-Neo04j

Neo4) Aura overview

Table of Contents

NEOA) AUIaD B ... e e 2
NEOA) AUIaD S . 3
=T o T A = 4
Creating @an aCCoUNt e e e 5
Aura with cloud provider marketplaces e 6
AuraDB Virtual Dedicated Cloud, AuraDS Enterprise, and Aura Business Critical 6
AUra Professional.o e e 6

S UMY .« ittt e e e e 9
YTl = ol] o g =T oxu To] o - 9
Single Sign-0n (SS0) . ..o e 19
ENCryptioN ..o e e 21
USer Managementottt et et e e e e e e e e e 26
PO CES ot e e e 26

U S BrS oot ittt et e e e e e 26
AP O C SUPPOM. . ot e e e 29

=T oo Lo 29

=] o 1o T of= o T 29
APO0C.AIGO o o e e 30

F=Y Yo Yol V2% 31
APOC. At OMIC. L .ottt 31
APOC. DI WISE o e e e 32
APOC.COIL. o 32

=] o o Yol oo o V=1 o 36

] o o Yol ol Y- | (= 38
APOC. CY PN . o o e e 39
APOC.Aata. ..o e e 40
APOC. At . . o e 40
APOC.Iff . L e 41
APOC. A0, .« ottt e e e e 42
APOC. EXAMIPIE . oottt e 42

AP OC X POt . o ittt e e 42

=Y 0T Yo« =1 o] o 44
APOC.HASNING. .. o e e 44

AP O G MO . L ot e e 45

] o o Yo 1T o T 45
APOC. AL . . e e 45
APOC.0ad . .o e e e 45

APOCIOCK ot e e e 46

] o 1o Yol o -1 o 1 46

APOC. Mt L L e e e 48

= oo ol o 0 =T g'e 1S 49

=] o Lol 4 T=1 - 1 50
APOC.NEBIGNDONS . . oo e 50
APOC 0T ittt e 51

=T oo ol o o Lo |13 52

=T 7o Yol 10 1a'a1 o =Y O 53
APOC. PAtN. L e e e e 54
APOC. PEIIOIC. ot e e 55
APOC. e AC O . .o e 56
APOCTEL. oot 57
APOC.SCNEIMIA . L . oottt e e 58

= oo i oto] [e SN 58
APOC.SEANCN . . Lo 59
APOC.SPatial. . oo e e e e 59
APOC. S AlS ..o e e 60
APOCEEMPOIAl. . oo 60

] o 0 T ol 1= 60
APOC UL . o 64

= oo o V7= g o 1 101 o XS 65
APOC XML L e e 65
Customer Metrics Integration (CMI) ... e 66
PrOCESS OVEIVIEW . . . o e 66
Detailed STEPS. . oottt e e e 66

S UMY ottt 68
Metric scrape interval e e e 70
Example using Prometheus. e e 70
Example using Datadog e e 71
Programmatic SUP PO o e e e 72
Metrics granularity. e e e e 73
Metric definitioNs o e 74
1o o e | Y 81
Request and download 10gs. i e e 81
Security 0g forwarding.o e e e e 84
Query [0g analyzer o e 85
[T § I ole] oY V=Tt (o 1530 89
Neo4j Connector for Apache Spark e e e e e e e e 89
Neodj Connector for Apache Kafka i e e e e et e e 89
Neodj Connector for Bl e e 89

AUFA AP e 91

OV IV W . . et 91

AUTNEN I CatiON. . ..o e e e 92
APl PG CAtION. L ittt 96
CoNSUMPLION FEPOIt . . .ot i e e et et et e e e 97
Monitor consumptioninreal-time e 97
T = 97
=NE04) AUraD B=. . . o 99
NeEO4j AUraD B OVeIVIEW. . ..ot e e e e e 100
PlaNS e 100
Updates and Upgrades.ot e e e e e e 100
SUPP O .« o e e e 100
Getting Started e e 101
Creating an INStaNCe oo e 101
ConNecting 10 AN INStANCE ottt e e e e e 105
QUENYING AN iNSTANCE e e e 109

I DO NG ot e e e 110
IMporting data o e e e 110
Importing an existing database. 111
ManNaging INSTaNCESottt 113
INStANCE ACHIONS . . o oot e 113
Backup, eXport and restore e e e e 117
ISY=Telo] oo - T3 119
MO OING . . o e e 120
AdVanced MEtIiCS . ..o e 121
Connecting appliCations o 124
Change Data Capture.o e e e e e e 124
=NE04) AUIraD =, . o e 125
Neod) AUraD S OVEIVIEW . . oot e e 126

e o 126
Updates and Upgrades.t e e e 126
Y] o oo o v 126
ArChI B C U, .. 127
Neodj Graph Data Science conCepts. . ..o e e e e e 127
Graph data flow. e e 127
Creating an AuraD S iNStanCe oo e 129
Connecting to AUraD S . .. o e 130
Connecting with Neodj applications e e e e 130
Connecting With Python e e e 133
USage eXamIPIEs . . oot e e e 138
Projecting graphs and using the graph catalog. i 138

Executing the different algorithmmodes e 148

https://neo4j.com/docs/aura/platform/api/specification/

Estimating memory usage and resizing aninstance i e 159

Monitoring the progress of a running algorithm 167
Persisting and sharing machine learningmodels i i i e 176
Loading and streaming back data with Apache Arrow i i i e 191
IMporting datao e e 194
Importing an existing database ... 194
Using Neodj Data Importer.o e e e e e e 195
Loading CSV files .. oo 196
MaNaging INStANCESottt e e e e e 205
MO OING . . oo e e e 205
AdVanced MEtIiCS e 205
Backup, export, and restore. o 207
INSTaNCE ACtiONS . ..o e 208
ST UROMIAlS = . oo 212
Upgrade and migration i 213
Upgrade to Neodj 5 within Aura.o e e e e e e et e 213
Migrate from self-managed Neodj to Aura. e e e e 216
Integrating with Neo4j Connectors.ot e e et et e e e e 221
Using the Neo4j Connector for Apache Spark. i i e 221
Using the Neo4j Bl Connector.t e et et et et et e et et 222
Improving Cypher performanCe e e et et et e e e e 226
Cypher statements with literal values. e 226
Review queries and model e 226
Index specification. 227
Review metrics and instance Size 227
L@Fo] a1 o [T g oto] o To{U 5 =T o ox Y P 227
Runtime engine and Cypher Version. i e e e e e 227
Network and the cost of theround-trip i e e 228
TroUbleshOOtiNgo e 229
QUENY PEIOIMANCE . . . ittt e e e e e e e e e e e e 229
Neo4j Admin database upload errors. 230
Driver integration 232
Create an AuraDB instance intheterminal i 233
PrEparatioN . .. o e 233
Obtain a bearer toKen. o e 233
Obtain the project ID o e e e e 234

Configure an AuraDB instancCe. i e e 234

Neo4j Aura is a fast, scalable, always-on, fully automated graph platform offered as a

cloud service.

Aura includes AuraDB, the graph database as a service for developers building intelligent applications, and
AuraDS, the graph data science as a service for data scientists building predictive models and analytics

workflows.

Neo4j AuraDB

Neo4j AuraDB is the fully managed graph database as a service that helps build intelligent, context-driven
applications faster with lightning-fast queries, real-time insights, built-in developer tools, data
visualization, and integrations supported by the largest graph developer community.

For more information on AuraDB, see the Neo4j AuraDB overview.

Neo4d) AuraDS

Neo4j AuraDS is the fully managed data science as a service solution for data scientists that unifies the
machine learning (ML) surface and graph database into a single workspace, making it easy to uncover the

connections in big data and answer business-critical questions.
For more information on AuraDS, see the Neo4] AuraDS overview.
© 2024 License: Creative Commons 4.0

https://raw.githubusercontent.com/neo4j-graphacademy/courses/main/asciidoc/courses/neo4;j-

fundamentals/promo.adoc

https://neo4j.com/docs/license/
https://raw.githubusercontent.com/neo4j-graphacademy/courses/main/asciidoc/courses/neo4j-fundamentals/promo.adoc
https://raw.githubusercontent.com/neo4j-graphacademy/courses/main/asciidoc/courses/neo4j-fundamentals/promo.adoc

=Neo4) Aura=

Creating an account

To access Neo4j Aura, you need to have an Aura account.
To create an Aura account:

1. Navigate to the Neo4j Aura Console in your browser.

2. Enter an email address and password and select Register, or select Continue with Google to use a
Google account. If entering an email address and password, follow these additional steps:

a. Verify your email address.
b. Select Go to the dashboard from the Aura Console.

3. Select | agree once you have read the Terms of Service and Privacy Policy.

https://console.neo4j.io/

Aura with cloud provider marketplaces

AuraDB Virtual Dedicated Cloud, AuraDS Enterprise, and Aura
Business Critical

[AuraDB Virtual Dedicated CIoud][AuraDS Enterprise][AuraDB Business Critical]

You can purchase AuraDB Virtual Dedicated Cloud, AuraDS Enterprise, and AuraDB Business Critical via
private offer through the following cloud provider marketplaces:

e Amazon Web Services (AWS)
e Microsoft Azure (Azure)

e Google Cloud Platform (GCP)

Contact us to discuss private offers.

Aura Professional

[AuraDB Professional][AuraDS Professional

You can purchase Neo4j Aura Professional on a pay-as-you-go basis through the following cloud provider
marketplaces:

e Amazon Web Services (AWS)
e Google Cloud Platform (GCP)

Purchasing Neo4j Aura Professional through a cloud provider marketplace gives you access to integrated
billing and usage reporting in your chosen cloud provider’s console.

AWS

1. Purchase the service

To get started, visit the Neo4j Aura Professional AWS Marketplace page and select View Purchase
options.

From here you will need to select the Neo4j Aura Professional Contract option, decide if you would like to
auto-renew your contract when it ends, and then select Create contract and Pay now.

o While you are shown a $0 yearly contract option, pricing is pay-as-you-go based on
usage and not a fixed subscription service.

2. Set up your account

To start using Neo4j Aura, select Click here to set up your account to be directed to the Aura Console.

mailto:marketplace-sales@neo4j.com
https://aws.amazon.com/marketplace/pp/prodview-2t3o7mnw5ypee

If you are not already logged in to the Aura Console, you will be taken to the Neo4j Aura login/sign-up
page. From here you can either log in with an existing Neo4j Aura account or create a new one.

o You do not need to use the same email address for your Neo4j Aura account as your
AWS account.

If you are creating a Neo4j Aura account for the first time, you will need to confirm your email address and
accept the Neo4j Aura Terms of Service before you can access the Aura Console.

Once logged in to the Aura Console, the AWS Marketplace order will be confirmed, and your account will
automatically default to the AWS Marketplace tenant.

GCP

1. Purchase the service
To get started, visit the Neo4j Aura GCP Marketplace page and click Purchase.

Note that pricing is pay-as-you-go based on usage and you won't be billed until you create an instance.

Purchasing from the GCP Marketplace requires the Billing Account Administrator
o (roles/billing.admin) role as highlighted in the Overview of Cloud Billing access
control Google Cloud documentation.

2. Choose a project

If you purchase the service at the top level of your GCP account, you'll need to choose a target project. You
will only need to purchase Neo4j Aura for GCP once, as you can then enable it on a project-by-project
basis. However, you still need to choose a target project when you first purchase the service.

3. Enable the service

Once you have purchased the service and switched to a target project, select Enable to activate Neo4j
Aura for GCP on your project.

o Enabling a service through GCP requires the roles/serviceusage.serviceUsageAdmin
role as highlighted in the Access Control with IAM Google Cloud documentation.

Once you have enabled the service, you will be directed to the Neo4j Aura for GCP API page. This page
displays your service details and billing information. When this is first set up, you should have no billing
history.

4. Complete the set up
<!I-- vale Vale.Terms = NO --> <!-- vale Neo4j.ParaNewLine = NO -->

To start using Neo4j Aura, select MANAGE VIA NEO4J, INC. to be directed to the Aura Console.

https://console.cloud.google.com/marketplace/product/endpoints/prod.n4gcp.neo4j.io
https://cloud.google.com/billing/docs/how-to/billing-access
https://cloud.google.com/billing/docs/how-to/billing-access
https://cloud.google.com/service-usage/docs/access-control#roles

When you click "MANAGE VIA NEO4J, INC.", you will be alerted that "You're leaving
0 Google". When you click Confirm, if the Aura Console fails to open you may need to
address any popup blockers in your browser and try again.

<!I-- vale Vale.Terms = YES --> <!-- vale Neo4j.ParaNewLine = YES -->

For security purposes, Neo4j and GCP do not share your login credentials. You will need to log in to the
Neo4j Console with the same Google account you have used on GCP.

Once logged in, you'll be asked to accept the Neo4j Aura Terms of Service, before being directed to the
Neo4j Console and placed within your GCP Marketplace tenant.

From here, you are ready to create a Neo4j Aura instance hosted on GCP and usage will be billed directly
to your GCP billing account.

Azure

1. Purchase the service

To get started, visit the Neo4j Aura Professional Azure Marketplace page and select Get It Now.
2. Sign in to your Microsoft Azure Marketplace account

3. Subscribe to Neo4j Aura Professional
e Select the resource group that the Aura Professional subscription will apply to. Then, create a name for
the SaaS subscription so you can easily identify it later.

e Your billing term will be a 1-month subscription at $O cost. Aura Professional has a consumption
based pricing model, so you will only be charged for the amount you consume in Gigabyte hours (Gb/h)

e Set recurring billing to On

e Click Review + subscribe

o e Ensure your Azure account is upgraded before continuing.

e Enable marketplace purchases in Azure. See more info on the Azure website

https://azuremarketplace.microsoft.com/en-us/marketplace/apps/neo4j.neo4j_aura_professional?tab=overview
https://learn.microsoft.com/en-us/azure/cost-management-billing/manage/enable-marketplace-purchases

Security

Secure connections

VPC isolation

[AuraDB Virtual Dedicated CIoud][AuraDS Enterprise

AuraDB Virtual Dedicated Cloud and AuraDS Enterprise run in a dedicated cloud Account (AWS),
Subscription (Azure) or Project (GCP) to achieve complete isolation for your deployment.

Additional VPC boundaries enable you to operate within an isolated section of the service, where your
processing, networking, and storage are further protected.

The Aura Console runs in a separate VPC, separate from the rest of Aura.

Network access

An Aura instance can be publicly available, completely private, or both. To configure this, you need to be
authorized to access the part of the infrastructure that runs and handles these instances as well as the
networking used to establish secure connections between the database and the application’s VPC. This
includes the ability to connect over the cloud provider’s private link and private endpoint.

If your Aura instances are public, traffic to them is allowed to traverse the public internet and they are
accessible with the correct username and password.

For your instance to be completely private, turn public traffic off, use the cloud provider’s network, and
create a private endpoint inside your VPC, which gives you a private connection to Aura. The only way to
connect to your database is from inside your network (your VPC in your AWS/Azure/GCP account) using
an internal IP address you choose and DNS records you create.

To select network access settings go to Aura Console > Security > Network Access.

Private endpoints

Private endpoints are network interfaces inside your own VPC, which can only be accessed within your
private network. The cloud provider connects them over their network to Neo4j Aura. By design they are
not exposed to the public internet, ensuring that critical services are accessible only through private, secure
networks.

A single private link connection applies to all instances in a region. So if you've set one up for us-east-1
then those network connections will apply to all instances in that region. You can set up a second private
link connection to applications that are hosted in a second region (for example us-west-1) but still housed
inside the same Aura project.

AWS private endpoints

| AuraDB Virtual Dedicated Cloud|| AuraDS Enterprise

AuraDB Virtual Dedicated Cloud and AuraDS Enterprise support private endpoints on AWS using AWS
PrivateLink.

Once activated, you can create an endpoint in your VPC that connects to Aura.

For a step-by-step guide, see the How to Configure Neo4j Aura With AWS PrivatelLink blog article.

EAWS Cloud
AWS Region T T T TToToo T m T Tmm T !
| 1
1 . 1
| «Neodqdj aura bB !
1

| 1
| 1
: Customer VPC AuraDB VPC :
B .
| . AURA SERVICE !

1 H
1
: — -5 :

1

: DB :
I 1111l !
! - = 20 I
| @ |
1 LILLILALI DB !
! App Client Interface PrivateLink :
I Endpoint i I

1 H
| . B |
: |
e S — .
| 1
| 1
| 1
| 1
| 1
| 1
__ 1

Figure 1. VPC connectivity with AWS PrivateLink

All applications running Neo4j workloads inside the VPC are routed directly to your isolated environment
in Aura without traversing the public internet. You can then disable public traffic, ensuring all traffic to the
instance remains private to your VPC.

e PrivateLink applies to all instances in the region.

e When activated, a Private Connection label, shield icon, and dedicated Private URI
will appear on any instance tile using PrivateLink in the Aura Console.

e If you disable public traffic, you must use a dedicated VPN to connect to your
o instance via Browser or Bloom.

e Connections using private endpoints are one-way. Aura VPCs can't initiate
connections back to your VPCs.

e In AWS region us-east-1, we do not support the Availability Zone with ID usel-az3
for private endpoints.

10

https://aws.amazon.com/privatelink
https://aws.amazon.com/privatelink
https://neo4j.com/blog/neo4j-aws-privatelink-configuration/

Browser and Bloom access over private endpoints

To connect to your instance via Browser or Bloom, you must use a dedicated VPN. This is because when

you disable public access to your instance, this applies to all connections, including those from your
computer when using Browser or Bloom.

Without private endpoints, you access Browser and Bloom over the internet:

Iy AWS Cloud

AWS Region
9. Neodj Browser
* coom ~ sNe04qj aura s
og®
8 Customer VPC AuraDB VPC

AURA SERVICE
>
DB
A0
E—5
rrr DB
App Client
L»@

DB

11111

Figure 2. Architecture overview before enabling private endpoints

When you have enabled private endpoints and disabled public internet access, you can no longer connect

Browser or Bloom to your instances over the internet:

AWS Cloud

AWS Region
.. Neodj Browser

. :Neodj aura os
:.: Bloom

8]-x

Customer VPC AuraDB VPC

| AURA SERVICE
e —%

: DB

: 1= ——» 038 —0)

DB
App Client Interface PrivateLink
Endpoint
—3

DB

Figure 3. Architecture overview with private endpoints enabled and public traffic disabled

11

To continue accessing Browser and Bloom, you can configure a VPN (Virtual Private Network) in your VPC
and connect to Browser and Bloom over the VPN.

To access Bloom and Browser over a VPN, you must ensure that:

o e The VPN server uses the VPC’s DNS servers.

e You use the Private URI shown on the instance tile and in the instance details. It will
be different from the Connection URI you used before.

fas) AWS Cloud
AWS Region T ToTToTTTTTTmTTmmTmmT T m T T
9. Neodj Browser
. :Neodj aura os
¢_2 Bloom
oy
8 Customer VPC AuraDB VPC

AURA SERVICE
)

LLiLLlL DB
A0
e
DB
Interface PrivateLink
Endpoint
—50

VPN DB

App Client

Figure 4. Accessing Browser and Bloom over a VPN

Enabling private endpoints
To enable private endpoints using AWS PrivateLink:

1. Select Network Access from the sidebar menu of the Console.

2. Select New network access configuration and follow the setup instructions.

You will need an AWS account with permissions to create, modify, describe and delete endpoints. Please
see the AWS Documentation for more information.

GCP private endpoints

[AuraDB Virtual Dedicated CIoud][AuraDS Enterprise

AuraDB Virtual Dedicated Cloud and AuraDS Enterprise support private endpoints on GCP using GCP
Private Service Connect.

Once activated, you can create an endpoint in your VPC that connects to Aura.

12

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#AmazonDNS
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints.html
https://cloud.google.com/vpc/docs/private-service-connect
https://cloud.google.com/vpc/docs/private-service-connect

E GCP Cloud

:_G_CTD_R_eéiSn ___ :
1 1
1
: .Neodj aura bs |
1
1 1
1 1
1
| Customer vPC ({AwaDBVPC |
: : AURA SERVICE |
1 !
: <> Subnet » @ |
| !
! DB :
: nnn o :
: A ——)0 ->—>|-F|——>§ @ !
| i b’ 1 DB |
1 H 1
| App Client Interface Private I
: Endpoint Service \ > @ :
: 1
: Connect DB :
! i
1 Sesssssessssssssssssssssssnssanasannsannsnnnnt 1
| 1
1 1
1 1
1 1
1 1
' :

Figure 5. VPC connectivity with GCP Private Service Connect

All applications running Neo4j workloads inside the VPC are routed directly to your isolated environment

in Aura without traversing the public internet. You can then disable public traffic, ensuring all traffic to the

instance remains private to your VPC.

e Private Service Connect applies to all instances in the region.

e When activated, a Private Connection label, shield icon, and dedicated Private URI
will appear on any instance tile using Private Service Connect in the Aura Console.

o e If you disable public traffic, you must use a dedicated VPN to connect to your
instance via Browser or Bloom.

e Connections using private endpoints are one-way. Aura VPCs can't initiate
connections back to your VPCs.

Browser and Bloom access over private endpoints

To connect to your instance via Browser or Bloom, you must use a dedicated VPN. This is because when
you disable public access to your instance, this applies to all connections, including those from your
computer when using Browser or Bloom.

Without private endpoints, you access Browser and Bloom over the internet:

13

Y &cP cloud

IGCP Region
). Neo4j Browser
::: Bloom N -Neodj aura be
8 CCCustomer VPC [tAuraDB VPG

AURA SERVICE

1

1

1

1

1

:

1

1 D

: <> Subnet » @
! | DB

: ARN
! s - - rﬁ_+@
X DB
1

1

1

1

1

1

1

App Client
L»@

DB

Figure 6. Architecture overview before enabling private endpoints

When you have enabled private endpoints and disabled public internet access, you can no longer connect
Browser or Bloom to your instances over the internet:

3 &cP cloud

)_ Neo4j Browser

. :Neodj aura bB
:.: Bloom

1
1
I 1
1 1
1 1
I 1
| |
1
8 1 | [l customer vPC ["[AuraDB vPC E
- a (: AURA SERVICE !
1
' <> Subnet > @ E
1
! DB X
: . (I . o :
! cAdr——— o) —— ->—>|I-:|——>@ !
| i b’ - DB X
1 1
| App Client Interface Private !
X Endpoint Service > @ :
1
. Connect DB :
X |
1 1
1 1
I 1
I 1
1 1
1 1
1 1

Figure 7. Architecture overview with private endpoints enabled and public traffic disabled

To continue accessing Browser and Bloom, you can configure a GCP Cloud VPN (Virtual Private Network)
in your VPC and connect to Browser and Bloom over the VPN.

14

https://cloud.google.com/network-connectivity/docs/vpn/concepts/overview

To access Bloom and Browser over a VPN, you must ensure that:

o e You have set up GCP Response Policy Zone, or an equivalent DNS service, inside of
the VPC.

e You use the Private URI shown on the instance tile and in the instance details. It will
be different from the Connection URI you used before.

Y &cP cloud
S
)_ Neo4j Browser
«Neo4dj aura os
o
#4o Bloom
8 ttCustomer VPC C|:AuraDB VPC
- AURA SERVICE
<> Subnet

nnn o=
. O)= ———— - () =0 —
App Client o, I

Interface Private

».@I Endpoint Service
Connect

Cloud VPN

f:
% ¢ =6l

Figure 8. Accessing Browser and Bloom over a VPN

Enabling private endpoints
To enable private endpoints using GCP Private Service Connect:

1. Select Network Access from the sidebar menu of the Console.

2. Select New network access configuration and follow the setup instructions.

Please see the GCP Documentation for required roles and permissions.

Azure private endpoints

AuraDB Virtual Dedicated Cloud|[AuraDS Enterprise

AuraDB Virtual Dedicated Cloud and AuraDS Enterprise support private endpoints on Azure using Azure

Private Link.

Once activated, you can create an endpoint in your Virtual Network (VNet) that connects to Aura.

15

https://cloud.google.com/dns/docs/zones/manage-response-policies
https://cloud.google.com/vpc/docs/configure-private-service-connect-services
https://azure.microsoft.com/en-us/products/private-link/#overview
https://azure.microsoft.com/en-us/products/private-link/#overview

E Azure Cloud

4+>Customer VNet

<{+> Subnet
: Private
AP Gl Endpoint

——>/Q\——>

PrivateLink

sNeoqj aura be

<4+> AuraDB VNet
AURA SERVICE

=

-2
[e

DB

e e e e e e e e e e e e e e = = e e e e e = e e e e = = =

Figure 9. VNet connectivity with Azure Private Link

All applications running Neo4j workloads inside the VNet are routed directly to your isolated environment
in Aura without traversing the public internet. You can then disable public traffic, ensuring all traffic to the

instance remains private to your VNet.

e Private Link applies to all instances in the region.

e When activated, a Private Connection label, shield icon, and dedicated Private URI

will appear on any instance tile using Private Link in the Aura Console.

o e If you disable public traffic, you must use a dedicated VPN to connect to your
instance via Browser or Bloom.

e Connections using private endpoints are one-way. Aura VNets can't initiate

connections back to your VNets.

Browser and Bloom access over priva

To connect to your instance via Browser or Bloom, you must use a dedicated VPN. This is because when

te endpoints

you disable public access to your instance, this applies to all connections, including those from your

computer when using Browser or Bloom.

Without private endpoints, you access Browser and Bloom over the internet:

16

'E Azure Cloud

). Neo4j Browser

. :Neodj aura os
:.: Bloom

a

4+> Customer VNet 4+>AuraDB VNet

AURA SERVICE

1

1

1

1

1

1

1

:

1

E <> Subnet) @
: DB
:

| n - >
|

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

DB

=e

DB

~E0
App Client

K—QT

Figure 10. Architecture overview before enabling private endpoints

When you have enabled private endpoints and disabled public internet access, you can no longer connect

Browser or Bloom to your instances over the internet:

'E Azure Cloud

). Neo4j Browser
. :Neodj aura os
:.: Bloom

8]-x

4> Customer VNet 4+> AuraDB VNet
AURA SERVICE

<> Subnet =
s [
i n—> <I>———> D> »@ =0

App Client Private PrivateLink DB
Endpoint
L+@

Figure 11. Architecture overview with private endpoints enabled and public traffic disabled

To continue accessing Browser and Bloom, you can configure a VPN (Virtual Private Network) in your
VNet and connect to Browser and Bloom over the VPN.

17

To access Bloom and Browser over a VPN, you must ensure that:

o e You have setup Azure Private DNS, or an equivalent DNS service, inside of the VNet.

e You use the Private URI shown on the instance tile and in the instance details. It will
be different from the Connection URI you used before.

'E Azure Cloud

: Azure Region !
)- Neo4j Browser ! !
. | Neo0dqdj aura ps !
:.: Bloom X I
| 1
8 1 |4->Customer VNet 4->AuraDB VNet !
1
- : AURA SERVICE :
1
* 1
! <+> Subnet :
1 _» I 5
: DB .
| I L e D i
1
X App Client < >] (o) —P@———»@ !
: Private PrivateLink DB !
! - Endpoint :
T .
[VPN - :
: 1
| 1
| 1
| 1
| 1
| 1
| 1
: 1

Figure 12. Accessing Browser and Bloom over a VPN

Enabling private endpoints
To enable private endpoints using Azure Private Link:

1. Select Network Access from the sidebar menu of the Console.

2. Select New network access configuration and follow the setup instructions.

Please see the Azure Documentation for required roles and permissions.

Supported TLS cipher suites
For additional security, client communications are carried via TLS v1.2 and TLS v1.3.

AuraDB has a restricted list of cipher suites accepted during the TLS handshake, and does not accept all of
the available cipher suites. The following list conforms to safety recommendations from IANA, the
OpenSSL, and GnuTLS library.

TLS v1.3:

e TLS_CHACHA20_POLY1305_SHA256 (RFC8446)

e TLS_AES_128_GCM_SHA256 (RFC8446)

18

https://learn.microsoft.com/en-us/azure/dns/private-dns-overview
https://learn.microsoft.com/en-us/azure/private-link/rbac-permissions#private-endpoint

e TLS_AES_256_GCM_SHA384 (RFC8446)

TLS v1.2:

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 (RFC5288)

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (RFC5289)

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (RFC5289)

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (RFC7905)

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (RFC5288)

Single Sign-0On (550)

[AuraDB Virtual Dedicated CIoud][AuraDS Enterprise][AuraDB Business Critical

SSO levels

Organization admins can configure organization level SSO (org SSO) and project level SSO (project SSO).

SSO is a log-in method and access, roles, and permissions are dictated by role-based access control
(RBAC).

e Org SSO: Allows org admins to restrict how users log in when they are trying to access the org.
Access beyond log-in is managed via RBAC.

¢ Project-level SSO: Impacts new database instances created within that project. It ensures users
logging in with SSO have access to the database instances within the project. It depends on RBAC if
the user can access and view or modify data within the database instances themselves. For this level,
the role mapping may be used to grant users different levels of access based on a role in their identity
provider (IdP). It does not give access to edit the project settings, for example to edit the project name,
network access, or to edit the instance settings such as to rename an instance, or pause and resume.

SSO Org level roles

The following roles are available at the org level and these are assigned via invitation:

e Owner

e Admin

e Member
Table 1. Roles
Capability Owner Admin Member
List org v v v
List org projects v v v
Update org v v

19

>
Q.
3
5

Capability Owner Member
Add projects

List existing SSO configs

Add SSO configs

List SSO configs on project-level
Update SSO configs on project-level
Delete SSO configs on project-level
Invite non-owner users to org

List users

List roles

(1]

C € £ < K K < < < X

List members of a project
Invite owners to org
Add owner

Delete owners

[2]

C € £ € € £ < < K <« < K«

Transfer projects to and from the org

Log-in methods

Log-in methods are different for each SSO level. Administrators can configure a combination of one or
more of the log-in methods.

Org SSO supports:

e Email/password
e Okta
e Microsoft Entra ID

e Google SSO (not Google Workspace SSO)
An organization’s administrator can add Aura as a log-in from a tile in an organization’s Apps Dashboard.
Project SSO supports:

e User/password
e Okta

e Microsoft Entra ID

However, at the project level you cannot disable user/password, but at the org level you can disable
email/password and Google SSO as long as you have at least one other custom SSO provider configured.

20

Setup requirements
Accessing Aura with SSO requires:

e Authorization Code Flow

e A publicly accessible IdP server
To configure SSO, go to Aura Console > Settings > SSO Configuration.

To create an SSO Configuration either a Discovery URI or a combination of Issuer, Authorization Endpoint,
Token Endpoint and JWKS URI is required.

Individual instance level SSO configurations available from Support
Support can assist with:

¢ Role mapping specific to a database instance
e Custom groups claim besides groups
e Updating SSO on already running instances

If you require support assistance, visit Customer Support and raise a support ticket including the following
information:

1. The Project ID of the projects you want to use SSO for. See Projects for more information on how to
find your Project ID.

2. The name of your IdP

Encryption

All data stored in Neo4j Aura is encrypted using intra-cluster encryption between the various nodes
comprising your instance and encrypted at rest using the underlying cloud provider’s encryption
mechanism.

Aura always requires encrypted connections and ensures that clients validate server certificates when
establishing a connection. This means that network traffic flowing to and from Neo4j Aura is always
encrypted.

By default, each cloud provider encrypts all backup buckets (including the objects stored inside) using
either Google-managed encryption, AWS SSE-S3 encryption, or Azure Storage encryption.

To protect data at rest, Aura uses encrypted data storage capabilities offered by the cloud providers.
Whether customers choose to host in AWS, Azure, or GCP, each object store provides server-side
encrypted buckets for data at rest encryption. By default, AWS, Azure, and GCP encrypt all backup
buckets (including the objects stored inside) with AWS SSE-S3 encryption, Azure Storage Encryption
(SSE), or Google-managed encryption. This ensures all your data stored in any one of these cloud
providers uses 256-bit Advanced Encryption Standard (AES).

In addition to Aura’s default encryption for data at rest, Customer Managed Keys enable security-

21

https://support.neo4j.com/
https://cloud.google.com/storage/docs/encryption/default-keys
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingServerSideEncryption.html
https://learn.microsoft.com/en-us/azure/storage/common/storage-service-encryption

conscious enterprises to manage encryption keys through their Cloud Service Provider's Key Management
Services (KMS) on Aura, granting control over data protection and access management, including the
ability to revoke access from Neo4j. This allows adherence to strict security policies alongside Aura’s
default enterprise-grade security measures.

Customer Managed Keys

| AuraDB Virtual Dedicated Cloud|| AuraDS Enterprise

A Customer Managed Key (CMK) gives you more control over key operations than the standard Neo4;
encryption. These are created and managed using a supported cloud key management service (KMS).
Externally, Customer Managed Keys are also known as Customer Managed Encryption Keys (CMEK).

When using a Customer Managed Key, all data at rest is encrypted with the key. Customer Managed Keys
are supported for v4.x and v5.x instances.

When using Customer Managed Keys, you give Aura permission to encrypt and decrypt using the key, but
Aura has no access to the key’s material. Aura has no control over the availability of your externally
managed key in the KMS.

The loss of a Customer Managed Key makes all data encrypted with that key
A inaccessible. Neo4j is unable to manage database instances if the key is disabled,
deleted, expired, or if permissions are revoked.

Key rotation

In your KMS platform, you can either configure automatic rotation for the Customer Managed Key, or you
can perform a manual rotation.

Although automatic rotation is not enforced by Aura, it is best practice to rotate keys regularly. Manual key
rotation is not recommended.

Import an existing database

You can upload a database to instances encrypted with Customer Managed Keys in Neo4j 5 directly from
the console or by using neo4j-admin database upload. If the database is larger than 4 GB, you have to use
neo4j-admin database upload. Note that the neo4j-admin push-to-cloud command in Neo4j v4.4 and
earlier is not supported for instances encrypted with Customer Managed Keys. For more information see
the Neo4j Admin database upload documentation.

Clone an instance protected by CMK

To clone an instance protected by a Customer Managed Key, the key must be valid and available to Aura.
The cloned instance, by default, uses the available Customer Managed Key for that region and product.

It is best practice to use the same CMK key as the instance it's being cloned from. You can override this to
use another CMK key—but you can not use the Neo4j Managed Key.

22

Remove a CMK from Aura

When using a Customer Managed Key within Aura to encrypt one or more Aura database instances, it
cannot be removed from Aura. If you no longer need to use this Customer Managed Key to encrypt Aura
databases, first delete the Aura database instances that are encrypted with the key, then you can remove
the key from Aura. Keep in mind that this process only breaks the link between the key and Aura —- it
does not delete the actual key from the Cloud KMS.

AWS keys

Create an AWS key
1. Create a key in the AWS KMS making sure the region matches your Aura database instance. Copy the
generated ARN. You need it in the next step.

2. Go to security settings in the Aura Console, add a Customer Managed Key and copy the JSON code
that is generated in the Aura Console when you add a key.

3. In the AWS KMS, edit the key policy to include the JSON code.

Edit the AWS key policy

After you have initially created a key in the AWS KMS, you can edit the key policy. In the AWS key policy,
"Statement" is an array that consists of one or more objects. Each object in the array describes a security
identifier (SID). The objects in the AWS code array are comma-separated, for example {[{'a'}, {'b'},
{'c'}13.

Add a comma after the curly brace in the final SID, and then paste the JSON code that was generated in
the Aura Console (forexample {[{'a'}, {'b'}, {'c'}, add code here 13}).

AWS regions

Aura supports AWS Customer Managed Keys that reside in the same region as the instance. When
creating a Customer Managed Key in the AWS KMS, you can create a single-region key, or create a multi-
region key.

Single-region keys reside in only one AWS region, which must be the same region as your Aura instance.

Multi-region keys have a primary region, however these can be replicated to other regions that match the
region of your Aura instance. The replicas share the same key ID and different Amazon Resource Names
(ARNSs) with the primary key.

AWS automatic key rotation

Aura supports automatic key rotation via the AWS KMS. To enable automatic key rotation in the AWS
KMS, tick the Key rotation checkbox after initially creating a key, to automatically rotate the key once a
year.

23

Azure keys

Create an Azure key vault

Create a Key Vault in the Azure portal ensuring the region matches your Aura database instance region.
Move through the tabs to enable to following:

e Purge protection

e Azure role-based access control

e Azure Disk Encryption for volume encryption

e Allow access from all networks

Create a key

1. When preparing to create a key, if needed grant a role assignment:
a. Inside the key vault, go to Access Control (IAM) and add role assignment.
b. In the Role tab, select Key Vault Administrator.
c. Inthe Member tab, select User, group, or service principal.
d. From Select members, add yourself or the relevant person, then Review + Assign.
2. Create a key in the Azure Key Vault.
3. After the key is created, click into key version and copy the Key Identifier, you need it in the next step.
4. Go to security settings in the Aura Console and add a Customer Managed Key.

5. Follow the instructions in the Aura Console for the next sections.

Create a service principal

In the Azure Entra ID tenant where your key is located, create a service principal linked to the Neo4j CMK
Application with the Neo4j CMK Application ID displayed in the Aura Console.

One way to do this is by clicking the terminal icon at the top of the Azure portal, to open the Azure Cloud
Shell.

Using Azure CLI, the command is:
az ad sp create --id Neo4jCMKApplicationID

For more information about the Azure CLI, see az ad sp documentation.

Grant key permissions

1. To add role assignment to the Azure key, inside the key, go to Access control (IAM) and add role
assignment.

2. In the Role tab, select Key Vault Crypto Officer.

24

https://learn.microsoft.com/en-us/cli/azure/ad/sp?view=azure-cli-latest#az-ad-sp-create
https://learn.microsoft.com/en-us/cli/azure/ad/sp?view=azure-cli-latest#az-ad-sp-create

3. In the Member tab, select User, group, or service principal.
4. In Select members, paste the Neo4j CMK Application name that is displayed in the Aura Console.

5. The Neo4j CMK Application should appear, select this application then Review + Assign.

GCP keys

Create a key ring

1. Go to Key Management in the Google Cloud console.

2. Create a key ring.

3. The key ring Location type should be set to Region.

4. Make sure the region matches your Aura database instance region.

5. Select Create and you are automatically taken to the key creation page.

Create a key
1. Create a key in the Google Console. You can use default settings for the options, but setting a key
rotation period is recommended.
2. Select Create and you are brought to the key ring, with your key listed.

3. Click More (three dots) and Copy resource name, you need it in the next step. For more information,
see Google Cloud docs

4. Go to security settings in the Aura Console and add a Customer Managed Key. Paste the resource
name into the Encryption Key Resource Name field.

5. After you select Add Key in the Aura Console, three service accounts are displayed in the Aura
Console. You will need these in the next steps.

Grant key permissions

1. Go to the Google Cloud console, click into the key and go to Permissions then Grant Access.

2. In Add principals paste the three service accounts from the Aura Console.

3. In Assign roles assign both Cloud KMS CryptoKey Encrypter/Decrypter and Cloud KMS Viewer roles

to all three service accounts.

25

https://cloud.google.com/kms/docs/getting-resource-ids

User management

User management is a feature within Aura that allows you to invite users and set their roles within an
isolated environment.

Projects

Projects are the primary mechanism for granting users access to an Aura environment.

The project you're currently viewing is displayed in the header of the Console. You can select the project
name to open the project dropdown menu, allowing you to view all the projects that you have access to
and switch between them.

Additionally, you can perform the following actions from the project dropdown menu:

e Copy the Project ID of any project in the list by selecting the clipboard icon that appears when you
hover over the project.

e Edit the name of the project you are currently viewing by selecting the pencil icon next to the project.
This action requires you to be an Admin of the project.

Users

Each project can have multiple users with individual accounts allowing access to the same environment.

The users with access to a project can be viewed and managed from the User Management page. You can
access the User Management page by selecting User Management from the sidebar menu of the Console.

Roles

Users within a project can be assigned one of the following roles:

e Admin

e Member

o Viewer
Table 2. Roles
Capability Admin Member Viewer
View users and their roles v
View and open instances v
Access the Neo4j Customer Support Portal v

Perform all actions on instances ™

Clone data to new and existing instances

C € £ < < X
C € £ < < KX

Take on-demand snapshots

26

Capability Admin Member Viewer
Restore from snapshots v
Edit the project name

Invite new users to the project

Edit existing users' roles

Delete existing users from the project

C L £ < < X

View and edit billing information

o Each project must have at least one Admin, but it is also possible for projects to have
multiple Admins.

Inviting users
As an Admin, to invite a new user:

1. Select Invite user from the User Management page.
2. Enter the Email address of the person you want to invite.
3. Select the user’s Role.

4. Select Invite.

The new user will appear within the list of users on the User Management page with the Pending invite

Status until they accept the invite.

An email will be sent to the user with a link to accept the invite.

Editing users
As an Admin, to edit an existing user’s role:

1. Select the pencil icon next to the user’'s name from the User Management page.
2. Select the user’s new Role.

3. Select Save changes.
Deleting users

As an Admin, to delete an existing user:

1. Select the trash can icon next to the user’'s name from the User Management page.

2. Select Delete.

It is also possible to delete a user whose Status is Pending invite.

Select the trash can icon next to the user’'s name, and then select Revoke.

27

Accepting an invite

When invited to a project, you receive an email with a link to accept the invite. This link directs you to the
Aura Console, where a Project invitation modal will appear. You can select the projects you have been
invited to and accept or decline the invites.

You can also close the Project invitation modal without accepting or declining the invites and later
manually re-open the modal by selecting the Pending invites envelope icon in the Console header.

O User management within the Aura Console does not replace built-in roles or fine-
- grained RBAC at the database level.

[1] An admin can only list members of projects the admin is also a member of.
[2] An owner needs to permission for both the source and destination orgs.

[3] Actions include creating, deleting, pausing, resuming, and editing instances.

28

APOC support

APOC (Awesome Procedures on Cypher) is a Neo4;j library that provides access to additional procedures
and functions, extending the use of the Cypher query language. For more information on APOC, see the
APOC documentation.

A subset of the APOC Core functions and procedures are pre-installed and available in Aura, as shown
below:

apoc
Qualified Name Type

For each pair of conditional and read-only queries in the given LIST<ANY>, this
procedure will run the first query for which the conditional is evaluated to true. If none
of the conditionals are true, the ELSE query will run instead.

apoc.help & Procedure
Returns descriptions of the available APOC procedures and functions. If a keyword is

provided, it will return only those procedures and functions that have the keyword in
their name.

apoc.version & Function

Returns the APOC version currently installed.

apoc.when & Procedure
This procedure will run the read-only ifQuery if the conditional has evaluated to true,
otherwise the elseQuery will run.

apoc.agg

Qualified Name Type

apoc.agg.first & Function
Returns the first value from the given collection.

apoc.agg.graph & Function
Returns all distinct NODE and RELATIONSHIP values collected into a MAP with the keys
nodes and relationships.

apoc.agg.last & Function
Returns the last value from the given collection.

29

https://neo4j.com/docs/apoc/
https://neo4j.com/docs/apoc/
https://neo4j.com/docs/apoc/5/overview/apoc/apoc.case
https://neo4j.com/docs/apoc/5/overview/apoc/apoc.case
https://neo4j.com/docs/apoc/5/overview/apoc/apoc.case
https://neo4j.com/docs/apoc/5/overview/apoc/apoc.help
https://neo4j.com/docs/apoc/5/overview/apoc/apoc.help
https://neo4j.com/docs/apoc/5/overview/apoc/apoc.help
https://neo4j.com/docs/apoc/5/overview/apoc/apoc.version
https://neo4j.com/docs/apoc/5/overview/apoc/apoc.version
https://neo4j.com/docs/apoc/5/overview/apoc/apoc.version
https://neo4j.com/docs/apoc/5/overview/apoc/apoc.when
https://neo4j.com/docs/apoc/5/overview/apoc/apoc.when
https://neo4j.com/docs/apoc/5/overview/apoc/apoc.when
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.first
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.first
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.first
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.graph
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.graph
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.graph
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.last
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.last
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.last

Qualified Name

apoc.agg.maxitems &

Returns a MAP {items: LIST<ANY>, value: ANY} where the value key is the maximum
value present, and items represent all items with the same value. The size of the list of
items can be limited to a given max size.

apoc.agg.median &
Returns the mathematical median for all non-null INTEGER and FLOAT values.

apoc.agg.minltems &

Returns a MAP {items: LIST<ANY>, value: ANY} where the value key is the minimum
value present, and items represent all items with the same value. The size of the list of
items can be limited to a given max size.

apoc.agg.nth &
Returns the nth value in the given collection (to fetch the last item of an unknown
length collection, -1 can be used).

apoc.agg.percentiles &

Returns the given percentiles over the range of numerical values in the given collection.

apoc.agg.product &
Returns the product of all non-null INTEGER and FLOAT values in the collection.

apoc.agg.slice @

Returns a subset of non-null values from the given collection (the collection is
considered to be zero-indexed). To specify the range from start until the end of the
collection, the length should be set to -1.

apoc.agg.statistics &

Returns the following statistics on the INTEGER and FLOAT values in the given collection:

percentiles, min, minNonZero, max, total, mean, stdev.

apoc.algo

Qualified Name

apoc.algo.aStar &
Runs the A* search algorithm to find the optimal path between two NODE values, using
the given RELATIONSHIP property name for the cost function.

30

Type

Function

Function

Function

Function

Function

Function

Function

Function

Type

Procedure

https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.maxItems
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.maxItems
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.maxItems
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.median
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.median
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.median
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.minItems
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.minItems
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.minItems
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.nth
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.nth
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.nth
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.percentiles
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.percentiles
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.percentiles
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.product
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.product
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.product
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.slice
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.slice
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.slice
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.statistics
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.statistics
https://neo4j.com/docs/apoc/5/overview/apoc.agg/apoc.agg.statistics
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.aStar
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.aStar
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.aStar

Qualified Name Type

apoc.algo.aStarConfig & Procedure
Runs the A* search algorithm to find the optimal path between two NODE values, using

the given RELATIONSHIP property name for the cost function. This procedure looks for

weight, latitude and longitude properties in the config.

apoc.algo.allSimplePaths & Procedure
Runs a search algorithm to find all of the simple paths between the given RELATIONSHIP

values, up to a max depth described by maxNodes. The returned paths will not contain
loops.

apoc.algo.cover & Procedure
Returns all RELATIONSHIP values connecting the given set of NODE values.

apoc.algo.dijkstra & Procedure

Runs Dijkstra’s algorithm using the given RELATIONSHIP property as the cost function.

apoc.any
Qualified Name Type
apoc.any.properties (=]

Returns all properties of the given object. The object can be a virtual NODE, a real NODE, a
virtual RELATIONSHIP, a real RELATIONSHIP, or a MAP.

apoc.any.property & Function
Returns the property for the given key from an object. The object can be a virtual NODE,
a real NODE, a virtual RELATIONSHIP, a real RELATIONSHIP, or a MAP.

apoc.atomic

Qualified Name Type

apoc.atomic.add & Procedure
Sets the given property to the sum of itself and the given INTEGER or FLOAT value. The
procedure then sets the property to the returned sum.

apoc.atomic.concat & Procedure
Sets the given property to the concatenation of itself and the STRING value. The

procedure then sets the property to the returned STRING.

31

https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.aStarConfig
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.aStarConfig
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.aStarConfig
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.allSimplePaths
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.allSimplePaths
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.allSimplePaths
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.cover
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.cover
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.cover
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.dijkstra
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.dijkstra
https://neo4j.com/docs/apoc/5/overview/apoc.algo/apoc.algo.dijkstra
https://neo4j.com/docs/apoc/5/overview/apoc.any/apoc.any.properties
https://neo4j.com/docs/apoc/5/overview/apoc.any/apoc.any.properties
https://neo4j.com/docs/apoc/5/overview/apoc.any/apoc.any.properties
https://neo4j.com/docs/apoc/5/overview/apoc.any/apoc.any.property
https://neo4j.com/docs/apoc/5/overview/apoc.any/apoc.any.property
https://neo4j.com/docs/apoc/5/overview/apoc.any/apoc.any.property
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.add
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.add
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.add
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.concat
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.concat
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.concat

Qualified Name Type

apoc.atomic.insert & Procedure
Inserts a value at position into the LIST<ANY> value of a property. The procedure then
sets the result back on the property.

apoc.atomic.remove & Procedure
Removes the element at position from the LIST<ANY> value of a property. The procedure
then sets the property to the resulting LIST<ANY> value.

apoc.atomic.subtract & Procedure
Sets the property of a value to itself minus the given INTEGER or FLOAT value. The
procedure then sets the property to the returned sum.

apoc.atomic.update & Procedure
Updates the value of a property with a Cypher operation.

apoc.bitwise

Qualified Name Type
apoc.bitwise.op &

Returns the result of the bitwise operation

apoc.coll
Qualified Name Type
apoc.coll.avg & Function

Returns the average of the numbers in the LIST<INTEGER | FLOAT>.

apoc.coll.combinations & Function

Returns a collection of all combinations of LIST<ANY> elements between the selection
size minSelect and maxSelect (default: minSelect).

apoc.coll.contains =) Function

Returns whether or not the given value exists in the given collection (using a HashSet).

apoc.coll.containsAll & Function
Returns whether or not all of the given values exist in the given collection (using a
HashSet).

32

https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.insert
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.insert
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.insert
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.remove
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.remove
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.remove
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.subtract
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.subtract
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.subtract
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.update
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.update
https://neo4j.com/docs/apoc/5/overview/apoc.atomic/apoc.atomic.update
https://neo4j.com/docs/apoc/5/overview/apoc.bitwise/apoc.bitwise.op
https://neo4j.com/docs/apoc/5/overview/apoc.bitwise/apoc.bitwise.op
https://neo4j.com/docs/apoc/5/overview/apoc.bitwise/apoc.bitwise.op
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.avg
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.avg
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.avg
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.combinations
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.combinations
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.combinations
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.contains
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.contains
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.contains
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.containsAll
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.containsAll
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.containsAll

Qualified Name

apoc.coll.containsAllSorted &
Returns whether or not all of the given values in the second LIST<ANY> exist in an
already sorted collection (using a binary search).

apoc.coll.containsDuplicates &
Returns true if a collection contains duplicate elements.

apoc.coll.containsSorted &
Returns whether or not the given value exists in an already sorted collection (using a
binary search).

apoc.coll.different &
Returns true if all the values in the given LIST<ANY> are unique.

apoc.coll.disjunction &
Returns the disjunct set from two LIST<ANY> values.

apoc.coll.dropDuplicateNeighbors &
Removes duplicate consecutive objects in the LIST<ANY>.

apoc.coll.duplicates &
Returns a LIST<ANY> of duplicate items in the collection.

apoc.coll.duplicatesWithCount &
Returns a LIST<ANY> of duplicate items in the collection and their count, keyed by item
and count.

apoc.coll.elements &
Deconstructs a LIST<ANY> into identifiers indicating their specific type.

apoc.coll.fill &
Returns a LIST<ANY> with the given count of items.

apoc.coll flatten &
Flattens the given LIST<ANY> (to flatten nested LIST<ANY> values, set recursive to true).

apoc.coll.frequencies &
Returns a LIST<ANY> of frequencies of the items in the collection, keyed by item and

count.

Type

Function

Function

Function

Function

Function

Function

Function

Function

Procedure

Function

Function

Function

33

https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.containsAllSorted
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.containsAllSorted
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.containsAllSorted
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.containsDuplicates
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.containsDuplicates
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.containsDuplicates
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.containsSorted
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.containsSorted
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.containsSorted
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.different
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.different
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.different
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.disjunction
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.disjunction
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.disjunction
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.dropDuplicateNeighbors
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.dropDuplicateNeighbors
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.dropDuplicateNeighbors
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.duplicates
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.duplicates
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.duplicates
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.duplicatesWithCount
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.duplicatesWithCount
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.duplicatesWithCount
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.elements
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.elements
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.elements
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.fill
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.fill
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.fill
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.flatten
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.flatten
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.flatten
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.frequencies
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.frequencies
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.frequencies

Qualified Name

apoc.coll.frequenciesAsMap &
Returns a MAP of frequencies of the items in the collection, keyed by item and count.

apoc.coll.indexOf &
Returns the index for the first occurrence of the specified value in the LIST<ANY>.

apoc.collinsert @
Inserts a value into the specified index in the LIST<ANY>.

apoc.collinsertAll &
Inserts all of the values into the LIST<ANY>, starting at the specified index.

apoc.coll.intersection &
Returns the distinct intersection of two LIST<ANY> values.

apoc.coll.isEqualCollection &
Returns true if the two collections contain the same elements with the same cardinality
in any order (using a HashMap).

apoc.coll.max &
Returns the maximum of all values in the given LIST<ANY>.

apoc.coll.min &
Returns the minimum of all values in the given LIST<ANY>.

apoc.coll.occurrences &
Returns the count of the given item in the collection.

apoc.coll.pairs &
Returns a LIST<ANY> of adjacent elements in the LIST<ANY> ([1,2],[2,3].[3,null]).

apoc.coll.pairsMin &
Returns LIST<ANY> values of adjacent elements in the LIST<ANY> ([1,2],[2,3]), skipping
the final element.

apoc.coll.partition &
Partitions the original LIST<ANY> into a new LIST<ANY> of the given batch size. The final
LIST<ANY> may be smaller than the given batch size.

34

Type

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.frequenciesAsMap
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.frequenciesAsMap
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.frequenciesAsMap
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.indexOf
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.indexOf
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.indexOf
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.insert
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.insert
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.insert
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.insertAll
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.insertAll
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.insertAll
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.intersection
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.intersection
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.intersection
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.isEqualCollection
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.isEqualCollection
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.isEqualCollection
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.max
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.max
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.max
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.min
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.min
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.min
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.occurrences
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.occurrences
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.occurrences
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.pairs
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.pairs
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.pairs
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.pairsMin
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.pairsMin
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.pairsMin
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.partition
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.partition
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.partition

Qualified Name

apoc.coll.partition &
Partitions the original LIST<ANY> into a new LIST<ANY> of the given batch size. The final
LIST<ANY> may be smaller than the given batch size.

apoc.coll.randomltem &
Returns a random item from the LIST<ANY>, or null on LIST<KNOTHING> or LIST<NULL>.

apoc.coll.randomltems &
Returns a LIST<ANY> of itemCount random items from the original LIST<ANY> (optionally
allowing elements in the original LIST<ANY> to be selected more than once).

apoc.coll.remove &
Removes a range of values from the LIST<ANY>, beginning at position index for the
given length of values.

apoc.coll.removeAll &
Returns the first LIST<ANY> with all elements also present in the second LIST<ANY>

removed.

apoc.coll.runningTotal &
Returns an accumulative LIST<INTEGER | FLOAT>.

apoc.coll.set =
Sets the element at the given index to the new value.

apoc.coll.shuffle &
Returns the LIST<ANY> shuffled.

apoc.coll.sort &
Sorts the given LIST<ANY> into ascending order.

apoc.coll.sortMaps &
Sorts the given LIST<MAP<STRING, ANY>>into descending order, based on the MAP
property indicated by prop.

apoc.coll.sortMulti &

Sorts the given LIST<MAP<STRING, ANY>> by the given fields. To indicate that a field
should be sorted according to ascending values, prefix it with a caret (A). It is also
possible to add limits to the LIST<MAP<STRING, ANY>> and to skip values.

Type

Procedure

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

35

https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.partition
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.partition
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.partition
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.randomItem
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.randomItem
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.randomItem
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.randomItems
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.randomItems
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.randomItems
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.remove
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.remove
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.remove
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.removeAll
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.removeAll
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.removeAll
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.runningTotal
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.runningTotal
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.runningTotal
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.set
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.set
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.set
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.shuffle
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.shuffle
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.shuffle
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sort
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sort
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sort
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sortMaps
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sortMaps
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sortMaps
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sortMulti
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sortMulti
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sortMulti

Qualified Name

apoc.coll.sortNodes &
Sorts the given LIST<NODE> by the property of the nodes into descending order.

apoc.coll.sortText &
Sorts the given LIST<STRING> into ascending order.

apoc.coll.split &
Splits a collection by the given value. The value itself will not be part of the resulting
LIST<ANY> values.

apoc.coll.subtract &
Returns the first LIST<ANY> as a set with all the elements of the second LIST<ANY>
removed.

apoc.coll.sum &
Returns the sum of all the INTEGER | FLOAT in the LIST<INTEGER | FLOAT>.

apoc.coll.sumLongs &
Returns the sum of all the INTEGER | FLOAT in the LIST<INTEGER | FLOAT>.

apoc.coll.toSet &
Returns a unique LIST<ANY> from the given LIST<ANY>.

apoc.coll.union &
Returns the distinct union of the two given LIST<ANY> values.

apoc.coll.unionAll &
Returns the full union of the two given LIST<ANY> values (duplicates included).

apoc.coll.zip &
Returns the two given LIST<ANY> values zipped together as a LIST<LIST<ANY>>.

apoc.coll.zipToRows &
Returns the two LIST<ANY> values zipped together, with one row per zipped pair.

apoc.convert

36

Type

Function

Function

Procedure

Function

Function

Function

Function

Function

Function

Function

Procedure

https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sortNodes
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sortNodes
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sortNodes
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sortText
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sortText
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sortText
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.split
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.split
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.split
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.subtract
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.subtract
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.subtract
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sum
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sum
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sum
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sumLongs
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sumLongs
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.sumLongs
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.toSet
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.toSet
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.toSet
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.union
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.union
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.union
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.unionAll
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.unionAll
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.unionAll
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.zip
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.zip
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.zip
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.zipToRows
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.zipToRows
https://neo4j.com/docs/apoc/5/overview/apoc.coll/apoc.coll.zipToRows

Qualified Name

apoc.convert.fromJsonList &
Converts the given JSON list into a Cypher LIST<STRING>.

apoc.convert.fromJsonMap &
Converts the given JSON map into a Cypher MAP.

apoc.convert.get)sonProperty &
Converts a serialized JSON object from the property of the given NODE into the
equivalent Cypher structure (e.g. MAP, LIST<ANY>).

apoc.convert.get)lsonPropertyMap &
Converts a serialized JSON object from the property of the given NODE into a Cypher
MAP.

apoc.convert.set/sonProperty &
Serializes the given JSON object and sets it as a property on the given NODE.

apoc.convert.toJson &
Serializes the given JSON value.

apoc.convert.toList &
Converts the given value into a LIST<ANY>.

apoc.convert.toMap &
Converts the given value into a MAP.

apoc.convert.toNode &
Converts the given value into a NODE.

apoc.convert.toNodeList &
Converts the given value into a LIST<NODE>.

apoc.convert.toRelationship &
Converts the given value into a RELATIONSHIP.

apoc.convert.toRelationshipList &
Converts the given value into a LIST<RELATIONSHIP>.

apoc.convert.toSet &
Converts the given value into a set represented in Cypher as a LIST<ANY>.

Type

Function

Function

Function

Function

Procedure

Function

Function

Function

Function

Function

Function

Function

Function

37

https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.fromJsonList
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.fromJsonList
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.fromJsonList
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.fromJsonMap
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.fromJsonMap
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.fromJsonMap
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.getJsonProperty
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.getJsonProperty
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.getJsonProperty
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.getJsonPropertyMap
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.getJsonPropertyMap
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.getJsonPropertyMap
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.setJsonProperty
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.setJsonProperty
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.setJsonProperty
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toJson
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toJson
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toJson
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toList
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toList
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toList
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toMap
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toMap
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toMap
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toNode
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toNode
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toNode
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toNodeList
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toNodeList
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toNodeList
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toRelationship
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toRelationship
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toRelationship
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toRelationshipList
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toRelationshipList
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toRelationshipList
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toSet
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toSet
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toSet

Qualified Name

apoc.convert.toSortedJsonMap &
Converts a serialized JSON object from the property of a given NODE into a Cypher MAP.

apoc.convert.toTree &
Returns a stream of MAP values, representing the given PATH values as a tree with at
least one root.

apoc.create

Qualified Name

apoc.create.addLabels &
Adds the given labels to the given NODE values.

apoc.create.node &

Creates a NODE with the given dynamic labels.

apoc.create.nodes &
Creates NODE values with the given dynamic labels.

apoc.create.relationship &
Creates a RELATIONSHIP with the given dynamic relationship type.

apoc.create.removelabels &
Removes the given labels from the given NODE values.

apoc.create.removeProperties &
Removes the given properties from the given NODE values.

apoc.create.removeRelProperties &
Removes the given properties from the given RELATIONSHIP values.

apoc.create.setLabels &
Sets the given labels to the given NODE values. Non-matching labels are removed from
the nodes.

apoc.create.setProperties &
Sets the given properties to the given NODE values.

38

Type

Function

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

ie]
(0]

https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toSortedJsonMap
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toSortedJsonMap
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toSortedJsonMap
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toTree
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toTree
https://neo4j.com/docs/apoc/5/overview/apoc.convert/apoc.convert.toTree
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.addLabels
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.addLabels
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.addLabels
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.node
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.node
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.node
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.relationship
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.relationship
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.relationship
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.removeLabels
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.removeLabels
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.removeLabels
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.removeProperties
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.removeProperties
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.removeProperties
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.removeRelProperties
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.removeRelProperties
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.removeRelProperties
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setLabels
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setLabels
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setLabels
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setProperties
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setProperties
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setProperties

Qualified Name Type

apoc.create.setProperty & Procedure
Sets the given property to the given NODE values.

apoc.create.setRelProperties & Procedure
Sets the given properties on the RELATIONSHIP values.

apoc.create.setRelProperty & Procedure
Sets the given property on the RELATIONSHIP values.

apoc.create.uuid & Function
Returns a UUID. Deprecated
apoc.create.uuids & Procedure
Returns a stream of UUIDs. Deprecated
apoc.create.vNode & Procedure

Returns a virtual NODE.

apoc.create.vNode & Function
Returns a virtual NODE.

apoc.create.vNodes & Procedure
Returns virtual NODE values.

apoc.create.vRelationship & Procedure
Returns a virtual RELATIONSHIP.

apoc.create.vRelationship & Function
Returns a virtual RELATIONSHIP.

apoc.create.virtual.fromNode & Function
Returns a virtual NODE from the given existing NODE. The virtual NODE only contains the
requested properties.

apoc.cypher

39

https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setProperty
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setProperty
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setProperty
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setRelProperties
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setRelProperties
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setRelProperties
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setRelProperty
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setRelProperty
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.setRelProperty
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.uuid
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.uuid
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.uuid
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.uuids
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.uuids
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.uuids
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vNode
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vNode
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vNode
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vNode
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vNode
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vNode
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vNodes
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vNodes
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vNodes
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vRelationship
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vRelationship
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vRelationship
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vRelationship
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vRelationship
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.vRelationship
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.virtual.fromNode
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.virtual.fromNode
https://neo4j.com/docs/apoc/5/overview/apoc.create/apoc.create.virtual.fromNode

Qualified Name

apoc.cypher.dolt &
Runs a dynamically constructed statement with the given parameters. This procedure
allows for both read and write statements.

apoc.cypher.run &
Runs a dynamically constructed read-only statement with the given parameters.

apoc.cypher.runFirstColumnMany &
Runs the given statement with the given parameters and returns the first column
collected into a LIST<ANY>.

apoc.cypher.runFirstColumnSingle &
Runs the given statement with the given parameters and returns the first element of
the first column.

apoc.cypher.runMany &
Runs each semicolon separated statement and returns a summary of the statement
outcomes.

apoc.cypher.runTimeboxed &
Terminates a Cypher statement if it has not finished before the set timeout (ms).

apoc.data

Qualified Name

apoc.data.url =]
Turns a URL into a MAP.

apoc.date

Qualified Name

apoc.date.add =
Adds a unit of specified time to the given timestamp.

apoc.date.convert &
Converts the given timestamp from one time unit into a timestamp of a different time
unit.

40

Type

Procedure

Procedure

Function

Function

Procedure

Procedure

Type

Function

Type

Function

Function

https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.doIt
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.doIt
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.doIt
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.run
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.run
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.run
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.runFirstColumnMany
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.runFirstColumnMany
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.runFirstColumnMany
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.runFirstColumnSingle
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.runFirstColumnSingle
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.runFirstColumnSingle
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.runMany
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.runMany
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.runMany
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.runTimeboxed
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.runTimeboxed
https://neo4j.com/docs/apoc/5/overview/apoc.cypher/apoc.cypher.runTimeboxed
https://neo4j.com/docs/apoc/5/overview/apoc.data/apoc.data.url
https://neo4j.com/docs/apoc/5/overview/apoc.data/apoc.data.url
https://neo4j.com/docs/apoc/5/overview/apoc.data/apoc.data.url
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.add
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.add
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.add
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.convert
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.convert
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.convert

Qualified Name Type

apoc.date.convertFormat & Function
Converts a STRING of one type of date format into a STRING of another type of date
format.

apoc.date.currentTimestamp & Function
Returns the current Unix epoch timestamp in milliseconds.

apoc.date field & Function
Returns the value of one field from the given date time.

apoc.date fields & Function
Splits the given date into fields returning a MAP containing the values of each field.

apoc.date.format & Function
Returns a STRING representation of the time value. The time unit (default: ms), date
format (default: ISO), and time zone (default: current time zone) can all be changed.

apoc.date.from|SO8601 & Function
Converts the given date STRING (ISO8601) to an INTEGER representing the time value in
milliseconds.

apoc.date.parse & Function
Parses the given date STRING from a specified format into the specified time unit.

apoc.date.systemTimezone & Function
Returns the display name of the system time zone (e.g. Europe/London).

apoc.date.tolS0O8601 & Function
Returns a STRING representation of a specified time value in the ISO8601 format.

apoc.date.toYears & Function

Converts the given timestamp or the given date into a FLOAT representing years.

apoc.diff

Qualified Name Type
apoc.diff.nodes &

Returns a MAP detailing the differences between the two given NODE values.

https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.convertFormat
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.convertFormat
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.convertFormat
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.currentTimestamp
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.currentTimestamp
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.currentTimestamp
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.field
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.field
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.field
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.fields
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.fields
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.fields
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.format
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.format
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.format
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.fromISO8601
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.fromISO8601
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.fromISO8601
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.parse
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.parse
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.parse
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.systemTimezone
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.systemTimezone
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.systemTimezone
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.toISO8601
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.toISO8601
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.toISO8601
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.toYears
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.toYears
https://neo4j.com/docs/apoc/5/overview/apoc.date/apoc.date.toYears
https://neo4j.com/docs/apoc/5/overview/apoc.diff/apoc.diff.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.diff/apoc.diff.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.diff/apoc.diff.nodes

apoc.do

Qualified Name

apoc.do.case &

For each pair of conditional queries in the given LIST<ANY>, this procedure will run the
first query for which the conditional is evaluated to true. If none of the conditionals are
true, the ELSE query will run instead.

apoc.do.when &
Runs the given read/write ifQuery if the conditional has evaluated to true, otherwise
the elseQuery will run.

apoc.example

Qualified Name

apoc.example.movies &
Seeds the database with the Neo4j movie dataset.

apoc.export

Qualified Name

apoc.export.csv.all &
Exports the full database to the provided CSV file.

apoc.export.csv.data &
Exports the given NODE and RELATIONSHIP values to the provided CSV file.

apoc.export.csv.graph &
Exports the given graph to the provided CSV file.

apoc.export.csv.query &
Exports the results from running the given Cypher query to the provided CSV file.

apoc.export.cypher.all &
Exports the full database (incl. indexes) as Cypher statements to the provided file
(default: Cypher Shell).

42

Type

Procedure

Procedure

Type

Procedure

Type

Procedure

Procedure

Procedure

Procedure

Procedure

https://neo4j.com/docs/apoc/5/overview/apoc.do/apoc.do.case
https://neo4j.com/docs/apoc/5/overview/apoc.do/apoc.do.case
https://neo4j.com/docs/apoc/5/overview/apoc.do/apoc.do.case
https://neo4j.com/docs/apoc/5/overview/apoc.do/apoc.do.when
https://neo4j.com/docs/apoc/5/overview/apoc.do/apoc.do.when
https://neo4j.com/docs/apoc/5/overview/apoc.do/apoc.do.when
https://neo4j.com/docs/apoc/5/overview/apoc.example/apoc.example.movies
https://neo4j.com/docs/apoc/5/overview/apoc.example/apoc.example.movies
https://neo4j.com/docs/apoc/5/overview/apoc.example/apoc.example.movies
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.csv.all
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.csv.all
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.csv.all
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.csv.data
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.csv.data
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.csv.data
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.csv.graph
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.csv.graph
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.csv.graph
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.csv.query
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.csv.query
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.csv.query
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.all
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.all
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.all

Qualified Name

apoc.export.cypher.data &

Exports the given NODE and RELATIONSHIP values (incl. indexes) as Cypher statements to

the provided file (default: Cypher Shell).

apoc.export.cypher.graph &
Exports the given graph (incl. indexes) as Cypher statements to the provided file
(default: Cypher Shell).

apoc.export.cypher.query &
Exports the NODE and RELATIONSHIP values from the given Cypher query (incl. indexes)
as Cypher statements to the provided file (default: Cypher Shell).

apoc.export.cypher.schema &
Exports all schema indexes and constraints to Cypher statements.

apoc.export.graphml.all &
Exports the full database to the provided GraphML file.

apoc.export.graphml.data @
Exports the given NODE and RELATIONSHIP values to the provided GraphML file.

apoc.export.graphml.graph &
Exports the given graph to the provided GraphML file.

apoc.export.graphml.query &
Exports the given NODE and RELATIONSHIP values from the Cypher statement to the
provided GraphML file.

apoc.export.json.all &
Exports the full database to the provided JSON file.

apoc.export.json.data &
Exports the given NODE and RELATIONSHIP values to the provided JSON file.

apoc.export.json.graph &
Exports the given graph to the provided JSON file.

apoc.export.json.query &
Exports the results from the Cypher statement to the provided JSON file.

Type

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

43

https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.data
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.data
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.data
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.graph
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.graph
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.graph
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.query
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.query
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.query
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.schema
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.schema
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.cypher.schema
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.graphml.all
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.graphml.all
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.graphml.all
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.graphml.data
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.graphml.data
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.graphml.data
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.graphml.graph
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.graphml.graph
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.graphml.graph
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.graphml.query
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.graphml.query
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.graphml.query
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.json.all
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.json.all
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.json.all
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.json.data
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.json.data
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.json.data
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.json.graph
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.json.graph
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.json.graph
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.json.query
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.json.query
https://neo4j.com/docs/apoc/5/overview/apoc.export/apoc.export.json.query

apoc.graph

Qualified Name

apoc.graph.from &
Generates a virtual sub-graph by extracting all of the NODE and RELATIONSHIP values
from the given data.

apoc.graph.fromCypher &
Generates a virtual sub-graph by extracting all of the NODE and RELATIONSHIP values
from the data returned by the given Cypher statement.

apoc.graph.fromDB &
Generates a virtual sub-graph by extracting all of the NODE and RELATIONSHIP values
from the data returned by the given database.

apoc.graph.fromData &
Generates a virtual sub-graph by extracting all of the NODE and RELATIONSHIP values
from the given data.

apoc.graph.fromDocument &
Generates a virtual sub-graph by extracting all of the NODE and RELATIONSHIP values
from the data returned by the given JSON file.

apoc.graph.fromPath &
Generates a virtual sub-graph by extracting all of the NODE and RELATIONSHIP values
from the data returned by the given PATH.

apoc.graph.fromPaths &
Generates a virtual sub-graph by extracting all of the NODE and RELATIONSHIP values
from the data returned by the given PATH values.

apoc.graph.validateDocument &
Validates the JSON file and returns the result of the validation.

apoc.hashing

Qualified Name

apoc.hashing.fingerprint &
Calculates a MD5 checksum over a NODE or RELATIONSHIP (identical entities share the
same checksum). Unsuitable for cryptographic use-cases.

44

Type

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Type

Function

https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.from
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.from
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.from
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromCypher
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromCypher
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromCypher
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromDB
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromDB
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromDB
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromData
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromData
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromData
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromDocument
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromDocument
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromDocument
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromPath
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromPath
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromPath
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromPaths
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromPaths
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.fromPaths
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.validateDocument
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.validateDocument
https://neo4j.com/docs/apoc/5/overview/apoc.graph/apoc.graph.validateDocument
https://neo4j.com/docs/apoc/5/overview/apoc.hashing/apoc.hashing.fingerprint
https://neo4j.com/docs/apoc/5/overview/apoc.hashing/apoc.hashing.fingerprint
https://neo4j.com/docs/apoc/5/overview/apoc.hashing/apoc.hashing.fingerprint

Qualified Name Type

apoc.hashing.fingerprintGraph &

Calculates a MD5 checksum over the full graph. This function uses in-memory data
structures. Unsuitable for cryptographic use-cases.

apoc.hashing.fingerprinting &

Calculates a MD5 checksum over a NODE or RELATIONSHIP (identical entities share the
same checksum). Unlike apoc.hashing.fingerprint(), this function supports a number
of config parameters. Unsuitable for cryptographic use-cases.

apoc.import

Qualified Name Type

apoc.import.csv & Procedure
Imports NODE and RELATIONSHIP values with the given labels and types from the
provided CSV file.

apoc.import.graphm| & Procedure

Imports a graph from the provided GraphML file.

apoc.json

Qualified Name Type

apoc.json.path &

Returns the given JSON path.

apoc.label

Qualified Name Type

apoc.label.exists &

Returns true or false depending on whether or not the given label exists.

apoc.load

45

https://neo4j.com/docs/apoc/5/overview/apoc.hashing/apoc.hashing.fingerprintGraph
https://neo4j.com/docs/apoc/5/overview/apoc.hashing/apoc.hashing.fingerprintGraph
https://neo4j.com/docs/apoc/5/overview/apoc.hashing/apoc.hashing.fingerprintGraph
https://neo4j.com/docs/apoc/5/overview/apoc.hashing/apoc.hashing.fingerprinting
https://neo4j.com/docs/apoc/5/overview/apoc.hashing/apoc.hashing.fingerprinting
https://neo4j.com/docs/apoc/5/overview/apoc.hashing/apoc.hashing.fingerprinting
https://neo4j.com/docs/apoc/5/overview/apoc.import/apoc.import.csv
https://neo4j.com/docs/apoc/5/overview/apoc.import/apoc.import.csv
https://neo4j.com/docs/apoc/5/overview/apoc.import/apoc.import.csv
https://neo4j.com/docs/apoc/5/overview/apoc.import/apoc.import.graphml
https://neo4j.com/docs/apoc/5/overview/apoc.import/apoc.import.graphml
https://neo4j.com/docs/apoc/5/overview/apoc.import/apoc.import.graphml
https://neo4j.com/docs/apoc/5/overview/apoc.json/apoc.json.path
https://neo4j.com/docs/apoc/5/overview/apoc.json/apoc.json.path
https://neo4j.com/docs/apoc/5/overview/apoc.json/apoc.json.path
https://neo4j.com/docs/apoc/5/overview/apoc.label/apoc.label.exists
https://neo4j.com/docs/apoc/5/overview/apoc.label/apoc.label.exists
https://neo4j.com/docs/apoc/5/overview/apoc.label/apoc.label.exists

Qualified Name Type

apoc.load.json & Procedure
Imports JSON file as a stream of values if the given JSON file is a LIST<ANY>. If the given
JSON file is a MAP, this procedure imports a single value instead.

apoc.load.jsonArray & Procedure
Loads array from a JSON URL (e.g. web-API) to then import the given JSON file as a
stream of values.

apoc.load.xm| & Procedure
Loads a single nested MAP from an XML URL (e.g. web-API).

apoc.lock
Qualified Name Type
apoc.lock.all & Procedure

Acquires a write lock on the given NODE and RELATIONSHIP values.

apoc.lock.nodes & Procedure
Acquires a write lock on the given NODE values.

apoc.lock.read.nodes & Procedure
Acquires a read lock on the given NODE values.

apoc.lock.read.rels & Procedure
Acquires a read lock on the given RELATIONSHIP values.

apoc.lock.rels & Procedure
Acquires a write lock on the given RELATIONSHIP values.

apoc.map
Qualified Name Type
apoc.map.clean & Function

Filters the keys and values contained in the given LIST<ANY> values.

apoc.map.flatten & Function
Flattens nested items in the given MAP. This function is the reverse of the

apoc.map.unflatten function.

46

https://neo4j.com/docs/apoc/5/overview/apoc.load/apoc.load.json
https://neo4j.com/docs/apoc/5/overview/apoc.load/apoc.load.json
https://neo4j.com/docs/apoc/5/overview/apoc.load/apoc.load.json
https://neo4j.com/docs/apoc/5/overview/apoc.load/apoc.load.jsonArray
https://neo4j.com/docs/apoc/5/overview/apoc.load/apoc.load.jsonArray
https://neo4j.com/docs/apoc/5/overview/apoc.load/apoc.load.jsonArray
https://neo4j.com/docs/apoc/5/overview/apoc.load/apoc.load.xml
https://neo4j.com/docs/apoc/5/overview/apoc.load/apoc.load.xml
https://neo4j.com/docs/apoc/5/overview/apoc.load/apoc.load.xml
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.all
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.all
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.all
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.read.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.read.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.read.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.read.rels
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.read.rels
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.read.rels
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.rels
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.rels
https://neo4j.com/docs/apoc/5/overview/apoc.lock/apoc.lock.rels
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.clean
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.clean
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.clean
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.flatten
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.flatten
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.flatten

Qualified Name

apoc.map.fromLists &
Creates a MAP from the keys and values in the given LIST<ANY> values.

apoc.map.fromNodes &
Returns a MAP of the given prop to the node of the given label.

apoc.map.fromPairs &
Creates a MAP from the given LIST<LIST<ANY>> of key-value pairs.

apoc.map.fromValues &
Creates a MAP from the alternating keys and values in the given LIST<ANY>.

apoc.map.get &
Returns a value for the given key. If the given key does not exist, or lacks a default
value, this function will throw an exception.

apoc.map.groupBy &
Creates a MAP of the LIST<ANY> keyed by the given property, with single values.

apoc.map.groupByMulti &

Creates a MAP of the LIST<ANY> values keyed by the given property, with the LIST<ANY>

values.

apoc.map.merge &
Merges the two given MAP values into one MAP.

apoc.map.mergelList &
Merges all MAP values in the given LIST<MAP<STRING, ANY>>into one MAP.

apoc.map.mget E
Returns a LIST<ANY> for the given keys. If one of the keys does not exist, or lacks a
default value, this function will throw an exception.

apoc.map.removeKey &
Removes the given key from the MAP (recursively if recursive is true).

apoc.map.removeKeys &
Removes the given keys from the MAP (recursively if recursive is true).

apoc.map.setEntry &
Adds or updates the given entry in the MAP.

Type

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

47

https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.fromLists
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.fromLists
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.fromLists
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.fromNodes
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.fromNodes
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.fromNodes
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.fromPairs
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.fromPairs
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.fromPairs
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.fromValues
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.fromValues
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.fromValues
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.get
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.get
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.get
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.groupBy
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.groupBy
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.groupBy
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.groupByMulti
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.groupByMulti
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.groupByMulti
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.merge
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.merge
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.merge
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.mergeList
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.mergeList
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.mergeList
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.mget
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.mget
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.mget
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.removeKey
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.removeKey
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.removeKey
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.removeKeys
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.removeKeys
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.removeKeys
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setEntry
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setEntry
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setEntry

Qualified Name

apoc.map.setKey &
Adds or updates the given entry in the MAP.

apoc.map.setLists &
Adds or updates the given keys/value pairs provided in LIST<ANY> format (e.g. [key1,
key2],[valuel, value2]) in a MAP.

apoc.map.setPairs &
Adds or updates the given key/value pairs (e.g. [key1,valuel],[key2,value2]) in a MAP.

apoc.map.setValues &
Adds or updates the alternating key/value pairs (e.g. [keyl,valuel key2,value?]) in a
MAP.

apoc.map.sortedProperties &
Returns a LIST<ANY> of key/value pairs. The pairs are sorted by alphabetically by key,
with optional case sensitivity.

apoc.map.submap &
Returns a sub-map for the given keys. If one of the keys does not exist, or lacks a
default value, this function will throw an exception.

apoc.map.unflatten &
Unflattens items in the given MAP to nested items. This function is the reverse of the
apoc.map.flatten function.

apoc.map.updateTree &
Adds the data MAP on each level of the nested tree, where the key-value pairs match.

apoc.map.values &
Returns a LIST<ANY> indicated by the given keys (returns a null value if a given key is
missing).

apoc.math

Qualified Name

apoc.math.maxByte &
Returns the maximum value of a byte.

48

Type

Function

Function

Function

Function

Function

Function

Function

Function

Function

Type

Function

https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setKey
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setKey
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setKey
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setLists
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setLists
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setLists
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setPairs
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setPairs
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setPairs
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setValues
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setValues
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.setValues
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.sortedProperties
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.sortedProperties
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.sortedProperties
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.submap
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.submap
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.submap
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.unflatten
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.unflatten
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.unflatten
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.updateTree
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.updateTree
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.updateTree
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.values
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.values
https://neo4j.com/docs/apoc/5/overview/apoc.map/apoc.map.values
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.maxByte
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.maxByte
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.maxByte

Qualified Name

apoc.math.maxDouble &
Returns the largest positive finite value of type double.

apoc.math.maxInt &
Returns the maximum value of an integer.

apoc.math.maxLong &
Returns the maximum value of a long.

apoc.math.minByte &
Returns the minimum value of a byte.

apoc.math.minDouble &
Returns the smallest positive non-zero value of type double.

apoc.math.minlntE
Returns the minimum value of an integer.

apoc.math.minLong &

Returns the minimum value of a long.

apoc.math.regr &
Returns the coefficient of determination (R-squared) for the values of propertyY and
propertyX in the given label.

apoc.merge

Qualified Name

apoc.merge.node &
Merges the given NODE values with the given dynamic labels.

apoc.merge.node.eager &

Merges the given NODE values with the given dynamic labels eagerly.

apoc.merge.relationship &
Merges the given RELATIONSHIP values with the given dynamic types/properties.

apoc.merge.relationship.eager &

Merges the given RELATIONSHIP values with the given dynamic types/properties eagerly.

Function

Function

Function

Function

Function

Function

Function

Procedure

©
o

Type

Procedure

Procedure

Procedure

Procedure

49

https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.maxDouble
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.maxDouble
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.maxDouble
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.maxInt
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.maxInt
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.maxInt
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.maxLong
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.maxLong
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.maxLong
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.minByte
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.minByte
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.minByte
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.minDouble
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.minDouble
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.minDouble
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.minInt
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.minInt
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.minInt
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.minLong
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.minLong
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.minLong
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.regr
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.regr
https://neo4j.com/docs/apoc/5/overview/apoc.math/apoc.math.regr
https://neo4j.com/docs/apoc/5/overview/apoc.merge/apoc.merge.node
https://neo4j.com/docs/apoc/5/overview/apoc.merge/apoc.merge.node
https://neo4j.com/docs/apoc/5/overview/apoc.merge/apoc.merge.node
https://neo4j.com/docs/apoc/5/overview/apoc.merge/apoc.merge.node.eager
https://neo4j.com/docs/apoc/5/overview/apoc.merge/apoc.merge.node.eager
https://neo4j.com/docs/apoc/5/overview/apoc.merge/apoc.merge.node.eager
https://neo4j.com/docs/apoc/5/overview/apoc.merge/apoc.merge.relationship
https://neo4j.com/docs/apoc/5/overview/apoc.merge/apoc.merge.relationship
https://neo4j.com/docs/apoc/5/overview/apoc.merge/apoc.merge.relationship
https://neo4j.com/docs/apoc/5/overview/apoc.merge/apoc.merge.relationship.eager
https://neo4j.com/docs/apoc/5/overview/apoc.merge/apoc.merge.relationship.eager
https://neo4j.com/docs/apoc/5/overview/apoc.merge/apoc.merge.relationship.eager

apoc.meta

Qualified Name

apoc.meta.cypher.isType &
Returns true if the given value matches the given type.

apoc.meta.cypher.type &
Returns the type name of the given value.

apoc.meta.cypher.types E
Returns a MAP containing the type names of the given values.

apoc.meta.data &
Examines the full graph and returns a table of metadata.

apoc.meta.graph &
Examines the full graph and returns a meta-graph.

apoc.meta.graphSample &
Examines the full graph and returns a meta-graph. Unlike apoc.meta. graph, this
procedure does not filter away non-existing paths.

apoc.meta.nodeTypeProperties &
Examines the full graph and returns a table of metadata with information about the
NODE values therein.

apoc.meta.relTypeProperties &
Examines the full graph and returns a table of metadata with information about the
RELATIONSHIP values therein.

apoc.meta.schema &

Examines the given sub-graph and returns metadata as a MAP.

apoc.meta.stats &
Returns the metadata stored in the transactional database statistics.

apoc.meta.subGraph &
Examines the given sub-graph and returns a meta-graph.

apoc.neighbors

50

Type

Function

Function

Function

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

Procedure

https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.cypher.isType
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.cypher.isType
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.cypher.isType
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.cypher.type
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.cypher.type
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.cypher.type
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.cypher.types
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.cypher.types
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.cypher.types
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.data
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.data
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.data
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.graph
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.graph
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.graph
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.graphSample
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.graphSample
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.graphSample
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.nodeTypeProperties
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.nodeTypeProperties
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.nodeTypeProperties
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.relTypeProperties
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.relTypeProperties
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.relTypeProperties
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.schema
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.schema
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.schema
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.stats
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.stats
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.stats
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.subGraph
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.subGraph
https://neo4j.com/docs/apoc/5/overview/apoc.meta/apoc.meta.subGraph

Qualified Name Type

apoc.neighbors.athop & Procedure
Returns all NODE values connected by the given RELATIONSHIP types at the specified
distance.

apoc.neighbors.athop.count & Procedure
Returns the count of all NODE values connected by the given RELATIONSHIP types at the
specified distance.

apoc.neighbors.byhop & Procedure
Returns all NODE values connected by the given RELATIONSHIP types within the specified

distance. Returns LIST<NODE> values, where each PATH of NODE values represents one
row of the LIST<NODE> values.

apoc.neighbors.byhop.count & Procedure
Returns the count of all NODE values connected by the given RELATIONSHIP types within
the specified distance.

apoc.neighbors.tohop & Procedure
Returns all NODE values connected by the given RELATIONSHIP types within the specified
distance. NODE values are returned individually for each row.

apoc.neighbors.tohop.count & Procedure
Returns the count of all NODE values connected by the given RELATIONSHIP values in the
pattern within the specified distance.

apoc.node
Qualified Name Type
apoc.node.degree & Function

Returns the total degrees of the given NODE.

apoc.node.degree.in & Function
Returns the total number of incoming RELATIONSHIP values connected to the given NODE.

apoc.node.degree.out & Function
Returns the total number of outgoing RELATIONSHIP values from the given NODE.

apoc.node.id & Function
Returns the id for the given virtual NODE.

51

https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.athop
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.athop
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.athop
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.athop.count
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.athop.count
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.athop.count
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.byhop
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.byhop
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.byhop
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.byhop.count
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.byhop.count
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.byhop.count
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.tohop
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.tohop
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.tohop
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.tohop.count
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.tohop.count
https://neo4j.com/docs/apoc/5/overview/apoc.neighbors/apoc.neighbors.tohop.count
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.degree
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.degree
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.degree
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.degree.in
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.degree.in
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.degree.in
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.degree.out
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.degree.out
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.degree.out
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.id
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.id
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.id

Qualified Name

apoc.node.labels &
Returns the labels for the given virtual NODE.

apoc.node.relationship.exists &
Returns a BOOLEAN based on whether the given NODE has a connecting RELATIONSHIP (or
whether the given NODE has a connecting RELATIONSHIP of the given type and direction).

apoc.node.relationship.types &
Returns a LIST<STRING> of distinct RELATIONSHIP types for the given NODE.

apoc.node.relationships.exist &

Returns a BOOLEAN based on whether the given NODE has connecting RELATIONSHIP
values (or whether the given NODE has connecting RELATIONSHIP values of the given
type and direction).

apoc.nodes

Qualified Name

apoc.nodes.collapse &

Merges NODE values together in the given LIST<NODE>. The NODE values are then
combined to become one NODE, with all labels of the previous NODE values attached to it,
and all RELATIONSHIP values pointing to it.

apoc.nodes.connected &
Returns true when a given NODE is directly connected to another given NODE. This
function is optimized for dense nodes.

apoc.nodes.delete &
Deletes all NODE values with the given ids.

apoc.nodes.get &
Returns all NODE values with the given ids.

apoc.nodes.group &
Allows for the aggregation of NODE values based on the given properties. This
procedure returns virtual NODE values.

apoc.nodes.isDense &
Returns true if the given NODE is a dense node.

52

Type

Function

Function

Function

Function

Type

Procedure

Function

Procedure

Procedure

Procedure

Function

https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.labels
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.labels
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.labels
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.relationship.exists
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.relationship.exists
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.relationship.exists
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.relationship.types
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.relationship.types
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.relationship.types
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.relationships.exist
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.relationships.exist
https://neo4j.com/docs/apoc/5/overview/apoc.node/apoc.node.relationships.exist
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.collapse
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.collapse
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.collapse
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.connected
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.connected
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.connected
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.delete
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.delete
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.delete
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.get
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.get
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.get
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.group
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.group
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.group
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.isDense
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.isDense
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.isDense

Qualified Name Type

apoc.nodes.link & Procedure
Creates a linked list of the given NODE values connected by the given RELATIONSHIP type.

apoc.nodes.relationship.types & Function
Returns a LIST<STRING> of distinct RELATIONSHIP types from the given LIST<NODE>
values.

apoc.nodes.relationships.exist & Function
Returns a BOOLEAN based on whether or not the given NODE values have the given
RELATIONSHIP values.

apoc.nodes.rels & Procedure
Returns all RELATIONSHIP values with the given ids.

apoc.number

Qualified Name Type

apoc.number.arabicToRoman & Function
Converts the given Arabic numbers to Roman numbers.

apoc.number.exact.add & Function
Returns the result of adding the two given large numbers (using Java BigDecimal).

apoc.number.exact.div =) Function

Returns the result of dividing a given large number with another given large number
(using Java BigDecimal).

apoc.number.exact.mul & Function
Returns the result of multiplying two given large numbers (using Java BigDecimal).

apoc.number.exact.sub & Function
Returns the result of subtracting a given large number from another given large number
(using Java BigDecimal).

apoc.number.exact.toExact & Function
Returns the exact value of the given number (using Java BigDecimal).

apoc.number.exact.toFIoatE Function

Returns the FLOAT of the given large number (using Java BigDecimal).

53

https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.link
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.link
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.link
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.relationship.types
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.relationship.types
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.relationship.types
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.relationships.exist
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.relationships.exist
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.relationships.exist
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.rels
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.rels
https://neo4j.com/docs/apoc/5/overview/apoc.nodes/apoc.nodes.rels
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.arabicToRoman
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.arabicToRoman
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.arabicToRoman
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.add
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.add
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.add
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.div
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.div
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.div
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.mul
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.mul
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.mul
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.sub
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.sub
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.sub
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.toExact
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.toExact
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.toExact
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.toFloat
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.toFloat
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.toFloat

Qualified Name Type

apoc.number.exact.tolnteger & Function
Returns the INTEGER of the given large number (using Java BigDecimal).

apoc.number.format & Function

Formats the given INTEGER or FLOAT using the given pattern and language to produce a
STRING.

apoc.number.parseFloat & Function
Parses the given STRING using the given pattern and language to produce a FLOAT.

apoc.number.parselnt & Function
Parses the given STRING using the given pattern and language to produce a INTEGER.

apoc.number.romanToArabic & Function

Converts the given Roman numbers to Arabic numbers.

apoc.path

Qualified Name Type

apoc.path.combine & Function
Combines the two given PATH values into one PATH.

apoc.path.create & Function
Returns a PATH from the given start NODE and LIST<RELATIONSHIP>.

apoc.path.elements & Function
Converts the given PATH into @ LIST<NODE | RELATIONSHIP>.

apoc.path.expand & Procedure
Returns PATH values expanded from the start NODE following the given RELATIONSHIP
types from min-depth to max-depth.

apoc.path.expandConfig & Procedure
Returns PATH values expanded from the start NODE with the given RELATIONSHIP types
from min-depth to max-depth.

apoc.path.slice @ Function

Returns a new PATH of the given length, taken from the given PATH at the given offset.

54

https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.toInteger
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.toInteger
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.exact.toInteger
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.format
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.format
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.format
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.parseFloat
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.parseFloat
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.parseFloat
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.parseInt
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.parseInt
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.parseInt
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.romanToArabic
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.romanToArabic
https://neo4j.com/docs/apoc/5/overview/apoc.number/apoc.number.romanToArabic
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.combine
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.combine
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.combine
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.create
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.create
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.create
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.elements
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.elements
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.elements
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.expand
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.expand
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.expand
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.expandConfig
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.expandConfig
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.expandConfig
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.slice
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.slice
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.slice

Qualified Name Type

apoc.path.spanningTree & Procedure
Returns spanning tree PATH values expanded from the start NODE following the given
RELATIONSHIP types to max-depth.

apoc.path.subgraphAll & Procedure
Returns the sub-graph reachable from the start NODE following the given RELATIONSHIP
types to max-depth.

apoc.path.subgraphNodes & Procedure
Returns the NODE values in the sub-graph reachable from the start NODE following the
given RELATIONSHIP types to max-depth.

apoc.periodic

Qualified Name Type

apoc.periodic.cancel & Procedure
Cancels the given background job.

apoc.periodic.commit & Procedure
Runs the given statement in separate batched transactions.

apoc.periodic.countdown & Procedure
Runs a repeatedly called background statement until it returns 0.

apoc.periodic.iterate & Procedure
Runs the second statement for each item returned by the first statement. This
procedure returns the number of batches and the total number of processed rows.

apoc.periodic.list & Procedure
Returns a LIST<ANY> of all background jobs.

apoc.periodic.repeat & Procedure
Runs a repeatedly called background job. To stop this procedure, use

apoc.periodic.cancel.

apoc.periodic.submit & Procedure

Creates a background job which runs the given Cypher statement once.

55

https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.spanningTree
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.spanningTree
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.spanningTree
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.subgraphAll
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.subgraphAll
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.subgraphAll
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.subgraphNodes
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.subgraphNodes
https://neo4j.com/docs/apoc/5/overview/apoc.path/apoc.path.subgraphNodes
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.cancel
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.cancel
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.cancel
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.commit
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.commit
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.commit
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.countdown
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.countdown
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.countdown
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.iterate
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.iterate
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.iterate
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.list
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.list
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.list
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.repeat
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.repeat
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.repeat
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.submit
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.submit
https://neo4j.com/docs/apoc/5/overview/apoc.periodic/apoc.periodic.submit

apoc.refactor

Qualified Name Type
apoc.refactor.categorize &

Creates new category NODE values from NODE values in the graph with the specified
sourceKey as one of its property keys. The new category NODE values are then
connected to the original NODE values with a RELATIONSHIP of the given type.

apoc.refactor.cloneNodes & Procedure

Clones the given NODE values with their labels and properties. It is possible to skip any
NODE properties using skipProperties (note: this only skips properties on NODE values and
not their RELATIONSHIP values).

apoc.refactor.cloneSubgraph & Procedure

Clones the given NODE values with their labels and properties (optionally skipping any
properties in the skipProperties LIST<STRING> via the config MAP), and clones the given
RELATIONSHIP values. If no RELATIONSHIP values are provided, all existing RELATIONSHIP
values between the given NODE values will be cloned.

apoc.refactor.cloneSubgraphFromPaths & Procedure
Clones a sub-graph defined by the given LIST<PATH> values. It is possible to skip any
NODE properties using the skipProperties LIST<STRING> via the config MAP.

apoc.refactor.collapseNode & Procedure
Collapses the given NODE and replaces it with a RELATIONSHIP of the given type.

apoc.refactor.extractNode & Procedure
Expands the given RELATIONSHIP VALUES into intermediate NODE VALUES. The
intermediate NODE values are connected by the given outType and inType.

apoc.refactor.from & Procedure
Redirects the given RELATIONSHIP to the given start NODE.

apoc.refactor.invert & Procedure
Inverts the direction of the given RELATTONSHIP.

apoc.refactor.mergeNodes & Procedure
Merges the given LIST<NODE> onto the first NODE in the LIST<NODE>. All RELATIONSHIP
values are merged onto that NODE as well.

56

https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.categorize
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.categorize
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.categorize
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.cloneNodes
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.cloneNodes
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.cloneNodes
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.cloneSubgraph
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.cloneSubgraph
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.cloneSubgraph
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.cloneSubgraphFromPaths
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.cloneSubgraphFromPaths
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.cloneSubgraphFromPaths
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.collapseNode
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.collapseNode
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.collapseNode
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.extractNode
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.extractNode
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.extractNode
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.from
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.from
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.from
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.invert
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.invert
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.invert
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.mergeNodes
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.mergeNodes
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.mergeNodes

Qualified Name Type

apoc.refactor.mergeRelationships & Procedure
Merges the given LIST<RELATIONSHIP> onto the first RELATIONSHIP in the

LIST<RELATIONSHIP>.

apoc.refactor.normalizeAsBoolean & Procedure

Refactors the given property to a BOOLEAN.

apoc.refactor.rename.label & Procedure
Renames the given label from oldLabel to newlLabel for all NODE values. If a LIST<NODE>
is provided, the renaming is applied to the NODE values within this LIST<NODE> only.

apoc.refactor.rename.nodeProperty & Procedure
Renames the given property from oldName to newName for all NODE values. If a LIST<NODE>
is provided, the renaming is applied to the NODE values within this LIST<NODE> only.

apoc.refactor.rename.type & Procedure
Renames all RELATIONSHIP values with type o1dType to newType. If a

LIST<RELATIONSHIP> is provided, the renaming is applied to the RELATIONSHIP values

within this LIST<RELATIONSHIP> only.

apoc.refactor.rename.typeProperty & Procedure
Renames the given property from oldName to newName for all RELATIONSHIP values. If a
LIST<RELATIONSHIP> is provided, the renaming is applied to the RELATIONSHIP values

within this LIST<RELATIONSHIP> only.

apoc.refactor.setType & Procedure
Changes the type of the given RELATIONSHIP.

apoc.refactor.to & Procedure
Redirects the given RELATIONSHIP to the given end NODE.

apoc.rel
Qualified Name Type
apoc.rel.id & Function

Returns the id for the given virtual RELATTONSHIP.

apoc.rel.type & Function
Returns the type for the given virtual RELATIONSHIP.

57

https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.mergeRelationships
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.mergeRelationships
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.mergeRelationships
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.normalizeAsBoolean
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.normalizeAsBoolean
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.normalizeAsBoolean
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.rename.label
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.rename.label
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.rename.label
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.rename.nodeProperty
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.rename.nodeProperty
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.rename.nodeProperty
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.rename.type
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.rename.type
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.rename.type
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.rename.typeProperty
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.rename.typeProperty
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.rename.typeProperty
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.setType
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.setType
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.setType
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.to
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.to
https://neo4j.com/docs/apoc/5/overview/apoc.refactor/apoc.refactor.to
https://neo4j.com/docs/apoc/5/overview/apoc.rel/apoc.rel.id
https://neo4j.com/docs/apoc/5/overview/apoc.rel/apoc.rel.id
https://neo4j.com/docs/apoc/5/overview/apoc.rel/apoc.rel.id
https://neo4j.com/docs/apoc/5/overview/apoc.rel/apoc.rel.type
https://neo4j.com/docs/apoc/5/overview/apoc.rel/apoc.rel.type
https://neo4j.com/docs/apoc/5/overview/apoc.rel/apoc.rel.type

apoc.schema

Qualified Name Type
apoc.schema.assert &

Drops all other existing indexes and constraints when dropExisting is true (default is
true). Asserts at the end of the operation that the given indexes and unique constraints
are there.

apoc.schema.node.constraintExists & Function
Returns a BOOLEAN depending on whether or not a constraint exists for the given NODE
label with the given property names.

apoc.schema.node.indexExists & Function
Returns a BOOLEAN depending on whether or not an index exists for the given NODE label
with the given property names.

apoc.schema.nodes & Procedure
Returns all indexes and constraints information for all NODE labels in the database. It is
possible to define a set of labels to include or exclude in the config parameters.

apoc.schema.properties.distinct & Procedure
Returns all distinct NODE property values for the given key.

apoc.schema.properties.distinctCount & Procedure
Returns all distinct property values and counts for the given key.

apoc.schema.relationship.constraintExists & Function
Returns a BOOLEAN depending on whether or not a constraint exists for the given
RELATIONSHIP type with the given property names.

apoc.schema.relationships & Procedure
Returns the indexes and constraints information for all the relationship types in the

database. It is possible to define a set of relationship types to include or exclude in the

config parameters.

apoc.scoring

Qualified Name Type
apoc.scoring.existence &

Returns the given score if true, O if false.

58

https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.assert
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.assert
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.assert
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.node.constraintExists
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.node.constraintExists
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.node.constraintExists
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.node.indexExists
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.node.indexExists
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.node.indexExists
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.nodes
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.properties.distinct
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.properties.distinct
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.properties.distinct
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.properties.distinctCount
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.properties.distinctCount
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.properties.distinctCount
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.relationship.constraintExists
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.relationship.constraintExists
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.relationship.constraintExists
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.relationships
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.relationships
https://neo4j.com/docs/apoc/5/overview/apoc.schema/apoc.schema.relationships
https://neo4j.com/docs/apoc/5/overview/apoc.scoring/apoc.scoring.existence
https://neo4j.com/docs/apoc/5/overview/apoc.scoring/apoc.scoring.existence
https://neo4j.com/docs/apoc/5/overview/apoc.scoring/apoc.scoring.existence

Qualified Name Type

apoc.scoring.pareto & Function
Applies a Pareto scoring function over the given INTEGER values.

apoc.search

Qualified Name Type
apoc.search.multiSearchReduced &

Returns a reduced representation of the NODE values found after a parallel search over
multiple indexes. The reduced NODE values representation includes: node id, node labels,
and the searched properties.

apoc.search.node & Procedure
Returns all the distinct NODE values found after a parallel search over multiple indexes.

apoc.search.nodeAll & Procedure
Returns all the NODE values found after a parallel search over multiple indexes.

apoc.search.nodeAllReduced & Procedure
Returns a reduced representation of the NODE values found after a parallel search over

multiple indexes. The reduced NODE values representation includes: node id, node labels,

and the searched properties.

apoc.search.nodeReduced & Procedure
Returns a reduced representation of the distinct NODE values found after a parallel

search over multiple indexes. The reduced NODE values representation includes: node id,

node labels, and the searched properties.

apoc.spatial
Qualified Name Type
apoc.spatial.geocode @ Procedure

Returns the geographic location (latitude, longitude, and description) of the given
address using a geocoding service (default: OpenStreetMap).

apoc.spatial.geocodeOnce & Procedure
Returns the geographic location (latitude, longitude, and description) of the given

address using a geocoding service (default: OpenStreetMap). This procedure returns at

most one result.

59

https://neo4j.com/docs/apoc/5/overview/apoc.scoring/apoc.scoring.pareto
https://neo4j.com/docs/apoc/5/overview/apoc.scoring/apoc.scoring.pareto
https://neo4j.com/docs/apoc/5/overview/apoc.scoring/apoc.scoring.pareto
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.multiSearchReduced
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.multiSearchReduced
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.multiSearchReduced
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.node
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.node
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.node
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.nodeAll
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.nodeAll
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.nodeAll
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.nodeAllReduced
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.nodeAllReduced
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.nodeAllReduced
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.nodeReduced
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.nodeReduced
https://neo4j.com/docs/apoc/5/overview/apoc.search/apoc.search.nodeReduced
https://neo4j.com/docs/apoc/5/overview/apoc.spatial/apoc.spatial.geocode
https://neo4j.com/docs/apoc/5/overview/apoc.spatial/apoc.spatial.geocode
https://neo4j.com/docs/apoc/5/overview/apoc.spatial/apoc.spatial.geocode
https://neo4j.com/docs/apoc/5/overview/apoc.spatial/apoc.spatial.geocodeOnce
https://neo4j.com/docs/apoc/5/overview/apoc.spatial/apoc.spatial.geocodeOnce
https://neo4j.com/docs/apoc/5/overview/apoc.spatial/apoc.spatial.geocodeOnce

Qualified Name Type

apoc.spatial.reverseGeocode & Procedure
Returns a textual address from the given geographic location (latitude, longitude) using

a geocoding service (default: OpenStreetMap). This procedure returns at most one

result.

apoc.spatial.sortByDistance & Procedure

Sorts the given collection of PATH values by the sum of their distance based on the
latitude/longitude values in the NODE values.

apoc.stats
Qualified Name Type
apoc.stats.degrees (=]

Returns the percentile groupings of the degrees on the NODE values connected by the
given RELATIONSHIP types.

apoc.temporal
Qualified Name Type
apoc.temporal.format & Function

Formats the given temporal value into the given time format.

apoc.temporal.formatDuration & Function
Formats the given duration into the given time format.

apoc.temporal.toZonedTemporal & Function
Parses the given date STRING using the specified format into the given time zone.

apoc.text
Qualified Name Type
apoc.text.base64Decode & Function

Decodes the given Base64 encoded STRING.

apoc.text.base64Encode & Function
Encodes the given STRING with Base64.

60

https://neo4j.com/docs/apoc/5/overview/apoc.spatial/apoc.spatial.reverseGeocode
https://neo4j.com/docs/apoc/5/overview/apoc.spatial/apoc.spatial.reverseGeocode
https://neo4j.com/docs/apoc/5/overview/apoc.spatial/apoc.spatial.reverseGeocode
https://neo4j.com/docs/apoc/5/overview/apoc.spatial/apoc.spatial.sortByDistance
https://neo4j.com/docs/apoc/5/overview/apoc.spatial/apoc.spatial.sortByDistance
https://neo4j.com/docs/apoc/5/overview/apoc.spatial/apoc.spatial.sortByDistance
https://neo4j.com/docs/apoc/5/overview/apoc.stats/apoc.stats.degrees
https://neo4j.com/docs/apoc/5/overview/apoc.stats/apoc.stats.degrees
https://neo4j.com/docs/apoc/5/overview/apoc.stats/apoc.stats.degrees
https://neo4j.com/docs/apoc/5/overview/apoc.temporal/apoc.temporal.format
https://neo4j.com/docs/apoc/5/overview/apoc.temporal/apoc.temporal.format
https://neo4j.com/docs/apoc/5/overview/apoc.temporal/apoc.temporal.format
https://neo4j.com/docs/apoc/5/overview/apoc.temporal/apoc.temporal.formatDuration
https://neo4j.com/docs/apoc/5/overview/apoc.temporal/apoc.temporal.formatDuration
https://neo4j.com/docs/apoc/5/overview/apoc.temporal/apoc.temporal.formatDuration
https://neo4j.com/docs/apoc/5/overview/apoc.temporal/apoc.temporal.toZonedTemporal
https://neo4j.com/docs/apoc/5/overview/apoc.temporal/apoc.temporal.toZonedTemporal
https://neo4j.com/docs/apoc/5/overview/apoc.temporal/apoc.temporal.toZonedTemporal
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.base64Decode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.base64Decode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.base64Decode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.base64Encode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.base64Encode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.base64Encode

Qualified Name Type

apoc.text.base64UrIDecode @ Function
Decodes the given Base64 encoded URL.

apoc.text.base64UrlEncode & Function
Encodes the given URL with Base64.

apoc.text.byteCount & Function
Returns the size of the given STRING in bytes.

apoc.text.bytes & Function
Returns the given STRING as bytes.

apoc.text.camelCase & Function
Converts the given STRING to camel case.

apoc.text.capitalize & Function
Capitalizes the first letter of the given STRING.

apoc.text.capitalizeAll & Function
Capitalizes the first letter of every word in the given STRING.

apoc.text.charAt & Function
Returns the INTEGER value of the character at the given index.

apoc.text.clean & Function

Strips the given STRING of everything except alpha numeric characters and converts it
to lower case.

apoc.text.code & Function
Converts the INTEGER value into a STRING.

apoc.text.compareCleaned & Function
Compares two given STRING values stripped of everything except alpha numeric
characters converted to lower case.

apoc.text.decapitalize & Function
Turns the first letter of the given STRING from upper case to lower case.

apoc.text.decapitalizeAll & Function

Turns the first letter of every word in the given STRING to lower case.

61

https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.base64UrlDecode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.base64UrlDecode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.base64UrlDecode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.base64UrlEncode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.base64UrlEncode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.base64UrlEncode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.byteCount
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.byteCount
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.byteCount
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.bytes
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.bytes
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.bytes
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.camelCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.camelCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.camelCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.capitalize
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.capitalize
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.capitalize
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.capitalizeAll
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.capitalizeAll
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.capitalizeAll
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.charAt
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.charAt
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.charAt
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.clean
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.clean
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.clean
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.code
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.code
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.code
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.compareCleaned
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.compareCleaned
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.compareCleaned
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.decapitalize
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.decapitalize
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.decapitalize
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.decapitalizeAll
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.decapitalizeAll
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.decapitalizeAll

Qualified Name

apoc.text.distance &
Compares the two given STRING values using the Levenshtein distance algorithm.

apoc.text.doubleMetaphone &
Returns the double metaphone phonetic encoding of all words in the given STRING
value.

apoc.text.format &
Formats the given STRING with the given parameters.

apoc.text.fuzzyMatch &
Performs a fuzzy match search of the two given STRING values.

apoc.text.hammingDistance &
Compares the two given STRING values using the Hamming distance algorithm.

apoc.text.hexCharAt &
Returns the hexadecimal value of the given STRING at the given index.

apoc.text.hexValue &
Returns the hexadecimal value of the given value.

apoc.text.indexOf &

Returns the first occurrence of the lookup STRING in the given STRING, or -1 if not found.

apoc.text.indexesOf &
Returns all occurrences of the lookup STRING in the given STRING, or an empty list if not
found.

apoc.text.jaroWinklerDistance &
Compares the two given STRING values using the Jaro-Winkler distance algorithm.

apoc.text.join &
Joins the given STRING values using the given delimiter.

apoc.text.levenshteinDistance &
Compares the given STRING values using the Levenshtein distance algorithm.

apoc.text.levenshteinSimilarity &
Returns the similarity (a value within 0 and 1) between the two given STRING values
based on the Levenshtein distance algorithm.

62

Type

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.distance
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.distance
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.distance
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.doubleMetaphone
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.doubleMetaphone
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.doubleMetaphone
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.format
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.format
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.format
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.fuzzyMatch
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.fuzzyMatch
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.fuzzyMatch
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.hammingDistance
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.hammingDistance
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.hammingDistance
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.hexCharAt
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.hexCharAt
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.hexCharAt
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.hexValue
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.hexValue
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.hexValue
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.indexOf
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.indexOf
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.indexOf
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.indexesOf
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.indexesOf
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.indexesOf
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.jaroWinklerDistance
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.jaroWinklerDistance
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.jaroWinklerDistance
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.join
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.join
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.join
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.levenshteinDistance
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.levenshteinDistance
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.levenshteinDistance
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.levenshteinSimilarity
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.levenshteinSimilarity
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.levenshteinSimilarity

Qualified Name

apoc.text.lpad &
Left pads the given STRING by the given width.

apoc.text.phonetic &
Returns the US_ENGLISH phonetic soundex encoding of all words of the STRING.

apoc.text.phoneticDelta &
Returns the US_ENGLISH soundex character difference between the two given STRING
values.

apoc.text.random &
Generates a random STRING to the given length using a length parameter and an
optional STRING of valid characters. Unsuitable for cryptographic use-cases.

apoc.text.regexGroups &
Returns all groups matching the given regular expression in the given text.

apoc.text.regreplace (=)
Finds and replaces all matches found by the given regular expression with the given
replacement.

apoc.text.repeat (=]
Returns the result of the given item multiplied by the given count.

apoc.text.replace @
Finds and replaces all matches found by the given regular expression with the given
replacement.

apoc.text.rpad &
Right pads the given STRING by the given width.

apoc.text.slug &
Replaces the whitespace in the given STRING with the given delimiter.

apoc.text.snakeCase &
Converts the given STRING to snake case.

apoc.text.sorensenDiceSimilarity &
Compares the two given STRING values using the Sgrensen-Dice coefficient formula,
with the provided IETF language tag.

Type

Function

Function

Procedure

Function

Function

Function

Function

Function

Function

Function

Function

Function

63

https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.lpad
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.lpad
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.lpad
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.phonetic
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.phonetic
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.phonetic
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.phoneticDelta
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.phoneticDelta
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.phoneticDelta
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.random
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.random
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.random
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.regexGroups
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.regexGroups
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.regexGroups
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.regreplace
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.regreplace
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.regreplace
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.repeat
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.repeat
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.repeat
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.replace
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.replace
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.replace
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.rpad
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.rpad
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.rpad
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.slug
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.slug
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.slug
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.snakeCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.snakeCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.snakeCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.sorensenDiceSimilarity
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.sorensenDiceSimilarity
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.sorensenDiceSimilarity

Qualified Name

apoc.text.split &

Splits the given STRING using a given regular expression as a separator.

apoc.text.swapCase &
Swaps the cases in the given STRING.

apoc.text.toCypher &
Converts the given value to a Cypher property STRING.

apoc.text.toUpperCase E
Converts the given STRING to upper case.

apoc.text.upperCamelCase &
Converts the given STRING to upper camel case.

apoc.text.urldecode =]
Decodes the given URL encoded STRING.

apoc.text.urlencode &
Encodes the given URL STRING.

apoc.util

Qualified Name

apoc.util.mds &

Returns the MD5 checksum of the concatenation of all STRING values in the given
LIST<ANY>. MD5 is a weak hashing algorithm which is unsuitable for cryptographic use-

cases.

apoc.util.shal &

Returns the SHA1 of the concatenation of all STRING values in the given LIST<ANY>.
SHA1 is a weak hashing algorithm which is unsuitable for cryptographic use-cases.

apoc.util.sha256 =

Returns the SHA256 of the concatenation of all STRING values in the given LIST<ANY>.

apoc.util.sha384 &

Returns the SHA384 of the concatenation of all STRING values in the given LIST<ANY>.

64

Type

Function

Function

Function

Function

Function

Function

Function

Type

Function

Function

Function

Function

https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.split
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.split
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.split
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.swapCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.swapCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.swapCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.toCypher
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.toCypher
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.toCypher
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.toUpperCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.toUpperCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.toUpperCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.upperCamelCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.upperCamelCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.upperCamelCase
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.urldecode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.urldecode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.urldecode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.urlencode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.urlencode
https://neo4j.com/docs/apoc/5/overview/apoc.text/apoc.text.urlencode
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.md5
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.md5
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.md5
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sha1
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sha1
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sha1
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sha256
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sha256
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sha256
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sha384
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sha384
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sha384

Qualified Name

apoc.util.sha512 &
Returns the SHA512 of the concatenation of all STRING values in the LIST<ANY>.

apoc.util.sleep &
Causes the currently running Cypher to sleep for the given duration of milliseconds (the
transaction termination is honored).

apoc.util.validate &
If the given predicate is true an exception is thrown.

apoc.util.validatePredicate &
If the given predicate is true an exception is thrown, otherwise it returns true (for use
inside WHERE subclauses).

apoc.warmup

Qualified Name

apoc.warmup.run &
Loads all NODE and RELATIONSHIP values in the database into memory.

apoc.xml|

Qualified Name

apoc.xml.parse &
Parses the given XML STRING as a MAP.

Type

Function

Procedure

Procedure

Function

Procedure

Deprecated

Type

65

https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sha512
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sha512
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sha512
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sleep
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sleep
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.sleep
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.validate
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.validate
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.validate
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.validatePredicate
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.validatePredicate
https://neo4j.com/docs/apoc/5/overview/apoc.util/apoc.util.validatePredicate
https://neo4j.com/docs/apoc/5/overview/apoc.warmup/apoc.warmup.run
https://neo4j.com/docs/apoc/5/overview/apoc.warmup/apoc.warmup.run
https://neo4j.com/docs/apoc/5/overview/apoc.warmup/apoc.warmup.run
https://neo4j.com/docs/apoc/5/overview/apoc.xml/apoc.xml.parse
https://neo4j.com/docs/apoc/5/overview/apoc.xml/apoc.xml.parse
https://neo4j.com/docs/apoc/5/overview/apoc.xml/apoc.xml.parse

Customer Metrics Integration (CMI)

[AuraDB Virtual Dedicated CIoud][AuraDS Enterprise][AuraDB Business Critical]

An application performance monitoring system can be configured to fetch metrics of AuraDB instances of
types:

e AuraDB Virtual Dedicated Cloud
e AuraDS Enterprise

e AuraDB Business Critical
This gives users access to their Neo4j Aura instance metric data for monitoring purposes.
Analyzing the metrics data allows users to:

e Optimize their Neo4j load
e Adjust Aura instance sizing

e Set up notifications

Process overview

Invite a new user to an
Aura project with the
"Metrics Integration

Reader" role.

Create Aura

OR >—> API credentials

for that user

Put metric endpoint URL(s)
— | and Aura APl credentials |[———
to the APM system

A

Setup

visualizations

Assign the "Metrics Example:
Integration Reader” role Prometheus
to an existing user and Grafana

Example:
Datadog

Detailed steps

1. Log in to Aura as project admin.
2. Make sure there is a dedicated Aura user to use for fetching metrics. You can either:
° Create a new user:

i. In"User Management" of Neo4j Aura, invite a new user, selecting "Metrics Integration Reader"
as arole.

66

https://console.neo4j.io/#user-management

Invite User X

Email

aura_metrics@company.com

Role

Metrics Integration Reader v

ii. Follow the invitation link and log in to Neo4j Aura.

ii. Confirm the project membership.

° Or you can find an existing user in "User Management" and change its role to "Metrics Integration

Reader"

o Capabilities of users with the role "Metrics Integration Reader" are limited to
fetching the metrics and getting a read-only view of the project.

3. Ensure you are logged in to Aura as the user selected in the previous step. In "Account Details", create

new Aura API credentials. Save client secret.

67

https://console.neo4j.io/#user-management
https://console.neo4j.io/#account

Create Aura API Credentials X

Client ID
KolX3jAmanRzri6QdAdluuvgB6k5B4Dh 0

Client Secret

MHIPmdOUnY2eB1VwagegpYzOFGpHEWYmIiUugpHKZfalCtm8GHyxZYfmxfm 0

A After closing this window, you will no longer be able to access your client
secret. We recommend either securely storing it or downloading it for
safekeeping.

Download m

4. Configure the APM system to fetch metrics from the URL(s) or configuration templates shown in
"Metrics Integration” of Neo4j Aura. Use oauth? type of authentication specifying the Client ID and
Client Secret created in the previous step. See examples for Prometheus and Grafana and Datadog
below.

5. Use the APM system to create visualizations, dashboards, and alarms based on Neo4j metrics.

Security

Metrics for a Neo4j Aura instance are only returned if all the following are true:

Authorization header of the metrics request contains a valid token.

The token was issued for an Aura user with "Metrics Integration Reader" role.

Project has instances of types Enterprise (Virtual Dedicated Cloud) or Business Critical.

The specified instance belongs to the specified project.

<!-- vale Neo4j.ProductDeprecations = NO -->

The legacy term Enterprise is still used within the codebase and API. However, in the
o Aura console and documentation, the AuraDB Enterprise project type is now known as
AuraDB Virtual Dedicated Cloud.

<!I-- vale Neo4j.ProductDeprecations = YES -->

Revoke access to metrics

To revoke a user’s access to metrics of a specific project, remove the user from that project in "User

68

https://console.neo4j.io/#metrics-integration
https://console.neo4j.io/#user-management

Management". After that, the user still exists but its connection to the project is removed.

The revocation described takes effect after the authorization caches expire, which takes
approximately 5 minutes. It results in HTTP 401 being returned, along with the message

o User doesn’t have access to Metrics resources. However, if you remove only the
Aura API credentials used to retrieve metrics, the revocation will take effect only after

the tokens issued with these credentials expire, as no new token can be issued anymore.
Currently used token expiration time is 1 hour.

Metric labels

Depending on the metric, the following labels are applied:

e aggregation: the aggregation used to calculate the metric value, set on every metric. Since the Neo4j
instance is deployed as a Neo4j cluster, aggregations are performed to combine values from all
relevant cluster nodes. The following aggregations are used: MIN, MAX, AVG and SUM.

e instance_id: the Aura instance ID the metric is reported for, set on every metric.

e database: the name of the Neo4j database the metric is reported for. Set to neo4j by default.
Example

HELP neo4j_database_count_node The total number of nodes in the database.
TYPE neo4j_database_count_node gauge

neo4j_database_count_node{aggregation="MAX", database="neo4j",instance_id="78e7c3e0"} 778114.000000
1711462853000

Looking up metric name in Neo4j Aura Advanced Metrics

In Neo4j Aura Advanced Metrics, it is possible to find out the metric name that corresponds to the chart, by
using the chart menu item "Metrics Integration" as shown.

69

https://console.neo4j.io/#user-management

Metrics Integration Docs o

You can forward metrics to desired platforms via Metrics Integration. &)

The metric "CPU Usage" is exposed via Metrics Integration under the name

neo4j_aura_cpu_usage. 0

Metric scrape interval

Recommended scrape interval for metrics is in the range of 30 seconds up to 2 minutes, depending on
requirements. The metrics endpoint caches metrics for 30 seconds.

Example using Prometheus

Install Prometheus

One way is to get a tarball from https:/prometheus.io/docs/prometheus/latest/installation/

Configure Prometheus

To monitor one or more instances, add a section to the Prometheus configuration file prometheus.yml.

Copy the configuration section proposed in Metrics Integration, as shown.

9 Replace the placeholders <AURA_CLIENT_ID> and <AURA_CLIENT_SECRET> with
corresponding values created in the previous step.

70

https://prometheus.io/docs/prometheus/latest/installation/
https://console.neo4j.io/#metrics-integration

Prometheus job configuration

global:
scrape_interval: "1m'
scrape_timeout: "10s’
evaluation_interval: '5s'
scrape_configs:
- job_name: 'aura-metrics'
metrics_path: '/api/46f476d2-eea2-5008-b236-6e3e78020d8a/metrics’
scheme: "https'
static_configs:
- targets: ['customer-metrics-api-devcmi.neo4j-dev.io']
oauth2:
client_id: '<AURA_CLIENT_ID>'
client_secret: '<AURA_CLIENT_SECRET>'
token_url: 'https://api-devcmi.neo4j-dev.io/oauth/token’

For details, see Prometheus configuration reference.

Start Prometheus

./prometheus --config.file=prometheus.yml

Test that metrics are fetched

Open http://localhost:9090 and enter a metric name or expression in the search field (ex.
neo4j_aura_cpu_usage).

Use Grafana

Install and configure Grafana, adding the endpoint of the Prometheus instance configured in the previous
step as a data source. You can create visualizations, dashboards, and alarms based on Neo4j metrics.

Example using Datadog

Configure an endpoint with token authentication

Edit /etc/datadog-agent/conf.d/openmetrics.d/conf.yaml as follows:

71

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
http://localhost:9090

o Replace the placeholders <ENDPOINT_URL>, <AURA_CLIENT_ID> and <AURA_CLIENT_SECRET>
with corresponding values from the previous steps.

/etc/datadog-agent/conf.d/openmetrics.d/conf.yaml

init_config:
instances:
- openmetrics_endpoint: <ENDPOINT_URL>
metrics:
- neodj_.*
auth_token:
reader:
type: oauth
url: https://api.neo4j.io/oauth/token
client_id: <AURA_CLIENT_ID>
client_secret: <AURA_CLIENT_SECRET>
writer:
type: header
name: Authorization
value: "Bearer <TOKEN>"

For details, see Datadog Agent documentation and configuration reference.

Test that metrics are fetched

e sudo systemctl restart datadog-agent

e Watch /var/log/datadog/* to see if fetching metrics happens or if there are warnings regarding

parsing the configuration.

e Check in Datadog metric explorer to see if metrics appear (after a couple of minutes).

Programmatic support

Aura API for Metrics Integration
e Aura API supports fetching metrics integration endpoints using:
° endpoint /tenants/{tenantId}/metrics-integration (for project metrics)

° JSON property metrics_integration_url as part of /instances/{instanceId} response (for
instance metrics)

e Reference: Aura AP| Specification

o Project replaces Tenant in the console Ul and documentation. However, in the AP,
tenant remains the nomenclature.

Aura CLI for Metrics Integration

e Aura CLI has a subcommand for tenants command to fetch project metrics endpoint:

aura projects get-metrics-integration --tenant-id <YOUR_PROJECT_ID>

example output

{
3

endpoint: "https://customer-metrics-api.neo4j.io/api/v1/<YOUR_PROJECT_ID>/metrics"

extract endpoint
aura projects get-metrics-integration --project-id <YOUR_PROJECT_ID> | jgq '.endpoint'

72

https://docs.datadoghq.com/agent/?tab=Linux
https://github.com/DataDog/datadog-agent/blob/main/pkg/config/config_template.yaml
https://neo4j.com/docs/aura/platform/api/specification/

e Forinstance metrics endpoint, Aura CLI instances get command JSON output includes a new

property metrics_integration_url:

aura instances get --instance-id <YOUR_INSTANCE_ID>

example output
{
"id": "id",
"name": "Production",
"status": "running",
"tenant_id": "YOUR_PROJECT_ID",
"cloud_provider": "gcp",
"connection_url": "YOUR_CONNECTION_URL",
"metrics_integration_url": "https://customer-metrics-
api.neo4j.io/api/v1/<YOUR_PROJECT_ID>/<YOUR_INSTANCE_ID>/metrics",
"region": "europe-west1",
"type": "enterprise-db",
"memory": "8GB",
"storage": "16GB"
}

extract endpoint
aura instances get --instance-id <YOUR_INSTANCE_ID> | jq '.metrics_integration_url'

e Reference: Aura CLI| cheatsheet

Metrics granularity

The metrics returned by the integration endpoint are grouped based on the labels provided: aggregation,

instance_id, and database.

An Aura instance typically runs on multiple servers to achieve availability and workload scalability. These
servers are deployed across different Cloud Provider availability zones in the user-selected region.

Metrics Integration supports a more granular view of the Aura instance metrics with additional data points

for availability zone & instance mode combinations. This view can be enabled on demand.

0 Contact Customer Support to enable more granular metrics of instances for your project.
o There may be a delay in more granular metrics being available when a new Aura
instance is created. This is because of the way 'availability zone' data is collected.

Example metric data points

neo4j_aura_cpu_usage{aggregation="MAX",instance_id="a59d71ae",availability_zone="eu-west-
1a",instance_mode="PRIMARY"} 0.025457 1724245310000
neo4j_aura_cpu_usage{aggregation="MAX",instance_id="a59d71ae",availability_zone="eu-west-
1b",instance_mode="PRIMARY"} 0.047088 1724245310000
neo4j_aura_cpu_usage{aggregation="MAX",instance_id="a59d71ae",availability_zone="eu-west-
1c",instance_mode="PRIMARY"} 0.021874 1724245310000

Additional metric labels

e availability_zone - User selected Cloud provider zone.

e instance_mode - PRIMARY based on user selected workload requirement of reads and writes. (Minimum

3 primaries per instance)

73

https://neo4j.com/labs/aura-cli/1.0/cheatsheet/
https://support.neo4j.com/

Usage

The following is an example of gaining more insights into your Aura instance CPU usage for capacity
planning:

Example PromQL query to plot

max by(availability_zone) (neo4j_aura_cpu_usage{instance_mode="PRIMARY"}) / sum by(availability_zone)
(neo4j_aura_cpu_limit{instance_mode="PRIMARY"})

CPU Usage by Primaries in AZ

4%
3.75%
3.5%
3.25% ‘
3%

|
2.75%

0.25%

\ |
0% =
13:40 13:45 13:50 13:55 14:00 14:05 14:10

Name
== eu-west-Ta
eu-west-1b
== eu-west-1c
== europe-westl-b
== europe-westl-c

== europe-westl-d

Figure 13. Chart shows CPU usage of primaries by availability zone

Metric definitions

Out of Memory Errors

Metric name neo4j_aura_out_of_memory_errors_total

Description The total number of Out of Memory errors for the instance. Consider increasing the size of the
instance if any OOM errors.

Metric type Counter

Default aggregation SUM

CPU Available

Metric name neo4j_aura_cpu_limit
Description The total CPU cores assigned to the instance nodes.
Metric type Gauge

Default aggregation MAX

74

CPU Usage
Metric name

Description

Metric type

Default aggregation

Storage Total

Metric name
Description
Metric type

Default aggregation

Heap Used

Metric name

Description

Metric type

Default aggregation

neo4j_aura_cpu_usage

CPU usage (cores). CPU is used for planning and serving queries. If this metric is constantly spiking
or at its limits, consider increasing the size of your instance.

Gauge

MAX

neo4j_aura_storage_limit

The total disk storage assigned to the instance.
Gauge

MAX

neo4j_dbms_vm_heap_used_ratio

The percentage of configured heap memory in use. The heap space is used for query execution,
transaction state, management of the graph etc. The size needed for the heap is very dependent on
the nature of the usage of Neo4j. For example, long-running queries, or very complicated queries,
are likely to require a larger heap than simpler queries. To improve performance, the heap should
be large enough to sustain concurrent operations. This value should not exceed 80% for long
periods, short spikes can be normal. In case of performance issues, you may have to tune your
queries and monitor their memory usage, to determine whether the heap needs to be increased. If
the workload of Neo4j and performance of queries indicates that more heap space is required,
consider increasing the size of your instance. This helps avoid unwanted pauses for garbage
collection.

Gauge

MAX

Page Cache Usage Ratio

Metric name

Description

Metric type

Default aggregation

neo4j_dbms_page_cache_usage_ratio

The percentage of the allocated page cache in use. If this is close to or at 100%, then it is likely that
the hit ratio will start dropping, and you should consider increasing the size of your instance so that
more memory is available for the page cache.

Gauge

MIN

Bolt Connections Running

Metric name

Description

neo4j_dbms_bolt_connections_running

The total number of Bolt connections that are currently executing Cypher transactions and
returning results. This is a set of snapshots over time and may appear to spike if workloads are all
completed quickly.

75

Metric type Gauge

Default aggregation MAX

Bolt Connections Idle

Metric name neo4j_dbms_bolt_connections_idle

Description The total number of Bolt connections that are connected to the Aura database but not currently
executing Cypher or returning results.

Metric type Gauge

Default aggregation MAX

Bolt Connections Closed

Metric name neo4j_dbms_bolt_connections_closed_total

Description The total number of Bolt connections closed since startup. This includes both properly and
abnormally ended connections. This value may drop if background maintenance is performed by
Aura.

Metric type Counter

Default aggregation MAX

Bolt Connections Opened

Metric name neo4j_dbms_bolt_connections_opened_total

Description The total number of Bolt connections opened since startup. This includes both successful and failed
connections. This value may drop if background maintenance is performed by Aura.

Metric type Counter

Default aggregation MAX

Garbage Collection Young Generation

Metric name neo4j_dbms_vm_gc_time_g1_young_generation_total

Description Shows the total time since startup spent clearing up heap space for short lived objects. Young
garbage collections typically complete quickly, and the Aura instance waits while the garbage
collector is run. High values indicate that the instance is running low on memory for the workload
and you should consider increasing the size of your instance.

Metric type Counter

Default aggregation MAX

Garbage Collection Old Generation

Metric hame neo4j_dbms_vm_gc_time_g1_old_generation_total

Description Shows the total time since startup spent clearing up heap space for long-lived objects. Old garbage
collections can take time to complete, and the Aura instance waits while the garbage collector is
run. High values indicate that there are long-running processes or queries that could be optimized,
or that your instance is running low on CPU or memory for the workload and you should consider
reviewing these metrics and possibly increasing the size of your instance.

76

Metric type Counter

Default aggregation MAX

Replan Events

Metric name neo4j_database_cypher_replan_events_total

Description The total number of times Cypher has replanned a query since the server started. If this spikes or is
increasing, check that the queries executed are using parameters correctly. This value may drop if
background maintenance is performed by Aura.

Metric type Counter

Default aggregation MAX

Active Read Transactions

Metric name neo4j_database_transaction_active_read
Description The number of currently active read transactions.
Metric type Gauge

Default aggregation MAX

Active Write Transactions

Metric name neo4j_database_transaction_active_write
Description The number of active write transactions.
Metric type Gauge

Default aggregation MAX

Committed Transactions

Metric name neo4j_database_transaction_committed_total

Description The total number of committed transactions since the server was started. This value may drop if
background maintenance is performed by Aura.

Metric type Counter

Default aggregation MAX

Peak Concurrent Transactions

Metric hame neo4j_database_transaction_peak_concurrent_total

Description The highest number of concurrent transactions detected since the server started. This value may
drop if background maintenance is performed by Aura.

Metric type Counter

Default aggregation MAX

Transaction Rollbacks

77

Metric name

Description

Metric type

Default aggregation

Checkpoint Events

Metric name

Description

Metric type

Default aggregation

neo4j_database_transaction_rollbacks_total

The total number of rolled-back transactions. This value may drop if background maintenance is
performed by Aura.

Counter

MAX

neo4j_database_check_point_events_total

The total number of checkpoint events executed since the server started. This value may drop if
background maintenance is performed by Aura.

Counter

MAX

Checkpoint Events Cumulative Time

Metric name

Description

Metric type

Default aggregation

neo4j_database_check_point_total_time_total

The total time in milliseconds spent in checkpointing since the server started. This value may drop
if background maintenance is performed by Aura.

Counter

MAX

Last Checkpoint Duration

Metric name

Description

Metric type

Default aggregation

Relationships

Metric name
Description
Metric type

Default aggregation

Nodes

Metric name
Description
Metric type

Default aggregation

78

neo4j_database_check_point_duration

The duration of the last checkpoint event. Checkpoints should typically take several seconds to
several minutes. Values over 30 minutes warrant investigation.

Gauge

MAX

neo4j_database_count_relationship
The total number of relationships in the database.

Gauge

MAX

neo4j_database_count_node
The total number of nodes in the database.

Gauge

MAX

Store Size Database

Metric name neo4j_database_store_size_database

Description Amount of disk space reserved to store user database data, in bytes. Ideally, the database should
all fit into memory (page cache) for the best performance. Keep an eye on this metric to make sure
you have enough storage for today and for future growth. Check this metric with page cache usage
to see if the data is too large for the memory and consider increasing the size of your instance in
this case.

Metric type Gauge

Default aggregation MAX

Page Cache Evictions

Metric name neo4j_dbms_page_cache_evictions_total

Description The number of times data in memory is being replaced in total. A spike can mean your workload is
exceeding the instance’s available memory, and you may notice a degradation in performance or
query execution errors. Consider increasing the size of your instance to improve performance if this
metric remains high.

Metric type Counter

Default aggregation MAX

Successful Query Executions

Metric name neo4j_db_query_execution_success_total
Description The total number of successful queries executed on this database.
Metric type Counter

Default aggregation SUM

Query Execution Failures

Metric name neo4j_db_query_execution_failure_total
Description The total number of failed queries executed on this database.
Metric type Counter

Default aggregation SUM

Query Latency 99th Percentile

Metric name neo4j_db_query_execution_internal_latency_qg99

Description The query execution time in milliseconds where 99% of queries executed faster than the reported
time.

Metric type Gauge

Default aggregation MAX

Query Latency 75th Percentile

79

Metric name

Description

Metric type

Default aggregation

neo4j_db_query_execution_internal_latency_q75

The query execution time in milliseconds where 75% of queries executed faster than the reported
time.

Gauge

MAX

Query Latency 50th Percentile

Metric name

Description

Metric type

Default aggregation

neo4j_db_query_execution_internal_latency_g50

The query execution time in milliseconds where 50% of queries executed faster than the reported
time. This also corresponds to the median of the query execution time.

Gauge

MAX

Last Committed Transaction ID

Metric name

Description

Metric type

Default aggregation

80

neo4j_database_transaction_last_committed_tx_id_total

The id of the last committed transaction. Track this for primary cluster members of your Aura
instance. It should show overlapping, ever-increasing lines and if one of the lines levels off or falls
behind, it is clear that this cluster member is no longer replicating data, and action is needed to
rectify the situation.

Counter

MAX

Logging

Request and download logs

Aura allows you to request and download security and query logs.
You can access logs from an Aura instance via the Logs tab.
To access the Logs tab:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the instance you want to export the logs from.

3. Select the Logs tab.

Query logs

A query log provides a log of queries executed on an instance within a specified time range.

e Queries that complete successfully within 50 ms are not logged.

Requesting query logs
To request a query log from the Logs tab:

1. Click Request log.
2. Select the Query Log option under Type.
3. Select a Range option.

4. Click Request.

o Requested logs will appear for up to 7 days, at which point they will expire and be
removed.

You can select from the following time ranges when requesting a query log:

e Last 15 minutes
e Last hour

e Custom range - Any range up to one hour from the previous 30 days

7 We recommend shorter time ranges for busy, read/write heavy instances to reduce
- request time.

Aura will generate a query log for your selected time range, available to download once the Status shows
Completed.

81

https://console.neo4j.io/

Downloading query logs
You can download query logs by selecting the download icon on the right-hand side of the log entry.

Downloaded query logs take the form of a zipped JSON file that, when extracted, contains the following
information:

Query log entries

Name Description

allocatedBytes The number of bytes allocated by the query.

annotationData The metadata attached to the transaction.

authenticatedUser The name of the user who executed the query (whose credentials were used to log in).
database The name of the database the query was executed on.

dbid The ID of the instance the query was executed on.

elapsedTimeMs The time the query took to complete in milliseconds.

event The query event:

start - The query was successfully parsed, awaiting execution.
fail - The query failed to either parse or execute.

success - The query executed successfully or was canceled.

executingUser The name of the user who executed the query either through authentication
(authenticatedUser) or through impersonation.

id The ID of the query.

message The log message: a truncated version of query.
pageFaults The number of page faults resulting from the query.
pageHits The number of page hits resulting from the query.
query The full query text.

runtime The Cypher runtime used to execute the query.
type The type of log message.

time The timestamp of the log message.

Security logs

| AuraDB Virtual Dedicated Cloud|| AuraDS Enterprise

A security log provides a log of all the security events that have occurred on an instance within a specified
time range.

Security events include:

e |ogin attempts: both successful and unsuccessful.

82

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#access-control-dbms-administration-impersonation
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#cypher-runtime

e Authorization failures from role-based access control.

e Administration commands run against the system database.

Requesting security logs
To request a security log from the Logs tab:

1. Click Request log.
2. Select the Security Log option under Type.
3. Select a Range option.

4. Click Request.

o Requested logs will appear for up to 7 days, at which point they will expire and be
removed.

You can select from the following time ranges when requesting a security log:

e Last 6 hours
e Last 12 hours

e Custom range - Any range up to 12 hours from the previous 30 days

Aura will generate a security log for your selected time range, available to download once the Status
shows Completed.

Downloading security logs
You can download security logs by selecting the download icon on the right-hand side of the log entry.

Downloaded security logs take the form of a zipped JSON file that, when extracted, contains the following

information:

Security log entries

Name Description

authenticatedUser The name of the user who executed the security event (whose credentials were used to log
in).

dbid The ID of the instance the security event occurred on.

executingUser The name of the user who executed the security event either through authentication

(authenticatedUser) or through impersonation.

message The log message.
type The type of log message.
time The timestamp of the log message.

83

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#auth-access-control-security
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#access-control-dbms-administration-impersonation

Security log forwarding

[AuraDB Virtual Dedicated CIoud][AuraDS Enterprise

With security log forwarding, you can stream security logs directly to a cloud project owned by your
organization, in real time.

To access Log forwarding:

1. Navigate to the Neo4j Aura Console in your browser.

2. Select Log forwarding from the sidebar menu.
This will display a list of currently configured log forwarding processes for the active project.

If no log forwarding process is set up, a button to do so is displayed in the center of the page.

o A log forwarding process is scoped to a specific product and region combination, and
limited to one for each.

Set up log forwarding

Aura Database and Analytics services are business critical for our users. We have
requests to introduce more capabilities enabling access to logs and metrics to derive
actionable insights using your choice of monitoring platform.

We have a strong roadmap of observability sharing features including security logs,

o query logs and other capabilities. Many of these logs can be of significant size hence we
will introduce in the future a new consumption based billing model including cloud
egress costs.

We believe security is of paramount importance hence we have decided to make
security logs available for you initially at no extra charge.

The complete steps for setting up log forwarding depends on the chosen cloud provider.
Exhaustive instructions are provided in the wizard which appears by following the steps below.

1. Navigate to the Log forwarding page as described above.
2. Click Create new log forwarding process.

3. Follow the instructions specific to your cloud provider.

Output destination

Log forwarding can forward logs to the log service of the same cloud provider as the monitored instance is
located in.

Cross-region log forwarding is supported.

84

https://console.neo4j.io/

If your instance is in:

e Google Cloud Platform - Forward logs to Google Cloud Logging in your own GCP project.
e Amazon Web Services - Forward logs to CloudWatch in your own AWS account.

e Azure - Forward logs to a Log Analytics workspace in your own Azure subscription.

Logs can be further forwarded into third party systems using the log routing capabilities provided by your
cloud provider.

Query log analyzer

[AuraDB Professional][AuraDB Business Critical][AuraDB Virtual Dedicated Cloud

Query log analyzer is a feature that provides a Ul to review the queries executed on an Aura instance.
To access Query log analyzer:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the instance you want to access.
3. Select the Logs tab.

4. Select the Query log analyzer button.
It is also possible to enter Query log analyzer from the Query rate or Query latency charts in the Database
tab of Advanced Metrics. To do so, click the ellipsis button (...) on the chart and select Explore query logs.
Overview
Query log analyzer is split up in three parts:

¢ Query timeline - Timeline showing metrics for number of queries, failed queries and query latency.

e Summary table - An aggregated view of query logs, giving a high level overview over the selected
time period.

e Details table - A detailed view showing individual query executions in the selected time period.

85

https://console.neo4j.io/?product=aura-db

Logs

A Query timeline 30m Today 13:06:32 - Today 13:36:32 v fs} m

18:10 1315 13:20 1325 13:30 13:35
Aug 21
— Queries per minute — Failed queries per minute — Query latency (99th percentile)

Summary Details

From Today 13:06:32 to Today 13:36:32, there are 13,735 completed and 0 failed queries.

Status Query Counts From To Total time spent (s) Avg time (ms) Min time (ms) Max time (ms) s

OPTIONAL MATGH

(hlp: MetricSpec': NumericOperation’) WHERE hip.id
=$__id__ WITH hlp WHERE hip IS NULL CREATE
View more

(' Completed) 2,760 Today 13:07:00 Today 13:36:30 55.2 20 1 278

(= Completed) MATCH (n:Event {id: $id}) DETACH DELETE n 624 Today 13:06:32 Today 13:36:29 0.13 0.2 0 16

MATCH (db:Database) WHERE NOT (db)<-
(e Completed) [INSTANCE_OF-(:Databaselnstance) DETACH 623 Today 13:06:32 Today 13:36:29 027 043 0 2
DELETE db

MATCH (dbms:DBMS)

WHERE NOT (dbms)-[:CONTAINS]->(:Database)
OPTIONAL MATCH planPath = ()-[:HAS]-

View more

(e Completed | 623 Today 13:06:32 Today 13:36:29 0.3 0.48 0 2

MATOH (Ahme NRMS fid GAhmeldAN.1-CONTAINGT

To fetch logs, first choose a time range in the Query timeline. With a time selection done, press the Fetch
logs button. You may optionally choose any filters or search text if required, then press Go.

A summary of query executions is returned, showing aggregations per query. To see the individual query
executions, click the right arrow at the end of the line to show details for that query. The details pane
shows individual executions.

Query timeline
When viewing the query timeline, you can select from the following time intervals:

e 30 minutes

Last hour

Last 2 hours

Last 6 hours

Last 24 hours

Last 3 days

Last week

The query timeline can be collapsed by clicking on the header.

o The query timeline may show activity from internal meta queries, which are filtered in
the table.

Zoom

To zoom in to a narrower time interval, select and drag inside the timeline to select your desired time
interval. The data in the timeline will automatically update to match the increased resolution. To update the

86

table, click the Fetch logs button.

To reset zoom, double-click anywhere inside the timeline.

Toggle data series

To hide or show individual data series, select the corresponding data series in the legend below the

timeline.
Fetch logs
o Query logs are available for a period of 7 days, and each request can be for up to 24
hours of data.

The Fetch logs button will open up a dialog where you can add filters and search before fetching the logs.
The Query timeline determines the current time selection, which can be changed by closing the dialog and
modifying the timeline. To fetch the logs after selection of filters and search is done, click the Go button.

Filters

To filter, click the filter button. This will load the available filters over the selected time period. Filters are
available for the following fields:

e Status
e User

e Driver

Application

Initiation type

Search

To search, click the search button. Search can be specified for the Query text and the Error text. The fields
are case-insensitive and allows you to find specific queries or error that are interesting.

Table interactions

Sort table

By default, the table will be sorted on Count for Summary and Status for Details. To sort by a column
(such as Max Time ms) click on the column heading.

Modify columns

The columns in the table can be modified by clicking the button to the right of the column row. Columns
can be enabled or disabled, or the order changed using the grid icon at the top right of the table.

87

Expand query

In the table three rows of query text will be shown. To see the whole query if the query is longer, press the
View more button under the query text.

88

Neo4j connectors

Neo4j Connector for Apache Spark

@ Tutorial: Using the Apache Spark Connector with Aura
w

The Neo4j Connector for Apache Spark is intended to make integrating graphs with Spark easy. There are
two ways to use the connector:

e As a data source: read any set of nodes or relationships as a DataFrame in Spark

e As a sink: write any DataFrame to Neo4j as a collection of nodes or relationships, or use a Cypher
statement to process records contained in a DataFrame into the graph pattern of your choice

Connecting to Aura only requires to make a few changes to the Neo4j driver configuration:

1. Replace the bolt URI (the value of the neo4j.server.uri configuration parameter) with the neo4j+s://
connection URI from the Aura instance detail page

2. Update the username and password configuration parameters as appropriate

For more information check the Neo4j Apache Spark Connector page.

Neo4) Connector for Apache Kafka

Many users and customers want to integrate Kafka and other streaming solutions with Neo4j, either to
ingest data into the graph from other sources or to send update events to the event log for later
consumption. Aura supports the use of the Kafka Connect Neo4j Connector, which allows you to ingest
data into Neo4j from Kafka topics or send change events from Neo4j into Kafka topics.

Connecting to Aura only requires to make a few changes to the source and sink configuration examples:

e Replace the bolt URI in the examples (the value of the neo4j.server.uri configuration parameter)
with the neo4j+s:// connection URI from the Aura instance detail page

e Update the username and password configuration parameters as appropriate

For more information check the Kafka Connect Neo4j Connector user guide.

Neo4j Connector for Bl

(r) Tutorial: Using the Bl Connector with Aura
w

The Neo4j Connector for Business Intelligence (Bl) delivers access to Neo4j graph data from Bl tools such
as Tableau, Power BI, Looker, TIBCO, Spotfire Server, MicroStrategy, and more. It can be used to run SQL
queries on a Neo4j graph and retrieve data in tabular format.

The connection to Aura requires the usage of the SSL parameter in the connection string. For example, if

89

https://neo4j.com/docs/pdf/neo4j-spark-current.pdf#reading
https://neo4j.com/docs/pdf/neo4j-spark-current.pdf#writing
https://neo4j.com/docs/pdf/neo4j-spark-current.pdf#configuration
https://neo4j.com/docs/pdf/neo4j-spark-.pdf
https://neo4j.com/docs/kafka/
https://neo4j.com/docs/kafka/kafka-connect/source/
https://neo4j.com/docs/kafka/kafka-connect/sink/
https://neo4j.com/docs/kafka/

the connection URI of the Aura instance is neo4j+s://xxxxxxxx.databases.neo4j. io, the following
connection strings must be used:

e With JDBC: jdbc:neo4j://xxxxxxxx.databases.neo4j.i0?SSL=true (note the usage of the neo4j
protocol instead of neo4j+s)

e With ODBC: Host=xxxxxxxx.databases.neo4j.io;SSL=1

The Neo4j Connector for Bl can be downloaded from the Download Center.

90

https://neo4j.com/download-center/#integrations

Aura AP

Overview

The Aura API allows you to programmatically perform actions on your Aura instances without the need to
log in to the Console.

A complete list of the available endpoints can be seen and tested in the AP| Specification.

O Before using the API, you must follow the steps outlined in Authentication to create your
- credentials and authenticate your requests.

APl URL

Base URL

The base URL for the Aura APl is https://api.neo4j.io.

Versioning
The current version of the Aura APl is v1

As and when we need to introduce breaking changes to the API, we will release a new version to ensure
we do not break existing integrations.

In the future, as we deprecate legacy API versions, we will provide notice. Once the expiry date for a
deprecated version has passed, that version will no longer be available.

Example request
The following example shows how to use the base URL and versioning to make a request to the API:

GET https://api.neo4j.io/v1/instances

Retries

In the event of 5xx server error responses, you may consider retrying the request after a delay if it is safe to
do so. The response may include a Retry-After header with a suggestion of a suitable minimum delay
before attempting to retry.

Rate limiting is set to 125 requests per minute.

You should consider your use of the Rate Limit before attempting to retry, and we recommend using an
exponential backoff delay with a limited number of retries before giving up.

A request is only guaranteed to be safe to retry if it uses an idempotent HTTP method, such as GET. If, for

91

https://neo4j.com/docs/pdf/neo4j-aura-platform.pdf#specification
https://neo4j.com/docs/pdf/neo4j-aura-platform.pdf#specification

example, you retry a request for creating an instance, you may end up with duplicate instances and end up
being charged extra as a result.

In the case of 429 Too Many Requests, we would recommend slowing down the rate of all requests sent
from your client application and consider retrying with a suitable minimum delay and backoff strategy.

For other 4xx client error responses, you should not resend such requests without first correcting them.

Request tracing and troubleshooting
An X-Request-Id response header is returned with each request and can be used for troubleshooting.
The value of this header contains a unique ID that can be used to track the journey of a request.

If you run into any issues with a particular request, you can raise a support ticket and provide the X-
Request-Id.

Authentication

The Aura APl uses OAuth 2.0 for API authentication.

Creating credentials

AuraDB Virtual Dedicated Cloud users, and AuraDS Enterprise users have unrestricted
access to creating API credentials. However, users with Free and Professional instances

o must have entered billing information or be a member of a marketplace project before
they can create API credentials.

1. Navigate to the Neo4j Aura Console Account Details page in your browser.
2. Select the Create button in the Aura API Credentials section.
3. Enter a Client name, and select Create.

4. Securely save the Client ID and Client Secret you are given in the resulting modal; you will need these
for the next step.

° You cannot retrieve your secret after you close the modal, so save it securely.

Authenticating APl requests

To authenticate API requests to the Aura API, you must provide a Bearer Token in the Authorization
header of each request as shown below:

Authorization: Bearer <access_token>

You can use the Authorize button on the Aura API page to authenticate and test
@ endpoints directly using your client ID and client secret. The Ul sets the Authorization

v header for you.

92

https://support.neo4j.com/
https://console.neo4j.io/#account
https://neo4j.com/docs/pdf/neo4j-aura-platform.pdf#specification
https://neo4j.com/docs/pdf/neo4j-aura-platform.pdf#specification

Token endpoint

You can use the following /oauth/token endpoint to obtain a Bearer Token for authenticating API
requests.

Authentication to the token endpoint uses HT TP Basic Authentication, where the client ID and client secret
are provided as the username and password, respectively.

Request parameters
e Method: POST

e Token URL: https://api.neo4j.io/oauth/token

Request header

Parameter Value
Authorization Basic <credentials>™
Content-Type application/x-www-form-urlencoded

Request body

Parameter Value

grant_type client_credentials

Both the request and response contain sensitive information and must be kept secure.

° You are responsible for keeping the client credentials and access tokens confidential,
whether in transit (by specifying HTTPS), if stored at rest, in log files, etc.

Request examples

93

curl --request POST 'https://api.neo4j.io/oauth/token' \
--user '<client_id>:<client_secret>' \ @D
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'grant_type=client_credentials'

@ The --user option sets the Authorization header for you, handling the base64 encoding of
the client ID and client secret.

import requests
from requests.auth import HTTPBasicAuth

Make the request to the Aura API Auth endpoint
response = requests.request(

"POST",
"https://api.neo4j.io/oauth/token",
headers={"Content-Type": "application/x-www-form-urlencoded"},

data={"grant_type": "client_credentials"},
auth=HTTPBasicAuth(client_id, client_secret)
)

print(response.json())

@ client_id and client_secret must be set to the values obtained from the Aura Console.

Response body example

{
"access_token": "<token>", @D
"expires_in": 3600,
"token_type": "bearer"

3

@ The access_token returned here is what you will provide as the Bearer Token in the Authorization
header of Aura API requests.

HTTP response codes

Code Message Description

200 Success Access token requested successfully.
400 Bad Request Request is invalid.

401 Unauthorized The provided credentials are invalid,

expired, or revoked.
403 Forbidden The request body is invalid.

404 Not Found The request body is missing.

94

Token expiration

If you send a request to the Aura API while authenticated with an expired access token, you will receive a
403 Forbidden response. You will need to obtain a new token to continue using the API.

95

API| Specification

[4] This header is set for you when providing your client ID as the username and client secret as the password.

[5] Where <credentials> is the base64-encoded string of your client ID and client secret, joined by a colon (:).

96

https://neo4j.com/docs/aura/platform/api/specification/

Consumption report

[AuraDB Virtual Dedicated CIoud]

Virtual Dedicated Cloud services are offered through prepaid consumption plans. Billing is based on usage,
with credits deducted from the available balance each month.

The consumption report, accessible in the Aura console’s Billing section, provides real-time insights into
resource usage for the current project, including both running and paused states. It displays RAM usage in
GB-hours and the equivalent cost in prepaid credits.

Available to Admins, the report helps you track usage patterns over time and make informed resource
allocation decisions. Note that it includes primary database usage but not secondary database usage.

Monitor consumption in real-time

Billing category

The consumption report shows the billing status, which can be running meaning customers are charged
the full price, or paused meaning customers are charged 20% of the hourly rate.

Billing status

Billing status can be ongoing or ended.

Usage (GB-hours)

Charges are based on the time databases run and the memory consumed, measured in GB-hours. GB-
hours usage is calculated by multiplying the number of hours a database is running (whether actively used
or not) by the memory size in gigabytes (GB).

The total usage for the selected period is displayed in GB-hours, along with the equivalent credit.

Filters

e Filter the usage data by predefined and custom date intervals.
e | ook back for a period of up to 3 months.

e Filter by Last 24 hours, Last 7 days, Last 30 days, Last 90 days or a Custom range.

97

= ;ﬂeO4j aura

Data services
Instances
Import
Tools
Explore
Query
Operations
Metrics

Logs
Project
Users

Billing

Settings

New Organization \/ / Project 1 \/

Billing

Usage
Q search
Instance ID
Instancel 05a0bc04
Instance2 42deb68c
Instance3 b861d888
Instance4 b861d888
InstanceS 4123993

Showing 1-5 of 5 results

“Usage for secondaries is not included in this view.

Figure 14. Consumption report visual

98

Billing category
running
running
paused
running

running

Billing status

Ended (2024-09-09 10:07 U...

Ongoing

Ongoing

Ended (2024-09-04 09:10 U...

Ongoing

Send feedback

Usage (Hours)
138

728

636

12

682

© Learn

o
[NGO Jane Doe

Credits spent: 421.80

Credits consumed

34.50

182.00

31.80

3.00

170.50

Show

10 v

v

=Neo4j AuraDB=

Neod) AuraDB overview

Neo4j AuraDB is a fully managed cloud graph database service.

Built to leverage relationships in data, AuraDB enables lightning-fast queries for real-time analytics and
insights. AuraDB is reliable, secure, and fully automated, enabling you to focus on building graph
applications without worrying about database administration.

Plans

AuraDB offers the following subscription plans: AuraDB Free, AuraDB Professional, AuraDB Business
Critical, and AuraDB Virtual Dedicated Cloud. The full list of features available in each plan is available on
the Neo4j Pricing page.

Updates and upgrades

AuraDB does not have any scheduled maintenance windows. It is designed to be always on and available,
with all corrections, fixes, and upgrades automatically applied in the background.

Releases for the Neo4j database are also deployed when they become available. Operations are non-
disruptive, and you shouldn’t experience any downtime as a result.

Support

For a breakdown of the support offered across plan types as well as the support holiday schedule, see the

Aura Support page.

Additionally, you can access the Aura Status page to check the current operational status of Aura and

subscribe to updates.

100

https://neo4j.com/pricing/
https://support.neo4j.com/s/article/360053850514-Neo4j-Aura-Customer-Support-Holiday-Schedule
https://status.neo4j.io/

Getting Started

Creating an instance
The process of creating an instance differs depending on the type.

You can select from the options below to display the relevant process.

101

102

To create an AuraDB Free instance in Neo4j AuraDB:

1. Navigate to the Neo4j Aura Console in your browser.
Select New Instance.

Select Create Free instance.

A W N

Copy and store the instance’s Username and Generated password or download the
credentials as a . txt file.

5. Tick the confirmation checkbox, and select Continue.
You can only create one AuraDB Free instance per account.
A Free instance is limited to 200,000 nodes and 400,000 relationships.

If you don’t perform any write queries for three days, your instance is paused. You can resume
your paused instance from the console.

A paused instance is deleted after 30 days and after that, you cannot restore it or recover your
data.

Additionally, Free instances are not automatically backed up. Snapshots are taken on-demand
and only the latest snapshot is available for download. For more information about snapshots,
see Backup, export and restore for more information.

https://console.neo4j.io/?product=aura-db

To create an AuraDB Professional instance in Neo4j AuraDB:

1. Navigate to the Neo4j Aura Console in your browser.

2. Select New Instance to open the Create an instance page. (Additionally, you will need to
select Select Professional instance if you have yet to create an AuraDB Free instance.)

3. Select your preferred Cloud provider and Region. The region is the physical location of the
instance; set this as close to your location as possible. The closer the region is to your
location, the faster the response time for any network interactions with the instance.

4. Set your Instance size, the memory, CPU, and storage allocated to the instance. The larger
the instance size, the more it costs to run. Once selected, you can see the running cost at the
bottom of the page.

5. Set your Instance details:
° Instance Name - The name to give the instance. This name can be whatever you like.
° Neodj Version - The version of the Neo4j instance.

6. Tick the | understand checkbox next to the running cost confirmation.

7. Select Create when happy with your instance details and size.

8. Copy and store the instance’s Username and Generated password or download the
credentials as a . txt file.

9. Tick the confirmation checkbox, and select Continue.

o Aura retains some of your provisioned resources for managing your instance.

103

https://console.neo4j.io/?product=aura-db

0 Pay-as-you-go (PAYG) is available on all instance sizes up to 128 GB. Prepaid
is available from 16 GB+.

To create an AuraDB Business Critical instance in Neo4j AuraDB:

1. Navigate to the Neo4j Aura Console in your browser.

2. Select New Instance to open the Create an instance page. (Additionally, you need to select
Select Business Critical instance if you have yet to create an AuraDB Professional instance.)

3. Select your preferred Cloud provider and Region. The region is the physical location of the
instance. Set this as close to your location as possible. The closer the region is to your
location, the faster the response time for any network interactions with the instance.

4. Set your Instance size, the memory, CPU, and storage allocated to the instance. Once
selected, you can see the running cost at the bottom of the page.

5. Set your Instance details:
° Instance Name - The name of the instance. This name can be whatever you like.
° Neodj Version - The version of the Neo4j instance.

6. Tick the | understand checkbox next to the running cost confirmation.

7. Select Create when happy with your instance details and size.

8. Copy and store the instance’s Username and Generated password or download the
credentials as a . txt file.

9. Tick the confirmation checkbox, and select Continue.

104

https://console.neo4j.io/?product=aura-db

To create an AuraDB Virtual Dedicated Cloud instance in Neo4j AuraDB:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select New Instance to open the Create an instance page.

3. Set your Instance size, the memory, CPU, and storage allocated to the instance. Please refer
to your contract for pricing.

4. Set your Instance details:
° Instance Name - The name to give the instance. This name can be whatever you like.
° Neodj Version - The version of the Neo4j instance.

° Region - The physical location of the instance. Set this as close to your location as
possible. The closer the region to your location, the faster the response time for any
network interactions with the instance.

5. Tick the | understand checkbox.
6. Select Create Instance when happy with your instance details and size.

7. Copy and store the instance’s Username and Generated password or download the
credentials as a . txt file.

8. Tick the confirmation checkbox, and select Continue.

o Aura retains some of your provisioned resources for managing your instance.

o Multi-database is not currently supported within Neo4j AuraDB.

Connecting to an instance

There are several different methods of connecting to an instance in Neo4j AuraDB:

Neo4j Browser - A browser-based interface for querying and viewing data in an instance.

Neo4j Bloom - A graph exploration application for visually interacting with graph data.

Neo4j Workspace - A browser-based interface used to import, visualize, and query graph data.

Neo4j Desktop - An installable desktop application used to manage local and cloud instances.

Neo4j Cypher Shell - A command-line tool used to run Cypher queries against a Neo4j instance.

Neo4j Browser
You can query an instance using Neo4j Browser.
To open an instance with Browser:

1. Navigate to the Neo4j Aura Console in your browser.

105

https://console.neo4j.io/?product=aura-db
https://console.neo4j.io/?product=aura-db

2. Select the Query button on the instance you want to open.

3. Enter the Username and Password credentials in the window that opens. These are the same
credentials you stored when creating the instance.

4. Select Connect.

Once you have successfully connected, there are built-in guides you can complete to familiarize yourself

with Neo4j Browser.

For more information on using Neo4j Browser, please see the Browser manual.

Neo4j Bloom
You can explore an instance using Neo4j Bloom.
To open an instance with Bloom:

1. Navigate to the Neo4j Aura Console in your browser.
Select the Explore button on the instance you want to open.

Select Neo4j Bloom from the dropdown menu.

M wWoN

Enter the Username and Password credentials in the window that opens. These are the same
credentials you stored when creating the instance.

5. Select Connect.

For more details on using Neo4j Bloom, please see the Neo4j Bloom documentation.

106

https://neo4j.com/docs/pdf/neo4j-browser-manual-.pdf
https://console.neo4j.io/?product=aura-db
https://neo4j.com/docs/pdf/bloom-user-guide-.pdf

Perspectives in AuraDB

Due to the nature of AuraDB’s infrastructure, it is not currently possible to share
Perspectives in Bloom, as the data for a given Perspective is stored in local storage in
the user’s web browser.

An alternative is to export your Perspective as a JSON file and import it into another
Bloom session.

To export a Perspective:

1. Open the Bloom interface for your Neo4j AuraDB instance.
2. Navigate to the Perspectives Gallery.
3. Click on the vertical ellipsis {(...) and select Export.
4. Save the file to your local disk.
You can import perspectives by clicking the blue "Import Perspective" button in the

Perspective gallery. Please note that the Perspective exposes details about your graph’s
schema but not the actual data within.

For more information, see Bloom Perspectives.
Deep links

As data for a given Perspective is stored in local storage in the user’'s web browser, if
you want to access a deep link referencing perspectives, you will first need to import the
perspectives into your local instance of Bloom.

Neo4j Workspace

Neo4j Workspace combines the functionality of Neo4j Browser, Neo4j Bloom, and Neo4j Data Importer

into a single interface.

To open an instance with Workspace:

4.

. Navigate to the Neo4j Aura Console in your browser.
Select the Open button on the instance you want to open.

Enter the Database user and Password credentials in the window that opens. These are the same

credentials you stored when creating the instance.

Select Connect.

For more information on using Neo4j Workspace, see the Product page.

Workspace is enabled by default on AuraDB Free and AuraDB Professional instances
but needs to be enabled for AuraDB Virtual Dedicated Cloud instances.

If you do not see the Open button on your instance, you can enable it by selecting the
Settings cog in the top menu bar and toggling Enable workspace.

107

https://neo4j.com/docs/pdf/bloom-user-guide-current.pdf#bloom_perspectives
https://console.neo4j.io/?product=aura-db
https://neo4j.com/product/workspace/

Neo4j Desktop

You can connect AuraDB instances to the Neo4j Desktop application, allowing the ability to have a single
portal for interacting with all instances of Neo4j, whether local or located in the cloud.

To connect to an instance using Neo4j Desktop:

1. Navigate to the Neo4j Aura Console in your browser.

2. Copy the Connection URI of the instance you want to connect to. The URI is below the instance status

indicator.
3. In Neo4j Desktop, select the Projects tab and select an existing project or create a new one.
4. Select the Add dropdown and choose Remote connection.

5. Enter a name for the instance and enter the URL from the Neo4j Aura console from the second step.

Once complete, select Next.

6. With Username/Password selected, enter your credentials and select Next. These are the same
credentials you stored when creating the instance.

7. When available, activate the connection by clicking the Connect button.

e Neodj Desktop only allows 1 connection at a time to an instance (local or remote).

o e Deactivating an instance in Neo4j Desktop won’t shut it down or stop a remote
instance - it will only temporarily close the connection to it in Neo4j Desktop.

As with other instances in Neo4j Desktop, you can install Graph Apps for monitoring and other

functionality.

To do this, follow the same process to install the graph application you need, and open it from Neo4;j
Desktop or a web browser with the running and activated Neo4j AuraDB instance.

Neo4j Cypher Shell

You can connect to an AuraDB instance using the Neo4j Cypher Shell command-line interface (CLI) and
run Cypher commands against your instance from the command-line.

To connect to an instance using Neo4j Cypher Shell:

1. Navigate to the Neo4j Aura Console in your browser.

2. Copy the Connection URI of the instance you want to connect to. The URI is below the instance status

indicator.
3. Open a terminal and navigate to the folder where you have installed Cypher Shell.
4. Run the following cypher-shell command replacing:
° <connection_uri> with the URI you copied in step 2.
° <username> with the username for your instance.

° <password> with the password for your instance.

108

https://console.neo4j.io/?product=aura-db
https://install.graphapp.io/
https://console.neo4j.io/?product=aura-db

./cypher-shell -a <connection_uri> -u <username> -p <password>

Once connected, you can run :help for a list of available commands.

Available commands:

:begin Open a transaction

:commit Commit the currently open transaction
rexit Exit the logger

:help Show this help message

:history Print a list of the last commands executed
:param Set the value of a query parameter

:params Print all currently set query parameters and their values
:rollback Rollback the currently open transaction

:source Interactively executes cypher statements from a file

1use Set the active instance

For help on a specific command type:
:help command

For more information on Cypher Shell, including how to install it, see the Cypher Shell documentation.

Querying an instance

You can query data in an AuraDB instance using Cypher.

Cypher is the declarative graph query language created by Neo4j and can be used to query, update, and
administer your AuraDB instance.

You can run Cypher statements through Neo4j Browser and Neo4j Cypher Shell. For more information on
how to open an AuraDB instance in Browser and Cypher Shell, see Connecting to an instance.

For more information on Cypher and Aura, see the Neo4j Cypher Manual.

109

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#cypher_shell
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#cypher_aura

Importing
Importing data

o The process of importing or loading data requires you to create an AuraDB instance
beforehand.

There are two ways you can import data from a CSV file into an AuraDB instance:

e [oad CSV - A Cypher statement that you run from Neo4j Browser or Neo4j Cypher Shell.

e Neo4j Data Importer - A visual application that you launch from the Console.

Load CSV

The LOAD CSV Cypher statement can be used from within Neo4j Browser and Cypher Shell. For instructions
on how to open an AuraDB instance with Browser or Cypher Shell, see Connecting to an instance.

There are some limitations to consider when using this method to load a CSV file into an AuraDB instance:

e For security reasons, you must host your CSV file on a publicly accessible HTTP or HTTPS server.
Examples of such servers include AWS signed URLs, GitHub, Google Drive, and Dropbox.

e The LOAD CSY command is built to handle small to medium-sized data sets, such as anything up to 10
million nodes and relationships. You should avoid using this command for any data sets exceeding this
limit.

Neo4j Data Importer

Neo4j Data Importer is a Ul-based tool for importing data that lets you:

1. Load data from flat files (.csv and . tsv).
2. Define a graph model and map data to it.

3. Import the data into an AuraDB instance.
To load data with Neo4j Data Importer:

1. Navigate to the Neo4j Aura Console in your browser.

2. Select the Import button on the instance you want to open.
Alternatively, you can access Data Importer from the Import tab of Neo4j Workspace.

For more information on Neo4j Data Importer, see the Neo4j Data Importer documentation.

o You must provide your AuraDB instance password before importing from the Neo4j
Data Importer.

110

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv
https://console.neo4j.io/?product=aura-db
https://neo4j.com/docs/pdf/neo4j-data-importer-current.pdf

Importing an existing database

o The process of importing or loading data requires you to create an AuraDB instance
beforehand.

There are two ways you can import data from an existing Neo4j database into an Aura instance.

You can use the import database process to import either a .backup file or a .dump file. This process,
however, only works for .backup and .dump files under 4GB.

If the size of the .backup or .dump file exported from a database is greater than 4GB, you must use the
Neo4j Admin database upload method.

For more information about backups, see Backup, export and restore.

Import database
To import a .backup file under 4GB:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the instance you want to import the data.
3. Select the Import Database tab.

4. Drag and drop your .backup or .dump file into the provided window or browse for your .backup/.dump
file.

5. Select Upload.

When the upload is complete, the instance goes into a Loading state as the backup is applied. Once this
has finished, the instance returns to its Running state; and the data is ready.

Neo4j Admin database upload

This command does not work if you have a network access configuration setup that
é prevents public traffic to the region your instance is hosted in. See Public traffic below
for more information.

database uploadis a neo4j-admin command that you can run to upload the contents of a Neo4j database
into an Aura instance, regardless of the database’s size. Keep in mind that the database you want to
upload may run a different version of Neo4j than your Aura instance. Additionally, your Neo4j Aura
instance must be accessible from the machine running neo4j-admin. Otherwise, the upload will fail with
SSL errors.

For details on how to use the neo4j-admin database upload command, along with a full list of options and
version compatibility, see Operations Manual » Upload to Neo4j Aura.

111

https://console.neo4j.io/
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#upload_to_aura
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#upload_to_aura
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#upload_to_aura

The database upload command, introduced in Neo4j 5, replaces the push-to-cloud
0 command in Neo4j 4.4 and 4.3. If the database you want to upload is running an earlier
version of Neo4j, please see the Neo4j Admin push-to-cloud documentation.

The neo4j-admin push-to-cloud command in Neo4j 4.4 and earlier is not compatible
with instances encrypted with Customer Managed Keys. Use neo4j-admin database
: upload in Neo4j 5 to upload data to instances encrypted with Customer Managed Keys.

For Neo4j 4.x instances in Azure encrypted with Customer Managed Keys, use Neo4j
Data Importer to load data, as neo4j-admin database upload is not supported. See the
Data Importer documentation for more information.

Public traffic

If you have created a network access configuration from the Network Access page, accessed through the
sidebar menu of the Console, Public traffic must be enabled for the region your instance is hosted in
before you can use the database upload command on that instance.

To enable Public traffic on a network access configuration:

1. Select Configure next to the region that has Public traffic disabled.
2. Select Next until you reach step 4 of 4 in the resulting Edit network access configuration modal.
3. Clear the Disable public traffic checkbox and select Save.
You can now use the database upload command on the instances within that region. Once the command

has completed, you can disable Public traffic again by following the same steps and re-selecting the
Disable public traffic checkbox.

112

https://neo4j.com/docs/pdf/neo4j-operations-manual-4.4.pdf#push_to_cloud
https://neo4j.com/docs/data-importer/current/introduction

Managing instances

Instance actions

You can perform several instance actions from an AuraDB instance card on the Neo4j Aura Console
homepage.

Rename an instance
You can change the name of an existing instance using the Rename action.
To rename an instance:

1. Select the ellipsis (...) button on the instance you want to rename.
2. Select Rename from the resulting menu.
3. Enter a new name for the instance.

4. Select Rename.

Reset an instance

[AuraDB Free] [AuraDB Professional

You can clear all data in an instance using the Reset to blank action.
To reset an instance:

1. Select the ellipsis (...) button on the instance you want to reset.
2. Select Reset to blank from the resulting menu.

3. Select Reset.

Upgrade an instance

Upgrade AuraDB Free to AuraDB Professional

You can upgrade an AuraDB Free instance to an AuraDB Professional instance using the Upgrade to

Professional action.

Upgrading your instance clones your Free instance data to a new Professional instance, leaving your
existing Free instance untouched.

To upgrade a Free instance:

1. Select the ellipsis (...) button on the free instance you want to upgrade.

2. Select Upgrade to Professional from the resulting menu.

113

https://console.neo4j.io/?product=aura-db

3. Set your desired settings for the new instance. For more information on AuraDB instance creation
settings, see Creating an instance.

4. Tick the | understand checkbox and select Upgrade Instance.

Upgrade AuraDB Professional to AuraDB Business Critical

You can upgrade an AuraDB Professional instance to an AuraDB Business Critical instance using the

Upgrade to Business Critical action.

Upgrading your instance clones your Professional instance data to a new Business Critical instance,
leaving your existing Professional instance untouched.

To upgrade a Business Critical instance:

1. Select the ellipsis (...) button on the free instance you want to upgrade.
2. Select Upgrade to Business Critical.

3. Set your desired settings for the new instance. For more information on AuraDB instance creation

settings, see Creating an instance.

4. Tick the | understand checkbox and select Upgrade Instance.

Resize an instance

[AuraDB Professional][AuraDB Virtual Dedicated CIoud][AuraDB Business Critical

You can change the size of an existing instance using the Resize action.
To resize an instance:

1. Select the ellipsis (...) button on the instance you want to resize.
2. Select Resize from the resulting menu.
3. Select the new size you want your instance to be.

4. Tick the I understand checkbox and select Upgrade instance.

An instance remains available during the resize operation.

Pause an instance

[AuraDB Professional][AuraDB Virtual Dedicated CIoud][AuraDB Business Critical

o You cannot manually pause an AuraDB Free instance; they are paused automatically
after 72 hours of inactivity.

You can pause an instance when not needed and resume it at any time.
To pause an instance:

1. Select the pause button on the instance you want to pause.

114

2. Tick the | understand checkbox and select Pause to confirm.

After confirming, the instance begins pausing, and a play button replaces the pause button.

Paused instances run at a discounted rate compared to standard consumption, as
o outlined in the confirmation window. You can pause an instance for up to 30 days, after
which point AuraDB automatically resumes the instance.
Resume a paused instance

To resume an instance:

1. Select the play button on the instance you want to pause.

2. Tick the | understand checkbox and select Resume to confirm.

After confirming, the instance begins resuming, which may take a few minutes.

AuraDB Free instances do not automatically resume after 30 days. If an AuraDB Free
A instance remains paused for more than 30 days, Aura deletes the instance, and all
information is lost.

Clone an instance

You can clone an existing instance to create a new instance with the same data. You can clone across
regions, from AuraDB to AuraDS and vice versa, and from Neo4j version 4 to Neo4j version 5.

There are four options to clone an instance:

e Clone to a new AuraDB instance
e Clone to an existing AuraDB instance
e Clone to a new AuraDS database

e Clone to an existing AuraDS database

You can access all the cloning options from the ellipsis (...) button on the AuraDB instance.

o You cannot clone from a Neo4j version 5 instance to a Neo4j version 4 instance.

Clone to a new AuraDB instance

1. Select the ellipsis (...) button on the instance you want to clone.

2. Select Clone To New and then AuraDB Professional/Business Critical/Virtual Dedicated Cloud from
the contextual menu.

3. Set your desired settings for the new database. For more information on AuraDB database creation,
see Creating an instance.

4. Check the | understand box and select Clone Database.

115

g Make sure that the username and password are stored safely before continuing.
Credentials cannot be recovered afterwards.

Clone to an existing AuraDB instance

When you clone an instance to an existing instance, the database connection URI stays the same, but the
data is replaced with the data from the cloned instance.

g Cloning into an existing instance will replace all existing data. If you want to keep the
current data, take a snapshot and export it.

1. Select the ellipsis (...) button on the instance you want to clone.
2. Select Clone To Existing and then AuraDB from the contextual menu.
3. If necessary, change the database name.

4. Select the existing AuraDB database to clone to from the dropdown menu.

Existing instances that are not large enough to clone into will not be available for
selection. In the dropdown menu, they will be grayed out and have the string
(Instance is not large enough to clone into) appended to their name.

5. Check the | understand box and select Clone.

Clone to a new AuraDS instance

1. Select the ellipsis (...) button on the instance you want to clone.
2. Select Clone To New and then AuraDS from the contextual menu.
3. Set the desired name for the new instance.

4. Check the | understand box and select Clone Instance.

g Make sure that the username and password are stored safely before continuing.
Credentials cannot be recovered afterwards.

Clone to an existing AuraDS instance

When you clone an instance to an existing instance, the database connection URI stays the same, but the
data is replaced with the data from the cloned instance.

g Cloning into an existing instance will replace all existing data. If you want to keep the
current data, take a snapshot and export it.

1. Select the ellipsis (...) button on the instance you want to clone.
2. Select Clone To Existing and then AuraDS from the contextual menu.

3. If necessary, change the instance name.

116

4. Select the existing AuraDS instance to clone to from the dropdown menu.

Existing instances that are not large enough to clone into will not be available for
o selection. In the dropdown menu, they are grayed out and have the string (Instance
is not large enough to clone into) appended to their name.

5. Tick the | understand checkbox and select Clone.

Delete an instance
You can delete an instance if you no longer want to be billed for it.
To delete an instance:

1. Select the red trashcan icon on the instance you want to delete.

2. Type the exact name of the instance (as instructed) to confirm your decision, and select Destroy.

A There is no way to recover data from a deleted AuraDB instance.

Backup, export and restore

The data in your AuraDB instance can be backed up, exported, and restored using snapshots.
A snapshot is a copy of the data in an instance at a specific point in time.

The Snapshots tab within an AuraDB instance shows a list of available snapshots.

To access the Snapshots tab:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the instance you want to access.

3. Select the Snapshots tab.

Only the latest snapshot is available for Free instances. Snapshots are available for 7
o days for Professional instances, 30 days for Business Critical instances, and 60 days for
AuraDB Virtual Dedicated Cloud instances.

Snapshot types

Scheduled

[AuraDB Professional][AuraDB Business Critical][AuraDB Virtual Dedicated Cloud

A Scheduled snapshot is a snapshot that is automatically triggered when you first create an instance,
when changes to the underlying system occur (for example, a new patch release), and at a cadence

depending on your plan type.

117

https://console.neo4j.io/?product=aura-db

Scheduled snapshots are run automatically once a day for Professional instances and once an hour for
Business Critical and Enterprise instances.

For AuraDB Virtual Dedicated Cloud database instances running Neo4j v4.x, from day O
to 7 scheduled snapshots run automatically once every 6 hours. From day 8 to 60,
snapshots run once a day.

On demand

An On Demand snapshot is a snapshot that you manually trigger by selecting Take snapshot from the
Snapshots tab of an instance.

Snapshot actions

Restore

’ Restoring a snapshot overwrites the data in your instance, replacing it with the data
contained in the snapshot.

You can restore data in your instance to a previous snapshot by selecting Restore next to the snapshot you
want to restore.

Restoring a snapshot requires you to confirm the action by typing RESTORE and selecting Restore.

Export and create
The ellipses (...) button next to an existing snapshot, allows you to:

e Export - Download the instance as .backup file, allowing you to store a local copy and work on your
data offline. (This applies to AuraDB v5 databases, for v4, the instances can be downloaded as .dump
files.)

¢ Create instance from snapshot - Create a new AuraDB instance using the data from the snapshot.

The ability to Export or Create an instance from a Scheduled Virtual Dedicated Cloud
snapshot is limited to 14 days.

Additionally, for Virtual Dedicated Cloud instances running Neo4j version 5, the ability to
o export or create an instance from a Scheduled snapshot is limited to the first full
snapshot, taken once per day.

Use the toggle Show exportable only on top of the list of snapshots to filter by whether
a snapshot is exportable or not.

Security of backups and exported data

Neo4j Aura Enterprise automatically creates backups of each database at regular intervals. Aura stores the
data securely in encrypted and dedicated cloud storage buckets. Users access backups through the Aura

118

console. In the console, it's possible to:

e See a list of previous backups
e Choose to restore a backup

e Download a backup (which serves as the export mechanism)

Retention periods

The current Neo4j Aura Snapshot retention periods by tier

Tier Aura version Scheduled Snapshots Scheduled Snapshot On-Demand Snapshot

per day restorable days restorable days
(exportable days) (exportable days)
AuraDB Free N/A N/A 30 days (30 days)

AuraDB Professional

AuraDS Professional

AuraDB Business

Full retention: 1
Full retention: 1

Full: 1, Differential: 23 L

30 days (7 days)
9 days (7 days)

30 days (7 days)

30 days (30 days)
180 days (180 days)

30 days (30 days)

Critical

AuraDB Virtual 4
Dedicated Cloud

Full retention: 1, Short Full retention: 60 (14), 90 days (90 days)

retention: 3 Short retention: 7 (7) ©

5 Full: 1, Diferential: 23 " Full: 60 (14),
Differential: 60 (N/A)

90 days (90 days)

AuraDS Enterprise 4 Full retention: 1 Full retention: 16 days 180 days (180 days)
(7 day)
5 Full: 1 Full: 16 days (7 days) 180 days (180 days)

Secondaries

[AuraDB Virtual Dedicated Cloud

A secondary is a read-only copy of your Aura database. Secondaries help you scale the read query
workload your AuraDB instance is able to serve, by spreading the load evenly across multiple copies of the
data. This increases the maximum read query throughput of a database while preventing bottlenecks.

To ensure high availability, secondaries are distributed across availability zones. They are however, only
available within the same cloud region as the primary Aura instance.

Up to 15 secondaries can be added per AuraDB instance, which increases the read capacity to handle
read-heavy workloads significantly. Secondaries can be added, managed, and removed through the Aura
console or the Aura API. Currently, they are static and do not support elastic or auto-scaling behavior.

The secondary count is retained when the database is paused and resumed. For example, if your database
has three secondaries and you pause it, it will resume with three secondaries.

119

Secondaries can take some time to become operational after they are created, and there
may be delays when the system is busy. Causal consistency is maintained among your
secondaries with the use of bookmarks and these also ensure that returned data is

o correct and up-to-date. However, if the database is under heavy load, queries using
bookmarks may also experience delays in adding secondaries. See Operations Manual -
Causal consistency for more information.

Edit secondary count using the console

Once the feature is enabled for your project, you can see the secondary count set to zero on an instance
card. To edit the number of secondaries, use the More menu (three dots) on the card.

Edit Secondary Count

Edit secondary count using the Aura AP

Use the /instances/{instanceld} endpoint to edit the number of secondaries.

Monitoring

[AuraDB Professional][AuraDB Virtual Dedicated CIoud][AuraDB Business Critical

You can monitor the following metrics of an AuraDB instance from the Metrics tab:

e CPU Usage (%) - The amount of CPU used by the instance as a percentage.

Storage Used (%) - The amount of disk storage space used by the instance as a percentage.

AuraDB Virtual Dedicated Cloud|Heap Usage (%) - The amount of Java Virtual Machine (JVM)
memory used by the instance as a percentage.

Out of Memory Errors - The number of Out of Memory (OOM) errors encountered by the instance.

Garbage Collection Time (%) - The amount of time the instance spends reclaiming heap space as a
percentage.

Page Cache Evictions - The number of times the instance has replaced data in memory.

o More information on each metric, as well as suggestions for managing them, can be
found within the Metrics tab itself.

When viewing metrics, you can select from the following time intervals:

120

https://neo4j.com/docs/operations-manual/current/clustering/introduction/#causal-consistency-explained
https://neo4j.com/docs/operations-manual/current/clustering/introduction/#causal-consistency-explained
https://neo4j.com/docs/operations-manual/current/clustering/introduction/#causal-consistency-explained
https://neo4j.com/docs/operations-manual/current/clustering/introduction/#causal-consistency-explained

e 6 hours
e 24 hours
e 3 days
e 7 days
e 30 days

To access the Metrics tab:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the instance you want to access.

3. Select the Metrics tab.

Advanced metrics

[AuraDB Professional][AuraDB Business Critical][AuraDB Virtual Dedicated Cloud

Advanced metrics is a feature that enables access to a broad range of different instance and database

metrics.
To access Advanced metrics:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the instance you want to access.
3. Select the Metrics tab.

4. Select the Advanced metrics button.
The presented metrics will be laid out across three tabs according to their category:

¢ Resources - Overall system resources, such as CPU, RAM and disk usage.
¢ Instance - Information about the Neo4j instances running the database.

e Database - Metrics concerning the database itself, such as usage statistics and entity counts.
When viewing metrics, you can select from the following time intervals:

e 30 minutes
e 6 hours

24 hours

3 days

7 days

14 days

30 days

121

https://console.neo4j.io/?product=aura-db
https://console.neo4j.io/?product=aura-db

Chart interactions

o Memory and storage charts can be toggled between absolute and relative values using
the % toggle.

Toggle data series

[AuraDB Business Critical][AuraDB Virtual Dedicated Cloud

To hide or show individual data series, select the corresponding data series in the legend below the chart.

Zoom

To zoom in to a narrower time interval, select and drag inside any chart to select your desired time interval.
The data will automatically update to match the increased resolution.

To reset zoom, double-click anywhere inside the chart or use the option in the context menu.

Expand

Any chart can be expanded to take up all the available screen estate by clicking the expand button (shown
as two opposing arrows). To exit this mode, click the x button on the expanded view.

Context menu
To access the chart context menu, select the ... button on any chart.

e More info - Selecting More info brings up an explanation of the particular metric. For some metrics it
also provides hints about possible actions to take if that metric falls outside the expected range.

e Reset zoom - If the zoom level has been altered by selecting and dragging across a chart, Reset zoom
resets the zoom back to the selected interval.

Aggregations

[AuraDB Business Critical][AuraDB Virtual Dedicated Cloud

Most metrics will have several values for a given timestamp because of the following reasons:

e Multiple database replicas

e Compressing several data points into one, depending on zoom level

Aggregating functions are used to reconcile metrics having multiple data points and make the most sense
of that particular metric. To convey an even more detailed picture of the state of the system, several
aggregations can be shown.

The possible aggregations are:

e Min - The minimum value of the metric across all cluster members.

122

e Max - The maximum value of the metric across all cluster members.
e Average - The average value of the metric across all cluster members.

e Sum - The sum of the metric across all cluster members.

Detail view

[AuraDB Business Critical][AuraDB Virtual Dedicated Cloud

An Aura instance can run on multiple servers to achieve availability and workload scalability. These servers
are deployed across different Cloud Provider availability zones in the user-selected region.

Detail view shows distinct data series for availability zone & instance mode combinations. This is
presented as an alternative to the aggregations described above.

Detail view can be enabled with the toggle under the time interval selector.

o Metrics in the Detail view for a new Aura instance may take time to appear because of
the way 'availability zone' data is collected.

Store size metrics

Resources tab

The chart on the Resources tab shows the allocated store size metric for the selected database either as a
percentage of the available storage assigned for the database or as absolute values.

Database tab

The Database tab provides a chart that shows the store size and the portion of the allocated space that the
database is actively utilizing. Both metrics are represented as percentages of the available storage
assigned to the database.

These metrics may differ due to the way Neo4j allocates and reuses space. Once allocated, space is never
automatically de-allocated. Thus, reducing the data (nodes, relationships, properties) stored in the
database does not reduce the top-line store size metric. However, Neo4j will reuse this 'available' space
before allocating more from the system. The amount of allocated space that is 'available' is reported by the
database, and Advanced metrics uses this metric to derive the used space by subtracting it from the
allocated store size. This information can help you understand how close your database is to exceeding the
assigned storage size.

123

Connecting applications

You can use the official drivers and libraries provided by Neo4j to connect your application to AuraDB

using a variety of programming languages.

Regardless of what language you use, you will need to provide the following information to connect to an

AuraDB instance:

e uri - The Connection URI for your AuraDB instance. You can copy this from the instance card or

details page in the Console.

e username and password - The Username and Password for your AuraDB instance. You can copy or
download these during the instance creation process.

Change Data Capture

Change Data Capture (CDC) allows you to capture and track changes to your database in real-time,
enabling you to keep your other data sources up to date with Neo4j. With CDC, you can identify and
respond to changes (create, update, and delete) on nodes and relationships as they happen, and integrate
these changes into other systems and applications.

See CDC on Neo4j Aura for more information about setting up CDC, configuring it to capture the changes,
and querying those changes for further processing, such as replicating to another system.

[6] Inactivity is when you perform no queries on the instance.

[7] Differential backups only contain the new data since the last backup, and are therfore not exportable, but they are

restorable for the full duration.

[8] Short retentions backups are the same as full backups, only with a shorter lifespan.

124

https://neo4j.com/docs/pdf/neo4j-create-applications-.pdf
https://neo4j.com/docs/cdc/current/get-started/aura/

=Neo4j AuraDS=

Neo4d) AuraDS overview

AuraDS is the fully managed version of Neo4j Graph Data Science.
AuraDS instances:

e are automatically upgraded and patched;
e can be seamlessly scaled up or down;

e can be paused to reduce costs.

Plans

AuraDS offers the AuraDS Professional and AuraDS Enterprise subscription plans. The full list of features
for each plan is available on the Neo4j Pricing page.

Updates and upgrades

AuraDS updates and upgrades are handled by the platform, and as such do not require user intervention.
Security patches and new versions of GDS and Neo4j are installed within short time windows during
which the affected instances are unavailable.

The operations are non-destructive, so graph projections, models, and data present on an instance are not
affected. No operation is applied until all the running GDS algorithms have completed.

Support

For a breakdown of the support offered across plan types as well as the support holiday schedule, see the
Aura Support page.

Additionally, you can access the Aura Status page to check the current operational status of Aura and
subscribe to updates.

126

https://neo4j.com/pricing/#graph-data-science
https://aura.support.neo4j.com/hc/en-us/articles/360053850514
https://status.neo4j.io/

Architecture

AuraDS makes it easy to run graph algorithms on Neo4j by integrating two main components:
¢ Neodj Database, where graph data are loaded and stored, and Cypher queries and all database
operations (for example user management, query termination, etc.) are executed:;

e Graph Data Science, a software component installed in the Neo4j Database, whose main purpose is to
run graph algorithms on in-memory projections of Neo4j Database data.

Neo4j Graph Data Science concepts

The Neo4j Graph Data Science (GDS) library includes procedures to project and manage graphs, run
algorithms, and train machine learning models.

Graph Catalog

The graph catalog is used to store and manage projected graphs via GDS procedures.

Algorithms

GDS contains many graph algorithms, invoked as Cypher procedures and run on projected graphs.
GDS algorithms are broken down into three tiers of maturity:
e Alpha: experimental algorithms that may be changed or removed at any time. Algorithms in this tier

are prefixed with gds.alpha.<algorithm>.

e Beta: algorithms promoted from the Alpha tier to candidates for the Production tier. Algorithms in this
tier are prefixed with gds.beta.<algorithm>.

e Production: algorithms that have been rigorously tested for stability and scalability. Algorithms in this

tier are prefixed with gds.<algorithm>.

Model Catalog

Some machine learning algorithms (for example Node Classification and GraphSage) need to use trained
models in their computation. The model catalog is used to store and manage named trained models.

Pipeline Catalog

The pipeline catalog is used to manage machine learning pipelines. A pipeline groups together all the
stages of a supported machine learning task (for example Node classification), from graph feature
extraction to model training, in a single end-to-end workflow.

Graph data flow

Since GDS algorithms can only run in memory, the typical data flow involves:

1. Reading the graph data from Neo4j Database
2. Loading (projecting) the data into an in-memory graph

3. Running an algorithm on a projected graph

127

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#management_ops
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#algorithm_references
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#model_catalog
/docs/graph-data-science/current/pipeline-catalog/pipeline-catalog/

4. Writing the results back to Neo4j Database (if the algorithm runs in write mode)

Execute
algorithm

-

Load projected

Store ‘ graphe ' Read projected
results graph

Creating an AuraDS instance

1. Navigate to the Neo4j Aura Console.
2. Select New instance to open the Create an instance page.
3. Fill up the instance details:

° Instance Name "' - The name to give to the instance. A descriptive name makes it easier to find a
specific instance among many.

° Region - The physical location of the instance. Set this as close to your location as possible. The
closer the region is to your location, the faster the response time for any network interactions with
the instance.

° Number of nodes/relationships - The estimated number of nodes and relationships that the
instance should support.

4. Select one or more algorithm categories from the Which algorithms are you going to use? section (or
select I'm not sure which algorithms to use) to help estimate the most appropriate instance size. An
overview of each algorithm category can be found here.

5. Select Calculate Estimate to get an estimate of the resources needed to run the graph (memory, CPU,
storage) along with the expected price.

6. Select Create to proceed.

7. Copy and store the Username and Generated password credentials to access the instance just
created. Alternatively, you can download the credentials as a . txt file.

g Warning: Make sure that the username and password are stored safely before
continuing. Credentials cannot be recovered afterwards.

8. Tick the confirmation checkbox and select Continue.
o Multi-database is not supported within Neo4j AuraDS.

The process will take a few minutes to complete. Upon completion, you will be able to connect to the

instance.

[9] In AuraDS Professional, this field becomes available after selecting the Calculate Estimate button.

129

https://console.neo4j.io/?product=aura-ds
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#algorithms

Connecting to AuraDS

Once you have created an AuraDS instance, you can start using it with any Neo4j application or directly
from your code. Keep your username and password handy, as you will need them to connect to your

instance.

Connecting with Neo4j applications

There are several ways to interact with and use graph data in AuraDS.

e Neodj Browser - A browser-based interface for querying and viewing graph data with rudimentary

visualization.

Neo4j Bloom - A graph exploration application for visually interacting with graph data.

Neo4j Workspace - A browser-based interface used to import, visualize, and query graph data.

Neo4j Desktop - An installable desktop application used to manage local and cloud databases.

Neo4j Cypher Shell - A command-line tool used to run Cypher queries against a Neo4j instance.

O Tip: For first-time users, we recommend using Neo4j Browser.
w

Neo4j Browser
To open an AuraDS instance with Neo4j Browser:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the Query button on the instance you want to open.

3. Enter the Username and Password credentials in the Neo4j Browser window that opens. These are
the same credentials you stored when you created the instance.

4. Select Connect.

Once you have successfully connected, there are built-in guides you can complete to familiarize yourself
with Neo4j Browser. See the Browser manual for more information.

Neo4j Bloom
To open an AuraDS instance with Neo4j Bloom:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the Explore button on the instance you want to open.

3. Enter the Username and Password credentials in the Neo4j Browser window that opens. These are

the same credentials you stored when you created the instance.

4. Select Connect.

See the Neo4j Bloom documentation for more details.

130

https://console.neo4j.io/?product=aura-ds
https://neo4j.com/docs/pdf/neo4j-browser-manual-.pdf
https://console.neo4j.io/?product=aura-ds
https://neo4j.com/docs/pdf/bloom-user-guide-.pdf

Perspectives in AuraDS

Due to the nature of AuraDS'’s infrastructure, it is not currently possible to share
Perspectives in Bloom, as the data for a given Perspective is stored in local storage in
the user’s web browser.

An alternative is to export your Perspective as a JSON file and import it into another
Bloom session.

To export a Perspective:

1. Open the Bloom interface for your Neo4j AuraDS instance.
2. Navigate to the Perspectives Gallery.
o 3. Click on the vertical ellipsis {(...) and select Export.
4. Save the file to your local disk.
You can import perspectives by clicking the blue "Import Perspective" button in the

Perspective gallery. Please note that the Perspective exposes details about your graph’s
schema but not the actual data within.

For more information, see Bloom Perspectives.
Deep links

As data for a given Perspective is stored in local storage in the user’'s web browser, if
you want to access a deep link referencing perspectives, you will first need to import the
perspectives into your local instance of Bloom.

Neo4j Workspace

Neo4j Workspace combines the functionality of Neo4j Browser, Neo4j Bloom, and Neo4j Data Importer
into a single interface.

To open an instance with Workspace:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the Open button on the instance you want to open.

3. Enter the Database user and Password credentials in the window that opens. These are the same
credentials you stored when you created the instance.

4. Select Connect.

For more information on using Neo4j Workspace, see the Product page.

Workspace is enabled by default on AuraDB Free and AuraDB Professional instances
but needs to be enabled for AuraDB Virtual Dedicated Cloud instances. If you do not see

o the Open button on your instance, you can enable it by selecting the Settings cog in the
top menu bar and toggling Enable workspace.

131

https://neo4j.com/docs/pdf/bloom-user-guide-current.pdf#bloom_perspectives
https://console.neo4j.io/?product=aura-ds
https://neo4j.com/product/workspace/

Neo4j Desktop

You can connect AuraDS instances to the Neo4j Desktop application, allowing the ability to have a single
portal for interacting with all instances of Neo4j, whether local or located in the cloud.

To connect to an AuraDS instance using Neo4j Desktop:

1. Navigate to the Neo4j Aura Console in your browser.

2. Copy the Connection URI of the instance you want to connect to. The URI is in the page that opens

when clicking on the instance.
3. In Neo4j Desktop, select the Projects tab and select an existing project or create a new one.
4. Select the Add dropdown and choose Remote connection.

5. Enter a name for the instance and enter the URL from the Neo4j Aura console from the second step.

Once complete, select Next.

6. With Username/Password selected, enter your credentials and select Next. These are the same
credentials you stored when you created the instance.

7. When available, activate the connection by clicking the Connect button.

Notes:

o e Neodj Desktop only allows 1 connection at a time to a database (local or remote).

e Deactivating an instance in Neo4j Desktop won’t shut it down or stop a remote
instance - it will only temporarily close the connection to it in Neo4j Desktop.

As with other databases in Neo4j Desktop, you can install Graph Apps for monitoring and other
functionality. To do this, follow the same process to install the graph application you need, and open it
from Neo4j Desktop or a web browser with the running and activated Neo4j AuraDS instance.

Neo4j Cypher Shell

You can connect to an AuraDS instance using the Neo4j Cypher Shell command-line interface (CLI) and
run Cypher commands against your instance from the command line. Refer to the Operations manual for
instructions on how to install the Cypher Shell.

To connect to an AuraDS instance using Neo4j Cypher Shell:

1. Navigate to the Neo4j Aura Console in your browser.

2. Copy the Connection URI of the instance you want to connect to. The URI is in the page that opens
when clicking on the instance.

3. Open a terminal and navigate to the folder where you have installed the Cypher Shell.
4. Run the following cypher-shell command replacing:

° <connection_uri> with the URI you copied in step 2

° <username> with the username for your instance

° <password> with the password for your instance

132

https://console.neo4j.io/?product=aura-ds
https://install.graphapp.io/
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#cypher_shell
https://console.neo4j.io/?product=aura-ds

./cypher-shell -a <connection_uri> -u <username> -p <password>

Once connected, you can run :help for a list of available commands.

For more information on Cypher Shell, including how to install it, see the Cypher Shell documentation.

Connecting with Python

(r) Follow along with a notebook in € Google Colab
-

This tutorial shows how to interact with AuraDS using the Python Driver. In the following sections you can
switch between client and driver code clicking on the appropriate tab.

A running AuraDS instance must be available along with access credentials (generated in the Creating an
AuraDS instance section) and its connection URI (found in the instance detail page, starting with
neo4j+s://).

Installation

Both the GDS client and the Python driver can be installed using pip.

pip install graphdatascience

The latest stable version of the client can be found on PyPI.

pip install neo4j

The latest stable version of the driver can be found on PyPl.

If pip is not available, you can try replacing it with python -m pip or python3 -m pip.

Import and setup

Both the GDS client and the Python driver require the connection URI and the credentials as shown in the
introduction.

133

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#cypher_shell
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Connecting_with_Python_(GDS_client).ipynb
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Connecting_with_Python_(GDS_client).ipynb
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#current
https://pypi.org/project/graphdatascience
https://pypi.org/project/neo4j

The client is imported as the GraphDataScience class:

Client import
from graphdatascience import GraphDataScience

The aura_ds=True constructor argument should be used to have the recommended non-default

configuration settings of the Python Driver applied automatically.

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = "..."

Client instantiation

gds = GraphDataScience(
AURA_CONNECTION_URI,
auth=(AURA_USERNAME, AURA_PASSWORD),
aura_ds=True

The driver is imported as the GraphDatabase class:

Driver import
from neo4j import GraphDatabase

Replace with the actual URI, username and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io'
AURA_USERNAME = "neo4j"

AURA_PASSWORD = "..."

Driver instantiation

driver = GraphDatabase.driver(
AURA_CONNECTION_URI,
auth=(AURA_USERNAME, AURA_PASSWORD)

Running a query

Once created, the client (or the driver) can be used to run Cypher queries and call Cypher procedures. In
this example the gds.version procedure can be used to retrieve the version of GDS running on the

instance.

134

Call a GDS method directly
print(gds.version())

Cypher query
gds_version_query =
RETURN gds.version() AS version

Create a driver session

with driver.session() as session:
Use .data() to access the results array
results = session.run(gds_version_query).data()
print(results)

The following code retrieves all the procedures available in the library and shows the details of five of
them.

Assign the result of the client call to a variable
results = gds.list()

Print the result (a Pandas DataFrame)
print(results[:5])

Since the result is a Pandas DataFrame, you can use methods such as to_string and to_json to
pretty-print it.

Print the result (a Pandas DataFrame) as a console-friendly string
print(results[:5].to_string())

Print the result (a Pandas DataFrame) as a prettified JSON string
print(results[:5].to_json(orient="table", indent=2))

Import the json module for pretty visualization
import json

Cypher query
list_all_gds_procedures_query =
CALL gds.list()

Create a driver session
with driver.session() as session:
Use .data() to access the results array
results = session.run(list_all_gds_procedures_query).data()

Print the prettified result
print(json.dumps(results[:5], indent=2))

135

Serializing Neo4j DateTime in JSON dumps

In some cases the result of a procedure call may contain Neo4j DateTime objects. In order to serialize such
objects into JSON, a default handler must be provided.

Import for the JSON helper function
from neo4j.time import DateTime

Helper function for serializing Neo4j DateTime in JSON dumps
def default(o):
if isinstance(o, (DateTime)):
return o.isoformat()

Run the graph generation algorithm
g, _ = gds.beta.graph.generate(

"example-graph", 10, 3, relationshipDistribution="POWER_LAW"
)

Drop the graph keeping the result of the operation, which contains
some DateTime fields ("creationTime" and "modificationTime")
result = gds.graph.drop(g)

Print the result as JSON, converting the DateTime fields with
the handler defined above
print(result.to_json(indent=2, default_handler=default))

Import to prettify results
import json

Import for the JSON helper function
from neo4j.time import DateTime

Helper function for serializing Neo4j DateTime in JSON dumps
def default(o):
if isinstance(o, (DateTime)):
return o.isoformat()

Example query to run a graph generation algorithm
create_example_graph_query = """
CALL gds.beta.graph.generate(
'example-graph', 10, 3, {relationshipDistribution: 'POWER_LAW'}
)

Example query to delete a graph
delete_example_graph_query = """
CALL gds.graph.drop('example-graph')

Create the driver session

with driver.session() as session:
Run the graph generation algorithm
session.run(create_example_graph_query).data()

Drop the generated graph keeping the result of the operation
results = session.run(delete_example_graph_query).data()

Prettify the results using the handler defined above
print(json.dumps(results, indent=2, sort_keys=True, default=default))

136

Closing the connection

The connection should always be closed when no longer needed.

Although the GDS client automatically closes the connection when the object is deleted, it is
good practice to close it explicitly.

Close the client connection
gds.close()

Close the driver connection
driver.close()

References

Documentation

e Neo4j GDS documentation
e Neodj driver documentation

e Neo4j developer documentation

Cypher

e | earn more about the Cypher syntax

e You can use the Cypher Cheat Sheet as a reference of all available Cypher features

Modelling

e Graph modeling guidelines
e Modeling designs

e Graph model refactoring

137

https://neo4j.com/docs/graph-data-science
https://neo4j.com/docs/driver-manual/current/get-started/
https://neo4j.com/developer
https://neo4j.com/docs/cypher-manual/current/
https://neo4j.com/docs/cypher-cheat-sheet
https://neo4j.com/docs/getting-started/data-modeling/guide-data-modeling/
https://neo4j.com/docs/getting-started/data-modeling/modeling-designs/
https://neo4j.com/docs/getting-started/data-modeling/graph-model-refactoring/

Usage examples

Projecting graphs and using the graph catalog

@ Follow along with a notebook in € Google Colab

This example shows how to:

¢ load Neo4j on-disk data into in-memory projected graphs;

e use the graph catalog to manage projected graphs.

Setup

138

https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Projecting_graphs_and_using_the_Graph_Catalog_(GDS_client).ipynb
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Projecting_graphs_and_using_the_Graph_Catalog_(GDS_client).ipynb
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#management_ops

For more information on how to get started using Python, refer to the Connecting with Python
tutorial.

pip install graphdatascience

Import the client
from graphdatascience import GraphDataScience

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

Configure the client with AuraDS-recommended settings
gds = GraphDataScience(

AURA_CONNECTION_URI,

auth=(AURA_USERNAME, AURA_PASSWORD),

aura_ds=True

In the following code examples we use the print function to print Pandas DataFrame and Series
objects. You can try different ways to print a Pandas object, for instance via the to_string and
to_json methods; if you use a JSON representation, in some cases you may need to include a
default handler to handle Neo4j DateTime objects. Check the Python connection section for some
examples.

For more information on how to get started using the Cypher Shell, refer to the Neo4j Cypher
Shell tutorial.

(r') Run the following commands from the directory where the Cypher shell is
- installed.

export AURA_CONNECTION_URI="neo4j+s://xxxxxxxx.databases.neo4j.io"
export AURA_USERNAME="neo4j"
export AURA_PASSWORD=""

./cypher-shell -a $AURA_CONNECTION_URI -u $AURA_USERNAME -p $AURA_PASSWORD

139

For more information on how to get started using Python, refer to the Connecting with Python
tutorial.

pip install neo4j

Import the driver
from neo4j import GraphDatabase

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

Instantiate the driver

driver = GraphDatabase.driver(
AURA_CONNECTION_URI,
auth=(AURA_USERNAME, AURA_PASSWORD)

Import to prettify results
import json

Import for the JSON helper function
from neo4j.time import DateTime

Helper function for serializing Neo4j DateTime in JSON dumps
def default(o):
if isinstance(o, (DateTime)):
return o.isoformat()

Load data from Neo4j with native projections

Native projections are used to load into memory a graph stored on disk. The gds.graph.project procedure
allows to project a graph by selecting the node labels, relationship types and properties to be projected.

The gds.graph.project procedure can use a "shorthand syntax", where the nodes and relationships
projections are simply passed as single values or arrays, or an "extended syntax", where each node or
relationship projection has its own configuration. The extended syntax is especially useful if additional
transformation of the data or the graph structure are needed. Both methods are shown in this section,
using the following graph as an example.

140

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#graph_project

Cypher query to create an example graph on disk
gds. run_cypher("""

MERGE (a:EngineeringManagement {name: 'Alistair'})

MERGE (j:EngineeringManagement {name: 'Jennifer'})

MERGE (d:Developer {name: 'Leila'})

MERGE (a)-[:MANAGES {start_date: 987654321}]1->(d)

MERGE (j)-[:MANAGES {start_date: 123456789, end_date: 987654321}]1->(d)
ll||ll)

MERGE (a:EngineeringManagement {name: 'Alistair'})

MERGE (j:EngineeringManagement {name: 'Jennifer'})

MERGE (d:Developer {name: 'Leila'})

MERGE (a)-[:MANAGES {start_date: 987654321}]1->(d)

MERGE (j)-[:MANAGES {start_date: 123456789, end_date: 987654321} 1->(d)

Cypher query to create an example graph on disk
write_example_graph_query = """

MERGE (a:EngineeringManagement {name: 'Alistair'})

MERGE (j:EngineeringManagement {name: 'Jennifer'})

MERGE (d:Developer {name: 'Leila'})

MERGE (a)-[:MANAGES {start_date: 987654321}]->(d)

MERGE (j)-[:MANAGES {start_date: 123456789, end_date: 987654321}]1->(d)

Create the driver session
with driver.session() as session:
session.run(write_example_graph_query)

Project using the shorthand syntax

In this example we use the shorthand syntax to simply project all node labels and relationship types.

141

Project a graph using the shorthand syntax
shorthand_graph, result = gds.graph.project(
"shorthand-example-graph",

["EngineeringManagement", "Developer"],
["MANAGES"]

)

print(result)

CALL gds.graph.project(
"shorthand-example-graph',

['EngineeringManagement', 'Developer'],

["MANAGES']
)
YIELD graphName, nodeCount, relationshipCount
RETURN *

shorthand_graph_create_call =
CALL gds.graph.project(
'shorthand-example-graph',

['EngineeringManagement', 'Developer'],

["MANAGES']
)
YIELD graphName, nodeCount, relationshipCount
RETURN *

Create the driver session

with driver.session() as session:
Call to project a graph using the shorthand syntax
result = session.run(shorthand_graph_create_call).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True))

Project using the extended syntax
In this example we use the extended syntax for relationship projections to:

e transform the EngineeringManagement and Developer labels to PersonEM and PersonD respectively;
e transform the directed MANAGES relationship into the KNOWS undirected relationship;
e keep the start_date and end_date relationship properties, adding a default value of 999999999 to

end_date.

The projected graph becomes the following:

(:PersonEM {first_name: 'Alistair'})-
[:KNOWS {start_date: 987654321, end_date: 999999999} |-
(:PersonD {first_name: 'Leila'})-
[:KNOWS {start_date: 123456789, end_date: 987654321}]-
(:PersonEM {first_name: 'Jennifer'})

142

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#relationship-projection-syntax

Project a graph using the extended syntax

extended_form_graph, result = gds.graph.project(

"extended-form-example-graph",

{
"PersonEM": {
"label": "EngineeringManagement"
}!
"PersonD": {
"label": "Developer"
3
3,
{
"KNOWS": {
"type": "MANAGES",
"orientation": "UNDIRECTED",
"properties": {
"start_date": {
"property": "start_date"
3,
"end_date": {
"property": "end_date",
"defaultValue": 999999999
3
3
3
3
)
print(result)

CALL gds.graph.project(
'extended-form-example-graph',
{

PersonEM: {
label: 'EngineeringManagement'
By
PersonD: {
label: 'Developer'’
}
};
{
KNOWS: {
type: 'MANAGES',
orientation: 'UNDIRECTED',
properties: {
start_date: {
property: 'start_date'

end_date: {
property: 'end_date',
defaultValue: 999999999
}
}
}
}
)
YIELD graphName, nodeCount, relationshipCount
RETURN *

143

extended_form_graph_create_call =
CALL gds.graph.project(
'extended-form-example-graph',

{
PersonEM: {
label: 'EngineeringManagement'
}Y
PersonD: {
label: 'Developer'
}
iE
{
KNOWS: {
type: 'MANAGES',
orientation: 'UNDIRECTED',
properties: {
start_date: {
property: 'start_date'
end_date: {
property: 'end_date',
defaultValue: 999999999
3
3
3
}
)
YIELD graphName, nodeCount, relationshipCount
RETURN *

Create the driver session
with driver.session() as session:
Call to project a graph using the extended syntax
result = session.run(extended_form_graph_create_call).data()

Prettify the results
print(json.dumps(result, indent=2, sort_keys=True))

Use the graph catalog

The graph catalog can be used to retrieve information on and manage the projected graphs.

List all the graphs

The gds.graph.list procedure can be used to list all the graphs currently stored in memory.

144

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#graph_list

List all in-memory graphs
all_graphs = gds.graph.list()

print(all_graphs)

CALL gds.graph.list()

show_in_memory_graphs_call =
CALL gds.graph.list()

Create the driver session
with driver.session() as session:
Run the Cypher procedure
results = session.run(show_in_memory_graphs_call).data()

Prettify the results
print(json.dumps(results, indent=2, sort_keys=True, default=default))

Check that a graph exists

The gds.graph.exists procedure can be called to check for the existence of a graph by its name.

Check whether the "shorthand-example-graph" graph exists in memory
graph_exists = gds.graph.exists("shorthand-example-graph")

print(graph_exists)

CALL gds.graph.exists('example-graph')

check_graph_exists_call =
CALL gds.graph.exists('example-graph')

Create the driver session

with driver.session() as session:
Run the Cypher procedure and print the result
print(session.run(check_graph_exists_call).data())

145

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#graph_exists

Drop a graph

When a graph is no longer needed, it can be dropped to free up memory using the gds.graph.drop
procedure.

Drop a graph object and keep the result of the call
result = gds.graph.drop(shorthand_graph)

Print the result
print(result)

Drop a graph object and just print the result of the call
gds.graph.drop(extended_form_graph)

CALL gds.graph.drop('shorthand-example-graph');

CALL gds.graph.drop('extended-form-example-graph');

delete_shorthand_graph_call =
CALL gds.graph.drop('shorthand-example-graph')

delete_extended_form_graph_call =
CALL gds.graph.drop('extended-form-example-graph')

Create the driver session
with driver.session() as session:
Drop a graph and keep the result of the call
result = session.run(delete_shorthand_graph_call).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True, default=default))

Drop a graph discarding the result of the call
session.run(delete_extended_form_graph_call).data()

Cleanup

When the projected graphs are dropped, the underlying data on the disk are not deleted. If such data are
no longer needed, they need to be deleted manually via a Cypher query.

146

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#graph_drop

Delete on-disk data

gds. run_cypher("""
MATCH (example)
WHERE example:EngineeringManagement OR example:Developer
DETACH DELETE example

"

MATCH (example)
WHERE example:EngineeringManagement OR example:Developer
DETACH DELETE example;

delete_example_graph_query =
MATCH (example)
WHERE example:EngineeringManagement OR example:Developer
DETACH DELETE example

Create the driver session

with driver.session() as session:
Run Cypher call
print(session.run(delete_example_graph_query).data())

Closing the connection

The connection should always be closed when no longer needed.
Although the GDS client automatically closes the connection when the object is deleted, it is
good practice to close it explicitly.

Close the client connection
gds.close()

Close the driver connection
driver.close()

References

Documentation

e Neo4j GDS documentation

e Neodj driver documentation

147

https://neo4j.com/docs/graph-data-science
https://neo4j.com/docs/driver-manual/current/get-started/

e Neo4dj developer documentation

Cypher

e | earn more about the Cypher syntax

e You can use the Cypher Cheat Sheet as a reference of all available Cypher features

Modelling

e Graph modeling guidelines
e Modeling designs

e Graph model refactoring

Executing the different algorithm modes

(r) Follow along with a notebook in € Google Colab

This example explains execution modes for GDS algorithms and how to use each one of them.

Setup

148

https://neo4j.com/developer
https://neo4j.com/docs/cypher-manual/current/
https://neo4j.com/docs/cypher-cheat-sheet
https://neo4j.com/docs/getting-started/data-modeling/guide-data-modeling/
https://neo4j.com/docs/getting-started/data-modeling/modeling-designs/
https://neo4j.com/docs/getting-started/data-modeling/graph-model-refactoring/
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Executing_the_different_algorithm_modes_(GDS_client).ipynb
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Executing_the_different_algorithm_modes_(GDS_client).ipynb
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#running_algos

For more information on how to get started using Python, refer to the Connecting with Python
tutorial.

pip install graphdatascience

Import the client
from graphdatascience import GraphDataScience

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

Configure the client with AuraDS-recommended settings
gds = GraphDataScience(

AURA_CONNECTION_URI,

auth=(AURA_USERNAME, AURA_PASSWORD),

aura_ds=True

In the following code examples we use the print function to print Pandas DataFrame and Series
objects. You can try different ways to print a Pandas object, for instance via the to_string and
to_json methods; if you use a JSON representation, in some cases you may need to include a
default handler to handle Neo4j DateTime objects. Check the Python connection section for some
examples.

For more information on how to get started using the Cypher Shell, refer to the Neo4j Cypher
Shell tutorial.

(r') Run the following commands from the directory where the Cypher shell is
- installed.

export AURA_CONNECTION_URI="neo4j+s://xxxxxxxx.databases.neo4j.io"
export AURA_USERNAME="neo4j"
export AURA_PASSWORD=""

./cypher-shell -a $AURA_CONNECTION_URI -u $AURA_USERNAME -p $AURA_PASSWORD

149

For more information on how to get started using Python, refer to the Connecting with Python
tutorial.

pip install neo4j

Import the driver
from neo4j import GraphDatabase

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

Instantiate the driver

driver = GraphDatabase.driver(
AURA_CONNECTION_URI,
auth=(AURA_USERNAME, AURA_PASSWORD)

Import to prettify results
import json

Import for the JSON helper function
from neo4j.time import DateTime

Helper function for serializing Neo4j DateTime in JSON dumps
def default(o):
if isinstance(o, (DateTime)):
return o.isoformat()

Create an example graph

We start by creating some basic graph data first.

150

gds. run_cypher("""
CREATE

(home:Page {name: 'Home'}),
(about:Page {name:'About'}),
(product:Page {name:'Product'}),
(links:Page {name:'Links'}),
(a:Page {name:'Site A'}),
(b:Page {name:'Site B'}),
(c:Page {name:'Site C'}),
(d:Page {name:'Site D'}),

(home)-[:LINKS {weight: 0.2}]1->(about),
(home)-[:LINKS {weight: 0.2}]1->(links),
(home)-[:LINKS {weight: 0.6}]1->(product),
(about)-[:LINKS {weight: 1.0}]1->Chome),
(product)-[:LINKS {weight: 1.03}1->Chome),
(a)-[:LINKS {weight: 1.0}]1->Chome),
(b)-[:LINKS {weight: 1.0}]1->Chome),
(c)-[:LINKS {weight: 1.0}]1->Chome),
(d)-[:LINKS {weight: 1.0}]1->Chome),
(links)-[:LINKS {weight: 0.8}]->(home),
(links)-[:LINKS {weight: 0.05}]1->(a),
(links)-[:LINKS {weight: 0.05}]1->(b),
(links)-[:LINKS {weight: 0.05}1->(c),
(1inks)-[:LINKS {weight: 0.05}1->(d)

LD

CREATE

(home:Page {name: 'Home'}),
(about:Page {name: 'About'}),
(product:Page {name:'Product'}),
(links:Page {name:'Links'}),
(a:Page {name:'Site A'}),
(b:Page {name:'Site B'}),
(c:Page {name:'Site C'}),
(d:Page {name:'Site D'}),

(home)-[:LINKS {weight: @.2}]->(about),
(home)-[:LINKS {weight: @.2}]->(links),
(home)-[:LINKS {weight: 0.6}]1->(product),
(about)-[:LINKS {weight: 1.0} 1->Chome),
(product)-[:LINKS {weight: 1.0} 1->Chome),
(a)-[:LINKS {weight: 1.0}]1->(Chome),
(b)-[:LINKS {weight: 1.0}]1->Chome),
(c)-[:LINKS {weight: 1.0}]1->(Chome),
(d)-[:LINKS {weight: 1.0}]1->(Chome),
(links)-[:LINKS {weight: 0.8}]->(home),
(links)-[:LINKS {weight: 0.05}1->(a),
(links)-[:LINKS {weight: 0.05}1->(b),
(links)-[:LINKS {weight: 0.05}]->(c),
(links)-[:LINKS {weight: 0.05}]1->(d)

151

Cypher query
create_example_graph_on_disk_query =
CREATE

(home:Page {name: 'Home'}),
(about:Page {name: 'About'}),
(product:Page {name:'Product'}),
(links:Page {name:'Links'}),
(a:Page {name:'Site A'}),
(b:Page {name:'Site B'}),
(c:Page {name:'Site C'}),
(d:Page {name:'Site D'}),

(home)-[:LINKS {weight: 0.2}]1->(about),
(home)-[:LINKS {weight: 0.2}]1->(links),
(home)-[:LINKS {weight: 0.6}]->(product),
(about)-[:LINKS {weight: 1.0}1->Chome),
(product)-[:LINKS {weight: 1.0} 1->Chome),
(a)-[:LINKS {weight: 1.0}]1->Chome),
(b)-[:LINKS {weight: 1.0}1->Chome),
(c)-[:LINKS {weight: 1.0}]1->Chome),
(d)-[:LINKS {weight: 1.0}]1->(Chome),
(links)-[:LINKS {weight: 0.8}1->(home),
(links)-[:LINKS {weight: 0.05}]->(a),
(links)-[:LINKS {weight: 0.05}1->(b),
(links)-[:LINKS {weight: 0.053}]1->(c),
(1inks)-[:LINKS {weight: 0.05}1->(d)

(S

[SESESIS)

Create the driver session
with driver.session() as session:
Run query
result = session.run(create_example_graph_on_disk_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True))

We then project an in-memory graph from the data just created.

152

g, result = gds.graph.project(
"example-graph",

"Page"
"LINKS",
relationshipProperties="weight"

)

print(result)

CALL gds.graph.project(
'example-graph',
'Page’,

"LINKS',
{

}
)

relationshipProperties: 'weight'

Cypher query
create_example_graph_in_memory_query =
CALL gds.graph.project(
'example-graph',
'Page’,
"LINKS',
{
relationshipProperties: 'weight'
}
)

Create the driver session
with driver.session() as session:
Run query
result = session.run(create_example_graph_in_memory_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True))

Execution modes
Every production-tier algorithm can be run in four different modes:

e stats
e stream
e mutate

e write

An additional estimate mode is explained in detail in the Estimating memory usage and resizing an
instance section.

In the following we’ll use the PageRank algorithm to show the usage of every execution mode.

153

Stats

The stats mode can be useful for evaluating an algorithm performance without mutating the in-memory
graph. When running an algorithm in this mode, a single row containing a summary of the algorithm
statistics (for example, counts or percentile distributions) is returned.

result = gds.pageRank.stats(
g’
maxIterations=20,
dampingFactor=0.85

)

print(result)

CALL gds.pageRank.stats(
'example-graph',
{maxIterations: 20, dampingFactor: 0.85}

)

YIELD ranlterations,
didConverge,
preProcessingMillis,
computeMillis,
postProcessingMillis,
centralityDistribution,
configuration

RETURN *

Cypher query
page_rank_stats_example_graph_query =
CALL gds.pageRank.stats(
'example-graph',
{maxIterations: 20, dampingFactor: 0.85}
)
YIELD ranlIterations,
didConverge,
preProcessingMillis,
computeMillis,
postProcessingMillis,
centralityDistribution,
configuration
RETURN *

Create the driver session
with driver.session() as session:
Run query
result = session.run(page_rank_stats_example_graph_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True))

The result contains the estimated time to run the algorithm (computeMillis) along with other details like
the centrality distribution and the configuration parameters.

154

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#running-algos-stats

Stream

The stream mode returns the results of an algorithm as Cypher result rows. This is similar to how standard
Cypher reading queries operate.

With the PageRank example, this mode returns a node ID and the computed PageRank score for each
node. The gds.util.asNode procedure can then be used to find a node from its node ID.

results = gds.pageRank.stream(
gY
maxIterations=20,
dampingFactor=0.85

print(results)

CALL gds.pageRank.stream(
'example-graph',
{maxIterations: 20, dampingFactor: 0.85}
)
YIELD nodeld, score
RETURN *

Cypher query to just get internal node ID and score
page_rank_stream_example_graph_query = """
CALL gds.pageRank.stream(
'example-graph',
{maxIterations: 20, dampingFactor: 0.85}

)
YIELD nodeld, score
RETURN *

Create the driver session
with driver.session() as session:
Run query
results = session.run(page_rank_stream_example_graph_query).data()

Prettify the results
print(json.dumps(results, indent=2, sort_keys=True))

Since an algorithm can run for a long time and the connection may suddenly drop, we suggest to use the
mutate and write modes instead to make sure that the computation completes and the results are saved.

Mutate

The mutate mode operates on the in-memory graph and updates it with a new property specified with the
mutateProperty configuration parameter. The new property must not already exist in the in-memory

graph.

This mode is useful when chaining the execution of several algorithms each of which relying on the results

155

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#running-algos-stream
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#utility-functions-node-path
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#running-algos-mutate

on the previous.

In the case of PageRank, the result of this mode is a score for each node. In this example we add the
calculated score to each node of the in-memory graph as the value of a new property called

pageRankScore.

result = gds.pageRank.mutate(
g,
mutateProperty="pageRankScore",
maxIterations=20,
dampingFactor=0.85

)

print(result)

CALL gds.pageRank.mutate(

'example-graph',

{mutateProperty: 'pageRankScore', maxIterations: 20, dampingFactor: 0.85}
)

YIELD nodePropertiesWritten, ranlterations
RETURN *

Cypher query to just get mutate the graph
page_rank_mutate_example_graph_query = """
CALL gds.pageRank.mutate(
'example-graph',
{mutateProperty: 'pageRankScore', maxIterations: 20, dampingFactor: 0.85}
)

YIELD nodePropertiesWritten, ranlterations
RETURN *

Create the driver session
with driver.session() as session:
Run query
result = session.run(page_rank_mutate_example_graph_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True))

Write

The write mode writes the results of the algorithm computation back to the Neo4j database. The written
data can be node properties (such as PageRank scores), new relationships (such as Node Similarity
similarities), or relationship properties (only for newly created relationships).

Similarly to the previous example, here we add the calculated score of the PageRank algorithm to each
node of the Neo4j database as the value of a new property called pageRankScore.

O To use the result of a write mode computation with another algorithm, a new in-
- memory graph must be created from the Neo4j database.

156

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#running-algos-write

result = gds.pageRank.write(
g’
writeProperty="pageRankScore",
maxIterations=20,
dampingFactor=0.85

)

print(result)

CALL gds.pageRank.write(
'example-graph',
{writeProperty: 'pageRankScore', maxIterations: 20, dampingFactor: .85}
)
YIELD nodePropertiesWritten, ranlterations
RETURN *

Cypher query to write the graph
page_rank_write_example_graph_query =
CALL gds.pageRank.write(
'example-graph',
{writeProperty: 'pageRankScore', maxIterations: 20, dampingFactor: 0.85}

)
YIELD nodePropertiesWritten, ranlterations
RETURN *

Create the driver session
with driver.session() as session:
Run query
result = session.run(page_rank_write_example_graph_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True))

Cleanup

After going through the example, both the in-memory graphs and the data in the Neo4j database can be

deleted.

157

result = gds.graph.drop(g)
print(result)
gds. run_cypher("""
MATCH (n)
DETACH DELETE n
nn u)

CALL gds.graph.drop('example-graph');

MATCH (n)
DETACH DELETE n;

delete_example_in_memory_graph_query =
CALL gds.graph.drop('example-graph')

delete_example_graph =
MATCH (n)
DETACH DELETE n

with driver.session() as session:
Delete in-memory graph
result = session.run(delete_example_in_memory_graph_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True, default=default))

Delete data from Neo4j
result = session.run(delete_example_graph).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True, default=default))

Closing the connection

The connection should always be closed when no longer needed.

158

Although the GDS client automatically closes the connection when the object is deleted, it is
good practice to close it explicitly.

Close the client connection
gds.close()

Close the driver connection
driver.close()

References

Documentation

e Neo4j GDS documentation
e Neo4j driver documentation

e Neo4j developer documentation

Cypher

e Learn more about the Cypher syntax

e You can use the Cypher Cheat Sheet as a reference of all available Cypher features

Modelling

e Graph modeling guidelines
e Modeling designs

e Graph model refactoring

Estimating memory usage and resizing an instance

(r) Follow along with a notebook in € Google Colab
-

This example shows how to:

e use the memory estimation mode to estimate the memory requirements for an algorithm before
running it

e resize an AuraDS instance to accommodate the algorithm memory requirements

159

https://neo4j.com/docs/graph-data-science
https://neo4j.com/docs/driver-manual/current/get-started/
https://neo4j.com/developer
https://neo4j.com/docs/cypher-manual/current/
https://neo4j.com/docs/cypher-cheat-sheet
https://neo4j.com/docs/getting-started/data-modeling/guide-data-modeling/
https://neo4j.com/docs/getting-started/data-modeling/modeling-designs/
https://neo4j.com/docs/getting-started/data-modeling/graph-model-refactoring/
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Estimating_memory_usage_and_resizing_an_instance_(GDS_client).ipynb
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Estimating_memory_usage_and_resizing_an_instance_(GDS_client).ipynb
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#memory_estimation

Setup

160

For more information on how to get started using Python, refer to the Connecting with Python
tutorial.

pip install graphdatascience

Import the client
from graphdatascience import GraphDataScience

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

Configure the client with AuraDS-recommended settings
gds = GraphDataScience(

AURA_CONNECTION_URI,

auth=(AURA_USERNAME, AURA_PASSWORD),

aura_ds=True

In the following code examples we use the print function to print Pandas DataFrame and Series
objects. You can try different ways to print a Pandas object, for instance via the to_string and
to_json methods; if you use a JSON representation, in some cases you may need to include a
default handler to handle Neo4j DateTime objects. Check the Python connection section for some
examples.

For more information on how to get started using the Cypher Shell, refer to the Neo4j Cypher
Shell tutorial.

(r') Run the following commands from the directory where the Cypher shell is
- installed.

export AURA_CONNECTION_URI="neo4j+s://xxxxxxxx.databases.neo4j.io"
export AURA_USERNAME="neo4j"
export AURA_PASSWORD=""

./cypher-shell -a $AURA_CONNECTION_URI -u $AURA_USERNAME -p $AURA_PASSWORD

161

For more information on how to get started using Python, refer to the Connecting with Python
tutorial.

pip install neo4j

Import the driver
from neo4j import GraphDatabase

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

Instantiate the driver

driver = GraphDatabase.driver(
AURA_CONNECTION_URI,
auth=(AURA_USERNAME, AURA_PASSWORD)

Import to prettify results
import json

Import for the JSON helper function
from neo4j.time import DateTime

Helper function for serializing Neo4j DateTime in JSON dumps
def default(o):

if isinstance(o, (DateTime)):
return o.isoformat()

Create an example graph

An easy way to create an in-memory graph is through the GDS graph generation algorithm. By specifing
the number of nodes, the average number of relationships going out of each node and the relationship
distribution function, the algorithm creates a graph having the following shape:

(:50000000_Nodes)-[:REL]>(:50000000_Nodes)

162

https://neo4j.com/docs/graph-data-science/current/management-ops/graph-creation/graph-generation/

Run the graph generation algorithm and retrieve the corresponding
graph object and call result metadata
g, result = gds.beta.graph.generate(
"example-graph",
50000000,
3:
relationshipDistribution="POWER_LAW"
)

Print prettified graph stats
print(result)

CALL gds.beta.graph.generate(
'example-graph',
50000000,
3v
{relationshipDistribution: 'POWER_LAW'}

)

YIELD name,
nodes,
relationships,
generateMillis,
relationshipSeed,
averageDegree,
relationshipDistribution,
relationshipProperty

RETURN *

Cypher query
create_example_graph_query =
CALL gds.beta.graph.generate(
'example-graph',
50000000,
3:
{relationshipDistribution: 'POWER_LAW'}

)

YIELD name,
nodes,
relationships,
generateMillis,
relationshipSeed,
averageDegree,
relationshipDistribution,
relationshipProperty

RETURN *

Create the driver session
with driver.session() as session:
Run query
result = session.run(create_example_graph_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True, default=default))

o The graph is fairly large, so the generation procedure will take a few minutes to
complete.

163

Run the estimate mode

The estimation of the memory requirements of an algorithm on an in-memory graph can be useful to
determine whether the current AuraDS instance has enough resources to run the algorithm to completion.

The Graph Data Science has guard rails built in: if an algorithm is estimated to use more RAM than is
available, an exception is raised. In this case, the AuraDS instance can be resized before running the
algorithm again.

In the following example we get a memory estimation for the Label Propagation algorithm to run on the
generated graph. The estimated memory is between 381 MiB and 4477 MiB, which is higher than an 8 GB
instance has available (4004 MiB).

result = gds.labelPropagation.mutate.estimate(
g’
mutateProperty="communityID"

)

print(result)

CALL gds.labelPropagation.mutate.estimate(
'example-graph',
{mutateProperty: 'communityID'}
)
YIELD nodeCount,
relationshipCount,
bytesMin,
bytesMax,
requiredMemory
RETURN *

Cypher query
page_rank_mutate_estimate_example_graph_query =
CALL gds.labelPropagation.mutate.estimate(
'example-graph',
{mutateProperty: 'communityID'}
)
YIELD nodeCount,
relationshipCount,
bytesMin,
bytesMax,
requiredMemory
RETURN *

Create the driver session
with driver.session() as session:
Run query
results = session.run(page_rank_mutate_estimate_example_graph_query).data()

Prettify the result
print(json.dumps(results, indent=2, sort_keys=True))

The mutate procedure hits the guard rails on an 8 GB instance, raising an exception that suggests to resize

164

the AuraDS instance.

result = gds.labelPropagation.mutate(
g’
mutateProperty="communityID"

)

print(result)

CALL gds.labelPropagation.mutate(
'example-graph',
{mutateProperty: 'communityID'}

)

YIELD preProcessingMillis,
computeMillis,
mutateMillis,
postProcessingMillis,
nodePropertiesWritten,
communityCount,
ranlterations,
didConverge,
communityDistribution,
configuration

RETURN *

Cypher query
page_rank_mutate_example_graph_query =
CALL gds.labelPropagation.mutate(
'example-graph',
{mutateProperty: 'communityID'}
)
YIELD preProcessingMillis,
computeMillis,
mutateMillis,
postProcessingMillis,
nodePropertiesWritten,
communityCount,
ranlterations,
didConverge,
communityDistribution,
configuration
RETURN *

Create the driver session
with driver.session() as session:
Run query
results = session.run(page_rank_mutate_example_graph_query).data()

Prettify the result
print(json.dumps(results, indent=2, sort_keys=True))

Resize the AuraDS instance

You will need to resize the instance to the next available size (16 GB) in order to continue. An AuraDS
instance can be resized from the Neo4j Aura Console homepage. For more information, check the Instance
actions section.

165

https://console.neo4j.io/?product=aura-ds

0 Resizing an AuraDS instance incurs a short amount of downtime.

After resizing, wait a few seconds until the projected graph is reloaded, then run the mutate step again.
This time no exception is thrown and the step completes successfully.

Cleanup

The in-memory graph can now be deleted.

result = gds.graph.drop(g)

print(result)

CALL gds.graph.drop('example-graph')

delete_example_in_memory_graph_query =
CALL gds.graph.drop('example-graph')

with driver.session() as session:
Run query
results = session.run(delete_example_in_memory_graph_query).data()

Prettify the results
print(json.dumps(results, indent=2, sort_keys=True, default=default))

Closing the connection

The connection should always be closed when no longer needed.

Although the GDS client automatically closes the connection when the object is deleted, it is

good practice to close it explicitly.

Close the client connection
gds.close()

Close the driver connection
driver.close()

166

References

Documentation

e Neo4j GDS documentation
e Neo4j driver documentation

e Neo4j developer documentation

Cypher

e | earn more about the Cypher syntax

e You can use the Cypher Cheat Sheet as a reference of all available Cypher features

Modelling

e Graph modeling guidelines
e Modeling designs

e Graph model refactoring

Monitoring the progress of a running algorithm

O Follow along with a notebook in € Google Colab

Running algorithms on large graphs can be computationally expensive. This example shows how to use
the gds.beta.listProgress procedure to monitor the progress of an algorithm, both to get an idea of the
processing speed and to determine when the computation is completed.

Setup

167

https://neo4j.com/docs/graph-data-science
https://neo4j.com/docs/driver-manual/current/get-started/
https://neo4j.com/developer
https://neo4j.com/docs/cypher-manual/current/
https://neo4j.com/docs/cypher-cheat-sheet
https://neo4j.com/docs/getting-started/data-modeling/guide-data-modeling/
https://neo4j.com/docs/getting-started/data-modeling/modeling-designs/
https://neo4j.com/docs/getting-started/data-modeling/graph-model-refactoring/
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Monitoring_the_progress_of_a_running_algorithm_(GDS_client).ipynb
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Monitoring_the_progress_of_a_running_algorithm_(GDS_client).ipynb
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#logging-progress-logging

168

For more information on how to get started using Python, refer to the Connecting with Python
tutorial.

pip install graphdatascience

Import the client
from graphdatascience import GraphDataScience

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

Configure the client with AuraDS-recommended settings
gds = GraphDataScience(

AURA_CONNECTION_URI,

auth=(AURA_USERNAME, AURA_PASSWORD),

aura_ds=True

In the following code examples we use the print function to print Pandas DataFrame and Series
objects. You can try different ways to print a Pandas object, for instance via the to_string and
to_json methods; if you use a JSON representation, in some cases you may need to include a
default handler to handle Neo4j DateTime objects. Check the Python connection section for some
examples.

For more information on how to get started using the Cypher Shell, refer to the Neo4j Cypher
Shell tutorial.

(r') Run the following commands from the directory where the Cypher shell is
- installed.

export AURA_CONNECTION_URI="neo4j+s://xxxxxxxx.databases.neo4j.io"
export AURA_USERNAME="neo4j"
export AURA_PASSWORD=""

./cypher-shell -a $AURA_CONNECTION_URI -u $AURA_USERNAME -p $AURA_PASSWORD

For more information on how to get started using Python, refer to the Connecting with Python
tutorial.

pip install neo4j

Import the driver
from neo4j import GraphDatabase

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

Instantiate the driver

driver = GraphDatabase.driver(
AURA_CONNECTION_URI,
auth=(AURA_USERNAME, AURA_PASSWORD)

Import to prettify results
import json

Import for the JSON helper function
from neo4j.time import DateTime

Helper function for serializing Neo4j DateTime in JSON dumps
def default(o):

if isinstance(o, (DateTime)):
return o.isoformat()

Create an example graph

An easy way to create an in-memory graph is through the GDS graph generation algorithm. By specifing
the number of nodes, the average number of relationships going out of each node and the relationship
distribution function, the algorithm creates a graph having the following shape:

(:1000000_Nodes)-[:REL]>(:1000000_Nodes)

169

https://neo4j.com/docs/graph-data-science/current/management-ops/graph-creation/graph-generation/

Run the graph generation algorithm and retrieve the corresponding
graph object and call result metadata
g, result = gds.beta.graph.generate(
"example-graph",
1000000,
3:
relationshipDistribution="POWER_LAW"
)

Print prettified graph stats
print(result)

CALL gds.beta.graph.generate(
'example-graph',
1000000,
3v
{relationshipDistribution: 'POWER_LAW'}

)

YIELD name,
nodes,
relationships,
generateMillis,
relationshipSeed,
averageDegree,
relationshipDistribution,
relationshipProperty

RETURN *

Cypher query
create_example_graph_query =
CALL gds.beta.graph.generate(
'example-graph',
1000000,
3:
{relationshipDistribution: 'POWER_LAW'}

)

YIELD name,
nodes,
relationships,
generateMillis,
relationshipSeed,
averageDegree,
relationshipDistribution,
relationshipProperty

RETURN *

Create the driver session
with driver.session() as session:
Run query
result = session.run(create_example_graph_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True, default=default))

Run an algorithm and check the progress

We need to run an algorithm that takes some time to converge. In this example we use the Label

170

Propagation algorithm, which we start in a separate thread so that we can check its progress in the same
Python process.

171

Import to run the long-running algorithm in a thread
import threading

Import to use the sleep method

import time

Method to call the label propagation algorithm from a thread
def run_label_prop():
print("Running label propagation")

result = gds.labelPropagation.mutate(

g,
mutateProperty="communityID"

)

print(result)

Method to get and pretty-print the algorithm progress
def run_list_progress():
result = gds.beta.listProgress()

print(result)

Create a thread for the label propagation algorithm and start it
label_prop_query_thread = threading.Thread(target=run_label_prop)
label_prop_query_thread.start()

Sleep for a few seconds so the label propagation query has time to get going
print('Sleeping for 5 seconds')
time.sleep(5)

Check the algorithm progress
run_list_progress()

Sleep for a few more seconds
print('Sleeping for 10 more seconds')
time.sleep(10)

Check the algorithm progress again
run_list_progress()

Block and wait for the algorithm thread to finish
label_prop_query_thread. join()

172

CALL gds.labelPropagation.mutate(
'example-graph',
{mutateProperty: 'communityID'}

)

YIELD preProcessingMillis,
computeMillis,
mutateMillis,
postProcessingMillis,
nodePropertiesWritten,
communityCount,
ranlterations,
didConverge,
communityDistribution,
configuration

RETURN *

// The following query has to be run in another Cypher shell, so run this command
// in a different terminal first:

//

// ./cypher-shell -a $AURA_CONNECTION_URI -u $AURA_USERNAME -p $AURA_PASSWORD

CALL gds.beta.listProgress()

YIELD jobId, taskName, progress, progressBar
RETURN *

173

Import to run the long-running algorithm in a thread
import threading

Import to use the sleep method

import time

Method to call the label propagation algorithm from a thread
def run_label_prop():
label_prop_mutate_example_graph_query = """
CALL gds.labelPropagation.mutate(
'example-graph',
{mutateProperty: 'communityID'}
)
YIELD preProcessingMillis,
computeMillis,
mutateMillis,
postProcessingMillis,
nodePropertiesWritten,
communityCount,
ranlterations,
didConverge,
communityDistribution,
configuration
RETURN *

Create the driver session
with driver.session() as session:
Run query
print("Running label propagation")
results = session.run(label_prop_mutate_example_graph_query).data()
Prettify the first result
print(json.dumps(results[@], indent=2, sort_keys=True))

Method to get and pretty-print the algorithm progress
def run_list_progress():
gds_list_progress_query =
CALL gds.beta.listProgress()
YIELD jobId, taskName, progress, progressBar
RETURN *

Create the driver session
with driver.session() as session:
Run query
print('running list progress')
results = session.run(gds_list_progress_query).data()
Prettify the first result
print('list progress results: ')
print(json.dumps(results[@], indent=2, sort_keys=True))

Create a thread for the label propagation algorithm and start it
label_prop_query_thread = threading.Thread(target=run_label_prop)
label_prop_query_thread.start()

Sleep for a few seconds so the label propagation query has time to get going
print('Sleeping for 5 seconds')
time.sleep(5)

Check the algorithm progress
run_list_progress()

Sleep for a few more seconds
print('Sleeping for 10 more seconds')
time.sleep(10)

Check the algorithm progress again
run_list_progress()

Block and wait for the algorithm thread to finish
label_prop_query_thread. join()

174

Cleanup

The in-memory graph can now be deleted.

result = gds.graph.drop(g)

print(result)

CALL gds.graph.drop('example-graph')

delete_example_in_memory_graph_query =
CALL gds.graph.drop('example-graph')

with driver.session() as session:
Run query
results = session.run(delete_example_in_memory_graph_query).data()

Prettify the results
print(json.dumps(results, indent=2, sort_keys=True, default=default))

Closing the connection

The connection should always be closed when no longer needed.

Although the GDS client automatically closes the connection when the object is deleted, it is
good practice to close it explicitly.

Close the client connection
gds.close()

Close the driver connection
driver.close()

References

Documentation

e Neo4j GDS documentation

175

https://neo4j.com/docs/graph-data-science

e Neodj driver documentation

e Neo4j developer documentation

Cypher

e | earn more about the Cypher syntax

e You can use the Cypher Cheat Sheet as a reference of all available Cypher features

Modelling

e Graph modeling guidelines
e Modeling designs

e Graph model refactoring

Persisting and sharing machine learning models

(r) Follow along with a notebook in € Google Colab

This example shows how to train, save, publish, and drop a machine learning model using the Model

Catalog.

Setup

176

https://neo4j.com/docs/driver-manual/current/get-started/
https://neo4j.com/developer
https://neo4j.com/docs/cypher-manual/current/
https://neo4j.com/docs/cypher-cheat-sheet
https://neo4j.com/docs/getting-started/data-modeling/guide-data-modeling/
https://neo4j.com/docs/getting-started/data-modeling/modeling-designs/
https://neo4j.com/docs/getting-started/data-modeling/graph-model-refactoring/
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Persisting_and_sharing_machine_learning_models_(GDS_client).ipynb
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Persisting_and_sharing_machine_learning_models_(GDS_client).ipynb
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#model_catalog
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#model_catalog

For more information on how to get started using Python, refer to the Connecting with Python
tutorial.

pip install graphdatascience

Import the client
from graphdatascience import GraphDataScience

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

Configure the client with AuraDS-recommended settings
gds = GraphDataScience(

AURA_CONNECTION_URI,

auth=(AURA_USERNAME, AURA_PASSWORD),

aura_ds=True

In the following code examples we use the print function to print Pandas DataFrame and Series
objects. You can try different ways to print a Pandas object, for instance via the to_string and
to_json methods; if you use a JSON representation, in some cases you may need to include a
default handler to handle Neo4j DateTime objects. Check the Python connection section for some
examples.

For more information on how to get started using the Cypher Shell, refer to the Neo4j Cypher
Shell tutorial.

(r') Run the following commands from the directory where the Cypher shell is
- installed.

export AURA_CONNECTION_URI="neo4j+s://xxxxxxxx.databases.neo4j.io"
export AURA_USERNAME="neo4j"
export AURA_PASSWORD=""

./cypher-shell -a $AURA_CONNECTION_URI -u $AURA_USERNAME -p $AURA_PASSWORD

177

For more information on how to get started using Python, refer to the Connecting with Python
tutorial.

pip install neo4j

Import the driver
from neo4j import GraphDatabase

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

Instantiate the driver

driver = GraphDatabase.driver(
AURA_CONNECTION_URI,
auth=(AURA_USERNAME, AURA_PASSWORD)

Import to prettify results
import json

Import for the JSON helper function
from neo4j.time import DateTime

Helper function for serializing Neo4j DateTime in JSON dumps
def default(o):
if isinstance(o, (DateTime)):
return o.isoformat()

Create an example graph

We start by creating some basic graph data first.

178

gds. run_cypher("""

MERGE (dan:Person:ExampleData

MERGE (annie:Person:ExampleData
MERGE (matt:Person:ExampleData
MERGE (jeff:Person:ExampleData
MERGE (brie:Person:ExampleData
MERGE (elsa:Person:ExampleData
MERGE (john:Person:ExampleData

{name:
{name:
{name:
{name:
{name:
{name:
{name:

'Dan',
'"Annie’,
'Matt',
'Jeff!',
'Brie',
'Elsa’,
'John',

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

(dan)-[:KNOWS {relWeight:
(dan)-[:KNOWS {relWeight:

1.0}1->(annie)
1.631->(matt)

(annie)-[:KNOWS {relWeight: 0.1}1->(matt)
(annie)-[:KNOWS {relWeight: 3.0}1->(jeff)
(annie)-[:KNOWS {relWeight: 1.2}1->(brie)

(matt)-[:KNOWS {relWeight:
(brie)-[:KNOWS {relWeight:
(brie)-[:KNOWS {relWeight:
(john)-[:KNOWS {relWeight:

10.0}]->(brie)
1.0}1->(elsa)
2.2}1->(jeff)
5.0} 1->(jeff)

RETURN True AS exampleDataCreated

"

MERGE (dan:Person:ExampleData {name: 'Dan', age:
MERGE (annie:Person:ExampleData {name: 'Annie', age:
MERGE (matt:Person:ExampleData {name: 'Matt', age:
MERGE (jeff:Person:ExampleData {name: 'Jeff', age:
MERGE (brie:Person:ExampleData {name: 'Brie', age:
MERGE (elsa:Person:ExampleData {name: 'Elsa', age:
MERGE (john:Person:ExampleData {name: 'John', age:

MERGE (dan)-[:KNOWS {relWeight:
MERGE (dan)-[:KNOWS {relWeight:

1.0}]->(annie)
1.6} 1->(matt)

MERGE (annie)-[:KNOWS {relWeight: @.1}]->(matt)
MERGE (annie)-[:KNOWS {relWeight: 3.0}1->(jeff)
MERGE (annie)-[:KNOWS {relWeight: 1.2}]1->(brie)
MERGE (matt)-[:KNOWS {relWeight: 10.0}]->(brie)
MERGE (brie)-[:KNOWS {relWeight: 1.0} 1->(elsa)
MERGE (brie)-[:KNOWS {relWeight: 2.2} 1->(jeff)
MERGE (john)-[:KNOWS {relWeight: 5.0} 1->(jeff)

RETURN True AS exampleDataCreated

age:
age:
age:
age:
age:
age:
age:

20,
12,

45,
27,
32,
35,

20,
12,
67,
45,
27,
32,

heightAndWeight:
heightAndWeight:
heightAndWeight:
heightAndWeight:
heightAndWeight:
heightAndWeight:
heightAndWeight:

[185,
[124,
[170,
[192,
[176,
[158,
[172,

751})
421})
801})
851})
5713})
551})
7613)

heightAndWeight:
heightAndWeight:
heightAndWeight:
heightAndWeight:
heightAndWeight:
heightAndWeight:
heightAndWeight:

[185,
[124,
[17e,
[192,
[176,
[158,
[172,

751})
4213})
801})
851})
571})
551})
761})

179

Cypher query

create_example_graph_on_disk_query =

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

(dan:Person:ExampleData {name: 'Dan',

(annie:Person:ExampleData {name: 'Annie',
(matt:Person:ExampleData {name: 'Matt',
(jeff:Person:ExampleData {name: 'Jeff',
(brie:Person:ExampleData {name: 'Brie',
(elsa:Person:ExampleData {name: 'Elsa',
(john:Person:ExampleData {name: 'John',

(dan)-[:KNOWS {relWeight: 1.0}]->(annie)
(dan)-[:KNOWS {relWeight: 1.6}]->(matt)
(annie)-[:KNOWS {relWeight: 0.1}]1->(matt)
(annie)-[:KNOWS {relWeight: 3.0}1->(jeff)
(annie)-[:KNOWS {relWeight: 1.2}1->(brie)
(matt)-[:KNOWS {relWeight: 10.0}]->(brie)
(brie)-[:KNOWS {relWeight: 1.0}1->(elsa)
(brie)-[:KNOWS {relWeight: 2.2}1->(jeff)
(john)-[:KNOWS {relWeight: 5.0} 1->(jeff)

RETURN True AS exampleDataCreated

Create the driver session

with driver.session() as session:
Run query
result = session.run(create_example_graph_on_disk_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True))

age:
age:
age:
age:
age:
age:
age:

20,
12
67,
45,
27,
32,

We then project an in-memory graph from the data just created.

180

heightAndWeight:
heightAndWeight:
heightAndWeight:
heightAndWeight:
heightAndWeight:
heightAndWeight:
heightAndWeight:

[185,
[124,
[170,
[192,
[176,
[158,
[172,

751})
4211)
801})
851})
571})
551})
761})

g, result = gds.graph.project(
"example_graph_for_graphsage",

{
"Person": {
"label": "ExampleData",
"properties": ["age", "heightAndWeight"]
3
}!
{
"KNOWS": {
"type": "KNOWS",
"orientation": "UNDIRECTED",
"properties": ["relWeight"]
3
3
)
print(result)

CALL gds.graph.project(
'example_graph_for_graphsage',

{
Person: {
label: 'ExampleData',
properties: ['age', 'heightAndWeight']
P
{
KNOWS: {
type: 'KNOWS',
orientation: 'UNDIRECTED',
properties: ['relWeight']
}
}

)

181

Cypher query
create_example_graph_in_memory_query = """
CALL gds.graph.project(
'example_graph_for_graphsage',

Person: {
label: 'ExampleData',
properties: ['age', 'heightAndWeight']

}
Do
{
KNOWS: {
type: 'KNOWS',
orientation: 'UNDIRECTED',
properties: ['relWeight']
}
3
)

Create the driver session
with driver.session() as session:
Run query
result = session.run(create_example_graph_in_memory_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True))

Train a mode|
Machine learning algorithms that support the train mode produce trained models which are stored in the

Model Catalog. Similarly, predict procedures can use such trained models to produce predictions. In this
example we train a model for the GraphSAGE algorithm using the train mode.

182

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#graph_sage

model, result = gds.beta.graphSage.train(
g’
modelName="example_graph_model_for_graphsage",
featureProperties=["age", "heightAndWeight"],
aggregator="mean",
activationFunction="sigmoid",
sampleSizes=[25, 10]

CALL gds.beta.graphSage.train(
'example_graph_for_graphsage',
{
modelName: 'example_graph_model_for_graphsage',
featureProperties: ['age', 'heightAndWeight'],
aggregator: 'mean',
activationFunction: 'sigmoid',
sampleSizes: [25, 10]
3
)
YIELD modelInfo as info
RETURN
info.name as modelName,
info.metrics.didConverge as didConverge,
info.metrics.ranEpochs as ranEpochs,
info.metrics.epochLosses as epochLosses

Cypher query
train_graph_sage_on_in_memory_graph_query =
CALL gds.beta.graphSage.train(
'example_graph_for_graphsage',
{
modelName: 'example_graph_model_for_graphsage',
featureProperties: ['age', 'heightAndWeight'],
aggregator: 'mean',
activationFunction: 'sigmoid',
sampleSizes: [25, 10]
}

)

YIELD modelInfo as info

RETURN
info.name as modelName,
info.metrics.didConverge as didConverge,
info.metrics.ranEpochs as ranEpochs,
info.metrics.epochLosses as epochLosses

Create the driver session
with driver.session() as session:
Run query
result = session.run(train_graph_sage_on_in_memory_graph_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True))

View the model catalog

We can use the gds.beta.model.list procedure to get information on all the models currently available in
the catalog. Along with information on the graph schema, the model name, and the training configuration,

183

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#list

the result of the call contains the following fields:

e loaded: flag denoting if the model is in memory (true) or available on disk (false)
e stored: flag denoting whether the model has been persisted to disk

e shared: flag denoting whether the model has been published, making it accessible to all users

results = gds.beta.model.list()

print(results)

CALL gds.beta.model.list()

Cypher query
list_model_catalog_query =
CALL gds.beta.model.list()

Create the driver session
with driver.session() as session:
Run query
results = session.run(list_model_catalog_query).data()

Prettify the results
print(json.dumps(results, indent=2, sort_keys=True, default=default))

Save a model to disk

The gds.alpha.model.store procedure can be used to persist a model to disk. This is useful both to keep
models for later reuse and to free up memory.

Not all the models can be saved to disk. A list of the supported models can be found on
the GDS manual.

A

If a model cannot be saved to disk, it will be lost when the AuraDS instance is

restarted.

184

https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#store
https://neo4j.com/docs/graph-data-science/current/model-catalog/store/#catalog-model-store

result = gds.alpha.model.store(model)

print(result)

CALL gds.alpha.model.store("example_graph_model_for_graphsage")

Cypher query
save_graph_sage_model_to_disk_query =
CALL gds.alpha.model.store("example_graph_model_for_graphsage")

Create the driver session
with driver.session() as session:
Run query
result = session.run(save_graph_sage_model_to_disk_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True))

If we list the model catalog again after persisting a model, we can see that the stored flag for that model

has been set to true.

results = gds.beta.model.list()

print(results)

CALL gds.beta.model.list()

Cypher query
list_model_catalog_query =
CALL gds.beta.model.list()

Create the driver session
with driver.session() as session:
Run query
results = session.run(list_model_catalog_query).data()

Prettify the results
print(json.dumps(results, indent=2, sort_keys=True, default=default))

185

Share a model with other users

After a model has been created, it can be useful to make it available to other users for different use cases.

o A model can only be shared with other users of the same AuraDS instance.

Create a new user

In order to see how this works in practice on AuraDS, we first of all need to create another user to share
the model with.

Switch to the "system" database to run the
"CREATE USER" admin command
gds.set_database("system")
gds. run_cypher("""
CREATE USER testUser IF NOT EXISTS
SET PASSWORD 'password'’
SET PASSWORD CHANGE NOT REQUIRED
"

:connect system

CREATE USER testUser IF NOT EXISTS
SET PASSWORD 'password'
SET PASSWORD CHANGE NOT REQUIRED

Cypher query
create_a_new_user_query =
CREATE USER testUser IF NOT EXISTS
SET PASSWORD 'password'
SET PASSWORD CHANGE NOT REQUIRED

Create the driver session using the "system" database
with driver.session(database="system") as session:

Run query

result = session.run(create_a_new_user_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True))

Publish the model

A model can be published (made accessible to other users) using the gds.alpha.model.publish procedure.
Upon publication, the model name is updated by appending _public to its original name.

186

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#manage_users
https://neo4j.com/docs/pdf/neo4j-graph-data-science-manual-current.pdf#publish

Switch back to the default "neo4j" database
to publish the model
gds.set_database("neo4j")

model_public = gds.alpha.model.publish(model)

print(model_public)

:connect neo4j

CALL gds.alpha.model.publish('example_graph_model_for_graphsage')

Cypher query
publish_graph_sage_model_to_disk_query =
CALL gds.alpha.model.publish('example_graph_model_for_graphsage')

Create the driver session
with driver.session() as session:
Run query
result = session.run(publish_graph_sage_model_to_disk_query).data()

Prettify the result
print(json.dumps(result, indent=2, sort_keys=True, default=default))

View the model as a different user

In order to verify that the published model is visible to the user we have just created, we need to create a
new client (or driver) session. We can then use it to run the gds.beta.model.list procedure again under
the new user and verify that the model is included in the list.

187

test_user_gds = GraphDataScience(
AURA_CONNECTION_URI,
auth=("testUser", "password"),
aura_ds=True

)
results = test_user_gds.beta.model.list()

print(results)

// First, open a new Cypher shell with the following command:
//
// ./cypher-shell -a $AURA_CONNECTION_URI -u testUser -p password

CALL gds.beta.model.list()

test_user_driver = GraphDatabase.driver(
AURA_CONNECTION_URI,
auth=("testUser", "password")

)

Create the driver session
with test_user_driver.session() as session:
Run query
results = session.run(list_model_catalog_query).data()

Prettify the results
print(json.dumps(results, indent=2, sort_keys=True, default=default))

Cleanup

The in-memory graphs, the data in the Neo4j database, the models, and the test user can now all be
deleted.

188

Delete the example dataset
gds. run_cypher("""
MATCH (example:ExampleData)
DETACH DELETE example
nn Il)

Delete the projected graph from memory
gds.graph.drop(g)

Drop the model from memory
gds.beta.model.drop(model_public)

Delete the model from disk
gds.alpha.model.delete(model _public)

Switch to the "system" database to delete the example user
gds.set_database("system")

gds. run_cypher("""
DROP USER testUser
nn u)

// Delete the example dataset from the database
MATCH (example:ExampleData)
DETACH DELETE example;

// Delete the projected graph from memory
CALL gds.graph.drop("example_graph_for_graphsage");

// Drop the model from memory
CALL gds.beta.model.drop("example_graph_model_for_graphsage_public");

// Delete the model from disk
CALL gds.alpha.model.delete("example_graph_model_for_graphsage_public");

// Delete the example user
DROP USER testUser;

189

Delete the example dataset from the database
delete_example_graph_query = """

MATCH (example:ExampleData)

DETACH DELETE example

Delete the projected graph from memory
drop_in_memory_graph_query = """
CALL gds.graph.drop("example_graph_for_graphsage")

Drop the model from memory
drop_example_models_query =
CALL gds.beta.model.drop("example_graph_model_for_graphsage_public")

Delete the model from disk
delete_example_models_query =
CALL gds.alpha.model.delete("example_graph_model_for_graphsage_public")

Delete the example user
drop_example_user_query =
DROP USER testUser

Create the driver session

with driver.session() as session:
Run queries
print(session.run(delete_example_graph_query).data())
print(session.run(drop_in_memory_graph_query).data())
print(session.run(drop_example_models_query).data())
print(session.run(delete_example_models_query).data())

Create another driver session on the system database

to drop the test user

with driver.session(database='system') as session:
print(session.run(drop_example_user_query).data())

driver.close()
test_user_driver.close()

Closing the connection

The connection should always be closed when no longer needed.

Although the GDS client automatically closes the connection when the object is deleted, it is
good practice to close it explicitly.

Close the client connection
gds.close()

Close the driver connection
driver.close()

190

References

Documentation

e Neo4j GDS documentation
e Neo4j driver documentation

e Neo4j developer documentation

Cypher

e | earn more about the Cypher syntax

e You can use the Cypher Cheat Sheet as a reference of all available Cypher features

Modelling

e Graph modeling guidelines
e Modeling designs

e Graph model refactoring

Loading and streaming back data with Apache Arrow

O Follow along with a notebook in € Google Colab

The Enterprise Edition of GDS installed on AuraDS includes an Arrow Flight server, configured and
running by default. The Arrow Flight server speeds up data-intensive processes such as:

e Creating a graph directly from in-memory data.
e Streaming node and relationship properties.

e Streaming the relationship topology of a graph.
There are two ways to use the Arrow Flight server with GDS:

1. By using the GDS Python client, which includes an Arrow Flight client.

2. By implementing a custom Arrow Flight client as explained in the GDS manual.

In the following examples we use the GDS client as it is the most convenient option. All the loading and
streaming methods can be used without Arrow, but are more efficient if Arrow is available.

Setup

191

https://neo4j.com/docs/graph-data-science
https://neo4j.com/docs/driver-manual/current/get-started/
https://neo4j.com/developer
https://neo4j.com/docs/cypher-manual/current/
https://neo4j.com/docs/cypher-cheat-sheet
https://neo4j.com/docs/getting-started/data-modeling/guide-data-modeling/
https://neo4j.com/docs/getting-started/data-modeling/modeling-designs/
https://neo4j.com/docs/getting-started/data-modeling/graph-model-refactoring/
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Arrow_examples.ipynb
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Arrow_examples.ipynb
https://neo4j.com/docs/graph-data-science/current/installation/configure-apache-arrow-server/
https://neo4j.com/docs/graph-data-science/current/management-ops/graph-creation/graph-project-apache-arrow/

%pip install 'graphdatascience>=1.7'

from graphdatascience import GraphDataScience

Replace with the actual connection URI and credentials

AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"

AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

When initialized, the client tries to use Arrow if it is available on the server.

This behaviour is controlled by the “arrow’ parameter, which is set to "True' by default.
gds = GraphDataScience (AURA_CONNECTION_URI, auth=(AURA_USERNAME, AURA_PASSWORD), aura_ds=True)

Necessary if Arrow is enabled (as is by default on Aura)
gds.set_database("neo4j")

You can call the gds. debug.arrow() method to verify that Arrow is enabled and running:

gds.debug.arrow()

Loading data
You can load data directly into a graph using the gds.graph.construct client method.

The data must be a Pandas DataFrame, so we need to install and import the pandas library.

%pip install pandas

import pandas as pd

We can then create a graph as in the following example. The format of each DataFrame with the required
columns is specified in the GDS manual.

nodes = pd.DataFrame(

{
"nodeId": [0, 1, 2],
"labels": ["Article", "Article", "Article"],
"pages": [3, 7, 121,
3
)
relationships = pd.DataFrame(
{
"sourceNodeId": [0, 11,
"targetNodeId": [1, 21,
"relationshipType": ["CITES", "CITES"],
"times": [2, 1]
3

)

article_graph = gds.graph.construct(
"article-graph",
nodes,
relationships

Now we can check that the graph has been created:

gds.graph.list()

192

https://neo4j.com/docs/graph-data-science-client/current/graph-object/#construct
https://pandas.pydata.org/
https://neo4j.com/docs/graph-data-science-client/current/graph-object/#construct

Streaming node and relationship properties

After creating the graph, you can read the node and relationship properties as streams.

Read all the values for the node property ‘pages’
gds.graph.nodeProperties.stream(article_graph, "pages")

Read all the values for the relationship property ‘times’
gds.graph.relationshipProperties.stream(article_graph, "times")

Performance

To see the difference in performance when Arrow is available, we can measure the time needed to load a

dataset into a graph. In this example we use a built-in OGBN dataset, so we need to install the ogb extra.

%pip install 'graphdatasciencelogh]>=1.7"'

Load and immediately drop the dataset to download and cache the data
ogbn_arxiv = gds.graph.ogbn.load("ogbn-arxiv")
ogbn_arxiv.drop()

We can then time the loading process. On an 8 GB AuraDS instance, this should take less than 30 s.

%%timeit -n 1 -r 1

This call uses the cached dataset, so only the actual loading is timed
ogbn_arxiv = gds.graph.ogbn.load("ogbn-arxiv")

With Arrow disabled by adding arrow=False to the GraphDataScience constructor, the same loading
process would take more than 1 minute. Therefore, with this dataset, Arrow provides at least a 2x
speedup.

Cleanup

article_graph.drop()
ogbn_arxiv.drop()

gds.close()

193

https://neo4j.com/docs/graph-data-science-client/current/graph-object/#graph-object-streaming-properties
https://neo4j.com/docs/graph-data-science-client/current/common-datasets/#_ogbn_graphs

Importing data

There are several ways to import data into AuraDS:

e Importing an existing Neo4j database
e Using the Data Importer
e Using Cypher’s LOAD CSV procedure

e Using the Arrow Flight server

Importing an existing database

o Note: The process of importing or loading data requires you to create an AuraDS
instance beforehand.

There are two ways you can import data from an existing Neo4j database into an Aura instance.

You can use the import database process to import either a .backup file or a .dump file. This process,
however, only works for .backup and .dump files under 4GB.

If the size of the .backup or .dump file exported from a database is greater than 4GB, you must use the
Neo4j Admin database upload method.

For more information about backups, see Backup, export and restore.

Import database
To import a .backup file under 4GB:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the instance you want to import the data.
3. Select the Import Database tab.

4. Drag and drop your .backup or .dump file into the provided window or browse for your .backup/.dump
file.

5. Select Upload.

When the upload is complete, the instance goes into a Loading state as the backup is applied. Once this
has finished, the instance returns to its Running state; and the data is ready.

Neo4j Admin database upload

This command does not work if you have a network access configuration setup that
é prevents public traffic to the region your instance is hosted in. See Public traffic below
for more information.

194

https://console.neo4j.io/

database uploadis a neo4j-admin command that you can run to upload the contents of a Neo4j database
into an Aura instance, regardless of the database’s size. Keep in mind that the database you want to
upload may run a different version of Neo4j than your Aura instance. Additionally, your Neo4j Aura
instance must be accessible from the machine running neo4j-admin. Otherwise, the upload will fail with
SSL errors.

For details on how to use the neo4j-admin database upload command, along with a full list of options and
version compatibility, see Operations Manual » Upload to Neo4j Aura.

The database upload command, introduced in Neo4j 5, replaces the push-to-cloud
o command in Neo4j 4.4 and 4.3. If the database you want to upload is running an earlier
version of Neo4j, please see the Neo4j Admin push-to-cloud documentation.

The neo4j-admin push-to-cloud command in Neo4j 4.4 and earlier is not compatible
with instances encrypted with Customer Managed Keys. Use neo4j-admin database
: upload in Neo4j 5 to upload data to instances encrypted with Customer Managed Keys.

For Neo4j 4.x instances in Azure encrypted with Customer Managed Keys, use Neo4j
Data Importer to load data, as neo4j-admin database upload is not supported. See the
Data Importer documentation for more information.

Public traffic

If you have created a network access configuration from the Network Access page, accessed through the
sidebar menu of the Console, Public traffic must be enabled for the region your instance is hosted in
before you can use the database upload command on that instance.

To enable Public traffic on a network access configuration:

1. Select Configure next to the region that has Public traffic disabled.
2. Select Next until you reach step 4 of 4 in the resulting Edit network access configuration modal.

3. Clear the Disable public traffic checkbox and select Save.

You can now use the database upload command on the instances within that region. Once the command
has completed, you can disable Public traffic again by following the same steps and re-selecting the
Disable public traffic checkbox.

Using Neo4j Data Importer

o Note: The process of importing or loading data requires you to create an AuraDS
instance beforehand.

Neo4j Data Importer is a Ul-based tool for importing data that lets you:

1. Load data from flat files (.csv and . tsv).

2. Define a graph model and map data to it.

195

https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#upload_to_aura
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#upload_to_aura
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#upload_to_aura
https://neo4j.com/docs/pdf/neo4j-operations-manual-4.4.pdf#push_to_cloud
https://neo4j.com/docs/data-importer/current/introduction

3. Import the data into an AuraDS instance.
To load data with Neo4j Data Importer:

1. Navigate to the Neo4j Aura Console in your browser.

2. Select the Import button on the instance you want to open.
Alternatively, you can access Data Importer from the Import tab of Neo4j Workspace.

Once you have opened Neo4j Data Importer, you can follow the built-in tutorial to learn how to use the
tool.

For more information on Neo4j Data Importer, see the Neo4j Data Importer documentation.

Loading CSV files

(r) Follow along with a notebook in € Google Colab

A CSV file can be loaded into an AuraDS instance using the LOAD CSV Cypher clause. For security reasons
it is not possible to load local CSV files, which must be instead publicly accessible on HTTP or HTTPS
servers such as GitHub, Google Drive, and Dropbox. Another way to make CSV files available is to upload
them to a cloud bucket storage (such as Google Cloud Storage or Amazon S3) and configure the bucket as
a static website.

In this example we will load three CSV files:

e movies.csv: a list of movies with their title, release year and a short description
e people.csv: a list of actors with their year of birth

e actors.csv: a list of acting roles, where actors are matched with the movies they had a role in

The LOAD CSV command is built to handle small to medium-sized data sets, such as
A anything up to 10 million nodes and relationships. You should avoid using this command
for any data sets exceeding this limit.

Setup

196

https://console.neo4j.io/?product=aura-ds
https://neo4j.com/docs/pdf/neo4j-data-importer-current.pdf
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Loading_CSV_files_(GDS_client).ipynb
https://colab.research.google.com/github/neo4j/docs-aura/blob/main/notebooks/Loading_CSV_files_(GDS_client).ipynb
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load_csv

For more information on how to get started using Python, refer to the Connecting with Python
tutorial.

pip install graphdatascience

Import the client
from graphdatascience import GraphDataScience

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

Configure the client with AuraDS-recommended settings
gds = GraphDataScience(

AURA_CONNECTION_URI,

auth=(AURA_USERNAME, AURA_PASSWORD),

aura_ds=True

In the following code examples we use the print function to print Pandas DataFrame and Series
objects. You can try different ways to print a Pandas object, for instance via the to_string and
to_json methods; if you use a JSON representation, in some cases you may need to include a
default handler to handle Neo4j DateTime objects. Check the Python connection section for some
examples.

For more information on how to get started using the Cypher Shell, refer to the Neo4j Cypher
Shell tutorial.

(r') Run the following commands from the directory where the Cypher shell is
- installed.

export AURA_CONNECTION_URI="neo4j+s://xxxxxxxx.databases.neo4j.io"
export AURA_USERNAME="neo4j"
export AURA_PASSWORD=""

./cypher-shell -a $AURA_CONNECTION_URI -u $AURA_USERNAME -p $AURA_PASSWORD

197

For more information on how to get started using Python, refer to the Connecting with Python
tutorial.

pip install neo4j

Import the driver
from neo4j import GraphDatabase

Replace with the actual URI, username, and password
AURA_CONNECTION_URI = "neo4j+s://xxxxxxxx.databases.neo4j.io"
AURA_USERNAME = "neo4j"

AURA_PASSWORD = ""

Instantiate the driver

driver = GraphDatabase.driver(
AURA_CONNECTION_URI,
auth=(AURA_USERNAME, AURA_PASSWORD)

Import to prettify results
import json

Import for the JSON helper function
from neo4j.time import DateTime

Helper function for serializing Neo4j DateTime in JSON dumps
def default(o):
if isinstance(o, (DateTime)):
return o.isoformat()

Create constraints

Adding constraints before loading any data usually improves data loading performance. In fact, besides
adding an integrity check, a unique constraint adds an index on a property at the same time, so that MATCH
and MERGE operations during loading are faster.

For best performance when using MERGE or MATCH with LOAD CSV, make sure an index or a
A unique constraint has been created on the property used for merging. Read the Cypher

documentation for more information on constraints.

In this example we add uniqueness constraints on both movie titles and actors' names.

198

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#constraints

Make movie titles unique
gds. run_cypher("""

CREATE CONSTRAINT FOR (movie:Movie) REQUIRE movie.title IS UNIQUE
nn |l)

Make person names unique
gds. run_cypher("""

CREATE CONSTRAINT FOR (person:Person) REQUIRE person.name IS UNIQUE
nn Il)

CREATE CONSTRAINT FOR (movie:Movie) REQUIRE movie.title IS UNIQUE;
CREATE CONSTRAINT FOR (person:Person) REQUIRE person.name IS UNIQUE;

movie_title_constraint =
CREATE CONSTRAINT FOR (movie:Movie) REQUIRE movie.title IS UNIQUE

person_name_constraint =
CREATE CONSTRAINT FOR (person:Person) REQUIRE person.name IS UNIQUE

Create the driver session

with driver.session() as session:
Make movie titles unique
session.run(movie_title_constraint).data()
Make person names unique
session.run(person_name_constraint).data()

Add nodes from CSV files

We are now ready to load the CSV files from their URIs and create nodes from the data they contain. In
the following examples, LOAD CSV is used with WITH HEADERS to access row fields by their corresponding
column name. Furthermore:

e MERGE is used with the indexed properties to take advantage of the constraints created in the Create
constraints section.
e ON CREATE SET is used to set the value of a node property when a new one is created.
e RETURN count(*) is used to show the number of processed rows.
Note that the CSV files in this example are curated, so some assumptions are made for simplicity. In a real-
world scenario, for example, a CSV file could contain multiple rows that would try to assign different

property values to the same node; in this case, an ON MATCH SET clause must be added to ensure this case
is dealt with appropriately.

199

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#merge-merge-with-on-match

gds. run_cypher("""
LOAD CSV
WITH HEADERS
FROM 'https://data.neo4j.com/intro/movies/movies.csv' AS row
MERGE (m:Movie {title: row.title})
ON CREATE SET m.released = toInteger(row.released), m.tagline = row.tagline
RETURN count(*)
")
gds. run_cypher("""
LOAD CSV
WITH HEADERS
FROM 'https://data.neo4j.com/intro/movies/people.csv' AS row
MERGE (p:Person {name: row.name})
ON CREATE SET p.born = toInteger(row.born)
RETURN count(*)
"

LOAD CSV

WITH HEADERS

FROM 'https://data.neo4j.com/intro/movies/movies.csv' AS row
MERGE (m:Movie {title: row.title})

ON CREATE SET m.released = toInteger(row.released), m.tagline = row.tagline
RETURN count(*);

LOAD CSV

WITH HEADERS

FROM 'https://data.neo4j.com/intro/movies/people.csv' AS row
MERGE (p:Person {name: row.name})

ON CREATE SET p.born = toInteger(row.born)
RETURN count(*);

load_movies_csv =
LOAD CSV
WITH HEADERS
FROM 'https://data.neo4j.com/intro/movies/movies.csv' AS row
MERGE (m:Movie {title: row.title})
ON CREATE SET m.released = toInteger(row.released), m.tagline = row.tagline
RETURN count(*)

load_people_csv = """
LOAD CSV
WITH HEADERS
FROM 'https://data.neo4j.com/intro/movies/people.csv' AS row
MERGE (p:Person {name: row.name})
ON CREATE SET p.born = toInteger(row.born)
RETURN count(*)

Create the driver session

with driver.session() as session:
Load the CSV files
session.run(load_movies_csv).data()
session.run(load_people_csv).data()

200

Add relationships from CSV files

Similarly to what we have done for nodes, we now create relationships from the actors.csv file. In the
following example, LOAD CSV is used with the WITH HEADERS option to access the fields in each row by their
corresponding column name.

The default field delimiter for LOAD CSV is the comma (,). Use the FIELDTERMINATOR option
to set a different delimiter.

@,

- If the CSV file is large, use the CALL IN TRANSACTIONS clause to commit a number of rows

per transaction instead of the whole file.

Furthermore:

e MATCH and MERGE are used to find nodes (taking advantage of the constraints created in the Create
constraints section) and create a relationship between them.

e ON CREATE SET is used to set the value of a relationship property when a new one is created.

e RETURN count(*) is used to show the number of processed rows.

201

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load-csv-import-data-from-a-csv-file-with-a-custom-field-delimiter
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load-csv-import-data-from-a-csv-file-with-a-custom-field-delimiter
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load-csv-importing-large-amounts-of-data
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#load-csv-importing-large-amounts-of-data

gds. run_cypher(
LOAD CSV
WITH HEADERS
FROM 'https://data.neo4j.com/intro/movies/actors.csv' AS row
MATCH (p:Person {name: row.person})
MATCH (m:Movie {title: row.moviel})
MERGE (p)-[actedIn:ACTED_IN]->(m)
ON CREATE SET actedIn.roles = split(row.roles, ';')
RETURN count(x)
nn ll)

LOAD CSV
WITH HEADERS
FROM 'https://data.neo4j.com/intro/movies/actors.csv' AS row
MATCH (p:Person {name: row.person})
MATCH (m:Movie {title: row.movie})
MERGE (p)-[actedIn:ACTED_IN]->(m)
ON CREATE SET actedIn.roles = split(row.roles, ';')
RETURN count(*)

load_actors_csv =
LOAD CSV
WITH HEADERS
FROM 'https://data.neo4j.com/intro/movies/actors.csv' AS row
MATCH (p:Person {name: row.person})
MATCH (m:Movie {title: row.movie})
MERGE (p)-[actedIn:ACTED_INJ->(m)
ON CREATE SET actedIn.roles = split(row.roles, ';')
RETURN count(x)

Create the driver session

with driver.session() as session:
Load the CSV file
session.run(load_actors_csv).data()

Run a Cypher query

Once all the nodes and relationships have been created, we can run a query to check that the data have
been inserted correctly. The following query looks for movies with Keanu Reeves, orders them by release
date and groups their titles.

202

gds. run_cypher(
MATCH (person:Person {name: "Keanu Reeves"})-[:ACTED_IN]->(movie)
RETURN movie.released, COLLECT(movie.title) AS movies
ORDER BY movie.released

"y

MATCH (person:Person {name: "Keanu Reeves"})-[:ACTED_IN]->(movie)
RETURN movie.released, COLLECT(movie.title) AS movies
ORDER BY movie.released

query =
MATCH (person:Person {name: "Keanu Reeves"})-[:ACTED_IN]->(movie)
RETURN movie.released, COLLECT(movie.title) AS movies
ORDER BY movie.released

Create the driver session
with driver.session() as session:
Run the Cypher query
result = session.run(query).data()

Print the formatted result
print(json.dumps(result, indent=2))

Cleanup

When the data are no longer useful, the database can be cleaned up.

203

Delete data
gds. run_cypher(
MATCH (n)
DETACH DELETE n
"y

MATCH (n)
DETACH DELETE n

delete_data = """
MATCH (n)
DETACH DELETE n

Create the driver session

with driver.session() as session:
Delete the data
session.run(delete_data).data()

Closing the connection

The connection should always be closed when no longer needed.

Although the GDS client automatically closes the connection when the object is deleted, it is

good practice to close it explicitly.

Close the client connection
gds.close()

Close the driver connection
driver.close()

204

Managing instances

Monitoring
To access the Metrics tab:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the name of the instance you want to access.

3. Select the Metrics tab.
You can monitor the following metrics of an AuraDS instance:

e CPU Usage (%) - The amount of CPU used by the instance as a percentage.
e Storage Used (%) - The amount of disk storage space used by the instance as a percentage.

e Heap Usage (%) - The amount of Java Virtual Machine (JVM) memory used by the instance as a
percentage.

e Out of Memory Errors - The number of Out of Memory (OOM) errors encountered by the instance.

e Garbage Collection Time (%) - The amount of time the instance spends reclaiming heap space as a
percentage.

o More information on each metric, as well as suggestions for managing them, can be
found within the Metrics tab itself.

When viewing metrics, you can select from the following time intervals:

e 6 hours

e 24 hours

3 days

7 days

30 days

Advanced metrics

Advanced metrics is a feature that enables access to a broad range of different instance and database
metrics.

To access Advanced metrics:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the instance you want to access.

3. Select the Metrics tab.

205

https://console.neo4j.io/?product=aura-ds
https://console.neo4j.io/?product=aura-db

4. Select the Advanced metrics button.
The presented metrics will be laid out across three tabs according to their category:

e Resources - Overall system resources, such as CPU, RAM and disk usage.
¢ Instance - Information about the Neo4j instances running the database.

e Database - Metrics concerning the database itself, such as usage statistics and entity counts.
When viewing metrics, you can select from the following time intervals:

e 30 minutes

e 6 hours

24 hours

3 days

7 days

14 days

30 days

Chart interactions

o Memory and storage charts can be toggled between absolute and relative values using
the % toggle.
Zoom

To zoom in to a narrower time interval, select and drag inside any chart to select your desired time interval.
The data will automatically update to match the increased resolution.

To reset zoom, double-click anywhere inside the chart or use the option in the context menu.

Expand

Any chart can be expanded to take up all the available screen estate by clicking the expand button (shown
as two opposing arrows). To exit this mode, click the x button on the expanded view.

Context menu
To access the chart context menu, select the ... button on any chart.

e More info - Selecting More info brings up an explanation of the particular metric. For some metrics it
also provides hints about possible actions to take if that metric falls outside the expected range.

e Reset zoom - If the zoom level has been altered by selecting and dragging across a chart, Reset zoom
resets the zoom back to the selected interval.

206

Backup, export, and restore

The data in your AuraDS instance can be backed up, exported, and restored using snapshots. A snapshot
is a copy of the data in an instance at a specific point in time.

The Snapshots tab within an AuraDS instance shows a list of available snapshots. To access the
Snapshots tab:

1. Navigate to the Neo4j Aura Console in your browser.
2. Select the instance you want to access.

3. Select the Snapshots tab.

Snapshot types
There are two different types of snapshot:

e Scheduled - Runs when you first create an instance, when changes to the underlying system occur (for
example, a new patch release), and automatically once a day.

e On-demand - Runs when you select Take snapshot from the Snapshots tab of an instance.

Scheduled daily snapshots are kept for 7 days for Professional instances and 14 days for
o Enterprise instances. On-demand snapshots are kept in the system for 180 days for all
instances.

Snapshot actions

Take a snapshot

You can manually trigger an On-demand snapshot by selecting Take snapshot in the Snapshots tab. The
snapshot status is shown as In progress until the snapshot has been created; then, the Status becomes
Completed.

Restore

You can restore data in your instance to a previous snapshot by selecting Restore next to the snapshot you
want to restore.

Restoring a snapshot requires you to confirm the action by typing RESTORE and selecting Restore.

’ Restoring a snapshot overwrites the data in your instance, replacing it with the data
contained in the snapshot.

Backup and export

By selecting the ellipses (...) button next to a snapshot, you can:

207

https://console.neo4j.io/?product=aura-ds

e Export - Download the database as a compressed file, allowing you to store a local copy and work on
your data offline. The compressed archive contains a .dump file that can be imported directly or
pushed to the cloud.

¢ Create instance from snapshot - Create a new AuraDS instance using the data from the snapshot.
This opens a window where you can assign a name to the instance that will be created.

Instance actions

You can perform several actions on an AuraDS instance from the Neo4j Aura Console homepage.

Renaming an instance
You can change the name of an existing instance by using the Rename action.
To rename an instance:

1. Select the ellipsis (...) button on the instance you want to rename.
2. Select Rename from the resulting menu.
3. Enter a new name for the instance.

4. Select Rename.

Resizing an instance
You can change the size of an existing instance by using the Resize action.
To resize an instance:

1. Select the ellipsis (...) on the instance you want to resize.
2. Select Resize from the resulting menu.
3. Select the new size you want your instance to be.

4. Tick the | understand checkbox and select Submit.

An instance becomes unavailable for a short period of time during the resize operation.

Pausing an instance
You can pause an instance during periods where you don’t need it and resume at any time.
To pause an instance:

1. Select the pause icon on the instance you want to pause.

2. Select Pause to confirm.

After confirming, the instance will begin pausing, and a Resume button will replace the Pause button.

208

https://console.neo4j.io/?product=aura-ds

Paused instances run at a discounted rate compared to standard consumption, as
0 outlined in the confirmation window. You can pause an instance for up to 30 days, after
which point AuraDS automatically resumes the instance.

Resuming an instance

To resume an instance:

1. Select the play icon on the instance you want to pause.

2. Tick the | understand checkbox and select Resume to confirm.

After confirming, the instance will begin resuming, which may take a few minutes.

Cloning an instance

You can clone an existing instance to create a new instance with the same data. You can clone across
regions, from AuraDB to AuraDS and vice versa, and from Neo4j version 4 to Neo4j version 5.

There are four options to clone an instance:

e Clone to a new AuraDS instance
e Clone to an existing AuraDS instance
e Clone to a new AuraDB database

e Clone to an existing AuraDB database

You can access all the cloning options from the ellipsis {(...) button on the AuraDS instance.

o You cannot clone from a Neo4j version 5 instance to a Neo4j version 4 instance.

Clone to a new AuraDS instance

1. Select the ellipsis (...) button on the instance you want to clone.
2. Select Clone To New and then AuraDS from the contextual menu.
3. Set the desired name for the new instance.

4. Check the | understand box and select Clone Instance.

g Make sure that the username and password are stored safely before continuing.
Credentials cannot be recovered afterwards.

Clone to an existing AuraDS instance

When you clone an instance to an existing instance, the database connection URI stays the same, but the
data is replaced with the data from the cloned instance.

209

g Cloning into an existing instance will replace all existing data. If you want to keep the
current data, take a snapshot and export it.

1. Select the ellipsis (...) button on the instance you want to clone.
2. Select Clone To Existing and then AuraDS from the contextual menu.
3. If necessary, change the instance name.

4. Select the existing AuraDS instance to clone to from the dropdown menu.

Existing instances that are not large enough to clone into will not be available for
o selection. In the dropdown menu, they are grayed out and have the string (Instance
is not large enough to clone into) appended to their name.

5. Tick the | understand checkbox and select Clone.

Clone to a new AuraDB instance
o An AuraDS instance can only be cloned to an AuraDB Professional database (not Free).

1. Select the ellipsis (...) button on the instance you want to clone.
2. Select Clone To New and then AuraDB from the contextual menu.

3. Set your desired settings for the new database. For more information on AuraDB database creation,
see Creating an instance.

4. Check the | understand box and select Clone Database.
a Make sure that the username and password are stored safely before continuing.
Credentials cannot be recovered afterwards.
Clone to an existing AuraDB instance

An AuraDS instance can only be cloned to an AuraDB Professional database (not Free).

g Cloning into an existing instance will replace all existing data. If you want to keep the
current data, take a snapshot and export it.

1. Select the ellipsis (...) button on the instance you want to clone.
2. Select Clone To Existing and then AuraDB from the contextual menu.
3. If necessary, change the database name.

4. Select the existing AuraDB database to clone to from the dropdown menu.
Existing instances that are not large enough to clone into will not be available for

o selection. In the dropdown menu, they will be grayed out and have the string
(Instance is not large enough to clone into) appended to their name.

210

5. Check the I understand box and select Clone.
Deleting an instance
You can delete an instance if you no longer want to be billed for it.
A There is no way to recover data from a deleted AuraDS instance.

To delete an instance:

e Select the red trashcan icon on the instance you want to delete.

e Type the exact name of the instance (as instructed) to confirm your decision, and select Destroy.

211

= utorials=

212

Upgrade and migration

Upgrade to Neo4j 5 within Aura

This tutorial describes how to upgrade an Aura instance running Neo4j version 4 to Neo4;j version 5.

é New AuraDS and AuraDB Free instances use Neo4j 5 as standard, while all others give
the option to choose between Neo4j 4 and 5 during creation.

Prepare for the upgrade

Drivers

Neo4j's official drivers have some significant and breaking changes between versions you need to be
aware of. For a smooth migration:

1. Check the breaking changes for each driver you use, for example in the Python driver and in the GDS
client.

2. Make sure you switch to the latest version of the driver in line with the version of the Neo4j database.
This can be done before upgrading the version of Neo4j that you are using with Aura, as 5.x drivers are
backward compatible.

The Update and migration guide contains all information and lists all the breaking changes.

Indexes

In Neo4j 5, BTREE indexes are replaced by RANGE, POINT, and TEXT indexes. Before migrating a
database, in Neo4j 4, you should create a matching RANGE, POINT, or TEXT index for each BTREE index
(or index-backed constraint). You can run SHOW INDEXES on your Neo4j 4 database to display its indexes.

In most cases, RANGE indexes can replace BTREE. However, there might be occasions when a different
index type is more suitable, such as:

e Use POINT indexes if the property value type is point and distance or bounding box queries are used
for the property.

e Use TEXT indexes if the property value type is text and the values can be larger than 8Kb.

e Use TEXT indexes if the property value type is text and CONTAINS and ENDS WITH are used in queries

for the property.

After creating the new index, the old index should be dropped. The following example shows how to
create a new RANGE index and drop an existing index_name index:

CREATE RANGE INDEX range_index_name FOR (n:Label) ON (n.prop1);
DROP INDEX index_name;

213

https://neo4j.com/docs/api/python-driver/5.0/breaking_changes.html#breaking-changes
https://github.com/neo4j/graph-data-science-client/blob/main/changelog.md
https://github.com/neo4j/graph-data-science-client/blob/main/changelog.md
https://neo4j.com/docs/upgrade-migration-guide/current/version-5/migration/breaking-changes/

The following example instead shows how to create a constraint backed by a RANGE index:

CREATE CONSTRAINT constraint_with_provider FOR (n:Label) REQUIRE (n.propl1) IS UNIQUE OPTIONS

{indexProvider: 'range-1.0'}

For more information about creating indexes, see Cypher Manual » Creating indexes.

Cypher updates

Neo4j 5 introduces some changes to the Cypher syntax and error handling.

Cypher syntax

All changes in the Cypher language syntax are detailed in Cypher Manual » Removals, deprecations,

additions and extensions. Thoroughly review this section in the version you are moving to and make the

necessary changes in your code.

Here is a short list of the main changes introduced in Neo4j 5:

Deprecated feature

MATCH (n)-[r:REL]->(m) SET n=r

MATCH (a), (b), allShortestPaths((a)-[r]1->(b))
RETURN b

MATCH (a), (b), shortestPath((a)-[r]->(b)) RETURN
b

CREATE DATABASE databaseName.withDot ...

Error handling in Cypher

Details

Use the properties() function instead to get the
map of properties of nodes/relationships that can
then be used in a SET clause:

MATCH (n)-[r:RELJ->(m) SET n=properties(r)

shortestPath and allShortestPaths without

variable-length relationship are deprecated. Instead,

use a MATCH with a LIMIT of 1 or:

MATCH (a), (b), shortestPath((a)-[r*1..1]1->(b))
RETURN b

Creating a database with unescaped dots in the
name has been deprecated, instead escape the
database name:

CREATE DATABASE ‘databaseName.withDot' ...

Many semantic errors that Cypher finds are reported as Neo.ClientError.Statement.SyntaxError even

though they are semantic and not syntax errors. In Neo4j 5, the metadata returned by Cypher queries is

214

https://neo4j.com/docs/cypher-manual/current/indexes-for-search-performance/#administration-indexes-examples
https://neo4j.com/docs/cypher-manual/current/indexes-for-search-performance/#administration-indexes-examples
https://neo4j.com/docs/cypher-manual/current/indexes-for-search-performance/#administration-indexes-examples
https://neo4j.com/docs/cypher-manual/5/deprecations-additions-removals-compatibility
https://neo4j.com/docs/cypher-manual/5/deprecations-additions-removals-compatibility
https://neo4j.com/docs/cypher-manual/5/deprecations-additions-removals-compatibility
https://neo4j.com/docs/cypher-manual/5/deprecations-additions-removals-compatibility
https://neo4j.com/docs/cypher-manual/5/syntax/patterns/#cypher-pattern-varlength

improved.

e The severity of some of the Warning codes is moved to Info:
° SubqueryVariableShadowingWarning = SubqueryVariableShadowing

NoApplicableIndexWarning = NoApplicableIndex

CartesianProductWarning 2 CartesianProduct

DynamicPropertyWarning = DynamicProperty

EagerOperatorWarning » EagerOperator

° ExhustiveShortestPathWarning » ExhaustiveShortestPath

° UnboundedVariablelLengthPatternWarning 2 UnboundedVariablelLengthPattern

ExperimentalFeature ® RuntimeExperimental

APOC

All APOC procedures and functions available in Aura are listed in the APOC Core library. See the APOC
documentation for further details.

Procedures

Some procedures have been replaced by commands:

Procedure Replacement

db.indexes SHOW INDEXES command

db.indexDetails SHOW INDEXES YIELD * command

db.schemaStatements SHOW INDEXES YIELD * command and SHOW CONSTRAINTS YIELD * command
db.constraints SHOW CONSTRAINTS command

db.createIndex CREATE INDEX command

db.createUniquePropertyConstraint CREATE CONSTRAINT .. IS UNIQUE command
db.index.fulltext.createNodeIndex CREATE FULLTEXT INDEX command

db.index.fulltext.createRelationship CREATE FULLTEXT INDEX command

Index

db.index.fulltext.drop DROP INDEX command

dbms . procedures SHOW PROCEDURES command

dbms. functions SHOW FUNCTIONS command
dbms.listTransactions SHOW TRANSACTIONS command
dbms.killTransaction TERMINATE TRANSACTIONS command
dbms.killTransactions TERMINATE TRANSACTIONS command
dbms.listQueries SHOW TRANSACTIONS command

215

https://neo4j.com/docs/aura/platform/apoc/
https://neo4j.com/docs/apoc/5/
https://neo4j.com/docs/apoc/5/

Procedure Replacement
dbms.killQuery TERMINATE TRANSACTIONS command
dbms.killQueries TERMINATE TRANSACTIONS command

dbms.scheduler.profile -
Refer to the Update and migration guide for a full list of removals and deprecations.

Neo4j Connectors

If you are using a Neo4j Connector for Apache Spark or Apache Kafka, make sure its version is compatible
with Neo4j 5.

The Neo4j Bl Connectors available on the Download center are compatible with Neo4;j 5.

Perform the upgrade

Once you have prepared your Neo4j 4 Aura instance, you are ready to migrate the instance to a new or
existing Neo4j 5 instance.

Clone

If you have an existing Neo4j 5 instance, you can use the Clone To Existing instance action on your Neo4;j
4 AuraDB or AuraDS instance.

If you do not have an existing Neo4j 5 instance, you can use the Clone To New instance action on your
Neo4j 4 AuraDB or AuraDS instance.

Export and import

Alternatively, you can Export a snapshot dump file from your Neo4j 4 AuraDB or AuraDS instance, create
a new Neo4j 5 instance manually, and then import the dump file into your new Neo4j 5 AuraDB or AuraDS
instance.

Migrate from self-managed Neo4j to Aura

This tutorial describes how to migrate from a self-managed Neo4j database to Aura.

é If your local Neo4j version is older than 4.3, you need to upgrade to at least Neo4j 4.3
first as explained in Upgrade and Migration Guide » Neo4j 4 upgrades and migration.

Preparation

Migrating to Neo4j b

If you are migrating from self-managed Neo4j 4.3 or 4.4 to Neo4j 5 on Aura, carefully read the Preparation
section in the Upgrade tutorial to ensure you are well prepared for the migration.

216

https://neo4j.com/docs/upgrade-migration-guide/current/version-5/migration/breaking-changes/#_removals
https://github.com/neo4j-contrib/neo4j-spark-connector/releases/
https://github.com/neo4j-contrib/neo4j-streams/releases
https://neo4j.com/download-center/#integrations
https://neo4j.com/docs/upgrade-migration-guide/current/version-4/
https://neo4j.com/docs/upgrade-migration-guide/current/version-4/
https://neo4j.com/docs/upgrade-migration-guide/current/version-4/

Aura instance size

Before starting, verify that the Aura instance you are migrating to is sized accordingly. The instance must
be at least as large as your self-managed database to accommodate the data. The Aura RAM-to-storage
ratio is 1:2, which means, for example, that a 32 GB Aura instance provides 64 GB of storage.

APOC compatibility

If you are using any APOC procedures and functions, make sure they are all available in Aura by checking
the APOC support page.

Creating and uploading a database dump

In order to move data from your self-managed database to Aura, you need to create a dump of the existing
database.

0 This process requires a short downtime for your self-managed database.

The following admin commands must be invoked with the same user as your self-managed Neo4j
database. This guarantees that Neo4j has full rights to start and work with the database files you use.

1. Stop your self-managed Neo4j database. If you are running AuraDB Virtual Dedicated Cloud or
AuraDS Enterprise, you can stop only the database you want to dump using the command STOP
DATABASE neo4j in Cypher Shell or Browser.

2. Ensure the target directory to store the database dumps (for instance /dumps/neo4j) exists.

3. Depending on your self-managed Neo4j version, create a dump of your database (e.g., neo4j) using
one of the following options:

Use the neo4j-admin dump command.

bin/neo4j-admin dump --database=neo4j --to=/dumps/neo4j

Use the neo4j-admin database dump command.

bin/neo4j-admin database dump neo4j --to-path=/dumps/neo4j

4. Depending on your self-managed Neo4j version, upload the database dump (e.g., neo4j) to your Aura
instance using one of the following options:

217

https://neo4j.com/docs/aura/platform/apoc/
https://neo4j.com/docs/operations-manual/4.4/backup-restore/offline-backup/
https://neo4j.com/docs/operations-manual/current/backup-restore/offline-backup/

Use the neo4j-admin push-to-cloud command.

bin/neo4j-admin push-to-cloud --dump=/dumps/neo4j/file.dump --bolt-uri
=neo4dj+s://xxxxxxxx.databases.neo4j.io --overwrite

Use the neo4j-admin database upload command.

bin/neo4j-admin database upload neo4j --from-path=/dumps/neo4j --to-uri
=neo4j+s://xxxxxxxx.databases.neo4j.io --overwrite-destination=true

= Migrating your Neo4j AuraDB Free instance to another AuraDB plan :description: This section
describes migrating your Neo4j AuraDB Free Instance to another AuraDB plan

AuraDB Professional or AuraDB Virtual Dedicated Cloud

Upgrading your plan to AuraDB Professional or AuraDB Virtual Dedicated Cloud gives you access to
additional resources and functionalities to support production workloads and applications with demanding
storage and processing needs.

Migration options

e Upgrade to AuraDB Professional
e Clone to new (Works for AuraDB Professional and AuraDS Professional)

e Manual process

Upgrade to AuraDB Professional
You can upgrade an instance to the Professional plan directly from the console.
Click the ellipsis (...) button on an instance card > Upgrade to Professional

Verify that the cloud provider and region are correct and select the instance size you need. Note that the
default version of Neo4j is 5. Once you are satisfied, click Upgrade.

Clone (Works for AuraDB Professional and AuraDS)

The other way is to clone your existing instance to the Professional plan.

e Click the ellipsis {(...) button on an instance
e Select either: Clone to new or Clone to existing (the current content will be overwritten)

e Select the type: AuraDB or AuraDS

218

https://neo4j.com/docs/operations-manual/4.4/tools/neo4j-admin/push-to-cloud/
https://neo4j.com/docs/operations-manual/current/tools/neo4j-admin/upload-to-aura/

Manual process
In your existing instance:
1. (Optional but recommended) Capture existing index and constraint definitions:
a. Run the following Cypher statement:

SHOW CONSTRAINTS YIELD createStatement

Save result to a file, to use later in the process.

b. Run the following Cypher statement:
SHOW INDEXES YIELD createStatement

Save result to a file, to use later in the process.

2. (Optional but recommended) Drop the indexes and constraints.

a. Run the following Cypher statement to generate the commands to drop existing constraints:

SHOW CONSTRAINTS YIELD name
RETURN 'DROP CONSTRAINT ' + name + ';'
b. Execute the generated commands to drop existing constraints.
c. Run the following Cypher statement to generate the commands to drop existing indexes:

SHOW INDEX YIELD name
RETURN 'DROP INDEX ' + name + ';'

d. Execute the generated commands to drop existing indexes.
For more information about indexes and constrains, see Cypher Manual » Constraints.

3. In the console of your existing instance (AuraDB Free), do the following:
a. Download snapshot/Dump locally (the daily automatic snapshot)
b. In the Aura Console select the AuraDB instance
c. Go to the Snapshots tab
d. Click the three dots, and select Export
e. Save the dump file locally (preserve the .dump extension)

4. Then create a new AuraDB instance in AuraDB Professional or AuraDB Virtual Dedicated Cloud with
the right resource sizing. From your new instance, do the following:

a. Upload via Console drag and drop or push-to-cloud
i. From the Aura Console: drag and drop the .dump file

i. Using the command line: neo4j-admin push-to-cloud

219

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#constraints
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#constraints

5. In the newly created AuraDB Professional or AuraDB Virtual Dedicated Cloud instance

(Optional) Once the AuraDB instance is loaded and started, you can recreate the indexes and
constraints, using the information captured earlier in the process.

220

Integrating with Neo4;
Connectors

Using the Neo4j Connector for Apache Spark

This tutorial shows how to use the Neo4j Connector for Apache Spark to write to and read data from an

Aura instance.
Setup
1. Download Apache Spark.

Example: Spark 3.4.1, pre-built for Apache Hadoop 3.3 and later with Scala 2.12.

2. Download the Neo4j Connector JAR file, making sure to match both the Spark version and the Scala

version.
Example: Neo4j Connector 5.1.0, built for Spark 3.x with Scala 2.12.

3. Decompress the Spark file and launch the Spark shell as in the following example:

$ spark-3.4.1-bin-hadoop3/bin/spark-shell --jars neo4j-connector-apache-spark_2.12-
5.1.0_for_spark_3.jar

Running code in Apache Spark

O You can copy-paste Scala code in the Spark shell by activating the paste mode with the

- :paste command.

Create a Spark session and set the Aura connection credentials:

import org.apache.spark.sql.{SaveMode, SparkSession}
val spark = SparkSession.builder().getOrCreate()

// Replace with the actual connection URI and credentials
val url = "neo4j+s://xxxxxxxx.databases.neo4j.io"

val username = "neo4j"

val password "

Then, create the Person class and a Spark Dataset with some example data:

221

https://spark.apache.org/downloads.html
https://github.com/neo4j-contrib/neo4j-spark-connector/releases

case class Person(name: String, surname: String, age: Int)

// Create example Dataset
val ds = Seq(
Person("John", "Doe", 42),
Person("Jane", "Doe", 40)
).toDS()

Write the data to Aura:

// Write to Neo4j
ds.write.format("org.neo4j.spark.DataSource")
.mode(SaveMode .Overwrite)
.option("url", url)
.option("authentication.basic.username", username)
.option("authentication.basic.password", password)

.option("labels", ":Person")
.option("node.keys", "name,surname")
.save()

You can then query and visualize the data using the Neo4j Browser.

You can also read the data back from Aura:

// Read from Neo4j

val data = spark.read.format("org.neo4j.spark.DataSource")
.option("url", url)
.option("authentication.basic.username", username)
.option("authentication.basic.password", password)
.option("labels", "Person")
.load()

// Visualize the data as a table
data.show()

For further information on how to use the connector, read the Neo4j Spark Connector docs.

Using the Neo4) Bl Connector

In this tutorial we use the Neo4j Connector for Bl to read graph data from an Aura instance using some
common SQL clients and Bl tools.

This tutorial includes instructions on the usage of third-party software, which may be

o subject to changes beyond our control. In case of doubt, please refer to the third-party
software documentation.

Downloading the connector

Download the connector from the Download Center. Depending on the SQL client or Bl tool it will be used
with, you will need either the JDBC or the ODBC connector; see the usage examples for further details.

Preparing example data

Before trying the connector with any of the listed tools, some data needs to be loaded on Aura. This can be
achieved by running the following Cypher query in the Neo4j Browser:

222

https://neo4j.com/docs/pdf/neo4j-spark-.pdf
https://neo4j.com/download-center/#integrations

CREATE
(john:Person {name: "John", surname: "Doe", age: 42}),
(jane:Person {name: "Jane", surname: "Doe", age: 40}),
(john)-[:KNOWS1->(jane)

Using Bl tools

Commonly used Bl tools include Tableau (which uses the JDBC driver) and Power Bl (which uses the
ODBC driver).

(r) When connecting with a JDBC driver, the neo4j+s URI scheme must be changed into
™ neo4j and the SSL=true parameter must be added to the URL.
Tableau

This example requires Tableau Desktop.

0 Refer to the Tableau documentation for more information on how to add a JDBC
database.

After downloading the JDBC Neo4j Connector for Bl from the Download Center:

1. Close any running instances of Tableau Desktop.

2. Copy the Neo4j driver to the appropriate Tableau drivers folder (for example C:\Program
Files\Tableau\Drivers on Windows, or ~/Library/Tableau/Drivers on macQS).

3. Start Tableau and search for the Other Databases (JDBC) option.

4. Insert the Aura URL as jdbc:neo4j://xxxxxxxx.databases.neo4j.i0?SSL=true, leave the SQL dialect
as SQL92, and complete the relevant credentials.

If the connection fails with a Generic JDBC connection error, you can do one of the following:

e Download the SSL. com CA root certificate from ssl.com and install it as explained in the Tableau
documentation, then restart Tableau and repeat the previous steps (recommended option).

e Add &sslTrustStrategy=TRUST_ALL_CERTIFICATES to the connection string (after SSL=true) and try to
connect again. This option requires caution and should not be used in a production environment.

After the connection is established, you can select the neo4j database and the Node schema to find the
Person table. You can then explore the table to find the example data.

Power Bl

This example requires Microsoft Windows and Power Bl Desktop.

o Refer to the Power Bl documentation for more information on how to add an ODBC
database.

After downloading and installing the ODBC Neo4j Connector for Bl from the Download Center:

223

https://www.tableau.com/en-gb/products/desktop
https://help.tableau.com/current/pro/desktop/en-us/examples_otherdatabases_jdbc.htm
https://neo4j.com/download-center/#integrations
https://www.ssl.com/how-to/install-ssl-com-ca-root-certificates/
https://help.tableau.com/current/pro/desktop/en-us/jdbc_ssl_config.htm
https://help.tableau.com/current/pro/desktop/en-us/jdbc_ssl_config.htm
https://powerbi.microsoft.com/en-us/desktop/
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-connect-using-generic-interfaces
https://neo4j.com/download-center/#integrations

1. Open Power Bl Desktop.
Search for ODBC in the Get data from another source panel.

Select Simba Neo4j in the DSN dropdown menu.

A woN

Insert the connection string Host=xxxxxxxx.databases.neo4j.i0;SSL=1 in the Advanced options
section.

5. Insert your username and password.

Once connected, open sequentially ODBC » neo4j » Node - Person in the Navigator window to see a preview
of the table.

Using command-line SQL clients

In order to run SQL queries, we need a SQL client that can use a custom driver. Common JDBC-based
command-line SQL clients include sglline and jdbcsql.

@ When connecting with a JDBC driver, the neo4j+s URI scheme must be changed into
- neo4j and the SSL=true parameter must be added to the URL.
sqglline

sglline is a command-line tool for issuing SQL queries to relational databases via JDBC. To clone and
build it, run the following:

$ git clone https://github.com/julianhyde/sqlline
$ cd sqglline
$./mvnw package

We now need to make the Bl connector driver available to sqllite. This can be done by extracting the
Neo43jJIDBC42. jar file from the downloaded JDBC BI connector into the sqlline/target folder.

The sqglline client can now be run as follows:

$./bin/sqlline -d com.simba.neo4j.neo4j.jdbc42.Driver

From the client prompt, it is possible to connect to the Aura instance by supplying the username and
password when prompted to do so:

sqlline> !connect jdbc:neo4j://xxxxxxxx.databases.neo4j.io?SSL=true

When the connection is established, a list of tables can be obtained with the !tables command:

jdbc:neo4dj://xxxxxxxx.databases.neo4j.io> !tables

224

https://github.com/julianhyde/sqlline

Fo--mmmmmm - Fo------- +

| TABLE_CAT | TABLE_SCHEM | TABLE_NAME | TABLE_TYPE | REMARKS | TYPE_CAT | TYPE_SCHEM |
TYPE_NAME | SELF_R |

tommmmmm - B e B ettt B ittt e it B i B e
Fommmmm e Fommm oo +

| neo4j | Node | Person | TABLE | | | |
| |

| neo4j | Relationship | Person_KNOWS_Person | TABLE | | | |
| |

Fo--mmmm - R e e oo B T e to---m-m oo B e T
tommmmm - Fommm - - +

It is also possible to run SQL queries:

jdbc:neo4dj://xxxxxxxx.databases.neo4j.io> SELECT * FROM Person;

R ittt +----- +------ Fo-------- +
| _NodeId_ | age | name | surname |
Fo-mmmmmo-- +----- R Fo-------- +
| o | 42 | John | Doe
| 1 | 40 | Jane | Doe |
to--mmmmo-- +----- R Fo-------- +

jdbcsql

jdbcsgl is a command-line tool that can be used to connect to a DBMS via a JDBC driver.

After downloading the jdbcsql-1.0.zip file from SourceForge, extract it into the jdbcsql folder; then, copy
the Neo4jJIDBC42. jar file from the downloaded JDBC Bl Connector into jdbcsgl and make the following
changes:

1. Add the following lines to JDBCConfig.properties

neo4j settings
neo4j_driver = com.simba.neo4j.neo4j. jdbc42.Driver
neo4j_url = jdbc:neo4j://host?SSL=true

2. Add Neo4jJDBC42. jar to Rsrc-Class-Path line in META-INF/MANIFEST.MF

Now run the following command (replacing xxxxxxxx.databases.neo4j.io with the Aura connection URI,
and yyyyyyyy with the actual password):

$ java org.eclipse.jdt.internal.jarinjarloader.JarRsrcLoader -m neo4j -h xxxxxxxx.databases.neo4j.io -d
neo4j -U neo4j -P yyyyyyyy 'SELECT * FROM Person'

The result of the query is:

"_NodeId_" age name surname
@ 42 John Doe
1 40 Jane Doe

225

http://jdbcsql.sourceforge.net/
https://sourceforge.net/projects/jdbcsql/files/

Improving Cypher performance

This page covers a number of steps you can take to improve the Cypher performance of your workload.

Cypher statements with literal values

One of the main causes of poor query performance is due to running many Cypher statements with literal
values. This leads to inefficient Cypher processing as there is currently no use of parameters. As a result,
you don’t benefit fully from the execution plan cache that would occur otherwise.

The following Cypher queries are identical in form but use different literals:

MATCH (tg:asset) WHERE tg.name = "ABC123"
MERGE (tg)<-[:TAG_OF]-(z1:tag {name: "/DATAQ1/" + tg.name + "/Top_DOOR"})
MERGE (tg)<-[:TAG_OF]-(z2:tag {name: "/DATAQ1/" + tg.name + "/Data_Vault"})

In cases like this, query parsing and execution plan generation happen multiple times, resulting in a loss of
efficiency. One way to solve that is by rewriting the former example as follows:

MATCH (tg:asset) WHERE tg.name = $tgName
WITH tg

UNWIND $tags as tag

MERGE (tg)<-[:TAG_OF]-(:tag {name: tag.name})

By replacing the literal values in the queries with parameters you get a better execution plan caching
reuse. Your application needs to place all the values in a parameter list and then you can issue one
statement that iterates through them. Making these changes will lead to improvements in execution and
memory usage.

Review queries and model

One first action that you can take is reviewing and listing all your Cypher queries. The best starting point is
to have a good understanding of the sequence and frequency of the Cypher queries submitted.

Additionally, if the queries are generated by a framework, it is essential to log them in Cypher form to
make reviewing easier.

You can also profile a Cypher query by prepending it with EXPLAIN (to see the execution plan without
running the query) or PROFILE (to run and profile the query). Read more about profiling a query.

When using PROFILE you may need to run it multiple times in order to get the optimal
value. The first time the query runs, it gets a full cycle of evaluation, planning, and

o interpreting before making its way into the query cache. Once in the cache, the
subsequent execution time will improve. Furthermore, always use parameters instead of
literal values to benefit from the cache.

Read more about how to capture the execution plans.

226

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#how-do-i-profile-a-query
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#4404022359443_Performance_tuning_with_Neo4j_AuraDB

To best interpret the output of your execution plan, it is recommended that you get familiar with the terms
used on it. See this summary of execution plan operators for more information.

Index specification

As your data volume grows, it is important to define constraints and indexes in order to achieve the best
performance for your queries. For that, the runtime engine will need to evaluate the cost associated with a
query and, to get the best estimations, it will rely on already existing indexes. This will likely show whether
an index is missing from the execution plan and which one is it. Though in some circumstances it might
look like an index is not available or possible, it may also make sense to reconsider the model and create an
intermediate node or another relationship type just to leverage it.

Read more about the use of indexes for a more comprehensive explanation.

o You can also fine-tune the usage of an index in your query by leveraging it with the
USING clause.

Review metrics and instance size

With Aura, you can keep an eye on some key metrics to see which resource constraints your instance may
be experiencing. Follow the steps described in Monitoring to check that information.

At this stage, if the key metrics are too high, you may want to reconsider the instance sizing. A resize
operation does not cause any downtime, and you would only pay for what you use.

(r) You should always size your instance against your workload activity peaks.
w

Consider concurrency

Sometimes individual queries may be optimized on their own and run fine, but the sheer volume and
concurrency of operations can overwhelm your Aura instance.

To review what is running at any given time (this makes particular sense if you have a long-running query),
you can use these statements and list what is running:

e SHOW TRANSACTIONS

e CALL dbms.listQueries()

Runtime engine and Cypher version

The execution plan should show you the runtime that is selected for the execution of your query. Usually,
the planner makes the right decision, but it may be worth checking at times if any other runtime performs
better. Read more about query tuning on Cypher runtime.

To invoke the use of a given runtime forcibly, prepend your Cypher statement with:

e CYPHER runtime=pipelined for pipelined runtime

227

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#operator_summary
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#indexes
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#using
https://neo4j.com/docs/pdf/neo4j-aura-auradb.pdf#monitoring
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#query-listing-transactions
https://neo4j.com/docs/pdf/neo4j-operations-manual-current.pdf#procedure_dbms_listqueries
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#cypher-runtime

e CYPHER runtime=slotted for slotted runtime

e CYPHER runtime=interpreted for interpreted runtime

If you have a Cypher pattern that is not performing without error, it could as well be running on a prior
Cypher version. You can control the version used to interpret your queries by using these Cypher query

options.

Network and the cost of the round-trip

With Aura, it is essential to consider the best cloud in your region as the physical distance is a direct factor
in the achievable network latency.

When some event causes any network disruption between your application and Aura, you would be
affected by round-trip network latency to re-submit a query. With Aura, this is particularly important
because you will need to be using transaction functions when connecting your instance to applications.

228

https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#cypher-version
https://neo4j.com/docs/pdf/neo4j-cypher-manual-current.pdf#cypher-version
https://neo4j.com/docs/pdf/neo4j-aura-auradb.pdf#overview

Troubleshooting

This page provides possible solutions to several common issues you may encounter when using Neo4;j
Aura.

Regardless of the issue, viewing the Aura query log is always recommended to monitor processes and
verify any problems.

Query performance

MemoryLimitExceededException

During regular operations of your Aura instance, you may at times see that some of your queries fail with
the error:

MemoryLimitExceededException error

org.neo4j.memory.MemorylLimitExceededException: The allocation of an extra 8.3 MiB would use more than the
limit 278.0 MiB.
Currently using 275.1 MiB. dbms.memory.transaction.global_max_size threshold reached

The org.neo4j.memory.MemorylLimitExceededException configuration acts as a safeguard, limiting the
quantity of memory allocated to all transactions while preserving the regular operations of the Aura
instance. Similarly, the property dbms.memory. transaction.global_max_size also aims to protect the Aura
Instance from experiencing any OOM (Out of memory) exceptions and increase resiliency. It is enabled in
Aura and cannot be disabled.

However, the measured heap usage of all transactions is only an estimate and may differ from the actual
number. The estimation algorithm relies on a conservative approach, which can lead to overestimation of
memory usage. In such cases, all contributing objects' identities are unknown and cannot be assumed to
be shared.

Solution
o We recommend handling this error in your application code, as it may be intermittent.
Overestimation is most likely to happen when using UNWIND on long lists or when expanding a variable

length or shortest path pattern. The many relationships shared between the computed result paths could
be the cause of a lack of precision in the estimation algorithm.

To avoid this scenario, try running the same query without using a sorting operation like ORDER BY or
DISTINCT. Additionally, if possible, handle this ordering or uniqueness in your application.

If removing the ORDER BY or DISTINCT clauses does not solve the issue, the primary mitigation for this error
is to perform one or more of these actions:

e Handle this exception in your code and be prepared to retry if this is an intermittent error. Keep in mind
that the query can succeed regardless.

e Rework the relevant query to optimize it.

229

° Use EXPLAIN or PROFILE to review the plans (see more about query tuning).

° Use PROFILE in the Cypher Shell to check the overall memory footprint of a query. The output will
include memory consumption information, the query’s result, if any, and the execution plan. In the
following example, the memory consumed is 11,080 Bytes:

O ole) . oo

Fd 2
'Charlize Theron", born:

| "PIPELINED" | 1e

e Increase the instance size of your Aura deployment to get more resources.

e Reduce the concurrency of queries heavy on resources to get a better chance of success.

If this error occurs while loading data from CSV files, use apoc.periodic.iterate to
import the data and use a relatively small number for the batch_size parameter. For
more information, visit the Customer Support Portal.

See Considerations on memory configuration for further reading on memory management.

Neo4); Admin database upload errors

The database upload command was introduced in Neo4j Admin version 5, replacing the push-to-cloud
command that was present in Neo4j Admin version 4.4 and earlier. The following solutions are relevant to
both commands.

LegacyIndexes

When attempting to use database upload where there are native LegacyIndexes present, the request
might fail with the following error:

Legacylndexes error

ERROR: Source dumpfile has legacy indexes enabled, which we do not support.
User needs to manually follow instructions in neo4j logs to upgrade indexes.

Solution

To resolve the issue, follow these steps:

1. Make sure you are at least on Neo4j version 4.4 or later. See more information about upgrade and

migration.

2. In your local graph, use the following commands to get a list of the indexes and their types. This will
also provide the sequential list of commands to drop and then recreate the indexes:

230

https://neo4j.com/docs/cypher-manual/current/query-tuning/
https://support.neo4j.com/s/article/1500012376402-Using-apoc-to-conditional-loading-large-scale-data-set-from-JSON-or-CSV-files
https://neo4j.com/docs/operations-manual/current/performance/memory-configuration/#memory-configuration-considerations
https://neo4j.com/docs/upgrade-migration-guide/current/
https://neo4j.com/docs/upgrade-migration-guide/current/

Return a list of indexes and their types

CALL db.constraints() YIELD description
UNWIND ["DROP", "CREATE"] AS command
RETURN command + " " + description

3. In Neo4j Browser, select the "Enable multi statement query editor" option under the browser
settings.

4. Take the list of commands from the 2nd step and copy them in one list of multiple queries into
Browser and run those queries.

5. After the indexes are recreated, try the database upload command again.

InconsistentData

This error message will likely trigger when Neo4j Aura cannot safely load the data provided due to
inconsistencies.

Solution

If you encounter this error, please raise a ticket with our Customer Support team.

UnsupportedStoreFormat

You may get this error if the store you are uploading is in a Neo4j version that is not directly supported in

Neo4j Aura.

Solution

1. Upgrade your database. Make sure you are on Neo4j 4.4 or later.

2. If you encounter problems upgrading, please raise a ticket with our Customer Support team.

LogicalRestrictions

You may get this error when the store you are uploading exceeds the logical limits of your database.

Solution

1. Delete nodes and relationships to ensure the data is within the specified limits for your instance,
and try the upload again.

2. If you are confident you have not exceeded these limits, please raise a ticket with our Customer
Support team.

Fallback

This error can be triggered when the uploaded file is not recognized as a valid Neo4j dump file.

Solution

1. Check the file and try again.

2. If you are confident the file being uploaded is correct, please raise a ticket with our Customer
Support team.

231

https://support.neo4j.com
https://neo4j.com/docs/upgrade-migration-guide/current/
https://support.neo4j.com
https://support.neo4j.com
https://support.neo4j.com
https://support.neo4j.com
https://support.neo4j.com

Driver integration

JavaScript routing table error

JavaScript driver version 4.4.5 and greater assumes the existence of database connectivity. When the
connection fails, the two most common error messages are "Session Expired" or a routing table error:

Routing table error

Neo4jError: Could not perform discovery.
No routing servers available.

Known routing table: RoutingTable[database=default database, expirationTime=0, currentTime=1644933316983,
routers=[], readers=[], writers=[]]

This error can also be encountered when no default database is defined.

Solution

Verify connectivity before creating a session object, and specify the default database in your driver
definition.

Verifying connectivity

const session = driver.session({ database: "neo4j" })
driver.verifyConnectivity()

let session = driver.session(....)
o Rapid session creation can exceed the database’s maximum concurrent connection limit,
resulting in the “Session Expired” error when creating more sessions.

232

Create an AuraDB instance in the terminal

This tutorial describes using the terminal to create an instance in the Aura Console.

Preparation

Generate API credentials

e |Login to the Aura Console.
e Click your email address in the top right corner and select Account details.

¢ In the API credentials section, select Create. Enter a descriptive name and save the generated Client ID
and Client Secret.

cURL

e Install cURL via your terminal
e For macOS with Homebrew: use brew install curl.
e |nstall cURL. See curl download wizard for more information.

e Check cURL is available: Type curl -V in the terminal

Obtain a bearer token
o Bearer tokens are valid for one hour.

In the terminal paste the snippet, replacing YOUR_CLIENT_ID and YOUR_CLIENT_SECRET with the values
generated by the Aura Console. Keep the : between the values.

curl --location 'https://api.neo4j.io/oauth/token' --header 'Content-Type: application/x-www-form-
urlencoded' --data-urlencode 'grant_type=client_credentials' -u 'YOUR_CLIENT_ID:YOUR_CLIENT_SECRET' -v

Response body example

Save the access_token from the end of the returned code. This is your bearer token. It looks similar to this
example:

"access_token":"eyJ1c31i0iJkNzI2MzE1My@3MWZmLTUXxMjQtOWVjYy110GFIM2F jNjNjZWUiLCJIpc3MiOiJodHRwczovL2F1cmELYX
BpLmV1LmF1dGgwLmNvbS8iLCJzdWIi0iJFSDdsRTgwbEhWQVVkbDVHUUPEY@M1VDAXxZ3BNTnpqVkBjbGl1lbnRzIiwiYXVkIjoiaHROcHM6
Ly9jb25zb2x1Lm51bzRgLmlvIiwiaWFOI joxNzAyOTgz0DQzLCJI1eHAiOjE3MDI50DCcONDMSImF6cCI6IkVIN2xFODBsSFZBVWRSNUARSk
RjQzVUN3FncE10empWIiwiZ3R5IjoiY2xpZW50LWNyZWR1bnRpYWxzIn@eyJhbGci0iJSUZITNiISINR5cCI6IkpXVCIsImtpZCI6ImFKb
WhtUT1YeExsQmFLAHNUZNJIIcCJ9. . jkpatG4SCRnxwTPzFECSTk3Yydou_NMH8epNgmSBMULp_JvvabKpNdkPIE6vVX5hLRgVCVKovx14KY
9yzEkr7R5s4YU3s2K25eNB1g1y3yQ_-9N@e6e0hmjIrsWHMd_r12NuGIHo6pHihumuJ1Eg-
U2ELkWyu8Iz3zQxjycVnPHz1lbu7sbtwVJdU7Uzg012jgDLA1T4mUqvxdAAdnoX057SwczYoYKY2YL61CMTn-
xdQ6MFS8A3vwpGQbRirwVVxvEmoIPCL1QwHeEC4_modJ4cifmjt6ChIb1sxsRpFvdNHmOVNCL jy -
96e88D50AMgjvS4VQCmVKATkUgt7t5IpKg", "expires_in":3600, "token_type": "Bearer"

233

https://curl.se/dlwiz/

Obtain the project ID

Use cURL to obtain the project ID with your token. Replace YOUR_BEARER_TOKEN with your token.

curl --location 'https://api.neo4j.io/v1/projects' --header 'Accept: application/json' --header
'Authorization: Bearer YOUR_BEARER_TOKEN'

This returns something similar to:

{"data":[{"id":"6e6bbbe2-5678-5f8a-1234-b1f62f08b98f" , "name": "team1"},{"id": "ad69ee24-1234-5678-af02-
ff8d3cc23611", "name": "team2"} 1}

In the example response above, two projects are returned. If you're a member of multiple projects, select
the one you wish to use.

o Project replaces Tenant in the console Ul and documentation. However, in the AP,
tenant remains the nomenclature.

Configure an AuraDB instance

Configure the instance values

Use the bearer token and Project ID to create the Aura instance. Replace YOUR_BEARER_TOKEN with your
token. Replace YOUR_PROJECT_ID with your project ID.

The following values are customizable version, region, memory, name, type, tenant_id, and cloud_provider.

curl --location 'https://api.neo4j.io/v1/instances' --header 'Content-Type: application/json' --header
"Accept: application/json' --header 'Authorization: Bearer YOUR_BEARER_TOKEN' --data ' { "version": "5",
"region": "europe-westl1", "memory": "8GB", "name": "instance01", "type": "enterprise-db", "tenant_id":

"YOUR_PROJECT_ID", "cloud_provider": "gcp" }'

See Aura AP| documentation for more details.

At this point, an Aura instance is provisioned in the Aura Console. Optionally, use this code in the terminal
to check the status:

curl --location 'https://api.neo4j.io/v1/instances/YOUR_INSTANCE_ID' --header 'Accept: application/json'
--header 'Authorization: Bearer YOUR_BEARER_TOKEN'

Response

curl --location 'https://api.neo4j.io/v1/instances/YOUR_INSTANCE_ID' --header 'Accept: application/json'
--header 'Authorization: Bearer YOUR_BEARER_TOKEN'

If the value of status shows running, you can start using the new Aura instance.

234

License

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

You are free to
Share

copy and redistribute the material in any medium or format

Adapt

remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms

Attribution

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial

You may not use the material for commercial purposes.

ShareAlike

If you remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original.

No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

Notices

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the
material.

See https://creativecommons.org/licenses/by-nc-sa/4.0/ for further details. The full license text is available
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

235

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

	Neo4j Aura overview
	Table of Contents
	Neo4j AuraDB
	Neo4j AuraDS
	=Neo4j Aura=
	Creating an account
	Aura with cloud provider marketplaces
	AuraDB Virtual Dedicated Cloud, AuraDS Enterprise, and Aura Business Critical
	Aura Professional

	Security
	Secure connections
	Single Sign-On (SSO)
	Encryption
	User management
	Projects
	Users

	APOC support
	apoc
	apoc.agg
	apoc.algo
	apoc.any
	apoc.atomic
	apoc.bitwise
	apoc.coll
	apoc.convert
	apoc.create
	apoc.cypher
	apoc.data
	apoc.date
	apoc.diff
	apoc.do
	apoc.example
	apoc.export
	apoc.graph
	apoc.hashing
	apoc.import
	apoc.json
	apoc.label
	apoc.load
	apoc.lock
	apoc.map
	apoc.math
	apoc.merge
	apoc.meta
	apoc.neighbors
	apoc.node
	apoc.nodes
	apoc.number
	apoc.path
	apoc.periodic
	apoc.refactor
	apoc.rel
	apoc.schema
	apoc.scoring
	apoc.search
	apoc.spatial
	apoc.stats
	apoc.temporal
	apoc.text
	apoc.util
	apoc.warmup
	apoc.xml

	Customer Metrics Integration (CMI)
	Process overview
	Detailed steps
	Security
	Metric scrape interval
	Example using Prometheus
	Example using Datadog
	Programmatic support
	Metrics granularity
	Metric definitions

	Logging
	Request and download logs
	Security log forwarding
	Query log analyzer

	Neo4j connectors
	Neo4j Connector for Apache Spark
	Neo4j Connector for Apache Kafka
	Neo4j Connector for BI

	Aura API
	Overview
	Authentication
	API Specification
	Consumption report
	Monitor consumption in real-time
	Filters

	=Neo4j AuraDB=
	Neo4j AuraDB overview
	Plans
	Updates and upgrades
	Support

	Getting Started
	Creating an instance
	Connecting to an instance
	Querying an instance

	Importing
	Importing data
	Importing an existing database

	Managing instances
	Instance actions
	Backup, export and restore
	Secondaries
	Monitoring
	Advanced metrics
	Connecting applications
	Change Data Capture

	=Neo4j AuraDS=
	Neo4j AuraDS overview
	Plans
	Updates and upgrades
	Support

	Architecture
	Neo4j Graph Data Science concepts
	Graph data flow

	Creating an AuraDS instance
	Connecting to AuraDS
	Connecting with Neo4j applications
	Connecting with Python

	Usage examples
	Projecting graphs and using the graph catalog
	Executing the different algorithm modes
	Estimating memory usage and resizing an instance
	Monitoring the progress of a running algorithm
	Persisting and sharing machine learning models
	Loading and streaming back data with Apache Arrow
	Importing data
	Importing an existing database
	Using Neo4j Data Importer
	Loading CSV files

	Managing instances
	Monitoring
	Advanced metrics
	Backup, export, and restore
	Instance actions

	=Tutorials=
	Upgrade and migration
	Upgrade to Neo4j 5 within Aura
	Migrate from self-managed Neo4j to Aura

	Integrating with Neo4j Connectors
	Using the Neo4j Connector for Apache Spark
	Using the Neo4j BI Connector
	Improving Cypher performance
	Cypher statements with literal values
	Review queries and model
	Index specification
	Review metrics and instance size
	Consider concurrency
	Runtime engine and Cypher version
	Network and the cost of the round-trip

	Troubleshooting
	Query performance
	Neo4j Admin database upload errors
	Driver integration

	Create an AuraDB instance in the terminal
	Preparation
	Obtain a bearer token
	Obtain the project ID
	Configure an AuraDB instance

