string; for example, in queries containing ENDS WITH. Although this is slower
than an index seek (since all entries need to be examined), it is still faster than the indirection resulting
from a label scan using NodeByLabelScan, and a property store filter.

Query

MATCH ()-[r: WORKS_IN]-() WHERE r.title ENDS WITH 'developer' RETURN r

580

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+--
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r
| 0 | 16 | 0 | | | | Fused in
Pipeline 0 |
| |
+---+----------------+------
+---------+----------------+ | +---------------------+
| +UndirectedRelationshipIndexEndsWithScan | (anon_0)-[r:WORKS_IN(title)]-(anon_1) WHERE title ENDS WITH
$autostring_0 | 0 | 16 | 17 | 72 | 3/1 | 1.363 |
Fused in Pipeline 0 |
+--
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 17, total allocated memory: 136

10.3.12. Directed Relationship Index Seek By Range

The DirectedRelationshipIndexSeekByRange operator finds relationships and their start and end nodes
using an index seek where the value of the property matches a given prefix string.
DirectedRelationshipIndexSeekByRange can be used for STARTS WITH and comparison operators such as <,
>, <= and >=.

Query

MATCH (candidate: Person)-[r:WORKS_IN]->(location) WHERE r.duration > 100 RETURN candidate

581

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---------------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+---------------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | candidate
| 4 | 15 | 0 | | | | Fused in
Pipeline 0 |
| |
+--+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | candidate:Person
| 4 | 15 | 15 | | | | Fused in
Pipeline 0 |
| |
+--+----------------+------
+---------+----------------+ | +---------------------+
| +DirectedRelationshipIndexSeekByRange | (candidate)-[r:WORKS_IN(duration)]->(location) WHERE duration >
$autoint_0 | 4 | 15 | 31 | 72 | 4/1 | 1.661 | Fused
in Pipeline 0 |
+---------------------------------------
+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 46, total allocated memory: 136

10.3.13. Undirected Relationship Index Seek By Range

The UndirectedRelationshipIndexSeekByRange operator finds relationships and their start and end nodes
using an index seek where the value of the property matches a given prefix string.
UndirectedRelationshipIndexSeekByRange can be used for STARTS WITH and comparison operators such as
<, >, <= and >=.

Query

MATCH (candidate: Person)-[r:WORKS_IN]-(location) WHERE r.duration > 100 RETURN candidate

582

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+---
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | candidate
| 4 | 15 | 0 | | | | Fused in
Pipeline 0 |
| |
+---+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | candidate:Person
| 4 | 15 | 30 | | | | Fused in
Pipeline 0 |
| |
+---+----------------+------
+---------+----------------+ | +---------------------+
| +UndirectedRelationshipIndexSeekByRange | (candidate)-[r:WORKS_IN(duration)]-(location) WHERE duration >
$autoint_0 | 8 | 30 | 31 | 72 | 4/1 | 13.237 | Fused
in Pipeline 0 |
+---
+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 61, total allocated memory: 136

10.3.14. Directed Relationship Type Scan

The DirectedRelationshipTypeScan operator fetches all relationships and their start and end nodes with a
specific type from the relationship type index.

Query

MATCH ()-[r: FRIENDS_WITH]->() RETURN r

583

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-------------------------------+-------------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-------------------------------+-------------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r | 2 | 2 | 0 |
| | | Fused in Pipeline 0 |
| | +-------------------------------------+----------------+------+---------
+----------------+ | +---------------------+
| +DirectedRelationshipTypeScan | (anon_0)-[r:FRIENDS_WITH]->(anon_1) | 2 | 2 | 5 |
72 | 2/1 | 0.488 | Fused in Pipeline 0 |
+-------------------------------+-------------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 5, total allocated memory: 136

10.3.15. Undirected Relationship Type Scan

The UndirectedRelationshipTypeScan operator fetches all relationships and their start and end nodes with
a specific type from the relationship type index.

Query

MATCH ()-[r: FRIENDS_WITH]-() RETURN r

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---------------------------------+------------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+---------------------------------+------------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | r | 4 | 4 | 0 |
| | | Fused in Pipeline 0 |
| | +------------------------------------+----------------+------+---------
+----------------+ | +---------------------+
| +UndirectedRelationshipTypeScan | (anon_0)-[r:FRIENDS_WITH]-(anon_1) | 4 | 4 | 5 |
72 | 2/1 | 0.920 | Fused in Pipeline 0 |
+---------------------------------+------------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 5, total allocated memory: 136

584

10.3.16. Node By Id Seek

The NodeByIdSeek operator reads one or more nodes by id from the node store.

Query

MATCH (n) WHERE id(n) = 0 RETURN n

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+----------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page
Cache Hits/Misses | Time (ms) | Other |
+-----------------+----------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | n | 1 | 1 | 0 | |
| | Fused in Pipeline 0 |
| | +----------------------------+----------------+------+---------+----------------+
| +---------------------+
| +NodeByIdSeek | n WHERE id(n) = $autoint_0 | 1 | 1 | 1 | 72 |
3/0 | 0.272 | Fused in Pipeline 0 |
+-----------------+----------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 136

10.3.17. Node By Label Scan

The NodeByLabelScan operator fetches all nodes with a specific label from the node label index.

Query

MATCH (person:Person) RETURN person

585

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Other |
+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | person | 14 | 14 | 0 | |
| | Fused in Pipeline 0 |
| | +---------------+----------------+------+---------+----------------+
| +---------------------+
| +NodeByLabelScan | person:Person | 14 | 14 | 15 | 72 |
2/1 | 7.126 | Fused in Pipeline 0 |
+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 15, total allocated memory: 136

10.3.18. Node Index Seek

The NodeIndexSeek operator finds nodes using an index seek. The node variable and the index used are
shown in the arguments of the operator. If the index is a unique index, the operator is instead called
NodeUniqueIndexSeek.

Query

MATCH (location:Location {name: 'Malmo'}) RETURN location

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | location | 0 | 1 | 0 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +NodeIndexSeek | location:Location(name) WHERE name = $autostring_0 | 0 | 1 | 2 |
72 | 2/1 | 0.840 | Fused in Pipeline 0 |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 136

586

10.3.19. Node Unique Index Seek

The NodeUniqueIndexSeek operator finds nodes using an index seek within a unique index. The node
variable and the index used are shown in the arguments of the operator. If the index is not unique, the
operator is instead called NodeIndexSeek. If the index seek is used to solve a MERGE clause, it will also be
marked with (Locking). This makes it clear that any nodes returned from the index will be locked in order
to prevent concurrent conflicting updates.

Query

MATCH (t:Team {name: 'Malmo'}) RETURN t

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+----------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits
| Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+----------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | t | 0 | 0 | 0
| | | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +NodeUniqueIndexSeek | UNIQUE t:Team(name) WHERE name = $autostring_0 | 0 | 0 | 1
| 72 | 0/1 | 0.694 | Fused in Pipeline 0 |
+----------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 136

10.3.20. Multi Node Index Seek

The MultiNodeIndexSeek operator finds nodes using multiple index seeks. It supports using multiple
distinct indexes for different nodes in the query. The node variables and the indexes used are shown in the
arguments of the operator.

The operator yields a cartesian product of all index seeks. For example, if the operator does two seeks and
the first seek finds the nodes a1, a2 and the second b1, b2, b3, the MultiNodeIndexSeek will yield the
rows (a1, b1), (a1, b2), (a1, b3), (a2, b1), (a2, b2), (a2, b3).

Query

CYPHER runtime=pipelined
MATCH (location:Location {name: 'Malmo'}), (person:Person {name: 'Bob'}) RETURN location, person

587

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---------------------
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+---------------------
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| +ProduceResults | location, person
| 0 | 1 | 0 | | 2/0 | 0.176 | In Pipeline 0 |
| |
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| +MultiNodeIndexSeek | location:Location(name) WHERE name = $autostring_0, person:Person(name) WHERE name
= $autostring_1 | 0 | 1 | 4 | 72 | 0/2 | 0.512 |
In Pipeline 0 |
+---------------------
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+

Total database accesses: 4, total allocated memory: 136

10.3.21. Asserting Multi Node Index Seek

The AssertingMultiNodeIndexSeek operator is used to ensure that no unique constraints are violated. The
example looks for the presence of a team with the supplied name and id, and if one does not exist, it will
be created. Owing to the existence of two unique constraints on :Team(name) and :Team(id), any node
that would be found by the UniqueIndexSeek must be the very same node, or the constraints would be
violated.

Query

MERGE (t:Team {name: 'Engineering', id: 42})

588

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+------------------------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults |
| 1 | 0 | 0 | | | | Fused in
Pipeline 0 |
| |
+---
+----------------+------+---------+----------------+ |
+---------------------+
| +EmptyResult |
| 1 | 0 | 0 | | | | Fused in
Pipeline 0 |
| |
+---
+----------------+------+---------+----------------+ |
+---------------------+
| +Merge | CREATE (t:Team)
| 1 | 1 | 0 | | | | Fused in
Pipeline 0 |
| |
+---
+----------------+------+---------+----------------+ |
+---------------------+
| +AssertingMultiNodeIndexSeek | UNIQUE t:Team(name) WHERE name = $autostring_0, UNIQUE t:Team(id) WHERE
id = $autoint_1 | 0 | 2 | 4 | 72 | 0/2 | 3.404 |
Fused in Pipeline 0 |
+------------------------------
+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 4, total allocated memory: 136

10.3.22. Node Index Seek By Range

The NodeIndexSeekByRange operator finds nodes using an index seek where the value of the property
matches a given prefix string. NodeIndexSeekByRange can be used for STARTS WITH and comparison
operators such as <, >, <= and >=. If the index is a unique index, the operator is instead called
NodeUniqueIndexSeekByRange.

Query

MATCH (l:Location) WHERE l.name STARTS WITH 'Lon' RETURN l

589

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | l | 2 | 1 |
0 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +NodeIndexSeekByRange | l:Location(name) WHERE name STARTS WITH $autostring_0 | 2 | 1 |
2 | 72 | 3/0 | 0.726 | Fused in Pipeline 0 |
+-----------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 136

10.3.23. Node Unique Index Seek By Range

The NodeUniqueIndexSeekByRange operator finds nodes using an index seek within a unique index, where
the value of the property matches a given prefix string. NodeUniqueIndexSeekByRange is used by STARTS
WITH and comparison operators such as <, >, <= and >=. If the index is not unique, the operator is instead
called NodeIndexSeekByRange.

Query

MATCH (t:Team) WHERE t.name STARTS WITH 'Ma' RETURN t

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows
| Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | t | 2
| 0 | 0 | | | | Fused in Pipeline 0 |
| | +--+----------------
+------+---------+----------------+ | +---------------------+
| +NodeUniqueIndexSeekByRange | UNIQUE t:Team(name) WHERE name STARTS WITH $autostring_0 | 2
| 0 | 1 | 72 | 1/0 | 0.393 | Fused in Pipeline 0 |
+-----------------------------+--+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 136

590

10.3.24. Node Index Contains Scan

The NodeIndexContainsScan operator examines all values stored in an index, searching for entries
containing a specific string; for example, in queries including CONTAINS. Although this is slower than an
index seek (since all entries need to be examined), it is still faster than the indirection resulting from a label
scan using NodeByLabelScan, and a property store filter.

Query

MATCH (l:Location) WHERE l.name CONTAINS 'al' RETURN l

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | l | 0 | 2 |
0 | | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +NodeIndexContainsScan | l:Location(name) WHERE name CONTAINS $autostring_0 | 0 | 2 |
3 | 72 | 2/1 | 0.546 | Fused in Pipeline 0 |
+------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 3, total allocated memory: 136

10.3.25. Node Index Ends With Scan

The NodeIndexEndsWithScan operator examines all values stored in an index, searching for entries ending
in a specific string; for example, in queries containing ENDS WITH. Although this is slower than an index
seek (since all entries need to be examined), it is still faster than the indirection resulting from a label scan
using NodeByLabelScan, and a property store filter.

Query

MATCH (l:Location) WHERE l.name ENDS WITH 'al' RETURN l

591

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | l | 0 | 0 |
0 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +NodeIndexEndsWithScan | l:Location(name) WHERE name ENDS WITH $autostring_0 | 0 | 0 |
1 | 72 | 0/1 | 6.646 | Fused in Pipeline 0 |
+------------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 136

10.3.26. Node Index Scan

The NodeIndexScan operator examines all values stored in an index, returning all nodes with a particular
label and a specified property.

Query

MATCH (l:Location) WHERE l.name IS NOT NULL RETURN l

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | l | 10 | 10 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +NodeIndexScan | l:Location(name) WHERE name IS NOT NULL | 10 | 10 | 11 |
72 | 2/1 | 0.981 | Fused in Pipeline 0 |
+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 11, total allocated memory: 136

592

10.3.27. Apply

All the different Apply operators (listed below) share the same basic functionality: they perform a nested
loop by taking a single row from the left-hand side, and using the Argument operator on the right-hand
side, execute the operator tree on the right-hand side. The versions of the Apply operators differ in how
the results are managed. The Apply operator (i.e. the standard version) takes the row produced by the
right-hand side — which at this point contains data from both the left-hand and right-hand sides — and
yields it..

Query

MATCH (p:Person {name:'me'})
MATCH (q:Person {name: p.secondName})
RETURN p, q

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | p, q | 1 | 0 | 0 |
| | | Fused in Pipeline 1 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Apply | | 1 | 0 | 0 |
| | | |
| |\ +---+----------------+------+---------
+----------------+ | +---------------------+
| | +NodeIndexSeek | q:Person(name) WHERE name = p.secondName | 1 | 0 | 0 |
80 | 0/0 | 0.959 | Fused in Pipeline 1 |
| | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeIndexSeek | p:Person(name) WHERE name = $autostring_0 | 1 | 1 | 2 |
72 | 0/1 | 0.762 | In Pipeline 0 |
+------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 2, total allocated memory: 144

10.3.28. Semi Apply

The SemiApply operator tests for the presence of a pattern predicate, and is a variation of the Apply
operator. If the right-hand side operator yields at least one row, the row from the left-hand side operator is
yielded by the SemiApply operator. This makes SemiApply a filtering operator, used mostly for pattern
predicates in queries.

593

Query

CYPHER runtime=slotted
MATCH (p:Person)
WHERE (p)-[:FRIENDS_WITH]->(:Person)
RETURN p.name

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+-----------------+-------------------------------------+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page Cache
Hits/Misses |
+-----------------+-------------------------------------+----------------+------+---------
+------------------------+
| +ProduceResults | `p.name` | 11 | 2 | 0 |
0/0 |
| | +-------------------------------------+----------------+------+---------
+------------------------+
| +Projection | p.name AS `p.name` | 11 | 2 | 2 |
1/0 |
| | +-------------------------------------+----------------+------+---------
+------------------------+
| +SemiApply | | 11 | 2 | 0 |
0/0 |
| |\ +-------------------------------------+----------------+------+---------
+------------------------+
| | +Filter | anon_3:Person | 2 | 0 | 2 |
0/0 |
| | | +-------------------------------------+----------------+------+---------
+------------------------+
| | +Expand(All) | (p)-[anon_2:FRIENDS_WITH]->(anon_3) | 2 | 2 | 33 |
15/0 |
| | | +-------------------------------------+----------------+------+---------
+------------------------+
| | +Argument | p | 14 | 14 | 0 |
0/0 |
| | +-------------------------------------+----------------+------+---------
+------------------------+
| +Filter | p:Person | 14 | 14 | 35 |
1/0 |
| | +-------------------------------------+----------------+------+---------
+------------------------+
| +AllNodesScan | p | 35 | 35 | 36 |
1/0 |
+-----------------+-------------------------------------+----------------+------+---------
+------------------------+

Total database accesses: 108, total allocated memory: 64

10.3.29. Anti Semi Apply

The AntiSemiApply operator tests for the absence of a pattern, and is a variation of the Apply operator. If
the right-hand side operator yields no rows, the row from the left-hand side operator is yielded by the
AntiSemiApply operator. This makes AntiSemiApply a filtering operator, used for pattern predicates in
queries.

594

Query

CYPHER runtime=slotted
MATCH (me:Person {name: "me"}), (other:Person)
WHERE NOT (me)-[:FRIENDS_WITH]->(other)
RETURN other.name

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+-------------------+--+----------------+------+---------
+----------------+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses |
+-------------------+--+----------------+------+---------
+----------------+------------------------+
| +ProduceResults | `other.name` | 4 | 13 | 0 |
| 0/0 |
| | +--+----------------+------+---------
+----------------+------------------------+
| +Projection | other.name AS `other.name` | 4 | 13 | 13 |
| 1/0 |
| | +--+----------------+------+---------
+----------------+------------------------+
| +AntiSemiApply | | 4 | 13 | 0 |
| 0/0 |
| |\ +--+----------------+------+---------
+----------------+------------------------+
| | +Expand(Into) | (me)-[anon_2:FRIENDS_WITH]->(other) | 0 | 0 | 55 |
896 | 15/0 |
| | | +--+----------------+------+---------
+----------------+------------------------+
| | +Argument | me, other | 14 | 14 | 0 |
| 0/0 |
| | +--+----------------+------+---------
+----------------+------------------------+
| +CartesianProduct | | 14 | 14 | 0 |
| 0/0 |
| |\ +--+----------------+------+---------
+----------------+------------------------+
| | +Filter | other:Person | 14 | 14 | 35 |
| 1/0 |
| | | +--+----------------+------+---------
+----------------+------------------------+
| | +AllNodesScan | other | 35 | 35 | 36 |
| 1/0 |
| | +--+----------------+------+---------
+----------------+------------------------+
| +NodeIndexSeek | me:Person(name) WHERE name = $autostring_0 | 1 | 1 | 2 |
| 0/1 |
+-------------------+--+----------------+------+---------
+----------------+------------------------+

Total database accesses: 141, total allocated memory: 976

10.3.30. Anti

The Anti operator tests for the absence of a pattern. If there are incoming rows, the Anti operator will yield
no rows. If there are no incoming rows, the Anti operator will yield a single row.

595

Query

CYPHER runtime=pipelined
MATCH (me:Person {name: "me"}), (other:Person)
WHERE NOT (me)-[:FRIENDS_WITH]->(other)
RETURN other.name

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `other.name` | 4 | 13 | 0 |
| 0/0 | 0.174 | In Pipeline 4 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Projection | other.name AS `other.name` | 4 | 13 | 26 |
| 2/0 | 0.057 | In Pipeline 4 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Apply | | 4 | 13 | 0 |
| 0/0 | | |
| |\ +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Anti | | 14 | 13 | 0 |
1256 | 0/0 | 0.253 | In Pipeline 4 |
| | | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Limit | 1 | 14 | 1 | 0 |
752 | | | Fused in Pipeline 3 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +Expand(Into) | (me)-[anon_2:FRIENDS_WITH]->(other) | 0 | 1 | 55 |
2856 | | | Fused in Pipeline 3 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +Argument | me, other | 14 | 14 | 0 |
408 | 1/0 | 1.744 | Fused in Pipeline 3 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +CartesianProduct | | 14 | 14 | 0 |
1800 | | 0.300 | In Pipeline 2 |
| |\ +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Filter | other:Person | 14 | 14 | 0 |
| | | Fused in Pipeline 1 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +AllNodesScan | other | 35 | 35 | 36 |
88 | 1/0 | 0.222 | Fused in Pipeline 1 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeIndexSeek | me:Person(name) WHERE name = $autostring_0 | 1 | 1 | 2 |
72 | 0/1 | 0.473 | In Pipeline 0 |
+-------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 119, total allocated memory: 6352

596

10.3.31. Let Semi Apply

The LetSemiApply operator tests for the presence of a pattern predicate, and is a variation of the Apply
operator. When a query contains multiple pattern predicates separated with OR, LetSemiApply will be used
to evaluate the first of these. It will record the result of evaluating the predicate but will leave any filtering
to another operator. In the example, LetSemiApply will be used to check for the presence of the
FRIENDS_WITH relationship from each person.

Query

CYPHER runtime=slotted
MATCH (other:Person)
WHERE (other)-[:FRIENDS_WITH]->(:Person) OR (other)-[:WORKS_IN]->(:Location)
RETURN other.name

597

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+--------------------+---+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page
Cache Hits/Misses |
+--------------------+---+----------------+------+---------
+------------------------+
| +ProduceResults | `other.name` | 13 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +Projection | other.name AS `other.name` | 13 | 14 | 14 |
1/0 |
| | +---+----------------+------+---------
+------------------------+
| +SelectOrSemiApply | anon_9 | 14 | 14 | 0 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_7:Location | 14 | 0 | 12 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_6:WORKS_IN]->(anon_7) | 14 | 12 | 26 |
12/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 12 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +LetSemiApply | | 14 | 14 | 0 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_5:Person | 2 | 0 | 2 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_4:FRIENDS_WITH]->(anon_5) | 2 | 2 | 33 |
15/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +Filter | other:Person | 14 | 14 | 35 |
1/0 |
| | +---+----------------+------+---------
+------------------------+
| +AllNodesScan | other | 35 | 35 | 36 |
1/0 |
+--------------------+---+----------------+------+---------
+------------------------+

Total database accesses: 158, total allocated memory: 64

10.3.32. Let Anti Semi Apply

The LetAntiSemiApply operator tests for the absence of a pattern, and is a variation of the Apply operator.
When a query contains multiple negated pattern predicates — i.e. predicates separated with OR, where at
least one predicate contains NOT — LetAntiSemiApply will be used to evaluate the first of these. It will

598

record the result of evaluating the predicate but will leave any filtering to another operator. In the example,
LetAntiSemiApply will be used to check for the absence of the FRIENDS_WITH relationship from each person.

Query

CYPHER runtime=slotted
MATCH (other:Person)
WHERE NOT ((other)-[:FRIENDS_WITH]->(:Person)) OR (other)-[:WORKS_IN]->(:Location)
RETURN other.name

599

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+--------------------+---+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page
Cache Hits/Misses |
+--------------------+---+----------------+------+---------
+------------------------+
| +ProduceResults | `other.name` | 11 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +Projection | other.name AS `other.name` | 11 | 14 | 14 |
1/0 |
| | +---+----------------+------+---------
+------------------------+
| +SelectOrSemiApply | anon_9 | 14 | 14 | 0 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_7:Location | 14 | 0 | 2 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_6:WORKS_IN]->(anon_7) | 14 | 2 | 7 |
2/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 2 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +LetAntiSemiApply | | 14 | 14 | 0 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_5:Person | 2 | 0 | 2 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_4:FRIENDS_WITH]->(anon_5) | 2 | 2 | 33 |
15/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +Filter | other:Person | 14 | 14 | 35 |
1/0 |
| | +---+----------------+------+---------
+------------------------+
| +AllNodesScan | other | 35 | 35 | 36 |
1/0 |
+--------------------+---+----------------+------+---------
+------------------------+

Total database accesses: 129, total allocated memory: 64

10.3.33. Select Or Semi Apply

The SelectOrSemiApply operator tests for the presence of a pattern predicate and evaluates a predicate,
and is a variation of the Apply operator. This operator allows for the mixing of normal predicates and
pattern predicates that check for the presence of a pattern. First, the normal expression predicate is

600

evaluated, and, only if it returns false, is the costly pattern predicate evaluated.

Query

MATCH (other:Person)
WHERE other.age > 25 OR (other)-[:FRIENDS_WITH]->(:Person)
RETURN other.name

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+--------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `other.name` | 11 | 2 | 0 |
| | | Fused in Pipeline 2 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Projection | other.name AS `other.name` | 11 | 2 | 4 |
| | | Fused in Pipeline 2 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +SelectOrSemiApply | other.age > $autoint_0 | 14 | 2 | 0 |
128 | 0/0 | 0.226 | Fused in Pipeline 2 |
| |\ +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Limit | 1 | 14 | 2 | 0 |
752 | | | Fused in Pipeline 1 |
| | | +---+----------------+------+---------
+----------------+ | +---------------------+
| | +Filter | anon_3:Person | 2 | 2 | 2 |
| | | Fused in Pipeline 1 |
| | | +---+----------------+------+---------
+----------------+ | +---------------------+
| | +Expand(All) | (other)-[anon_2:FRIENDS_WITH]->(anon_3) | 2 | 2 | 32 |
| | | Fused in Pipeline 1 |
| | | +---+----------------+------+---------
+----------------+ | +---------------------+
| | +Argument | other | 14 | 14 | 0 |
296 | 2/0 | 0.779 | Fused in Pipeline 1 |
| | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Filter | other:Person | 14 | 14 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +AllNodesScan | other | 35 | 35 | 36 |
72 | 1/0 | 0.224 | Fused in Pipeline 0 |
+--------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 74, total allocated memory: 1080

10.3.34. Select Or Anti Semi Apply

The SelectOrAntiSemiApply operator is used to evaluate OR between a predicate and a negative pattern
predicate (i.e. a pattern predicate preceded with NOT), and is a variation of the Apply operator. If the
predicate returns true, the pattern predicate is not tested. If the predicate returns false or null,
SelectOrAntiSemiApply will instead test the pattern predicate.

601

Query

MATCH (other:Person)
WHERE other.age > 25 OR NOT (other)-[:FRIENDS_WITH]->(:Person)
RETURN other.name

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `other.name` | 4 | 12 | 0 |
| | | Fused in Pipeline 3 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Projection | other.name AS `other.name` | 4 | 12 | 24 |
| | | Fused in Pipeline 3 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +SelectOrAntiSemiApply | other.age > $autoint_0 | 14 | 12 | 0 |
448 | 0/0 | 0.335 | Fused in Pipeline 3 |
| |\ +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Anti | | 14 | 12 | 0 |
1256 | 0/0 | 0.287 | In Pipeline 2 |
| | | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Limit | 1 | 14 | 2 | 0 |
752 | | | Fused in Pipeline 1 |
| | | +---+----------------+------+---------
+----------------+ | +---------------------+
| | +Filter | anon_3:Person | 2 | 2 | 2 |
| | | Fused in Pipeline 1 |
| | | +---+----------------+------+---------
+----------------+ | +---------------------+
| | +Expand(All) | (other)-[anon_2:FRIENDS_WITH]->(anon_3) | 2 | 2 | 32 |
| | | Fused in Pipeline 1 |
| | | +---+----------------+------+---------
+----------------+ | +---------------------+
| | +Argument | other | 14 | 14 | 0 |
296 | 2/0 | 2.706 | Fused in Pipeline 1 |
| | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Filter | other:Person | 14 | 14 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +AllNodesScan | other | 35 | 35 | 36 |
72 | 1/0 | 0.636 | Fused in Pipeline 0 |
+------------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 94, total allocated memory: 2336

10.3.35. Let Select Or Semi Apply

The LetSelectOrSemiApply operator is planned for pattern predicates that are combined with other
predicates using OR. This is a variation of the Apply operator.

602

Query

CYPHER runtime=slotted
MATCH (other:Person)
WHERE (other)-[:FRIENDS_WITH]->(:Person) OR (other)-[:WORKS_IN]->(:Location) OR other.age = 5
RETURN other.name

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+-----------------------+---+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page
Cache Hits/Misses |
+-----------------------+---+----------------+------+---------
+------------------------+
| +ProduceResults | `other.name` | 13 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +Projection | other.name AS `other.name` | 13 | 14 | 14 |
1/0 |
| | +---+----------------+------+---------
+------------------------+
| +SelectOrSemiApply | anon_9 | 14 | 14 | 0 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_7:Location | 14 | 0 | 12 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_6:WORKS_IN]->(anon_7) | 14 | 12 | 26 |
12/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 12 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +LetSelectOrSemiApply | other.age = $autoint_0 | 14 | 14 | 14 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_5:Person | 2 | 0 | 2 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_4:FRIENDS_WITH]->(anon_5) | 2 | 2 | 33 |
15/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +Filter | other:Person | 14 | 14 | 35 |
1/0 |
| | +---+----------------+------+---------
+------------------------+
| +AllNodesScan | other | 35 | 35 | 36 |
1/0 |
+-----------------------+---+----------------+------+---------
+------------------------+

Total database accesses: 172, total allocated memory: 64

603

10.3.36. Let Select Or Anti Semi Apply

The LetSelectOrAntiSemiApply operator is planned for negated pattern predicates — i.e. pattern
predicates preceded with NOT — that are combined with other predicates using OR. This operator is a
variation of the Apply operator.

Query

CYPHER runtime=slotted
MATCH (other:Person)
WHERE NOT (other)-[:FRIENDS_WITH]->(:Person) OR (other)-[:WORKS_IN]->(:Location) OR other.age = 5
RETURN other.name

604

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+---------------------------+---+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Page Cache Hits/Misses |
+---------------------------+---+----------------+------+---------
+------------------------+
| +ProduceResults | `other.name` | 12 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +Projection | other.name AS `other.name` | 12 | 14 | 14 |
1/0 |
| | +---+----------------+------+---------
+------------------------+
| +SelectOrSemiApply | anon_9 | 14 | 14 | 0 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_7:Location | 14 | 0 | 2 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_6:WORKS_IN]->(anon_7) | 14 | 2 | 7 |
2/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 2 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +LetSelectOrAntiSemiApply | other.age = $autoint_0 | 14 | 14 | 14 |
0/0 |
| |\ +---+----------------+------+---------
+------------------------+
| | +Filter | anon_5:Person | 2 | 0 | 2 |
0/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Expand(All) | (other)-[anon_4:FRIENDS_WITH]->(anon_5) | 2 | 2 | 33 |
15/0 |
| | | +---+----------------+------+---------
+------------------------+
| | +Argument | other | 14 | 14 | 0 |
0/0 |
| | +---+----------------+------+---------
+------------------------+
| +Filter | other:Person | 14 | 14 | 35 |
1/0 |
| | +---+----------------+------+---------
+------------------------+
| +AllNodesScan | other | 35 | 35 | 36 |
1/0 |
+---------------------------+---+----------------+------+---------
+------------------------+

Total database accesses: 143, total allocated memory: 64

10.3.37. Merge

The Merge operator will either read or create nodes and/or relationships.

If matches are found it will execute the provided ON MATCH operations foreach incoming row. If no matches

605

are found instead nodes and relationships are created and all ON CREATE operations are run.

Query

MERGE (p:Person {name: 'Andy'})
ON MATCH SET p.existed = true
ON CREATE SET p.existed = false

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details |
Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+-----------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | |
1 | 0 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +EmptyResult | |
1 | 0 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +Merge | CREATE (p:Person), ON MATCH SET p.existed = true, ON CREATE SET p.existed = false |
1 | 1 | 1 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +NodeIndexSeek | p:Person(name) WHERE name = $autostring_0 |
1 | 1 | 2 | 72 | 2/1 | 0.642 | Fused in Pipeline 0 |
+-----------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 3, total allocated memory: 136

10.3.38. Locking Merge

The LockingMerge operator is just like a normal Merge but will lock the start and end node when creating a
relationship if necessary.

Query

MATCH (s:Person {name: 'me'}) MERGE (s)-[:FRIENDS_WITH]->(s)

606

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | | 1 | 0 | 0 |
| | | Fused in Pipeline 1 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +EmptyResult | | 1 | 0 | 0 |
| | | Fused in Pipeline 1 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Apply | | 1 | 1 | 0 |
| | | |
| |\ +--+----------------+------+---------
+----------------+ | +---------------------+
| | +LockingMerge | CREATE (s)-[anon_0:FRIENDS_WITH]->(s), LOCK(s) | 1 | 1 | 1 |
| | | Fused in Pipeline 1 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +Expand(Into) | (s)-[anon_0:FRIENDS_WITH]->(s) | 0 | 0 | 8 |
896 | | | Fused in Pipeline 1 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +Argument | s | 1 | 3 | 0 |
80 | 4/0 | 0.663 | Fused in Pipeline 1 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeIndexSeek | s:Person(name) WHERE name = $autostring_0 | 1 | 1 | 2 |
72 | 0/1 | 0.322 | In Pipeline 0 |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 11, total allocated memory: 976

10.3.39. Roll Up Apply

The RollUpApply operator is used to execute an expression which takes as input a pattern, and returns a
list with content from the matched pattern; for example, when using a pattern expression or pattern
comprehension in a query. This operator is a variation of the Apply operator.

Query

CYPHER runtime=slotted
MATCH (p:Person)
RETURN p.name, [(p)-[:WORKS_IN]->(location) | location.name] AS cities

607

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+-----------------+-----------------------------------+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page Cache
Hits/Misses |
+-----------------+-----------------------------------+----------------+------+---------
+------------------------+
| +ProduceResults | `p.name`, cities | 14 | 14 | 0 |
0/0 |
| | +-----------------------------------+----------------+------+---------
+------------------------+
| +Projection | p.name AS `p.name` | 14 | 14 | 14 |
0/0 |
| | +-----------------------------------+----------------+------+---------
+------------------------+
| +RollUpApply | cities, anon_0 | 14 | 14 | 0 |
0/0 |
| |\ +-----------------------------------+----------------+------+---------
+------------------------+
| | +Projection | location.name AS anon_0 | 6 | 15 | 15 |
1/0 |
| | | +-----------------------------------+----------------+------+---------
+------------------------+
| | +Expand(All) | (p)-[anon_2:WORKS_IN]->(location) | 6 | 15 | 33 |
15/0 |
| | | +-----------------------------------+----------------+------+---------
+------------------------+
| | +Argument | p | 14 | 14 | 0 |
0/0 |
| | +-----------------------------------+----------------+------+---------
+------------------------+
| +Filter | p:Person | 14 | 14 | 35 |
1/0 |
| | +-----------------------------------+----------------+------+---------
+------------------------+
| +AllNodesScan | p | 35 | 35 | 36 |
1/0 |
+-----------------+-----------------------------------+----------------+------+---------
+------------------------+

Total database accesses: 133, total allocated memory: 64

10.3.40. Argument

The Argument operator indicates the variable to be used as an argument to the right-hand side of an Apply
operator.

Query

MATCH (s:Person {name: 'me'}) MERGE (s)-[:FRIENDS_WITH]->(s)

608

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | | 1 | 0 | 0 |
| | | Fused in Pipeline 1 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +EmptyResult | | 1 | 0 | 0 |
| | | Fused in Pipeline 1 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Apply | | 1 | 1 | 0 |
| | | |
| |\ +--+----------------+------+---------
+----------------+ | +---------------------+
| | +LockingMerge | CREATE (s)-[anon_0:FRIENDS_WITH]->(s), LOCK(s) | 1 | 1 | 1 |
| | | Fused in Pipeline 1 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +Expand(Into) | (s)-[anon_0:FRIENDS_WITH]->(s) | 0 | 0 | 8 |
896 | | | Fused in Pipeline 1 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +Argument | s | 1 | 3 | 0 |
80 | 4/0 | 8.475 | Fused in Pipeline 1 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeIndexSeek | s:Person(name) WHERE name = $autostring_0 | 1 | 1 | 2 |
72 | 0/1 | 10.014 | In Pipeline 0 |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 11, total allocated memory: 976

10.3.41. Expand All

Given a start node, and depending on the pattern relationship, the Expand(All) operator will traverse
incoming or outgoing relationships.

Query

MATCH (p:Person {name: 'me'})-[:FRIENDS_WITH]->(fof) RETURN fof

609

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | fof | 0 | 1 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (p)-[anon_0:FRIENDS_WITH]->(fof) | 0 | 1 | 3 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +NodeIndexSeek | p:Person(name) WHERE name = $autostring_0 | 1 | 1 | 2 |
72 | 4/1 | 1.109 | Fused in Pipeline 0 |
+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 5, total allocated memory: 136

10.3.42. Expand Into

When both the start and end node have already been found, the Expand(Into) operator is used to find all
relationships connecting the two nodes. As both the start and end node of the relationship are already in
scope, the node with the smallest degree will be used. This can make a noticeable difference when dense
nodes appear as end points.

Query

MATCH (p:Person {name: 'me'})-[:FRIENDS_WITH]->(fof)-->(p) RETURN fof

610

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | fof | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | not anon_0 = anon_1 | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(Into) | (p)-[anon_0:FRIENDS_WITH]->(fof) | 0 | 0 | 0 |
0 | | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (p)<-[anon_1]-(fof) | 0 | 0 | 3 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +NodeIndexSeek | p:Person(name) WHERE name = $autostring_0 | 1 | 1 | 2 |
72 | 2/1 | 12.521 | Fused in Pipeline 0 |
+-----------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 5, total allocated memory: 152

10.3.43. Optional Expand All

The OptionalExpand(All) operator is analogous to Expand(All), apart from when no relationships match
the direction, type and property predicates. In this situation, OptionalExpand(all) will return a single row
with the relationship and end node set to null.

Query

MATCH (p:Person)
 OPTIONAL MATCH (p)-[works_in:WORKS_IN]->(l) WHERE works_in.duration > 180
 RETURN p, l

611

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+----------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+----------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | p, l |
14 | 15 | 2 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +OptionalExpand(All) | (p)-[works_in:WORKS_IN]->(l) WHERE works_in.duration > $autoint_0 |
14 | 15 | 47 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +Filter | p:Person |
14 | 14 | 0 | | | | Fused in Pipeline 0 |
| | +---
+----------------+------+---------+----------------+ |
+---------------------+
| +AllNodesScan | p |
35 | 35 | 36 | 72 | 5/0 | 1.701 | Fused in Pipeline 0 |
+----------------------+---
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 85, total allocated memory: 136

10.3.44. Optional Expand Into

The OptionalExpand(Into) operator is analogous to Expand(Into), apart from when no matching
relationships are found. In this situation, OptionalExpand(Into) will return a single row with the
relationship and end node set to null. As both the start and end node of the relationship are already in
scope, the node with the smallest degree will be used. This can make a noticeable difference when dense
nodes appear as end points.

Query

MATCH (p:Person)-[works_in:WORKS_IN]->(l) OPTIONAL MATCH (l)-->(p) RETURN p

612

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------------+------------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes)
| Page Cache Hits/Misses | Time (ms) | Other |
+-----------------------+------------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | p | 15 | 15 | 0 |
| | | Fused in Pipeline 0 |
| | +------------------------------+----------------+------+---------+----------------
+ | +---------------------+
| +OptionalExpand(Into) | (l)-[anon_0]->(p) | 15 | 15 | 105 | 3360
| | | Fused in Pipeline 0 |
| | +------------------------------+----------------+------+---------+----------------
+ | +---------------------+
| +Expand(All) | (p)-[works_in:WORKS_IN]->(l) | 15 | 15 | 19 |
| | | Fused in Pipeline 0 |
| | +------------------------------+----------------+------+---------+----------------
+ | +---------------------+
| +Filter | p:Person | 14 | 14 | 0 |
| | | Fused in Pipeline 0 |
| | +------------------------------+----------------+------+---------+----------------
+ | +---------------------+
| +AllNodesScan | p | 35 | 35 | 36 | 72
| 6/0 | 1.790 | Fused in Pipeline 0 |
+-----------------------+------------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 160, total allocated memory: 3440

10.3.45. VarLength Expand All

Given a start node, the VarLengthExpand(All) operator will traverse variable-length relationships.

Query

MATCH (p:Person)-[:FRIENDS_WITH *1..2]-(q:Person) RETURN p, q

613

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | p, q | 4 | 6 | 0 |
| | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | q:Person | 4 | 6 | 6 |
| | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+ | +---------------------+
| +VarLengthExpand(All) | (p)-[anon_0:FRIENDS_WITH*..2]-(q) | 4 | 6 | 47 |
128 | | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | p:Person | 14 | 14 | 0 |
| | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+ | +---------------------+
| +AllNodesScan | p | 35 | 35 | 36 |
72 | 7/0 | 2.034 | Fused in Pipeline 0 |
+-----------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 89, total allocated memory: 208

10.3.46. VarLength Expand Into

When both the start and end node have already been found, the VarLengthExpand(Into) operator is used
to find all variable-length relationships connecting the two nodes.

Query

MATCH (p:Person)-[:FRIENDS_WITH *1..2]-(p:Person) RETURN p

614

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | p | 0 | 0 | 0 |
| | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+ | +---------------------+
| +VarLengthExpand(Into) | (p)-[anon_0:FRIENDS_WITH*..2]-(p) | 0 | 0 | 47 |
128 | | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | p:Person | 14 | 14 | 0 |
| | | Fused in Pipeline 0 |
| | +-----------------------------------+----------------+------+---------
+----------------+ | +---------------------+
| +AllNodesScan | p | 35 | 35 | 36 |
72 | 4/0 | 0.698 | Fused in Pipeline 0 |
+------------------------+-----------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 83, total allocated memory: 192

10.3.47. VarLength Expand Pruning

Given a start node, the VarLengthExpand(Pruning) operator will traverse variable-length relationships
much like the VarLengthExpand(All) operator. However, as an optimization, some paths will not be
explored if they are guaranteed to produce an end node that has already been found (by means of a
previous path traversal). This will only be used in cases where the individual paths are not of interest. This
operator guarantees that all the end nodes produced will be unique.

Query

MATCH (p:Person)-[:FRIENDS_WITH *3..4]-(q:Person) RETURN DISTINCT p, q

615

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+---------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | p, q | 0 | 0 | 0 |
| 0/0 | 0.044 | In Pipeline 1 |
| | +------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Distinct | p, q | 0 | 0 | 0 |
224 | 0/0 | 2.558 | In Pipeline 1 |
| | +------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Filter | q:Person | 0 | 0 | 0 |
| 0/0 | 0.079 | In Pipeline 1 |
| | +------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +VarLengthExpand(Pruning) | (p)-[:FRIENDS_WITH*3..4]-(q) | 0 | 0 | 32 |
896 | | | In Pipeline 1 |
| | +------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Filter | p:Person | 14 | 14 | 0 |
| | | Fused in Pipeline 0 |
| | +------------------------------+----------------+------+---------
+----------------+ | +---------------------+
| +AllNodesScan | p | 35 | 35 | 36 |
72 | 1/0 | 0.198 | Fused in Pipeline 0 |
+---------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 68, total allocated memory: 976

10.3.48. Assert Same Node

The AssertSameNode operator is used to ensure that no unique constraints are violated in the slotted and
interpreted runtime. The example looks for the presence of a team with the supplied name and id, and if
one does not exist, it will be created. Owing to the existence of two unique constraints on :Team(name) and
:Team(id), any node that would be found by the UniqueIndexSeek must be the very same node, or the
constraints would be violated.

Query

CYPHER runtime=slotted MERGE (t:Team {name: 'Engineering', id: 42})

616

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+---------------------------------+--+----------------
+------+---------+------------------------+
| Operator | Details | Estimated Rows | Rows
| DB Hits | Page Cache Hits/Misses |
+---------------------------------+--+----------------
+------+---------+------------------------+
| +ProduceResults | | 1 | 0
| 0 | 0/0 |
| | +--+----------------
+------+---------+------------------------+
| +EmptyResult | | 1 | 0
| 0 | 0/0 |
| | +--+----------------
+------+---------+------------------------+
| +Merge | CREATE (t:Team) | 1 | 1
| 0 | 0/0 |
| | +--+----------------
+------+---------+------------------------+
| +AssertSameNode | t | 0 | 1
| 0 | 0/0 |
| |\ +--+----------------
+------+---------+------------------------+
| | +NodeUniqueIndexSeek(Locking) | UNIQUE t:Team(id) WHERE id = $autoint_1 | 1 | 1
| 1 | 0/1 |
| | +--+----------------
+------+---------+------------------------+
| +NodeUniqueIndexSeek(Locking) | UNIQUE t:Team(name) WHERE name = $autostring_0 | 0 | 1
| 1 | 0/1 |
+---------------------------------+--+----------------
+------+---------+------------------------+

Total database accesses: 2, total allocated memory: 64

10.3.49. Empty Result

The EmptyResult operator eagerly loads all incoming data and discards it.

Query

CREATE (:Person)

617

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+-----------------+----------------+------+---------+------------------------
+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page Cache Hits/Misses | Time (ms)
| Other |
+-----------------+-----------------+----------------+------+---------+------------------------
+-----------+---------------------+
| +ProduceResults | | 1 | 0 | 0 | |
| Fused in Pipeline 0 |
| | +-----------------+----------------+------+---------+ |
+---------------------+
| +EmptyResult | | 1 | 0 | 0 | |
| Fused in Pipeline 0 |
| | +-----------------+----------------+------+---------+ |
+---------------------+
| +Create | (anon_0:Person) | 1 | 1 | 1 | 0/0 | 0.000
| Fused in Pipeline 0 |
+-----------------+-----------------+----------------+------+---------+------------------------
+-----------+---------------------+

Total database accesses: 1, total allocated memory: 136

10.3.50. Produce Results

The ProduceResults operator prepares the result so that it is consumable by the user, such as transforming
internal values to user values. It is present in every single query that returns data to the user, and has little
bearing on performance optimisation.

Query

MATCH (n) RETURN n

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+---------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses |
Time (ms) | Other |
+-----------------+---------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+
| +ProduceResults | n | 35 | 35 | 0 | | |
| Fused in Pipeline 0 |
| | +---------+----------------+------+---------+----------------+ |
+---------------------+
| +AllNodesScan | n | 35 | 35 | 36 | 72 | 3/0 |
1.409 | Fused in Pipeline 0 |
+-----------------+---------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+

Total database accesses: 36, total allocated memory: 136

618

10.3.51. Load CSV

The LoadCSV operator loads data from a CSV source into the query. It is used whenever the LOAD CSV
clause is used in a query.

Query

LOAD CSV FROM 'https://neo4j.com/docs/cypher-refcard/3.3/csv/artists.csv' AS line RETURN line

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+---------+----------------+------+---------+----------------+------------------------
+-----------+---------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses |
Time (ms) | Other |
+-----------------+---------+----------------+------+---------+----------------+------------------------
+-----------+---------------+
| +ProduceResults | line | 10 | 4 | 0 | | 0/0 |
0.491 | In Pipeline 1 |
| | +---------+----------------+------+---------+----------------+------------------------
+-----------+---------------+
| +LoadCSV | line | 10 | 4 | 0 | 64 | |
| In Pipeline 1 |
+-----------------+---------+----------------+------+---------+----------------+------------------------
+-----------+---------------+

Total database accesses: 0, total allocated memory: 136

10.3.52. Hash joins in general

Hash joins have two inputs: the build input and probe input. The query planner assigns these roles so that
the smaller of the two inputs is the build input. The build input is pulled in eagerly, and is used to build a
probe table. Once this is complete, the probe table is checked for each row coming from the probe input
side.

In query plans, the build input is always the left operator, and the probe input the right operator.

There are four hash join operators:

• NodeHashJoin

• ValueHashJoin

• NodeLeftOuterHashJoin

• NodeRightOuterHashJoin

10.3.53. Node Hash Join

The NodeHashJoin operator is a variation of the hash join. NodeHashJoin executes the hash join on node ids.
As primitive types and arrays can be used, it can be done very efficiently.

619

Query

MATCH (bob:Person {name:'Bob'})-[:WORKS_IN]->(loc)<-[:WORKS_IN]-(matt:Person {name:'Mattis'})
RETURN loc.name

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits |
Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `loc.name` | 10 | 0 | 0 |
| 0/0 | 0.000 | In Pipeline 2 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Projection | loc.name AS `loc.name` | 10 | 0 | 0 |
| 0/0 | 0.000 | In Pipeline 2 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Filter | not anon_0 = anon_1 | 10 | 0 | 0 |
| 0/0 | 0.000 | In Pipeline 2 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +NodeHashJoin | loc | 10 | 0 | 0 |
592 | | 0.041 | In Pipeline 2 |
| |\ +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Expand(All) | (matt)-[anon_1:WORKS_IN]->(loc) | 19 | 0 | 0 |
| | | Fused in Pipeline 1 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +NodeIndexSeek | matt:Person(name) WHERE name = $autostring_1 | 1 | 0 | 1 |
72 | 1/0 | 0.536 | Fused in Pipeline 1 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Expand(All) | (bob)-[anon_0:WORKS_IN]->(loc) | 19 | 1 | 3 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +NodeIndexSeek | bob:Person(name) WHERE name = $autostring_0 | 1 | 1 | 2 |
72 | 3/0 | 0.668 | Fused in Pipeline 0 |
+------------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 6, total allocated memory: 744

10.3.54. Value Hash Join

The ValueHashJoin operator is a variation of the hash join. This operator allows for arbitrary values to be
used as the join key. It is most frequently used to solve predicates of the form: n.prop1 = m.prop2 (i.e.
equality predicates between two property columns).

Query

MATCH (p:Person),(q:Person)
WHERE p.age = q.age
RETURN p,q

620

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Other |
+-----------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | p, q | 10 | 0 | 0 | |
0/0 | 0.000 | In Pipeline 2 |
| | +---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ValueHashJoin | p.age = q.age | 10 | 0 | 0 | 344 |
| | In Pipeline 2 |
| |\ +---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| | +Filter | q:Person | 14 | 0 | 0 | |
| | Fused in Pipeline 1 |
| | | +---------------+----------------+------+---------+----------------+
| +---------------------+
| | +AllNodesScan | q | 35 | 0 | 0 | 72 |
0/0 | 0.000 | Fused in Pipeline 1 |
| | +---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +Filter | p:Person | 14 | 14 | 0 | |
| | Fused in Pipeline 0 |
| | +---------------+----------------+------+---------+----------------+
| +---------------------+
| +AllNodesScan | p | 35 | 35 | 36 | 72 |
1/0 | 0.485 | Fused in Pipeline 0 |
+-----------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 36, total allocated memory: 568

10.3.55. Node Left/Right Outer Hash Join

The NodeLeftOuterHashJoin and NodeRightOuterHashJoin operators are variations of the hash join. The
query below can be planned with either a left or a right outer join. The decision depends on the
cardinalities of the left-hand and right-hand sides; i.e. how many rows would be returned, respectively, for
(a:Person) and (a)-→(b:Person). If (a:Person) returns fewer results than (a)-→(b:Person), a left outer
join — indicated by NodeLeftOuterHashJoin — is planned. On the other hand, if (a:Person) returns more
results than (a)-→(b:Person), a right outer join — indicated by NodeRightOuterHashJoin — is planned
instead.

Query

MATCH (a:Person)
OPTIONAL MATCH (a)-->(b:Person)
USING JOIN ON a
RETURN a.name, b.name

621

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `a.name`, `b.name` | 14 | 14 |
0 | | 0/0 | 0.228 | In Pipeline 2 |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +Projection | cache[a.name] AS `a.name`, cache[b.name] AS `b.name` | 14 | 14 |
24 | | 0/0 | 0.166 | In Pipeline 2 |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +NodeRightOuterHashJoin | a | 14 | 14 |
0 | 1144 | | 0.765 | In Pipeline 2 |
| |\ +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| | +Filter | a:Person | 14 | 14 |
0 | | | | Fused in Pipeline 1 |
| | | +--+----------------+------
+---------+----------------+ | +---------------------+
| | +AllNodesScan | a | 35 | 35 |
36 | 72 | 0/0 | 0.213 | Fused in Pipeline 1 |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +CacheProperties | cache[a.name], cache[b.name] | 2 | 2 |
6 | | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +Expand(All) | (b)<-[anon_0]-(a) | 2 | 2 |
19 | | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | b:Person | 14 | 14 |
0 | | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +AllNodesScan | b | 35 | 35 |
36 | 72 | 4/0 | 0.951 | Fused in Pipeline 0 |
+-------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 121, total allocated memory: 1232

10.3.56. Triadic Selection

The TriadicSelection operator is used to solve triangular queries, such as the very common 'find my
friend-of-friends that are not already my friend'. It does so by putting all the friends into a set, and uses the
set to check if the friend-of-friends are already connected to me. The example finds the names of all
friends of my friends that are not already my friends.

Query

CYPHER runtime=slotted MATCH (me:Person)-[:FRIENDS_WITH]-()-[:FRIENDS_WITH]-(other)
WHERE NOT (me)-[:FRIENDS_WITH]-(other)
RETURN other.name

622

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+-------------------+--+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page
Cache Hits/Misses |
+-------------------+--+----------------+------+---------
+------------------------+
| +ProduceResults | `other.name` | 0 | 2 | 0 |
0/0 |
| | +--+----------------+------+---------
+------------------------+
| +Projection | other.name AS `other.name` | 0 | 2 | 2 |
1/0 |
| | +--+----------------+------+---------
+------------------------+
| +TriadicSelection | WHERE NOT (me)--(other) | 0 | 2 | 0 |
0/0 |
| |\ +--+----------------+------+---------
+------------------------+
| | +Filter | not anon_2 = anon_4 | 0 | 2 | 0 |
0/0 |
| | | +--+----------------+------+---------
+------------------------+
| | +Expand(All) | (anon_3)-[anon_4:FRIENDS_WITH]-(other) | 0 | 6 | 14 |
4/0 |
| | | +--+----------------+------+---------
+------------------------+
| | +Argument | anon_3, anon_2 | 4 | 4 | 0 |
0/0 |
| | +--+----------------+------+---------
+------------------------+
| +Expand(All) | (me)-[anon_2:FRIENDS_WITH]-(anon_3) | 4 | 4 | 33 |
17/0 |
| | +--+----------------+------+---------
+------------------------+
| +Filter | me:Person | 14 | 14 | 35 |
1/0 |
| | +--+----------------+------+---------
+------------------------+
| +AllNodesScan | me | 35 | 35 | 36 |
1/0 |
+-------------------+--+----------------+------+---------
+------------------------+

Total database accesses: 120, total allocated memory: 64

10.3.57. Triadic Build

The TriadicBuild operator is used in conjunction with TriadicFilter to solve triangular queries, such as
the very common 'find my friend-of-friends that are not already my friend'. These two operators are
specific to Pipelined runtime and together perform the same logic as TriadicSelection does for other
runtimes. TriadicBuild builds a set of all friends, which is later used by TriadicFilter. The example finds
the names of all friends of my friends that are not already my friends.

Query

CYPHER runtime=pipelined MATCH (me:Person)-[:FRIENDS_WITH]-()-[:FRIENDS_WITH]-(other)
WHERE NOT (me)-[:FRIENDS_WITH]-(other)
RETURN other.name

623

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `other.name` | 0 | 2 | 0 |
| 0/0 | 0.123 | In Pipeline 3 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Projection | other.name AS `other.name` | 0 | 2 | 4 |
| 2/0 | 0.046 | In Pipeline 3 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +TriadicFilter | WHERE NOT (me)--(other) | 0 | 2 | 0 |
896 | 0/0 | 0.151 | In Pipeline 3 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Apply | | 0 | 2 | 0 |
| 0/0 | | |
| |\ +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Filter | not anon_2 = anon_4 | 0 | 2 | 0 |
| | | Fused in Pipeline 2 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +Expand(All) | (anon_3)-[anon_4:FRIENDS_WITH]-(other) | 0 | 6 | 14 |
| | | Fused in Pipeline 2 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +Argument | anon_3, anon_2 | 4 | 4 | 0 |
192 | 0/0 | 0.714 | Fused in Pipeline 2 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +TriadicBuild | (me)--(anon_3) | 4 | 4 | 0 |
376 | 0/0 | 0.588 | In Pipeline 1 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Expand(All) | (me)-[anon_2:FRIENDS_WITH]-(anon_3) | 4 | 4 | 19 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | me:Person | 14 | 14 | 0 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +AllNodesScan | me | 35 | 35 | 36 |
72 | 2/0 | 0.343 | Fused in Pipeline 0 |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 73, total allocated memory: 1208

10.3.58. Triadic Filter

The TriadicFilter operator is used in conjunction with TriadicBuild to solve triangular queries, such as
the very common 'find my friend-of-friends that are not already my friend'. These two operators are
specific to Pipelined runtime and together perform the same logic as TriadicSelection does for other
runtimes. TriadicFilter uses a set of friends previously built by TriadicBuild to check if the friend-of-
friends are already connected to me. The example finds the names of all friends of my friends that are not

624

already my friends.

Query

CYPHER runtime=pipelined MATCH (me:Person)-[:FRIENDS_WITH]-()-[:FRIENDS_WITH]-(other)
WHERE NOT (me)-[:FRIENDS_WITH]-(other)
RETURN other.name

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | `other.name` | 0 | 2 | 0 |
| 0/0 | 0.126 | In Pipeline 3 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Projection | other.name AS `other.name` | 0 | 2 | 4 |
| 2/0 | 0.122 | In Pipeline 3 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +TriadicFilter | WHERE NOT (me)--(other) | 0 | 2 | 0 |
896 | 0/0 | 0.590 | In Pipeline 3 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Apply | | 0 | 2 | 0 |
| 0/0 | | |
| |\ +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| | +Filter | not anon_2 = anon_4 | 0 | 2 | 0 |
| | | Fused in Pipeline 2 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +Expand(All) | (anon_3)-[anon_4:FRIENDS_WITH]-(other) | 0 | 6 | 14 |
| | | Fused in Pipeline 2 |
| | | +--+----------------+------+---------
+----------------+ | +---------------------+
| | +Argument | anon_3, anon_2 | 4 | 4 | 0 |
192 | 0/0 | 0.547 | Fused in Pipeline 2 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +TriadicBuild | (me)--(anon_3) | 4 | 4 | 0 |
376 | 0/0 | 7.670 | In Pipeline 1 |
| | +--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +Expand(All) | (me)-[anon_2:FRIENDS_WITH]-(anon_3) | 4 | 4 | 19 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | me:Person | 14 | 14 | 0 |
| | | Fused in Pipeline 0 |
| | +--+----------------+------+---------
+----------------+ | +---------------------+
| +AllNodesScan | me | 35 | 35 | 36 |
72 | 2/0 | 0.475 | Fused in Pipeline 0 |
+-----------------+--+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 73, total allocated memory: 1208

625

10.3.59. Cartesian Product

The CartesianProduct operator produces a cartesian product of the two inputs — each row coming from
the left child operator will be combined with all the rows from the right child operator. CartesianProduct
generally exhibits bad performance and ought to be avoided if possible.

Query

MATCH (p:Person), (t:Team) RETURN p, t

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-------------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses
| Time (ms) | Other |
+-------------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | p, t | 140 | 140 | 0 | | 2/0
| 8.824 | In Pipeline 2 |
| | +----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +CartesianProduct | | 140 | 140 | 0 | 1728 |
| 0.871 | In Pipeline 2 |
| |\ +----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| | +Filter | t:Team | 10 | 10 | 0 | |
| | Fused in Pipeline 1 |
| | | +----------+----------------+------+---------+----------------+
| +---------------------+
| | +AllNodesScan | t | 35 | 35 | 36 | 88 | 0/0
| 0.159 | Fused in Pipeline 1 |
| | +----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +Filter | p:Person | 14 | 14 | 0 | |
| | Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+
| +---------------------+
| +AllNodesScan | p | 35 | 35 | 36 | 72 | 1/0
| 0.629 | Fused in Pipeline 0 |
+-------------------+----------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 72, total allocated memory: 1808

10.3.60. Foreach

The Foreach operator executes a nested loop between the left child operator and the right child operator.
In an analogous manner to the Apply operator, it takes a row from the left-hand side and, using the
Argument operator, provides it to the operator tree on the right-hand side. Foreach will yield all the rows
coming in from the left-hand side; all results from the right-hand side are pulled in and discarded.

626

Query

CYPHER runtime=slotted FOREACH (value IN [1,2,3] |
CREATE (:Person {age: value})
)

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+-----------------+--+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page
Cache Hits/Misses |
+-----------------+--+----------------+------+---------
+------------------------+
| +ProduceResults | | 1 | 0 | 0 |
0/0 |
| | +--+----------------+------+---------
+------------------------+
| +EmptyResult | | 1 | 0 | 0 |
0/0 |
| | +--+----------------+------+---------
+------------------------+
| +Foreach | value IN [1, 2, 3], CREATE (anon_0:Person) | 1 | 1 | 9 |
0/0 |
+-----------------+--+----------------+------+---------
+------------------------+

Total database accesses: 9, total allocated memory: 64

10.3.61. Eager

For isolation purposes, the Eager operator ensures that operations affecting subsequent operations are
executed fully for the whole dataset before continuing execution. Information from the stores is fetched in
a lazy manner; i.e. the pattern matching might not be fully exhausted before updates are applied. To
guarantee reasonable semantics, the query planner will insert Eager operators into the query plan to
prevent updates from influencing pattern matching; this scenario is exemplified by the query below, where
the DELETE clause influences the MATCH clause. The Eager operator can cause high memory usage when
importing data or migrating graph structures. In such cases, the operations should be split into simpler
steps; e.g. importing nodes and relationships separately. Alternatively, the records to be updated can be
returned, followed by an update statement.

Query

MATCH (a)-[r]-(b) DELETE r,a,b MERGE ()

627

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+-----------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Other |
+-----------------+-----------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | | 36 | 0 | 0 | |
| | Fused in Pipeline 3 |
| | +-----------------+----------------+------+---------+----------------+
| +---------------------+
| +EmptyResult | | 36 | 0 | 0 | |
| | Fused in Pipeline 3 |
| | +-----------------+----------------+------+---------+----------------+
| +---------------------+
| +Apply | | 36 | 504 | 0 | |
| | |
| |\ +-----------------+----------------+------+---------+----------------+
| +---------------------+
| | +Merge | CREATE (anon_0) | 36 | 504 | 0 | |
| | Fused in Pipeline 3 |
| | | +-----------------+----------------+------+---------+----------------+
| +---------------------+
| | +AllNodesScan | anon_0 | 1260 | 504 | 540 | 1216 |
0/0 | 4.271 | Fused in Pipeline 3 |
| | +-----------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +Eager | | 36 | 36 | 0 | 944 |
0/0 | 0.289 | In Pipeline 2 |
| | +-----------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +Delete | b | 36 | 36 | 9 | |
| | Fused in Pipeline 1 |
| | +-----------------+----------------+------+---------+----------------+
| +---------------------+
| +Delete | a | 36 | 36 | 12 | |
| | Fused in Pipeline 1 |
| | +-----------------+----------------+------+---------+----------------+
| +---------------------+
| +Delete | r | 36 | 36 | 18 | |
| | Fused in Pipeline 1 |
| | +-----------------+----------------+------+---------+----------------+
| +---------------------+
| +Eager | | 36 | 36 | 0 | 944 |
19/0 | 2.109 | Fused in Pipeline 1 |
| | +-----------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +Expand(All) | (a)-[r]-(b) | 36 | 36 | 36 | |
| | Fused in Pipeline 0 |
| | +-----------------+----------------+------+---------+----------------+
| +---------------------+
| +AllNodesScan | a | 35 | 35 | 36 | 72 |
2/0 | 0.573 | Fused in Pipeline 0 |
+-----------------+-----------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 651, total allocated memory: 1344

10.3.62. Eager Aggregation

The EagerAggregation operator evaluates a grouping expression and uses the result to group rows into
different groupings. For each of these groupings, EagerAggregation will then evaluate all aggregation
functions and return the result. To do this, EagerAggregation, as the name implies, needs to pull in all data

628

eagerly from its source and build up state, which leads to increased memory pressure in the system.

Query

MATCH (l:Location)<-[:WORKS_IN]-(p:Person) RETURN l.name AS location, collect(p.name) AS people

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB
Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | location, people | 4 | 6 |
0 | | 0/0 | 0.454 | In Pipeline 1 |
| | +--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +EagerAggregation | cache[l.name] AS location, collect(p.name) AS people | 4 | 6 |
30 | 3168 | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | p:Person | 15 | 15 |
15 | | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +Expand(All) | (l)<-[anon_0:WORKS_IN]-(p) | 15 | 15 |
16 | | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +CacheProperties | cache[l.name] | 10 | 10 |
10 | | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | l:Location | 10 | 10 |
0 | | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +AllNodesScan | l | 35 | 35 |
36 | 72 | 4/0 | 1.122 | Fused in Pipeline 0 |
+-------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 107, total allocated memory: 3248

10.3.63. Ordered Aggregation

The OrderedAggregation operator is an optimization of the EagerAggregation operator that takes
advantage of the ordering of the incoming rows. This operator uses lazy evaluation and has a lower
memory pressure in the system than the EagerAggregation operator.

Query

MATCH (p:Person) WHERE p.name STARTS WITH 'P' RETURN p.name, count(*) AS count

629

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by | Other |
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------+
| +ProduceResults | `p.name`, count |
0 | 2 | 0 | | 0/0 | 0.122 | p.name ASC | In Pipeline 1 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------+
| +OrderedAggregation | cache[p.name] AS `p.name`, count(*) AS count |
0 | 2 | 0 | 280 | 0/0 | 0.278 | p.name ASC | In Pipeline 1 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------+
| +NodeIndexSeekByRange | p:Person(name) WHERE name STARTS WITH $autostring_0, cache[p.name] |
0 | 2 | 3 | 72 | 0/1 | 1.675 | p.name ASC | In Pipeline 0 |
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------+

Total database accesses: 3, total allocated memory: 344

10.3.64. Node Count From Count Store

The NodeCountFromCountStore operator uses the count store to answer questions about node counts. This
is much faster than the EagerAggregation operator which achieves the same result by actually counting.
However, as the count store only stores a limited range of combinations, EagerAggregation will still be
used for more complex queries. For example, we can get counts for all nodes, and nodes with a label, but
not nodes with more than one label.

Query

MATCH (p:Person) RETURN count(p) AS people

630

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+--------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+--------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | people | 1 | 1 | 0 |
| | | Fused in Pipeline 0 |
| | +------------------------------+----------------+------+---------
+----------------+ | +---------------------+
| +NodeCountFromCountStore | count((:Person)) AS people | 1 | 1 | 1 |
72 | 0/0 | 0.335 | Fused in Pipeline 0 |
+--------------------------+------------------------------+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 136

10.3.65. Relationship Count From Count Store

The RelationshipCountFromCountStore operator uses the count store to answer questions about
relationship counts. This is much faster than the EagerAggregation operator which achieves the same
result by actually counting. However, as the count store only stores a limited range of combinations,
EagerAggregation will still be used for more complex queries. For example, we can get counts for all
relationships, relationships with a type, relationships with a label on one end, but not relationships with
labels on both end nodes.

Query

MATCH (p:Person)-[r:WORKS_IN]->() RETURN count(r) AS jobs

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+----------------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+----------------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | jobs | 1 | 1 |
0 | | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +RelationshipCountFromCountStore | count((:Person)-[:WORKS_IN]->()) AS jobs | 1 | 1 |
1 | 72 | 0/0 | 0.233 | Fused in Pipeline 0 |
+----------------------------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 1, total allocated memory: 136

631

10.3.66. Distinct

The Distinct operator removes duplicate rows from the incoming stream of rows. To ensure only distinct
elements are returned, Distinct will pull in data lazily from its source and build up state. This may lead to
increased memory pressure in the system.

Query

MATCH (l:Location)<-[:WORKS_IN]-(p:Person) RETURN DISTINCT l

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+----------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page
Cache Hits/Misses | Time (ms) | Other |
+-----------------+----------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | l | 14 | 6 | 0 | |
| | Fused in Pipeline 0 |
| | +----------------------------+----------------+------+---------+----------------+
| +---------------------+
| +Distinct | l | 14 | 6 | 0 | 224 |
| | Fused in Pipeline 0 |
| | +----------------------------+----------------+------+---------+----------------+
| +---------------------+
| +Filter | p:Person | 15 | 15 | 15 | |
| | Fused in Pipeline 0 |
| | +----------------------------+----------------+------+---------+----------------+
| +---------------------+
| +Expand(All) | (l)<-[anon_0:WORKS_IN]-(p) | 15 | 15 | 16 | |
| | Fused in Pipeline 0 |
| | +----------------------------+----------------+------+---------+----------------+
| +---------------------+
| +Filter | l:Location | 10 | 10 | 0 | |
| | Fused in Pipeline 0 |
| | +----------------------------+----------------+------+---------+----------------+
| +---------------------+
| +AllNodesScan | l | 35 | 35 | 36 | 72 |
5/0 | 0.698 | Fused in Pipeline 0 |
+-----------------+----------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 67, total allocated memory: 304

10.3.67. Ordered Distinct

The OrderedDistinct operator is an optimization of the Distinct operator that takes advantage of the
ordering of the incoming rows. This operator has a lower memory pressure in the system than the
Distinct operator.

Query

MATCH (p:Person) WHERE p.name STARTS WITH 'P' RETURN DISTINCT p.name

632

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by | Other |
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------+
| +ProduceResults | `p.name` |
0 | 2 | 0 | | 0/0 | 0.078 | p.name ASC | In Pipeline 0 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------+
| +OrderedDistinct | cache[p.name] AS `p.name` |
0 | 2 | 0 | 32 | 0/0 | 3.111 | p.name ASC | In Pipeline 0 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------+
| +NodeIndexSeekByRange | p:Person(name) WHERE name STARTS WITH $autostring_0, cache[p.name] |
0 | 2 | 3 | 72 | 0/1 | 0.402 | p.name ASC | In Pipeline 0 |
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------+------------
+---------------+

Total database accesses: 3, total allocated memory: 136

10.3.68. Filter

The Filter operator filters each row coming from the child operator, only passing through rows that
evaluate the predicates to true.

Query

MATCH (p:Person) WHERE p.name =~ '^a.*' RETURN p

633

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits
| Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | p | 14 | 0 | 0
| | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +Filter | cache[p.name] =~ $autostring_0 | 14 | 0 | 0
| | | | Fused in Pipeline 0 |
| | +--+----------------+------
+---------+----------------+ | +---------------------+
| +NodeIndexScan | p:Person(name) WHERE name IS NOT NULL, cache[p.name] | 14 | 14 | 15
| 72 | 0/1 | 1.033 | Fused in Pipeline 0 |
+-----------------+--+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 15, total allocated memory: 136

10.3.69. Limit

The Limit operator returns the first 'n' rows from the incoming input.

Query

MATCH (p:Person) RETURN p LIMIT 3

634

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+----------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses |
Time (ms) | Other |
+-----------------+----------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+
| +ProduceResults | p | 3 | 3 | 0 | | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +Limit | 3 | 3 | 3 | 0 | 32 | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +Filter | p:Person | 3 | 3 | 0 | | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +AllNodesScan | p | 8 | 4 | 5 | 72 | 3/0 |
0.769 | Fused in Pipeline 0 |
+-----------------+----------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+

Total database accesses: 5, total allocated memory: 136

10.3.70. Skip

The Skip operator skips 'n' rows from the incoming rows.

Query

MATCH (p:Person)
 RETURN p
 ORDER BY p.id
 SKIP 1

635

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+----------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Ordered by | Other |
+-----------------+----------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +ProduceResults | p | 13 | 13 | 0 | |
2/0 | 0.551 | p.id ASC | In Pipeline 1 |
| | +----------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +Skip | $autoint_0 | 13 | 13 | 0 | 32 |
0/0 | 2.429 | p.id ASC | In Pipeline 1 |
| | +----------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +Sort | `p.id` ASC | 14 | 14 | 0 | 392 |
0/0 | 0.238 | p.id ASC | In Pipeline 1 |
| | +----------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +Projection | p.id AS `p.id` | 14 | 14 | 14 | |
| | | Fused in Pipeline 0 |
| | +----------------+----------------+------+---------+----------------+
| +------------+---------------------+
| +Filter | p:Person | 14 | 14 | 0 | |
| | | Fused in Pipeline 0 |
| | +----------------+----------------+------+---------+----------------+
| +------------+---------------------+
| +AllNodesScan | p | 35 | 35 | 36 | 72 |
2/0 | 1.180 | | Fused in Pipeline 0 |
+-----------------+----------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+

Total database accesses: 50, total allocated memory: 504

10.3.71. Sort

The Sort operator sorts rows by a provided key. In order to sort the data, all data from the source operator
needs to be pulled in eagerly and kept in the query state, which will lead to increased memory pressure in
the system.

Query

MATCH (p:Person) RETURN p ORDER BY p.name

636

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Ordered by | Other |
+-----------------+--------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +ProduceResults | p | 14 | 14 | 0 | |
2/0 | 0.366 | p.name ASC | In Pipeline 1 |
| | +--------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +Sort | `p.name` ASC | 14 | 14 | 0 | 1184 |
0/0 | 0.190 | p.name ASC | In Pipeline 1 |
| | +--------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +Projection | p.name AS `p.name` | 14 | 14 | 14 | |
| | | Fused in Pipeline 0 |
| | +--------------------+----------------+------+---------+----------------+
| +------------+---------------------+
| +Filter | p:Person | 14 | 14 | 0 | |
| | | Fused in Pipeline 0 |
| | +--------------------+----------------+------+---------+----------------+
| +------------+---------------------+
| +AllNodesScan | p | 35 | 35 | 36 | 72 |
2/0 | 0.409 | | Fused in Pipeline 0 |
+-----------------+--------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+

Total database accesses: 50, total allocated memory: 1264

10.3.72. Partial Sort

The PartialSort operator is an optimization of the Sort operator that takes advantage of the ordering of
the incoming rows. This operator uses lazy evaluation and has a lower memory pressure in the system
than the Sort operator. Partial sort is only applicable when sorting on multiple columns.

Query

MATCH (p:Person) WHERE p.name STARTS WITH 'P' RETURN p ORDER BY p.name, p.age

637

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------------+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by |
Other |
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------------+---------------------+
| +ProduceResults | p |
0 | 2 | 0 | | 2/0 | 0.414 | p.name ASC, p.age ASC | In
Pipeline 1 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------------+---------------------+
| +PartialSort | `p.name` ASC, `p.age` ASC |
0 | 2 | 0 | 536 | 0/0 | 0.687 | p.name ASC, p.age ASC | In
Pipeline 1 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------------+---------------------+
| +Projection | cache[p.name] AS `p.name`, p.age AS `p.age` |
0 | 2 | 0 | | | | p.name ASC | Fused
in Pipeline 0 |
| | +--
+----------------+------+---------+----------------+ |
+-----------------------+---------------------+
| +NodeIndexSeekByRange | p:Person(name) WHERE name STARTS WITH $autostring_0, cache[p.name] |
0 | 2 | 3 | 72 | 0/1 | 0.818 | p.name ASC | Fused
in Pipeline 0 |
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------------+---------------------+

Total database accesses: 3, total allocated memory: 600

10.3.73. Top

The Top operator returns the first 'n' rows sorted by a provided key. Instead of sorting the entire input, only
the top 'n' rows are retained.

Query

MATCH (p:Person) RETURN p ORDER BY p.name LIMIT 2

638

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+----------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Ordered by | Other |
+-----------------+----------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +ProduceResults | p | 2 | 2 | 0 | |
2/0 | 0.261 | p.name ASC | In Pipeline 1 |
| | +----------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +Top | `p.name` ASC LIMIT 2 | 2 | 2 | 0 | 1176 |
0/0 | 1.151 | p.name ASC | In Pipeline 1 |
| | +----------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +Projection | p.name AS `p.name` | 14 | 14 | 14 | |
| | | Fused in Pipeline 0 |
| | +----------------------+----------------+------+---------+----------------+
| +------------+---------------------+
| +Filter | p:Person | 14 | 14 | 0 | |
| | | Fused in Pipeline 0 |
| | +----------------------+----------------+------+---------+----------------+
| +------------+---------------------+
| +AllNodesScan | p | 35 | 35 | 36 | 72 |
2/0 | 0.395 | | Fused in Pipeline 0 |
+-----------------+----------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+

Total database accesses: 50, total allocated memory: 1256

10.3.74. Partial Top

The PartialTop operator is an optimization of the Top operator that takes advantage of the ordering of the
incoming rows. This operator uses lazy evaluation and has a lower memory pressure in the system than
the Top operator. Partial top is only applicable when sorting on multiple columns.

Query

MATCH (p:Person) WHERE p.name STARTS WITH 'P' RETURN p ORDER BY p.name, p.age LIMIT 2

639

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------------+---------------------+
| Operator | Details | Estimated
Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Ordered by |
Other |
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------------+---------------------+
| +ProduceResults | p |
0 | 2 | 0 | | 2/0 | 0.148 | p.name ASC, p.age ASC | In
Pipeline 1 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------------+---------------------+
| +PartialTop | `p.name` ASC, `p.age` ASC LIMIT 2 |
0 | 2 | 0 | 432 | 0/0 | 0.950 | p.name ASC, p.age ASC | In
Pipeline 1 |
| | +--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------------+---------------------+
| +Projection | cache[p.name] AS `p.name`, p.age AS `p.age` |
0 | 2 | 0 | | | | p.name ASC | Fused
in Pipeline 0 |
| | +--
+----------------+------+---------+----------------+ |
+-----------------------+---------------------+
| +NodeIndexSeekByRange | p:Person(name) WHERE name STARTS WITH $autostring_0, cache[p.name] |
0 | 2 | 3 | 72 | 0/1 | 0.519 | p.name ASC | Fused
in Pipeline 0 |
+-----------------------+--
+----------------+------+---------+----------------+------------------------+-----------
+-----------------------+---------------------+

Total database accesses: 3, total allocated memory: 496

10.3.75. Union

The Union operator concatenates the results from the right child operator with the results from the left
child operator.

Query

MATCH (p:Location)
 RETURN p.name
 UNION ALL
 MATCH (p:Country)
 RETURN p.name

640

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Other |
+-----------------+--------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | `p.name` | 20 | 11 | 0 | |
| | Fused in Pipeline 2 |
| | +--------------------+----------------+------+---------+----------------+
| +---------------------+
| +Union | | 20 | 11 | 0 | 768 |
0/0 | 0.552 | Fused in Pipeline 2 |
| |\ +--------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| | +Projection | `p.name` | 10 | 1 | 0 | |
| | Fused in Pipeline 1 |
| | | +--------------------+----------------+------+---------+----------------+
| +---------------------+
| | +Projection | p.name AS `p.name` | 10 | 1 | 1 | |
| | Fused in Pipeline 1 |
| | | +--------------------+----------------+------+---------+----------------+
| +---------------------+
| | +Filter | p:Country | 10 | 1 | 0 | |
| | Fused in Pipeline 1 |
| | | +--------------------+----------------+------+---------+----------------+
| +---------------------+
| | +AllNodesScan | p | 35 | 35 | 36 | 72 |
0/0 | 0.293 | Fused in Pipeline 1 |
| | +--------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +Projection | `p.name` | 10 | 10 | 0 | |
| | Fused in Pipeline 0 |
| | +--------------------+----------------+------+---------+----------------+
| +---------------------+
| +Projection | p.name AS `p.name` | 10 | 10 | 10 | |
| | Fused in Pipeline 0 |
| | +--------------------+----------------+------+---------+----------------+
| +---------------------+
| +Filter | p:Location | 10 | 10 | 0 | |
| | Fused in Pipeline 0 |
| | +--------------------+----------------+------+---------+----------------+
| +---------------------+
| +AllNodesScan | p | 35 | 35 | 36 | 72 |
2/0 | 0.325 | Fused in Pipeline 0 |
+-----------------+--------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 83, total allocated memory: 928

10.3.76. Unwind

The Unwind operator returns one row per item in a list.

Query

UNWIND range(1, 5) as value return value

641

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--+----------------+------+---------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page Cache
Hits/Misses | Time (ms) | Other |
+-----------------+--+----------------+------+---------
+------------------------+-----------+---------------------+
| +ProduceResults | value | 10 | 5 | 0 |
| | Fused in Pipeline 0 |
| | +--+----------------+------+---------+
| +---------------------+
| +Unwind | range($autoint_0, $autoint_1) AS value | 10 | 5 | 0 |
0/0 | 0.000 | Fused in Pipeline 0 |
+-----------------+--+----------------+------+---------
+------------------------+-----------+---------------------+

Total database accesses: 0, total allocated memory: 136

10.3.77. Exhaustive Limit

The ExhaustiveLimit operator is just like a normal Limit but will always exhaust the input. Used when
combining LIMIT and updates

Query

MATCH (p:Person) SET p.seen=true RETURN p LIMIT 3

642

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Other |
+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | p | 3 | 3 | 0 | |
| | Fused in Pipeline 0 |
| | +---------------+----------------+------+---------+----------------+
| +---------------------+
| +ExhaustiveLimit | 3 | 3 | 3 | 0 | 32 |
| | Fused in Pipeline 0 |
| | +---------------+----------------+------+---------+----------------+
| +---------------------+
| +SetProperty | p.seen = true | 14 | 14 | 14 | |
| | Fused in Pipeline 0 |
| | +---------------+----------------+------+---------+----------------+
| +---------------------+
| +Filter | p:Person | 14 | 14 | 0 | |
| | Fused in Pipeline 0 |
| | +---------------+----------------+------+---------+----------------+
| +---------------------+
| +AllNodesScan | p | 35 | 35 | 36 | 72 |
3/0 | 2.630 | Fused in Pipeline 0 |
+------------------+---------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 50, total allocated memory: 152

10.3.78. Optional

The Optional operator is used to solve some OPTIONAL MATCH queries. It will pull data from its source,
simply passing it through if any data exists. However, if no data is returned by its source, Optional will
yield a single row with all columns set to null.

Query

MATCH (p:Person {name:'me'}) OPTIONAL MATCH (q:Person {name: 'Lulu'}) RETURN p, q

643

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------+
| +ProduceResults | p, q | 1 | 1 | 0 |
| 2/0 | 0.144 | In Pipeline 2 |
| | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------+
| +Apply | | 1 | 1 | 0 |
| 0/0 | 0.021 | |
| |\ +---+----------------+------+---------
+----------------+------------------------+-----------+---------------+
| | +Optional | p | 1 | 1 | 0 |
768 | 0/0 | 0.622 | In Pipeline 2 |
| | | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------+
| | +NodeIndexSeek | q:Person(name) WHERE name = $autostring_1 | 1 | 0 | 1 |
80 | 1/0 | 2.817 | In Pipeline 1 |
| | +---+----------------+------+---------
+----------------+------------------------+-----------+---------------+
| +NodeIndexSeek | p:Person(name) WHERE name = $autostring_0 | 1 | 1 | 2 |
72 | 0/1 | 0.326 | In Pipeline 0 |
+------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------+

Total database accesses: 3, total allocated memory: 928

10.3.79. Project Endpoints

The ProjectEndpoints operator projects the start and end node of a relationship.

Query

CREATE (n)-[p:KNOWS]->(m) WITH p AS r MATCH (u)-[r]->(v) RETURN u, v

644

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---------------------+------------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) |
Page Cache Hits/Misses | Time (ms) | Other |
+---------------------+------------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | u, v | 1 | 1 | 0 | |
| | Fused in Pipeline 1 |
| | +------------------------------+----------------+------+---------+----------------+
| +---------------------+
| +Apply | | 1 | 1 | 0 | |
| | |
| |\ +------------------------------+----------------+------+---------+----------------+
| +---------------------+
| | +ProjectEndpoints | (u)-[r*]->(v) | 1 | 1 | 0 | |
| | Fused in Pipeline 1 |
| | | +------------------------------+----------------+------+---------+----------------+
| +---------------------+
| | +Argument | r | 1 | 1 | 0 | 96 |
0/0 | 0.205 | Fused in Pipeline 1 |
| | +------------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +Projection | p AS r | 1 | 1 | 0 | |
| | Fused in Pipeline 0 |
| | +------------------------------+----------------+------+---------+----------------+
| +---------------------+
| +Create | (n), (m), (n)-[p:KNOWS]->(m) | 1 | 1 | 4 | |
0/0 | 0.000 | Fused in Pipeline 0 |
+---------------------+------------------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 4, total allocated memory: 176

10.3.80. Projection

For each incoming row, the Projection operator evaluates a set of expressions and produces a row with
the results of the expressions.

Query

RETURN 'hello' AS greeting

645

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+---------------------------+----------------+------+---------+------------------------
+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page Cache Hits/Misses |
Time (ms) | Other |
+-----------------+---------------------------+----------------+------+---------+------------------------
+-----------+---------------------+
| +ProduceResults | greeting | 1 | 1 | 0 | |
| Fused in Pipeline 0 |
| | +---------------------------+----------------+------+---------+ |
+---------------------+
| +Projection | $autostring_0 AS greeting | 1 | 1 | 0 | 0/0 |
0.000 | Fused in Pipeline 0 |
+-----------------+---------------------------+----------------+------+---------+------------------------
+-----------+---------------------+

Total database accesses: 0, total allocated memory: 136

10.3.81. Shortest path

The ShortestPath operator finds one or all shortest paths between two previously matches node variables.

Query

MATCH (andy:Person {name: 'Andy'}),(mattias:Person {name: 'Mattias'}),
 p = shortestPath((andy)-[*]-(mattias))
RETURN p

646

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---------------------
+---
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+---------------------
+---
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| +ProduceResults | p
| 1 | 1 | 0 | | 1/0 | 1.235 | In Pipeline 1 |
| |
+---
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| +ShortestPath | p = (andy)-[anon_0*]-(mattias)
| 1 | 1 | 1 | 1280 | | | In Pipeline 1 |
| |
+---
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| +MultiNodeIndexSeek | andy:Person(name) WHERE name = $autostring_0, mattias:Person(name) WHERE name =
$autostring_1 | 1 | 1 | 4 | 72 | 1/1 | 2.255 | In
Pipeline 0 |
+---------------------
+---
+----------------+------+---------+----------------+------------------------+-----------+---------------+

Total database accesses: 5, total allocated memory: 1344

10.3.82. Empty Row

The EmptyRow operator returns a single row with no columns.

Query

CYPHER runtime=slotted FOREACH (value IN [1,2,3] |
MERGE (:Person {age: value})
)

647

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+-----------------+--------------------------------------+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page Cache
Hits/Misses |
+-----------------+--------------------------------------+----------------+------+---------
+------------------------+
| +ProduceResults | | 1 | 0 | 0 |
0/0 |
| | +--------------------------------------+----------------+------+---------
+------------------------+
| +EmptyResult | | 1 | 0 | 0 |
0/0 |
| | +--------------------------------------+----------------+------+---------
+------------------------+
| +Foreach | value IN [1, 2, 3] | 1 | 1 | 0 |
0/0 |
| |\ +--------------------------------------+----------------+------+---------
+------------------------+
| | +Merge | CREATE (anon_0:Person) | 1 | 3 | 9 |
0/0 |
| | | +--------------------------------------+----------------+------+---------
+------------------------+
| | +Filter | anon_0:Person AND anon_0.age = value | 1 | 0 | 184 |
2/0 |
| | | +--------------------------------------+----------------+------+---------
+------------------------+
| | +AllNodesScan | anon_0 | 35 | 108 | 111 |
1/0 |
| | +--------------------------------------+----------------+------+---------
+------------------------+
| +EmptyRow | | 1 | 1 | 0 |
0/0 |
+-----------------+--------------------------------------+----------------+------+---------
+------------------------+

Total database accesses: 304, total allocated memory: 64

10.3.83. Procedure Call

The ProcedureCall operator indicates an invocation to a procedure.

Query

CALL db.labels() YIELD label RETURN * ORDER BY label

648

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+-----------------------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) |
Page Cache Hits/Misses | Time (ms) | Ordered by | Other |
+-----------------+-----------------------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +ProduceResults | label | 10 | 4 | 0 | |
0/0 | 0.131 | label ASC | In Pipeline 1 |
| | +-----------------------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +Sort | label ASC | 10 | 4 | 0 | 528 |
0/0 | 0.678 | label ASC | In Pipeline 1 |
| | +-----------------------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+
| +ProcedureCall | db.labels() :: (label :: STRING?) | 10 | 4 | | |
| | | Fused in Pipeline 0 |
+-----------------+-----------------------------------+----------------+------+---------+----------------
+------------------------+-----------+------------+---------------------+

Total database accesses: ?, total allocated memory: 592

10.3.84. Cache Properties

The CacheProperties operator reads nodes and relationship properties and caches them in the current
row. Future accesses to these properties can avoid reading from the store which will speed up the query.
In the plan below we will cache l.name before Expand(All) where there are fewer rows.

Query

MATCH (l:Location)<-[:WORKS_IN]-(p:Person) RETURN l.name AS location, p.name AS name

649

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory
(Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+
| +ProduceResults | location, name | 15 | 15 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Projection | cache[l.name] AS location, p.name AS name | 15 | 15 | 30 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | p:Person | 15 | 15 | 15 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Expand(All) | (l)<-[anon_0:WORKS_IN]-(p) | 15 | 15 | 16 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +CacheProperties | cache[l.name] | 10 | 10 | 10 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +Filter | l:Location | 10 | 10 | 0 |
| | | Fused in Pipeline 0 |
| | +---+----------------+------+---------
+----------------+ | +---------------------+
| +AllNodesScan | l | 35 | 35 | 36 |
72 | 4/0 | 1.255 | Fused in Pipeline 0 |
+------------------+---+----------------+------+---------
+----------------+------------------------+-----------+---------------------+

Total database accesses: 107, total allocated memory: 152

10.3.85. Create Nodes / Relationships

The Create operator is used to create nodes and relationships.

Query

CREATE (max:Person {name: 'Max'}), (chris:Person {name: 'Chris'})
CREATE (max)-[:FRIENDS_WITH]->(chris)

650

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+--+----------------
+------+---------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows |
Rows | DB Hits | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+--+----------------
+------+---------+------------------------+-----------+---------------------+
| +ProduceResults | | 1 |
0 | 0 | | | Fused in Pipeline 0 |
| | +--+----------------
+------+---------+ | +---------------------+
| +EmptyResult | | 1 |
0 | 0 | | | Fused in Pipeline 0 |
| | +--+----------------
+------+---------+ | +---------------------+
| +Create | (max:Person), (chris:Person), (max)-[anon_0:FRIENDS_WITH]->(chris) | 1 |
1 | 7 | 0/0 | 0.000 | Fused in Pipeline 0 |
+-----------------+--+----------------
+------+---------+------------------------+-----------+---------------------+

Total database accesses: 7, total allocated memory: 136

10.3.86. Delete

The Delete operator is used to delete a node or a relationship.

Query

MATCH (me:Person {name: 'me'})-[w:WORKS_IN {duration: 190}]->(london:Location {name: 'London'})
DELETE w

651

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows |
Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | | 0 |
0 | 0 | | | | Fused in Pipeline 1 |
| | +---+----------------
+------+---------+----------------+ | +---------------------+
| +EmptyResult | | 0 |
0 | 0 | | | | Fused in Pipeline 1 |
| | +---+----------------
+------+---------+----------------+ | +---------------------+
| +Delete | w | 0 |
1 | 1 | | | | Fused in Pipeline 1 |
| | +---+----------------
+------+---------+----------------+ | +---------------------+
| +Eager | | 0 |
1 | 0 | 104 | 1/0 | 3.883 | Fused in Pipeline 1 |
| | +---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +Filter | me.name = $autostring_0 AND w.duration = $autoint_1 AND me:Person | 0 |
1 | 17 | | | | Fused in Pipeline 0 |
| | +---+----------------
+------+---------+----------------+ | +---------------------+
| +Expand(All) | (london)<-[w:WORKS_IN]-(me) | 0 |
7 | 9 | | | | Fused in Pipeline 0 |
| | +---+----------------
+------+---------+----------------+ | +---------------------+
| +NodeIndexSeek | london:Location(name) WHERE name = $autostring_2 | 0 |
1 | 2 | 72 | 4/1 | 4.253 | Fused in Pipeline 0 |
+-----------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 29, total allocated memory: 184

10.3.87. Detach Delete

The DetachDelete operator is used in all queries containing the DETACH DELETE clause, when deleting
nodes and their relationships.

Query

MATCH (p:Person)
DETACH DELETE p

652

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+----------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses |
Time (ms) | Other |
+-----------------+----------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+
| +ProduceResults | | 14 | 0 | 0 | | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +EmptyResult | | 14 | 0 | 0 | | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +DetachDelete | p | 14 | 14 | 31 | | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +Filter | p:Person | 14 | 14 | 0 | | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +AllNodesScan | p | 35 | 35 | 36 | 72 | 35/0 |
6.049 | Fused in Pipeline 0 |
+-----------------+----------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+

Total database accesses: 67, total allocated memory: 152

10.3.88. Set Labels

The SetLabels operator is used when setting labels on a node.

Query

MATCH (n)
SET n:Person

653

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+----------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses |
Time (ms) | Other |
+-----------------+----------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+
| +ProduceResults | | 35 | 0 | 0 | | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +EmptyResult | | 35 | 0 | 0 | | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +SetLabels | n:Person | 35 | 35 | 22 | | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +AllNodesScan | n | 35 | 35 | 36 | 72 | 3/0 |
3.342 | Fused in Pipeline 0 |
+-----------------+----------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+

Total database accesses: 58, total allocated memory: 136

10.3.89. Remove Labels

The RemoveLabels operator is used when deleting labels from a node.

Query

MATCH (n)
REMOVE n:Person

654

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+----------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses |
Time (ms) | Other |
+-----------------+----------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+
| +ProduceResults | | 35 | 0 | 0 | | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +EmptyResult | | 35 | 0 | 0 | | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +RemoveLabels | n:Person | 35 | 35 | 15 | | |
| Fused in Pipeline 0 |
| | +----------+----------------+------+---------+----------------+ |
+---------------------+
| +AllNodesScan | n | 35 | 35 | 36 | 72 | 3/0 |
1.984 | Fused in Pipeline 0 |
+-----------------+----------+----------------+------+---------+----------------+------------------------
+-----------+---------------------+

Total database accesses: 51, total allocated memory: 136

10.3.90. Set Node Properties From Map

The SetNodePropertiesFromMap operator is used when setting properties from a map on a node.

Query

MATCH (n)
SET n = {weekday: 'Monday', meal: 'Lunch'}

655

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---------------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows |
DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+---------------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | | 35 | 0 |
0 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +EmptyResult | | 35 | 0 |
0 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +SetNodePropertiesFromMap | n = {weekday: $autostring_0, meal: $autostring_1} | 35 | 35 |
35 | | | | Fused in Pipeline 0 |
| | +---+----------------+------
+---------+----------------+ | +---------------------+
| +AllNodesScan | n | 35 | 35 |
36 | 72 | 5/0 | 10.565 | Fused in Pipeline 0 |
+---------------------------+---+----------------+------
+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 71, total allocated memory: 136

10.3.91. Set Relationship Properties From Map

The SetRelationshipPropertiesFromMap operator is used when setting properties from a map on a
relationship.

Query

MATCH (n)-[r]->(m)
SET r = {weight: 5, unit: 'kg'}

656

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows |
Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+-----------------------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+
| +ProduceResults | | 18 |
0 | 0 | | | | Fused in Pipeline 0 |
| | +---+----------------
+------+---------+----------------+ | +---------------------+
| +EmptyResult | | 18 |
0 | 0 | | | | Fused in Pipeline 0 |
| | +---+----------------
+------+---------+----------------+ | +---------------------+
| +SetRelationshipPropertiesFromMap | r = {weight: $autoint_0, unit: $autostring_1} | 18 |
18 | 18 | | | | Fused in Pipeline 0 |
| | +---+----------------
+------+---------+----------------+ | +---------------------+
| +Expand(All) | (m)<-[r]-(n) | 18 |
18 | 36 | | | | Fused in Pipeline 0 |
| | +---+----------------
+------+---------+----------------+ | +---------------------+
| +AllNodesScan | m | 35 |
35 | 36 | 72 | 6/0 | 5.737 | Fused in Pipeline 0 |
+-----------------------------------+---+----------------
+------+---------+----------------+------------------------+-----------+---------------------+

Total database accesses: 90, total allocated memory: 152

10.3.92. Set Property

The SetProperty operator is used when setting a property on a node or relationship.

Query

MATCH (n)
SET n.checked = true

657

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+-----------------+------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache
Hits/Misses | Time (ms) | Other |
+-----------------+------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+
| +ProduceResults | | 35 | 0 | 0 | |
| | Fused in Pipeline 0 |
| | +------------------+----------------+------+---------+----------------+
| +---------------------+
| +EmptyResult | | 35 | 0 | 0 | |
| | Fused in Pipeline 0 |
| | +------------------+----------------+------+---------+----------------+
| +---------------------+
| +SetProperty | n.checked = true | 35 | 35 | 35 | |
| | Fused in Pipeline 0 |
| | +------------------+----------------+------+---------+----------------+
| +---------------------+
| +AllNodesScan | n | 35 | 35 | 36 | 72 |
3/0 | 0.552 | Fused in Pipeline 0 |
+-----------------+------------------+----------------+------+---------+----------------
+------------------------+-----------+---------------------+

Total database accesses: 71, total allocated memory: 136

10.3.93. Create Unique Constraint

The CreateUniqueConstraint operator creates a unique constraint on a property for all nodes having a
certain label. The following query will create a unique constraint with the name uniqueness on the name
property of nodes with the Country label.

Query

CREATE CONSTRAINT uniqueness ON (c:Country) ASSERT c.name is UNIQUE

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+-------------------+--+
| Operator | Details |
+-------------------+--+
| +CreateConstraint | CONSTRAINT uniqueness ON (c:Country) ASSERT (c.name) IS UNIQUE |
+-------------------+--+

Total database accesses: ?

658

10.3.94. Drop Unique Constraint

The DropUniqueConstraint operator removes a unique constraint from a property for all nodes having a
certain label. The following query will drop a unique constraint on the name property of nodes with the
Country label.

Query

DROP CONSTRAINT ON (c:Country) ASSERT c.name is UNIQUE

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+-----------------+---+
| Operator | Details |
+-----------------+---+
| +DropConstraint | CONSTRAINT ON (c:Country) ASSERT (c.name) IS UNIQUE |
+-----------------+---+

Total database accesses: ?

10.3.95. Create Constraint only if it does not already exist

To not get an error creating the same constraint twice, we use the DoNothingIfExists operator for
constraints. This will make sure no other constraint with the given name or another constraint of the same
type and schema already exists before the specific CreateConstraint operator creates the constraint. If it
finds a constraint with the given name or with the same type and schema it will stop the execution and no
new constraint is created. The following query will create a unique constraint with the name uniqueness on
the name property of nodes with the Country label only if no constraint named uniqueness or unique
constraint on (:Country {name}) already exists.

Query

CREATE CONSTRAINT uniqueness IF NOT EXISTS ON (c:Country) ASSERT c.name is UNIQUE

659

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+--------------------------------+--+
| Operator | Details |
+--------------------------------+--+
| +CreateConstraint | CONSTRAINT uniqueness ON (c:Country) ASSERT (c.name) IS UNIQUE |
| | +--+
| +DoNothingIfExists(CONSTRAINT) | CONSTRAINT uniqueness ON (c:Country) ASSERT (c.name) IS UNIQUE |
+--------------------------------+--+

Total database accesses: ?

10.3.96. Create Node Property Existence Constraint

The CreateNodePropertyExistenceConstraint operator creates an existence constraint with the name
existence on a property for all nodes having a certain label. This will only appear in Enterprise Edition.

Query

CREATE CONSTRAINT existence ON (p:Person) ASSERT p.name IS NOT NULL

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+-------------------+--+
| Operator | Details |
+-------------------+--+
| +CreateConstraint | CONSTRAINT existence ON (p:Person) ASSERT (p.name) IS NOT NULL |
+-------------------+--+

Total database accesses: ?

10.3.97. Drop Node Property Existence Constraint

The DropNodePropertyExistenceConstraint operator removes an existence constraint from a property for
all nodes having a certain label. This will only appear in Enterprise Edition.

Query

DROP CONSTRAINT ON (p:Person) ASSERT exists(p.name)

660

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+-----------------+--+
| Operator | Details |
+-----------------+--+
| +DropConstraint | CONSTRAINT ON (p:Person) ASSERT exists(p.name) |
+-----------------+--+

Total database accesses: ?

10.3.98. Create Node Key Constraint

The CreateNodeKeyConstraint operator creates a node key constraint with the name node_key which
ensures that all nodes with a particular label have a set of defined properties whose combined value is
unique, and where all properties in the set are present. This will only appear in Enterprise Edition.

Query

CREATE CONSTRAINT node_key ON (e:Employee) ASSERT (e.firstname, e.surname) IS NODE KEY

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+-------------------+---+
| Operator | Details |
+-------------------+---+
| +CreateConstraint | CONSTRAINT node_key ON (e:Employee) ASSERT (e.firstname, e.surname) IS NODE KEY |
+-------------------+---+

Total database accesses: ?

10.3.99. Drop Node Key Constraint

The DropNodeKeyConstraint operator removes a node key constraint from a set of properties for all nodes
having a certain label. This will only appear in Enterprise Edition.

Query

DROP CONSTRAINT ON (e:Employee) ASSERT (e.firstname, e.surname) IS NODE KEY

661

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+-----------------+--+
| Operator | Details |
+-----------------+--+
| +DropConstraint | CONSTRAINT ON (e:Employee) ASSERT (e.firstname, e.surname) IS NODE KEY |
+-----------------+--+

Total database accesses: ?

10.3.100. Create Relationship Property Existence Constraint

The CreateRelationshipPropertyExistenceConstraint operator creates an existence constraint with the
name existence on a property for all relationships of a certain type. This will only appear in Enterprise
Edition.

Query

CREATE CONSTRAINT existence ON ()-[l:LIKED]-() ASSERT l.when IS NOT NULL

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+-------------------+---+
| Operator | Details |
+-------------------+---+
| +CreateConstraint | CONSTRAINT existence ON ()-[l:LIKED]-() ASSERT (l.when) IS NOT NULL |
+-------------------+---+

Total database accesses: ?

10.3.101. Drop Relationship Property Existence Constraint

The DropRelationshipPropertyExistenceConstraint operator removes an existence constraint from a
property for all relationships of a certain type. This will only appear in Enterprise Edition.

Query

DROP CONSTRAINT ON ()-[l:LIKED]-() ASSERT exists(l.when)

662

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+-----------------+---+
| Operator | Details |
+-----------------+---+
| +DropConstraint | CONSTRAINT ON ()-[l:LIKED]-() ASSERT exists(l.when) |
+-----------------+---+

Total database accesses: ?

10.3.102. Drop Constraint by name

The DropConstraint operator removes a constraint using the name of the constraint, no matter the type.

Query

DROP CONSTRAINT name

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+-----------------+-----------------+
| Operator | Details |
+-----------------+-----------------+
| +DropConstraint | CONSTRAINT name |
+-----------------+-----------------+

Total database accesses: ?

10.3.103. Listing constraints

The ShowConstraints operator lists constraints. It may include filtering on constraint type and can have
either default or full output.

Query

SHOW CONSTRAINTS

663

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+------------------+---+----------------
+------+---------+------------------------+
| Operator | Details | Estimated Rows
| Rows | DB Hits | Page Cache Hits/Misses |
+------------------+---+----------------
+------+---------+------------------------+
| +ProduceResults | id, name, type, entityType, labelsOrTypes, properties, ownedIndexId | 10
| 3 | 0 | 0/0 |
| | +---+----------------
+------+---------+------------------------+
| +ShowConstraints | allConstraints, defaultColumns | 10
| 3 | 1 | 0/0 |
+------------------+---+----------------
+------+---------+------------------------+

Total database accesses: 1, total allocated memory: 64

10.3.104. Create Index

The CreateIndex operator creates an index. This index can either be a b-tree, fulltext, or token lookup
index. The following query will create an index with the name my_index on the name property of nodes with
the Country label.

Query

CREATE INDEX my_index FOR (c:Country) ON (c.name)

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+--------------+---+
| Operator | Details |
+--------------+---+
| +CreateIndex | INDEX my_index FOR (:Country) ON (name) |
+--------------+---+

Total database accesses: ?

10.3.105. Create Index only if it does not already exist

To not get an error creating the same index twice, we use the DoNothingIfExists operator for indexes.
This will make sure no other index with the given name or schema already exists before the CreateIndex
operator creates an index. If it finds an index with the given name or schema it will stop the execution and
no new index is created. The following query will create an index with the name my_index on the since
property of relationships with the KNOWS relationship type only if no such index already exists.

664

Query

CREATE INDEX my_index IF NOT EXISTS FOR ()-[k:KNOWS]-() ON (k.since)

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+---------------------------+--+
| Operator | Details |
+---------------------------+--+
| +CreateIndex | INDEX my_index FOR ()-[:KNOWS]-() ON (since) |
| | +--+
| +DoNothingIfExists(INDEX) | INDEX my_index FOR ()-[:KNOWS]-() ON (since) |
+---------------------------+--+

Total database accesses: ?

10.3.106. Drop Index by schema

The DropIndex operator removes an index from a property for all nodes having a certain label. The
following query will drop an index on the name property of nodes with the Country label.

Query

DROP INDEX ON :Country(name)

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+------------+--------------------------------+
| Operator | Details |
+------------+--------------------------------+
| +DropIndex | INDEX FOR (:Country) ON (name) |
+------------+--------------------------------+

Total database accesses: ?

10.3.107. Drop Index by name

The DropIndex operator removes an index using the name of the index.

Query

DROP INDEX name

665

Query Plan

Compiler CYPHER 4.3

Planner ADMINISTRATION

Runtime SCHEMA

Runtime version 4.3

+------------+------------+
| Operator | Details |
+------------+------------+
| +DropIndex | INDEX name |
+------------+------------+

Total database accesses: ?

10.3.108. Listing indexes

The ShowIndexes operator lists indexes. It may include filtering on index type and can have either default or
full output.

Query

SHOW INDEXES

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+-----------------
+--
+----------------+------+---------+------------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Page Cache Hits/Misses |
+-----------------
+--
+----------------+------+---------+------------------------+
| +ProduceResults | id, name, state, populationPercent, uniqueness, type, entityType, labelsOrTypes,
properties, | 10 | 7 | 0 | 0/0 |
| | | indexProvider
| | | | |
| |
+--
+----------------+------+---------+------------------------+
| +ShowIndexes | allIndexes, defaultColumns
| 10 | 7 | 1 | 0/0 |
+-----------------
+--
+----------------+------+---------+------------------------+

Total database accesses: 1, total allocated memory: 64

10.3.109. Listing functions

The ShowFunctions operator lists functions. It may include filtering on built-in vs user-defined functions as
well as if a given user can execute the function. The output can either be default or full output.

666

Query

SHOW FUNCTIONS

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+-----------------+---+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits
| Page Cache Hits/Misses |
+-----------------+---+----------------+------+---------
+------------------------+
| +ProduceResults | name, category, description | 10 | 142 | 0
| 0/0 |
| | +---+----------------+------+---------
+------------------------+
| +ShowFunctions | allFunctions, functionsForUser(all), defaultColumns | 10 | 142 | 0
| 0/0 |
+-----------------+---+----------------+------+---------
+------------------------+

Total database accesses: 0, total allocated memory: 64

10.3.110. Listing procedures

The ShowProcedures operator lists procedures. It may include filtering on whether a given user can execute
the procedure and can have either default or full output.

Query

SHOW PROCEDURES

Query Plan

Compiler CYPHER 4.3

Planner COST

Runtime SLOTTED

Runtime version 4.3

+-----------------+--+----------------+------+---------
+------------------------+
| Operator | Details | Estimated Rows | Rows | DB Hits | Page Cache
Hits/Misses |
+-----------------+--+----------------+------+---------
+------------------------+
| +ProduceResults | name, description, mode, worksOnSystem | 10 | 73 | 0 |
0/0 |
| | +--+----------------+------+---------
+------------------------+
| +ShowProcedures | proceduresForUser(all), defaultColumns | 10 | 73 | 0 |
0/0 |
+-----------------+--+----------------+------+---------
+------------------------+

Total database accesses: 0, total allocated memory: 64

667

10.4. Shortest path planning
Planning shortest paths in Cypher can lead to different query plans depending on the predicates that need
to be evaluated. Internally, Neo4j will use a fast bidirectional breadth-first search algorithm if the
predicates can be evaluated whilst searching for the path. Therefore, this fast algorithm will always be
certain to return the right answer when there are universal predicates on the path; for example, when
searching for the shortest path where all nodes have the Person label, or where there are no nodes with a
name property.

If the predicates need to inspect the whole path before deciding on whether it is valid or not, this fast
algorithm cannot be relied on to find the shortest path, and Neo4j may have to resort to using a slower
exhaustive depth-first search algorithm to find the path. This means that query plans for shortest path
queries with non-universal predicates will include a fallback to running the exhaustive search to find the
path should the fast algorithm not succeed. For example, depending on the data, an answer to a shortest
path query with existential predicates — such as the requirement that at least one node contains the
property name='Kevin Bacon' — may not be able to be found by the fast algorithm. In this case, Neo4j will
fall back to using the exhaustive search to enumerate all paths and potentially return an answer.

The running times of these two algorithms may differ by orders of magnitude, so it is important to ensure
that the fast approach is used for time-critical queries.

When the exhaustive search is planned, it is still only executed when the fast algorithm fails to find any
matching paths. The fast algorithm is always executed first, since it is possible that it can find a valid path
even though that could not be guaranteed at planning time.

Please note that falling back to the exhaustive search may prove to be a very time consuming strategy in
some cases; such as when there is no shortest path between two nodes. Therefore, in these cases, it is
recommended to set cypher.forbid_exhaustive_shortestpath to true, as explained in Operations Manual
→ Configuration settings

10.4.1. Shortest path with fast algorithm

Query

MATCH (KevinB:Person {name: 'Kevin Bacon'}),
 (Al:Person {name: 'Al Pacino'}),
 p = shortestPath((KevinB)-[:ACTED_IN*]-(Al))
WHERE all(r IN relationships(p) WHERE r.role IS NOT NULL)
RETURN p

This query can be evaluated with the fast algorithm — there are no predicates that need to see the whole
path before being evaluated.

668

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_cypher.forbid_exhaustive_shortestpath
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_cypher.forbid_exhaustive_shortestpath
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.3.pdf#config_cypher.forbid_exhaustive_shortestpath

Query plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---------------------
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+---------------------
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| +ProduceResults | p
| 0 | 1 | 0 | | 0/0 | 0.217 | In Pipeline 1 |
| |
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| +ShortestPath | p = (KevinB)-[anon_0:ACTED_IN*]-(Al) WHERE all(r IN relationships(p) WHERE r.role
IS NOT NULL) | 0 | 1 | 23 | 1704 | | | In
Pipeline 1 |
| |
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| +MultiNodeIndexSeek | KevinB:Person(name) WHERE name = $autostring_0, Al:Person(name) WHERE name =
$autostring_1 | 0 | 1 | 4 | 72 | 1/1 | 0.327
| In Pipeline 0 |
+---------------------
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+

Total database accesses: 27, total allocated memory: 1768

10.4.2. Shortest path with additional predicate checks on the paths

Consider using the exhaustive search as a fallback

Predicates used in the WHERE clause that apply to the shortest path pattern are evaluated before deciding
what the shortest matching path is.

Query

MATCH (KevinB:Person {name: 'Kevin Bacon'}),
 (Al:Person {name: 'Al Pacino'}),
 p = shortestPath((KevinB)-[*]-(Al))
WHERE length(p) > 1
RETURN p

This query, in contrast with the one above, needs to check that the whole path follows the predicate
before we know if it is valid or not, and so the query plan will also include the fallback to the slower
exhaustive search algorithm.

Query plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

669

+--------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other
|
+--------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +ProduceResults | p
| 0 | 1 | 0 | | | | Fused in
Pipeline 6 |
| |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| +AntiConditionalApply |
| 0 | 1 | 0 | 1808 | 0/0 | 0.356 | Fused in
Pipeline 6 |
| |\
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| | +Top | anon_1 ASC LIMIT 1
| 0 | 0 | 0 | 696 | 0/0 | 0.000 | In Pipeline 5
|
| | |
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| | +Projection | length(p) AS anon_1
| 80 | 0 | 0 | | | | Fused in
Pipeline 4 |
| | |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| | +Filter | length(p) > $autoint_2
| 80 | 0 | 0 | | | | Fused in
Pipeline 4 |
| | |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| | +Projection | (KevinB)-[anon_0*]-(Al) AS p
| 266 | 0 | 0 | | | | Fused in
Pipeline 4 |
| | |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| | +VarLengthExpand(Into) | (KevinB)-[anon_0*]-(Al)
| 266 | 0 | 0 | | | | Fused in
Pipeline 4 |
| | |
+--
+----------------+------+---------+----------------+ |
+---------------------+
| | +Argument | KevinB, Al
| 0 | 0 | 0 | 0 | 0/0 | 0.000 | Fused in
Pipeline 4 |
| |
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +Apply |
| 0 | 1 | 0 | | 0/0 | 0.025 |
|
| |\
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| | +Optional | KevinB, Al
| 0 | 1 | 0 | 2560 | 0/0 | 0.157 | In Pipeline 3
|
| | |

670

+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| | +ShortestPath | p = (KevinB)-[anon_0*]-(Al) WHERE length(p) > $autoint_2
| 0 | 1 | 1 | 1776 | | | In Pipeline 2
|
| | |
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| | +Argument | KevinB, Al
| 0 | 1 | 0 | 88 | 0/0 | 0.035 | In Pipeline 1
|
| |
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+
| +MultiNodeIndexSeek | KevinB:Person(name) WHERE name = $autostring_0, Al:Person(name) WHERE name =
$autostring_1 | 0 | 1 | 4 | 72 | 2/0 | 0.368 | In
Pipeline 0 |
+--------------------------
+--
+----------------+------+---------+----------------+------------------------+-----------
+---------------------+

Total database accesses: 5, total allocated memory: 3384

The way the bigger exhaustive query plan works is by using Apply/Optional to ensure that when the fast
algorithm does not find any results, a null result is generated instead of simply stopping the result stream.
On top of this, the planner will issue an AntiConditionalApply, which will run the exhaustive search if the
path variable is pointing to null instead of a path.

An ErrorPlan operator will appear in the execution plan in cases where (i)
cypher.forbid_exhaustive_shortestpath is set to true, and (ii) the fast algorithm is not able to find the
shortest path.

Prevent the exhaustive search from being used as a fallback

Query

MATCH (KevinB:Person {name: 'Kevin Bacon'}),
 (Al:Person {name: 'Al Pacino'}),
 p = shortestPath((KevinB)-[*]-(Al))
WITH p
WHERE length(p) > 1
RETURN p

This query, just like the one above, needs to check that the whole path follows the predicate before we
know if it is valid or not. However, the inclusion of the WITH clause means that the query plan will not
include the fallback to the slower exhaustive search algorithm. Instead, any paths found by the fast
algorithm will subsequently be filtered, which may result in no answers being returned.

671

Query plan

Compiler CYPHER 4.3

Planner COST

Runtime PIPELINED

Runtime version 4.3

+---------------------
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| Operator | Details
| Estimated Rows | Rows | DB Hits | Memory (Bytes) | Page Cache Hits/Misses | Time (ms) | Other |
+---------------------
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| +ProduceResults | p
| 0 | 1 | 0 | | 0/0 | 0.496 | In Pipeline 1 |
| |
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| +Filter | length(p) > $autoint_2
| 0 | 1 | 0 | | 0/0 | 0.149 | In Pipeline 1 |
| |
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| +ShortestPath | p = (KevinB)-[anon_0*]-(Al)
| 0 | 1 | 1 | 1776 | | | In Pipeline 1 |
| |
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+
| +MultiNodeIndexSeek | KevinB:Person(name) WHERE name = $autostring_0, Al:Person(name) WHERE name =
$autostring_1 | 0 | 1 | 4 | 72 | 2/0 | 0.276 | In
Pipeline 0 |
+---------------------
+--
+----------------+------+---------+----------------+------------------------+-----------+---------------+

Total database accesses: 5, total allocated memory: 1840

672

Chapter 11. Deprecations, additions and
compatibility
This section list all of the features that have been removed, deprecated, added, or extended in different
Cypher versions. Replacement syntax for deprecated and removed features are also indicated.

11.1. Version 4.3

11.1.1. Deprecated features

Feature Details

Syntax Deprecated

CREATE CONSTRAINT [name]
ON (node:Label)
ASSERT exists(node.property)

Replaced by:

CREATE CONSTRAINT [name]
ON (node:Label)
ASSERT node.property IS NOT NULL

Syntax Deprecated

CREATE CONSTRAINT [name]
ON ()-[rel:REL]-()
ASSERT exists(rel.property)

Replaced by:

CREATE CONSTRAINT [name]
ON ()-[rel:REL]-()
ASSERT rel.property IS NOT NULL

Syntax Deprecated

exists(prop)

Replaced by:

prop IS NOT NULL

Syntax Deprecated

NOT exists(prop)

Replaced by:

prop IS NULL

Syntax Deprecated
BRIEF [OUTPUT] for SHOW INDEXES and SHOW
CONSTRAINTS.

Replaced by default output columns.

Syntax Deprecated
VERBOSE [OUTPUT] for SHOW INDEXES and SHOW
CONSTRAINTS.

Replaced by:

YIELD *

673

Feature Details

Syntax Deprecated

SHOW EXISTS CONSTRAINTS

Replaced by:

SHOW [PROPERTY] EXIST[ENCE] CONSTRAINTS

Still allows BRIEF and VERBOSE but not YIELD or
WHERE.

Syntax Deprecated

SHOW NODE EXISTS CONSTRAINTS

Replaced by:

SHOW NODE [PROPERTY] EXIST[ENCE] CONSTRAINTS

Still allows BRIEF and VERBOSE but not YIELD or
WHERE.

Syntax Deprecated

SHOW RELATIONSHIP EXISTS CONSTRAINTS

Replaced by:

SHOW RELATIONSHIP [PROPERTY] EXIST[ENCE]
CONSTRAINTS

Still allows BRIEF and VERBOSE but not YIELD or
WHERE.

Syntax Deprecated
For privilege commands:

ON DEFAULT DATABASE

Replaced by:

ON HOME DATABASE

Syntax Deprecated
For privilege commands:

ON DEFAULT GRAPH

Replaced by:

ON HOME GRAPH

Syntax Deprecated

MATCH (a) RETURN (a)--()

Pattern expressions producing lists of paths are
deprecated, but they can still be used as existence
predicates, for example in WHERE clauses. Instead,
use a pattern comprehension:

MATCH (a) RETURN [p=(a)--() | p]

674

11.1.2. Updated features

Feature Details

Functionality Updated

SHOW INDEXES WHERE ...

Now allows filtering for:

SHOW INDEXES

Functionality Updated

SHOW CONSTRAINTS WHERE ...

Now allows filtering for:

SHOW CONSTRAINTS

Functionality Updated

SHOW INDEXES YIELD ...
[WHERE ...]
[RETURN ...]

Now allows YIELD, WHERE, and RETURN clauses to
SHOW INDEXES to change the output.

Functionality Updated

SHOW CONSTRAINTS YIELD ...
[WHERE ...]
[RETURN ...]

Now allows YIELD, WHERE, and RETURN clauses to
SHOW CONSTRAINTS to change the output.

Syntax Updated

SHOW [PROPERTY] EXIST[ENCE] CONSTRAINTS

New syntax for filtering SHOW CONSTRAINTS on
property existence constraints.
Allows YIELD and WHERE but not BRIEF or VERBOSE.

Syntax Updated

SHOW NODE [PROPERTY] EXIST[ENCE] CONSTRAINTS

New syntax for filtering SHOW CONSTRAINTS on node
property existence constraints.
Allows YIELD and WHERE but not BRIEF or VERBOSE.

Syntax Updated

SHOW REL[ATIONSHIP] [PROPERTY] EXIST[ENCE]
CONSTRAINTS

New syntax for filtering SHOW CONSTRAINTS on
relationship property existence constraints.
Allows YIELD and WHERE but not BRIEF or VERBOSE.

Functionality Updated

SHOW FULLTEXT INDEXES

Now allows easy filtering for SHOW INDEXES on
fulltext indexes.
Allows YIELD and WHERE but not BRIEF or VERBOSE.

675

Feature Details

Functionality Updated

SHOW LOOKUP INDEXES

Now allows easy filtering for SHOW INDEXES on token
lookup indexes.
Allows YIELD and WHERE but not BRIEF or VERBOSE.

11.1.3. New features

Feature Details

Syntax New

CREATE DATABASE ...
[OPTIONS {...}]

New syntax to pass options to CREATE DATABASE.
This can be used to specify a specific cluster node
to seed data from.

Syntax New

CREATE CONSTRAINT [name]
ON (node:Label)
ASSERT node.property IS NOT NULL

New syntax for creating node property existence
constraints.

Syntax New

CREATE CONSTRAINT [name]
ON ()-[rel:REL]-()
ASSERT rel.property IS NOT NULL

New syntax for creating relationship property
existence constraints.

Syntax New

ALTER USER name IF EXISTS ...

Makes altering users idempotent. If the specified
name does not exists, no error is thrown.

Syntax New

ALTER USER ...
SET HOME DATABASE ...

Now allows setting home database for user.

Syntax New

ALTER USER ...
REMOVE HOME DATABASE

Now allows removing home database for user.

676

Feature Details

Syntax New

CREATE USER ...
SET HOME DATABASE ...

CREATE USER now allows setting home database for
user.

Syntax New

SHOW HOME DATABASE

New syntax for showing the home database of the
current user.

Syntax New
New privilege:

SET USER HOME DATABASE

New Cypher command for administering privilege
for changing users home database.

Syntax New
For privilege commands:

ON HOME DATABASE

New syntax for privileges affecting home database.

Syntax New
For privilege commands:

ON HOME GRAPH

New syntax for privileges affecting home graph.

Syntax New

CREATE FULLTEXT INDEX ...

Allows creating fulltext indexes on nodes or
relationships. They can be dropped by using their
name.

Functionality New

CREATE INDEX FOR ()-[r:TYPE]-() ...

Allows creating indexes on relationships with a
particular relationship type and property
combination. They can be dropped by using their
name.

Functionality New

CREATE LOOKUP INDEX ...

Create token lookup index for nodes with any labels
or relationships with any relationship type. They can
be dropped by using their name.

677

Feature Details

Functionality New

RENAME ROLE

New Cypher command for changing the name of a
role.

Functionality New

RENAME USER

New Cypher command for changing the name of a
user.

Functionality New

SHOW PROCEDURE[S]
[EXECUTABLE [BY {CURRENT USER | username}]]
[YIELD ...]
[WHERE ...]
[RETURN ...]

New Cypher commands for listing procedures.

Functionality New

SHOW [ALL | BUILT IN | USER DEFINED] FUNCTION[S]
[EXECUTABLE [BY {CURRENT USER | username}]]
[YIELD ...]
[WHERE ...]
[RETURN ...]

New Cypher commands for listing functions.

11.2. Version 4.2

11.2.1. Deprecated features

Feature Details

Syntax Deprecated

0...

Replaced by 0o....

Syntax Deprecated

0X...

Only 0x... (lowercase x) is supported.

678

Feature Details

Syntax Deprecated

CALL { RETURN 1 }

Unaliased expressions are deprecated in subquery
RETURN clauses. Replaced by:

CALL { RETURN 1 AS one }

11.2.2. Updated features

Feature Details

Functionality Updated

SHOW ROLE name PRIVILEGES

Can now handle multiple roles.

SHOW ROLES n1, n2, ... PRIVILEGES

Functionality Updated

SHOW USER name PRIVILEGES

Can now handle multiple users.

SHOW USERS n1, n2, ... PRIVILEGES

Functionality Updated

round(expression, precision)

The round() function can now take an additional
argument to specify rounding precision.

Functionality Updated

round(expression, precision, mode)

The round() function can now take two additional
arguments to specify rounding precision and
rounding mode.

11.2.3. New features

Feature Details

Functionality New

SHOW PRIVILEGES [AS [REVOKE] COMMAND[S]]

Privileges can now be shown as Cypher commands.

Syntax New

DEFAULT GRAPH

New optional part of the Cypher commands for
database privileges.

679

Feature Details

Syntax New

0o...

Cypher now interprets literals with prefix 0o as an
octal integer literal.

Syntax New

SET [PLAINTEXT | ENCRYPTED] PASSWORD

For CREATE USER and ALTER USER, it is now possible
to set (or update) a password when the plaintext
password is unknown, but the encrypted password
is available.

Functionality New
New privilege:

EXECUTE

New Cypher commands for administering privileges
for executing procedures and user defined
functions. See The DBMS EXECUTE privileges.

Syntax New

CREATE [BTREE] INDEX ... [OPTIONS {...}]

Allows setting index provider and index
configuration when creating an index.

Syntax New

CREATE CONSTRAINT ... IS NODE KEY [OPTIONS {...}]

Allows setting index provider and index
configuration for the backing index when creating a
node key constraint.

Syntax New

CREATE CONSTRAINT ... IS UNIQUE [OPTIONS {...}]

Allows setting index provider and index
configuration for the backing index when creating a
uniqueness constraint.

Syntax New

SHOW CURRENT USER

New Cypher command for showing current logged-
in user and roles.

Functionality New

SHOW [ALL | BTREE] INDEX[ES] [BRIEF | VERBOSE
[OUTPUT]]

New Cypher commands for listing indexes.

Replaces the procedures db.indexes,
db.indexDetails (verbose), and partially
db.schemaStatements (verbose).

680

Feature Details

Functionality New

SHOW [ALL | UNIQUE | NODE EXIST[S] | RELATIONSHIP
EXIST[S] | EXIST[S] | NODE KEY] CONSTRAINT[S]
[BRIEF | VERBOSE [OUTPUT]]

New Cypher commands for listing constraints.

Replaces the procedures db.constraints and
partially db.schemaStatements (verbose).

Functionality New
New privilege:

SHOW INDEX

New Cypher command for administering privilege
for listing indexes.

Functionality New
New privilege:

SHOW CONSTRAINT

New Cypher command for administering privilege
for listing constraints.

11.3. Version 4.1.3

11.3.1. New features

Feature Details

Syntax New

CREATE INDEX [name] IF NOT EXISTS FOR ...

Makes index creation idempotent. If an index with
the name or schema already exists no error will be
thrown.

Syntax New

DROP INDEX name IF EXISTS

Makes index deletion idempotent. If no index with
the name exists no error will be thrown.

Syntax New

CREATE CONSTRAINT [name] IF NOT EXISTS ON ...

Makes constraint creation idempotent. If a
constraint with the name or type and schema
already exists no error will be thrown.

Syntax New

DROP CONSTRAINT name IF EXISTS

Makes constraint deletion idempotent. If no
constraint with the name exists no error will be
thrown.

681

11.4. Version 4.1

11.4.1. Restricted features

Feature Details

Functionality Restricted

REVOKE ...

No longer revokes sub-privileges when revoking a
compound privilege, e.g. when revoking INDEX
MANAGEMENT, any CREATE INDEX and DROP INDEX
privileges will no longer be revoked.

Functionality Restricted

ALL DATABASE PRIVILEGES

No longer includes the privileges START DATABASE
and STOP DATABASE.

11.4.2. Updated features

Feature Details

Procedure Updated

queryId

The queryId procedure format has changed, and no
longer includes the database name. For example,
mydb-query-123 is now query-123. This change
affects built-in procedures dbms.listQueries(),
dbms.listActiveLocks(queryId),
dbms.killQueries(queryIds) and
dbms.killQuery(queryId).

Functionality Updated

SHOW PRIVILEGES

The returned privileges are a closer match to the
original grants and denies, e.g. if granted MATCH the
command will show that specific privilege and not
the TRAVERSE and READ privileges. Added support for
YIELD and WHERE clauses to allow filtering results.

11.4.3. New features

Feature Details

Functionality New
New role:

PUBLIC

The PUBLIC role is automatically assigned to all
users, giving them a set of base privileges.

682

Feature Details

Syntax New
For privileges:

REVOKE MATCH

The MATCH privilege can now be revoked.

Functionality New

SHOW USERS

New support for YIELD and WHERE clauses to allow
filtering results.

Functionality New

SHOW ROLES

New support for YIELD and WHERE clauses to allow
filtering results.

Functionality New

SHOW DATABASES

New support for YIELD and WHERE clauses to allow
filtering results.

Functionality New
TRANSACTION MANAGEMENT privileges

New Cypher commands for administering
transaction management.

Functionality New
DBMS USER MANAGEMENT privileges

New Cypher commands for administering user
management.

Functionality New
DBMS DATABASE MANAGEMENT privileges

New Cypher commands for administering database
management.

Functionality New
DBMS PRIVILEGE MANAGEMENT privileges

New Cypher commands for administering privilege
management.

Functionality New

ALL DBMS PRIVILEGES

New Cypher command for administering role, user,
database and privilege management.

Functionality New

ALL GRAPH PRIVILEGES

New Cypher command for administering read and
write privileges.

683

Feature Details

Functionality New
Write privileges

New Cypher commands for administering write
privileges.

Functionality New

ON DEFAULT DATABASE

New optional part of the Cypher commands for
database privileges.

11.5. Version 4.0

11.5.1. Removed features

Feature Details

Function Removed

rels()

Replaced by relationships().

Function Removed

toInt()

Replaced by toInteger().

Function Removed

lower()

Replaced by toLower().

Function Removed

upper()

Replaced by toUpper().

Function Removed

extract()

Replaced by list comprehension.

Function Removed

filter()

Replaced by list comprehension.

684

Feature Details

Functionality Removed
For Rule planner:

CYPHER planner=rule

The RULE planner was removed in 3.2, but still
possible to trigger using START or CREATE UNIQUE
clauses. Now it is completely removed.

Functionality Removed
Explicit indexes

The removal of the RULE planner in 3.2 was the
beginning of the end for explicit indexes. Now they
are completely removed, including the removal of
the built-in procedures for Neo4j 3.3 to 3.5.

Functionality Removed
For compiled runtime:

CYPHER runtime=compiled

Replaced by the new pipelined runtime which
covers a much wider range of queries.

Clause Removed

CREATE UNIQUE

Running queries with this clause will cause a syntax
error. Running with CYPHER 3.5 will cause a runtime
error due to the removal of the rule planner.

Clause Removed

START

Running queries with this clause will cause a syntax
error. Running with CYPHER 3.5 will cause a runtime
error due to the removal of the rule planner.

Syntax Removed

MATCH (n)-[:A|:B|:C {foo: 'bar'}]-() RETURN n

Replaced by MATCH (n)-[:A|B|C {foo: 'bar'}]-()
RETURN n.

Syntax Removed

MATCH (n)-[x:A|:B|:C]-() RETURN n

Replaced by MATCH (n)-[x:A|B|C]-() RETURN n.

Syntax Removed

MATCH (n)-[x:A|:B|:C*]-() RETURN n

Replaced by MATCH (n)-[x:A|B|C*]-() RETURN n.

Syntax Removed

{parameter}

Replaced by $parameter.

685

https://neo4j.com/docs/cypher-manual/3.5/schema/index/#explicit-indexes-procedures

11.5.2. Deprecated features

Feature Details

Syntax Deprecated

MATCH (n)-[rs*]-() RETURN rs

As in Cypher 3.2, this is replaced by:

MATCH p=(n)-[*]-() RETURN relationships(p) AS rs

Syntax Deprecated

CREATE INDEX ON :Label(prop)

Replaced by CREATE INDEX FOR (n:Label) ON
(n.prop).

Syntax Deprecated

DROP INDEX ON :Label(prop)

Replaced by DROP INDEX name.

Syntax Deprecated

DROP CONSTRAINT ON (n:Label) ASSERT (n.prop) IS
NODE KEY

Replaced by DROP CONSTRAINT name.

Syntax Deprecated

DROP CONSTRAINT ON (n:Label) ASSERT (n.prop) IS
UNIQUE

Replaced by DROP CONSTRAINT name.

Syntax Deprecated

DROP CONSTRAINT ON (n:Label) ASSERT exists(n.prop)

Replaced by DROP CONSTRAINT name.

Syntax Deprecated

DROP CONSTRAINT ON ()-[r:Type]-() ASSERT exists
(r.prop)

Replaced by DROP CONSTRAINT name.

11.5.3. Restricted features

686

Feature Details

Function Restricted

length()

Restricted to only work on paths. See length() for
more details.

Function Restricted

size()

No longer works for paths. Only works for strings,
lists and pattern expressions. See size() for more
details.

11.5.4. Updated features

Feature Details

Syntax Extended

CREATE CONSTRAINT [name] ON ...

The create constraint syntax can now include a
name.

The IS NODE KEY and IS UNIQUE versions of this
command replace the procedures db.createNodeKey
and db.createUniquePropertyConstraint,
respectively.

11.5.5. New features

Feature Details

Functionality New
Pipelined runtime:

CYPHER runtime=pipelined

This Neo4j Enterprise Edition only feature involves a
new runtime that has many performance
enhancements.

Functionality New
Multi-database administration

New Cypher commands for administering multiple
databases.

Functionality New
Access control

New Cypher commands for administering role-
based access control.

Functionality New
Fine-grained security

New Cypher commands for administering dbms,
database, graph and sub-graph access control.

687

Feature Details

Syntax New

CREATE INDEX [name] FOR (n:Label) ON (n.prop)

New syntax for creating indexes, which can include
a name.

Replaces the db.createIndex procedure.

Syntax New

DROP INDEX name

New command for dropping an index by name.

Syntax New

DROP CONSTRAINT name

New command for dropping a constraint by name,
no matter the type.

Clause New

WHERE EXISTS {...}

Existential sub-queries are sub-clauses used to
filter the results of a MATCH, OPTIONAL MATCH, or WITH
clause.

Clause New

USE neo4j

New clause to specify which graph a query, or
query part, is executed against.

11.6. Version 3.5

11.6.1. Deprecated features

Feature Details

Functionality Deprecated
Compiled runtime:

CYPHER runtime=compiled

The compiled runtime will be discontinued in the
next major release. It might still be used for default
queries in order to not cause regressions, but
explicitly requesting it will not be possible.

Function Deprecated

extract()

Replaced by list comprehension.

688

Feature Details

Function Deprecated

filter()

Replaced by list comprehension.

11.7. Version 3.4
Feature Type Change Details

Spatial point types Functionality Amendment A point — irrespective of
which Coordinate Reference
System is used — can be
stored as a property and is
able to be backed by an
index. Prior to this, a point
was a virtual property only.

point() - Cartesian 3D Function Added

point() - WGS 84 3D Function Added

randomUUID() Function Added

Temporal types Functionality Added Supports storing, indexing
and working with the
following temporal types:
Date, Time, LocalTime,
DateTime, LocalDateTime
and Duration.

Temporal functions Functionality Added Functions allowing for the
creation and manipulation of
values for each temporal
type — Date, Time,
LocalTime, DateTime,
LocalDateTime and Duration.

Temporal operators Functionality Added Operators allowing for the
manipulation of values for
each temporal type — Date,
Time, LocalTime, DateTime,
LocalDateTime and Duration.

toString() Function Extended Now also allows temporal
values as input (i.e. values of
type Date, Time, LocalTime,
DateTime, LocalDateTime or
Duration).

11.8. Version 3.3

689

Feature Type Change Details

START Clause Removed As in Cypher 3.2, any queries
using the START clause will
revert back to Cypher 3.1
planner=rule. However, there
are built-in procedures for
Neo4j versions 3.3 to 3.5 for
accessing explicit indexes.
The procedures will enable
users to use the current
version of Cypher and the
cost planner together with
these indexes. An example of
this is CALL
db.index.explicit.searchNo
des('my_index','email:me*'
).

CYPHER runtime=slotted
(Faster interpreted runtime)

Functionality Added Neo4j Enterprise Edition only

max(), min() Function Extended Now also supports
aggregation over sets
containing lists of strings
and/or numbers, as well as
over sets containing strings,
numbers, and lists of strings
and/or numbers

11.9. Version 3.2
Feature Type Change Details

CYPHER planner=rule (Rule
planner)

Functionality Removed All queries now use the cost
planner. Any query
prepended thus will fall back
to using Cypher 3.1.

CREATE UNIQUE Clause Removed Running such queries will fall
back to using Cypher 3.1 (and
use the rule planner)

START Clause Removed Running such queries will fall
back to using Cypher 3.1 (and
use the rule planner)

MATCH (n)-[rs*]-() RETURN
rs

Syntax Deprecated Replaced by MATCH p=(n)-
[*]-() RETURN
relationships(p) AS rs

MATCH (n)-[:A|:B|:C {foo:
'bar'}]-() RETURN n

Syntax Deprecated Replaced by MATCH (n)-
[:A|B|C {foo: 'bar'}]-()
RETURN n

MATCH (n)-[x:A|:B|:C]-()
RETURN n

Syntax Deprecated Replaced by MATCH (n)-
[x:A|B|C]-() RETURN n

690

https://neo4j.com/docs/cypher-manual/3.5/schema/index/#explicit-indexes-procedures
https://neo4j.com/docs/cypher-manual/3.5/schema/index/#explicit-indexes-procedures

Feature Type Change Details

MATCH (n)-[x:A|:B|:C*]-()
RETURN n

Syntax Deprecated Replaced by MATCH (n)-
[x:A|B|C*]-() RETURN n

User-defined aggregation
functions

Functionality Added

Composite indexes Index Added

Node Key Index Added Neo4j Enterprise Edition only

CYPHER runtime=compiled
(Compiled runtime)

Functionality Added Neo4j Enterprise Edition only

reverse() Function Extended Now also allows a list as
input

max(), min() Function Extended Now also supports
aggregation over a set
containing both strings and
numbers

11.10. Version 3.1
Feature Type Change Details

rels() Function Deprecated Replaced by relationships()

toInt() Function Deprecated Replaced by toInteger()

lower() Function Deprecated Replaced by toLower()

upper() Function Deprecated Replaced by toUpper()

toBoolean() Function Added

Map projection Syntax Added

Pattern comprehension Syntax Added

User-defined functions Functionality Added

CALL...YIELD...WHERE Clause Extended Records returned by YIELD
may be filtered further using
WHERE

11.11. Version 3.0
Feature Type Change Details

has() Function Removed Replaced by exists()

str() Function Removed Replaced by toString()

{parameter} Syntax Deprecated Replaced by $parameter

properties() Function Added

CALL [...YIELD\] Clause Added

691

https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-aggregation-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-aggregation-functions
https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-functions

Feature Type Change Details

point() - Cartesian 2D Function Added

point() - WGS 84 2D Function Added

distance() Function Added

User-defined procedures Functionality Added

toString() Function Extended Now also allows Boolean
values as input

11.12. Compatibility

Neo4j’s ability to support multiple older versions of the Cypher language has changed
over time. In versions prior to Neo4j 3.4, the backwards compatibility layer included the
Cypher language parser, planner, and runtime. All supported versions of Cypher ran on
the same Neo4j kernel. However, this changed in Neo4j 3.4 when the runtime was
excluded from the compatibility layer. When you run, e.g. a CYPHER 3.1 query in Neo4j
3.5, the query is planned with the 3.1 planner, but run with 3.5 runtime and kernel. The
compatibility layer changed again in Neo4j 4.0 and it now includes only the Cypher
language parser. When you run a CYPHER 3.5 query, e.g., in Neo4j 4.3, Neo4j parses the
older language features, but uses the 4.3 planner, runtime, and kernel to plan and run
the query. The primary reason for these changes is the optimizations in the Cypher
runtime to allow Cypher queries to perform better.

Older versions of the language can still be accessed if required. There are two ways to select which
version to use in queries.

1. Setting a version for all queries: You can configure your database with the configuration parameter
cypher.default_language_version, and enter which version you’d like to use (see Supported language
versions). Every Cypher query will use this version, provided the query hasn’t explicitly been configured
as described in the next item below.

2. Setting a version on a query by query basis: The other method is to set the version for a particular
query. Prepending a query with CYPHER 3.5 will execute the query with the version of Cypher included
in Neo4j 3.5.

Below is an example using the older parameter syntax {param}:

CYPHER 3.5
MATCH (n:Person)
WHERE n.age > {agelimit}
RETURN n.name, n.age

Without the CYPHER 3.5 prefix this query would fail with a syntax error. With CYPHER 3.5 however, it will
only generate a warning and still work.

692

https://neo4j.com/docs/pdf/neo4j-java-reference-4.3.pdf#extending-neo4j-procedures

In Neo4j 4.3 the Cypher parser understands some older language features, even if they
are no longer supported by the Neo4j kernel. These features result in runtime errors. See
the table at Cypher Version 4.0 for the list of affected features.

11.13. Supported language versions
Neo4j 4.3 supports the following versions of the Cypher language:

• Neo4j Cypher 3.5

• Neo4j Cypher 4.2

• Neo4j Cypher 4.3

Each release of Neo4j supports a limited number of old Cypher Language Versions.
When you upgrade to a new release of Neo4j, please make sure that it supports the
Cypher language version you need. If not, you may need to modify your queries to work
with a newer Cypher language version.

693

Chapter 12. Glossary of keywords
• Clauses

• Operators

• Functions

• Expressions

• Cypher query options

• Administrative commands

• Privilege Actions

12.1. Clauses
Clause Category Description

CALL […YIELD\] Reading/Writing Invoke a procedure deployed in the
database.

CALL {…} Reading/Writing Evaluates a subquery, typically used for
post-union processing or aggregations.

CREATE Writing Create nodes and relationships.

CREATE CONSTRAINT [existence\ [IF
NOT EXISTS\] ON (n:Label) ASSERT
n.property IS NOT NULL]

Schema Create a constraint ensuring that all
nodes with a particular label have a
certain property.

CREATE CONSTRAINT [node_key\ [IF
NOT EXISTS\] ON (n:Label) ASSERT
(n.prop1, …, n.propN) IS NODE KEY
[OPTIONS {optionKey: optionValue[, …
\]}\]]

Schema Create a constraint ensuring all nodes
with a particular label have all the
specified properties and that the
combination of property values is
unique; i.e. ensures existence and
uniqueness.

CREATE CONSTRAINT [existence\ [IF
NOT EXISTS\] ON ()-"["r:REL_TYPE"\]"-
() ASSERT r.property IS NOT NULL]

Schema Create a constraint ensuring that all
relationships with a particular type have
a certain property.

CREATE CONSTRAINT [uniqueness\ [IF
NOT EXISTS\] ON (n:Label) ASSERT
n.property IS UNIQUE [OPTIONS
{optionKey: optionValue[, …\]}\]]

Schema Create a constraint ensuring the
uniqueness of the combination of node
label and property value for a particular
property key across all nodes.

CREATE [BTREE\ INDEX [single\] [IF
NOT EXISTS\] FOR (n:Label) ON
(n.property) [OPTIONS {optionKey:
optionValue[, …\]}\]]

Schema Create an index on all nodes with a
particular label and a single property; i.e.
create a single-property index.

CREATE [BTREE\ INDEX [single\] [IF
NOT EXISTS\] FOR ()-"["r:TYPE"\]"-()
ON (r.property) [OPTIONS {optionKey:
optionValue[, …\]}\]]

Schema Create an index on all relationships with
a particular relationship type and a
single property; i.e. create a single-
property index.

694

Clause Category Description

CREATE [BTREE\ INDEX [composite\]
[IF NOT EXISTS\] FOR (n:Label) ON
(n.prop1, …, n.propN) [OPTIONS
{optionKey: optionValue[, …\]}\]]

Schema Create an index on all nodes with a
particular label and multiple properties;
i.e. create a composite index.

CREATE [BTREE\ INDEX [composite\]
[IF NOT EXISTS\] FOR ()-"["r:TYPE"\]"-()
ON (r.prop1, …, r.propN) [OPTIONS
{optionKey: optionValue[, …\]}\]]

Schema Create an index on all relationships with
a particular relationship type and
multiple properties; i.e. create a
composite index.

CREATE FULLTEXT INDEX [name\ [IF
NOT EXISTS\] FOR (n:Label["|" … "|"
LabelN\]) ON EACH "[" n.property[, …,
n.propertyN\] "\]" [OPTIONS {optionKey:
optionValue[, …\]}\]]

Schema Create a fulltext index on nodes.

CREATE FULLTEXT INDEX [name\ [IF
NOT EXISTS\] FOR ()-"["r:TYPE["|" … "|"
TYPE_N\]"\]"-() ON EACH "["
r.property[, …, r.propertyN\] "\]"
[OPTIONS {optionKey: optionValue[, …
\]}\]]

Schema Create a fulltext index on relationships.

CREATE LOOKUP INDEX [name\ [IF
NOT EXISTS\] FOR (n) ON EACH
labels(n) [OPTIONS {}\]]

Schema Create an index on all nodes with any
label.

CREATE LOOKUP INDEX [name\ [IF
NOT EXISTS\] FOR ()-"["r"\]"-() ON
[EACH\] type(r) [OPTIONS {}\]]

Schema Create an index on all relationships with
any relationship type.

DELETE Writing Delete nodes, relationships or paths.
Any node to be deleted must also have
all associated relationships explicitly
deleted.

DETACH DELETE Writing Delete a node or set of nodes. All
associated relationships will
automatically be deleted.

DROP CONSTRAINT name [IF EXISTS\] Schema Drop a constraint using the name.

DROP INDEX name [IF EXISTS\] Schema Drop an index using the name.

FOREACH Writing Update data within a list, whether
components of a path, or the result of
aggregation.

LIMIT Reading sub-clause A sub-clause used to constrain the
number of rows in the output.

LOAD CSV Importing data Use when importing data from CSV
files.

MATCH Reading Specify the patterns to search for in the
database.

695

Clause Category Description

MERGE Reading/Writing Ensures that a pattern exists in the
graph. Either the pattern already exists,
or it needs to be created.

ON CREATE Reading/Writing Used in conjunction with MERGE,
specifying the actions to take if the
pattern needs to be created.

ON MATCH Reading/Writing Used in conjunction with MERGE,
specifying the actions to take if the
pattern already exists.

OPTIONAL MATCH Reading Specify the patterns to search for in the
database while using nulls for missing
parts of the pattern.

ORDER BY [ASC[ENDING\ |
DESC[ENDING\]\]]

Reading sub-clause A sub-clause following RETURN or WITH,
specifying that the output should be
sorted in either ascending (the default)
or descending order.

REMOVE Writing Remove properties and labels from
nodes and relationships.

RETURN … [AS\] Projecting Defines what to include in the query
result set.

SET Writing Update labels on nodes and properties
on nodes and relationships.

SHOW [ALL|UNIQUE|NODE
[PROPERTY\
EXIST[ENCE\]|REL[ATIONSHIP\]
[PROPERTY\]
EXIST[ENCE\]|[PROPERTY\]
EXIST[ENCE\]|NODE KEY\]
CONSTRAINT[S\]]

Schema List constraints in the database, either
all or filtered on type. Also allows WHERE
and YIELD clauses.

SHOW
[ALL|BTREE|FULLTEXT|LOOKUP\
INDEX[ES\]]

Schema List indexes in the database, either all or
filtered on b-tree, fulltext or token
lookup indexes. Also allows WHERE and
YIELD clauses.

SHOW [ALL|BUILT IN|USER DEFINED\
FUNCTION[S\] [EXECUTABLE [BY
{CURRENT USER|username}\]\]]

Listing List functions, either all or filtered.
Available filters are executable by a user
or function type (built-in or user
defined). Also allows WHERE and YIELD
clauses.

SHOW PROCEDURE[S\ [EXECUTABLE
[BY {CURRENT USER|username}\]\]]

Listing List procedures, either all or filtered on
executable by a user. Also allows WHERE
and YIELD clauses.

SKIP Reading/Writing A sub-clause defining from which row
to start including the rows in the output.

UNION Set operations Combines the result of multiple queries.
Duplicates are removed.

696

Clause Category Description

UNION ALL Set operations Combines the result of multiple queries.
Duplicates are retained.

UNWIND … [AS\] Projecting Expands a list into a sequence of rows.

USE Multiple graphs Determines which graph a query, or
query part, is executed against.

USING INDEX variable:Label(property) Hint Index hints are used to specify which
index, if any, the planner should use as a
starting point.

USING INDEX SEEK
variable:Label(property)

Hint Index seek hint instructs the planner to
use an index seek for this clause.

USING JOIN ON variable Hint Join hints are used to enforce a join
operation at specified points.

USING PERIODIC COMMIT Hint This query hint may be used to prevent
an out-of-memory error from occurring
when importing large amounts of data
using LOAD CSV.

USING SCAN variable:Label Hint Scan hints are used to force the planner
to do a label scan (followed by a filtering
operation) instead of using an index.

WITH … [AS\] Projecting Allows query parts to be chained
together, piping the results from one to
be used as starting points or criteria in
the next.

WHERE Reading sub-clause A sub-clause used to add constraints to
the patterns in a MATCH or OPTIONAL
MATCH clause, or to filter the results of a
WITH clause.

WHERE EXISTS {…} Reading sub-clause An existential sub-query used to filter
the results of a MATCH, OPTIONAL MATCH or
WITH clause.

12.2. Operators
Operator Category Description

% Mathematical Modulo division

* Mathematical Multiplication

* Temporal Multiplying a duration with a number

+ Mathematical Addition

+ String Concatenation

<<query-operators-property, +⇒> Property Property mutation

+ List Concatenation

697

Operator Category Description

+ Temporal Adding two durations, or a duration and
a temporal instant

<<query-operators-mathematical, →> Mathematical Subtraction or unary minus

<<query-operators-temporal, →> Temporal Subtracting a duration from a temporal
instant or from another duration

. Map Static value access by key

. Property Static property access

/ Mathematical Division

/ Temporal Dividing a duration by a number

< Comparison Less than

<<query-operators-comparison, <⇒> Comparison Less than or equal to

<> Comparison Inequality

<<query-operators-comparison, ⇒> Comparison Equality

<<query-operators-property, ⇒> Property Property replacement

=~ String Regular expression match

> Comparison Greater than

<<query-operators-comparison, >⇒> Comparison Greater than or equal to

AND Boolean Conjunction

CONTAINS String comparison Case-sensitive inclusion search

DISTINCT Aggregation Duplicate removal

ENDS WITH String comparison Case-sensitive suffix search

IN List List element existence check

IS NOT NULL Comparison Non-null check

IS NULL Comparison null check

NOT Boolean Negation

OR Boolean Disjunction

STARTS WITH String comparison Case-sensitive prefix search

XOR Boolean Exclusive disjunction

[\] Map Subscript (dynamic value access by key)

[\] Property Subscript (dynamic property access)

[\] List Subscript (accessing element(s) in a list)

^ Mathematical Exponentiation

698

12.3. Functions
Function Category Description

abs() Numeric Returns the absolute value of a number.

acos() Trigonometric Returns the arccosine of a number in
radians.

all() Predicate Tests whether the predicate holds for all
elements in a list.

any() Predicate Tests whether the predicate holds for at
least one element in a list.

asin() Trigonometric Returns the arcsine of a number in
radians.

atan() Trigonometric Returns the arctangent of a number in
radians.

atan2() Trigonometric Returns the arctangent2 of a set of
coordinates in radians.

avg() Aggregating Returns the average of a set of values.

ceil() Numeric Returns the smallest floating point
number that is greater than or equal to a
number and equal to a mathematical
integer.

coalesce() Scalar Returns the first non-null value in a list
of expressions.

collect() Aggregating Returns a list containing the values
returned by an expression.

cos() Trigonometric Returns the cosine of a number.

cot() Trigonometric Returns the cotangent of a number.

count() Aggregating Returns the number of values or rows.

date() Temporal Returns the current Date.

date({year [, month, day\})] Temporal Returns a calendar (Year-Month-Day)
Date.

date({year [, week, dayOfWeek\})] Temporal Returns a week (Year-Week-Day) Date.

date({year [, quarter, dayOfQuarter\})] Temporal Returns a quarter (Year-Quarter-Day)
Date.

date({year [, ordinalDay\})] Temporal Returns an ordinal (Year-Day) Date.

date(string) Temporal Returns a Date by parsing a string.

date({map}) Temporal Returns a Date from a map of another
temporal value’s components.

date.realtime() Temporal Returns the current Date using the
realtime clock.

699

Function Category Description

date.statement() Temporal Returns the current Date using the
statement clock.

date.transaction() Temporal Returns the current Date using the
transaction clock.

date.truncate() Temporal Returns a Date obtained by truncating a
value at a specific component boundary.
Truncation summary.

datetime() Temporal Returns the current DateTime.

datetime({year [, month, day, …\})] Temporal Returns a calendar (Year-Month-Day)
DateTime.

datetime({year [, week, dayOfWeek, …
\})]

Temporal Returns a week (Year-Week-Day)
DateTime.

datetime({year [, quarter, dayOfQuarter,
…\})]

Temporal Returns a quarter (Year-Quarter-Day)
DateTime.

datetime({year [, ordinalDay, …\})] Temporal Returns an ordinal (Year-Day)
DateTime.

datetime(string) Temporal Returns a DateTime by parsing a string.

datetime({map}) Temporal Returns a DateTime from a map of
another temporal value’s components.

datetime({epochSeconds}) Temporal Returns a DateTime from a timestamp.

datetime.realtime() Temporal Returns the current DateTime using the
realtime clock.

datetime.statement() Temporal Returns the current DateTime using the
statement clock.

datetime.transaction() Temporal Returns the current DateTime using the
transaction clock.

datetime.truncate() Temporal Returns a DateTime obtained by
truncating a value at a specific
component boundary. Truncation
summary.

degrees() Trigonometric Converts radians to degrees.

distance() Spatial Returns a floating point number
representing the geodesic distance
between any two points in the same
CRS.

duration({map}) Temporal Returns a Duration from a map of its
components.

duration(string) Temporal Returns a Duration by parsing a string.

duration.between() Temporal Returns a Duration equal to the
difference between two given instants.

700

Function Category Description

duration.inDays() Temporal Returns a Duration equal to the
difference in whole days or weeks
between two given instants.

duration.inMonths() Temporal Returns a Duration equal to the
difference in whole months, quarters or
years between two given instants.

duration.inSeconds() Temporal Returns a Duration equal to the
difference in seconds and fractions of
seconds, or minutes or hours, between
two given instants.

e() Logarithmic Returns the base of the natural
logarithm, e.

endNode() Scalar Returns the end node of a relationship.

exists() Predicate Returns true if a match for the pattern
exists in the graph, or if the specified
property exists in the node, relationship
or map.

exp() Logarithmic Returns e^n, where e is the base of the
natural logarithm, and n is the value of
the argument expression.

floor() Numeric Returns the largest floating point
number that is less than or equal to a
number and equal to a mathematical
integer.

haversin() Trigonometric Returns half the versine of a number.

head() Scalar Returns the first element in a list.

id() Scalar Returns the id of a relationship or node.

isEmpty() Predicate Returns true if the given list or map
contains no elements or if the given
string contains no characters.

keys() List Returns a list containing the string
representations for all the property
names of a node, relationship, or map.

labels() List Returns a list containing the string
representations for all the labels of a
node.

last() Scalar Returns the last element in a list.

left() String Returns a string containing the specified
number of leftmost characters of the
original string.

length() Scalar Returns the length of a path.

localdatetime() Temporal Returns the current LocalDateTime.

701

Function Category Description

localdatetime({year [, month, day, …\})] Temporal Returns a calendar (Year-Month-Day)
LocalDateTime.

localdatetime({year [, week,
dayOfWeek, …\})]

Temporal Returns a week (Year-Week-Day)
LocalDateTime.

localdatetime({year [, quarter,
dayOfQuarter, …\})]

Temporal Returns a quarter (Year-Quarter-Day)
DateTime.

localdatetime({year [, ordinalDay, …\})] Temporal Returns an ordinal (Year-Day)
LocalDateTime.

localdatetime(string) Temporal Returns a LocalDateTime by parsing a
string.

localdatetime({map}) Temporal Returns a LocalDateTime from a map of
another temporal value’s components.

localdatetime.realtime() Temporal Returns the current LocalDateTime
using the realtime clock.

localdatetime.statement() Temporal Returns the current LocalDateTime
using the statement clock.

localdatetime.transaction() Temporal Returns the current LocalDateTime
using the transaction clock.

localdatetime.truncate() Temporal Returns a LocalDateTime obtained by
truncating a value at a specific
component boundary. Truncation
summary.

localtime() Temporal Returns the current LocalTime.

localtime({hour [, minute, second, …\})] Temporal Returns a LocalTime with the specified
component values.

localtime(string) Temporal Returns a LocalTime by parsing a string.

localtime({time [, hour, …\})] Temporal Returns a LocalTime from a map of
another temporal value’s components.

localtime.realtime() Temporal Returns the current LocalTime using the
realtime clock.

localtime.statement() Temporal Returns the current LocalTime using the
statement clock.

localtime.transaction() Temporal Returns the current LocalTime using the
transaction clock.

localtime.truncate() Temporal Returns a LocalTime obtained by
truncating a value at a specific
component boundary. Truncation
summary.

log() Logarithmic Returns the natural logarithm of a
number.

702

Function Category Description

log10() Logarithmic Returns the common logarithm (base
10) of a number.

lTrim() String Returns the original string with leading
whitespace removed.

max() Aggregating Returns the maximum value in a set of
values.

min() Aggregating Returns the minimum value in a set of
values.

nodes() List Returns a list containing all the nodes in
a path.

none() Predicate Returns true if the predicate holds for no
element in a list.

percentileCont() Aggregating Returns the percentile of the given value
over a group using linear interpolation.

percentileDisc() Aggregating Returns the nearest value to the given
percentile over a group using a rounding
method.

pi() Trigonometric Returns the mathematical constant pi.

point() - Cartesian 2D Spatial Returns a 2D point object, given two
coordinate values in the Cartesian
coordinate system.

point() - Cartesian 3D Spatial Returns a 3D point object, given three
coordinate values in the Cartesian
coordinate system.

point() - WGS 84 2D Spatial Returns a 2D point object, given two
coordinate values in the WGS 84
coordinate system.

point() - WGS 84 3D Spatial Returns a 3D point object, given three
coordinate values in the WGS 84
coordinate system.

properties() Scalar Returns a map containing all the
properties of a node or relationship.

radians() Trigonometric Converts degrees to radians.

rand() Numeric Returns a random floating point number
in the range from 0 (inclusive) to 1
(exclusive); i.e. [0, 1).

randomUUID() Scalar Returns a string value corresponding to
a randomly-generated UUID.

range() List Returns a list comprising all integer
values within a specified range.

703

Function Category Description

reduce() List Runs an expression against individual
elements of a list, storing the result of
the expression in an accumulator.

relationships() List Returns a list containing all the
relationships in a path.

replace() String Returns a string in which all occurrences
of a specified string in the original string
have been replaced by another
(specified) string.

reverse() List Returns a list in which the order of all
elements in the original list have been
reversed.

reverse() String Returns a string in which the order of all
characters in the original string have
been reversed.

right() String Returns a string containing the specified
number of rightmost characters of the
original string.

round() Numeric Returns the value of the given number
rounded to the nearest integer, with
half-way values always rounded up.

round(), with precision Numeric Returns the value of the given number
rounded with the specified precision,
with half-values always being rounded
up.

round(), with precision and rounding
mode

Numeric Returns the value of the given number
rounded with the specified precision
and the specified rounding mode.

rTrim() String Returns the original string with trailing
whitespace removed.

sign() Numeric Returns the signum of a number: 0 if the
number is 0, -1 for any negative number,
and 1 for any positive number.

sin() Trigonometric Returns the sine of a number.

single() Predicate Returns true if the predicate holds for
exactly one of the elements in a list.

size() Scalar Returns the number of items in a list.

size() applied to pattern expression Scalar Returns the number of paths matching
the pattern expression.

size() applied to string Scalar Returns the number of Unicode
characters in a string.

704

Function Category Description

split() String Returns a list of strings resulting from
the splitting of the original string around
matches of the given delimiter.

sqrt() Logarithmic Returns the square root of a number.

startNode() Scalar Returns the start node of a relationship.

stDev() Aggregating Returns the standard deviation for the
given value over a group for a sample of
a population.

stDevP() Aggregating Returns the standard deviation for the
given value over a group for an entire
population.

substring() String Returns a substring of the original
string, beginning with a 0-based index
start and length.

sum() Aggregating Returns the sum of a set of numeric
values.

tail() List Returns all but the first element in a list.

tan() Trigonometric Returns the tangent of a number.

time() Temporal Returns the current Time.

time({hour [, minute, …\})] Temporal Returns a Time with the specified
component values.

time(string) Temporal Returns a Time by parsing a string.

time({time [, hour, …, timezone\})] Temporal Returns a Time from a map of another
temporal value’s components.

time.realtime() Temporal Returns the current Time using the
realtime clock.

time.statement() Temporal Returns the current Time using the
statement clock.

time.transaction() Temporal Returns the current Time using the
transaction clock.

time.truncate() Temporal Returns a Time obtained by truncating a
value at a specific component boundary.
Truncation summary.

timestamp() Scalar Returns the difference, measured in
milliseconds, between the current time
and midnight, January 1, 1970 UTC.

toBoolean() Scalar Converts a string value to a boolean
value.

toFloat() Scalar Converts an integer or string value to a
floating point number.

705

Function Category Description

toInteger() Scalar Converts a floating point or string value
to an integer value.

toLower() String Returns the original string in lowercase.

toString() String Converts an integer, float, boolean or
temporal (i.e. Date, Time, LocalTime,
DateTime, LocalDateTime or Duration)
value to a string.

toUpper() String Returns the original string in uppercase.

trim() String Returns the original string with leading
and trailing whitespace removed.

type() Scalar Returns the string representation of the
relationship type.

12.4. Expressions
Name Description

CASE Expression A generic conditional expression, similar to if/else statements
available in other languages.

12.5. Cypher query options
Name Type Description

CYPHER $version query Version This will force 'query' to use Neo4j
Cypher $version. The default is 4.0.

CYPHER runtime=interpreted query Runtime This will force the query planner to use
the interpreted runtime. This is the only
option in Neo4j Community Edition.

CYPHER runtime=slotted query Runtime This will cause the query planner to use
the slotted runtime. This is only available
in Neo4j Enterprise Edition.

CYPHER runtime=pipelined query Runtime This will cause the query planner to use
the pipelined runtime if it supports
'query'. This is only available in Neo4j
Enterprise Edition.

12.6. Administrative commands
The following commands are only executable against the system database:

706

Command Admin category Description

ALTER CURRENT USER SET
PASSWORD FROM … TO

User and role Change the password of the user that is
currently logged in.

ALTER USER … [IF EXISTS\ [SET
[PLAINTEXT | ENCRYPTED\]
PASSWORD {password [CHANGE
[NOT\] REQUIRED\] | CHANGE [NOT\]
REQUIRED}\] [SET STATUS {ACTIVE |
SUSPENDED}\] [SET HOME
DATABASE name\] [REMOVE HOME
DATABASE\]]

User and role Changes a user account. Changes can
include setting a new password, setting
the account status, setting or removing
home database and enabling that the
user should change the password upon
next login.

CREATE [OR REPLACE\ DATABASE …
[IF NOT EXISTS\] [OPTIONS {optionKey:
optionValue[, …\]}\] [WAIT [n
[SEC[OND[S\]\]\]\]|NOWAIT\]]

Database Creates a new database.

CREATE [OR REPLACE\ ROLE … [IF
NOT EXISTS\] [AS COPY OF\]]

User and role Creates new roles.

CREATE [OR REPLACE\ USER … [IF
NOT EXISTS\] SET [PLAINTEXT |
ENCRYPTED\] PASSWORD … [[SET
PASSWORD\] CHANGE [NOT\]
REQUIRED\] [SET STATUS {ACTIVE |
SUSPENDED}\] [SET HOME
DATABASE name\]]

User and role Creates a new user and sets the
password for the new account.
Optionally the account status and home
database can also be set and if the user
should change the password upon first
login.

DENY … ON DATABASE … TO Privilege Denies a database or schema privilege
to one or multiple roles.

DENY … ON DBMS TO Privilege Denies a DBMS privilege to one or
multiple roles.

DENY … ON GRAPH … [NODES |
RELATIONSHIPS | ELEMENTS\ … TO]

Privilege Denies a graph privilege for one or
multiple specified elements to one or
multiple roles.

DROP DATABASE … [IF EXISTS\
[DUMP DATA | DESTROY DATA\]]

Database Deletes a specified database.

DROP ROLE … [IF EXISTS\] User and role Deletes a specified role.

DROP USER … [IF EXISTS\] User and role Deletes a specified user.

GRANT … ON DATABASE … TO Privilege Assigns a database or schema privilege
to one or multiple roles.

GRANT … ON DBMS TO Privilege Assigns a DBMS privilege to one or
multiple roles.

GRANT … ON GRAPH … [NODES |
RELATIONSHIPS | ELEMENTS\ … TO]

Privilege Assigns a graph privilege for one or
multiple specified elements to one or
multiple roles.

GRANT ROLE[S\ … TO] User and role Assigns one or multiple roles to one or
multiple users.

707

Command Admin category Description

RENAME ROLE … [IF EXISTS\ TO …] User and role Changes the name of a role.

RENAME USER … [IF EXISTS\ TO …] User and role Changes the name of a user.

REVOKE [GRANT | DENY\ … ON
DATABASE … FROM]

Privilege Removes a database or schema
privilege from one or multiple roles.

REVOKE [GRANT | DENY\ … ON DBMS
FROM]

Privilege Removes a DBMS privilege from one or
multiple roles.

REVOKE [GRANT | DENY\ … ON
GRAPH … [NODES | RELATIONSHIPS |
ELEMENTS\] … FROM]

Privilege Removes a graph privilege for one or
multiple specified elements from one or
multiple roles

REVOKE ROLE[S\ … FROM] User and role Removes one or multiple roles from one
or multiple users.

SHOW [ALL | POPULATED\ ROLES
[WITH USERS\]]

User and role Returns information about all or
populated roles, optionally including the
assigned users.

SHOW DATABASE Database Returns information about a specified
database.

SHOW DATABASES Database Returns information about all databases.

SHOW DEFAULT DATABASE Database Returns information about the default
database.

SHOW HOME DATABASE Database Returns information about the current
users home database.

SHOW [ROLE … | USER … | ALL \
PRIVILEGES [AS [REVOKE\]
COMMAND[S\]\]]

Privilege Returns information about role, user or
all privileges.

SHOW USERS User and role Returns information about all users.

START DATABASE Database Starts up a specified database.

STOP DATABASE Database Stops a specified database.

12.7. Privilege Actions
Name Category Description

ACCESS Database Determines whether a user can access a
specific database.

ALL DATABASE PRIVILEGES Database and schema Determines whether a user is allowed to
access, create, drop, and list indexes
and constraints, create new labels,
types and property names on a specific
database.

ALL DBMS PRIVILEGES DBMS Determines whether a user is allowed to
perform role, user, database and
privilege management.

708

Name Category Description

ALL GRAPH PRIVILEGES GRAPH Determines whether a user is allowed to
perform reads and writes.

ALTER USER DBMS Determines whether the user can
modify users.

ASSIGN PRIVILEGE DBMS Determines whether the user can assign
privileges using the GRANT and DENY
commands.

ASSIGN ROLE DBMS Determines whether the user can grant
roles.

CONSTRAINT MANAGEMENT Schema Determines whether a user is allowed to
create, drop, and list constraints on a
specific database.

CREATE GRAPH Determines whether the user can create
a new element (node, relationship or
both).

CREATE CONSTRAINT Schema Determines whether a user is allowed to
create constraints on a specific
database.

CREATE DATABASE DBMS Determines whether the user can create
new databases.

CREATE INDEX Schema Determines whether a user is allowed to
create indexes on a specific database.

CREATE NEW NODE LABEL Schema Determines whether a user is allowed to
create new node labels on a specific
database.

CREATE NEW PROPERTY NAME Schema Determines whether a user is allowed to
create new property names on a specific
database.

CREATE NEW RELATIONSHIP TYPE Schema Determines whether a user is allowed to
create new relationship types on a
specific database.

CREATE ROLE DBMS Determines whether the user can create
new roles.

CREATE USER DBMS Determines whether the user can create
new users.

DATABASE MANAGEMENT DBMS Determines whether the user can create
and delete databases.

DELETE GRAPH Determines whether the user can delete
an element (node, relationship or both).

DROP CONSTRAINT Schema Determines whether a user is allowed to
drop constraints on a specific database.

709

Name Category Description

DROP DATABASE DBMS Determines whether the user can delete
databases.

DROP INDEX Schema Determines whether a user is allowed to
drop indexes on a specific database.

DROP ROLE DBMS Determines whether the user can delete
roles.

DROP USER DBMS Determines whether the user can delete
users.

EXECUTE ADMIN PROCEDURE DBMS Determines whether the user can
execute admin procedures.

EXECUTE BOOSTED FUNCTION DBMS Determines whether the user can
execute functions with elevated
privileges.

EXECUTE BOOSTED PROCEDURE DBMS Determines whether the user can
execute procedures with elevated
privileges.

EXECUTE FUNCTION DBMS Determines whether the user can
execute functions.

EXECUTE PROCEDURE DBMS Determines whether the user can
execute procedures.

INDEX MANAGEMENT Schema Determines whether a user is allowed to
create, drop, and list indexes on a
specific database.

MATCH GRAPH Determines whether the properties of
an element (node, relationship or both)
can be read and the element can be
found and traversed while executing
queries on the specified graph.

MERGE GRAPH Determines whether the user can find,
read, create and set properties on an
element (node, relationship or both).

NAME MANAGEMENT Schema Determines whether a user is allowed to
create new labels, types and property
names on a specific database.

PRIVILEGE MANAGEMENT DBMS Determines whether the user can show,
assign and remove privileges.

READ GRAPH Determines whether the properties of
an element (node, relationship or both)
can be read while executing queries on
the specified graph.

REMOVE LABEL GRAPH Determines whether the user can
remove a label from a node using the
REMOVE clause.

710

Name Category Description

REMOVE PRIVILEGE DBMS Determines whether the user can
remove privileges using the REVOKE
command.

REMOVE ROLE DBMS Determines whether the user can revoke
roles.

RENAME ROLE DBMS Determines whether the user can
rename roles.

RENAME USER DBMS Determines whether the user can
rename users.

ROLE MANAGEMENT DBMS Determines whether the user can
create, drop, grant, revoke and show
roles.

SET LABEL GRAPH Determines whether the user can set a
label to a node using the SET clause.

SET PASSWORDS DBMS Determines whether the user can
modify users' passwords and whether
those passwords must be changed
upon first login.

SET PROPERTY GRAPH Determines whether the user can set a
property to an element (node,
relationship or both) using the SET
clause.

SET USER HOME DATABASE DBMS Determines whether the user can
modify the home database of users.

SET USER STATUS DBMS Determines whether the user can
modify the account status of users.

SHOW CONSTRAINT Schema Determines whether the user is allowed
to list constraints.

SHOW INDEX Schema Determines whether the user is allowed
to list indexes.

SHOW PRIVILEGE DBMS Determines whether the user can get
information about privileges assigned to
users and roles.

SHOW ROLE DBMS Determines whether the user can get
information about existing and assigned
roles.

SHOW TRANSACTION Database Determines whether a user is allowed to
list transactions and queries.

SHOW USER DBMS Determines whether the user can get
information about existing users.

START Database Determines whether a user can start up
a specific database.

711

Name Category Description

STOP Database Determines whether a user can stop a
specific running database.

TERMINATE TRANSACTION Database Determines whether a user is allowed to
end running transactions and queries.

TRANSACTION MANAGEMENT Database Determines whether a user is allowed to
list and end running transactions and
queries.

TRAVERSE GRAPH Determines whether an element (node,
relationship or both) can be found and
traversed while executing queries on the
specified graph.

USER MANAGEMENT DBMS Determines whether the user can
create, drop, modify and show users.

WRITE GRAPH Determines whether the user can
execute write operations on the
specified graph.

712

Appendix A: Cypher styleguide
This appendix contains the following:

• General recommendations

• Indentations and line breaks

• Casing

• Spacing

• Patterns

• Meta characters

The purpose of the styleguide is to make the code as easy to read as possible, and thereby contributing to
lower cost of maintenance.

For rules and recommendations for naming of labels, relationship types and properties, please see the
Naming rules and recommendations.

A.1. General recommendations
• When using Cypher language constructs in prose, use a monospaced font and follow the styling rules.

• When referring to labels and relationship types, the colon should be included as follows: :Label,
:REL_TYPE.

• When referring to functions, use lower camel case and parentheses should be used as follows:
shortestPath(). Arguments should normally not be included.

• If you are storing Cypher statements in a separate file, use the file extension .cypher.

A.2. Indentation and line breaks
• Start a new clause on a new line.

Bad

MATCH (n) WHERE n.name CONTAINS 's' RETURN n.name

Good

MATCH (n)
WHERE n.name CONTAINS 's'
RETURN n.name

• Indent ON CREATE and ON MATCH with two spaces. Put ON CREATE before ON MATCH if both are present.

713

Bad

MERGE (n) ON CREATE SET n.prop = 0
MERGE (a:A)-[:T]-(b:B)
ON MATCH SET b.name = 'you'
ON CREATE SET a.name = 'me'
RETURN a.prop

Good

MERGE (n)
 ON CREATE SET n.prop = 0
MERGE (a:A)-[:T]-(b:B)
 ON CREATE SET a.name = 'me'
 ON MATCH SET b.name = 'you'
RETURN a.prop

• Start a subquery on a new line after the opening brace, indented with two (additional) spaces. Leave
the closing brace on its own line.

Bad

MATCH (a:A)
WHERE
 EXISTS { MATCH (a)-->(b:B) WHERE b.prop = $param }
RETURN a.foo

Also bad

MATCH (a:A)
WHERE EXISTS
{MATCH (a)-->(b:B)
WHERE b.prop = $param}
RETURN a.foo

Good

MATCH (a:A)
WHERE EXISTS {
 MATCH (a)-->(b:B)
 WHERE b.prop = $param
}
RETURN a.foo

• Do not break the line if the simplified subquery form is used.

Bad

MATCH (a:A)
WHERE EXISTS {
 (a)-->(b:B)
}
RETURN a.prop

Good

MATCH (a:A)
WHERE EXISTS { (a)-->(b:B) }
RETURN a.prop

714

A.3. Casing
• Write keywords in upper case.

Bad

match (p:Person)
where p.name starts with 'Ma'
return p.name

Good

MATCH (p:Person)
WHERE p.name STARTS WITH 'Ma'
RETURN p.name

• Write the value null in lower case.

Bad

WITH NULL AS n1, Null AS n2
RETURN n1 IS NULL AND n2 IS NOT NULL

Good

WITH null AS n1, null as n2
RETURN n1 IS NULL AND n2 IS NOT NULL

• Write boolean literals (true and false) in lower case.

Bad

WITH TRUE AS b1, False AS b2
RETURN b1 AND b2

Good

WITH true AS b1, false AS b2
RETURN b1 AND b2

• Use camel case, starting with a lower-case character, for:

◦ functions

◦ properties

◦ variables

◦ parameters

Bad

CREATE (N {Prop: 0})
WITH RAND() AS Rand, $pArAm AS MAP
RETURN Rand, MAP.property_key, Count(N)

715

Good

CREATE (n {prop: 0})
WITH rand() AS rand, $param AS map
RETURN rand, map.propertyKey, count(n)

A.4. Spacing
• For literal maps:

◦ No space between the opening brace and the first key

◦ No space between key and colon

◦ One space between colon and value

◦ No space between value and comma

◦ One space between comma and next key

◦ No space between the last value and the closing brace

Bad

WITH { key1 :'value' ,key2 : 42 } AS map
RETURN map

Good

WITH {key1: 'value', key2: 42} AS map
RETURN map

• One space between label/type predicates and property predicates in patterns.

Bad

MATCH (p:Person{property: -1})-[:KNOWS {since: 2016}]->()
RETURN p.name

Good

MATCH (p:Person {property: -1})-[:KNOWS {since: 2016}]->()
RETURN p.name

• No space in patterns.

Bad

MATCH (:Person) --> (:Vehicle)
RETURN count(*)

Good

MATCH (:Person)-->(:Vehicle)
RETURN count(*)

716

• Use a wrapping space around operators.

Bad

MATCH p=(s)-->(e)
WHERE s.name<>e.name
RETURN length(p)

Good

MATCH p = (s)-->(e)
WHERE s.name <> e.name
RETURN length(p)

• No space in label predicates.

Bad

MATCH (person : Person : Owner)
RETURN person.name

Good

MATCH (person:Person:Owner)
RETURN person.name

• Use a space after each comma in lists and enumerations.

Bad

MATCH (),()
WITH ['a','b',3.14] AS list
RETURN list,2,3,4

Good

MATCH (), ()
WITH ['a', 'b', 3.14] AS list
RETURN list, 2, 3, 4

• No padding space within function call parentheses.

Bad

RETURN split('original', 'i')

Good

RETURN split('original', 'i')

• Use padding space within simple subquery expressions.

717

Bad

MATCH (a:A)
WHERE EXISTS {(a)-->(b:B)}
RETURN a.prop

Good

MATCH (a:A)
WHERE EXISTS { (a)-->(b:B) }
RETURN a.prop

A.5. Patterns
• When patterns wrap lines, break after arrows, not before.

Bad

MATCH (:Person)-->(vehicle:Car)-->(:Company)
 <--(:Country)
RETURN count(vehicle)

Good

MATCH (:Person)-->(vehicle:Car)-->(:Company)<--
 (:Country)
RETURN count(vehicle)

• Use anonymous nodes and relationships when the variable would not be used.

Bad

CREATE (a:End {prop: 42}),
 (b:End {prop: 3}),
 (c:Begin {prop: id(a)})

Good

CREATE (a:End {prop: 42}),
 (:End {prop: 3}),
 (:Begin {prop: id(a)})

• Chain patterns together to avoid repeating variables.

Bad

MATCH (:Person)-->(vehicle:Car), (vehicle:Car)-->(:Company)
RETURN count(vehicle)

Good

MATCH (:Person)-->(vehicle:Car)-->(:Company)
RETURN count(vehicle)

• Put named nodes before anonymous nodes.

718

Bad

MATCH ()-->(vehicle:Car)-->(manufacturer:Company)
WHERE manufacturer.foundedYear < 2000
RETURN vehicle.mileage

Good

MATCH (manufacturer:Company)<--(vehicle:Car)<--()
WHERE manufacturer.foundedYear < 2000
RETURN vehicle.mileage

• Keep anchor nodes at the beginning of the MATCH clause.

Bad

MATCH (:Person)-->(vehicle:Car)-->(manufacturer:Company)
WHERE manufacturer.foundedYear < 2000
RETURN vehicle.mileage

Good

MATCH (manufacturer:Company)<--(vehicle:Car)<--(:Person)
WHERE manufacturer.foundedYear < 2000
RETURN vehicle.mileage

• Prefer outgoing (left to right) pattern relationships to incoming pattern relationships.

Bad

MATCH (:Country)-->(:Company)<--(vehicle:Car)<--(:Person)
RETURN vehicle.mileage

Good

MATCH (:Person)-->(vehicle:Car)-->(:Company)<--(:Country)
RETURN vehicle.mileage

A.6. Meta-characters
• Use single quotes, ', for literal string values.

Bad

RETURN "Cypher"

Good

RETURN 'Cypher'

◦ Disregard this rule for literal strings that contain a single quote character. If the string has both, use
the form that creates the fewest escapes. In the case of a tie, prefer single quotes.

719

Bad

RETURN 'Cypher\'s a nice language', "Mats' quote: \"statement\""

Good

RETURN "Cypher's a nice language", 'Mats\' quote: "statement"'

• Avoid having to use back-ticks to escape characters and keywords.

Bad

MATCH (`odd-ch@racter$`:`Spaced Label` {`&property`: 42})
RETURN labels(`odd-ch@racter$`)

Good

MATCH (node:NonSpacedLabel {property: 42})
RETURN labels(node)

• Do not use a semicolon at the end of the statement.

Bad

RETURN 1;

Good

RETURN 1

720

License
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

You are free to

Share

copy and redistribute the material in any medium or format

Adapt

remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial

You may not use the material for commercial purposes.

ShareAlike

If you remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

Notices

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for further details. The full license text is available
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

721

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

	Introduction
	Table of Contents
	What is Cypher?
	The Neo4j Cypher Manual v4.3
	.1. Neo4j databases and graphs
	.2. Querying, updating and administering
	.3. Transactions
	.4. Cypher path matching

	Chapter 1. Syntax
	1.1. Values and types
	1.2. Naming rules and recommendations
	1.3. Expressions
	1.4. Variables
	1.5. Reserved keywords
	1.6. Parameters
	1.7. Operators
	1.8. Comments
	1.9. Patterns
	1.10. Temporal (Date/Time) values
	1.11. Spatial values
	1.12. Lists
	1.13. Maps
	1.14. Working with null

	Chapter 2. Clauses
	2.1. MATCH
	2.2. OPTIONAL MATCH
	2.3. RETURN
	2.4. WITH
	2.5. UNWIND
	2.6. WHERE
	2.7. ORDER BY
	2.8. SKIP
	2.9. LIMIT
	2.10. CREATE
	2.11. DELETE
	2.12. SET
	2.13. REMOVE
	2.14. FOREACH
	2.15. MERGE
	2.16. CALL {} (subquery)
	2.17. CALL procedure
	2.18. UNION
	2.19. USE
	2.20. LOAD CSV
	2.21. SHOW FUNCTIONS
	2.22. SHOW PROCEDURES

	Chapter 3. Functions
	3.1. Predicate functions
	3.2. Scalar functions
	3.3. Aggregating functions
	3.4. List functions
	3.5. Mathematical functions - numeric
	3.6. Mathematical functions - logarithmic
	3.7. Mathematical functions - trigonometric
	3.8. String functions
	3.9. Temporal functions - instant types
	3.10. Temporal functions - duration
	3.11. Spatial functions
	3.12. LOAD CSV functions
	3.13. User-defined functions

	Chapter 4. Indexes for search performance
	4.1. Indexes (types and limitations)
	4.2. Creating indexes
	4.3. Create a single-property index for nodes
	4.4. Create a single-property index for relationships
	4.5. Create a single-property index only if it does not already exist
	4.6. Create a single-property index with specified index provider
	4.7. Create a single-property index with specified index configuration
	4.8. Create a composite index for nodes
	4.9. Create a composite index for relationships
	4.10. Create a composite index with specified index provider and configuration
	4.11. Create a node label lookup index
	4.12. Create a relationship type lookup index
	4.13. Listing indexes
	4.14. Listing all indexes
	4.15. Listing indexes with filtering
	4.16. Deleting indexes
	4.17. Drop an index
	4.18. Drop a non-existing index
	4.19. Deprecated syntax Deprecated
	4.20. Drop a single-property index
	4.21. Drop a composite index

	Chapter 5. Full-text search index
	5.1. Full-text search procedures
	5.2. Create and configure full-text indexes
	5.3. Query full-text indexes
	5.4. Drop full-text indexes

	Chapter 6. Constraints
	6.1. Types of constraint
	6.2. Implications on indexes
	6.3. Syntax
	6.4. Examples

	Chapter 7. Database management
	7.1. Listing databases
	7.2. Creating databases Enterprise edition
	7.3. Stopping databases Enterprise edition
	7.4. Starting databases Enterprise edition
	7.5. Deleting databases Enterprise edition
	7.6. Wait options Enterprise edition

	Chapter 8. Access control
	8.1. Syntax summaries
	8.2. Managing users
	8.3. Managing roles
	8.4. Managing privileges
	8.5. Built-in roles and privileges
	8.6. Read privileges
	8.7. Write privileges
	8.8. Database administration
	8.9. DBMS administration
	8.10. Limitations

	Chapter 9. Query tuning
	9.1. Cypher query options
	9.2. Profiling a query
	9.3. The use of indexes
	9.4. Basic query tuning example
	9.5. Advanced query tuning example
	9.6. Planner hints and the USING keyword

	Chapter 10. Execution plans
	10.1. Execution plan operators at a glance
	10.2. Database hits (DbHits)
	10.3. Execution plan operators in detail
	10.4. Shortest path planning

	Chapter 11. Deprecations, additions and compatibility
	11.1. Version 4.3
	11.2. Version 4.2
	11.3. Version 4.1.3
	11.4. Version 4.1
	11.5. Version 4.0
	11.6. Version 3.5
	11.7. Version 3.4
	11.8. Version 3.3
	11.9. Version 3.2
	11.10. Version 3.1
	11.11. Version 3.0
	11.12. Compatibility
	11.13. Supported language versions

	Chapter 12. Glossary of keywords
	12.1. Clauses
	12.2. Operators
	12.3. Functions
	12.4. Expressions
	12.5. Cypher query options
	12.6. Administrative commands
	12.7. Privilege Actions

	Appendix A: Cypher styleguide
	A.1. General recommendations
	A.2. Indentation and line breaks
	A.3. Casing
	A.4. Spacing
	A.5. Patterns
	A.6. Meta-characters

