

The Neo4j Manual v2.3.0

The Neo4j Team neo4j.com1

1 http://neo4j.com/

http://neo4j.com/
http://neo4j.com/

The Neo4j Manual v2.3.0
by The Neo4j Team neo4j.com1

Publication date 2015-10-16 23:20:46
Copyright © 2015 Neo Technology

Starting points

• What is the Neo4j graph database?
• Cypher Query Language
• REST API
• Installation
• Upgrading
• Security
• Resources

License: Creative Commons 3.0
This book is presented in open source and licensed through Creative Commons 3.0. You are free to copy, distribute, transmit, and/or
adapt the work. This license is based upon the following conditions:

Attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that
they endorse you or your use of the work).

Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or
a compatible license.

Any of the above conditions can be waived if you get permission from the copyright holder.

In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights
• The author’s moral rights
• Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights

Note
For any reuse or distribution, you must make clear to the others the license terms of this work. The best way to do this is
with a direct link to this page: http://creativecommons.org/licenses/by-sa/3.0/ 2

1 http://neo4j.com/
2 http://creativecommons.org/licenses/by-sa/3.0/

http://neo4j.com/
http://creativecommons.org/licenses/by-sa/3.0/
http://neo4j.com/
http://creativecommons.org/licenses/by-sa/3.0/

iv

Preface .. v
I. Introduction ... 1

1. Neo4j Highlights ... 3
2. Graph Database Concepts ... 4

II. Tutorials .. 14
3. Introduction to Cypher .. 16
4. Use Cypher in an application .. 46
5. Basic Data Modeling Examples ... 47
6. Advanced Data Modeling Examples .. 62
7. Languages .. 96

III. Cypher Query Language ... 102
8. Introduction .. 105
9. Syntax ... 118
10. General Clauses ... 136
11. Reading Clauses ... 155
12. Writing Clauses .. 186
13. Functions .. 214
14. Schema ... 243
15. Query Tuning .. 253
16. Execution Plans .. 259

IV. Reference ... 277
17. Capabilities ... 279
18. Transaction Management .. 285
19. Data Import .. 295
20. Graph Algorithms ... 296
21. REST API ... 297
22. Deprecations .. 433

V. Operations .. 434
23. Installation & Deployment ... 436
24. Configuration & Performance .. 448
25. High Availability .. 472
26. Backup .. 495
27. Security ... 500
28. Monitoring .. 506

VI. Tools .. 527
29. Import tool ... 529
30. Web Interface ... 541
31. Neo4j Shell ... 542

VII. Advanced Usage ... 558
32. Extending the Neo4j Server ... 560
33. Using Neo4j embedded in Java applications ... 573
34. The Traversal Framework .. 609
35. Legacy Indexing .. 617
36. Batch Insertion ... 632

Terminology .. 636
A. Resources ... 640
B. Manpages ... 641

neo4j ... 642
neo4j-shell .. 643
neo4j-import ... 644
neo4j-backup .. 646
neo4j-arbiter ... 647

v

Preface

This is the reference manual for Neo4j version 2.3.0, authored by the Neo4j Team.

The main parts of the manual are:

• Part I, “Introduction” [1] — introducing graph database concepts and Neo4j.
• Part II, “Tutorials” [14] — learn how to use Neo4j.
• Part III, “Cypher Query Language” [102] — details on the Cypher query language.
• Part IV, “Reference” [277] — detailed information on Neo4j.
• Part V, “Operations” [434] — how to install and maintain Neo4j.
• Part VI, “Tools” [527] — guides on tools.
• Part VII, “Advanced Usage” [558] — using Neo4j in more advanced ways.
• Terminology [636] — terminology about graph databases.
• Appendix A, Resources [640] — find additional documentation resources.
• Appendix B, Manpages [641] — command line documentation.

The material is practical, technical, and focused on answering specific questions. It addresses how
things work, what to do and what to avoid to successfully run Neo4j in a production environment.

The goal is to be thumb-through and rule-of-thumb friendly.

Each section should stand on its own, so you can hop right to whatever interests you. When possible,
the sections distill “rules of thumb” which you can keep in mind whenever you wander out of the house
without this manual in your back pocket.

The included code examples are executed when Neo4j is built and tested. Also, the REST API request
and response examples are captured from real interaction with a Neo4j server. Thus, the examples are
always in sync with how Neo4j actually works.

There’s other documentation resources besides the manual as well, see Appendix A, Resources [640].

Who should read this?

The topics should be relevant to architects, administrators, developers and operations personnel.

Where to get help?

You can learn a lot about Neo4j at different events. To get information on upcoming Neo4j events, have
a look here:

• http://neo4j.com/events/
• http://neo4j.meetup.com/

Get help from the Neo4j open source community; here are some starting points.

• The neo4j tag at stackoverflow: http://stackoverflow.com/questions/tagged/neo4j
• Neo4j Discussions: https://groups.google.com/forum/#!forum/neo4j
• Twitter: https://twitter.com/neo4j

Report a bug or add a feature request:

• https://github.com/neo4j/neo4j/issues

Questions regarding the documentation: The Neo4j Manual is published online with a comment
function, please use that to post any questions or comments regarding the documentation.

If you want to contribute to the Neo4j open source project, see http://neo4j.com/developer/contribute/.

http://neo4j.com/events/
http://neo4j.meetup.com/
http://stackoverflow.com/questions/tagged/neo4j
https://groups.google.com/forum/#!forum/neo4j
https://twitter.com/neo4j
https://github.com/neo4j/neo4j/issues
http://neo4j.com/developer/contribute/

Part I. Introduction
This part gives a bird’s eye view of what a graph database is and also outlines some specifics of Neo4j.

2

1. Neo4j Highlights ... 3
2. Graph Database Concepts ... 4

2.1. The Neo4j Graph Database .. 5
2.2. Comparing Database Models ... 11

3

Chapter 1. Neo4j Highlights

As a robust, scalable and high-performance database, Neo4j is suitable for full enterprise deployment.

It features:

• true ACID transactions,
• high availability,
• scales to billions of nodes and relationships,
• high speed querying through traversals,
• declarative graph query language.

Proper ACID behavior is the foundation of data reliability. Neo4j enforces that all operations that
modify data occur within a transaction, guaranteeing consistent data. This robustness extends
from single instance embedded graphs to multi-server high availability installations. For details, see
Chapter 18, Transaction Management [285].

Reliable graph storage can easily be added to any application. A graph can scale in size and complexity
as the application evolves, with little impact on performance. Whether starting new development, or
augmenting existing functionality, Neo4j is only limited by physical hardware.

A single server instance can handle a graph of billions of nodes and relationships. When data
throughput is insufficient, the graph database can be distributed among multiple servers in a high
availability configuration. See Chapter 25, High Availability [472] to learn more.

The graph database storage shines when storing richly-connected data. Querying is performed through
traversals, which can perform millions of traversal steps per second. A traversal step resembles a join in
a RDBMS.

4

Chapter 2. Graph Database Concepts

This chapter contains an introduction to the graph data model and also compares it to other data
models used when persisting data.

Graph Database Concepts

5

2.1. The Neo4j Graph Database
A graph database stores data in a graph, the most generic of data structures, capable of elegantly
representing any kind of data in a highly accessible way.

For terminology around graph databases, see Terminology [636].

Here’s an example graph which we will approach step by step in the following sections:

Person

nam e = 'Tom Hanks'
born = 1956

Movie

t it le = 'Forrest Gum p'
released = 1994

ACTED_IN
roles = ['Forrest ']

Person

nam e = 'Robert Zem eckis'
born = 1951

DIRECTED

Nodes

A graph records data in nodes and relationships. Both can have properties. This is
sometimes referred to as the Property Graph Model.

The fundamental units that form a graph are nodes and relationships. In Neo4j, both nodes and
relationships can contain properties.

Nodes are often used to represent entities, but depending on the domain relationships may be used for
that purpose as well.

Apart from properties and relationships, nodes can also be labeled with zero or more labels.

The simplest possible graph is a single Node. A Node can have zero or more named values referred to
as properties. Let’s start out with one node that has a single property named title:

t it le = 'Forrest Gum p'

The next step is to have multiple nodes. Let’s add two more nodes and one more property on the node
in the previous example:

nam e = 'Tom Hanks'
born = 1956

t it le = 'Forrest Gum p'
released = 1994

nam e = 'Robert Zem eckis'
born = 1951

Relationships

Relationships organize the nodes by connecting them. A relationship connects two
nodes — a start node and an end node. Just like nodes, relationships can have properties.

Relationships between nodes are a key part of a graph database. They allow for finding related data.
Just like nodes, relationships can have properties.

A relationship connects two nodes, and is guaranteed to have valid start and end nodes.

Graph Database Concepts

6

Relationships organize nodes into arbitrary structures, allowing a graph to resemble a list, a tree,
a map, or a compound entity — any of which can be combined into yet more complex, richly inter-
connected structures.
Our example graph will make a lot more sense once we add relationships to it:

nam e = 'Tom Hanks'
born = 1956

t it le = 'Forrest Gum p'
released = 1994

ACTED_IN
roles = ['Forrest ']

nam e = 'Robert Zem eckis'
born = 1951

DIRECTED

Our example uses ACTED_IN and DIRECTED as relationship types. The roles property on the ACTED_IN
relationship has an array value with a single item in it.

Below is an ACTED_IN relationship, with the Tom Hanks node as start node and Forrest Gump as end node.

nam e = 'Tom Hanks'
born = 1956

t it le = 'Forrest Gum p'
released = 1994

ACTED_IN
roles = ['Forrest ']

You could also say that the Tom Hanks node has an outgoing relationship, while the Forrest Gump node has
an incoming relationship.

Relationships are equally well traversed in either direction.
This means that there is no need to add duplicate relationships in the opposite direction
(with regard to traversal or performance).

While relationships always have a direction, you can ignore the direction where it is not useful in your
application.
Note that a node can have relationships to itself as well:

nam e = 'Tom Hanks'
born = 1956 KNOWS

The example above would mean that Tom Hanks KNOWS himself.
To further enhance graph traversal all relationships have a relationship type.
Let’s have a look at what can be found by simply following the relationships of a node in our example
graph:

nam e = 'Tom Hanks'
born = 1956

t it le = 'Forrest Gum p'
released = 1994

ACTED_IN
roles = ['Forrest ']

nam e = 'Robert Zem eckis'
born = 1951

DIRECTED

Graph Database Concepts

7

Using relationship direction and type
What we want to know Start from Relationship type Direction

get actors in movie movie node ACTED_IN incoming

get movies with actor person node ACTED_IN outgoing

get directors of movie movie node DIRECTED incoming

get movies directed by person node DIRECTED outgoing

Properties
Both nodes and relationships can have properties.

Properties are named values where the name is a string. The supported property values are:

• Numeric values,
• String values,
• Boolean values,
• Collections of any other type of value.

NULL is not a valid property value.
NULLs can instead be modeled by the absence of a key.

For further details on supported property values, see Section 33.3, “Property values” [582].

Labels
Labels assign roles or types to nodes.

A label is a named graph construct that is used to group nodes into sets; all nodes labeled with the
same label belongs to the same set. Many database queries can work with these sets instead of the
whole graph, making queries easier to write and more efficient to execute. A node may be labeled with
any number of labels, including none, making labels an optional addition to the graph.
Labels are used when defining constraints and adding indexes for properties (see the section called
“Schema” [9]).

An example would be a label named User that you label all your nodes representing users with. With
that in place, you can ask Neo4j to perform operations only on your user nodes, such as finding all
users with a given name.
However, you can use labels for much more. For instance, since labels can be added and removed
during runtime, they can be used to mark temporary states for your nodes. You might create an Offline
label for phones that are offline, a Happy label for happy pets, and so on.

In our example, we’ll add Person and Movie labels to our graph:

Person

nam e = 'Tom Hanks'
born = 1956

Movie

t it le = 'Forrest Gum p'
released = 1994

ACTED_IN
roles = ['Forrest ']

Person

nam e = 'Robert Zem eckis'
born = 1951

DIRECTED

Graph Database Concepts

8

A node can have multiple labels, let’s add an Actor label to the Tom Hanks node.

Person
Actor

nam e = 'Tom Hanks'
born = 1956

Label names
Any non-empty Unicode string can be used as a label name. In Cypher, you may need to use the
backtick (`) syntax to avoid clashes with Cypher identifier rules or to allow non-alphanumeric characters
in a label. By convention, labels are written with CamelCase notation, with the first letter in upper case.
For instance, User or CarOwner.

Labels have an id space of an int, meaning the maximum number of labels the database can contain is
roughly 2 billion.

Traversal

A traversal navigates through a graph to find paths.

A traversal is how you query a graph, navigating from starting nodes to related nodes, finding answers
to questions like “what music do my friends like that I don’t yet own,” or “if this power supply goes
down, what web services are affected?”

Traversing a graph means visiting its nodes, following relationships according to some rules. In most
cases only a subgraph is visited, as you already know where in the graph the interesting nodes and
relationships are found.

Cypher provides a declarative way to query the graph powered by traversals and other techniques. See
Part III, “Cypher Query Language” [102] for more information.

When writing server plugins or using Neo4j embedded, Neo4j provides a callback based traversal API
which lets you specify the traversal rules. At a basic level there’s a choice between traversing breadth-
or depth-first.

If we want to find out which movies Tom Hanks acted in according to our tiny example database the
traversal would start from the Tom Hanks node, follow any ACTED_IN relationships connected to the node,
and end up with Forrest Gump as the result (see the dashed lines):

Person

nam e = 'Tom Hanks'
born = 1956

Movie

t it le = 'Forrest Gum p'
released = 1994

ACTED_IN
roles = ['Forrest ']

Person

nam e = 'Robert Zem eckis'
born = 1951

DIRECTED

Paths

A path is one or more nodes with connecting relationships, typically retrieved as a query
or traversal result.

In the previous example, the traversal result could be returned as a path:

Graph Database Concepts

9

Person nam e = 'Tom Hanks'
born = 1956 Movie t it le = 'Forrest Gum p'

released = 1994

ACTED_IN
roles = ['Forrest ']

The path above has length one.

The shortest possible path has length zero — that is it contains only a single node and no
relationships — and can look like this:

Person

nam e = 'Tom Hanks'
born = 1956

This path has length one:

Person

nam e = 'Tom Hanks'
born = 1956

KNOWS

Schema

Neo4j is a schema-optional graph database.

You can use Neo4j without any schema. Optionally you can introduce it in order to gain performance or
modeling benefits. This allows a way of working where the schema does not get in your way until you
are at a stage where you want to reap the benefits of having one.

Note
Schema commands can only be applied on the master machine in a Neo4j cluster (see
Chapter 25, High Availability [472]). If you apply them on a slave you will receive a
Neo.ClientError.Transaction.InvalidType error code (see Section 21.2, “Neo4j Status
Codes” [307]).

Indexes

Performance is gained by creating indexes, which improve the speed of looking up nodes
in the database.

Note
This feature was introduced in Neo4j 2.0, and is not the same as the legacy indexes (see
Chapter 35, Legacy Indexing [617]).

Once you’ve specified which properties to index, Neo4j will make sure your indexes are kept up to date
as your graph evolves. Any operation that looks up nodes by the newly indexed properties will see a
significant performance boost.

Indexes in Neo4j are eventually available. That means that when you first create an index the operation
returns immediately. The index is populating in the background and so is not immediately available for
querying. When the index has been fully populated it will eventually come online. That means that it is
now ready to be used in queries.

If something should go wrong with the index, it can end up in a failed state. When it is failed, it will not
be used to speed up queries. To rebuild it, you can drop and recreate the index. Look at logs for clues
about the failure.

Graph Database Concepts

10

You can track the status of your index by asking for the index state through the API you are using. Note,
however, that this is not yet possible through Cypher.

How to use indexes through the different APIs:

• Cypher: Section 14.1, “Indexes” [244]
• REST API: Section 21.15, “Indexing” [367]
• Listing Indexes via Shell: the section called “Listing Indexes and Constraints” [551]
• Java Core API: Section 33.4, “User database with indexes” [583]

Constraints

Note
This feature was introduced in Neo4j 2.0.

Neo4j can help you keep your data clean. It does so using constraints, that allow you to specify the
rules for what your data should look like. Any changes that break these rules will be denied.

In this version, unique constraints is the only available constraint type.

How to use constraints through the different APIs:

• Cypher: Section 14.2, “Constraints” [247]
• REST API: Section 21.16, “Constraints” [369]
• Listing Constraints via Shell: the section called “Listing Indexes and Constraints” [551]

Graph Database Concepts

11

2.2. Comparing Database Models
A graph database stores data structured in the nodes and relationships of a graph. How does this
compare to other persistence models? Because a graph is a generic structure, let’s compare how a few
models would look in a graph.

A Graph Database transforms a RDBMS
Topple the stacks of records in a relational database while keeping all the relationships, and you’ll see
a graph. Where an RDBMS is optimized for aggregated data, Neo4j is optimized for highly connected
data.

Figure 2.1. RDBMS

A1

A2

A3

B1

B2

B3

B4

B5

B6

B7

C1

C2

C3

Figure 2.2. Graph Database as RDBMS

A1

B1B2

A2

B4B6

A3

B3B5 B7

C1 C2C3

A Graph Database elaborates a Key-Value Store
A Key-Value model is great for lookups of simple values or lists. When the values are themselves
interconnected, you’ve got a graph. Neo4j lets you elaborate the simple data structures into more
complex, interconnected data.

Graph Database Concepts

12

Figure 2.3. Key-Value Store

K1

K2

K3

V1

K2

V2

K1

K3

V3

K1

K* represents a key, V* a value. Note that some keys point to other keys as well as plain values.

Figure 2.4. Graph Database as Key-Value Store

V1

V2

V3
K1

K2

K3

A Graph Database relates Column-Family
Column Family (BigTable-style) databases are an evolution of key-value, using "families" to allow
grouping of rows. Stored in a graph, the families could become hierarchical, and the relationships
among data becomes explicit.

A Graph Database navigates a Document Store
The container hierarchy of a document database accommodates nice, schema-free data that can easily
be represented as a tree. Which is of course a graph. Refer to other documents (or document elements)
within that tree and you have a more expressive representation of the same data. When in Neo4j, those
relationships are easily navigable.

Graph Database Concepts

13

Figure 2.5. Document Store

D1

S1

D2

S2S3

V1D2/S2 V2V3V4D1/S1

D=Document, S=Subdocument, V=Value, D2/S2 = reference to subdocument in (other) document.

Figure 2.6. Graph Database as Document Store

D1

S1D2 S2S3

V1

V2

V3

V4

Part II. Tutorials
The tutorial part describes how use Neo4j. It takes you from Hello World to advanced usage of graphs.

15

3. Introduction to Cypher .. 16
3.1. Background and Motivation ... 17
3.2. Graphs, Patterns, and Cypher .. 18
3.3. Patterns in Practice ... 21
3.4. Getting the Results You Want ... 26
3.5. How to Compose Large Statements ... 30
3.6. Labels, Constraints and Indexes ... 32
3.7. Loading Data ... 34
3.8. Utilizing Data Structures ... 37
3.9. Cypher vs. SQL .. 40

4. Use Cypher in an application .. 46
5. Basic Data Modeling Examples ... 47

5.1. Movie Database ... 48
5.2. Social Movie Database .. 50
5.3. Finding Paths ... 52
5.4. Linked Lists .. 56
5.5. TV Shows ... 58

6. Advanced Data Modeling Examples .. 62
6.1. ACL structures in graphs .. 63
6.2. Hyperedges .. 67
6.3. Basic friend finding based on social neighborhood ... 69
6.4. Co-favorited places ... 70
6.5. Find people based on similar favorites .. 72
6.6. Find people based on mutual friends and groups ... 73
6.7. Find friends based on similar tagging .. 74
6.8. Multirelational (social) graphs ... 75
6.9. Implementing newsfeeds in a graph .. 76
6.10. Boosting recommendation results ... 79
6.11. Calculating the clustering coefficient of a network .. 80
6.12. Pretty graphs ... 81
6.13. A multilevel indexing structure (path tree) ... 85
6.14. Complex similarity computations ... 89
6.15. The Graphity activity stream model ... 90
6.16. User roles in graphs .. 92

7. Languages .. 96
7.1. How to use the REST API from Java ... 97

16

Chapter 3. Introduction to Cypher

This friendly guide will introduce you to Cypher, Neo4j’s query language.

The guide will help you:

• start thinking about graphs and patterns,
• apply this knowledge to simple problems,
• learn how to write Cypher statements,
• use Cypher for loading data,
• transition from SQL to Cypher.

If you want to keep a reference at your side while reading, please see the Cypher Refcard1.

Work in Progress
There may still be unfinished parts in this chapter. Please comment on it so we can make it
suit our readers better!

1 http://neo4j.com/docs/2.3.0/cypher-refcard/

http://neo4j.com/docs/2.3.0/cypher-refcard/
http://neo4j.com/docs/2.3.0/cypher-refcard/

Introduction to Cypher

17

3.1. Background and Motivation
Cypher provides a convenient way to express queries and other Neo4j actions. Although Cypher
is particularly useful for exploratory work, it is fast enough to be used in production. Java-based
approaches (eg, unmanaged extensions) can also be used to handle particularly demanding use cases.

Query processing
To use Cypher effectively, it’s useful to have an idea of how it works. So, let’s take a high-level look at the
way Cypher processes queries.

• Parse and validate the query.
• Generate the execution plan.
• Locate the initial node(s).
• Select and traverse relationships.
• Change and/or return values.

Preparation
Parsing and validating the Cypher statement(s) is important, but mundane. However, generating an
optimal search strategy can be far more challenging.

The execution plan must tell the database how to locate initial node(s), select relationships for traversal,
etc. This involves tricky optimization problems (eg, which actions should happen first), but we can safely
leave the details to the Neo4j engineers. So, let’s move on to locating the initial node(s).

Locate the initial node(s)
Neo4j is highly optimized for traversing property graphs. Under ideal circumstances, it can traverse
millions of nodes and relationships per second, following chains of pointers in the computer’s memory.

However, before traversal can begin, Neo4j must know one or more starting nodes. Unless the user (or,
more likely, a client program) can provide this information, Neo4j will have to search for these nodes.

A “brute force” search of the database (eg, for a specified property value) can be very time consuming.
Every node must be examined, first to see if it has the property, then to see if the value meets the
desired criteria. To avoid this effort, Neo4j creates and uses indexes. So, Neo4j uses a separate index
for each label/property combination.

Traversal and actions
Once the initial nodes are determined, Neo4j can traverse portions of the graph and perform any
requested actions. The execution plan helps Neo4j to determine which nodes are relevant, which
relationships to traverse, etc.

Introduction to Cypher

18

3.2. Graphs, Patterns, and Cypher
Nodes, Relationships, and Patterns
Neo4j’s Property Graphs are composed of nodes and relationships, either of which may have properties
(ie, attributes). Nodes represent entities (eg, concepts, events, places, things); relationships (which may
be directed) connect pairs of nodes.

However, nodes and relationships are simply low-level building blocks. The real strength of the Property
Graph lies in its ability to encode patterns of connected nodes and relationships. A single node or
relationship typically encodes very little information, but a pattern of nodes and relationships can
encode arbitrarily complex ideas.

Cypher, Neo4j’s query language, is strongly based on patterns. Specifically, patterns are used to match
desired graph structures. Once a matching structure has been found (or created), Neo4j can use it for
further processing.

Simple and Complex Patterns
A simple pattern, which has only a single relationship, connects a pair of nodes (or, occasionally, a node
to itself). For example, a Person LIVES_IN a City or a City is PART_OF a Country.

Complex patterns, using multiple relationships, can express arbitrarily complex concepts and support
a variety of interesting use cases. For example, we might want to match instances where a Person
LIVES_IN a Country. The following Cypher code combines two simple patterns into a (mildly) complex
pattern which performs this match:

(:Person) -[:LIVES_IN]-> (:City) -[:PART_OF]-> (:Country)

Pattern recognition is fundamental to the way that the brain works. Consequently, humans are very
good at working with patterns. When patterns are presented visually (eg, in a diagram or map), humans
can use them to recognize, specify, and understand concepts. As a pattern-based language, Cypher
takes advantage of this capability.

Cypher Concepts
Like SQL2 (used in relational databases3), Cypher is a textual, declarative query language. It uses a form
of ASCII art4 to represent graph-related patterns. SQL-like clauses and keywords (eg, MATCH, WHERE, DELETE)
are used to combine these patterns and specify desired actions.

This combination tells Neo4j which patterns to match and what to do with the matching items (eg,
nodes, relationships, paths, collections). However, as a declarative5 language, Cypher does not tell
Neo4j how to find nodes, traverse relationships, etc. (This level of control is available from Neo4j’s Java6

APIs7, see Section 32.2, “Unmanaged Extensions” [565])

Diagrams made up of icons and arrows are commonly used to visualize graphs; textual annotations
provide labels, define properties, etc. Cypher’s ASCII-art syntax formalizes this approach, while adapting
it to the limitations of text.

Node Syntax
Cypher uses a pair of parentheses (usually containing a text string) to represent a node, eg: (), (foo).
This is reminiscent of a circle or a rectangle with rounded end caps. Here are some ASCII-art encodings
for example Neo4j nodes, providing varying types and amounts of detail:

()

2 https://en.wikipedia.org/wiki/SQL
3 https://en.wikipedia.org/wiki/Relational_database_management_system
4 https://en.wikipedia.org/wiki/ASCII_art
5 https://en.wikipedia.org/wiki/Declarative_programming
6 https://en.wikipedia.org/wiki/Java_(programming_language)
7 https://en.wikipedia.org/wiki/Application_programming_interface

https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/ASCII_art
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/ASCII_art
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Application_programming_interface

Introduction to Cypher

19

(matrix)

(:Movie)

(matrix:Movie)

(matrix:Movie {title: "The Matrix"})

(matrix:Movie {title: "The Matrix", released: 1997})

The simplest form, (), represents an anonymous, uncharacterized node. If we want to refer to the
node elsewhere, we can add an identifier, eg: (matrix). Identifiers are restricted (ie, scoped) to a single
statement: an identifier may have different (or no) meaning in another statement.

The Movie label (prefixed in use with a colon) declares the node’s type. This restricts the pattern, keeping
it from matching (say) a structure with an Actor node in this position. Neo4j’s node indexes also use
labels: each index is specific to the combination of a label and a property.

The node’s properties (eg, title) are represented as a list of key/value pairs, enclosed within a pair of
braces, eg: {...}. Properties can be used to store information and/or restrict patterns. For example, we
could match nodes whose title is "The Matrix".

Relationship Syntax
Cypher uses a pair of dashes (--) to represent an undirected relationship. Directed relationships have
an arrowhead at one end (eg, <--, -->). Bracketed expressions (eg: [...]) can be used to add details.
This may include identifiers, properties, and/or type information, eg:

-->

-[role]->

-[:ACTED_IN]->

-[role:ACTED_IN]->

-[role:ACTED_IN {roles: ["Neo"]}]->

The syntax and semantics found within a relationship’s bracket pair are very similar to those used
between a node’s parentheses. An identifier (eg, role) can be defined, to be used elsewhere in the
statement. The relationship’s type (eg, ACTED_IN) is analogous to the node’s label. The properties (eg,
roles) are entirely equivalent to node properties. (Note that the value of a property may be an array.)

Pattern Syntax
Combining the syntax for nodes and relationships, we can express patterns. The following could be a
simple pattern (or fact) in this domain:

(keanu:Person:Actor {name: "Keanu Reeves"})

-[role:ACTED_IN {roles: ["Neo"] }]->

(matrix:Movie {title: "The Matrix"})

Like with node labels, the relationship type ACTED_IN is added as a symbol, prefixed with a colon:
:ACTED_IN. Identifiers (eg, role) can be used elsewhere in the statement to refer to the relationship.
Node and relationship properties use the same notation. In this case, we used an array property for the
roles, allowing multiple roles to be specified.

Pattern Nodes vs. Database Nodes
When a node is used in a pattern, it describes zero or more nodes in the database. Similarly,
each pattern describes zero or more paths of nodes and relationships.

Pattern Identifiers
To increase modularity and reduce repetition, Cypher allows patterns to be assigned to identifiers. This
allow the matching paths to be inspected, used in other expressions, etc.

acted_in = (:Person)-[:ACTED_IN]->(:Movie)

The acted_in variable would contain two nodes and the connecting relationship for each path that was
found or created. There are a number of functions to access details of a path, including nodes(path),
rels(path) (same as relationships(path)), and length(path).

Introduction to Cypher

20

Clauses
Cypher statements typically have multiple clauses, each of which performs a specific task, eg:

• create and match patterns in the graph
• filter, project, sort, or paginate results
• connect/compose partial statements

By combining Cypher clauses, we can compose more complex statements that express what we want
to know or create. Neo4j then figures out how to achieve the desired goal in an efficient manner.

Introduction to Cypher

21

3.3. Patterns in Practice
Creating Data
We’ll start by looking into the clauses that allow us to create data.

To add data, we just use the patterns we already know. By providing patterns we can specify what
graph structures, labels and properties we would like to make part of our graph.

Obviously the simplest clause is called CREATE. It will just go ahead and directly create the patterns that
you specify.

For the patterns we’ve looked at so far this could look like the following:

CREATE (:Movie { title:"The Matrix",released:1997 })

If we execute this statement, Cypher returns the number of changes, in this case adding 1 node, 1 label
and 2 properties.

(empty result)

Nodes created: 1
Properties set: 2
Labels added: 1

As we started out with an empty database, we now have a database with a single node in it:

Movie

t it le = 'The Matrix '
released = 1997

If case we also want to return the created data we can add a RETURN clause, which refers to the identifier
we’ve assigned to our pattern elements.

CREATE (p:Person { name:"Keanu Reeves", born:1964 })

RETURN p

This is what gets returned:

p

Node[1]{name:"Keanu Reeves", born:1964}

1 row
Nodes created: 1
Properties set: 2
Labels added: 1

If we want to create more than one element, we can separate the elements with commas or use
multiple CREATE statements.

We can of course also create more complex structures, like an ACTED_IN relationship with information
about the character, or DIRECTED ones for the director.

CREATE (a:Person { name:"Tom Hanks",

 born:1956 })-[r:ACTED_IN { roles: ["Forrest"]}]->(m:Movie { title:"Forrest Gump",released:1994 })

CREATE (d:Person { name:"Robert Zemeckis", born:1951 })-[:DIRECTED]->(m)

RETURN a,d,r,m

This is the part of the graph we just updated:

Introduction to Cypher

22

Person

nam e = 'Tom Hanks'
born = 1956

Movie

t it le = 'Forrest Gum p'
released = 1994

ACTED_IN
roles = ['Forrest ']

Person

nam e = 'Robert Zem eckis'
born = 1951

DIRECTED

In most cases, we want to connect new data to existing structures. This requires that we know how to
find existing patterns in our graph data, which we will look at next.

Matching Patterns
Matching patterns is a task for the MATCH statement. We pass the same kind of patterns we’ve used so
far to MATCH to describe what we’re looking for. It is similar to query by example, only that our examples
also include the structures.

Note
A MATCH statement will search for the patterns we specify and return one row per successful
pattern match.

To find the data we’ve created so far, we can start looking for all nodes labeled with the Movie label.

MATCH (m:Movie)

RETURN m

Here’s the result:

Movie

t it le = 'The Matrix '
released = 1997

Movie

t it le = 'Forrest Gum p'
released = 1994

This should show both The Matrix and Forrest Gump.

We can also look for a specific person, like Keanu Reeves.

MATCH (p:Person { name:"Keanu Reeves" })

RETURN p

This query returns the matching node:

Person

nam e = 'Keanu Reeves'
born = 1964

Note that we only provide enough information to find the nodes, not all properties are required. In
most cases you have key-properties like SSN, ISBN, emails, logins, geolocation or product codes to look
for.

We can also find more interesting connections, like for instance the movies titles that Tom Hanks acted
in and the roles he played.

MATCH (p:Person { name:"Tom Hanks" })-[r:ACTED_IN]->(m:Movie)

Introduction to Cypher

23

RETURN m.title, r.roles

m.title r.roles

"Forrest Gump" ["Forrest"]

1 row

In this case we only returned the properties of the nodes and relationships that we were interested in.
You can access them everywhere via a dot notation identifer.property.

Of course this only lists his role as Forrest in Forrest Gump because that’s all data that we’ve added.

Now we know enough to connect new nodes to existing ones and can combine MATCH and CREATE to
attach structures to the graph.

Attaching Structures
To extend the graph with new information, we first match the existing connection points and then
attach the newly created nodes to them with relationships. Adding Cloud Atlas as a new movie for Tom
Hanks could be achieved like this:

MATCH (p:Person { name:"Tom Hanks" })

CREATE (m:Movie { title:"Cloud Atlas",released:2012 })

CREATE (p)-[r:ACTED_IN { roles: ['Zachry']}]->(m)

RETURN p,r,m

Here’s what the structure looks like in the database:

Person

nam e = 'Tom Hanks'
born = 1956

Movie

t it le = 'Cloud At las'
released = 2012

ACTED_IN
roles = ['Zachry']

Tip
It is important to remember that we can assign identifiers to both nodes and relationships
and use them later on, no matter if they were created or matched.

It is possible to attach both node and relationship in a single CREATE clause. For readability it helps to
split them up though.

Important
A tricky aspect of the combination of MATCH and CREATE is that we get one row per matched
pattern. This causes subsequent CREATE statements to be executed once for each row. In
many cases this is what you want. If that’s not intended, please move the CREATE statement
before the MATCH, or change the cardinality of the query with means discussed later or use
the get or create semantics of the next clause: MERGE.

Completing Patterns
Whenever we get data from external systems or are not sure if certain information already exists in
the graph, we want to be able to express a repeatable (idempotent) update operation. In Cypher MERGE

Introduction to Cypher

24

has this function. It acts like a combination of MATCH or CREATE, which checks for the existence of data
first before creating it. With MERGE you define a pattern to be found or created. Usually, as with MATCH
you only want to include the key property to look for in your core pattern. MERGE allows you to provide
additional properties you want to set ON CREATE.

If we wouldn’t know if our graph already contained Cloud Atlas we could merge it in again.

MERGE (m:Movie { title:"Cloud Atlas" })

ON CREATE SET m.released = 2012

RETURN m

m

Node[5]{title:"Cloud Atlas", released:2012}

1 row

We get a result in any both cases: either the data (potentially more than one row) that was already in
the graph or a single, newly created Movie node.

Note
A MERGE clause without any previously assigned identifiers in it either matches the full pattern
or creates the full pattern. It never produces a partial mix of matching and creating within a
pattern. To achieve a partial match/create, make sure to use already defined identifiers for
the parts that shouldn’t be affected.

So foremost MERGE makes sure that you can’t create duplicate information or structures, but it comes
with the cost of needing to check for existing matches first. Especially on large graphs it can be costly
to scan a large set of labeled nodes for a certain property. You can alleviate some of that by creating
supporting indexes or constraints, which we’ll discuss later. But it’s still not for free, so whenever you’re
sure to not create duplicate data use CREATE over MERGE.

Tip
MERGE can also assert that a relationship is only created once. For that to work you have to
pass in both nodes from a previous pattern match.

MATCH (m:Movie { title:"Cloud Atlas" })

MATCH (p:Person { name:"Tom Hanks" })

MERGE (p)-[r:ACTED_IN]->(m)

ON CREATE SET r.roles =['Zachry']

RETURN p,r,m

Person

nam e = 'Tom Hanks'
born = 1956

Movie

t it le = 'Cloud At las'
released = 2012

ACTED_IN
roles = ['Zachry']

In case the direction of a relationship is arbitrary, you can leave off the arrowhead. MERGE will then
check for the relationship in either direction, and create a new directed relationship if no matching
relationship was found.

Introduction to Cypher

25

If you choose to pass in only one node from a preceding clause, MERGE offers an interesting functionality.
It will then only match within the direct neighborhood of the provided node for the given pattern, and,
if not found create it. This can come in very handy for creating for example tree structures.

CREATE (y:Year { year:2014 })

MERGE (y)<-[:IN_YEAR]-(m10:Month { month:10 })

MERGE (y)<-[:IN_YEAR]-(m11:Month { month:11 })

RETURN y,m10,m11

This is the graph structure that gets created:

Year

year = 2014

Month

m onth = 11

IN_YEAR

Month

m onth = 10

IN_YEAR

Here there is no global search for the two Month nodes; they are only searched for in the context of the
2014 Year node.

Introduction to Cypher

26

3.4. Getting the Results You Want
Let’s first get some data in to retrieve results from:

CREATE (matrix:Movie { title:"The Matrix",released:1997 })

CREATE (cloudAtlas:Movie { title:"Cloud Atlas",released:2012 })

CREATE (forrestGump:Movie { title:"Forrest Gump",released:1994 })

CREATE (keanu:Person { name:"Keanu Reeves", born:1964 })

CREATE (robert:Person { name:"Robert Zemeckis", born:1951 })

CREATE (tom:Person { name:"Tom Hanks", born:1956 })

CREATE (tom)-[:ACTED_IN { roles: ["Forrest"]}]->(forrestGump)

CREATE (tom)-[:ACTED_IN { roles: ['Zachry']}]->(cloudAtlas)

CREATE (robert)-[:DIRECTED]->(forrestGump)

This is the data we will start out with:

Movie

t it le = 'The Matrix '
released = 1997

Movie

t it le = 'Cloud At las'
released = 2012

Movie

t it le = 'Forrest Gum p'
released = 1994

Person

nam e = 'Keanu Reeves'
born = 1964

Person

nam e = 'Robert Zem eckis'
born = 1951

DIRECTED

Person

nam e = 'Tom Hanks'
born = 1956

ACTED_IN
roles = ['Zachry']

ACTED_IN
roles = ['Forrest ']

Filtering Results
So far we’ve matched patterns in the graph and always returned all results we found. Quite often there
are conditions in play for what we want to see. Similar to in SQL those filter conditions are expressed
in a WHERE clause. This clause allows to use any number of boolean expressions (predicates) combined
with AND, OR, XOR and NOT. The simplest predicates are comparisons, especially equality.

MATCH (m:Movie)

WHERE m.title = "The Matrix"

RETURN m

m

Node[0]{title:"The Matrix", released:1997}

1 row

For equality on one or more properties, a more compact syntax can be used as well:

MATCH (m:Movie { title: "The Matrix" })

RETURN m

Other options are numeric comparisons, matching regular expressions and checking the existence of
values within a collection.

The WHERE clause below includes a regular expression match, a greater than comparison and a test to
see if a value exists in a collection.

MATCH (p:Person)-[r:ACTED_IN]->(m:Movie)

WHERE p.name =~ "K.+" OR m.released > 2000 OR "Neo" IN r.roles

RETURN p,r,m

p r m

Node[5]{name:"Tom Hanks",

 born:1956}

:ACTED_IN[1]{roles:["Zachry"]} Node[1]{title:"Cloud Atlas",

 released:2012}

1 row

Introduction to Cypher

27

One aspect that might be a little surprising is that you can even use patterns as predicates. Where MATCH
expands the number and shape of patterns matched, a pattern predicate restricts the current result
set. It only allows the paths to pass that satisfy the additional patterns as well (or NOT).

MATCH (p:Person)-[:ACTED_IN]->(m)

WHERE NOT (p)-[:DIRECTED]->()

RETURN p,m

p m

Node[5]{name:"Tom Hanks", born:1956} Node[1]{title:"Cloud Atlas", released:2012}

Node[5]{name:"Tom Hanks", born:1956} Node[2]{title:"Forrest Gump", released:1994}

2 rows

Here we find actors, because they sport an ACTED_IN relationship but then skip those that ever DIRECTED
any movie.

There are also more advanced ways of filtering like collection-predicates which we will look at later on.

Returning Results
So far we’ve returned only nodes, relationships, or paths directly via their identifiers. But the RETURN
clause can actually return any number of expressions. But what are actually expressions in Cypher?

The simplest expressions are literal values like numbers, strings and arrays as [1,2,3], and maps like
{name:"Tom Hanks", born:1964, movies:["Forrest Gump", ...], count:13}. You can access individual
properties of any node, relationship, or map with a dot-syntax like n.name. Individual elements or slices
of arrays can be retrieved with subscripts like names[0] or movies[1..-1]. Each function evaluation
like length(array), toInt("12"), substring("2014-07-01",0,4), or coalesce(p.nickname,"n/a") is also an
expression.

Predicates that you’d use in WHERE count as boolean expressions.

Of course simpler expressions can be composed and concatenated to form more complex expressions.

By default the expression itself will be used as label for the column, in many cases you want to alias
that with a more understandable name using expression AS alias. You can later on refer to that column
using its alias.

MATCH (p:Person)

RETURN p, p.name AS name, upper(p.name), coalesce(p.nickname,"n/a") AS nickname, { name: p.name,

 label:head(labels(p))} AS person

p name upper(p.name) nickname person

Node[3]{name:"Keanu

Reeves", born:1964}

"Keanu Reeves" "KEANU REEVES" "n/a" {name -> "Keanu

Reeves", label ->

"Person"}

Node[4]

{name:"Robert

Zemeckis",

 born:1951}

"Robert Zemeckis" "ROBERT ZEMECKIS" "n/a" {name -> "Robert

Zemeckis", label ->

"Person"}

Node[5]{name:"Tom

Hanks", born:1956}

"Tom Hanks" "TOM HANKS" "n/a" {name -> "Tom

Hanks", label ->

"Person"}

3 rows

If you’re interested in unique results you can use the DISTINCT keyword after RETURN to indicate that.

Aggregating Information
In many cases you want to aggregate or group the data that you encounter while traversing patterns
in your graph. In Cypher aggregation happens in the RETURN clause while computing your final results.

Introduction to Cypher

28

Many common aggregation functions are supported, e.g. count, sum, avg, min, and max, but there are
several more.

Counting the number of people in your database could be achieved by this:

MATCH (:Person)

RETURN count(*) AS people

people

3

1 row

Please note that NULL values are skipped during aggregation. For aggregating only unique values use
DISTINCT, like in count(DISTINCT role).

Aggregation in Cypher just works. You specify which result columns you want to aggregate and Cypher
will use all non-aggregated columns as grouping keys.

Aggregation affects which data is still visible in ordering or later query parts.

To find out how often an actor and director worked together, you’d run this statement:

MATCH (actor:Person)-[:ACTED_IN]->(movie:Movie)<-[:DIRECTED]-(director:Person)

RETURN actor,director,count(*) AS collaborations

actor director collaborations

Node[5]{name:"Tom Hanks",

 born:1956}

Node[4]{name:"Robert Zemeckis",

 born:1951}

1

1 row

Frequently you want to sort and paginate after aggregating a count(x).

Ordering and Pagination
Ordering works like in other query languages, with an ORDER BY expression [ASC|DESC] clause. The
expression can be any expression discussed before as long as it is computable from the returned
information.

So for instance if you return person.name you can still ORDER BY person.age as both are accessible from
the person reference. You cannot order by things that you can’t infer from the information you return.
This is especially important with aggregation and DISTINCT return values as both remove the visibility of
data that is aggregated.

Pagination is a straightforward use of SKIP {offset} LIMIT {count}.

A common pattern is to aggregate for a count (score or frequency), order by it and only return the top-n
entries.

For instance to find the most prolific actors you could do:

MATCH (a:Person)-[:ACTED_IN]->(m:Movie)

RETURN a,count(*) AS appearances

ORDER BY appearances DESC LIMIT 10;

a appearances

Node[5]{name:"Tom Hanks", born:1956} 2

1 row

Collecting Aggregation
The most helpful aggregation function is collect, which, as the name says, collects all aggregated
values into a real array or list. This comes very handy in many situations as you don’t loose the detail
information while aggregating.

Introduction to Cypher

29

Collect is well suited for retrieving the typical parent-child structures, where one core entity (parent,
root or head) is returned per row with all it’s dependent information in associated collections created
with collect. This means there’s no need to repeat the parent information per each child-row or even
running 1+n statements to retrieve the parent and its children individually.

To retrieve the cast of each movie in our database you could use this statement:

MATCH (m:Movie)<-[:ACTED_IN]-(a:Person)

RETURN m.title AS movie, collect(a.name) AS cast, count(*) AS actors

movie cast actors

"Forrest Gump" ["Tom Hanks"] 1

"Cloud Atlas" ["Tom Hanks"] 1

2 rows

The lists created by collect can either be used from the client consuming the Cypher results or directly
within a statement with any of the collection functions or predicates.

Introduction to Cypher

30

3.5. How to Compose Large Statements
Let’s first get some data in to retrieve results from:

CREATE (matrix:Movie { title:"The Matrix",released:1997 })

CREATE (cloudAtlas:Movie { title:"Cloud Atlas",released:2012 })

CREATE (forrestGump:Movie { title:"Forrest Gump",released:1994 })

CREATE (keanu:Person { name:"Keanu Reeves", born:1964 })

CREATE (robert:Person { name:"Robert Zemeckis", born:1951 })

CREATE (tom:Person { name:"Tom Hanks", born:1956 })

CREATE (tom)-[:ACTED_IN { roles: ["Forrest"]}]->(forrestGump)

CREATE (tom)-[:ACTED_IN { roles: ['Zachry']}]->(cloudAtlas)

CREATE (robert)-[:DIRECTED]->(forrestGump)

Combine statements with UNION
A Cypher statement is usually quite compact. Expressing references between nodes as visual patterns
makes them easy to understand.

If you want to combine the results of two statements that have the same result structure, you can use
UNION [ALL].

For instance if you want to list both actors and directors without using the alternative relationship-type
syntax ()-[:ACTED_IN|:DIRECTED]->() you can do this:

MATCH (actor:Person)-[r:ACTED_IN]->(movie:Movie)

RETURN actor.name AS name, type(r) AS acted_in, movie.title AS title

UNION

MATCH (director:Person)-[r:DIRECTED]->(movie:Movie)

RETURN director.name AS name, type(r) AS acted_in, movie.title AS title

name acted_in title

"Tom Hanks" "ACTED_IN" "Cloud Atlas"

"Tom Hanks" "ACTED_IN" "Forrest Gump"

"Robert Zemeckis" "DIRECTED" "Forrest Gump"

3 rows

Use WITH to Chain Statements
In Cypher it’s possible to chain fragments of statements together, much like you would do within a
data-flow pipeline. Each fragment works on the output from the previous one and its results can feed
into the next one.

You use the WITH clause to combine the individual parts and declare which data flows from one to the
other. WITH is very much like RETURN with the difference that it doesn’t finish a query but prepares the
input for the next part. You can use the same expressions, aggregations, ordering and pagination as in
the RETURN clause.

The only difference is that you must alias all columns as they would otherwise not be accessible. Only
columns that you declare in your WITH clause is available in subsequent query parts.

See below for an example where we collect the movies someone appeared in, and then filter out those
which appear in only one movie.

MATCH (person:Person)-[:ACTED_IN]->(m:Movie)

WITH person, count(*) AS appearances, collect(m.title) AS movies

WHERE appearances > 1

RETURN person.name, appearances, movies

person.name appearances movies

"Tom Hanks" 2 ["Cloud Atlas", "Forrest Gump"]

1 row

Introduction to Cypher

31

Tip
If you want to filter by an aggregated value in SQL or similar languages you would have to
use HAVING. That’s a single purpose clause for filtering aggregated information. In Cypher,
WHERE can be used in both cases.

Introduction to Cypher

32

3.6. Labels, Constraints and Indexes
Labels are a convenient way to group nodes together. They are used to restrict queries, define
constraints and create indexes.

Using Constraints
You can also specify unique constraints that guarantee uniqueness of a certain property on nodes with
a specific label.

These constraints are also used by the MERGE clause to make certain that a node only exists once.

The following will give an example of how to use labels and add constraints and indexes to them. Let’s
start out adding a constraint — in this case we decided that all Movie node titles should be unique.

CREATE CONSTRAINT ON (movie:Movie) ASSERT movie.title IS UNIQUE

Note that adding the unique constraint will add an index on that property, so we won’t do that
separately. If we drop a constraint, and still want an index on the same property, we have to create such
an index.

Constraints can be added after a label is already in use, but that requires that the existing data
complies with the constraints.

Using indexes
For a graph query to run fast, you don’t need indexes, you only need them to find your starting points.
The main reason for using indexes in a graph database is to find the starting points in the graph as fast
as possible. After the initial index seek you rely on in-graph structures and the first class citizenship of
relationships in the graph database to achieve high performance.

In this case we want an index to speed up finding actors by name in the database:

CREATE INDEX ON :Actor(name)

Indexes can be added at any time. Note that it will take some time for an index to come online when
there’s existing data.

Now, let’s add some data.

CREATE (actor:Actor { name:"Tom Hanks" }),(movie:Movie { title:'Sleepless IN Seattle' }),

 (actor)-[:ACTED_IN]->(movie);

Normally you don’t specify indexes when querying for data. They will be used automatically. This means
we can simply look up the Tom Hanks node, and the index will kick in behind the scenes to boost
performance.

MATCH (actor:Actor { name: "Tom Hanks" })

RETURN actor;

Labels
Now let’s say we want to add another label for a node. Here’s how to do that:

MATCH (actor:Actor { name: "Tom Hanks" })

SET actor :American;

To remove a label from nodes, this is what to do:

MATCH (actor:Actor { name: "Tom Hanks" })

REMOVE actor:American;

Related Content
For more information on labels and related topics, see:

Introduction to Cypher

33

• the section called “Labels” [7]
• Chapter 14, Schema [243]
• Section 14.2, “Constraints” [247]
• Section 14.1, “Indexes” [244]
• Section 10.8, “Using” [152]
• Section 12.3, “Set” [200]
• Section 12.5, “Remove” [205]

Introduction to Cypher

34

3.7. Loading Data
As you’ve seen you can not only query data expressively but also create data with Cypher statements.

Naturally in most cases you wouldn’t want to write or generate huge statements to generate your data
but instead use an existing data source that you pass into your statement and which is used to drive
the graph generation process.

That process not only includes creating completely new data but also integrating with existing
structures and updating your graph.

Parameters
In general we recommend passing in varying literal values from the outside as named parameters. This
allows Cypher to reuse existing execution plans for the statements.

Of course you can also pass in parameters for data to be imported. Those can be scalar values, maps,
lists or even lists of maps.

In your Cypher statement you can then iterate over those values (e.g. with UNWIND) to create your graph
structures.

For instance to create a movie graph from JSON data structures pulled from an API you could use:

{

 "movies" : [{

 "title" : "Stardust",

 "released" : 2007,

 "cast" : [{

 "actor" : {

 "name" : "Robert de Niro",

 "born" : 1943

 },

 "characters" : ["Captain Shakespeare"]

 }, {

 "actor" : {

 "name" : "Michelle Pfeiffer",

 "born" : 1958

 },

 "characters" : ["Lamia"]

 }]

 }]

}

UNWIND {movies} as movie

MERGE (m:Movie {title:movie.title}) ON CREATE SET m.released = movie.released

FOREACH (role IN movie.cast |

 MERGE (a:Person {name:role.actor.name}) ON CREATE SET a.born = role.actor.born

 MERGE (a)-[:ACTED_IN {roles:role.characters}]->(m)

)

Importing CSV
Cypher provides an elegant built-in way to import tabular CSV data into graph structures.

The LOAD CSV clause parses a local or remote file into a stream of rows which represent maps (with
headers) or lists. Then you can use whatever Cypher operations you want to apply to either create
nodes or relationships or to merge with existing graph structures.

As CSV files usually represent either node- or relationship-lists, you run multiple passes to create nodes
and relationships separately.

movies.csv

id,title,country,year

Introduction to Cypher

35

1,Wall Street,USA,1987

2,The American President,USA,1995

3,The Shawshank Redemption,USA,1994

LOAD CSV WITH HEADERS FROM "http://neo4j.com/docs/2.3.0/csv/intro/movies.csv" AS line

CREATE (m:Movie { id:line.id,title:line.title, released:toInt(line.year)});

persons.csv

id,name

1,Charlie Sheen

2,Oliver Stone

3,Michael Douglas

4,Martin Sheen

5,Morgan Freeman

LOAD CSV WITH HEADERS FROM "http://neo4j.com/docs/2.3.0/csv/intro/persons.csv" AS line

MERGE (a:Person { id:line.id })

ON CREATE SET a.name=line.name;

roles.csv

personId,movieId,role

1,1,Bud Fox

4,1,Carl Fox

3,1,Gordon Gekko

4,2,A.J. MacInerney

3,2,President Andrew Shepherd

5,3,Ellis Boyd 'Red' Redding

LOAD CSV WITH HEADERS FROM "http://neo4j.com/docs/2.3.0/csv/intro/roles.csv" AS line

MATCH (m:Movie { id:line.movieId })

MATCH (a:Person { id:line.personId })

CREATE (a)-[:ACTED_IN { roles: [line.role]}]->(m);

Movie

id = '1'
t it le = 'Wall St reet '
released = 1987

Movie

released = 1995
id = '2'
t it le = 'The Am erican President '

Movie

released = 1994
id = '3'
t it le = 'The Shawshank Redem pt ion'

Person

id = '1'
nam e = 'Charlie Sheen'

ACTED_IN
roles = ['Bud Fox']

Person

id = '2'
nam e = 'Oliver Stone'

Person

id = '3'
nam e = 'Michael Douglas'

ACTED_IN
roles = ['Gordon Gekko']

ACTED_IN
roles = ['President Andrew Shepherd']

Person

id = '4'
nam e = 'Mart in Sheen'

ACTED_IN
roles = ['Carl Fox']

ACTED_IN
roles = ['A.J. MacInerney']

Person

id = '5'
nam e = 'Morgan Freem an'

ACTED_IN
roles = ['Ellis Boyd \\'Red\\' Redding']

If your file contains denormalized data, you can either run the same file with multiple passes and
simple operations as shown above or you might have to use MERGE to create entities uniquely.

For our use-case we can import the data using a CSV structure like this:

movie_actor_roles.csv

title;released;actor;born;characters

Back to the Future;1985;Michael J. Fox;1961;Marty McFly

Back to the Future;1985;Christopher Lloyd;1938;Dr. Emmet Brown

LOAD CSV WITH HEADERS FROM "http://neo4j.com/docs/2.3.0/csv/intro/movie_actor_roles.csv" AS line

 FIELDTERMINATOR ";"

MERGE (m:Movie { title:line.title })

ON CREATE SET m.released = toInt(line.released)

MERGE (a:Person { name:line.actor })

ON CREATE SET a.born = toInt(line.born)

MERGE (a)-[:ACTED_IN { roles:split(line.characters,",")}]->(m)

Introduction to Cypher

36

Movie

id = '1'
t it le = 'Wall St reet '
released = 1987

Movie

released = 1995
id = '2'
t it le = 'The Am erican President '

Movie

released = 1994
id = '3'
t it le = 'The Shawshank Redem pt ion'

Person

id = '1'
nam e = 'Charlie Sheen'

ACTED_IN
roles = ['Bud Fox']

Person

id = '2'
nam e = 'Oliver Stone'

Person

id = '3'
nam e = 'Michael Douglas'

ACTED_IN
roles = ['Gordon Gekko']

ACTED_IN
roles = ['President Andrew Shepherd']

Person

id = '4'
nam e = 'Mart in Sheen'

ACTED_IN
roles = ['Carl Fox']

ACTED_IN
roles = ['A.J. MacInerney']

Person

id = '5'
nam e = 'Morgan Freem an'

ACTED_IN
roles = ['Ellis Boyd \\'Red\\' Redding']

Movie

t it le = 'Back to the Future'
released = 1985

Person

nam e = 'Michael J. Fox'
born = 1961

ACTED_IN
roles = ['Marty McFly']

Person

nam e = 'Christopher Lloyd'
born = 1938

ACTED_IN
roles = ['Dr. Em m et Brown']

If you import a large amount of data (more than 10000 rows), it is recommended to prefix your LOAD
CSV clause with a PERIODIC COMMIT hint. This allows Neo4j to regularly commit the import transactions to
avoid memory churn for large transaction-states.

Introduction to Cypher

37

3.8. Utilizing Data Structures
Cypher can create and consume more complex data structures out of the box. As already mentioned
you can create literal lists ([1,2,3]) and maps ({name: value}) within a statement.

There are a number of functions that work with lists. They range from simple ones like size(list) that
returns the size of a list to reduce, which runs an expression against the elements and accumulates the
results.

Let’s first load a bit of data into the graph. If you want more details on how the data is loaded, see the
section called “Importing CSV” [34].

LOAD CSV WITH HEADERS FROM "http://neo4j.com/docs/2.3.0/csv/intro/movies.csv" AS line

CREATE (m:Movie { id:line.id,title:line.title, released:toInt(line.year)});

LOAD CSV WITH HEADERS FROM "http://neo4j.com/docs/2.3.0/csv/intro/persons.csv" AS line

MERGE (a:Person { id:line.id })

ON CREATE SET a.name=line.name;

LOAD CSV WITH HEADERS FROM "http://neo4j.com/docs/2.3.0/csv/intro/roles.csv" AS line

MATCH (m:Movie { id:line.movieId })

MATCH (a:Person { id:line.personId })

CREATE (a)-[:ACTED_IN { roles: [line.role]}]->(m);

LOAD CSV WITH HEADERS FROM "http://neo4j.com/docs/2.3.0/csv/intro/movie_actor_roles.csv" AS line

 FIELDTERMINATOR ";"

MERGE (m:Movie { title:line.title })

ON CREATE SET m.released = toInt(line.released)

MERGE (a:Person { name:line.actor })

ON CREATE SET a.born = toInt(line.born)

MERGE (a)-[:ACTED_IN { roles:split(line.characters,",")}]->(m)

Now, let’s try out data structures.

To begin with, collect the names of the actors per movie, and return two of them:

MATCH (movie:Movie)<-[:ACTED_IN]-(actor:Person)

RETURN movie.title AS movie, collect(actor.name)[0..2] AS two_of_cast

movie two_of_cast

"The American President" ["Michael Douglas", "Martin Sheen"]

"Back to the Future" ["Christopher Lloyd", "Michael J. Fox"]

"Wall Street" ["Michael Douglas", "Martin Sheen"]

"The Shawshank Redemption" ["Morgan Freeman"]

4 rows

You can also access individual elements or slices of a list quickly with list[1] or list[5..-5]. Other
functions to access parts of a list are head(list), tail(list) and last(list).

List Predicates
When using lists and arrays in comparisons you can use predicates like value IN list or any(x IN list
WHERE x = value). There are list predicates to satisfy conditions for all, any, none and single elements.

MATCH path =(:Person)-->(:Movie)<--(:Person)

WHERE ANY (n IN nodes(path) WHERE n.name = 'Michael Douglas')

RETURN extract(n IN nodes(path)| coalesce(n.name, n.title))

extract(n IN nodes(path coalesce(n.name, n.title))

["Martin Sheen", "Wall S et", "Michael Douglas"]

["Charlie Sheen", "Wall eet", "Michael Douglas"]

6 rows

Introduction to Cypher

38

extract(n IN nodes(path coalesce(n.name, n.title))

["Michael Douglas", "Wal treet", "Martin Sheen"]

["Michael Douglas", "Wal treet", "Charlie Sheen"]

["Martin Sheen", "The Am can President", "Michael Douglas"]

["Michael Douglas", "The erican President", "Martin Sheen"]

6 rows

List Processing
Oftentimes you want to process lists to filter, aggregate (reduce) or transform (extract) their values.
Those transformations can be done within Cypher or in the calling code. This kind of list-processing can
reduce the amount of data handled and returned, so it might make sense to do it within the Cypher
statement.

A simple, non-graph example would be:

WITH range(1,10) AS numbers

WITH extract(n IN numbers | n*n) AS squares

WITH filter(n IN squares WHERE n > 25) AS large_squares

RETURN reduce(a = 0, n IN large_squares | a + n) AS sum_large_squares

sum_large_squares

330

1 row

In a graph-query you can filter or aggregate collected values instead or work on array properties.

MATCH (m:Movie)<-[r:ACTED_IN]-(a:Person)

WITH m.title AS movie, collect({ name: a.name, roles: r.roles }) AS cast

RETURN movie, filter(actor IN cast WHERE actor.name STARTS WITH "M")

movie filter(actor IN cast WHERE actor.name STARTS
WITH "M")

"The American President" [{name -> "Michael Douglas", roles -> ["President

Andrew Shepherd"]}, {name -> "Martin Sheen", roles

-> ["A. J. MacInerney"]}]

"Back to the Future" [{name -> "Michael J. Fox", roles -> ["Marty

McFly"]}]

"Wall Street" [{name -> "Michael Douglas", roles -> ["Gordon

Gekko"]}, {name -> "Martin Sheen", roles -> ["Carl

Fox"]}]

"The Shawshank Redemption" [{name -> "Morgan Freeman", roles -> ["Ellis Boyd

'Red' Redding"]}]

4 rows

Unwind Lists
Sometimes you have collected information into a list, but want to use each element individually as a
row. For instance, you might want to further match patterns in the graph. Or you passed in a collection
of values but now want to create or match a node or relationship for each element. Then you can use
the UNWIND clause to unroll a list into a sequence of rows again.

For instance, a query to find the top 3 co-actors and then follow their movies and again list the cast for
each of those movies:

MATCH (actor:Person)-[:ACTED_IN]->(movie:Movie)<-[:ACTED_IN]-(colleague:Person)

WHERE actor.name < colleague.name

Introduction to Cypher

39

WITH actor, colleague, count(*) AS frequency, collect(movie) AS movies

ORDER BY frequency DESC LIMIT 3 UNWIND movies AS m

MATCH (m)<-[:ACTED_IN]-(a)

RETURN m.title AS movie, collect(a.name) AS cast

movie cast

"The American President" ["Michael Douglas", "Martin Sheen"]

"Back to the Future" ["Christopher Lloyd", "Michael J. Fox"]

"Wall Street" ["Michael Douglas", "Martin Sheen", "Charlie

Sheen", "Michael Douglas", "Martin Sheen", "Charlie

Sheen"]

3 rows

Introduction to Cypher

40

3.9. Cypher vs. SQL
If you have used SQL and want to learn Cypher, this chapter is for you! We won’t dig very deep into
either of the languages, but focus on bridging the gap.

Data Model
For our example, we will use data about persons who act in, direct, produce movies.

Here’s an entity-relationship model for the example:

Person

Movie

acted in directed produced

We have Person and Movie entities, which are related in three different ways, each of which have many-
to-many cardinality.

In a RDBMS we would use tables for the entities as well as for the associative entities (join tables)
needed. In this case we decided to go with the following tables: movie, person, acted_in, directed,
produced. You’ll find the SQL for this below.

In Neo4j, the basic data units are nodes and relationships. Both can have properties, which correspond
to attributes in a RDBMS.

Nodes can be grouped by putting labels on them. In the example, we will use the labels Movie and
Person.

When using Neo4j, related entities can be represented directly by using relationships. There’s no need
to deal with foreign keys to handle the relationships, the database will take care of such mechanics.
Also, the relationships always have full referential integrity. There’s no constraints to enable for this, as
it’s not optional; it’s really part of the underlying data model. Relationships always have a type, and we
will differentiate the different kinds of relationships by using the types ACTED_IN, DIRECTED, PRODUCED.

Sample Data
First off, let’s see how to set up our example data in a RDBMS. We’ll start out creating a few tables and
then go on to populate them.

CREATE TABLE movie (

 id INTEGER,

 title VARCHAR(100),

 released INTEGER,

 tagline VARCHAR(100)

);

CREATE TABLE person (

 id INTEGER,

 name VARCHAR(100),

 born INTEGER

);

CREATE TABLE acted_in (

 role varchar(100),

 person_id INTEGER,

 movie_id INTEGER

);

CREATE TABLE directed (

Introduction to Cypher

41

 person_id INTEGER,

 movie_id INTEGER

);

CREATE TABLE produced (

 person_id INTEGER,

 movie_id INTEGER

);

Populating with data:

INSERT INTO movie (id, title, released, tagline)

VALUES (

 (1, 'The Matrix', 1999, 'Welcome to the Real World'),

 (2, 'The Devil''s Advocate', 1997, 'Evil has its winning ways'),

 (3, 'Monster', 2003, 'The first female serial killer of America')

);

INSERT INTO person (id, name, born)

VALUES (

 (1, 'Keanu Reeves', 1964),

 (2, 'Carrie-Anne Moss', 1967),

 (3, 'Laurence Fishburne', 1961),

 (4, 'Hugo Weaving', 1960),

 (5, 'Andy Wachowski', 1967),

 (6, 'Lana Wachowski', 1965),

 (7, 'Joel Silver', 1952),

 (8, 'Charlize Theron', 1975),

 (9, 'Al Pacino', 1940),

 (10, 'Taylor Hackford', 1944)

);

INSERT INTO acted_in (role, person_id, movie_id)

VALUES (

 ('Neo', 1, 1),

 ('Trinity', 2, 1),

 ('Morpheus', 3, 1),

 ('Agent Smith', 4, 1),

 ('Kevin Lomax', 1, 2),

 ('Mary Ann Lomax', 8, 2),

 ('John Milton', 9, 2),

 ('Aileen', 8, 3)

);

INSERT INTO directed (person_id, movie_id)

VALUES (

 (5, 1),

 (6, 1),

 (10, 2)

);

INSERT INTO produced (person_id, movie_id)

VALUES (

 (7, 1),

 (8, 3)

);

Doing this in Neo4j will look quite different. To begin with, we won’t create any schema up front. We’ll
come back to schema later, for now it’s enough to know that labels can be used right away without
declaring them.

In the CREATE statements below, we tell Neo4j what data we want to have in the graph. Simply put, the
parentheses denote nodes, while the arrows (-->, or in our case with a relationship type included -
[:DIRECTED]->) denote relationships. For the nodes we set identifiers like TheMatrix so we can easily refer
to them later on in the statement. Note that the identifiers are scoped to the statement, and not visible
to other Cypher statements. We could use identifiers for the relationships as well, but there’s no need
for that in this case.

CREATE (TheMatrix:Movie { title:'The Matrix', released:1999, tagline:'Welcome to the Real World' })

Introduction to Cypher

42

CREATE (Keanu:Person { name:'Keanu Reeves', born:1964 })

CREATE (Carrie:Person { name:'Carrie-Anne Moss', born:1967 })

CREATE (Laurence:Person { name:'Laurence Fishburne', born:1961 })

CREATE (Hugo:Person { name:'Hugo Weaving', born:1960 })

CREATE (AndyW:Person { name:'Andy Wachowski', born:1967 })

CREATE (LanaW:Person { name:'Lana Wachowski', born:1965 })

CREATE (JoelS:Person { name:'Joel Silver', born:1952 })

CREATE (Keanu)-[:ACTED_IN { roles: ['Neo']}]->(TheMatrix),

 (Carrie)-[:ACTED_IN { roles: ['Trinity']}]->(TheMatrix),

 (Laurence)-[:ACTED_IN { roles: ['Morpheus']}]->(TheMatrix),

 (Hugo)-[:ACTED_IN { roles: ['Agent Smith']}]->(TheMatrix),(AndyW)-[:DIRECTED]->(TheMatrix),

 (LanaW)-[:DIRECTED]->(TheMatrix),(JoelS)-[:PRODUCED]->(TheMatrix)

CREATE (TheDevilsAdvocate:Movie { title:"The Devil's Advocate", released:1997,

 tagline: 'Evil has its winning ways' })

CREATE (Monster:Movie { title: 'Monster', released: 2003,

 tagline: 'The first female serial killer of America' })

CREATE (Charlize:Person { name:'Charlize Theron', born:1975 })

CREATE (Al:Person { name:'Al Pacino', born:1940 })

CREATE (Taylor:Person { name:'Taylor Hackford', born:1944 })

CREATE (Keanu)-[:ACTED_IN { roles: ['Kevin Lomax']}]->(TheDevilsAdvocate),

 (Charlize)-[:ACTED_IN { roles: ['Mary Ann Lomax']}]->(TheDevilsAdvocate),

 (Al)-[:ACTED_IN { roles: ['John Milton']}]->(TheDevilsAdvocate),

 (Taylor)-[:DIRECTED]->(TheDevilsAdvocate),(Charlize)-[:ACTED_IN { roles: ['Aileen']}]->(Monster),

 (Charlize)-[:PRODUCED { roles: ['Aileen']}]->(Monster)

Simple read of data
Let’s find all entries in the movie table and output their title attribute in our RDBMS:

SELECT movie.title

FROM movie;

TITLE

The Matrix

The Devil's Advocate

Monster

3 rows

Using Neo4j, find all nodes labeled Movie and output their title property:

MATCH (movie:Movie)

RETURN movie.title;

movie.title

"The Matrix"

"The Devil's Advocate"

"Monster"

3 rows

MATCH tells Neo4j to match a pattern in the graph. In this case the pattern is very simple: any node with a
Movie label on it. We bind the result of the pattern matching to the identifier movie, for use in the RETURN
clause. And as you can see, the RETURN keyword of Cypher is similar to SELECT in SQL.

Now let’s get movies released after 1998.

SELECT movie.title

FROM movie

WHERE movie.released > 1998;

Introduction to Cypher

43

TITLE

The Matrix

Monster

2 rows

In this case the addition actually looks identical in Cypher.

MATCH (movie:Movie)

WHERE movie.released > 1998

RETURN movie.title;

movie.title

"The Matrix"

"Monster"

2 rows

Note however that the semantics of WHERE in Cypher is somewhat different, see Section 11.3,
“Where” [167] for more information.

Join
Let’s list all persons and the movies they acted in.

SELECT person.name, movie.title

FROM person

 JOIN acted_in AS acted_in ON acted_in.person_id = person.id

 JOIN movie ON acted_in.movie_id = movie.id;

NAME TITLE

Keanu Reeves The Matrix

Keanu Reeves The Devil's Advocate

Carrie-Anne Moss The Matrix

Laurence Fishburne The Matrix

Hugo Weaving The Matrix

Charlize Theron The Devil's Advocate

Charlize Theron Monster

Al Pacino The Devil's Advocate

8 rows

The same using Cypher:

MATCH (person:Person)-[:ACTED_IN]->(movie:Movie)

RETURN person.name, movie.title;

Here we match a Person and a Movie node, in case they are connected with an ACTED_IN relationship.

person.name movie.title

"Hugo Weaving" "The Matrix"

"Laurence Fishburne" "The Matrix"

"Carrie-Anne Moss" "The Matrix"

"Keanu Reeves" "The Matrix"

"Al Pacino" "The Devil's Advocate"

8 rows

Introduction to Cypher

44

person.name movie.title

"Charlize Theron" "The Devil's Advocate"

"Keanu Reeves" "The Devil's Advocate"

"Charlize Theron" "Monster"

8 rows

To make things slightly more complex, let’s search for the co-actors of Keanu Reeves. In SQL we use a
self join on the person table and join on the acted_in table once for Keanu, and once for the co-actors.

SELECT DISTINCT co_actor.name

FROM person AS keanu

 JOIN acted_in AS acted_in1 ON acted_in1.person_id = keanu.id

 JOIN acted_in AS acted_in2 ON acted_in2.movie_id = acted_in1.movie_id

 JOIN person AS co_actor

 ON acted_in2.person_id = co_actor.id AND co_actor.id <> keanu.id

WHERE keanu.name = 'Keanu Reeves';

NAME

Al Pacino

Carrie-Anne Moss

Charlize Theron

Hugo Weaving

Laurence Fishburne

5 rows

In Cypher, we use a pattern with two paths that target the same Movie node.

MATCH (keanu:Person)-[:ACTED_IN]->(movie:Movie),(coActor:Person)-[:ACTED_IN]->(movie)

WHERE keanu.name = 'Keanu Reeves'

RETURN DISTINCT coActor.name;

You may have noticed that we used the co_actor.id <> keanu.id predicate in SQL only. This is because
Neo4j will only match on the ACTED_IN relationship once in the same pattern. If this is not what we want,
we can split the pattern up by using two MATCH clauses like this:

MATCH (keanu:Person)-[:ACTED_IN]->(movie:Movie)

MATCH (coActor:Person)-[:ACTED_IN]->(movie)

WHERE keanu.name = 'Keanu Reeves'

RETURN DISTINCT coActor.name;

This time Keanu Reeves is included in the result as well:

coActor.name

"Al Pacino"

"Charlize Theron"

"Keanu Reeves"

"Hugo Weaving"

"Laurence Fishburne"

"Carrie-Anne Moss"

6 rows

Next, let’s find out who has both acted in and produced movies.

SELECT person.name

Introduction to Cypher

45

FROM person

WHERE person.id IN (SELECT person_id FROM acted_in)

 AND person.id IN (SELECT person_id FROM produced)

NAME

Charlize Theron

1 rows

In Cypher, we use patterns as predicates in this case. That is, we require the relationships to exist, but
don’t care about the connected nodes; thus the empty parentheses.

MATCH (person:Person)

WHERE (person)-[:ACTED_IN]->() AND (person)-[:PRODUCED]->()

RETURN person.name

Aggregation
Now let’s find out a bit about the directors in movies that Keanu Reeves acted in. We want to know how
many of those movies each of them directed.

SELECT director.name, count(*)

FROM person keanu

 JOIN acted_in ON keanu.id = acted_in.person_id

 JOIN directed ON acted_in.movie_id = directed.movie_id

 JOIN person AS director ON directed.person_id = director.id

WHERE keanu.name = 'Keanu Reeves'

GROUP BY director.name

ORDER BY count(*) DESC

NAME C2

Andy Wachowski 1

Lana Wachowski 1

Taylor Hackford 1

3 rows

Here’s how we’ll do the same in Cypher:

MATCH (keanu:Person { name: 'Keanu Reeves' })-[:ACTED_IN]->(movie:Movie),

 (director:Person)-[:DIRECTED]->(movie)

RETURN director.name, count(*)

ORDER BY count(*) DESC

As you can see there is no GROUP BY in the Cypher equivalent. Instead, Neo4j will automatically figure out
the grouping key.

46

Chapter 4. Use Cypher in an application

The most direct way to use Cypher programmatically is to execute a HTTP POST operation against
the transactional Cypher endpoint. You can send a large number of statements with parameters to
the server with each request. For immediate execution you can use the /db/data/transaction/commit
endpoint with a JSON payload like this:

curl -i -H accept:application/json -H content-type:application/json -XPOST http://localhost:7474/db/data/transaction/commit \

 -d '{"statements":[{"statement":"CREATE (p:Person {name:{name},born:{born}}) RETURN p","parameters":{"name":"Keanu

 Reeves","born":1964}}]}'

The above command results in:

{"results":[{"columns":["p"],"data":[{"row":[{"name":"Keanu Reeves","born":1964}]}]}],"errors":[]}

You can add as many "statement" objects in the "statements" list as you want.

For larger use-cases that span multiple requests but whose read-write-read-write operations should
be executed within the same transactional scope you’d use the /db/data/transaction endpoint. This will
give you a transaction URL as the Location header, which you can continue to write to and read from. At
the end you either commit the whole transaction by POSTing to the (also returned) commit URL or by
issuing a DELETE request against the transaction URL.

curl -i -H accept:application/json -H content-type:application/json -XPOST http://localhost:7474/db/data/transaction \

 -d '{"statements":[{"statement":"CREATE (p:Person {name:{name},born:{born}}) RETURN p","parameters":{"name":"Clint

 Eastwood","born":1930}}]}'

The above command results in:

HTTP/1.1 201 Created

Location: http://localhost:7474/db/data/transaction/261

{"commit":"http://localhost:7474/db/data/transaction/261/commit","transaction":{"expires":"Wed, 03 Sep 2014 23:26:51

 +0000"},"errors":[],

 "results":[{"columns":["p"],"data":[{"row":[{"name":"Clint Eastwood","born":1930}]}]}]}

See Section 21.1, “Transactional Cypher HTTP endpoint” [298] for more information.

47

Chapter 5. Basic Data Modeling Examples

The following chapters contain simple examples to get you started thinking about data modeling with
graphs. If you are looking for more advanced examples you can head straight to Chapter 6, Advanced
Data Modeling Examples [62].

The examples use Cypher queries a lot, read Part III, “Cypher Query Language” [102] for more
information.

Basic Data Modeling Examples

48

5.1. Movie Database
Our example graph consists of movies with title and year and actors with a name. Actors have ACTS_IN
relationships to movies, which represents the role they played. This relationship also has a role
attribute.

We’ll go with three movies and three actors:

CREATE (matrix1:Movie { title : 'The Matrix', year : '1999-03-31' })

CREATE (matrix2:Movie { title : 'The Matrix Reloaded', year : '2003-05-07' })

CREATE (matrix3:Movie { title : 'The Matrix Revolutions', year : '2003-10-27' })

CREATE (keanu:Actor { name:'Keanu Reeves' })

CREATE (laurence:Actor { name:'Laurence Fishburne' })

CREATE (carrieanne:Actor { name:'Carrie-Anne Moss' })

CREATE (keanu)-[:ACTS_IN { role : 'Neo' }]->(matrix1)

CREATE (keanu)-[:ACTS_IN { role : 'Neo' }]->(matrix2)

CREATE (keanu)-[:ACTS_IN { role : 'Neo' }]->(matrix3)

CREATE (laurence)-[:ACTS_IN { role : 'Morpheus' }]->(matrix1)

CREATE (laurence)-[:ACTS_IN { role : 'Morpheus' }]->(matrix2)

CREATE (laurence)-[:ACTS_IN { role : 'Morpheus' }]->(matrix3)

CREATE (carrieanne)-[:ACTS_IN { role : 'Trinity' }]->(matrix1)

CREATE (carrieanne)-[:ACTS_IN { role : 'Trinity' }]->(matrix2)

CREATE (carrieanne)-[:ACTS_IN { role : 'Trinity' }]->(matrix3)

This gives us the following graph to play with:

Movie

t it le = 'The Matrix '
year = '1999-03-31'

Movie

year = '2003-05-07'
t it le = 'The Matrix Reloaded'

Movie

year = '2003-10-27'
t it le = 'The Matrix Revolut ions'

Actor

nam e = 'Keanu Reeves'

ACTS_IN
role = 'Neo'

ACTS_IN
role = 'Neo'

ACTS_IN
role = 'Neo'

Actor

nam e = 'Laurence Fishburne'

ACTS_IN
role = 'Morpheus'

ACTS_IN
role = 'Morpheus'

ACTS_IN
role = 'Morpheus'

Actor

nam e = 'Carrie-Anne Moss'

ACTS_IN
role = 'Trinity '

ACTS_IN
role = 'Trinity '

ACTS_IN
role = 'Trinity '

Let’s check how many nodes we have now:

MATCH (n)

RETURN "Hello Graph with " + count(*)+ " Nodes!" AS welcome;

Return a single node, by name:

MATCH (movie:Movie { title: 'The Matrix' })

RETURN movie;

Return the title and date of the matrix node:

MATCH (movie:Movie { title: 'The Matrix' })

RETURN movie.title, movie.year;

Which results in:

movie.title movie.year

"The Matrix" "1999-03-31"

1 row

Show all actors:

MATCH (actor:Actor)

RETURN actor;

Return just the name, and order them by name:

Basic Data Modeling Examples

49

MATCH (actor:Actor)

RETURN actor.name

ORDER BY actor.name;

Count the actors:

MATCH (actor:Actor)

RETURN count(*);

Get only the actors whose names end with “s”:

MATCH (actor:Actor)

WHERE actor.name =~ ".*s$"

RETURN actor.name;

Here’s some exploratory queries for unknown datasets. Don’t do this on live production databases!

Count nodes:

MATCH (n)

RETURN count(*);

Count relationship types:

MATCH (n)-[r]->()

RETURN type(r), count(*);

type(r) count(*)

"ACTS_IN" 9

1 row

List all nodes and their relationships:

MATCH (n)-[r]->(m)

RETURN n AS FROM , r AS `->`, m AS to;

from -> to

Node[3]{name:"Keanu Reeves"} :ACTS_IN[2]{role:"Neo"} Node[2]{year:"2003-10-27",

 title:"The Matrix Revolutions"}

Node[3]{name:"Keanu Reeves"} :ACTS_IN[1]{role:"Neo"} Node[1]{year:"2003-05-07",

 title:"The Matrix Reloaded"}

Node[3]{name:"Keanu Reeves"} :ACTS_IN[0]{role:"Neo"} Node[0]{title:"The Matrix",

 year:"1999-03-31"}

Node[4]{name:"Laurence

Fishburne"}

:ACTS_IN[5]{role:"Morpheus"} Node[2]{year:"2003-10-27",

 title:"The Matrix Revolutions"}

Node[4]{name:"Laurence

Fishburne"}

:ACTS_IN[4]{role:"Morpheus"} Node[1]{year:"2003-05-07",

 title:"The Matrix Reloaded"}

Node[4]{name:"Laurence

Fishburne"}

:ACTS_IN[3]{role:"Morpheus"} Node[0]{title:"The Matrix",

 year:"1999-03-31"}

Node[5]{name:"Carrie-Anne Moss"} :ACTS_IN[8]{role:"Trinity"} Node[2]{year:"2003-10-27",

 title:"The Matrix Revolutions"}

Node[5]{name:"Carrie-Anne Moss"} :ACTS_IN[7]{role:"Trinity"} Node[1]{year:"2003-05-07",

 title:"The Matrix Reloaded"}

Node[5]{name:"Carrie-Anne Moss"} :ACTS_IN[6]{role:"Trinity"} Node[0]{title:"The Matrix",

 year:"1999-03-31"}

9 rows

Basic Data Modeling Examples

50

5.2. Social Movie Database
Our example graph consists of movies with title and year and actors with a name. Actors have ACTS_IN
relationships to movies, which represents the role they played. This relationship also has a role
attribute.

So far, we queried the movie data; now let’s update the graph too.

CREATE (matrix1:Movie { title : 'The Matrix', year : '1999-03-31' })

CREATE (matrix2:Movie { title : 'The Matrix Reloaded', year : '2003-05-07' })

CREATE (matrix3:Movie { title : 'The Matrix Revolutions', year : '2003-10-27' })

CREATE (keanu:Actor { name:'Keanu Reeves' })

CREATE (laurence:Actor { name:'Laurence Fishburne' })

CREATE (carrieanne:Actor { name:'Carrie-Anne Moss' })

CREATE (keanu)-[:ACTS_IN { role : 'Neo' }]->(matrix1)

CREATE (keanu)-[:ACTS_IN { role : 'Neo' }]->(matrix2)

CREATE (keanu)-[:ACTS_IN { role : 'Neo' }]->(matrix3)

CREATE (laurence)-[:ACTS_IN { role : 'Morpheus' }]->(matrix1)

CREATE (laurence)-[:ACTS_IN { role : 'Morpheus' }]->(matrix2)

CREATE (laurence)-[:ACTS_IN { role : 'Morpheus' }]->(matrix3)

CREATE (carrieanne)-[:ACTS_IN { role : 'Trinity' }]->(matrix1)

CREATE (carrieanne)-[:ACTS_IN { role : 'Trinity' }]->(matrix2)

CREATE (carrieanne)-[:ACTS_IN { role : 'Trinity' }]->(matrix3)

We will add ourselves, friends and movie ratings.

Here’s how to add a node for yourself and return it, let’s say your name is “Me”:

CREATE (me:User { name: "Me" })

RETURN me;

me

Node[6]{name:"Me"}

1 row
Nodes created: 1
Properties set: 1
Labels added: 1

Let’s check if the node is there:

MATCH (me:User { name: "Me" })

RETURN me.name;

Add a movie rating:

MATCH (me:User { name: "Me" }),(movie:Movie { title: "The Matrix" })

CREATE (me)-[:RATED { stars : 5, comment : "I love that movie!" }]->(movie);

Which movies did I rate?

MATCH (me:User { name: "Me" }),(me)-[rating:RATED]->(movie)

RETURN movie.title, rating.stars, rating.comment;

movie.title rating.stars rating.comment

"The Matrix" 5 "I love that movie!"

1 row

We need a friend!

CREATE (friend:User { name: "A Friend" })

RETURN friend;

Basic Data Modeling Examples

51

Add our friendship idempotently, so we can re-run the query without adding it several times. We return
the relationship to check that it has not been created several times.

MATCH (me:User { name: "Me" }),(friend:User { name: "A Friend" })

CREATE UNIQUE (me)-[friendship:FRIEND]->(friend)

RETURN friendship;

You can rerun the query, see that it doesn’t change anything the second time!

Let’s update our friendship with a since property:

MATCH (me:User { name: "Me" })-[friendship:FRIEND]->(friend:User { name: "A Friend" })

SET friendship.since='forever'

RETURN friendship;

Let’s pretend us being our friend and wanting to see which movies our friends have rated.

MATCH (me:User { name: "A Friend" })-[:FRIEND]-(friend)-[rating:RATED]->(movie)

RETURN movie.title, avg(rating.stars) AS stars, collect(rating.comment) AS comments, count(*);

movie.title stars comments count(*)

"The Matrix" 5. 0 ["I love that movie!"] 1

1 row

That’s too little data, let’s add some more friends and friendships.

MATCH (me:User { name: "Me" })

FOREACH (i IN range(1,10)| CREATE (friend:User { name: "Friend " + i }),(me)-[:FRIEND]->(friend));

Show all our friends:

MATCH (me:User { name: "Me" })-[r:FRIEND]->(friend)

RETURN type(r) AS friendship, friend.name;

friendship friend.name

"FRIEND" "Friend 5"

"FRIEND" "Friend 4"

"FRIEND" "Friend 3"

"FRIEND" "Friend 2"

"FRIEND" "Friend 1"

"FRIEND" "Friend 10"

"FRIEND" "Friend 8"

"FRIEND" "Friend 9"

"FRIEND" "Friend 6"

"FRIEND" "Friend 7"

"FRIEND" "A Friend"

11 rows

Basic Data Modeling Examples

52

5.3. Finding Paths
Our example graph consists of movies with title and year and actors with a name. Actors have ACTS_IN
relationships to movies, which represents the role they played. This relationship also has a role
attribute.

We queried and updated the data so far, now let’s find interesting constellations, a.k.a. paths.

CREATE (matrix1:Movie { title : 'The Matrix', year : '1999-03-31' })

CREATE (matrix2:Movie { title : 'The Matrix Reloaded', year : '2003-05-07' })

CREATE (matrix3:Movie { title : 'The Matrix Revolutions', year : '2003-10-27' })

CREATE (keanu:Actor { name:'Keanu Reeves' })

CREATE (laurence:Actor { name:'Laurence Fishburne' })

CREATE (carrieanne:Actor { name:'Carrie-Anne Moss' })

CREATE (keanu)-[:ACTS_IN { role : 'Neo' }]->(matrix1)

CREATE (keanu)-[:ACTS_IN { role : 'Neo' }]->(matrix2)

CREATE (keanu)-[:ACTS_IN { role : 'Neo' }]->(matrix3)

CREATE (laurence)-[:ACTS_IN { role : 'Morpheus' }]->(matrix1)

CREATE (laurence)-[:ACTS_IN { role : 'Morpheus' }]->(matrix2)

CREATE (laurence)-[:ACTS_IN { role : 'Morpheus' }]->(matrix3)

CREATE (carrieanne)-[:ACTS_IN { role : 'Trinity' }]->(matrix1)

CREATE (carrieanne)-[:ACTS_IN { role : 'Trinity' }]->(matrix2)

CREATE (carrieanne)-[:ACTS_IN { role : 'Trinity' }]->(matrix3)

All other movies that actors in “The Matrix” acted in ordered by occurrence:

MATCH (:Movie { title: "The Matrix" })<-[:ACTS_IN]-(actor)-[:ACTS_IN]->(movie)

RETURN movie.title, count(*)

ORDER BY count(*) DESC ;

movie.title count(*)

"The Matrix Revolutions" 3

"The Matrix Reloaded" 3

2 rows

Let’s see who acted in each of these movies:

MATCH (:Movie { title: "The Matrix" })<-[:ACTS_IN]-(actor)-[:ACTS_IN]->(movie)

RETURN movie.title, collect(actor.name), count(*) AS count

ORDER BY count DESC ;

movie.title collect(actor.name) count

"The Matrix Revolutions" ["Carrie-Anne Moss", "Laurence

Fishburne", "Keanu Reeves"]

3

"The Matrix Reloaded" ["Carrie-Anne Moss", "Laurence

Fishburne", "Keanu Reeves"]

3

2 rows

What about co-acting, that is actors that acted together:

MATCH (:Movie { title: "The Matrix"

 })<-[:ACTS_IN]-(actor)-[:ACTS_IN]->(movie)<-[:ACTS_IN]-(colleague)

RETURN actor.name, collect(DISTINCT colleague.name);

actor.name collect(distinct colleague.name)

"Carrie-Anne Moss" ["Laurence Fishburne", "Keanu Reeves"]

"Keanu Reeves" ["Carrie-Anne Moss", "Laurence Fishburne"]

3 rows

Basic Data Modeling Examples

53

actor.name collect(distinct colleague.name)

"Laurence Fishburne" ["Carrie-Anne Moss", "Keanu Reeves"]

3 rows

Who of those other actors acted most often with anyone from the matrix cast?

MATCH (:Movie { title: "The Matrix"

 })<-[:ACTS_IN]-(actor)-[:ACTS_IN]->(movie)<-[:ACTS_IN]-(colleague)

RETURN colleague.name, count(*)

ORDER BY count(*) DESC LIMIT 10;

colleague.name count(*)

"Carrie-Anne Moss" 4

"Keanu Reeves" 4

"Laurence Fishburne" 4

3 rows

Starting with paths, a path is a sequence of nodes and relationships from a start node to an end node.

We know that Trinity loves Neo, but how many paths exist between the two actors? We’ll limit the path
length of the pattern as it exhaustively searches the graph otherwise. This is done by using *0..5 in the
pattern relationship.

MATCH p =(:Actor { name: "Keanu Reeves" })-[:ACTS_IN*0..5]-(:Actor { name: "Carrie-Anne Moss" })

RETURN p, length(p)

LIMIT 10;

p length(p)

[Node[3]{name:"Keanu Reeves"}, :ACTS_IN[0]

{role:"Neo"}, Node[0]{title:"The Matrix",

 year:"1999-03-31"}, :ACTS_IN[6]{role:"Trinity"},

 Node[5]{name:"Carrie-Anne Moss"}]

2

[Node[3]{name:"Keanu Reeves"}, :ACTS_IN[1]

{role:"Neo"}, Node[1]{year:"2003-05-07", title:"The

Matrix Reloaded"}, :ACTS_IN[4]{role:"Morpheus"},

 Node[4]{name:"Laurence Fishburne"}, :ACTS_IN[3]

{role:"Morpheus"}, Node[0]{title:"The Matrix",

 year:"1999-03-31"}, :ACTS_IN[6]{role:"Trinity"},

 Node[5]{name:"Carrie-Anne Moss"}]

4

[Node[3]{name:"Keanu Reeves"}, :ACTS_IN[2]

{role:"Neo"}, Node[2]{year:"2003-10-27",

 title:"The Matrix Revolutions"}, :ACTS_IN[5]

{role:"Morpheus"}, Node[4]{name:"Laurence

Fishburne"}, :ACTS_IN[3]{role:"Morpheus"},

 Node[0]{title:"The Matrix",

 year:"1999-03-31"}, :ACTS_IN[6]{role:"Trinity"},

 Node[5]{name:"Carrie-Anne Moss"}]

4

[Node[3]{name:"Keanu Reeves"}, :ACTS_IN[1]

{role:"Neo"}, Node[1]{year:"2003-05-07", title:"The

Matrix Reloaded"}, :ACTS_IN[7]{role:"Trinity"},

 Node[5]{name:"Carrie-Anne Moss"}]

2

[Node[3]{name:"Keanu Reeves"}, :ACTS_IN[0]

{role:"Neo"}, Node[0]{title:"The Matrix",

4

9 rows

Basic Data Modeling Examples

54

p length(p)
 year:"1999-03-31"}, :ACTS_IN[3]{role:"Morpheus"},

 Node[4]{name:"Laurence Fishburne"}, :ACTS_IN[4]

{role:"Morpheus"}, Node[1]{year:"2003-05-07",

 title:"The Matrix Reloaded"}, :ACTS_IN[7]

{role:"Trinity"}, Node[5]{name:"Carrie-Anne

Moss"}]

[Node[3]{name:"Keanu Reeves"}, :ACTS_IN[2]

{role:"Neo"}, Node[2]{year:"2003-10-27",

 title:"The Matrix Revolutions"}, :ACTS_IN[5]

{role:"Morpheus"}, Node[4]{name:"Laurence

Fishburne"}, :ACTS_IN[4]{role:"Morpheus"},

 Node[1]{year:"2003-05-07", title:"The Matrix

Reloaded"}, :ACTS_IN[7]{role:"Trinity"}, Node[5]

{name:"Carrie-Anne Moss"}]

4

[Node[3]{name:"Keanu Reeves"}, :ACTS_IN[2]

{role:"Neo"}, Node[2]{year:"2003-10-27", title:"The

Matrix Revolutions"}, :ACTS_IN[8]{role:"Trinity"},

 Node[5]{name:"Carrie-Anne Moss"}]

2

[Node[3]{name:"Keanu Reeves"}, :ACTS_IN[0]

{role:"Neo"}, Node[0]{title:"The Matrix",

 year:"1999-03-31"}, :ACTS_IN[3]{role:"Morpheus"},

 Node[4]{name:"Laurence Fishburne"}, :ACTS_IN[5]

{role:"Morpheus"}, Node[2]{year:"2003-10-27",

 title:"The Matrix Revolutions"}, :ACTS_IN[8]

{role:"Trinity"}, Node[5]{name:"Carrie-Anne

Moss"}]

4

[Node[3]{name:"Keanu Reeves"}, :ACTS_IN[1]

{role:"Neo"}, Node[1]{year:"2003-05-07", title:"The

Matrix Reloaded"}, :ACTS_IN[4]{role:"Morpheus"},

 Node[4]{name:"Laurence Fishburne"}, :ACTS_IN[5]

{role:"Morpheus"}, Node[2]{year:"2003-10-27",

 title:"The Matrix Revolutions"}, :ACTS_IN[8]

{role:"Trinity"}, Node[5]{name:"Carrie-Anne

Moss"}]

4

9 rows

But that’s a lot of data, we just want to look at the names and titles of the nodes of the path.

MATCH p =(:Actor { name: "Keanu Reeves" })-[:ACTS_IN*0..5]-(:Actor { name: "Carrie-Anne Moss" })

RETURN extract(n IN nodes(p)| coalesce(n.title,n.name)) AS `names AND titles`, length(p)

ORDER BY length(p)

LIMIT 10;

names and titles length(p)

["Keanu Reeves", "The Matrix", "Carrie-Anne Moss"] 2

["Keanu Reeves", "The Matrix Reloaded", "Carrie-

Anne Moss"]

2

["Keanu Reeves", "The Matrix Revolutions", "Carrie-

Anne Moss"]

2

["Keanu Reeves", "The Matrix Reloaded", "Laurence

Fishburne", "The Matrix", "Carrie-Anne Moss"]

4

9 rows

Basic Data Modeling Examples

55

names and titles length(p)

["Keanu Reeves", "The Matrix

Revolutions", "Laurence Fishburne", "The

Matrix", "Carrie-Anne Moss"]

4

["Keanu Reeves", "The Matrix", "Laurence

Fishburne", "The Matrix Reloaded", "Carrie-Anne

Moss"]

4

["Keanu Reeves", "The Matrix

Revolutions", "Laurence Fishburne", "The Matrix

Reloaded", "Carrie-Anne Moss"]

4

["Keanu Reeves", "The Matrix", "Laurence

Fishburne", "The Matrix Revolutions", "Carrie-Anne

Moss"]

4

["Keanu Reeves", "The Matrix Reloaded", "Laurence

Fishburne", "The Matrix Revolutions", "Carrie-Anne

Moss"]

4

9 rows

Basic Data Modeling Examples

56

5.4. Linked Lists
A powerful feature of using a graph database, is that you can create your own in-graph data
structures — for example a linked list.

This data structure uses a single node as the list reference. The reference has an outgoing relationship
to the head of the list, and an incoming relationship from the last element of the list. If the list is empty,
the reference will point to itself.

To make it clear what happens, we will show how the graph looks after each query.

To initialize an empty linked list, we simply create a node, and make it link to itself. Unlike the actual list
elements, it doesn’t have a value property.

CREATE (root { name: 'ROOT' })-[:LINK]->(root)

RETURN root

nam e = 'ROOT' LINK

Adding values is done by finding the relationship where the new value should be placed in, and
replacing it with a new node, and two relationships to it. We also have to handle the fact that the before
and after nodes could be the same as the root node. The case where before, after and the root node
are all the same, makes it necessary to use CREATE UNIQUE to not create two new value nodes by mistake.

MATCH (root)-[:LINK*0..]->(before),(after)-[:LINK*0..]->(root),(before)-[old:LINK]->(after)

WHERE root.name = 'ROOT' AND (before.value < 25 OR before = root) AND (25 < after.value OR after =

 root)

CREATE UNIQUE (before)-[:LINK]->({ value:25 })-[:LINK]->(after)

DELETE old

nam e = 'ROOT'

value = 25

LINK LINK

Let’s add one more value:

MATCH (root)-[:LINK*0..]->(before),(after)-[:LINK*0..]->(root),(before)-[old:LINK]->(after)

WHERE root.name = 'ROOT' AND (before.value < 10 OR before = root) AND (10 < after.value OR after =

 root)

CREATE UNIQUE (before)-[:LINK]->({ value:10 })-[:LINK]->(after)

DELETE old

Basic Data Modeling Examples

57

nam e = 'ROOT'

value = 10

LINK

value = 25

LINK

LINK

Deleting a value, conversely, is done by finding the node with the value, and the two relationships going
in and out from it, and replacing the relationships with a new one.

MATCH (root)-[:LINK*0..]->(before),(before)-[delBefore:LINK]->(del)-[delAfter:LINK]->(after),

 (after)-[:LINK*0..]->(root)

WHERE root.name = 'ROOT' AND del.value = 10

CREATE UNIQUE (before)-[:LINK]->(after)

DELETE del, delBefore, delAfter

nam e = 'ROOT'

value = 25

LINK LINK

Deleting the last value node is what requires us to use CREATE UNIQUE when replacing the relationships.
Otherwise, we would end up with two relationships from the root node to itself, as both before and
after nodes are equal to the root node, meaning the pattern would match twice.

MATCH (root)-[:LINK*0..]->(before),(before)-[delBefore:LINK]->(del)-[delAfter:LINK]->(after),

 (after)-[:LINK*0..]->(root)

WHERE root.name = 'ROOT' AND del.value = 25

CREATE UNIQUE (before)-[:LINK]->(after)

DELETE del, delBefore, delAfter

nam e = 'ROOT' LINK

Basic Data Modeling Examples

58

5.5. TV Shows
This example show how TV Shows with Seasons, Episodes, Characters, Actors, Users and Reviews can
be modeled in a graph database.

Data Model
Let’s start out with an entity-relationship model of the domain at hand:

TV Show

Season

has

Episode

has

Review

has

Character

featured

User

wrote

Actor

played

To implement this in Neo4j we’ll use the following relationship types:

Relationship Type Description

HAS_SEASON Connects a show with its seasons.

HAS_EPISODE Connects a season with its episodes.

FEATURED_CHARACTER Connects an episode with its characters.

PLAYED_CHARACTER Connects actors with characters. Note that an
actor can play multiple characters in an episode,
and that the same character can be played by
multiple actors as well.

HAS_REVIEW Connects an episode with its reviews.

WROTE_REVIEW Connects users with reviews they contributed.

Sample Data
Let’s create some data and see how the domain plays out in practice:

CREATE (himym:TVShow { name: "How I Met Your Mother" })

CREATE (himym_s1:Season { name: "HIMYM Season 1" })

CREATE (himym_s1_e1:Episode { name: "Pilot" })

CREATE (ted:Character { name: "Ted Mosby" })

CREATE (joshRadnor:Actor { name: "Josh Radnor" })

Basic Data Modeling Examples

59

CREATE UNIQUE (joshRadnor)-[:PLAYED_CHARACTER]->(ted)

CREATE UNIQUE (himym)-[:HAS_SEASON]->(himym_s1)

CREATE UNIQUE (himym_s1)-[:HAS_EPISODE]->(himym_s1_e1)

CREATE UNIQUE (himym_s1_e1)-[:FEATURED_CHARACTER]->(ted)

CREATE (himym_s1_e1_review1 { title: "Meet Me At The Bar In 15 Minutes & Suit Up",

 content: "It was awesome" })

CREATE (wakenPayne:User { name: "WakenPayne" })

CREATE (wakenPayne)-[:WROTE_REVIEW]->(himym_s1_e1_review1)<-[:HAS_REVIEW]-(himym_s1_e1)

This is how the data looks in the database:

TVShow

nam e = 'How I Met Your Mother'

Season

nam e = 'HIMYM Season 1'

HAS_SEASON

Episode

nam e = 'Pilot '

HAS_EPISODE

t it le = 'Meet Me At The Bar In 15 Minutes & Suit Up'
content = ' It was awesom e'

HAS_REVIEW

Character

nam e = 'Ted Mosby'

FEATURED_CHARACTER

Actor

nam e = 'Josh Radnor'

PLAYED_CHARACTER

User

nam e = 'WakenPayne'

WROTE_REVIEW

Note that even though we could have modeled the reviews as relationships with title and content
properties on them, we made them nodes instead. We gain a lot of flexibility in this way, for example if
we want to connect comments to each review.

Now let’s add more data:

MATCH (himym:TVShow { name: "How I Met Your Mother" }),(himym_s1:Season),

 (himym_s1_e1:Episode { name: "Pilot" }),

 (himym)-[:HAS_SEASON]->(himym_s1)-[:HAS_EPISODE]->(himym_s1_e1)

CREATE (marshall:Character { name: "Marshall Eriksen" })

CREATE (robin:Character { name: "Robin Scherbatsky" })

CREATE (barney:Character { name: "Barney Stinson" })

CREATE (lily:Character { name: "Lily Aldrin" })

CREATE (jasonSegel:Actor { name: "Jason Segel" })

CREATE (cobieSmulders:Actor { name: "Cobie Smulders" })

CREATE (neilPatrickHarris:Actor { name: "Neil Patrick Harris" })

CREATE (alysonHannigan:Actor { name: "Alyson Hannigan" })

CREATE UNIQUE (jasonSegel)-[:PLAYED_CHARACTER]->(marshall)

CREATE UNIQUE (cobieSmulders)-[:PLAYED_CHARACTER]->(robin)

CREATE UNIQUE (neilPatrickHarris)-[:PLAYED_CHARACTER]->(barney)

CREATE UNIQUE (alysonHannigan)-[:PLAYED_CHARACTER]->(lily)

CREATE UNIQUE (himym_s1_e1)-[:FEATURED_CHARACTER]->(marshall)

CREATE UNIQUE (himym_s1_e1)-[:FEATURED_CHARACTER]->(robin)

CREATE UNIQUE (himym_s1_e1)-[:FEATURED_CHARACTER]->(barney)

CREATE UNIQUE (himym_s1_e1)-[:FEATURED_CHARACTER]->(lily)

CREATE (himym_s1_e1_review2 { title: "What a great pilot for a show :)",

Basic Data Modeling Examples

60

 content: "The humour is great." })

CREATE (atlasredux:User { name: "atlasredux" })

CREATE (atlasredux)-[:WROTE_REVIEW]->(himym_s1_e1_review2)<-[:HAS_REVIEW]-(himym_s1_e1)

Information for a show
For a particular TV show, show all the seasons and all the episodes and all the reviews and all the cast
members from that show, that is all of the information connected to that TV show.

MATCH (tvShow:TVShow)-[:HAS_SEASON]->(season)-[:HAS_EPISODE]->(episode)

WHERE tvShow.name = "How I Met Your Mother"

RETURN season.name, episode.name

season.name episode.name

"HIMYM Season 1" "Pilot"

1 row

We could also grab the reviews if there are any by slightly tweaking the query:

MATCH (tvShow:TVShow)-[:HAS_SEASON]->(season)-[:HAS_EPISODE]->(episode)

WHERE tvShow.name = "How I Met Your Mother"

WITH season, episode

OPTIONAL MATCH (episode)-[:HAS_REVIEW]->(review)

RETURN season.name, episode.name, review

season.name episode.name review

"HIMYM Season 1" "Pilot" Node[15]{title:"What a

great pilot for a show :)",

 content:"The humour is great. "}

"HIMYM Season 1" "Pilot" Node[5]{title:"Meet Me At The

Bar In 15 Minutes & Suit Up",

 content:"It was awesome"}

2 rows

Now let’s list the characters featured in a show. Note that in this query we only put identifiers on the
nodes we actually use later on. The other nodes of the path pattern are designated by ().

MATCH (tvShow:TVShow)-[:HAS_SEASON]->()-[:HAS_EPISODE]->()-[:FEATURED_CHARACTER]->(character)

WHERE tvShow.name = "How I Met Your Mother"

RETURN DISTINCT character.name

character.name

"Lily Aldrin"

"Barney Stinson"

"Robin Scherbatsky"

"Marshall Eriksen"

"Ted Mosby"

5 rows

Now let’s look at how to get all cast members of a show.

MATCH

 (tvShow:TVShow)-[:HAS_SEASON]->()-[:HAS_EPISODE]->(episode)-[:FEATURED_CHARACTER]->()<-[:PLAYED_CHARACTER]-(actor)

WHERE tvShow.name = "How I Met Your Mother"

RETURN DISTINCT actor.name

Basic Data Modeling Examples

61

actor.name

"Alyson Hannigan"

"Neil Patrick Harris"

"Cobie Smulders"

"Jason Segel"

"Josh Radnor"

5 rows

Information for an actor
First let’s add another TV show that Josh Radnor appeared in:

CREATE (er:TVShow { name: "ER" })

CREATE (er_s7:Season { name: "ER S7" })

CREATE (er_s7_e17:Episode { name: "Peter's Progress" })

CREATE (tedMosby:Character { name: "The Advocate " })

CREATE UNIQUE (er)-[:HAS_SEASON]->(er_s7)

CREATE UNIQUE (er_s7)-[:HAS_EPISODE]->(er_s7_e17)

WITH er_s7_e17

MATCH (actor:Actor),(episode:Episode)

WHERE actor.name = "Josh Radnor" AND episode.name = "Peter's Progress"

WITH actor, episode

CREATE (keith:Character { name: "Keith" })

CREATE UNIQUE (actor)-[:PLAYED_CHARACTER]->(keith)

CREATE UNIQUE (episode)-[:FEATURED_CHARACTER]->(keith)

And now we’ll create a query to find the episodes that he has appeared in:

MATCH (actor:Actor)-[:PLAYED_CHARACTER]->(character)<-[:FEATURED_CHARACTER]-(episode)

WHERE actor.name = "Josh Radnor"

RETURN episode.name AS Episode, character.name AS Character

Episode Character

"Peter's Progress" "Keith"

"Pilot" "Ted Mosby"

2 rows

Now let’s go for a similar query, but add the season and show to it as well.

MATCH (actor:Actor)-[:PLAYED_CHARACTER]->(character)<-[:FEATURED_CHARACTER]-(episode),

 (episode)<-[:HAS_EPISODE]-(season)<-[:HAS_SEASON]-(tvshow)

WHERE actor.name = "Josh Radnor"

RETURN tvshow.name AS Show, season.name AS Season, episode.name AS Episode,

 character.name AS Character

Show Season Episode Character

"ER" "ER S7" "Peter's Progress" "Keith"

"How I Met Your Mother" "HIMYM Season 1" "Pilot" "Ted Mosby"

2 rows

62

Chapter 6. Advanced Data Modeling Examples

The following chapters contain simplified examples of how different domains can be modeled
using Neo4j. The aim is not to give full examples, but to suggest possible ways to think using nodes,
relationships, graph patterns and data locality in traversals.

The examples use Cypher queries a lot, read Part III, “Cypher Query Language” [102] for more
information.

Advanced Data Modeling Examples

63

6.1. ACL structures in graphs
This example gives a generic overview of an approach to handling Access Control Lists (ACLs) in graphs,
and a simplified example with concrete queries.

Generic approach
In many scenarios, an application needs to handle security on some form of managed objects. This
example describes one pattern to handle this through the use of a graph structure and traversers
that build a full permissions-structure for any managed object with exclude and include overriding
possibilities. This results in a dynamic construction of ACLs based on the position and context of the
managed object.
The result is a complex security scheme that can easily be implemented in a graph structure,
supporting permissions overriding, principal and content composition, without duplicating data
anywhere.

Technique
As seen in the example graph layout, there are some key concepts in this domain model:

• The managed content (folders and files) that are connected by HAS_CHILD_CONTENT relationships
• The Principal subtree pointing out principals that can act as ACL members, pointed out by the

PRINCIPAL relationships.
• The aggregation of principals into groups, connected by the IS_MEMBER_OF relationship. One principal

(user or group) can be part of many groups at the same time.
• The SECURITY — relationships, connecting the content composite structure to the principal composite

structure, containing a addition/removal modifier property ("+RW").

Constructing the ACL
The calculation of the effective permissions (e.g. Read, Write, Execute) for a principal for any given ACL-
managed node (content) follows a number of rules that will be encoded into the permissions-traversal:

Top-down-Traversal
This approach will let you define a generic permission pattern on the root content, and then refine that
for specific sub-content nodes and specific principals.

Advanced Data Modeling Examples

64

1. Start at the content node in question traverse upwards to the content root node to determine the
path to it.

2. Start with a effective optimistic permissions list of "all permitted" (111 in a bit encoded
ReadWriteExecute case) or 000 if you like pessimistic security handling (everything is forbidden unless
explicitly allowed).

3. Beginning from the topmost content node, look for any SECURITY relationships on it.
4. If found, look if the principal in question is part of the end-principal of the SECURITY relationship.
5. If yes, add the "+" permission modifiers to the existing permission pattern, revoke the "-" permission

modifiers from the pattern.
6. If two principal nodes link to the same content node, first apply the more generic prinipals modifiers.
7. Repeat the security modifier search all the way down to the target content node, thus overriding

more generic permissions with the set on nodes closer to the target node.

The same algorithm is applicable for the bottom-up approach, basically just traversing from the target
content node upwards and applying the security modifiers dynamically as the traverser goes up.

Example
Now, to get the resulting access rights for e.g. "user 1" on the "My File.pdf" in a Top-Down approach on
the model in the graph above would go like:

1. Traveling upward, we start with "Root folder", and set the permissions to 11 initially (only considering
Read, Write).

2. There are two SECURITY relationships to that folder. User 1 is contained in both of them, but "root" is
more generic, so apply it first then "All principals" +W +R → 11.

3. "Home" has no SECURITY instructions, continue.
4. "user1 Home" has SECURITY. First apply "Regular Users" (-R -W) → 00, Then "user 1" (+R +W) → 11.
5. The target node "My File.pdf" has no SECURITY modifiers on it, so the effective permissions for "User

1" on "My File.pdf" are ReadWrite → 11.

Read-permission example
In this example, we are going to examine a tree structure of directories and files. Also, there are users
that own files and roles that can be assigned to users. Roles can have permissions on directory or files
structures (here we model only canRead, as opposed to full rwx Unix permissions) and be nested. A more
thorough example of modeling ACL structures can be found at How to Build Role-Based Access Control
in SQL1.

1 http://www.xaprb.com/blog/2006/08/16/how-to-build-role-based-access-control-in-sql/

http://www.xaprb.com/blog/2006/08/16/how-to-build-role-based-access-control-in-sql/
http://www.xaprb.com/blog/2006/08/16/how-to-build-role-based-access-control-in-sql/
http://www.xaprb.com/blog/2006/08/16/how-to-build-role-based-access-control-in-sql/

Advanced Data Modeling Examples

65

Node[20]

'nam e' = 'Hom eU1'

Node[17]

'nam e' = 'File1'

leaf

Node[23]

'nam e' = 'Desktop'

Node[16]

'nam e' = 'File2'

leaf

Node[10]

'nam e' = 'Hom e'

contains

Node[15]

'nam e' = 'Hom eU2'

contains

contains

Node[11]

'nam e' = ' init .d'

Node[12]

'nam e' = 'etc'

contains

Node[18]

'nam e' = 'FileRoot '

contains contains

Node[7]

'nam e' = 'User'

Node[14]

'nam e' = 'User1'

m em ber

Node[13]

'nam e' = 'User2'

m em ber

owns

owns

Node[8]

'nam e' = 'Adm in2'

Node[9]

'nam e' = 'Adm in1'

Node[21]

'nam e' = 'Role'

subRole

Node[22]

'nam e' = 'SUDOers'

subRole

canReadm em ber m em ber

Node[19]

'nam e' = 'Root '

has

has

Find all files in the directory structure
In order to find all files contained in this structure, we need a variable length query that follows all
contains relationships and retrieves the nodes at the other end of the leaf relationships.

MATCH ({ name: 'FileRoot' })-[:contains*0..]->(parentDir)-[:leaf]->(file)

RETURN file

resulting in:

file

Node[10]{name:"File1"}

Node[9]{name:"File2"}

2 rows

What files are owned by whom?
If we introduce the concept of ownership on files, we then can ask for the owners of the files we
find — connected via owns relationships to file nodes.

MATCH ({ name: 'FileRoot' })-[:contains*0..]->()-[:leaf]->(file)<-[:owns]-(user)

RETURN file, user

Returning the owners of all files below the FileRoot node.

file user

Node[10]{name:"File1"} Node[7]{name:"User1"}

Node[9]{name:"File2"} Node[6]{name:"User2"}

2 rows

Who has access to a File?
If we now want to check what users have read access to all Files, and define our ACL as

• The root directory has no access granted.

Advanced Data Modeling Examples

66

• Any user having a role that has been granted canRead access to one of the parent folders of a File has
read access.

In order to find users that can read any part of the parent folder hierarchy above the files, Cypher
provides optional variable length path.

MATCH (file)<-[:leaf]-()<-[:contains*0..]-(dir)

OPTIONAL MATCH (dir)<-[:canRead]-(role)-[:member]->(readUser)

WHERE file.name =~ 'File.*'

RETURN file.name, dir.name, role.name, readUser.name

This will return the file, and the directory where the user has the canRead permission along with the
user and their role.

file.name dir.name role.name readUser.name

"File2" "Desktop" <null> <null>

"File2" "HomeU2" <null> <null>

"File2" "Home" <null> <null>

"File2" "FileRoot" "SUDOers" "Admin2"

"File2" "FileRoot" "SUDOers" "Admin1"

"File1" "HomeU1" <null> <null>

"File1" "Home" <null> <null>

"File1" "FileRoot" "SUDOers" "Admin2"

"File1" "FileRoot" "SUDOers" "Admin1"

9 rows

The results listed above contain null for optional path segments, which can be mitigated by either
asking several queries or returning just the really needed values.

Advanced Data Modeling Examples

67

6.2. Hyperedges
Imagine a user being part of different groups. A group can have different roles, and a user can be part
of different groups. He also can have different roles in different groups apart from the membership.
The association of a User, a Group and a Role can be referred to as a HyperEdge. However, it can be
easily modeled in a property graph as a node that captures this n-ary relationship, as depicted below in
the U1G2R1 node.

Figure 6.1. Graph

nam e = 'U1G2R1'

nam e = 'Group2'

hasGroup

nam e = 'Role1'

hasRole

canHave

nam e = 'Role2'

canHave

nam e = 'Group'

isA

nam e = 'Role'

isA isA

nam e = 'Group1'

canHave canHaveisA

nam e = 'User1'

hasRoleInGroup

in in nam e = 'U1G1R2'

hasRoleInGroup

hasRole

hasGroup

Find Groups
To find out in what roles a user is for a particular groups (here Group2), the following query can traverse
this HyperEdge node and provide answers.

Query

MATCH ({ name: 'User1' })-[:hasRoleInGroup]->(hyperEdge)-[:hasGroup]->({ name: 'Group2' }),

 (hyperEdge)-[:hasRole]->(role)

RETURN role.name

The role of User1 is returned:

Result
role.name

"Role1"

1 row

Advanced Data Modeling Examples

68

Find all groups and roles for a user
Here, find all groups and the roles a user has, sorted by the name of the role.

Query

MATCH ({ name: 'User1' })-[:hasRoleInGroup]->(hyperEdge)-[:hasGroup]->(group),

 (hyperEdge)-[:hasRole]->(role)

RETURN role.name, group.name

ORDER BY role.name ASC

The groups and roles of User1 are returned:

Result
role.name group.name

"Role1" "Group2"

"Role2" "Group1"

2 rows

Find common groups based on shared roles
Assume a more complicated graph:

1. Two user nodes User1, User2.
2. User1 is in Group1, Group2, Group3.
3. User1 has Role1, Role2 in Group1; Role2, Role3 in Group2; Role3, Role4 in Group3 (hyper edges).
4. User2 is in Group1, Group2, Group3.
5. User2 has Role2, Role5 in Group1; Role3, Role4 in Group2; Role5, Role6 in Group3 (hyper edges).

The graph for this looks like the following (nodes like U1G2R23 representing the HyperEdges):

Figure 6.2. Graph

nam e = 'U2G2R34'

nam e = 'Role3'

hasRole

nam e = 'Role4'

hasRole

nam e = 'Group2'

hasGroup

nam e = 'U1G3R34'

hasRolehasRole

nam e = 'Group3'

hasGroup

nam e = 'User2'

hasRoleInGroup

nam e = 'U2G3R56'

hasRoleInGroup

nam e = 'U2G1R25'

hasRoleInGroup

hasGroup

nam e = 'Role6'

hasRole

nam e = 'Role5'

hasRole

nam e = 'Role2'

hasRole hasRole

nam e = 'Group1'

hasGroup

nam e = 'User1'

hasRoleInGroup

nam e = 'U1G2R23'

hasRoleInGroup

nam e = 'U1G1R12'

hasRoleInGroup

hasRole hasGroup hasRole hasRole hasGroup

nam e = 'Role1'

hasRole

To return Group1 and Group2 as User1 and User2 share at least one common role in these two groups, the
query looks like this:

Query

MATCH (u1)-[:hasRoleInGroup]->(hyperEdge1)-[:hasGroup]->(group),(hyperEdge1)-[:hasRole]->(role),

 (u2)-[:hasRoleInGroup]->(hyperEdge2)-[:hasGroup]->(group),(hyperEdge2)-[:hasRole]->(role)

WHERE u1.name = 'User1' AND u2.name = 'User2'

RETURN group.name, count(role)

ORDER BY group.name ASC

The groups where User1 and User2 share at least one common role:

Result
group.name count(role)

"Group1" 1

"Group2" 1

2 rows

Advanced Data Modeling Examples

69

6.3. Basic friend finding based on social neighborhood
Imagine an example graph like the following one:

Figure 6.3. Graph

nam e = 'Bill'

nam e = 'Ian'

knows

nam e = 'Derrick'

knows

nam e = 'Sara'

knows

knows nam e = 'Jill'

knows

nam e = 'Joe'

knows

knows

To find out the friends of Joe’s friends that are not already his friends, the query looks like this:

Query

MATCH (joe { name: 'Joe' })-[:knows*2..2]-(friend_of_friend)

WHERE NOT (joe)-[:knows]-(friend_of_friend)

RETURN friend_of_friend.name, COUNT(*)

ORDER BY COUNT(*) DESC , friend_of_friend.name

This returns a list of friends-of-friends ordered by the number of connections to them, and secondly by
their name.

Result
friend_of_friend.name COUNT(*)

"Ian" 2

"Derrick" 1

"Jill" 1

3 rows

Advanced Data Modeling Examples

70

6.4. Co-favorited places
Figure 6.4. Graph

nam e = 'SaunaX' nam e = 'CoffeeShop1'

nam e = 'Cosy'

tagged

nam e = 'Cool'

tagged

nam e = 'MelsPlace'

taggedtagged

nam e = 'CoffeeShop3'

tagged

nam e = 'CoffeeShop2'

tagged

nam e = 'CoffeShop2'

nam e = 'Jill'

favorite favorite favorite

nam e = 'Joe'

favorite favorite favorite

Co-favorited places — users who like x also like y
Find places that people also like who favorite this place:

• Determine who has favorited place x.
• What else have they favorited that is not place x.

Query

MATCH (place)<-[:favorite]-(person)-[:favorite]->(stuff)

WHERE place.name = 'CoffeeShop1'

RETURN stuff.name, count(*)

ORDER BY count(*) DESC , stuff.name

The list of places that are favorited by people that favorited the start place.

Result
stuff.name count(*)

"MelsPlace" 2

"CoffeShop2" 1

"SaunaX" 1

3 rows

Co-Tagged places — places related through tags
Find places that are tagged with the same tags:

• Determine the tags for place x.
• What else is tagged the same as x that is not x.

Query

MATCH (place)-[:tagged]->(tag)<-[:tagged]-(otherPlace)

WHERE place.name = 'CoffeeShop1'

RETURN otherPlace.name, collect(tag.name)

ORDER BY length(collect(tag.name)) DESC , otherPlace.name

This query returns other places than CoffeeShop1 which share the same tags; they are ranked by the
number of tags.

Result
otherPlace.name collect(tag.name)

"MelsPlace" ["Cosy", "Cool"]

3 rows

Advanced Data Modeling Examples

71

otherPlace.name collect(tag.name)

"CoffeeShop2" ["Cool"]

"CoffeeShop3" ["Cosy"]

3 rows

Advanced Data Modeling Examples

72

6.5. Find people based on similar favorites
Figure 6.5. Graph

nam e = 'Sara'

nam e = 'Bikes'

favorite

nam e = 'Cats'

favorite

nam e = 'Derrick'

favoritefavorite

nam e = 'Jill'

favorite

nam e = 'Joe'

friend

favoritefavorite

To find out the possible new friends based on them liking similar things as the asking person, use a
query like this:

Query

MATCH (me { name: 'Joe' })-[:favorite]->(stuff)<-[:favorite]-(person)

WHERE NOT (me)-[:friend]-(person)

RETURN person.name, count(stuff)

ORDER BY count(stuff) DESC

The list of possible friends ranked by them liking similar stuff that are not yet friends is returned.

Result
person.name count(stuff)

"Derrick" 2

"Jill" 1

2 rows

Advanced Data Modeling Examples

73

6.6. Find people based on mutual friends and groups
Figure 6.6. Graph

Node[0]

nam e = 'Bill'

Node[1]

nam e = 'Group1'

m em ber_of_group

Node[2]

nam e = 'Bob'

m em ber_of_group

Node[3]

nam e = 'Jill'

knows

m em ber_of_group

Node[4]

nam e = 'Joe'

knows

m em ber_of_group

In this scenario, the problem is to determine mutual friends and groups, if any, between persons. If no
mutual groups or friends are found, there should be a 0 returned.

Query

MATCH (me { name: 'Joe' }),(other)

WHERE other.name IN ['Jill', 'Bob']

OPTIONAL MATCH pGroups=(me)-[:member_of_group]->(mg)<-[:member_of_group]-(other)

OPTIONAL MATCH pMutualFriends=(me)-[:knows]->(mf)<-[:knows]-(other)

RETURN other.name AS name, count(DISTINCT pGroups) AS mutualGroups,

 count(DISTINCT pMutualFriends) AS mutualFriends

ORDER BY mutualFriends DESC

The question we are asking is — how many unique paths are there between me and Jill, the paths being
common group memberships, and common friends. If the paths are mandatory, no results will be
returned if me and Bob lack any common friends, and we don’t want that. To make a path optional, you
have to make at least one of it’s relationships optional. That makes the whole path optional.

Result
name mutualGroups mutualFriends

"Jill" 1 1

"Bob" 1 0

2 rows

Advanced Data Modeling Examples

74

6.7. Find friends based on similar tagging
Figure 6.7. Graph

nam e = 'Anim als' nam e = 'Hobby'

nam e = 'Surfing'

tagged

nam e = 'Sara'

nam e = 'Horses'

favorite

nam e = 'Bikes'

favorite

tagged tagged

nam e = 'Cats'

tagged

nam e = 'Derrick'

favorite

nam e = 'Joe'

favoritefavorite favoritefavorite

To find people similar to me based on the taggings of their favorited items, one approach could be:

• Determine the tags associated with what I favorite.
• What else is tagged with those tags?
• Who favorites items tagged with the same tags?
• Sort the result by how many of the same things these people like.

Query

MATCH

 (me)-[:favorite]->(myFavorites)-[:tagged]->(tag)<-[:tagged]-(theirFavorites)<-[:favorite]-(people)

WHERE me.name = 'Joe' AND NOT me=people

RETURN people.name AS name, count(*) AS similar_favs

ORDER BY similar_favs DESC

The query returns the list of possible friends ranked by them liking similar stuff that are not yet friends.

Result
name similar_favs

"Sara" 2

"Derrick" 1

2 rows

Advanced Data Modeling Examples

75

6.8. Multirelational (social) graphs
Figure 6.8. Graph

nam e = 'cats'

nam e = 'nature'

nam e = 'Ben'

nam e = 'Sara'

LIKES

FOLLOWS

nam e = 'cars'

LIKES

nam e = 'bikes'

LIKES

nam e = 'Joe'

FOLLOWS

LIKES

FOLLOWS

LIKES

nam e = 'Maria'

FOLLOWS
LOVES

LIKES

FOLLOWS
LOVES

This example shows a multi-relational network between persons and things they like. A multi-relational
graph is a graph with more than one kind of relationship between nodes.

Query

MATCH (me { name: 'Joe' })-[r1:FOLLOWS|:LOVES]->(other)-[r2]->(me)

WHERE type(r1)=type(r2)

RETURN other.name, type(r1)

The query returns people that FOLLOWS or LOVES Joe back.

Result
other.name type(r1)

"Maria" "FOLLOWS"

"Maria" "LOVES"

"Sara" "FOLLOWS"

3 rows

Advanced Data Modeling Examples

76

6.9. Implementing newsfeeds in a graph

nam e = 'Bob'

nam e = 'Alice'

FRIEND
status = 'CONFIRMED'

date = 1
nam e = 'bob_s1'
text = 'bobs status1'

STATUS

nam e = 'Joe'

FRIEND
status = 'PENDING'

date = 2
nam e = 'alice_s1'
text = 'Alices status1'

STATUS

date = 4
nam e = 'bob_s2'
text = 'bobs status2'

NEXT

FRIEND
status = 'CONFIRMED'

date = 3
nam e = ' joe_s1'
text = 'Joe status1'

STATUS

date = 5
nam e = 'alice_s2'
text = 'Alices status2'

NEXT

date = 6
nam e = ' joe_s2'
text = 'Joe status2'

NEXT

Implementation of newsfeed or timeline feature is a frequent requirement for social applications. The
following exmaples are inspired by Newsfeed feature powered by Neo4j Graph Database2. The query
asked here is:

Starting at me, retrieve the time-ordered status feed of the status updates of me and and all friends that
are connected via a CONFIRMED FRIEND relationship to me.

Query

MATCH (me { name: 'Joe' })-[rels:FRIEND*0..1]-(myfriend)

WHERE ALL (r IN rels WHERE r.status = 'CONFIRMED')

WITH myfriend

MATCH (myfriend)-[:STATUS]-(latestupdate)-[:NEXT*0..1]-(statusupdates)

RETURN myfriend.name AS name, statusupdates.date AS date, statusupdates.text AS text

ORDER BY statusupdates.date DESC LIMIT 3

To understand the strategy, let’s divide the query into five steps:

1. First Get the list of all my friends (along with me) through FRIEND relationship (MATCH (me {name:
'Joe'})-[rels:FRIEND*0..1]-(myfriend)). Also, the WHERE predicate can be added to check whether the
friend request is pending or confirmed.

2 https://web.archive.org/web/20121102191919/http://techfin.in/2012/10/newsfeed-feature-powered-by-neo4j-graph-database/

https://web.archive.org/web/20121102191919/http://techfin.in/2012/10/newsfeed-feature-powered-by-neo4j-graph-database/
https://web.archive.org/web/20121102191919/http://techfin.in/2012/10/newsfeed-feature-powered-by-neo4j-graph-database/

Advanced Data Modeling Examples

77

2. Get the latest status update of my friends through Status relationship (MATCH (myfriend)-[:STATUS]-
(latestupdate)).

3. Get subsequent status updates (along with the latest one) of my friends through NEXT relationships
(MATCH (myfriend)-[:STATUS]-(latestupdate)-[:NEXT*0..1]-(statusupdates)) which will give you the
latest and one additional statusupdate; adjust 0..1 to whatever suits your case.

4. Sort the status updates by posted date (ORDER BY statusupdates.date DESC).
5. LIMIT the number of updates you need in every query (LIMIT 3).

Result
name date text

"Joe" 6 "Joe status2"

"Bob" 4 "bobs status2"

"Joe" 3 "Joe status1"

3 rows

Here, the example shows how to add a new status update into the existing data for a user.

Query

MATCH (me)

WHERE me.name='Bob'

OPTIONAL MATCH (me)-[r:STATUS]-(secondlatestupdate)

DELETE r

CREATE (me)-[:STATUS]->(latest_update { text:'Status',date:123 })

WITH latest_update, collect(secondlatestupdate) AS seconds

FOREACH (x IN seconds | CREATE (latest_update)-[:NEXT]->(x))

RETURN latest_update.text AS new_status

Dividing the query into steps, this query resembles adding new item in middle of a doubly linked list:

1. Get the latest update (if it exists) of the user through the STATUS relationship (OPTIONAL MATCH (me)-
[r:STATUS]-(secondlatestupdate)).

2. Delete the STATUS relationship between user and secondlatestupdate (if it exists), as this would
become the second latest update now and only the latest update would be added through a STATUS
relationship; all earlier updates would be connected to their subsequent updates through a NEXT
relationship. (DELETE r).

3. Now, create the new statusupdate node (with text and date as properties) and connect
this with the user through a STATUS relationship (CREATE (me)-[:STATUS]->(latest_update
{ text:'Status',date:123 })).

4. Pipe over statusupdate or an empty collection to the next query part (WITH latest_update,
collect(secondlatestupdate) AS seconds).

5. Now, create a NEXT relationship between the latest status update and the second latest status update
(if it exists) (FOREACH(x in seconds | CREATE (latest_update)-[:NEXT]->(x))).

Result
new_status

"Status"

1 row
Nodes created: 1
Relationships created: 2
Properties set: 2
Relationships deleted: 1

Advanced Data Modeling Examples

78

Node[0]

nam e = 'Bob'

Node[1]

date = 1
nam e = 'bob_s1'
text = 'bobs status1'

STATUS

Node[2]

date = 4
nam e = 'bob_s2'
text = 'bobs status2'

NEXT

Advanced Data Modeling Examples

79

6.10. Boosting recommendation results
Figure 6.9. Graph

nam e = 'Clark Kent '

nam e = 'Daily Planet '

WORKS_AT
weight = 2
act ivity = 45

nam e = 'Jim m y Olsen'

KNOWS
weight = 4

nam e = 'Lois Lane'

KNOWS
weight = 4

WORKS_AT
weight = 2
act ivity = 10

nam e = 'Perry White'

KNOWS
weight = 4

WORKS_AT
weight = 2
act ivity = 56

nam e = 'Anderson Cooper'

KNOWS
weight = 4

KNOWS
weight = 4

nam e = 'CNN'

WORKS_AT
weight = 2
act ivity = 2

WORKS_AT
weight = 2
act ivity = 6

WORKS_AT
weight = 2
act ivity = 3

This query finds the recommended friends for the origin that are working at the same place as the
origin, or know a person that the origin knows, also, the origin should not already know the target. This
recommendation is weighted for the weight of the relationship r2, and boosted with a factor of 2, if
there is an activity-property on that relationship

Query

MATCH (origin)-[r1:KNOWS|WORKS_AT]-(c)-[r2:KNOWS|WORKS_AT]-(candidate)

WHERE origin.name = "Clark Kent" AND type(r1)=type(r2) AND NOT (origin)-[:KNOWS]-(candidate)

RETURN origin.name AS origin, candidate.name AS candidate, SUM(ROUND(r2.weight

 +(COALESCE(r2.activity,

 0)* 2))) AS boost

ORDER BY boost DESC LIMIT 10

This returns the recommended friends for the origin nodes and their recommendation score.

Result
origin candidate boost

"Clark Kent" "Perry White" 22. 0

"Clark Kent" "Anderson Cooper" 4. 0

2 rows

Advanced Data Modeling Examples

80

6.11. Calculating the clustering coefficient of a network
Figure 6.10. Graph

nam e = 'startnode'

KNOWS

KNOWS

KNOWS KNOWS

KNOWS KNOWS KNOWS

In this example, adapted from Niko Gamulins blog post on Neo4j for Social Network Analysis3,
the graph in question is showing the 2-hop relationships of a sample person as nodes with KNOWS
relationships.

The clustering coefficient4 of a selected node is defined as the probability that two randomly selected
neighbors are connected to each other. With the number of neighbors as n and the number of mutual
connections between the neighbors r the calculation is:

The number of possible connections between two neighbors is n!/(2!(n-2)!) = 4!/(2!(4-2)!) = 24/4 =
6, where n is the number of neighbors n = 4 and the actual number r of connections is 1. Therefore the
clustering coefficient of node 1 is 1/6.

n and r are quite simple to retrieve via the following query:

Query

MATCH (a { name: "startnode" })--(b)

WITH a, count(DISTINCT b) AS n

MATCH (a)--()-[r]-()--(a)

RETURN n, count(DISTINCT r) AS r

This returns n and r for the above calculations.

Result
n r

4 1

1 row

3 http://mypetprojects.blogspot.se/2012/06/social-network-analysis-with-neo4j.html
4 http://en.wikipedia.org/wiki/Clustering_coefficient

http://mypetprojects.blogspot.se/2012/06/social-network-analysis-with-neo4j.html
http://en.wikipedia.org/wiki/Clustering_coefficient
http://mypetprojects.blogspot.se/2012/06/social-network-analysis-with-neo4j.html
http://en.wikipedia.org/wiki/Clustering_coefficient

Advanced Data Modeling Examples

81

6.12. Pretty graphs
This section is showing how to create some of the named pretty graphs on Wikipedia5.

Star graph
The graph is created by first creating a center node, and then once per element in the range, creates a
leaf node and connects it to the center.

Query

CREATE (center)

FOREACH (x IN range(1,6)| CREATE (leaf),(center)-[:X]->(leaf))

RETURN id(center) AS id;

The query returns the id of the center node.

Result
id

0

1 row
Nodes created: 7
Relationships created: 6

Figure 6.11. Graph

X

X

X X

X

X

Wheel graph
This graph is created in a number of steps:

• Create a center node.
• Once per element in the range, create a leaf and connect it to the center.
• Connect neighboring leafs.
• Find the minimum and maximum leaf and connect these.
• Return the id of the center node.

Query

CREATE (center)

5 http://en.wikipedia.org/wiki/Gallery_of_named_graphs

http://en.wikipedia.org/wiki/Gallery_of_named_graphs
http://en.wikipedia.org/wiki/Gallery_of_named_graphs

Advanced Data Modeling Examples

82

FOREACH (x IN range(1,6)| CREATE (leaf { count:x }),(center)-[:X]->(leaf))

WITH center

MATCH (large_leaf)<--(center)-->(small_leaf)

WHERE large_leaf.count = small_leaf.count + 1

CREATE (small_leaf)-[:X]->(large_leaf)

WITH center, min(small_leaf.count) AS min, max(large_leaf.count) AS max

MATCH (first_leaf)<--(center)-->(last_leaf)

WHERE first_leaf.count = min AND last_leaf.count = max

CREATE (last_leaf)-[:X]->(first_leaf)

RETURN id(center) AS id

The query returns the id of the center node.

Result
id

0

1 row
Nodes created: 7
Relationships created: 12
Properties set: 6

Figure 6.12. Graph

count = 6

X

count = 5
X

count = 4

X

count = 3

X

count = 2 X

count = 1

X

X

X

X

X

X

X

Complete graph
To create this graph, we first create 6 nodes and label them with the Leaf label. We then match all the
unique pairs of nodes, and create a relationship between them.

Query

FOREACH (x IN range(1,6)| CREATE (leaf:Leaf { count : x }))

WITH *

MATCH (leaf1:Leaf),(leaf2:Leaf)

WHERE id(leaf1)< id(leaf2)

CREATE (leaf1)-[:X]->(leaf2);

Nothing is returned by this query.

Result

(empty result)

Nodes created: 6
Relationships created: 15
Properties set: 6
Labels added: 6

Advanced Data Modeling Examples

83

Figure 6.13. Graph

Leaf

count = 1

Leaf

count = 6

X

Leaf

count = 5

X

Leaf

count = 4

X

Leaf

count = 3

X

Leaf

count = 2

X

X

XX XX

X

XX

X X

Friendship graph
This query first creates a center node, and then once per element in the range, creates a cycle graph
and connects it to the center

Query

CREATE (center)

FOREACH (x IN range(1,3)| CREATE (leaf1),(leaf2),(center)-[:X]->(leaf1),(center)-[:X]->(leaf2),

 (leaf1)-[:X]->(leaf2))

RETURN ID(center) AS id

The id of the center node is returned by the query.

Result
id

0

1 row
Nodes created: 7
Relationships created: 9

Advanced Data Modeling Examples

84

Figure 6.14. Graph

X
X

X
X

X

X

X

X

X

Advanced Data Modeling Examples

85

6.13. A multilevel indexing structure (path tree)
In this example, a multi-level tree structure is used to index event nodes (here Event1, Event2 and Event3,
in this case with a YEAR-MONTH-DAY granularity, making this a timeline indexing structure. However,
this approach should work for a wide range of multi-level ranges.

The structure follows a couple of rules:

• Events can be indexed multiple times by connecting the indexing structure leafs with the events via a
VALUE relationship.

• The querying is done in a path-range fashion. That is, the start- and end path from the indexing root
to the start and end leafs in the tree are calculated

• Using Cypher, the queries following different strategies can be expressed as path sections and put
together using one single query.

The graph below depicts a structure with 3 Events being attached to an index structure at different
leafs.

Figure 6.15. Graph

Root

Year 2010

2010

Year 2011

2011

Month 12

12

Month 01

01

Day 31

31

Day 01

01

Day 02

02

Day 03

03

NEXT

Event1

VALUE

Event2

VALUE

NEXT

VALUE

NEXT

Event3

VALUE

Return zero range
Here, only the events indexed under one leaf (2010-12-31) are returned. The query only needs one path
segment rootPath (color Green) through the index.

Advanced Data Modeling Examples

86

Figure 6.16. Graph

Root

Year 2010

2010

Year 2011

2011

Month 12

12

Month 01

01

Day 31

31

Day 01

01

Day 02

02

Day 03

03

NEXT

Event1

VALUE

Event2

VALUE

NEXT

VALUE

NEXT

Event3

VALUE

Query

MATCH rootPath=(root)-[:`2010`]->()-[:`12`]->()-[:`31`]->(leaf),(leaf)-[:VALUE]->(event)

WHERE root.name = 'Root'

RETURN event.name

ORDER BY event.name ASC

Returning all events on the date 2010-12-31, in this case Event1 and Event2

Result
event.name

"Event1"

"Event2"

2 rows

Return the full range
In this case, the range goes from the first to the last leaf of the index tree. Here, startPath (color
Greenyellow) and endPath (color Green) span up the range, valuePath (color Blue) is then connecting the
leafs, and the values can be read from the middle node, hanging off the values (color Red) path.

Advanced Data Modeling Examples

87

Figure 6.17. Graph

Root

Year 2010

2010

Year 2011

2011

Month 12

12

Month 01

01

Day 31

31

Day 01

01

Day 02

02

Day 03

03

NEXT

Event1

VALUE

Event2

VALUE

NEXT

VALUE

NEXT

Event3

VALUE

Query

MATCH startPath=(root)-[:`2010`]->()-[:`12`]->()-[:`31`]->(startLeaf),

 endPath=(root)-[:`2011`]->()-[:`01`]->()-[:`03`]->(endLeaf),

 valuePath=(startLeaf)-[:NEXT*0..]->(middle)-[:NEXT*0..]->(endLeaf),

 vals=(middle)-[:VALUE]->(event)

WHERE root.name = 'Root'

RETURN event.name

ORDER BY event.name ASC

Returning all events between 2010-12-31 and 2011-01-03, in this case all events.

Result
event.name

"Event1"

"Event2"

"Event2"

"Event3"

4 rows

Return partly shared path ranges
Here, the query range results in partly shared paths when querying the index, making the introduction
of and common path segment commonPath (color Black) necessary, before spanning up startPath (color
Greenyellow) and endPath (color Darkgreen) . After that, valuePath (color Blue) connects the leafs and the
indexed values are returned off values (color Red) path.

Advanced Data Modeling Examples

88

Figure 6.18. Graph

Root

Year 2010

2010

Year 2011

2011

Month 12

12

Month 01

01

Day 31

31

Day 01

01

Day 02

02

Day 03

03

NEXT

Event1

VALUE

Event2

VALUE

NEXT

VALUE

NEXT

Event3

VALUE

Query

MATCH commonPath=(root)-[:`2011`]->()-[:`01`]->(commonRootEnd),

 startPath=(commonRootEnd)-[:`01`]->(startLeaf), endPath=(commonRootEnd)-[:`03`]->(endLeaf),

 valuePath=(startLeaf)-[:NEXT*0..]->(middle)-[:NEXT*0..]->(endLeaf),

 vals=(middle)-[:VALUE]->(event)

WHERE root.name = 'Root'

RETURN event.name

ORDER BY event.name ASC

Returning all events between 2011-01-01 and 2011-01-03, in this case Event2 and Event3.

Result
event.name

"Event2"

"Event3"

2 rows

Advanced Data Modeling Examples

89

6.14. Complex similarity computations
Calculate similarities by complex calculations
Here, a similarity between two players in a game is calculated by the number of times they have eaten
the same food.

Query

MATCH (me { name: 'me' })-[r1:ATE]->(food)<-[r2:ATE]-(you)

WITH me,count(DISTINCT r1) AS H1,count(DISTINCT r2) AS H2,you

MATCH (me)-[r1:ATE]->(food)<-[r2:ATE]-(you)

RETURN sum((1-ABS(r1.times/H1-r2.times/H2))*(r1.times+r2.times)/(H1+H2)) AS similarity

The two players and their similarity measure.

Result
similarity

-30. 0

1 row

Figure 6.19. Graph

nam e = 'm e'

nam e = 'm eat '

ATE
t im es = 10

nam e = 'you'

ATE
t im es = 5

Advanced Data Modeling Examples

90

6.15. The Graphity activity stream model
Find Activity Streams in a network without scaling penalty
This is an approach for scaling the retrieval of activity streams in a friend graph put forward by Rene
Pickard as Graphity6. In short, a linked list is created for every persons friends in the order that the last
activities of these friends have occured. When new activities occur for a friend, all the ordered friend
lists that this friend is part of are reordered, transferring computing load to the time of new event
updates instead of activity stream reads.

Tip
This approach of course makes excessive use of relationship types. This needs to be
taken into consideration when designing a production system with this approach. See
Section 17.5, “Capacity” [284] for the maximum number of relationship types.

To find the activity stream for a person, just follow the linked list of the friend list, and retrieve the
needed amount of activities form the respective activity list of the friends.

Query

MATCH p=(me { name: 'Jane' })-[:jane_knows*]->(friend),(friend)-[:has]->(status)

RETURN me.name, friend.name, status.name, length(p)

ORDER BY length(p)

The returns the activity stream for Jane.

Result
me.name friend.name status.name length(p)

"Jane" "Bill" "Bill_s1" 1

"Jane" "Joe" "Joe_s1" 2

"Jane" "Bob" "Bob_s1" 3

3 rows

6 http://www.rene-pickhardt.de/graphity-an-efficient-graph-model-for-retrieving-the-top-k-news-feeds-for-users-in-social-
networks/

http://www.rene-pickhardt.de/graphity-an-efficient-graph-model-for-retrieving-the-top-k-news-feeds-for-users-in-social-networks/
http://www.rene-pickhardt.de/graphity-an-efficient-graph-model-for-retrieving-the-top-k-news-feeds-for-users-in-social-networks/
http://www.rene-pickhardt.de/graphity-an-efficient-graph-model-for-retrieving-the-top-k-news-feeds-for-users-in-social-networks/

Advanced Data Modeling Examples

91

Figure 6.20. Graph

nam e = 'Bill'

nam e = 'Joe'

jane_knows

nam e = 'Bill_s1'

has

nam e = 'Joe_s1'

has

nam e = 'Bob'

jane_knows

nam e = 'Bill_s2'

next

nam e = 'Ted_s1'

nam e = 'Ted_s2'

next

nam e = 'Jane'

jane_knows

nam e = 'Joe_s2'

next

nam e = 'Bob_s1'

has

nam e = 'Ted'

bob_knows

bob_knows

has

Advanced Data Modeling Examples

92

6.16. User roles in graphs
This is an example showing a hierarchy of roles. What’s interesting is that a tree is not sufficient for
storing this kind of structure, as elaborated below.

This is an implementation of an example found in the article A Model to Represent Directed Acyclic
Graphs (DAG) on SQL Databases7 by Kemal Erdogan8. The article discusses how to store directed
acyclic graphs9 (DAGs) in SQL based DBs. DAGs are almost trees, but with a twist: it may be possible to
reach the same node through different paths. Trees are restricted from this possibility, which makes
them much easier to handle. In our case it is “Ali” and “Engin”, as they are both admins and users and
thus reachable through these group nodes. Reality often looks this way and can’t be captured by tree
structures.

In the article an SQL Stored Procedure solution is provided. The main idea, that also have some support
from scientists, is to pre-calculate all possible (transitive) paths. Pros and cons of this approach:

• decent performance on read
• low performance on insert
• wastes lots of space
• relies on stored procedures

In Neo4j storing the roles is trivial. In this case we use PART_OF (green edges) relationships to model the
group hierarchy and MEMBER_OF (blue edges) to model membership in groups. We also connect the top
level groups to the reference node by ROOT relationships. This gives us a useful partitioning of the graph.
Neo4j has no predefined relationship types, you are free to create any relationship types and give them
the semantics you want.

Lets now have a look at how to retrieve information from the graph. The the queries are done using
Cypher, the Java code is using the Neo4j Traversal API (see Section 34.2, “Traversal Framework Java
API” [611], which is part of Part VII, “Advanced Usage” [558]).

Get the admins
In Cypher, we could get the admins like this:

7 http://www.codeproject.com/Articles/22824/A-Model-to-Represent-Directed-Acyclic-Graphs-DAG-o
8 http://www.codeproject.com/script/Articles/MemberArticles.aspx?amid=274518
9 http://en.wikipedia.org/wiki/Directed_acyclic_graph

http://www.codeproject.com/Articles/22824/A-Model-to-Represent-Directed-Acyclic-Graphs-DAG-o
http://www.codeproject.com/Articles/22824/A-Model-to-Represent-Directed-Acyclic-Graphs-DAG-o
http://www.codeproject.com/script/Articles/MemberArticles.aspx?amid=274518
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.codeproject.com/Articles/22824/A-Model-to-Represent-Directed-Acyclic-Graphs-DAG-o
http://www.codeproject.com/script/Articles/MemberArticles.aspx?amid=274518
http://en.wikipedia.org/wiki/Directed_acyclic_graph

Advanced Data Modeling Examples

93

MATCH ({ name: 'Admins' })<-[:PART_OF*0..]-(group)<-[:MEMBER_OF]-(user)

RETURN user.name, group.name

resulting in:

user.name group.name

"Ali" "Admins"

"Demet" "HelpDesk"

"Engin" "HelpDesk"

3 rows

And here’s the code when using the Java Traversal API:

Node admins = getNodeByName("Admins");

TraversalDescription traversalDescription = db.traversalDescription()

 .breadthFirst()

 .evaluator(Evaluators.excludeStartPosition())

 .relationships(RoleRels.PART_OF, Direction.INCOMING)

 .relationships(RoleRels.MEMBER_OF, Direction.INCOMING);

Traverser traverser = traversalDescription.traverse(admins);

resulting in the output

Found: Ali at depth: 0

Found: HelpDesk at depth: 0

Found: Demet at depth: 1

Found: Engin at depth: 1

The result is collected from the traverser using this code:

String output = "";

for (Path path : traverser)

{

 Node node = path.endNode();

 output += "Found: " + node.getProperty(NAME) + " at depth: "

 + (path.length() - 1) + "\n";

}

Get the group memberships of a user
In Cypher:

MATCH ({ name: 'Jale' })-[:MEMBER_OF]->()-[:PART_OF*0..]->(group)

RETURN group.name

group.name

"ABCTechnicians"

"Technicians"

"Users"

3 rows

Using the Neo4j Java Traversal API, this query looks like:

Node jale = getNodeByName("Jale");

traversalDescription = db.traversalDescription()

 .depthFirst()

 .evaluator(Evaluators.excludeStartPosition())

 .relationships(RoleRels.MEMBER_OF, Direction.OUTGOING)

 .relationships(RoleRels.PART_OF, Direction.OUTGOING);

Advanced Data Modeling Examples

94

traverser = traversalDescription.traverse(jale);

resulting in:

Found: ABCTechnicians at depth: 0

Found: Technicians at depth: 1

Found: Users at depth: 2

Get all groups
In Cypher:

MATCH ({ name: 'Reference_Node' })<-[:ROOT]->()<-[:PART_OF*0..]-(group)

RETURN group.name

group.name

"Users"

"Managers"

"Technicians"

"ABCTechnicians"

"Admins"

"HelpDesk"

6 rows

In Java:

Node referenceNode = getNodeByName("Reference_Node") ;

traversalDescription = db.traversalDescription()

 .breadthFirst()

 .evaluator(Evaluators.excludeStartPosition())

 .relationships(RoleRels.ROOT, Direction.INCOMING)

 .relationships(RoleRels.PART_OF, Direction.INCOMING);

traverser = traversalDescription.traverse(referenceNode);

resulting in:

Found: Users at depth: 0

Found: Admins at depth: 0

Found: Technicians at depth: 1

Found: Managers at depth: 1

Found: HelpDesk at depth: 1

Found: ABCTechnicians at depth: 2

Get all members of all groups
Now, let’s try to find all users in the system being part of any group.

In Cypher, this looks like:

MATCH ({ name: 'Reference_Node' })<-[:ROOT]->(root), p=(root)<-[PART_OF*0..]-()<-[:MEMBER_OF]-(user)

RETURN user.name, min(length(p))

ORDER BY min(length(p)), user.name

and results in the following output:

user.name min(length(p))

"Ali" 1

"Burcu" 1

10 rows

Advanced Data Modeling Examples

95

user.name min(length(p))

"Can" 1

"Engin" 1

"Demet" 2

"Fuat" 2

"Gul" 2

"Hakan" 2

"Irmak" 2

"Jale" 3

10 rows

in Java:

traversalDescription = db.traversalDescription()

 .breadthFirst()

 .evaluator(

 Evaluators.includeWhereLastRelationshipTypeIs(RoleRels.MEMBER_OF));

traverser = traversalDescription.traverse(referenceNode);

Found: Can at depth: 1

Found: Burcu at depth: 1

Found: Engin at depth: 1

Found: Ali at depth: 1

Found: Irmak at depth: 2

Found: Hakan at depth: 2

Found: Fuat at depth: 2

Found: Gul at depth: 2

Found: Demet at depth: 2

Found: Jale at depth: 3

As seen above, querying even more complex scenarios can be done using comparatively short
constructs in Cypher or Java.

96

Chapter 7. Languages

Please see http://neo4j.com/developer/language-guides/ for the current set of drivers!

There’s an included Java example which shows a “low-level” approach to using the Neo4j REST API from
Java.

http://neo4j.com/developer/language-guides/

Languages

97

7.1. How to use the REST API from Java
Creating a graph through the REST API from Java
The REST API uses HTTP and JSON, so that it can be used from many languages and platforms. Still,
when geting started it’s useful to see some patterns that can be re-used. In this brief overview, we’ll
show you how to create and manipulate a simple graph through the REST API and also how to query it.
For these examples, we’ve chosen the Jersey1 client components, which are easily downloaded2 via
Maven.

Start the server
Before we can perform any actions on the server, we need to start it as per Section 23.2, “Server
Installation” [438]. Next up, we’ll check the connection to the server:

WebResource resource = Client.create()

 .resource(SERVER_ROOT_URI);

ClientResponse response = resource.get(ClientResponse.class);

System.out.println(String.format("GET on [%s], status code [%d]",

 SERVER_ROOT_URI, response.getStatus()));

response.close();

If the status of the response is 200 OK, then we know the server is running fine and we can continue. If
the code fails to connect to the server, then please have a look at Part V, “Operations” [434].

Note
If you get any other response than 200 OK (particularly 4xx or 5xx responses) then please
check your configuration and look in the log files in the data/log directory.

Sending Cypher
Using the REST API, we can send Cypher queries to the server. This is the main way to use Neo4j. It
allows control of the transactional boundaries as needed.
Let’s try to use this to list all the nodes in the database which have a name property.

final String txUri = SERVER_ROOT_URI + "transaction/commit";

WebResource resource = Client.create().resource(txUri);

String payload = "{\"statements\" : [{\"statement\" : \"" +query + "\"}]}";

ClientResponse response = resource

 .accept(MediaType.APPLICATION_JSON)

 .type(MediaType.APPLICATION_JSON)

 .entity(payload)

 .post(ClientResponse.class);

System.out.println(String.format(

 "POST [%s] to [%s], status code [%d], returned data: "

 + System.lineSeparator() + "%s",

 payload, txUri, response.getStatus(),

 response.getEntity(String.class)));

response.close();

For more details, see Section 21.1, “Transactional Cypher HTTP endpoint” [298].

Fine-grained REST API calls
For exploratory and special purposes, there is a fine grained REST API, see Chapter 21, REST API [297].
The following sections highlight some of the basic operations.

1 http://jersey.java.net/
2 https://jersey.java.net/nonav/documentation/1.9/user-guide.html#chapter_deps

http://jersey.java.net/
https://jersey.java.net/nonav/documentation/1.9/user-guide.html#chapter_deps
http://jersey.java.net/
https://jersey.java.net/nonav/documentation/1.9/user-guide.html#chapter_deps

Languages

98

Creating a node
The REST API uses POST to create nodes. Encapsulating that in Java is straightforward using the Jersey
client:

final String nodeEntryPointUri = SERVER_ROOT_URI + "node";

// http://localhost:7474/db/data/node

WebResource resource = Client.create()

 .resource(nodeEntryPointUri);

// POST {} to the node entry point URI

ClientResponse response = resource.accept(MediaType.APPLICATION_JSON)

 .type(MediaType.APPLICATION_JSON)

 .entity("{}")

 .post(ClientResponse.class);

final URI location = response.getLocation();

System.out.println(String.format(

 "POST to [%s], status code [%d], location header [%s]",

 nodeEntryPointUri, response.getStatus(), location.toString()));

response.close();

return location;

If the call completes successfully, under the covers it will have sent a HTTP request containing a JSON
payload to the server. The server will then have created a new node in the database and responded
with a 201 Created response and a Location header with the URI of the newly created node.
In our example, we call this functionality twice to create two nodes in our database.

Adding properties
Once we have nodes in our datatabase, we can use them to store useful data. In this case, we’re going
to store information about music in our database. Let’s start by looking at the code that we use to
create nodes and add properties. Here we’ve added nodes to represent "Joe Strummer" and a band
called "The Clash".

URI firstNode = createNode();

addProperty(firstNode, "name", "Joe Strummer");

URI secondNode = createNode();

addProperty(secondNode, "band", "The Clash");

Inside the addProperty method we determine the resource that represents properties for the node and
decide on a name for that property. We then proceed to PUT the value of that property to the server.

String propertyUri = nodeUri.toString() + "/properties/" + propertyName;

// http://localhost:7474/db/data/node/{node_id}/properties/{property_name}

WebResource resource = Client.create()

 .resource(propertyUri);

ClientResponse response = resource.accept(MediaType.APPLICATION_JSON)

 .type(MediaType.APPLICATION_JSON)

 .entity("\"" + propertyValue + "\"")

 .put(ClientResponse.class);

System.out.println(String.format("PUT to [%s], status code [%d]",

 propertyUri, response.getStatus()));

response.close();

If everything goes well, we’ll get a 204 No Content back indicating that the server processed the request
but didn’t echo back the property value.

Adding relationships
Now that we have nodes to represent Joe Strummer and The Clash, we can relate them. The REST
API supports this through a POST of a relationship representation to the start node of the relationship.

Languages

99

Correspondingly in Java we POST some JSON to the URI of our node that represents Joe Strummer, to
establish a relationship between that node and the node representing The Clash.

URI relationshipUri = addRelationship(firstNode, secondNode, "singer",

 "{ \"from\" : \"1976\", \"until\" : \"1986\" }");

Inside the addRelationship method, we determine the URI of the Joe Strummer node’s relationships,
and then POST a JSON description of our intended relationship. This description contains the destination
node, a label for the relationship type, and any attributes for the relation as a JSON collection.

private static URI addRelationship(URI startNode, URI endNode,

 String relationshipType, String jsonAttributes)

 throws URISyntaxException

{

 URI fromUri = new URI(startNode.toString() + "/relationships");

 String relationshipJson = generateJsonRelationship(endNode,

 relationshipType, jsonAttributes);

 WebResource resource = Client.create()

 .resource(fromUri);

 // POST JSON to the relationships URI

 ClientResponse response = resource.accept(MediaType.APPLICATION_JSON)

 .type(MediaType.APPLICATION_JSON)

 .entity(relationshipJson)

 .post(ClientResponse.class);

 final URI location = response.getLocation();

 System.out.println(String.format(

 "POST to [%s], status code [%d], location header [%s]",

 fromUri, response.getStatus(), location.toString()));

 response.close();

 return location;

}

If all goes well, we receive a 201 Created status code and a Location header which contains a URI of the
newly created relation.

Add properties to a relationship
Like nodes, relationships can have properties. Since we’re big fans of both Joe Strummer and the Clash,
we’ll add a rating to the relationship so that others can see he’s a 5-star singer with the band.

addMetadataToProperty(relationshipUri, "stars", "5");

Inside the addMetadataToProperty method, we determine the URI of the properties of the relationship
and PUT our new values (since it’s PUT it will always overwrite existing values, so be careful).

private static void addMetadataToProperty(URI relationshipUri,

 String name, String value) throws URISyntaxException

{

 URI propertyUri = new URI(relationshipUri.toString() + "/properties");

 String entity = toJsonNameValuePairCollection(name, value);

 WebResource resource = Client.create()

 .resource(propertyUri);

 ClientResponse response = resource.accept(MediaType.APPLICATION_JSON)

 .type(MediaType.APPLICATION_JSON)

 .entity(entity)

 .put(ClientResponse.class);

 System.out.println(String.format(

 "PUT [%s] to [%s], status code [%d]", entity, propertyUri,

 response.getStatus()));

 response.close();

Languages

100

}

Assuming all goes well, we’ll get a 204 OK response back from the server (which we can check by calling
ClientResponse.getStatus()) and we’ve now established a very small graph that we can query.

Querying graphs
As with the embedded version of the database, the Neo4j server uses graph traversals to look for data
in graphs. Currently the Neo4j server expects a JSON payload describing the traversal to be POST-ed at
the starting node for the traversal (though this is likely to change in time to a GET-based approach).

To start this process, we use a simple class that can turn itself into the equivalent JSON, ready for POST-
ing to the server, and in this case we’ve hardcoded the traverser to look for all nodes with outgoing
relationships with the type "singer".

// TraversalDefinition turns into JSON to send to the Server

TraversalDefinition t = new TraversalDefinition();

t.setOrder(TraversalDefinition.DEPTH_FIRST);

t.setUniqueness(TraversalDefinition.NODE);

t.setMaxDepth(10);

t.setReturnFilter(TraversalDefinition.ALL);

t.setRelationships(new Relation("singer", Relation.OUT));

Once we have defined the parameters of our traversal, we just need to transfer it. We do this by
determining the URI of the traversers for the start node, and then POST-ing the JSON representation of
the traverser to it.

URI traverserUri = new URI(startNode.toString() + "/traverse/node");

WebResource resource = Client.create()

 .resource(traverserUri);

String jsonTraverserPayload = t.toJson();

ClientResponse response = resource.accept(MediaType.APPLICATION_JSON)

 .type(MediaType.APPLICATION_JSON)

 .entity(jsonTraverserPayload)

 .post(ClientResponse.class);

System.out.println(String.format(

 "POST [%s] to [%s], status code [%d], returned data: "

 + System.lineSeparator() + "%s",

 jsonTraverserPayload, traverserUri, response.getStatus(),

 response.getEntity(String.class)));

response.close();

Once that request has completed, we get back our dataset of singers and the bands they belong to:

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/82/relationships/out",

 "data" : {

 "band" : "The Clash",

 "name" : "Joe Strummer"

 },

 "traverse" : "http://localhost:7474/db/data/node/82/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/82/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/82/properties/{key}",

 "all_relationships" : "http://localhost:7474/db/data/node/82/relationships/all",

 "self" : "http://localhost:7474/db/data/node/82",

 "properties" : "http://localhost:7474/db/data/node/82/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/82/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/82/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/82/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/82/relationships"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/83/relationships/out",

Languages

101

 "data" : {

 },

 "traverse" : "http://localhost:7474/db/data/node/83/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/83/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/83/properties/{key}",

 "all_relationships" : "http://localhost:7474/db/data/node/83/relationships/all",

 "self" : "http://localhost:7474/db/data/node/83",

 "properties" : "http://localhost:7474/db/data/node/83/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/83/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/83/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/83/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/83/relationships"

}]

Phew, is that it?
That’s a flavor of what we can do with the REST API. Naturally any of the HTTP idioms we provide on the
server can be easily wrapped, including removing nodes and relationships through DELETE. Still if you’ve
gotten this far, then switching .post() for .delete() in the Jersey client code should be straightforward.

What’s next?
The HTTP API provides a good basis for implementers of client libraries, it’s also great for HTTP and
REST folks. In the future though we expect that idiomatic language bindings will appear to take
advantage of the REST API while providing comfortable language-level constructs for developers to use,
much as there are similar bindings for the embedded database.

Appendix: the code

• CreateSimpleGraph.java3

• Relation.java4

• TraversalDefinition.java5

3 https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/
CreateSimpleGraph.java
4 https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/Relation.java
5 https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/
TraversalDefinition.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/CreateSimpleGraph.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/Relation.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/TraversalDefinition.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/CreateSimpleGraph.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/CreateSimpleGraph.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/Relation.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/TraversalDefinition.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/TraversalDefinition.java

Part III. Cypher Query Language
The Cypher part is the authoritative source for details on the Cypher Query Language. For a short
introduction, see Section 8.1, “What is Cypher?” [106]. To take your first steps with Cypher, see
Chapter 3, Introduction to Cypher [16]. For the terminology used, see Terminology [636].

103

8. Introduction .. 105
8.1. What is Cypher? .. 106
8.2. Updating the graph ... 109
8.3. Transactions .. 110
8.4. Uniqueness .. 111
8.5. Parameters .. 113
8.6. Compatibility ... 117

9. Syntax ... 118
9.1. Values .. 119
9.2. Expressions .. 120
9.3. Identifiers ... 123
9.4. Operators .. 124
9.5. Comments ... 126
9.6. Patterns ... 127
9.7. Collections ... 131
9.8. Working with NULL ... 134

10. General Clauses ... 136
10.1. Return .. 137
10.2. Order by .. 140
10.3. Limit ... 142
10.4. Skip .. 144
10.5. With ... 146
10.6. Unwind .. 148
10.7. Union ... 150
10.8. Using .. 152

11. Reading Clauses ... 155
11.1. Match ... 156
11.2. Optional Match .. 165
11.3. Where .. 167
11.4. Start ... 175
11.5. Aggregation ... 177
11.6. Load CSV ... 183

12. Writing Clauses .. 186
12.1. Create .. 187
12.2. Merge ... 192
12.3. Set .. 200
12.4. Delete .. 204
12.5. Remove .. 205
12.6. Foreach .. 207
12.7. Create Unique ... 208
12.8. Importing CSV files with Cypher ... 211
12.9. Using Periodic Commit ... 213

13. Functions .. 214
13.1. Predicates .. 215
13.2. Scalar functions ... 218
13.3. Collection functions ... 224
13.4. Mathematical functions .. 229
13.5. String functions ... 238

14. Schema ... 243
14.1. Indexes .. 244
14.2. Constraints .. 247
14.3. Statistics ... 252

15. Query Tuning .. 253
15.1. How are queries executed? .. 254
15.2. How do I profile a query? ... 255
15.3. Basic query tuning example ... 256

Cypher Query Language

104

16. Execution Plans .. 259
16.1. Starting point operators ... 260
16.2. Expand operators .. 263
16.3. Combining operators .. 265
16.4. Row operators ... 270
16.5. Update Operators ... 275

105

Chapter 8. Introduction

To get an overview of Cypher, continue reading Section 8.1, “What is Cypher?” [106]. The rest of this
chapter deals with the context of Cypher statements, like for example transaction management and
how to use parameters. For the Cypher language reference itself see other chapters at Part III, “Cypher
Query Language” [102]. To take your first steps with Cypher, see Chapter 3, Introduction to Cypher [16].
For the terminology used, see Terminology [636].

Introduction

106

8.1. What is Cypher?
Introduction
Cypher is a declarative graph query language that allows for expressive and efficient querying and
updating of the graph store. Cypher is a relatively simple but still very powerful language. Very
complicated database queries can easily be expressed through Cypher. This allows you to focus on
your domain instead of getting lost in database access.

Cypher is designed to be a humane query language, suitable for both developers and (importantly, we
think) operations professionals. Our guiding goal is to make the simple things easy, and the complex
things possible. Its constructs are based on English prose and neat iconography which helps to make
queries more self-explanatory. We have tried to optimize the language for reading and not for writing.

Being a declarative language, Cypher focuses on the clarity of expressing what to retrieve from a graph,
not on how to retrieve it. This is in contrast to imperative languages like Java, scripting languages like
Gremlin1, and the JRuby Neo4j bindings2. This approach makes query optimization an implementation
detail instead of burdening the user with it and requiring her to update all traversals just because the
physical database structure has changed (new indexes etc.).

Cypher is inspired by a number of different approaches and builds upon established practices for
expressive querying. Most of the keywords like WHERE and ORDER BY are inspired by SQL3. Pattern
matching borrows expression approaches from SPARQL4. Some of the collection semantics have been
borrowed from languages such as Haskell and Python.

Structure
Cypher borrows its structure from SQL — queries are built up using various clauses.

Clauses are chained together, and the they feed intermediate result sets between each other. For
example, the matching identifiers from one MATCH clause will be the context that the next clause exists
in.

The query language is comprised of several distinct clauses. You can read more details about them later
in the manual.

Here are a few clauses used to read from the graph:

• MATCH: The graph pattern to match. This is the most common way to get data from the graph.
• WHERE: Not a clause in it’s own right, but rather part of MATCH, OPTIONAL MATCH and WITH. Adds constraints

to a pattern, or filters the intermediate result passing through WITH.
• RETURN: What to return.

Let’s see MATCH and RETURN in action.

Imagine an example graph like the following one:

1 http://gremlin.tinkerpop.com
2 https://github.com/neo4jrb/neo4j/
3 http://en.wikipedia.org/wiki/SQL
4 http://en.wikipedia.org/wiki/SPARQL

http://gremlin.tinkerpop.com
https://github.com/neo4jrb/neo4j/
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/SPARQL
http://gremlin.tinkerpop.com
https://github.com/neo4jrb/neo4j/
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/SPARQL

Introduction

107

Figure 8.1. Example Graph

nam e = 'Sara'

nam e = 'Maria'

friend

nam e = 'Steve'

nam e = 'John'

friend

nam e = 'Joe'

friend

friend

For example, here is a query which finds a user called John and John’s friends (though not his direct
friends) before returning both John and any friends-of-friends that are found.

MATCH (john {name: 'John'})-[:friend]->()-[:friend]->(fof)

RETURN john.name, fof.name

Resulting in:

john.name fof.name

"John" "Maria"

"John" "Steve"

2 rows

Next up we will add filtering to set more parts in motion:

We take a list of user names and find all nodes with names from this list, match their friends and return
only those followed users who have a name property starting with S.

MATCH (user)-[:friend]->(follower)

WHERE user.name IN ['Joe', 'John', 'Sara', 'Maria', 'Steve'] AND follower.name =~ 'S.*'

RETURN user.name, follower.name

Resulting in:

user.name follower.name

"John" "Sara"

"Joe" "Steve"

2 rows

And here are examples of clauses that are used to update the graph:

• CREATE (and DELETE): Create (and delete) nodes and relationships.
• SET (and REMOVE): Set values to properties and add labels on nodes using SET and use REMOVE to remove

them.
• MERGE: Match existing or create new nodes and patterns. This is especially useful together with

uniqueness constraints.

For more Cypher examples, see Chapter 5, Basic Data Modeling Examples [47] as well as the rest of
the Cypher part with details on the language. To use Cypher from Java, see Section 33.14, “Execute

Introduction

108

Cypher Queries from Java” [605]. To take your first steps with Cypher, see Chapter 3, Introduction to
Cypher [16].

Introduction

109

8.2. Updating the graph
Cypher can be used for both querying and updating your graph.

The Structure of Updating Queries

• A Cypher query part can’t both match and update the graph at the same time.
• Every part can either read and match on the graph, or make updates on it.

If you read from the graph and then update the graph, your query implicitly has two parts — the
reading is the first part, and the writing is the second part.

If your query only performs reads, Cypher will be lazy and not actually match the pattern until you ask
for the results. In an updating query, the semantics are that all the reading will be done before any
writing actually happens.

The only pattern where the query parts are implicit is when you first read and then write — any other
order and you have to be explicit about your query parts. The parts are separated using the WITH
statement. WITH is like an event horizon — it’s a barrier between a plan and the finished execution of
that plan.

When you want to filter using aggregated data, you have to chain together two reading query
parts — the first one does the aggregating, and the second filters on the results coming from the first
one.

MATCH (n {name: 'John'})-[:FRIEND]-(friend)

WITH n, count(friend) as friendsCount

WHERE friendsCount > 3

RETURN n, friendsCount

Using WITH, you specify how you want the aggregation to happen, and that the aggregation has to be
finished before Cypher can start filtering.

Here’s an example of updating the graph, writing the aggregated data to the graph:

MATCH (n {name: 'John'})-[:FRIEND]-(friend)

WITH n, count(friend) as friendsCount

SET n.friendCount = friendsCount

RETURN n.friendsCount

You can chain together as many query parts as the available memory permits.

Returning data
Any query can return data. If your query only reads, it has to return data — it serves no purpose if it
doesn’t, and it is not a valid Cypher query. Queries that update the graph don’t have to return anything,
but they can.

After all the parts of the query comes one final RETURN clause. RETURN is not part of any query part — it
is a period symbol at the end of a query. The RETURN clause has three sub-clauses that come with it:
SKIP/LIMIT and ORDER BY.

If you return graph elements from a query that has just deleted them — beware, you are holding a
pointer that is no longer valid. Operations on that node are undefined.

Introduction

110

8.3. Transactions
Any query that updates the graph will run in a transaction. An updating query will always either fully
succeed, or not succeed at all.

Cypher will either create a new transaction or run inside an existing one:

• If no transaction exists in the running context Cypher will create one and commit it once the query
finishes.

• In case there already exists a transaction in the running context, the query will run inside it, and
nothing will be persisted to disk until that transaction is successfully committed.

This can be used to have multiple queries be committed as a single transaction:

1. Open a transaction,
2. run multiple updating Cypher queries,
3. and commit all of them in one go.

Note that a query will hold the changes in memory until the whole query has finished executing. A large
query will consequently need a JVM with lots of heap space.

For using transactions over the REST API, see Section 21.1, “Transactional Cypher HTTP
endpoint” [298].

When writing server extensions or using Neo4j embedded, remember that all iterators returned from
an execution result should be either fully exhausted or closed to ensure that the resources bound to
them will be properly released. Resources include transactions started by the query, so failing to do so
may, for example, lead to deadlocks or other weird behavior.

Introduction

111

8.4. Uniqueness
While pattern matching, Neo4j makes sure to not include matches where the same graph relationship
is found multiple times in a single pattern. In most use cases, this is a sensible thing to do.

Example: looking for a user’s friends of friends should not return said user.

Let’s create a few nodes and relationships:

CREATE (adam:User { name: 'Adam' }),(pernilla:User { name: 'Pernilla' }),(david:User { name: 'David'

 }),

 (adam)-[:FRIEND]->(pernilla),(pernilla)-[:FRIEND]->(david)

Which gives us the following graph:

User

nam e = 'Adam '

User

nam e = 'Pernilla'

FRIEND

User

nam e = 'David'

FRIEND

Now let’s look for friends of friends of Adam:

MATCH (user:User { name: 'Adam' })-[r1:FRIEND]-()-[r2:FRIEND]-(friend_of_a_friend)

RETURN friend_of_a_friend.name AS fofName

fofName

"David"

1 row

In this query, Cypher makes sure to not return matches where the pattern relationships r1 and r2 point
to the same graph relationship.

This is however not always desired. If the query should return the user, it is possible to spread the
matching over multiple MATCH clauses, like so:

MATCH (user:User { name: 'Adam' })-[r1:FRIEND]-(friend)

MATCH (friend)-[r2:FRIEND]-(friend_of_a_friend)

RETURN friend_of_a_friend.name AS fofName

fofName

"David"

"Adam"

2 rows

Note that while the following query looks similar to the previous one, it is actually equivalent to the one
before.

Introduction

112

MATCH (user:User { name: 'Adam' })-[r1:FRIEND]-(friend),(friend)-[r2:FRIEND]-(friend_of_a_friend)

RETURN friend_of_a_friend.name AS fofName

Here, the MATCH clause has a single pattern with two paths, while the previous query has two distinct
patterns.

fofName

"David"

1 row

Introduction

113

8.5. Parameters
Cypher supports querying with parameters. This means developers don’t have to resort to string
building to create a query. In addition to that, it also makes caching of execution plans much easier for
Cypher.

Parameters can be used for literals and expressions in the WHERE clause, for the index value in the
START clause, index queries, and finally for node/relationship ids. Parameters can not be used as for
property names, relationship types and labels, since these patterns are part of the query structure that
is compiled into a query plan.

Accepted names for parameters are letters and numbers, and any combination of these.

For details on using parameters via the Neo4j REST API, see Section 21.1, “Transactional Cypher
HTTP endpoint” [298]. For details on parameters when using the Neo4j embedded Java API, see
Section 33.15, “Query Parameters” [607].

Below follows a comprehensive set of examples of parameter usage. The parameters are given as JSON
here. Exactly how to submit them depends on the driver in use.

String literal
Parameters

{

 "name" : "Johan"

}

Query

MATCH (n)

WHERE n.name = { name }

RETURN n

You can use parameters in this syntax as well:

Parameters

{

 "name" : "Johan"

}

Query

MATCH (n { name: { name }})

RETURN n

Regular expression
Parameters

{

 "regex" : ".*h.*"

}

Query

MATCH (n)

WHERE n.name =~ { regex }

RETURN n.name

Case-sensitive string pattern matching
Parameters

Introduction

114

{

 "name" : "Michael"

}

Query

MATCH (n)

WHERE n.name STARTS WITH { name }

RETURN n.name

Create node with properties
Parameters

{

 "props" : {

 "position" : "Developer",

 "name" : "Andres"

 }

}

Query

CREATE ({ props })

Create multiple nodes with properties
Parameters

{

 "props" : [{

 "position" : "Developer",

 "awesome" : true,

 "name" : "Andres"

 }, {

 "position" : "Developer",

 "name" : "Michael",

 "children" : 3

 }]

}

Query

CREATE (n:Person { props })

RETURN n

Setting all properties on node
Note that this will replace all the current properties.

Parameters

{

 "props" : {

 "position" : "Developer",

 "name" : "Andres"

 }

}

Query

MATCH (n)

WHERE n.name='Michaela'

SET n = { props }

Introduction

115

SKIP and LIMIT
Parameters

{

 "s" : 1,

 "l" : 1

}

Query

MATCH (n)

RETURN n.name

SKIP { s }

LIMIT { l }

Node id
Parameters

{

 "id" : 0

}

Query

MATCH n

WHERE id(n)= { id }

RETURN n.name

Multiple node ids
Parameters

{

 "ids" : [0, 1, 2]

}

Query

MATCH n

WHERE id(n) IN { ids }

RETURN n.name

Index value (legacy indexes)
Parameters

{

 "value" : "Michaela"

}

Query

START n=node:people(name = { value })

RETURN n

Index query (legacy indexes)
Parameters

{

 "query" : "name:Andreas"

}

Introduction

116

Query

START n=node:people({ query })

RETURN n

Introduction

117

8.6. Compatibility
Cypher is still changing rather rapidly. Parts of the changes are internal — we add new pattern
matchers, aggregators and optimizations or write new query planners, which hopefully makes your
queries run faster.

Other changes are directly visible to our users — the syntax is still changing. New concepts are being
added and old ones changed to fit into new possibilities. To guard you from having to keep up with our
syntax changes, Neo4j allows you to use an older parser, but still gain speed from new optimizations.

There are two ways you can select which parser to use. You can configure your database with the
configuration parameter cypher_parser_version, and enter which parser you’d like to use (see the
section called “Supported Language Versions” [117])). Any Cypher query that doesn’t explicitly say
anything else, will get the parser you have configured, or the latest parser if none is configured.

The other way is on a query by query basis. By simply putting CYPHER 2.2 at the beginning, that
particular query will be parsed with the 2.2 version of the parser. Below is an example using the START
clause to access a legacy index:

CYPHER 2.2

START n=node:nodes(name = "A")

RETURN n

Accessing entities by id via START
In versions of Cypher prior to 2.2 it was also possible to access specific nodes or relationships using the
START clause. In this case you could use a syntax like the following:

CYPHER 1.9

START n=node(42)

RETURN n

Note
The use of the START clause to find nodes by ID was deprecated from Cypher 2.0 onwards
and is now entirely disabled in Cypher 2.2 and up. You should instead make use of the MATCH
clause for starting points. See Section 11.1, “Match” [156] for more information on the
correct syntax for this. The START clause should only be used when accessing legacy indexes
(see Chapter 35, Legacy Indexing [617]).

Supported Language Versions
Neo4j 2.3 supports the following versions of the Cypher language:

• Neo4j Cypher 2.3
• Neo4j Cypher 2.2
• Neo4j Cypher 1.9

Tip
Each release of Neo4j supports a limited number of old Cypher Language Versions. When
you upgrade to a new release of Neo4j, please make sure that it supports the Cypher
language version you need. If not, you may need to modify your queries to work with a
newer Cypher language version.

118

Chapter 9. Syntax

The nitty-gritty details of Cypher syntax.

Syntax

119

9.1. Values
All values that are handled by Cypher have a distinct type. The supported types of values are:

• Numeric values,
• String values,
• Boolean values,
• Nodes,
• Relationships,
• Paths,
• Maps from Strings to other values,
• Collections of any other type of value.

Most types of values can be constructed in a query using literal expressions (see Section 9.2,
“Expressions” [120]). Special care must be taken when using NULL, as NULL is a value of every type (see
Section 9.8, “Working with NULL” [134]). Nodes, relationships, and paths are returned as a result of
pattern matching.

Note that labels are not values but are a form of pattern syntax.

Syntax

120

9.2. Expressions
Expressions in general
An expression in Cypher can be:

• A decimal (integer or double) literal: 13, -40000, 3.14, 6.022E23.
• A hexadecimal integer literal (starting with 0x): 0x13zf, 0xFC3A9, -0x66eff.
• An octal integer literal (starting with 0): 01372, 02127, -05671.
• A string literal: "Hello", 'World'.
• A boolean literal: true, false, TRUE, FALSE.
• An identifier: n, x, rel, myFancyIdentifier, `A name with weird stuff in it[]!`.
• A property: n.prop, x.prop, rel.thisProperty, myFancyIdentifier.`(weird property name)`.
• A dynamic property: n["prop"], rel[n.city + n.zip], map[coll[0]].
• A parameter: {param}, {0}
• A collection of expressions: ["a", "b"], [1,2,3], ["a", 2, n.property, {param}], [].
• A function call: length(p), nodes(p).
• An aggregate function: avg(x.prop), count(*).
• A path-pattern: (a)-->()<--(b).
• An operator application: 1 + 2 and 3 < 4.
• A predicate expression is an expression that returns true or false: a.prop = "Hello", length(p) > 10,

has(a.name).
• A regular expression: a.name =~ "Tob.*"
• A case-sensitive string matching expression: a.surname STARTS WITH "Sven", a.surname ENDS WITH "son"

or a.surname CONTAINS "son"
• A CASE expression.

Note on string literals
String literals can contain these escape sequences.

Escape
sequence

Character

\t Tab

\b Backspace

\n Newline

\r Carriage return

\f Form feed

\' Single quote

\" Double quote

\\ Backslash

\uxxxx Unicode UTF-16 code point (4
hex digits must follow the \u)

\Uxxxxxxxx Unicode UTF-32 code point (8
hex digits must follow the \U)

Case Expressions
Cypher supports CASE expressions, which is a generic conditional expression, similar to if/else
statements in other languages. Two variants of CASE exist — the simple form and the generic form.

Syntax

121

Simple CASE
The expression is calculated, and compared in order with the WHEN clauses until a match is found. If no
match is found the expression in the ELSE clause is used, or null, if no ELSE case exists.

Syntax:

CASE test

WHEN value THEN result

[WHEN ...]

[ELSE default]

END

Arguments:

• test: A valid expression.
• value: An expression whose result will be compared to the test expression.
• result: This is the result expression used if the value expression matches the test expression.
• default: The expression to use if no match is found.

Query

MATCH (n)

RETURN

CASE n.eyes

WHEN 'blue'

THEN 1

WHEN 'brown'

THEN 2

ELSE 3 END AS result

Result
result

2

1

2

1

3

5 rows

Generic CASE
The predicates are evaluated in order until a true value is found, and the result value is used. If no
match is found the expression in the ELSE clause is used, or null, if no ELSE case exists.

Syntax:

CASE

WHEN predicate THEN result

[WHEN ...]

[ELSE default]

END

Arguments:

• predicate: A predicate that is tested to find a valid alternative.
• result: This is the result expression used if the predicate matches.
• default: The expression to use if no match is found.

Query

Syntax

122

MATCH (n)

RETURN

CASE

WHEN n.eyes = 'blue'

THEN 1

WHEN n.age < 40

THEN 2

ELSE 3 END AS result

Result
result

3

1

2

1

3

5 rows

Syntax

123

9.3. Identifiers
When you reference parts of a pattern or a query, you do so by naming them. The names you give the
different parts are called identifiers.

In this example:

MATCH (n)-->(b) RETURN b

The identifiers are n and b.

Identifier names are case sensitive, and can contain underscores and alphanumeric characters (a-z,
0-9), but must always start with a letter. If other characters are needed, you can quote the identifier
using backquote (`) signs.

The same rules apply to property names.

Identifiers are only visible in the same query part
Identifiers are not carried over to subsequent queries. If multiple query parts are chained
together using WITH, identifiers have to be listed in the WITH clause to be carried over to the
next part. For more information see Section 10.5, “With” [146].

Syntax

124

9.4. Operators
Mathematical operators
The mathematical operators are +, -, *, / and %, ^.

Comparison operators
The comparison operators are =, <>, <, >, <=, >=, IS NULL, and IS NOT NULL. See the section called “Equality
and Comparison of Values” [124] on how they behave.

The operators STARTS WITH, ENDS WITH and CONTAINS can be used to search for a string value by it’s
content.

Boolean operators
The boolean operators are AND, OR, XOR, NOT.

String operators
Strings can be concatenated using the + operator. For regular expression matching the =~ operator is
used.

Collection operators
Collections can be concatenated using the + operator. To check if an element exists in a collection, you
can use the IN operator.

Property operators

Note
Since version 2.0, the previously existing property operators ? and ! have been removed.
This syntax is no longer supported. Missing properties are now returned as NULL. Please use
(NOT(has(<ident>.prop)) OR <ident>.prop=<value>) if you really need the old behavior of the
? operator. — Also, the use of ? for optional relationships has been removed in favor of the
newly introduced OPTIONAL MATCH clause.

Equality and Comparison of Values

Equality
Cypher supports comparing values (see Section 9.1, “Values” [119]) by equality using the = and <>
operators.

Values of the same type are only equal if they are the same identical value (e.g. 3 = 3 and "x" <> "xy").

Maps are only equal if they map exactly the same keys to equal values and collections are only equal if
they contain the same sequence of equal values (e.g. [3, 4] = [1+2, 8/2]).

Values of different types are considered as equal according to the following rules:

• Paths are treated as collections of alternating nodes and relationships and are equal to all collections
that contain that very same sequence of nodes and relationships.

• Testing any value against NULL with both the = and the <> operators always is NULL. This includes NULL =
NULL and NULL <> NULL. The only way to reliably test if a value v is NULL is by using the special v IS NULL,
or v IS NOT NULL equality operators.

All other combinations of types of values cannot be compared with each other. Especially, nodes,
relationships, and literal maps are incomparable with each other.

It is an error to compare values that cannot be compared.

Syntax

125

Ordering and Comparison of Values
The comparison operators <=, < (for ascending) and >=, > (for descending) are used to compare values
for ordering. The following points give some details on how the comparison is performed.

• Numerical values are compared for ordering using numerical order (e.g. 3 < 4 is true).
• The special value java.lang.Double.NaN is regarded as being larger than all other numbers.
• String values are compared for ordering using lexicographic order (e.g. "x" < "xy").
• Boolean values are compared for ordering such that false < true.
• Comparing for ordering when one argument is NULL is NULL (e.g. NULL < 3 is NULL).
• It is an error to compare other types of values with each other for ordering.

Chaining Comparison Operations
Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y AND y <= z.

Formally, if a, b, c, ..., y, z are expressions and op1, op2, ..., opN are comparison operators, then a
op1 b op2 c ... y opN z is equivalent to a op1 b and b op2 c and ... y opN z.

Note that a op1 b op2 c does not imply any kind of comparison between a and c, so that, e.g., x < y > z
is perfectly legal (though perhaps not pretty).

The example:

MATCH (n) WHERE 21 < n.age <= 30 RETURN n

is equivalent to

MATCH (n) WHERE 21 < n.age AND n.age <= 30 RETURN n

Thus it will match all nodes where the age is between 21 and 30.

This syntax extends to all equality and inequality comparisons, as well as extending to chains longer
than three.

For example:

a < b = c <= d <> e

Is equivalent to:

a < b AND b = c AND c <= d AND d <> e

For other comparison operators, see the section called “Comparison operators” [124].

Syntax

126

9.5. Comments
To add comments to your queries, use double slash. Examples:

MATCH (n) RETURN n //This is an end of line comment

MATCH (n)

//This is a whole line comment

RETURN n

MATCH (n) WHERE n.property = "//This is NOT a comment" RETURN n

Syntax

127

9.6. Patterns
Patterns and pattern-matching are at the very heart of Cypher, so being effective with Cypher requires
a good understanding of patterns.

Using patterns, you describe the shape of the data you’re looking for. For example, in the MATCH clause
you describe the shape with a pattern, and Cypher will figure out how to get that data for you.

The pattern describes the data using a form that is very similar to how one typically draws the shape of
property graph data on a whiteboard: usually as circles (representing nodes) and arrows between them
to represent relationships.

Patterns appear in multiple places in Cypher: in MATCH, CREATE and MERGE clauses, and in pattern
expressions. Each of these is described in more details in:

• Section 11.1, “Match” [156]
• Section 11.2, “Optional Match” [165]
• Section 12.1, “Create” [187]
• Section 12.2, “Merge” [192]
• the section called “Using path patterns in WHERE” [171]

Patterns for nodes
The very simplest “shape” that can be described in a pattern is a node. A node is described using a pair
of parentheses, and is typically given a name. For example:

(a)

This simple pattern describes a single node, and names that node using the identifier a.

Note that the parentheses may be omitted, but only when there are no labels or properties specified
for the node pattern.

Patterns for related nodes
More interesting is patterns that describe multiple nodes and relationships between them. Cypher
patterns describe relationships by employing an arrow between two nodes. For example:

(a)-->(b)

This pattern describes a very simple data shape: two nodes, and a single relationship from one to the
other. In this example, the two nodes are both named as a and b respectively, and the relationship is
“directed”: it goes from a to b.

This way of describing nodes and relationships can be extended to cover an arbitrary number of nodes
and the relationships between them, for example:

(a)-->(b)<--(c)

Such a series of connected nodes and relationships is called a "path".

Note that the naming of the nodes in these patterns is only necessary should one need to refer to the
same node again, either later in the pattern or elsewhere in the Cypher query. If this is not necessary
then the name may be omitted, like so:

(a)-->()<--(c)

Labels
In addition to simply describing the shape of a node in the pattern, one can also describe attributes.
The most simple attribute that can be described in the pattern is a label that the node must have. For
example:

Syntax

128

(a:User)-->(b)

One can also describe a node that has multiple labels:

(a:User:Admin)-->(b)

Specifying properties
Nodes and relationships are the fundamental structures in a graph. Neo4j uses properties on both of
these to allow for far richer models.

Properties can be expressed in patterns using a map-construct: curly brackets surrounding a number of
key-expression pairs, separated by commas. E.g. a node with two properties on it would look like:

(a { name: "Andres", sport: "Brazilian Ju-Jitsu" })

A relationship with expectations on it would could look like:

(a)-[{blocked: false}]->(b)

When properties appear in patterns, they add an additional constraint to the shape of the data. In
the case of a CREATE clause, the properties will be set in the newly created nodes and relationships.
In the case of a MERGE clause, the properties will be used as additional constraints on the shape any
existing data must have (the specified properties must exactly match any existing data in the graph).
If no matching data is found, then MERGE behaves like CREATE and the properties will be set in the newly
created nodes and relationships.

Note that patterns supplied to CREATE may use a single parameter to specify properties, e.g: CREATE
(node {paramName}). This is not possible with patterns used in other clauses, as Cypher needs to know
the property names at the time the query is compiled, so that matching can be done effectively.

Describing relationships
The simplest way to describe a relationship is by using the arrow between two nodes, as in the
previous examples. Using this technique, you can describe that the relationship should exist and the
directionality of it. If you don’t care about the direction of the relationship, the arrow head can be
omitted, like so:

(a)--(b)

As with nodes, relationships may also be given names. In this case, a pair of square brackets is used to
break up the arrow and the identifier is placed between. For example:

(a)-[r]->(b)

Much like labels on nodes, relationships can have types. To describe a relationship with a specific type,
you can specify this like so:

(a)-[r:REL_TYPE]->(b)

Unlike labels, relationships can only have one type. But if we’d like to describe some data such that the
relationship could have any one of a set of types, then they can all be listed in the pattern, separating
them with the pipe symbol | like this:

(a)-[r:TYPE1|TYPE2]->(b)

Note that this form of pattern can only be used to describe existing data (ie. when using a pattern
with MATCH or as an expression). It will not work with CREATE or MERGE, since it’s not possible to create a
relationship with multiple types.

As with nodes, the name of the relationship can always be omitted, in this case like so:

(a)-[:REL_TYPE]->(b)

Syntax

129

Variable length

Caution
Variable length pattern matching in versions 2.1.x and earlier does not enforce relationship
uniqueness for patterns described inside of a single MATCH clause. This means that a query
such as the following: MATCH (a)-[r]->(b), (a)-[rs*]->(c) RETURN * may include r as part of
the rs set. This behavior has changed in versions 2.2.0 and later, in such a way that r will be
excluded from the result set, as this better adheres to the rules of relationship uniqueness
as documented here Section 8.4, “Uniqueness” [111]. If you have a query pattern that needs
to retrace relationships rather than ignoring them as the relationship uniqueness rules
normally dictate, you can accomplish this using multiple match clauses, as follows: MATCH
(a)-[r]->(b) MATCH (a)-[rs*]->(c) RETURN *. This will work in all versions of Neo4j that
support the MATCH clause, namely 2.0.0 and later.

Rather than describing a long path using a sequence of many node and relationship descriptions in a
pattern, many relationships (and the intermediate nodes) can be described by specifying a length in the
relationship description of a pattern. For example:

(a)-[*2]->(b)

This describes a graph of three nodes and two relationship, all in one path (a path of length 2). This is
equivalent to:

(a)-->()-->(b)

A range of lengths can also be specified: such relationship patterns are called “variable length
relationships”. For example:

(a)-[*3..5]->(b)

This is a minimum length of 3, and a maximum of 5. It describes a graph of either 4 nodes and 3
relationships, 5 nodes and 4 relationships or 6 nodes and 5 relationships, all connected together in a
single path.

Either bound can be omitted. For example, to describe paths of length 3 or more, use:

(a)-[*3..]->(b)

And to describe paths of length 5 or less, use:

(a)-[*..5]->(b)

Both bounds can be omitted, allowing paths of any length to be described:

(a)-[*]->(b)

As a simple example, let’s take the query below:

Query

MATCH (me)-[:KNOWS*1..2]-(remote_friend)

WHERE me.name = "Filipa"

RETURN remote_friend.name

Result
remote_friend.name

"Dilshad"

"Anders"

2 rows

Syntax

130

This query finds data in the graph which a shape that fits the pattern: specifically a node (with the name
property Filipa) and then the KNOWS related nodes, one or two steps out. This is a typical example of
finding first and second degree friends.

Note that variable length relationships can not be used with CREATE and MERGE.

Assigning to path identifiers
As described above, a series of connected nodes and relationships is called a "path". Cypher allows
paths to be named using an identifer, like so:

p = (a)-[*3..5]->(b)

You can do this in MATCH, CREATE and MERGE, but not when using patterns as expressions.

Syntax

131

9.7. Collections
Cypher has good support for collections.

Collections in general
A literal collection is created by using brackets and separating the elements in the collection with
commas.
Query

RETURN [0,1,2,3,4,5,6,7,8,9] AS collection

Result
collection

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

1 row

In our examples, we’ll use the range function. It gives you a collection containing all numbers between
given start and end numbers. Range is inclusive in both ends.
To access individual elements in the collection, we use the square brackets again. This will extract from
the start index and up to but not including the end index.
Query

RETURN range(0,10)[3]

Result
range(0,10)[3]

3

1 row

You can also use negative numbers, to start from the end of the collection instead.
Query

RETURN range(0,10)[-3]

Result
range(0,10)[-3]

8

1 row

Finally, you can use ranges inside the brackets to return ranges of the collection.
Query

RETURN range(0,10)[0..3]

Result
range(0,10)[0..3]

[0, 1, 2]

1 row

Query

RETURN range(0,10)[0..-5]

Result
range(0,10)[0..-5]

[0, 1, 2, 3, 4, 5]

1 row

Syntax

132

Query

RETURN range(0,10)[-5..]

Result
range(0,10)[-5..]

[6, 7, 8, 9, 10]

1 row

Query

RETURN range(0,10)[..4]

Result
range(0,10)[..4]

[0, 1, 2, 3]

1 row

Note
Out-of-bound slices are simply truncated, but out-of-bound single elements return NULL.

Query

RETURN range(0,10)[15]

Result
range(0,10)[15]

<null>

1 row

Query

RETURN range(0,10)[5..15]

Result
range(0,10)[5..15]

[5, 6, 7, 8, 9, 10]

1 row

You can get the size of a collection like this:

Query

RETURN size(range(0,10)[0..3])

Result
size(range(0,10)[0..3])

3

1 row

List comprehension
List comprehension is a syntactic construct available in Cypher for creating a collection based on
existing collections. It follows the form of the mathematical set-builder notation (set comprehension)
instead of the use of map and filter functions.

Query

Syntax

133

RETURN [x IN range(0,10) WHERE x % 2 = 0 | x^3] AS result

Result
result

[0. 0, 8. 0, 64. 0, 216. 0, 512. 0, 1000. 0]

1 row

Either the WHERE part, or the expression, can be omitted, if you only want to filter or map respectively.

Query

RETURN [x IN range(0,10) WHERE x % 2 = 0] AS result

Result
result

[0, 2, 4, 6, 8, 10]

1 row

Query

RETURN [x IN range(0,10)| x^3] AS result

Result
result

[0. 0, 1. 0, 8. 0, 27. 0, 64. 0, 125. 0, 216. 0, 343. 0, 512. 0, 729. 0, 1000. 0]

1 row

Literal maps
From Cypher, you can also construct maps. Through REST you will get JSON objects; in Java they will be
java.util.Map<String,Object>.

Query

RETURN { key : "Value", collectionKey: [{ inner: "Map1" }, { inner: "Map2" }]} AS result

Result
result

{key -> "Value", collectionKey -> [{inner -> "Map1"}, {inner -> "Map2"}]}

1 row

Syntax

134

9.8. Working with NULL
Introduction to NULL in Cypher
In Cypher, NULL is used to represent missing or undefined values. Conceptually, NULL means “a missing
unknown value” and it is treated somewhat differently from other values. For example getting a
property from a node that does not have said property produces NULL. Most expressions that take NULL
as input will produce NULL. This includes boolean expressions that are used as predicates in the WHERE
clause. In this case, anything that is not TRUE is interpreted as being false.

NULL is not equal to NULL. Not knowing two values does not imply that they are the same value. So the
expression NULL = NULL yields NULL and not TRUE.

Logical operations with NULL
The logical operators (AND, OR, XOR, IN, NOT) treat NULL as the “unknown” value of three-valued logic. Here is
the truth table for AND, OR and XOR.

a b a AND b a OR b a XOR b

FALSE FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL NULL

FALSE TRUE FALSE TRUE TRUE

TRUE FALSE FALSE TRUE TRUE

TRUE NULL NULL TRUE NULL

TRUE TRUE TRUE TRUE FALSE

NULL FALSE FALSE NULL NULL

NULL NULL NULL NULL NULL

NULL TRUE NULL TRUE NULL

The IN operator and NULL
The IN operator follows similar logic. If Cypher knows that something exists in a collection, the result
will be TRUE. Any collection that contains a NULL and doesn’t have a matching element will return NULL.
Otherwise, the result will be false. Here is a table with examples:

Expression Result

2 IN [1, 2, 3] TRUE

2 IN [1, NULL, 3] NULL

2 IN [1, 2, NULL] TRUE

2 IN [1] FALSE

2 IN [] FALSE

NULL IN [1,2,3] NULL

NULL IN [1,NULL,3] NULL

NULL IN [] FALSE

Using ALL, ANY, NONE, and SINGLE follows a similar rule. If the result can be calculated definitely, TRUE or
FALSE is returned. Otherwise NULL is produced.

Expressions that return NULL

• Getting a missing element from a collection: [][0], head([])

Syntax

135

• Trying to access a property that does not exist on a node or relationship: n.missingProperty
• Comparisons when either side is NULL: 1 < NULL
• Arithmetic expressions containing NULL: 1 + NULL
• Function calls where any arguments are NULL: sin(NULL)

136

Chapter 10. General Clauses

General Clauses

137

10.1. Return
The RETURN clause defines what to include in the query result set.

In the RETURN part of your query, you define which parts of the pattern you are interested in. It can be
nodes, relationships, or properties on these.

Tip
If what you actually want is the value of a property, make sure to not return the full node/
relationship. This will improve performance.

Figure 10.1. Graph

nam e = 'A'
happy = 'Yes! '
age = 55

nam e = 'B'

BLOCKS KNOWS

Return nodes
To return a node, list it in the RETURN statement.

Query

MATCH (n { name: "B" })

RETURN n

The example will return the node.

Result
n

Node[1]{name:"B"}

1 row

Return relationships
To return a relationship, just include it in the RETURN list.

Query

MATCH (n { name: "A" })-[r:KNOWS]->(c)

RETURN r

The relationship is returned by the example.

Result
r

:KNOWS[0]{}

1 row

Return property
To return a property, use the dot separator, like this:

General Clauses

138

Query

MATCH (n { name: "A" })

RETURN n.name

The value of the property name gets returned.

Result
n.name

"A"

1 row

Return all elements
When you want to return all nodes, relationships and paths found in a query, you can use the * symbol.
Query

MATCH p=(a { name: "A" })-[r]->(b)

RETURN *

This returns the two nodes, the relationship and the path used in the query.

Result
a b p r

Node[0]{name:"A",

 happy:"Yes!", age:55}

Node[1]{name:"B"} [Node[0]{name:"A",

 happy:"Yes!",

 age:55}, :BLOCKS[1]{},

 Node[1]{name:"B"}]

:BLOCKS[1]{}

Node[0]{name:"A",

 happy:"Yes!", age:55}

Node[1]{name:"B"} [Node[0]{name:"A",

 happy:"Yes!",

 age:55}, :KNOWS[0]{},

 Node[1]{name:"B"}]

:KNOWS[0]{}

2 rows

Identifier with uncommon characters
To introduce a placeholder that is made up of characters that are outside of the english alphabet, you
can use the ` to enclose the identifier, like this:
Query

MATCH (`This isn't a common identifier`)

WHERE `This isn't a common identifier`.name='A'

RETURN `This isn't a common identifier`.happy

The node with name "A" is returned

Result
`This isn't a common identifier`.happy

"Yes!"

1 row

Column alias
If the name of the column should be different from the expression used, you can rename it by using AS
<new name>.
Query

MATCH (a { name: "A" })

RETURN a.age AS SomethingTotallyDifferent

General Clauses

139

Returns the age property of a node, but renames the column.

Result
SomethingTotallyDifferent

55

1 row

Optional properties
If a property might or might not be there, you can still select it as usual. It will be treated as NULL if it is
missing

Query

MATCH (n)

RETURN n.age

This example returns the age when the node has that property, or null if the property is not there.

Result
n.age

55

<null>

2 rows

Other expressions
Any expression can be used as a return item — literals, predicates, properties, functions, and everything
else.

Query

MATCH (a { name: "A" })

RETURN a.age > 30, "I'm a literal",(a)-->()

Returns a predicate, a literal and function call with a pattern expression parameter.

Result
a.age > 30 "I'm a literal" (a)-->()

true "I'm a literal" [[Node[0]{name:"A", happy:"Yes!",

 age:55}, :BLOCKS[1]{}, Node[1]

{name:"B"}], [Node[0]{name:"A",

 happy:"Yes!", age:55}, :KNOWS[0]

{}, Node[1]{name:"B"}]]

1 row

Unique results
DISTINCT retrieves only unique rows depending on the columns that have been selected to output.

Query

MATCH (a { name: "A" })-->(b)

RETURN DISTINCT b

The node named B is returned by the query, but only once.

Result
b

Node[1]{name:"B"}

1 row

General Clauses

140

10.2. Order by
ORDER BY is a sub-clause following RETURN or WITH, and it specifies that the output should be
sorted and how.

Note that you can not sort on nodes or relationships, just on properties on these. ORDER BY relies on
comparisons to sort the output, see the section called “Ordering and Comparison of Values” [125].

In terms of scope of identifiers, ORDER BY follows special rules, depending on if the projecting RETURN
or WITH clause is either aggregating or DISTINCT. If it is an aggregating or DISTINCT projection, only the
identifiers available in the projection are available. If the projection does not alter the output cardinality
(which aggregation and DISTINCT do), identifiers available from before the projecting clause are also
available. When the projection clause shadows already existing identifiers, only the new identifiers are
available.

Lastly, it is not allowed to use aggregating expressions in the ORDER BY sub-clause if they are not also
listed in the projecting clause. This last rule is to make sure that ORDER BY does not change the results,
only the order of them.

Figure 10.2. Graph

nam e = 'A'
age = 34
length = 170

nam e = 'B'
age = 34

KNOWS

nam e = 'C'
age = 32
length = 185

KNOWS

Order nodes by property
ORDER BY is used to sort the output.

Query

MATCH (n)

RETURN n

ORDER BY n.name

The nodes are returned, sorted by their name.

Result
n

Node[0]{name:"A", age:34, length:170}

Node[1]{name:"B", age:34}

Node[2]{name:"C", age:32, length:185}

3 rows

General Clauses

141

Order nodes by multiple properties
You can order by multiple properties by stating each identifier in the ORDER BY clause. Cypher will sort
the result by the first identifier listed, and for equals values, go to the next property in the ORDER BY
clause, and so on.

Query

MATCH (n)

RETURN n

ORDER BY n.age, n.name

This returns the nodes, sorted first by their age, and then by their name.

Result
n

Node[2]{name:"C", age:32, length:185}

Node[0]{name:"A", age:34, length:170}

Node[1]{name:"B", age:34}

3 rows

Order nodes in descending order
By adding DESC[ENDING] after the identifier to sort on, the sort will be done in reverse order.

Query

MATCH (n)

RETURN n

ORDER BY n.name DESC

The example returns the nodes, sorted by their name reversely.

Result
n

Node[2]{name:"C", age:32, length:185}

Node[1]{name:"B", age:34}

Node[0]{name:"A", age:34, length:170}

3 rows

Ordering NULL
When sorting the result set, NULL will always come at the end of the result set for ascending sorting, and
first when doing descending sort.

Query

MATCH (n)

RETURN n.length, n

ORDER BY n.length

The nodes are returned sorted by the length property, with a node without that property last.

Result
n.length n

170 Node[0]{name:"A", age:34, length:170}

185 Node[2]{name:"C", age:32, length:185}

<null> Node[1]{name:"B", age:34}

3 rows

General Clauses

142

10.3. Limit
LIMIT constrains the number of rows in the output.

LIMIT accepts any expression that evaluates to a positive integer — however the expression cannot refer
to nodes or relationships.

Figure 10.3. Graph

nam e = 'D' nam e = 'E'

nam e = 'A'

KNOWS KNOWS

nam e = 'C'

KNOWS

nam e = 'B'

KNOWS

Return first part
To return a subset of the result, starting from the top, use this syntax:

Query

MATCH (n)

RETURN n

ORDER BY n.name

LIMIT 3

The top three items are returned by the example query.

Result
n

Node[2]{name:"A"}

Node[3]{name:"B"}

Node[4]{name:"C"}

3 rows

Return first from expression
Limit accepts any expression that evaluates to a positive integer as long as it is not referring to any
external identifiers:

Parameters

{

 "p" : 12

}

Query

MATCH (n)

RETURN n

ORDER BY n.name

LIMIT toInt(3 * rand())+ 1

Returns one to three top items

General Clauses

143

Result
n

Node[2]{name:"A"}

Node[3]{name:"B"}

2 rows

General Clauses

144

10.4. Skip
SKIP defines from which row to start including the rows in the output.

By using SKIP, the result set will get trimmed from the top. Please note that no guarantees are made on
the order of the result unless the query specifies the ORDER BY clause. SKIP accepts any expression that
evaluates to a positive integer — however the expression cannot refer to nodes or relationships.

Figure 10.4. Graph

nam e = 'D' nam e = 'E'

nam e = 'A'

KNOWS KNOWS

nam e = 'C'

KNOWS

nam e = 'B'

KNOWS

Skip first three
To return a subset of the result, starting from the fourth result, use the following syntax:

Query

MATCH (n)

RETURN n

ORDER BY n.name

SKIP 3

The first three nodes are skipped, and only the last two are returned in the result.

Result
n

Node[0]{name:"D"}

Node[1]{name:"E"}

2 rows

Return middle two
To return a subset of the result, starting from somewhere in the middle, use this syntax:

Query

MATCH (n)

RETURN n

ORDER BY n.name

SKIP 1

LIMIT 2

Two nodes from the middle are returned.

Result
n

Node[3]{name:"B"}

Node[4]{name:"C"}

2 rows

General Clauses

145

Skip first from expression
Skip accepts any expression that evaluates to a positive integer as long as it is not referring to any
external identifiers:

Query

MATCH (n)

RETURN n

ORDER BY n.name

SKIP toInt(3*rand())+ 1

The first three nodes are skipped, and only the last two are returned in the result.

Result
n

Node[3]{name:"B"}

Node[4]{name:"C"}

Node[0]{name:"D"}

Node[1]{name:"E"}

4 rows

General Clauses

146

10.5. With
The WITH clause allows query parts to be chained together, piping the results from one to
be used as starting points or criteria in the next.

Using WITH, you can manipulate the output before it is passed on to the following query parts. The
manipulations can be of the shape and/or number of entries in the result set.

One common usage of WITH is to limit the number of entries that are then passed on to other MATCH
clauses. By combining ORDER BY and LIMIT, it’s possible to get the top X entries by some criteria, and then
bring in additional data from the graph.

Another use is to filter on aggregated values. WITH is used to introduce aggregates which can then by
used in predicates in WHERE. These aggregate expressions create new bindings in the results. WITH can
also, like RETURN, alias expressions that are introduced into the results using the aliases as binding name.

WITH is also used to separate reading from updating of the graph. Every part of a query must be either
read-only or write-only. When going from a writing part to a reading part, the switch must be done with
a WITH clause.

Figure 10.5. Graph

nam e = 'David'

nam e = 'Anders'

KNOWS

nam e = 'Ceasar'

BLOCKS

nam e = 'Bossm an'

KNOWS

nam e = 'Em il'

KNOWS

BLOCKS

KNOWS

Filter on aggregate function results
Aggregated results have to pass through a WITH clause to be able to filter on.

Query

MATCH (david { name: "David" })--(otherPerson)-->()

WITH otherPerson, count(*) AS foaf

WHERE foaf > 1

RETURN otherPerson

The person connected to David with the at least more than one outgoing relationship will be returned
by the query.

General Clauses

147

Result
otherPerson

Node[2]{name:"Anders"}

1 row

Sort results before using collect on them
You can sort your results before passing them to collect, thus sorting the resulting collection.

Query

MATCH (n)

WITH n

ORDER BY n.name DESC LIMIT 3

RETURN collect(n.name)

A list of the names of people in reverse order, limited to 3, in a collection.

Result
collect(n.name)

["Emil", "David", "Ceasar"]

1 row

Limit branching of your path search
You can match paths, limit to a certain number, and then match again using those paths as a base As
well as any number of similar limited searches.

Query

MATCH (n { name: "Anders" })--(m)

WITH m

ORDER BY m.name DESC LIMIT 1

MATCH (m)--(o)

RETURN o.name

Starting at Anders, find all matching nodes, order by name descending and get the top result, then find
all the nodes connected to that top result, and return their names.

Result
o.name

"Bossman"

"Anders"

2 rows

General Clauses

148

10.6. Unwind
UNWIND expands a collection into a sequence of rows.

With UNWIND, you can transform any collection back into individual rows. These collections can be
parameters that were passed in, previously COLLECTed result or other collection expressions.

One common usage of unwind is to create distinct collections. Another is to create data from
parameter collections that are provided to the query.

UNWIND requires you to specify a new name for the inner values.

Unwind a collection
We want to transform the literal collection into rows named x and return them.

Query

UNWIND[1,2,3] AS x

RETURN x

Each value of the original collection is returned as an individual row.

Result
x

1

2

3

3 rows

Create a distinct collection
We want to transform a collection of duplicates into a set using DISTINCT.

Query

WITH [1,1,2,2] AS coll UNWIND coll AS x

WITH DISTINCT x

RETURN collect(x) AS SET

Each value of the original collection is unwound and passed through DISTINCT to create a unique set.

Result
set

[1, 2]

1 row

Create nodes from a collection parameter
Create a number of nodes and relationships from a parameter-list without using FOREACH.

Parameters

{

 "events" : [{

 "year" : 2014,

 "id" : 1

 }, {

 "year" : 2014,

 "id" : 2

 }]

General Clauses

149

}

Query

UNWIND { events } AS event

MERGE (y:Year { year:event.year })

MERGE (y)<-[:IN]-(e:Event { id:event.id })

RETURN e.id AS x

ORDER BY x

Each value of the original collection is unwound and passed through MERGE to find or create the nodes
and relationships.

Result
x

1

2

2 rows
Nodes created: 3
Relationships created: 2
Properties set: 3
Labels added: 3

General Clauses

150

10.7. Union
The UNION clause is used to combine the result of multiple queries.

It combines the results of two or more queries into a single result set that includes all the rows that
belong to all queries in the union.

The number and the names of the columns must be identical in all queries combined by using UNION.

To keep all the result rows, use UNION ALL. Using just UNION will combine and remove duplicates from the
result set.

Figure 10.6. Graph

Actor

nam e = 'Anthony Hopkins'

Movie

t it le = 'Hitchcock'

ACTS_IN
Actor

nam e = 'Helen Mirren'

KNOWS

ACTS_IN

Actor

nam e = 'Hitchcock'

Combine two queries
Combining the results from two queries is done using UNION ALL.

Query

MATCH (n:Actor)

RETURN n.name AS name

UNION ALL MATCH (n:Movie)

RETURN n.title AS name

The combined result is returned, including duplicates.

Result
name

"Anthony Hopkins"

"Helen Mirren"

"Hitchcock"

"Hitchcock"

4 rows

Combine two queries and remove duplicates
By not including ALL in the UNION, duplicates are removed from the combined result set

Query

MATCH (n:Actor)

General Clauses

151

RETURN n.name AS name

UNION

MATCH (n:Movie)

RETURN n.title AS name

The combined result is returned, without duplicates.

Result
name

"Anthony Hopkins"

"Helen Mirren"

"Hitchcock"

3 rows

General Clauses

152

10.8. Using
USING is used to influence the decisions of the planner when building an execution plan for
a query. NOTE: Forcing planner behaviour is an advanced feature, and should be used with
caution by experienced developers and/or database administrators only, as it may cause
queries to perform poorly.

When executing a query, Neo4j needs to decide where in the query graph to start matching. This is
done by looking at the MATCH clause and the WHERE conditions and using that information to find useful
indexes.

This index might not be the best choice though — sometimes multiple indexes could be used, and
Neo4j has picked the wrong one (from a performance point of view).

You can force Neo4j to use a specific starting point through the USING clause. This is called giving an
index hint.

If your query matches large parts of an index, it might be faster to scan the label and filter out nodes
that do not match. To do this, you can use USING SCAN. It will force Cypher to not use an index that could
have been used, and instead do a label scan.

Note
You cannot use index hints if your query has a START clause.

You can also force Neo4j to produce plans which perform joins between query sub-graphs.

Query using an index hint
To query using an index hint, use USING INDEX.

Query

MATCH (n:Swede)

USING INDEX n:Swede(surname)

WHERE n.surname = 'Taylor'

RETURN n

Query Plan

+-----------------+----------------+------+---------+-------------+-----------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+-----------------+

| +ProduceResults | 1 | 1 | 0 | n | n |

| | +----------------+------+---------+-------------+-----------------+

| +NodeIndexSeek | 1 | 1 | 2 | n | :Swede(surname) |

+-----------------+----------------+------+---------+-------------+-----------------+

Total database accesses: 2

Query using multiple index hints
To query using multiple index hints, use USING INDEX.

Query

MATCH (m:German)-->(n:Swede)

USING INDEX m:German(surname)

USING INDEX n:Swede(surname)

WHERE m.surname = 'Plantikow' AND n.surname = 'Taylor'

RETURN m

General Clauses

153

Query Plan

+-------------------+------+---------+----------------+----------------+

| Operator | Rows | DB Hits | Identifiers | Other |

+-------------------+------+---------+----------------+----------------+

| +ColumnFilter | 1 | 0 | m | keep columns m |

| | +------+---------+----------------+----------------+

| +TraversalMatcher | 1 | 11 | anon[17], m, n | n, anon[17], m |

+-------------------+------+---------+----------------+----------------+

Total database accesses: 11

Hinting a label scan
If the best performance is to be had by scanning all nodes in a label and then filtering on that set, use
USING SCAN.

Query

MATCH (m:German)

USING SCAN m:German

WHERE m.surname = 'Plantikow'

RETURN m

Query Plan

+------------------+----------------+------+---------+-------------+------------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+------------------+----------------+------+---------+-------------+------------------------------+

| +ProduceResults | 1 | 1 | 0 | m | m |

| | +----------------+------+---------+-------------+------------------------------+

| +Filter | 1 | 1 | 1 | m | m.surname == { AUTOSTRING0} |

| | +----------------+------+---------+-------------+------------------------------+

| +NodeByLabelScan | 1 | 1 | 2 | m | :German |

+------------------+----------------+------+---------+-------------+------------------------------+

Total database accesses: 3

Hinting a join on a single node
To force the query planner to produce plans with joins in them, use USING JOIN.

Query

MATCH (andres { name:'Andres' })-->(x)<--(emil { name: 'Emil' })

USING JOIN ON x

RETURN x

Query Plan

+-----------------+----------------+------+---------+-------------------------------------

+---+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other

 |

+-----------------+----------------+------+---------+-------------------------------------

+---+

| +ProduceResults | 0 | 1 | 0 | x | x

 |

| | +----------------+------+---------+-------------------------------------

+---+

| +Filter | 0 | 1 | 6 | anon[31], anon[37], andres, emil, x | Ands(Fby(NOT(anon[31] ==

 anon[37]),Last(andres.name == { AUTOSTRING0}))) |

| | +----------------+------+---------+-------------------------------------

+---+

| +Expand(All) | 2 | 9 | 12 | anon[31], anon[37], andres, emil, x | (x)<--(andres)

 |

General Clauses

154

| | +----------------+------+---------+-------------------------------------

+---+

| +NodeHashJoin | 1 | 3 | 0 | anon[37], emil, x | x

 |

| |\ +----------------+------+---------+-------------------------------------

+---+

| | +AllNodesScan | 5 | 5 | 6 | x |

 |

| | +----------------+------+---------+-------------------------------------

+---+

| +Expand(All) | 1 | 3 | 4 | anon[37], emil, x | (emil)-->(x)

 |

| | +----------------+------+---------+-------------------------------------

+---+

| +Filter | 1 | 1 | 5 | emil | emil.name == { AUTOSTRING1}

 |

| | +----------------+------+---------+-------------------------------------

+---+

| +AllNodesScan | 5 | 5 | 6 | emil |

 |

+-----------------+----------------+------+---------+-------------------------------------

+---+

Total database accesses: 39

Hinting a join on multiple nodes
To force the query planner to produce plans with joins in them, use USING JOIN.

Query

MATCH (andy { name:'Andres' })-[r1]->(x)<-[r2]-(y)-[r3]-(andy)

USING JOIN ON x, y

RETURN x, y

Query Plan

+-----------------+----------------+------+---------+------------------------+--+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+------------------------+--+

| +ProduceResults | 1 | 3 | 0 | x, y | x, y |

| | +----------------+------+---------+------------------------+--+

| +Filter | 1 | 3 | 0 | andy, r1, r2, r3, x, y | Ands(Fby(NOT(r1 == r2),Last(NOT(r2 == r3)))) |

| | +----------------+------+---------+------------------------+--+

| +NodeHashJoin | 1 | 3 | 0 | andy, r1, r2, r3, x, y | x, y |

| |\ +----------------+------+---------+------------------------+--+

| | +Expand(All) | 10 | 10 | 15 | r2, x, y | (y)-[r2:]->(x) |

| | | +----------------+------+---------+------------------------+--+

| | +AllNodesScan | 5 | 5 | 6 | y | |

| | +----------------+------+---------+------------------------+--+

| +Filter | 3 | 3 | 0 | andy, r1, r3, x, y | NOT(r1 == r3) |

| | +----------------+------+---------+------------------------+--+

| +Expand(All) | 3 | 4 | 5 | andy, r1, r3, x, y | (andy)-[r3:]-(y) |

| | +----------------+------+---------+------------------------+--+

| +Expand(All) | 1 | 1 | 2 | andy, r1, x | (andy)-[r1:]->(x) |

| | +----------------+------+---------+------------------------+--+

| +Filter | 1 | 1 | 5 | andy | andy.name == { AUTOSTRING0} |

| | +----------------+------+---------+------------------------+--+

| +AllNodesScan | 5 | 5 | 6 | andy | |

+-----------------+----------------+------+---------+------------------------+--+

Total database accesses: 39

155

Chapter 11. Reading Clauses

The flow of data within a Cypher query is an unordered sequence of maps with key-value pairs — a set
of possible bindings between the identifiers in the query and values derived from the database. This set
is refined and augmented by subsequent parts of the query.

Reading Clauses

156

11.1. Match
The MATCH clause is used to search for the pattern described in it.

Introduction
The MATCH clause allows you to specify the patterns Neo4j will search for in the database. This is
the primary way of getting data into the current set of bindings. It is worth reading up more on the
specification of the patterns themselves in Section 9.6, “Patterns” [127].

MATCH is often coupled to a WHERE part which adds restrictions, or predicates, to the MATCH patterns,
making them more specific. The predicates are part of the pattern description, not a filter applied after
the matching is done. This means that WHERE should always be put together with the MATCH clause it belongs
to.

MATCH can occur at the beginning of the query or later, possibly after a WITH. If it is the first clause,
nothing will have been bound yet, and Neo4j will design a search to find the results matching the clause
and any associated predicates specified in any WHERE part. This could involve a scan of the database,
a search for nodes of a certain label, or a search of an index to find starting points for the pattern
matching. Nodes and relationships found by this search are available as bound pattern elements, and
can be used for pattern matching of sub-graphs. They can also be used in any further MATCH clauses,
where Neo4j will use the known elements, and from there find further unknown elements.

Cypher is declarative, and so usually the query itself does not specify the algorithm to use to perform
the search. Neo4j will automatically work out the best approach to finding start nodes and matching
patterns. Predicates in WHERE parts can be evaluated before pattern matching, during pattern matching,
or after finding matches. However, there are cases where you can influence the decisions taken by
the query compiler. Read more about indexes in Section 14.1, “Indexes” [244], and more about the
specifying index hints to force Neo4j to use a specific index in Section 10.8, “Using” [152].

Tip
To understand more about the patterns used in the MATCH clause, read Section 9.6,
“Patterns” [127].

The following graph is used for the examples below:

Figure 11.1. Graph

Person

nam e = 'Oliver Stone'

Movie

nam e = 'WallSt reet '
t it le = 'Wall St reet '

DIRECTED

Person

nam e = 'Charlie Sheen'

ACTED_IN
Person

nam e = 'Mart in Sheen'

FATHER

ACTED_IN

Movie

t it le = 'The Am erican President '
nam e = 'TheAm ericanPresident '

ACTED_IN

Person

nam e = 'Rob Reiner'

DIRECTED

Person

nam e = 'Michael Douglas'

ACTED_IN ACTED_IN

nam e = 'Rob Reiner'

nam e = 'Charlie Sheen'

TYPE THAT HAS SPACE IN IT

Basic node finding

Get all nodes
By just specifying a pattern with a single node and no labels, all nodes in the graph will be returned.

Query

MATCH (n)

RETURN n

Reading Clauses

157

Returns all the nodes in the database.

Result
n

Node[0]{name:"Oliver Stone"}

Node[1]{name:"Charlie Sheen"}

Node[2]{name:"Martin Sheen"}

Node[3]{title:"The American President", name:"TheAmericanPresident"}

Node[4]{name:"WallStreet", title:"Wall Street"}

Node[5]{name:"Rob Reiner"}

Node[6]{name:"Michael Douglas"}

Node[7]{name:"Rob Reiner"}

Node[8]{name:"Charlie Sheen"}

9 rows

Get all nodes with a label
Getting all nodes with a label on them is done with a single node pattern where the node has a label on
it.

Query

MATCH (movie:Movie)

RETURN movie

Returns all the movies in the database.

Result
movie

Node[3]{title:"The American President", name:"TheAmericanPresident"}

Node[4]{name:"WallStreet", title:"Wall Street"}

2 rows

Related nodes
The symbol -- means related to, without regard to type or direction of the relationship.

Query

MATCH (director { name:'Oliver Stone' })--(movie)

RETURN movie.title

Returns all the movies directed by Oliver Stone.

Result
movie.title

"Wall Street"

1 row

Match with labels
To constrain your pattern with labels on nodes, you add it to your pattern nodes, using the label syntax.

Query

MATCH (charlie:Person { name:'Charlie Sheen' })--(movie:Movie)

RETURN movie

Reading Clauses

158

Return any nodes connected with the Person Charlie that are labeled Movie.

Result
movie

Node[4]{name:"WallStreet", title:"Wall Street"}

1 row

Relationship basics

Outgoing relationships
When the direction of a relationship is interesting, it is shown by using --> or <--, like this:

Query

MATCH (martin { name:'Martin Sheen' })-->(movie)

RETURN movie.title

Returns nodes connected to Martin by outgoing relationships.

Result
movie.title

"The American President"

"Wall Street"

2 rows

Directed relationships and identifier
If an identifier is needed, either for filtering on properties of the relationship, or to return the
relationship, this is how you introduce the identifier.

Query

MATCH (martin { name:'Martin Sheen' })-[r]->(movie)

RETURN r

Returns all outgoing relationships from Martin.

Result
r

:ACTED_IN[3]{}

:ACTED_IN[1]{}

2 rows

Match by relationship type
When you know the relationship type you want to match on, you can specify it by using a colon
together with the relationship type.

Query

MATCH (wallstreet { title:'Wall Street' })<-[:ACTED_IN]-(actor)

RETURN actor

Returns nodes that ACTED_IN Wall Street.

Result
actor

Node[6]{name:"Michael Douglas"}

3 rows

Reading Clauses

159

actor

Node[2]{name:"Martin Sheen"}

Node[1]{name:"Charlie Sheen"}

3 rows

Match by multiple relationship types
To match on one of multiple types, you can specify this by chaining them together with the pipe symbol
|.

Query

MATCH (wallstreet { title:'Wall Street' })<-[:ACTED_IN|:DIRECTED]-(person)

RETURN person

Returns nodes with a ACTED_IN or DIRECTED relationship to Wall Street.

Result
person

Node[0]{name:"Oliver Stone"}

Node[6]{name:"Michael Douglas"}

Node[2]{name:"Martin Sheen"}

Node[1]{name:"Charlie Sheen"}

4 rows

Match by relationship type and use an identifier
If you both want to introduce an identifier to hold the relationship, and specify the relationship type
you want, just add them both, like this.

Query

MATCH (wallstreet { title:'Wall Street' })<-[r:ACTED_IN]-(actor)

RETURN r

Returns nodes that ACTED_IN Wall Street.

Result
r

:ACTED_IN[2]{}

:ACTED_IN[1]{}

:ACTED_IN[0]{}

3 rows

Relationships in depth

Note
Inside a single pattern, relationships will only be matched once. You can read more about
this in Section 8.4, “Uniqueness” [111].

Relationship types with uncommon characters
Sometime your database will have types with non-letter characters, or with spaces in them. Use `
(backtick) to quote these.

Query

MATCH (n { name:'Rob Reiner' })-[r:`TYPE THAT HAS SPACE IN IT`]->()

Reading Clauses

160

RETURN r

Returns a relationship of a type with spaces in it.

Result
r

:TYPE THAT HAS SPACE IN IT[8]{}

1 row

Multiple relationships
Relationships can be expressed by using multiple statements in the form of ()--(), or they can be
strung together, like this:

Query

MATCH (charlie { name:'Charlie Sheen' })-[:ACTED_IN]->(movie)<-[:DIRECTED]-(director)

RETURN charlie,movie,director

Returns the three nodes in the path.

Result
charlie movie director

Node[1]{name:"Charlie Sheen"} Node[4]{name:"WallStreet",

 title:"Wall Street"}

Node[0]{name:"Oliver Stone"}

1 row

Variable length relationships
Nodes that are a variable number of relationship→node hops away can be found using the following
syntax: -[:TYPE*minHops..maxHops]->. minHops and maxHops are optional and default to 1 and infinity
respectively. When no bounds are given the dots may be omitted.

Query

MATCH (martin { name:"Martin Sheen" })-[:ACTED_IN*1..2]-(x)

RETURN x

Returns nodes that are 1 or 2 relationships away from Martin.

Result
x

Node[4]{name:"WallStreet", title:"Wall Street"}

Node[1]{name:"Charlie Sheen"}

Node[6]{name:"Michael Douglas"}

Node[3]{title:"The American President", name:"TheAmericanPresident"}

Node[6]{name:"Michael Douglas"}

5 rows

Relationship identifier in variable length relationships
When the connection between two nodes is of variable length, a relationship identifier becomes an
collection of relationships.

Query

MATCH (actor { name:'Charlie Sheen' })-[r:ACTED_IN*2]-(co_actor)

RETURN r

The query returns a collection of relationships.

Reading Clauses

161

Result
r

[:ACTED_IN[0]{}, :ACTED_IN[1]{}]

[:ACTED_IN[0]{}, :ACTED_IN[2]{}]

2 rows

Match with properties on a variable length path
A variable length relationship with properties defined on in it means that all relationships in the path
must have the property set to the given value. In this query, there are two paths between Charile Sheen
and his dad Martin Sheen. One of the includes a “blocked” relationship and the other doesn’t. In this
case we first alter the original graph by using the following query to add “blocked” and “unblocked”
relationships:

MATCH (charlie:Person { name:'Charlie Sheen' }),(martin:Person { name:'Martin Sheen' })

CREATE (charlie)-[:X { blocked:false }]->(:Unblocked)<-[:X { blocked:false }]-(martin)

CREATE (charlie)-[:X { blocked:true }]->(:Blocked)<-[:X { blocked:false }]-(martin);

This means that we are starting out with the following graph:

Person

nam e = 'Oliver Stone'

Movie

nam e = 'WallSt reet '
t it le = 'Wall St reet '

DIRECTED

Person

nam e = 'Charlie Sheen'

ACTED_IN

Blocked

X
blocked = t rue

Unblocked

X
blocked = false

Blocked

X
blocked = t rue

Unblocked

X
blocked = false

Blocked

X
blocked = t rue

Unblocked

X
blocked = false

Person

nam e = 'Mart in Sheen'

FATHER

ACTED_IN X
blocked = false

X
blocked = false

X
blocked = false

X
blocked = false

X
blocked = false

X
blocked = false

Movie

t it le = 'The Am erican President '
nam e = 'TheAm ericanPresident '

ACTED_IN

Person

nam e = 'Rob Reiner'

DIRECTED

Person

nam e = 'Michael Douglas'

ACTED_IN ACTED_IN

nam e = 'Rob Reiner'

nam e = 'Charlie Sheen'

TYPE THAT HAS SPACE IN IT

Query

MATCH p =(charlie:Person)-[* { blocked:false }]-(martin:Person)

WHERE charlie.name = 'Charlie Sheen' AND martin.name = 'Martin Sheen'

RETURN p

Returns the paths between Charlie and Martin Sheen where all relationships have the blocked property
set to FALSE.

Result
p

[Node[1]{name:"Charlie Sheen"}, :X[9]{blocked:false}, Node[9]{}, :X[10]{blocked:false}, Node[2]

{name:"Martin Sheen"}]

1 row

Zero length paths
Using variable length paths that have the lower bound zero means that two identifiers can point to
the same node. If the distance between two nodes is zero, they are by definition the same node.
Note that when matching zero length paths the result may contain a match even when matching on a
relationship type not in use.

Query

MATCH (wallstreet:Movie { title:'Wall Street' })-[*0..1]-(x)

RETURN x

Returns all nodes that are zero or one relationships away from Wall Street.

Result
x

Node[4]{name:"WallStreet", title:"Wall Street"}

5 rows

Reading Clauses

162

x

Node[1]{name:"Charlie Sheen"}

Node[2]{name:"Martin Sheen"}

Node[6]{name:"Michael Douglas"}

Node[0]{name:"Oliver Stone"}

5 rows

Named path
If you want to return or filter on a path in your pattern graph, you can a introduce a named path.

Query

MATCH p =(michael { name:'Michael Douglas' })-->()

RETURN p

Returns the two paths starting from Michael.

Result
p

[Node[6]{name:"Michael Douglas"}, :ACTED_IN[4]{}, Node[3]{title:"The American President",

 name:"TheAmericanPresident"}]

[Node[6]{name:"Michael Douglas"}, :ACTED_IN[2]{}, Node[4]{name:"WallStreet", title:"Wall Street"}]

2 rows

Matching on a bound relationship
When your pattern contains a bound relationship, and that relationship pattern doesn’t specify
direction, Cypher will try to match the relationship in both directions.

Query

MATCH (a)-[r]-(b)

WHERE id(r)= 0

RETURN a,b

This returns the two connected nodes, once as the start node, and once as the end node.

Result
a b

Node[1]{name:"Charlie Sheen"} Node[4]{name:"WallStreet", title:"Wall Street"}

Node[4]{name:"WallStreet", title:"Wall Street"} Node[1]{name:"Charlie Sheen"}

2 rows

Shortest path

Single shortest path
Finding a single shortest path between two nodes is as easy as using the shortestPath function. It’s done
like this:

Query

MATCH (martin:Person { name:"Martin Sheen" }),(oliver:Person { name:"Oliver Stone" }),

 p = shortestPath((martin)-[*..15]-(oliver))

RETURN p

This means: find a single shortest path between two nodes, as long as the path is max 15 relationships
long. Inside of the parentheses you define a single link of a path — the starting node, the connecting

Reading Clauses

163

relationship and the end node. Characteristics describing the relationship like relationship type, max
hops and direction are all used when finding the shortest path. You can also mark the path as optional.

Result
p

[Node[2]{name:"Martin Sheen"}, :ACTED_IN[1]{}, Node[4]{name:"WallStreet", title:"Wall

Street"}, :DIRECTED[5]{}, Node[0]{name:"Oliver Stone"}]

1 row

All shortest paths
Finds all the shortest paths between two nodes.

Query

MATCH (martin:Person { name:"Martin Sheen" }),(michael:Person { name:"Michael Douglas" }),

 p = allShortestPaths((martin)-[*]-(michael))

RETURN p

Finds the two shortest paths between Martin and Michael.

Result
p

[Node[2]{name:"Martin Sheen"}, :ACTED_IN[3]{}, Node[3]{title:"The American President",

 name:"TheAmericanPresident"}, :ACTED_IN[4]{}, Node[6]{name:"Michael Douglas"}]

[Node[2]{name:"Martin Sheen"}, :ACTED_IN[1]{}, Node[4]{name:"WallStreet", title:"Wall

Street"}, :ACTED_IN[2]{}, Node[6]{name:"Michael Douglas"}]

2 rows

Get node or relationship by id

Node by id
Search for nodes by id can be done with the id function in a predicate.

Note
Neo4j reuses its internal ids when nodes and relationships are deleted. This means that
applications using, and relying on internal Neo4j ids, are brittle or at risk of making mistakes.
Rather use application generated ids.

Query

MATCH (n)

WHERE id(n)= 1

RETURN n

The corresponding node is returned.

Result
n

Node[1]{name:"Charlie Sheen"}

1 row

Relationship by id
Search for nodes by id can be done with the id function in a predicate.

This is not recommended practice. See the section called “Node by id” [163] for more information on
the use of Neo4j ids.

Query

Reading Clauses

164

MATCH ()-[r]->()

WHERE id(r)= 0

RETURN r

The relationship with id 0 is returned.

Result
r

:ACTED_IN[0]{}

1 row

Multiple nodes by id
Multiple nodes are selected by specifying them in an IN clause.

Query

MATCH (n)

WHERE id(n) IN [1, 2, 0]

RETURN n

This returns the nodes listed in the IN expression.

Result
n

Node[0]{name:"Oliver Stone"}

Node[1]{name:"Charlie Sheen"}

Node[2]{name:"Martin Sheen"}

3 rows

Reading Clauses

165

11.2. Optional Match
The OPTIONAL MATCH clause is used to search for the pattern described in it, while using NULLs
for missing parts of the pattern.

Introduction
OPTIONAL MATCH matches patterns against your graph database, just like MATCH does. The difference is that
if no matches are found, OPTIONAL MATCH will use NULLs for missing parts of the pattern. OPTIONAL MATCH
could be considered the Cypher equivalent of the outer join in SQL.

Either the whole pattern is matched, or nothing is matched. Remember that WHERE is part of the pattern
description, and the predicates will be considered while looking for matches, not after. This matters
especially in the case of multiple (OPTIONAL) MATCH clauses, where it is crucial to put WHERE together with
the MATCH it belongs to.

Tip
To understand the patterns used in the OPTIONAL MATCH clause, read Section 9.6,
“Patterns” [127].

The following graph is used for the examples below:

Figure 11.2. Graph

Person

nam e = 'Oliver Stone'

Movie

nam e = 'WallSt reet '
t it le = 'Wall St reet '

DIRECTED

Person

nam e = 'Charlie Sheen'

ACTED_IN
Person

nam e = 'Mart in Sheen'

FATHER

ACTED_IN

Movie

t it le = 'The Am erican President '
nam e = 'TheAm ericanPresident '

ACTED_IN

Person

nam e = 'Rob Reiner'

DIRECTED

Person

nam e = 'Michael Douglas'

ACTED_IN ACTED_IN

Relationship
If a relationship is optional, use the OPTIONAL MATCH clause. This is similar to how a SQL outer join works.
If the relationship is there, it is returned. If it’s not, NULL is returned in it’s place.
Query

MATCH (a:Movie { title: 'Wall Street' })

OPTIONAL MATCH (a)-->(x)

RETURN x

Returns NULL, since the node has no outgoing relationships.

Result
x

<null>

1 row

Properties on optional elements
Returning a property from an optional element that is NULL will also return NULL.

Reading Clauses

166

Query

MATCH (a:Movie { title: 'Wall Street' })

OPTIONAL MATCH (a)-->(x)

RETURN x, x.name

Returns the element x (NULL in this query), and NULL as its name.

Result
x x.name

<null> <null>

1 row

Optional typed and named relationship
Just as with a normal relationship, you can decide which identifier it goes into, and what relationship
type you need.

Query

MATCH (a:Movie { title: 'Wall Street' })

OPTIONAL MATCH (a)-[r:ACTS_IN]->()

RETURN r

This returns a node, and NULL, since the node has no outgoing ACTS_IN relationships.

Result
r

<null>

1 row

Reading Clauses

167

11.3. Where
WHERE adds constraints to the patterns in a MATCH or OPTIONAL MATCH clause or filters the results
of a WITH clause.

WHERE is not a clause in it’s own right — rather, it’s part of MATCH, OPTIONAL MATCH, START and WITH.
In the case of WITH and START, WHERE simply filters the results.
For MATCH and OPTIONAL MATCH on the other hand, WHERE adds constraints to the patterns described. It
should not be seen as a filter after the matching is finished.

Important
In the case of multiple MATCH / OPTIONAL MATCH clauses, the predicate in WHERE is always
a part of the patterns in the directly preceding MATCH / OPTIONAL MATCH. Both results and
performance may be impacted if the WHERE is put inside the wrong MATCH clause.

Figure 11.3. Graph

address = 'Sweden/Malm o'
nam e = 'Tobias'
age = 25

em ail = 'peter_n@exam ple.com '
nam e = 'Peter'
age = 34

Swedish

nam e = 'Andres'
age = 36
belt = 'white'

KNOWS KNOWS

Basic usage

Boolean operations
You can use the expected boolean operators AND and OR, and also the boolean function NOT. See
Section 9.8, “Working with NULL” [134] for more information on how this works with NULL.
Query

MATCH (n)

WHERE n.name = 'Peter' XOR (n.age < 30 AND n.name = "Tobias") OR NOT (n.name = "Tobias" OR

 n.name="Peter")

RETURN n

Result
n

Node[0]{address:"Sweden/Malmo", name:"Tobias", age:25}

Node[1]{email:"peter_n@example. com", name:"Peter", age:34}

Node[2]{name:"Andres", age:36, belt:"white"}

3 rows

Filter on node label
To filter nodes by label, write a label predicate after the WHERE keyword using WHERE n:foo.
Query

MATCH (n)

WHERE n:Swedish

RETURN n

Reading Clauses

168

The "Andres" node will be returned.

Result
n

Node[2]{name:"Andres", age:36, belt:"white"}

1 row

Filter on node property
To filter on a property, write your clause after the WHERE keyword. Filtering on relationship properties
works just the same way.

Query

MATCH (n)

WHERE n.age < 30

RETURN n

"Tobias" is returned because he is younger than 30.

Result
n

Node[0]{address:"Sweden/Malmo", name:"Tobias", age:25}

1 row

Filter on dynamic node property
To filter on a property using a dynamically computed name, use square bracket syntax.

Parameters

{

 "prop" : "AGE"

}

Query

MATCH (n)

WHERE n[toLower({ prop })]< 30

RETURN n

"Tobias" is returned because he is younger than 30.

Result
n

Node[0]{address:"Sweden/Malmo", name:"Tobias", age:25}

1 row

Property exists
Use the EXISTS() function to only include nodes or relationships in which a property exists.

Query

MATCH (n)

WHERE exists(n.belt)

RETURN n

"Andres" will be returned because he is the only one with a belt property.

Important
The HAS() function has been superseded by EXISTS() and will be removed in a future release.

Reading Clauses

169

Result
n

Node[2]{name:"Andres", age:36, belt:"white"}

1 row

String matching
The start and end of strings can be matched using STARTS WITH and ENDS WITH. To match regardless of
location in a string, use CONTAINS. The matching is case-sensitive.

Match the start of a string
The STARTS WITH operator is used to perform case-sensitive matching on the start of strings.
Query

MATCH (n)

WHERE n.name STARTS WITH 'Pet'

RETURN n

"Peter" will be returned because his name starts with Pet.

Result
n

Node[1]{email:"peter_n@example. com", name:"Peter", age:34}

1 row

Match the end of a string
The ENDS WITH operator is used to perform case-sensitive matching on the end of strings.
Query

MATCH (n)

WHERE n.name ENDS WITH 'ter'

RETURN n

"Peter" will be returned because his name ends with ter.

Result
n

Node[1]{email:"peter_n@example. com", name:"Peter", age:34}

1 row

Match anywhere in a string
The CONTAINS operator is used to perform case-sensitive matching regardless of location in strings.
Query

MATCH (n)

WHERE n.name CONTAINS 'ete'

RETURN n

"Peter" will be returned because his name contains ete.

Result
n

Node[1]{email:"peter_n@example. com", name:"Peter", age:34}

1 row

String matching negation
Use the NOT keyword to exclude all matches on given string from your result:

Reading Clauses

170

Query

MATCH (n)

WHERE NOT n.name ENDS WITH 's'

RETURN n

"Peter" will be returned because his name does not end with s.

Result
n

Node[1]{email:"peter_n@example. com", name:"Peter", age:34}

1 row

Regular expressions
Cypher supports filtering using regular expressions. The regular expression syntax is inherited from
the Java regular expressions1. This includes support for flags that change how strings are matched,
including case-insensitive (?i), multiline (?m) and dotall (?s). Flags are given at the start of the regular
expression, for example MATCH (n) WHERE n.name =~ '(?i)Lon.*' RETURN n will return nodes with name
London or with name LonDoN.

Regular expressions
You can match on regular expressions by using =~ "regexp", like this:

Query

MATCH (n)

WHERE n.name =~ 'Tob.*'

RETURN n

"Tobias" is returned because his name starts with Tob.

Result
n

Node[0]{address:"Sweden/Malmo", name:"Tobias", age:25}

1 row

Escaping in regular expressions
If you need a forward slash inside of your regular expression, escape it. Remember that back slash
needs to be escaped in string literals.

Query

MATCH (n)

WHERE n.address =~ 'Sweden\\/Malmo'

RETURN n

"Tobias" is returned because his address is in Sweden/Malmo.

Result
n

Node[0]{address:"Sweden/Malmo", name:"Tobias", age:25}

1 row

Case insensitive regular expressions
By pre-pending a regular expression with (?i), the whole expression becomes case insensitive.

Query

1 https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Reading Clauses

171

MATCH (n)

WHERE n.name =~ '(?i)ANDR.*'

RETURN n

"Andres" is returned because his name starts with ANDR regardless of case.

Result
n

Node[2]{name:"Andres", age:36, belt:"white"}

1 row

Using path patterns in WHERE

Filter on patterns
Patterns are expressions in Cypher, expressions that return a collection of paths. Collection expressions
are also predicates — an empty collection represents false, and a non-empty represents true.

So, patterns are not only expressions, they are also predicates. The only limitation to your pattern is
that you must be able to express it in a single path. You can not use commas between multiple paths
like you do in MATCH. You can achieve the same effect by combining multiple patterns with AND.

Note that you can not introduce new identifiers here. Although it might look very similar to the MATCH
patterns, the WHERE clause is all about eliminating matched subgraphs. MATCH (a)-[*]->(b) is very
different from WHERE (a)-[*]->(b); the first will produce a subgraph for every path it can find between
a and b, and the latter will eliminate any matched subgraphs where a and b do not have a directed
relationship chain between them.

Query

MATCH (tobias { name: 'Tobias' }),(others)

WHERE others.name IN ['Andres', 'Peter'] AND (tobias)<--(others)

RETURN others

Nodes that have an outgoing relationship to the "Tobias" node are returned.

Result
others

Node[2]{name:"Andres", age:36, belt:"white"}

1 row

Filter on patterns using NOT
The NOT function can be used to exclude a pattern.

Query

MATCH (persons),(peter { name: 'Peter' })

WHERE NOT (persons)-->(peter)

RETURN persons

Nodes that do not have an outgoing relationship to the "Peter" node are returned.

Result
persons

Node[0]{address:"Sweden/Malmo", name:"Tobias", age:25}

Node[1]{email:"peter_n@example. com", name:"Peter", age:34}

2 rows

Filter on patterns with properties
You can also add properties to your patterns:

Reading Clauses

172

Query

MATCH (n)

WHERE (n)-[:KNOWS]-({ name:'Tobias' })

RETURN n

Finds all nodes that have a KNOWS relationship to a node with the name "Tobias".

Result
n

Node[2]{name:"Andres", age:36, belt:"white"}

1 row

Filtering on relationship type
You can put the exact relationship type in the MATCH pattern, but sometimes you want to be able to do
more advanced filtering on the type. You can use the special property TYPE to compare the type with
something else. In this example, the query does a regular expression comparison with the name of the
relationship type.

Query

MATCH (n)-[r]->()

WHERE n.name='Andres' AND type(r)=~ 'K.*'

RETURN r

This returns relationships that has a type whose name starts with K.

Result
r

:KNOWS[1]{}

:KNOWS[0]{}

2 rows

Collections

IN operator
To check if an element exists in a collection, you can use the IN operator.

Query

MATCH (a)

WHERE a.name IN ["Peter", "Tobias"]

RETURN a

This query shows how to check if a property exists in a literal collection.

Result
a

Node[0]{address:"Sweden/Malmo", name:"Tobias", age:25}

Node[1]{email:"peter_n@example. com", name:"Peter", age:34}

2 rows

Missing properties and values

Default to false if property is missing
As missing properties evaluate to NULL, the comparision in the example will evaluate to FALSE for nodes
without the belt property.

Reading Clauses

173

Query

MATCH (n)

WHERE n.belt = 'white'

RETURN n

Only nodes with white belts are returned.

Result
n

Node[2]{name:"Andres", age:36, belt:"white"}

1 row

Default to true if property is missing
If you want to compare a property on a graph element, but only if it exists, you can compare the
property against both the value you are looking for and NULL, like:

Query

MATCH (n)

WHERE n.belt = 'white' OR n.belt IS NULL RETURN n

ORDER BY n.name

This returns all nodes, even those without the belt property.

Result
n

Node[2]{name:"Andres", age:36, belt:"white"}

Node[1]{email:"peter_n@example. com", name:"Peter", age:34}

Node[0]{address:"Sweden/Malmo", name:"Tobias", age:25}

3 rows

Filter on NULL
Sometimes you might want to test if a value or an identifier is NULL. This is done just like SQL does it,
with IS NULL. Also like SQL, the negative is IS NOT NULL, although NOT(IS NULL x) also works.

Query

MATCH (person)

WHERE person.name = 'Peter' AND person.belt IS NULL RETURN person

Nodes that have name Peter but no belt property are returned.

Result
person

Node[1]{email:"peter_n@example. com", name:"Peter", age:34}

1 row

Using ranges

Simple range
To check for an element being inside a specific range, use the inequality operators <, <=, >=, >.

Query

MATCH (a)

WHERE a.name >= 'Peter'

RETURN a

Reading Clauses

174

Nodes having a name property lexicographically greater than or equal to Peter are returned.

Result
a

Node[0]{address:"Sweden/Malmo", name:"Tobias", age:25}

Node[1]{email:"peter_n@example. com", name:"Peter", age:34}

2 rows

Composite range
Several inequalities can be used to construct a range.

Query

MATCH (a)

WHERE a.name > 'Andres' AND a.name < 'Tobias'

RETURN a

Nodes having a name property lexicographically between Andres and Tobias are returned.

Result
a

Node[1]{email:"peter_n@example. com", name:"Peter", age:34}

1 row

Reading Clauses

175

11.4. Start
Find starting points through legacy indexes.

Important
The START clause should only be used when accessing legacy indexes (see Chapter 35, Legacy
Indexing [617]). In all other cases, use MATCH instead (see Section 11.1, “Match” [156]).

In Cypher, every query describes a pattern, and in that pattern one can have multiple starting points.
A starting point is a relationship or a node where a pattern is anchored. Using START you can only
introduce starting points by legacy index seeks. Note that trying to use a legacy index that doesn’t exist
will generate an error.

This is the graph the examples are using:

Figure 11.4. Graph

Node[0]

nam e = 'A'

Node[2]

nam e = 'C'

KNOWS

Node[1]

nam e = 'B'

KNOWS

Get node or relationship from index

Node by index seek
When the starting point can be found by using index seeks, it can be done like this: node:index-name(key
= "value"). In this example, there exists a node index named nodes.

Query

START n=node:nodes(name = "A")

RETURN n

The query returns the node indexed with the name "A".

Result
n

Node[0]{name:"A"}

1 row

Relationship by index seek
When the starting point can be found by using index seeks, it can be done like this: relationship:index-
name(key = "value").

Query

START r=relationship:rels(name = "Andrés")

RETURN r

The relationship indexed with the name property set to "Andrés" is returned by the query.

Reading Clauses

176

Result
r

:KNOWS[0]{name:"Andrés"

1 row

Node by index query
When the starting point can be found by more complex Lucene queries, this is the syntax to use:
node:index-name("query").This allows you to write more advanced index queries.

Query

START n=node:nodes("name:A")

RETURN n

The node indexed with name "A" is returned by the query.

Result
n

Node[0]{name:"A"}

1 row

Reading Clauses

177

11.5. Aggregation
Introduction
To calculate aggregated data, Cypher offers aggregation, much like SQL’s GROUP BY.

Aggregate functions take multiple input values and calculate an aggregated value from them. Examples
are avg that calculates the average of multiple numeric values, or min that finds the smallest numeric
value in a set of values.

Aggregation can be done over all the matching subgraphs, or it can be further divided by introducing
key values. These are non-aggregate expressions, that are used to group the values going into the
aggregate functions.

So, if the return statement looks something like this:

RETURN n, count(*)

We have two return expressions: n, and count(*). The first, n, is no aggregate function, and so it will be
the grouping key. The latter, count(*) is an aggregate expression. So the matching subgraphs will be
divided into different buckets, depending on the grouping key. The aggregate function will then run on
these buckets, calculating the aggregate values.

If you want to use aggregations to sort your result set, the aggregation must be included in the RETURN
to be used in your ORDER BY.

The last piece of the puzzle is the DISTINCT keyword. It is used to make all values unique before running
them through an aggregate function.

An example might be helpful. In this case, we are running the query against the following data:

Person

nam e = 'D'
eyes = 'brown'

Person

nam e = 'A'
property = 13

KNOWS

Person

nam e = 'C'
property = 44
eyes = 'blue'

KNOWS

Person

nam e = 'B'
property = 33
eyes = 'blue'

KNOWS

Person

nam e = 'D'

KNOWS KNOWS

Query

MATCH (me:Person)-->(friend:Person)-->(friend_of_friend:Person)

WHERE me.name = 'A'

RETURN count(DISTINCT friend_of_friend), count(friend_of_friend)

In this example we are trying to find all our friends of friends, and count them. The first aggregate
function, count(DISTINCT friend_of_friend), will only see a friend_of_friend once — DISTINCT removes
the duplicates. The latter aggregate function, count(friend_of_friend), might very well see the same
friend_of_friend multiple times. In this case, both B and C know D and thus D will get counted twice,
when not using DISTINCT.

Reading Clauses

178

Result
count(distinct friend_of_friend) count(friend_of_friend)

1 2

1 row

The following examples are assuming the example graph structure below.

Figure 11.5. Graph

Person

nam e = 'D'
eyes = 'brown'

Person

nam e = 'A'
property = 13

KNOWS

Person

nam e = 'C'
property = 44
eyes = 'blue'

KNOWS

Person

nam e = 'B'
property = 33
eyes = 'blue'

KNOWS

COUNT
COUNT is used to count the number of rows.

COUNT can be used in two forms — COUNT(*) which just counts the number of matching rows, and
COUNT(<identifier>), which counts the number of non-NULL values in <identifier>.

Count nodes
To count the number of nodes, for example the number of nodes connected to one node, you can use
count(*).

Query

MATCH (n { name: 'A' })-->(x)

RETURN n, count(*)

This returns the start node and the count of related nodes.

Result
n count(*)

Node[1]{name:"A", property:13} 3

1 row

Group Count Relationship Types
To count the groups of relationship types, return the types and count them with count(*).

Query

MATCH (n { name: 'A' })-[r]->()

RETURN type(r), count(*)

The relationship types and their group count is returned by the query.

Result
type(r) count(*)

"KNOWS" 3

1 row

Reading Clauses

179

Count entities
Instead of counting the number of results with count(*), it might be more expressive to include the
name of the identifier you care about.

Query

MATCH (n { name: 'A' })-->(x)

RETURN count(x)

The example query returns the number of connected nodes from the start node.

Result
count(x)

3

1 row

Count non-null values
You can count the non-NULL values by using count(<identifier>).

Query

MATCH (n:Person)

RETURN count(n.property)

The count of related nodes with the property property set is returned by the query.

Result
count(n.property)

3

1 row

Statistics

sum
The sum aggregation function simply sums all the numeric values it encounters. NULLs are silently
dropped.

Query

MATCH (n:Person)

RETURN sum(n.property)

This returns the sum of all the values in the property property.

Result
sum(n.property)

90

1 row

avg
avg calculates the average of a numeric column.

Query

MATCH (n:Person)

RETURN avg(n.property)

The average of all the values in the property property is returned by the example query.

Reading Clauses

180

Result
avg(n.property)

30. 0

1 row

percentileDisc
percentileDisc calculates the percentile of a given value over a group, with a percentile from 0.0 to 1.0.
It uses a rounding method, returning the nearest value to the percentile. For interpolated values, see
percentileCont.
Query

MATCH (n:Person)

RETURN percentileDisc(n.property, 0.5)

The 50th percentile of the values in the property property is returned by the example query. In this case,
0.5 is the median, or 50th percentile.

Result
percentileDisc(n.property, 0.5)

33

1 row

percentileCont
percentileCont calculates the percentile of a given value over a group, with a percentile from 0.0 to 1.0.
It uses a linear interpolation method, calculating a weighted average between two values, if the desired
percentile lies between them. For nearest values using a rounding method, see percentileDisc.
Query

MATCH (n:Person)

RETURN percentileCont(n.property, 0.4)

The 40th percentile of the values in the property property is returned by the example query, calculated
with a weighted average.

Result
percentileCont(n.property, 0.4)

29. 0

1 row

stdev
stdev calculates the standard deviation for a given value over a group. It uses a standard two-pass
method, with N - 1 as the denominator, and should be used when taking a sample of the population
for an unbiased estimate. When the standard variation of the entire population is being calculated,
stdevp should be used.
Query

MATCH (n)

WHERE n.name IN ['A', 'B', 'C']

RETURN stdev(n.property)

The standard deviation of the values in the property property is returned by the example query.

Result
stdev(n.property)

15. 716233645501712

1 row

Reading Clauses

181

stdevp
stdevp calculates the standard deviation for a given value over a group. It uses a standard two-pass
method, with N as the denominator, and should be used when calculating the standard deviation for an
entire population. When the standard variation of only a sample of the population is being calculated,
stdev should be used.

Query

MATCH (n)

WHERE n.name IN ['A', 'B', 'C']

RETURN stdevp(n.property)

The population standard deviation of the values in the property property is returned by the example
query.

Result
stdevp(n.property)

12. 832251036613439

1 row

max
max find the largest value in a numeric column.

Query

MATCH (n:Person)

RETURN max(n.property)

The largest of all the values in the property property is returned.

Result
max(n.property)

44

1 row

min
min takes a numeric property as input, and returns the smallest value in that column.

Query

MATCH (n:Person)

RETURN min(n.property)

This returns the smallest of all the values in the property property.

Result
min(n.property)

13

1 row

collect
collect collects all the values into a list. It will ignore NULLs.

Query

MATCH (n:Person)

RETURN collect(n.property)

Returns a single row, with all the values collected.

Reading Clauses

182

Result
collect(n.property)

[13, 33, 44]

1 row

DISTINCT
All aggregation functions also take the DISTINCT modifier, which removes duplicates from the values. So,
to count the number of unique eye colors from nodes related to a, this query can be used:

Query

MATCH (a:Person { name: 'A' })-->(b)

RETURN count(DISTINCT b.eyes)

Returns the number of eye colors.

Result
count(distinct b.eyes)

2

1 row

Reading Clauses

183

11.6. Load CSV
LOAD CSV is used to import data from CSV files. Supports resources compressed with gzip,
Deflate, as well as ZIP archives.

The URL of the CSV file is specified by using FROM followed by an arbitrary expression evaluating to the
URL in question. It is required to specify an identifier for the CSV data using AS.

See the examples below for further details.

There is also a worked example, see Section 12.8, “Importing CSV files with Cypher” [211].

CSV file format
The CSV file to use with LOAD CSV must have the following characteristics:

• the character encoding is UTF-8;
• the end line termination is system dependent, e.g., it is \n on unix or \r\n on windows;
• the default field terminator is ,;
• the field terminator character can be change by using the option FIELDTERMINATOR available in the LOAD

CSV command;
• quoted strings are allowed in the CSV file and the quotes are dropped when reading the data;
• the character for string quotation is double quote ";
• the escape character is \.

Import data from a CSV file
To import data from a CSV file into Neo4j, you can use LOAD CSV to get the data into your query. Then
you write it to your database using the normal updating clauses of Cypher.

artists.csv

"1","ABBA","1992"

"2","Roxette","1986"

"3","Europe","1979"

"4","The Cardigans","1992"

Query

LOAD CSV FROM 'http://neo4j.com/docs/2.3.0/csv/artists.csv' AS line

CREATE (:Artist { name: line[1], year: toInt(line[2])})

A new node with the Artist label is created for each row in the CSV file. In addition, two columns from
the CSV file are set as properties on the nodes.

Result
(empty result)

Nodes created: 4
Properties set: 8
Labels added: 4

Import data from a CSV file containing headers
When your CSV file has headers, you can view each row in the file as a map instead of as an array of
strings.

artists-with-headers.csv

"Id","Name","Year"

"1","ABBA","1992"

"2","Roxette","1986"

Reading Clauses

184

"3","Europe","1979"

"4","The Cardigans","1992"

Query

LOAD CSV WITH HEADERS FROM 'http://neo4j.com/docs/2.3.0/csv/artists-with-headers.csv' AS line

CREATE (:Artist { name: line.Name, year: toInt(line.Year)})

This time, the file starts with a single row containing column names. Indicate this using WITH HEADERS and
you can access specific fields by their corresponding column name.

Result
(empty result)

Nodes created: 4
Properties set: 8
Labels added: 4

Import data from a CSV file with a custom field delimiter
Sometimes, your CSV file has other field delimiters than commas. You can specify which delimiter your
file uses using FIELDTERMINATOR.

artists-fieldterminator.csv

"1";"ABBA";"1992"

"2";"Roxette";"1986"

"3";"Europe";"1979"

"4";"The Cardigans";"1992"

Query

LOAD CSV FROM 'http://neo4j.com/docs/2.3.0/csv/artists-fieldterminator.csv' AS line FIELDTERMINATOR

 ';'

CREATE (:Artist { name: line[1], year: toInt(line[2])})

As values in this file are separated by a semicolon, a custom FIELDTERMINATOR is specified in the LOAD CSV
clause.

Result
(empty result)

Nodes created: 4
Properties set: 8
Labels added: 4

Importing large amounts of data
If the CSV file contains a significant number of rows (approaching hundreds of thousands or millions),
USING PERIODIC COMMIT can be used to instruct Neo4j to perform a commit after a number of rows. This
reduces the memory overhead of the transaction state. By default, the commit will happen every 1000
rows. For more information, see Section 12.9, “Using Periodic Commit” [213].

Query

USING PERIODIC COMMIT

LOAD CSV FROM 'http://neo4j.com/docs/2.3.0/csv/artists.csv' AS line

CREATE (:Artist { name: line[1], year: toInt(line[2])})

Result
(empty result)

Nodes created: 4
Properties set: 8
Labels added: 4

Reading Clauses

185

Setting the rate of periodic commits
You can set the number of rows as in the example, where it is set to 500 rows.

Query

USING PERIODIC COMMIT 500

LOAD CSV FROM 'http://neo4j.com/docs/2.3.0/csv/artists.csv' AS line

CREATE (:Artist { name: line[1], year: toInt(line[2])})

Result
(empty result)

Nodes created: 4
Properties set: 8
Labels added: 4

Import data containing escaped characters
In this example, we both have additional quotes around the values, as well as escaped quotes inside
one value.

artists-with-escaped-char.csv

"1","The ""Symbol""","1992"

Query

LOAD CSV FROM 'http://neo4j.com/docs/2.3.0/csv/artists-with-escaped-char.csv' AS line

CREATE (a:Artist { name: line[1], year: toInt(line[2])})

RETURN a.name AS name, a.year AS year, length(a.name) AS length

Note that strings are wrapped in quotes in the output here. You can see that when comparing to the
length of the string in this case!

Result
name year length

"The "Symbol"" 1992 12

1 row
Nodes created: 1
Properties set: 2
Labels added: 1

186

Chapter 12. Writing Clauses

Write data to the database.

Writing Clauses

187

12.1. Create
The CREATE clause is used to create graph elements — nodes and relationships.

Tip
In the CREATE clause, patterns are used a lot. Read Section 9.6, “Patterns” [127] for an
introduction.

Create nodes

Create single node
Creating a single node is done by issuing the following query.

Query

CREATE (n)

Nothing is returned from this query, except the count of affected nodes.

Result
(empty result)

Nodes created: 1

Create multiple nodes
Creating multiple nodes is done by separating them with a comma.

Query

CREATE (n),(m)

Result
(empty result)

Nodes created: 2

Create a node with a label
To add a label when creating a node, use the syntax below.

Query

CREATE (n:Person)

Nothing is returned from this query.

Result
(empty result)

Nodes created: 1
Labels added: 1

Create a node with multiple labels
To add labels when creating a node, use the syntax below. In this case, we add two labels.

Query

CREATE (n:Person:Swedish)

Writing Clauses

188

Nothing is returned from this query.

Result
(empty result)

Nodes created: 1
Labels added: 2

Create node and add labels and properties
When creating a new node with labels, you can add properties at the same time.

Query

CREATE (n:Person { name : 'Andres', title : 'Developer' })

Nothing is returned from this query.

Result
(empty result)

Nodes created: 1
Properties set: 2
Labels added: 1

Return created node
Creating a single node is done by issuing the following query.

Query

CREATE (a { name : 'Andres' })

RETURN a

The newly created node is returned.

Result
a

Node[0]{name:"Andres"}

1 row
Nodes created: 1
Properties set: 1

Create relationships

Create a relationship between two nodes
To create a relationship between two nodes, we first get the two nodes. Once the nodes are loaded, we
simply create a relationship between them.

Query

MATCH (a:Person),(b:Person)

WHERE a.name = 'Node A' AND b.name = 'Node B'

CREATE (a)-[r:RELTYPE]->(b)

RETURN r

The created relationship is returned by the query.

Result
r

:RELTYPE[0]{}

1 row
Relationships created: 1

Writing Clauses

189

Create a relationship and set properties
Setting properties on relationships is done in a similar manner to how it’s done when creating nodes.
Note that the values can be any expression.

Query

MATCH (a:Person),(b:Person)

WHERE a.name = 'Node A' AND b.name = 'Node B'

CREATE (a)-[r:RELTYPE { name : a.name + '<->' + b.name }]->(b)

RETURN r

The newly created relationship is returned by the example query.

Result
r

:RELTYPE[0]{name:"Node A<->Node B"}

1 row
Relationships created: 1
Properties set: 1

Create a full path
When you use CREATE and a pattern, all parts of the pattern that are not already in scope at this time will
be created.

Query

CREATE p =(andres { name:'Andres' })-[:WORKS_AT]->(neo)<-[:WORKS_AT]-(michael { name:'Michael' })

RETURN p

This query creates three nodes and two relationships in one go, assigns it to a path identifier, and
returns it.

Result
p

[Node[0]{name:"Andres"}, :WORKS_AT[0]{}, Node[1]{}, :WORKS_AT[1]{}, Node[2]{name:"Michael"}]

1 row
Nodes created: 3
Relationships created: 2
Properties set: 2

Use parameters with CREATE

Create node with a parameter for the properties
You can also create a graph entity from a map. All the key/value pairs in the map will be set as
properties on the created relationship or node. In this case we add a Person label to the node as well.

Parameters

{

 "props" : {

 "name" : "Andres",

 "position" : "Developer"

 }

}

Query

CREATE (n:Person { props })

RETURN n

Writing Clauses

190

Result
n

Node[0]{name:"Andres", position:"Developer"}

1 row
Nodes created: 1
Properties set: 2
Labels added: 1

Create multiple nodes with a parameter for their properties
By providing Cypher an array of maps, it will create a node for each map.

Parameters

{

 "props" : [{

 "name" : "Andres",

 "position" : "Developer"

 }, {

 "name" : "Michael",

 "position" : "Developer"

 }]

}

Query

UNWIND { props } AS map

CREATE (n)

SET n = map

Result
(empty result)

Nodes created: 2
Properties set: 4

Create multiple nodes with a parameter for their properties using old syntax
By providing Cypher an array of maps, it will create a node for each map.

Note
When you do this, you can’t create anything else in the same CREATE clause.

Note
This syntax is deprecated in Neo4j version 2.3. It may be removed in a future major release.
See the above example using UNWIND for how to achieve the same functionality.

Parameters

{

 "props" : [{

 "name" : "Andres",

 "position" : "Developer"

 }, {

 "name" : "Michael",

 "position" : "Developer"

 }]

}

Query

CREATE (n { props })

Writing Clauses

191

RETURN n

Result
n

Node[0]{name:"Andres", position:"Developer"}

Node[1]{name:"Michael", position:"Developer"}

2 rows
Nodes created: 2
Properties set: 4

Writing Clauses

192

12.2. Merge
The MERGE clause ensures that a pattern exists in the graph. Either the pattern already
exists, or it needs to be created.

Introduction
MERGE either matches existing nodes and binds them, or it creates new data and binds that. It’s like a
combination of MATCH and CREATE that additionally allows you to specify what happens if the data was
matched or created.

For example, you can specify that the graph must contain a node for a user with a certain name. If
there isn’t a node with the correct name, a new node will be created and its name property set.

When using MERGE on full patterns, the behavior is that either the whole pattern matches, or the whole
pattern is created. MERGE will not partially use existing patterns — it’s all or nothing. If partial matches are
needed, this can be accomplished by splitting a pattern up into multiple MERGE clauses.

As with MATCH, MERGE can match multiple occurrences of a pattern. If there are multiple matches, they will
all be passed on to later stages of the query.

The last part of MERGE is the ON CREATE and ON MATCH. These allow a query to express additional changes to
the properties of a node or relationship, depending on if the element was MATCHed in the database or if
it was CREATEd.

The rule planner (see Section 15.1, “How are queries executed?” [254]) expands a MERGE pattern from
the end point that has the identifier with the lowest lexicographical order. This means that it might
choose a suboptimal expansion path, expanding from a node with a higher degree. The pattern MERGE
(a:A)-[:R]->(b:B) will always expand from a to b, so if it is known that b nodes are a better choice for
start point, renaming identifiers could improve performance.

The following graph is used for the examples below:

Figure 12.1. Graph

Person

chauffeurNam e = 'Bill White'
nam e = 'Oliver Stone'
bornIn = 'New York'

Movie

nam e = 'WallSt reet '
t it le = 'Wall St reet '

DIRECTED

Person

chauffeurNam e = 'John Brown'
nam e = 'Charlie Sheen'
bornIn = 'New York'

ACTED_IN

Person

chauffeurNam e = 'Bob Brown'
nam e = 'Mart in Sheen'
bornIn = 'Ohio'

FATHER

ACTED_IN

Movie

t it le = 'The Am erican President '
nam e = 'TheAm ericanPresident '

ACTED_IN

Person

chauffeurNam e = 'Ted Green'
nam e = 'Rob Reiner'
bornIn = 'New York'

DIRECTED

Person

bornIn = 'New Jersey'
chauffeurNam e = 'John Brown'
nam e = 'Michael Douglas'

ACTED_IN ACTED_IN

Merge nodes

Merge single node with a label
Merging a single node with a given label.

Query

MERGE (robert:Critic)

RETURN robert, labels(robert)

A new node is created because there are no nodes labeled Critic in the database.

Writing Clauses

193

Result
robert labels(robert)

Node[7]{} ["Critic"]

1 row
Nodes created: 1
Labels added: 1

Merge single node with properties
Merging a single node with properties where not all properties match any existing node.

Query

MERGE (charlie { name:'Charlie Sheen', age:10 })

RETURN charlie

A new node with the name Charlie Sheen will be created since not all properties matched the existing
Charlie Sheen node.

Result
charlie

Node[7]{name:"Charlie Sheen", age:10}

1 row
Nodes created: 1
Properties set: 2

Merge single node specifying both label and property
Merging a single node with both label and property matching an existing node.

Query

MERGE (michael:Person { name:'Michael Douglas' })

RETURN michael.name, michael.bornIn

Michael Douglas will be matched and the name and bornIn properties returned.

Result
michael.name michael.bornIn

"Michael Douglas" "New Jersey"

1 row

Merge single node derived from an existing node property
For some property p in each bound node in a set of nodes, a single new node is created for each
unique value for p.

Query

MATCH (person:Person)

MERGE (city:City { name: person.bornIn })

RETURN person.name, person.bornIn, city

Three nodes labeled City are created, each of which contains a name property with the value of New
York, Ohio, and New Jersey, respectively. Note that even though the MATCH clause results in three bound
nodes having the value New York for the bornIn property, only a single New York node (i.e. a City node
with a name of New York) is created. As the New York node is not matched for the first bound node, it
is created. However, the newly-created New York node is matched and bound for the second and third
bound nodes.

Writing Clauses

194

Result
person.name person.bornIn city

"Oliver Stone" "New York" Node[7]{name:"New York"}

"Charlie Sheen" "New York" Node[7]{name:"New York"}

"Martin Sheen" "Ohio" Node[8]{name:"Ohio"}

"Rob Reiner" "New York" Node[7]{name:"New York"}

"Michael Douglas" "New Jersey" Node[9]{name:"New Jersey"}

5 rows
Nodes created: 3
Properties set: 3
Labels added: 3

Use ON CREATE and ON MATCH

Merge with ON CREATE
Merge a node and set properties if the node needs to be created.
Query

MERGE (keanu:Person { name:'Keanu Reeves' })

ON CREATE SET keanu.created = timestamp()

RETURN keanu.name, keanu.created

The query creates the keanu node and sets a timestamp on creation time.

Result
keanu.name keanu.created

"Keanu Reeves" 1445037182554

1 row
Nodes created: 1
Properties set: 2
Labels added: 1

Merge with ON MATCH
Merging nodes and setting properties on found nodes.
Query

MERGE (person:Person)

ON MATCH SET person.found = TRUE RETURN person.name, person.found

The query finds all the Person nodes, sets a property on them, and returns them.

Result
person.name person.found

"Oliver Stone" true

"Charlie Sheen" true

"Martin Sheen" true

"Rob Reiner" true

"Michael Douglas" true

5 rows
Properties set: 5

Merge with ON CREATE and ON MATCH
Merge a node and set properties if the node needs to be created.
Query

Writing Clauses

195

MERGE (keanu:Person { name:'Keanu Reeves' })

ON CREATE SET keanu.created = timestamp()

ON MATCH SET keanu.lastSeen = timestamp()

RETURN keanu.name, keanu.created, keanu.lastSeen

The query creates the keanu node, and sets a timestamp on creation time. If keanu had already existed,
a different property would have been set.

Result
keanu.name keanu.created keanu.lastSeen

"Keanu Reeves" 1445037184685 <null>

1 row
Nodes created: 1
Properties set: 2
Labels added: 1

Merge with ON MATCH setting multiple properties
If multiple properties should be set, simply separate them with commas.
Query

MERGE (person:Person)

ON MATCH SET person.found = TRUE , person.lastAccessed = timestamp()

RETURN person.name, person.found, person.lastAccessed

Result
person.name person.found person.lastAccessed

"Oliver Stone" true 1445037183921

"Charlie Sheen" true 1445037183921

"Martin Sheen" true 1445037183921

"Rob Reiner" true 1445037183921

"Michael Douglas" true 1445037183921

5 rows
Properties set: 10

Merge relationships

Merge on a relationship
MERGE can be used to match or create a relationship.
Query

MATCH (charlie:Person { name:'Charlie Sheen' }),(wallStreet:Movie { title:'Wall Street' })

MERGE (charlie)-[r:ACTED_IN]->(wallStreet)

RETURN charlie.name, type(r), wallStreet.title

Charlie Sheen had already been marked as acting in Wall Street, so the existing relationship is found and
returned. Note that in order to match or create a relationship when using MERGE, at least one bound
node must be specified, which is done via the MATCH clause in the above example.

Result
charlie.name type(r) wallStreet.title

"Charlie Sheen" "ACTED_IN" "Wall Street"

1 row

Merge on multiple relationships
When MERGE is used on a whole pattern, either everything matches, or everything is created.
Query

Writing Clauses

196

MATCH (oliver:Person { name:'Oliver Stone' }),(reiner:Person { name:'Rob Reiner' })

MERGE (oliver)-[:DIRECTED]->(movie:Movie)<-[:ACTED_IN]-(reiner)

RETURN movie

In our example graph, Oliver Stone and Rob Reiner have never worked together. When we try to MERGE a
movie between them, Neo4j will not use any of the existing movies already connected to either person.
Instead, a new movie node is created.

Result
movie

Node[7]{}

1 row
Nodes created: 1
Relationships created: 2
Labels added: 1

Merge on an undirected relationship
MERGE can also be used with an undirected relationship. When it needs to create a new one, it will pick a
direction.

Query

MATCH (charlie:Person { name:'Charlie Sheen' }),(oliver:Person { name:'Oliver Stone' })

MERGE (charlie)-[r:KNOWS]-(oliver)

RETURN r

As Charlie Sheen and Oliver Stone do not know each other, this MERGE query will create a :KNOWS
relationship between them. The direction of the created relationship is arbitrary.

Result
r

:KNOWS[8]{}

1 row
Relationships created: 1

Merge on a relationship between two existing nodes
MERGE can be used in conjunction with preceding MATCH and MERGE clauses to create a relationship
between two bound nodes m and n, where m is returned by MATCH and n is created or matched by the
earlier MERGE.

Query

MATCH (person:Person)

MERGE (city:City { name: person.bornIn })

MERGE (person)-[r:BORN_IN]->(city)

RETURN person.name, person.bornIn, city

This builds on the example from the section called “Merge single node derived from an existing node
property” [193]. The second MERGE creates a BORN_IN relationship between each person and a city
corresponding to the value of the person’s bornIn property. Charlie Sheen, Rob Reiner and Oliver Stone all
have a BORN_IN relationship to the same City node (New York).

Result
person.name person.bornIn city

"Oliver Stone" "New York" Node[7]{name:"New York"}

5 rows
Nodes created: 3
Relationships created: 5
Properties set: 3
Labels added: 3

Writing Clauses

197

person.name person.bornIn city

"Charlie Sheen" "New York" Node[7]{name:"New York"}

"Martin Sheen" "Ohio" Node[8]{name:"Ohio"}

"Rob Reiner" "New York" Node[7]{name:"New York"}

"Michael Douglas" "New Jersey" Node[9]{name:"New Jersey"}

5 rows
Nodes created: 3
Relationships created: 5
Properties set: 3
Labels added: 3

Merge on a relationship between an existing node and a merged node derived from a
node property
MERGE can be used to simultaneously create both a new node n and a relationship between a bound
node m and n.
Query

MATCH (person:Person)

MERGE (person)-[r:HAS_CHAUFFEUR]->(chauffeur:Chauffeur { name: person.chauffeurName })

RETURN person.name, person.chauffeurName, chauffeur

As MERGE found no matches — in our example graph, there are no nodes labeled with Chauffeur and no
HAS_CHAUFFEUR relationships — MERGE creates five nodes labeled with Chauffeur, each of which contains
a name property whose value corresponds to each matched Person node’s chauffeurName property
value. MERGE also creates a HAS_CHAUFFEUR relationship between each Person node and the newly-created
corresponding Chauffeur node. As Charlie Sheen and Michael Douglas both have a chauffeur with the
same name — John Brown — a new node is created in each case, resulting in two Chauffeur nodes having
a name of John Brown, correctly denoting the fact that even though the name property may be identical,
these are two separate people. This is in contrast to the example shown above in the section called
“Merge on a relationship between two existing nodes” [196], where we used the first MERGE to bind the
City nodes to prevent them from being recreated (and thus duplicated) in the second MERGE.

Result
person.name person.chauffeurName chauffeur

"Oliver Stone" "Bill White" Node[7]{name:"Bill White"}

"Charlie Sheen" "John Brown" Node[8]{name:"John Brown"}

"Martin Sheen" "Bob Brown" Node[9]{name:"Bob Brown"}

"Rob Reiner" "Ted Green" Node[10]{name:"Ted Green"}

"Michael Douglas" "John Brown" Node[11]{name:"John Brown"}

5 rows
Nodes created: 5
Relationships created: 5
Properties set: 5
Labels added: 5

Using unique constraints with MERGE
Cypher prevents getting conflicting results from MERGE when using patterns that involve uniqueness
constrains. In this case, there must be at most one node that matches that pattern.
For example, given two uniqueness constraints on :Person(id) and :Person(ssn): then a query such as
MERGE (n:Person {id: 12, ssn: 437}) will fail, if there are two different nodes (one with id 12 and one
with ssn 437) or if there is only one node with only one of the properties. In other words, there must be
exactly one node that matches the pattern, or no matching nodes.
Note that the following examples assume the existence of uniqueness constraints that have been
created using:

Writing Clauses

198

CREATE CONSTRAINT ON (n:Person) ASSERT n.name IS UNIQUE;

CREATE CONSTRAINT ON (n:Person) ASSERT n.role IS UNIQUE;

Merge using unique constraints creates a new node if no node is found
Merge using unique constraints creates a new node if no node is found.

Query

MERGE (laurence:Person { name: 'Laurence Fishburne' })

RETURN laurence.name

The query creates the laurence node. If laurence had already existed, MERGE would just match the existing
node.

Result
laurence.name

"Laurence Fishburne"

1 row
Nodes created: 1
Properties set: 1
Labels added: 1

Merge using unique constraints matches an existing node
Merge using unique constraints matches an existing node.

Query

MERGE (oliver:Person { name:'Oliver Stone' })

RETURN oliver.name, oliver.bornIn

The oliver node already exists, so MERGE just matches it.

Result
oliver.name oliver.bornIn

"Oliver Stone" "New York"

1 row

Merge with unique constraints and partial matches
Merge using unique constraints fails when finding partial matches.

Query

MERGE (michael:Person { name:'Michael Douglas', role:'Gordon Gekko' })

RETURN michael

While there is a matching unique michael node with the name Michael Douglas, there is no unique node
with the role of Gordon Gekko and MERGE fails to match.

Error message

Merge did not find a matching node and can not create a new node due to conflicts

with both existing and missing unique nodes. The conflicting constraints are on:

:Person.name and :Person.role

Merge with unique constraints and conflicting matches
Merge using unique constraints fails when finding conflicting matches.

Query

MERGE (oliver:Person { name:'Oliver Stone', role:'Gordon Gekko' })

RETURN oliver

Writing Clauses

199

While there is a matching unique oliver node with the name Oliver Stone, there is also another unique
node with the role of Gordon Gekko and MERGE fails to match.

Error message

Merge did not find a matching node and can not create a new node due to conflicts

with both existing and missing unique nodes. The conflicting constraints are on:

:Person.name and :Person.role

Using map parameters with MERGE
MERGE does not support map parameters like for example CREATE does. To use map parameters with
MERGE, it is necessary to explicitly use the expected properties, like in the following example. For more
information on parameters, see Section 8.5, “Parameters” [113].

Parameters

{

 "param" : {

 "name" : "Keanu Reeves",

 "role" : "Neo"

 }

}

Query

MERGE (person:Person { name: { param }.name, role: { param }.role })

RETURN person.name, person.role

Result
person.name person.role

"Keanu Reeves" "Neo"

1 row
Nodes created: 1
Properties set: 2
Labels added: 1

Writing Clauses

200

12.3. Set
The SET clause is used to update labels on nodes and properties on nodes and
relationships.

SET can also be used with maps from parameters to set properties.

Note
Setting labels on a node is an idempotent operations — if you try to set a label on a node
that already has that label on it, nothing happens. The query statistics will tell you if
something needed to be done or not.

The examples use this graph as a starting point:

nam e = 'Em il'

nam e = 'Peter'
age = 34

KNOWS

nam e = 'Stefan'

Swedish

nam e = 'Andres'
age = 36
hungry = t rue

KNOWS

KNOWS

Set a property
To set a property on a node or relationship, use SET.

Query

MATCH (n { name: 'Andres' })

SET n.surname = 'Taylor'

RETURN n

The newly changed node is returned by the query.

Result
n

Node[3]{surname:"Taylor", name:"Andres", age:36, hungry:true}

1 row
Properties set: 1

Remove a property
Normally you remove a property by using REMOVE, but it’s sometimes handy to do it using the SET
command. One example is if the property comes from a parameter.

Query

Writing Clauses

201

MATCH (n { name: 'Andres' })

SET n.name = NULL RETURN n

The node is returned by the query, and the name property is now missing.

Result
n

Node[3]{hungry:true, age:36}

1 row
Properties set: 1

Copying properties between nodes and relationships
You can also use SET to copy all properties from one graph element to another. Remember that doing
this will remove all other properties on the receiving graph element.

Query

MATCH (at { name: 'Andres' }),(pn { name: 'Peter' })

SET at = pn

RETURN at, pn

The Andres node has had all it’s properties replaced by the properties in the Peter node.

Result
at pn

Node[3]{name:"Peter", age:34} Node[2]{name:"Peter", age:34}

1 row
Properties set: 3

Adding properties from maps
When setting properties from a map (literal, paremeter, or graph element), you can use the += form of
SET to only add properties, and not remove any of the existing properties on the graph element.

Query

MATCH (peter { name: 'Peter' })

SET peter += { hungry: TRUE , position: 'Entrepreneur' }

Result
(empty result)

Properties set: 2

Set a property using a parameter
Use a parameter to give the value of a property.

Parameters

{

 "surname" : "Taylor"

}

Query

MATCH (n { name: 'Andres' })

SET n.surname = { surname }

RETURN n

The Andres node has got an surname added.

Writing Clauses

202

Result
n

Node[3]{surname:"Taylor", name:"Andres", age:36, hungry:true}

1 row
Properties set: 1

Set all properties using a parameter
This will replace all existing properties on the node with the new set provided by the parameter.

Parameters

{

 "props" : {

 "name" : "Andres",

 "position" : "Developer"

 }

}

Query

MATCH (n { name: 'Andres' })

SET n = { props }

RETURN n

The Andres node has had all it’s properties replaced by the properties in the props parameter.

Result
n

Node[3]{name:"Andres", position:"Developer"}

1 row
Properties set: 4

Set multiple properties using one SET clause
If you want to set multiple properties in one go, simply separate them with a comma.

Query

MATCH (n { name: 'Andres' })

SET n.position = 'Developer', n.surname = 'Taylor'

Result
(empty result)

Properties set: 2

Set a label on a node
To set a label on a node, use SET.

Query

MATCH (n { name: 'Stefan' })

SET n :German

RETURN n

The newly labeled node is returned by the query.

Result
n

Node[1]{name:"Stefan"}

1 row
Labels added: 1

Writing Clauses

203

Set multiple labels on a node
To set multiple labels on a node, use SET and separate the different labels using :.

Query

MATCH (n { name: 'Emil' })

SET n :Swedish:Bossman

RETURN n

The newly labeled node is returned by the query.

Result
n

Node[0]{name:"Emil"}

1 row
Labels added: 2

Writing Clauses

204

12.4. Delete
The DELETE clause is used to delete graph elements — nodes, relationships or paths.

For removing properties and labels, see Section 12.5, “Remove” [205]. Remember that you can not
delete a node without also deleting relationships that start or end on said node. Either explicitly delete
the relationships, or use DETACH DELETE.
The examples start out with the following database:

nam e = 'Tobias'
age = 25

nam e = 'Peter'
age = 34

nam e = 'Andres'
age = 36

KNOWS KNOWS

Delete single node
To delete a node, use the DELETE clause.
Query

MATCH (n:Useless)

DELETE n

Result
(empty result)

Nodes deleted: 1

Delete all nodes and relationships
This query isn’t for deleting large amounts of data, but is nice when playing around with small example
data sets.
Query

MATCH (n)

DETACH DELETE n

Result
(empty result)

Nodes deleted: 3
Relationships deleted: 2

Delete a node with all its relationships
When you want to delete a node and any relationship going to or from it, use DETACH DELETE.
Query

MATCH (n { name:'Andres' })

DETACH DELETE n

Result
(empty result)

Nodes deleted: 1
Relationships deleted: 2

Writing Clauses

205

12.5. Remove
The REMOVE clause is used to remove properties and labels from graph elements.

For deleting nodes and relationships, see Section 12.4, “Delete” [204].

Note
Removing labels from a node is an idempotent operation: If you try to remove a label from a
node that does not have that label on it, nothing happens. The query statistics will tell you if
something needed to be done or not.

The examples start out with the following database:

Swedish

nam e = 'Tobias'
age = 25

Swedish, Germ an

nam e = 'Peter'
age = 34

Swedish

nam e = 'Andres'
age = 36

KNOWS KNOWS

Remove a property
Neo4j doesn’t allow storing null in properties. Instead, if no value exists, the property is just not there.
So, to remove a property value on a node or a relationship, is also done with REMOVE.

Query

MATCH (andres { name: 'Andres' })

REMOVE andres.age

RETURN andres

The node is returned, and no property age exists on it.

Result
andres

Node[2]{name:"Andres"}

1 row
Properties set: 1

Remove a label from a node
To remove labels, you use REMOVE.

Query

MATCH (n { name: 'Peter' })

REMOVE n:German

RETURN n

Result
n

Node[1]{name:"Peter", age:34}

1 row
Labels removed: 1

Writing Clauses

206

Removing multiple labels
To remove multiple labels, you use REMOVE.

Query

MATCH (n { name: 'Peter' })

REMOVE n:German:Swedish

RETURN n

Result
n

Node[1]{name:"Peter", age:34}

1 row
Labels removed: 2

Writing Clauses

207

12.6. Foreach
The FOREACH clause is used to update data within a collection, whether components of a
path, or result of aggregation.

Collections and paths are key concepts in Cypher. To use them for updating data, you can use the
FOREACH construct. It allows you to do updating commands on elements in a collection — a path, or a
collection created by aggregation.

The identifier context inside of the foreach parenthesis is separate from the one outside it. This means
that if you CREATE a node identifier inside of a FOREACH, you will not be able to use it outside of the
foreach statement, unless you match to find it.

Inside of the FOREACH parentheses, you can do any of the updating commands — CREATE, CREATE UNIQUE,
MERGE, DELETE, and FOREACH.

If you want to execute an additional MATCH for each element in a collection then UNWIND (see Section 10.6,
“Unwind” [148]) would be a more appropriate command.

Figure 12.2. Data for the examples

nam e = 'D'

nam e = 'A'

nam e = 'B'

KNOWS

nam e = 'C'

KNOWS

KNOWS

Mark all nodes along a path
This query will set the property marked to true on all nodes along a path.

Query

MATCH p =(begin)-[*]->(END)

WHERE begin.name='A' AND END .name='D'

FOREACH (n IN nodes(p)| SET n.marked = TRUE)

Nothing is returned from this query, but four properties are set.

Result
(empty result)

Properties set: 4

Writing Clauses

208

12.7. Create Unique
The CREATE UNIQUE clause is a mix of MATCH and CREATE — it will match what it can, and create
what is missing.

Introduction

Tip
MERGE might be what you want to use instead of CREATE UNIQUE. Note however, that MERGE
doesn’t give as strong guarantees for relationships being unique.

CREATE UNIQUE is in the middle of MATCH and CREATE — it will match what it can, and create what is missing.
CREATE UNIQUE will always make the least change possible to the graph — if it can use parts of the
existing graph, it will.

Another difference to MATCH is that CREATE UNIQUE assumes the pattern to be unique. If multiple matching
subgraphs are found an error will be generated.

Tip
In the CREATE UNIQUE clause, patterns are used a lot. Read Section 9.6, “Patterns” [127] for an
introduction.

The examples start out with the following data set:

nam e = 'A'

nam e = 'C'

KNOWS

nam e = 'root '

X

X nam e = 'B'

X

Create unique nodes

Create node if missing
If the pattern described needs a node, and it can’t be matched, a new node will be created.

Query

MATCH (root { name: 'root' })

CREATE UNIQUE (root)-[:LOVES]-(someone)

RETURN someone

The root node doesn’t have any LOVES relationships, and so a node is created, and also a relationship to
that node.

Writing Clauses

209

Result
someone

Node[4]{}

1 row
Nodes created: 1
Relationships created: 1

Create nodes with values
The pattern described can also contain values on the node. These are given using the following syntax:
prop : <expression>.

Query

MATCH (root { name: 'root' })

CREATE UNIQUE (root)-[:X]-(leaf { name:'D' })

RETURN leaf

No node connected with the root node has the name D, and so a new node is created to match the
pattern.

Result
leaf

Node[4]{name:"D"}

1 row
Nodes created: 1
Relationships created: 1
Properties set: 1

Create labeled node if missing
If the pattern described needs a labeled node and there is none with the given labels, Cypher will create
a new one.

Query

MATCH (a { name: 'A' })

CREATE UNIQUE (a)-[:KNOWS]-(c:blue)

RETURN c

The A node is connected in a KNOWS relationship to the c node, but since C doesn’t have the :blue label, a
new node labeled as :blue is created along with a KNOWS relationship from A to it.

Result
c

Node[4]{}

1 row
Nodes created: 1
Relationships created: 1
Labels added: 1

Create unique relationships

Create relationship if it is missing
CREATE UNIQUE is used to describe the pattern that should be found or created.

Query

MATCH (lft { name: 'A' }),(rgt)

WHERE rgt.name IN ['B', 'C']

CREATE UNIQUE (lft)-[r:KNOWS]->(rgt)

Writing Clauses

210

RETURN r

The left node is matched agains the two right nodes. One relationship already exists and can be
matched, and the other relationship is created before it is returned.

Result
r

:KNOWS[4]{}

:KNOWS[3]{}

2 rows
Relationships created: 1

Create relationship with values
Relationships to be created can also be matched on values.

Query

MATCH (root { name: 'root' })

CREATE UNIQUE (root)-[r:X { since:'forever' }]-()

RETURN r

In this example, we want the relationship to have a value, and since no such relationship can be found,
a new node and relationship are created. Note that since we are not interested in the created node, we
don’t name it.

Result
r

:X[4]{since:"forever"}

1 row
Nodes created: 1
Relationships created: 1
Properties set: 1

Describe complex pattern
The pattern described by CREATE UNIQUE can be separated by commas, just like in MATCH and CREATE.

Query

MATCH (root { name: 'root' })

CREATE UNIQUE (root)-[:FOO]->(x),(root)-[:BAR]->(x)

RETURN x

This example pattern uses two paths, separated by a comma.

Result
x

Node[4]{}

1 row
Nodes created: 1
Relationships created: 2

Writing Clauses

211

12.8. Importing CSV files with Cypher
This tutorial will show you how to import data from CSV files using LOAD CSV.

In this example, we’re given three CSV files: a list of persons, a list of movies, and a list of which role was
played by some of these persons in each movie.

CSV files can be stored on the database server and are then accessible using a file:// URL.
Alternatively, LOAD CSV also supports accessing CSV files via HTTPS, HTTP, and FTP.

Using the following Cypher queries, we’ll create a node for each person, a node for each movie and a
relationship between the two with a property denoting the role. We’re also keeping track of the country
in which each movie was made.

Let’s start with importing the persons:

LOAD CSV WITH HEADERS FROM "http://neo4j.com/docs/2.3.0/csv/import/persons.csv" AS csvLine

CREATE (p:Person { id: toInt(csvLine.id), name: csvLine.name })

The CSV file we’re using looks like this:

persons.csv

id,name

1,Charlie Sheen

2,Oliver Stone

3,Michael Douglas

4,Martin Sheen

5,Morgan Freeman

Now, let’s import the movies. This time, we’re also creating a relationship to the country in which the
movie was made. If you are storing your data in a SQL database, this is the one-to-many relationship
type.

We’re using MERGE to create nodes that represent countries. Using MERGE avoids creating duplicate
country nodes in the case where multiple movies have been made in the same country.

Important
When using MERGE or MATCH with LOAD CSV we need to make sure we have an index
(see Section 14.1, “Indexes” [244]) or a unique constraint (see Section 14.2,
“Constraints” [247]) on the property we’re merging. This will ensure the query executes in
a performant way.

Before running our query to connect movies and countries we’ll create an index for the name property
on the Country label to ensure the query runs as fast as it can:

CREATE INDEX ON :Country(name)

LOAD CSV WITH HEADERS FROM "http://neo4j.com/docs/2.3.0/csv/import/movies.csv" AS csvLine

MERGE (country:Country { name: csvLine.country })

CREATE (movie:Movie { id: toInt(csvLine.id), title: csvLine.title, year:toInt(csvLine.year)})

CREATE (movie)-[:MADE_IN]->(country)

movies.csv

id,title,country,year

1,Wall Street,USA,1987

2,The American President,USA,1995

3,The Shawshank Redemption,USA,1994

Lastly, we create the relationships between the persons and the movies. Since the relationship is a
many to many relationship, one actor can participate in many movies, and one movie has many actors
in it. We have this data in a separate file.

Writing Clauses

212

We’ll index the id property on Person and Movie nodes. The id property is a temporary property used
to look up the appropriate nodes for a relationship when importing the third file. By indexing the id
property, node lookup (e.g. by MATCH) will be much faster. Since we expect the ids to be unique in each
set, we’ll create a unique constraint. This protects us from invalid data since constraint creation will
fail if there are multiple nodes with the same id property. Creating a unique constraint also creates a
unique index (which is faster than a regular index).

CREATE CONSTRAINT ON (person:Person) ASSERT person.id IS UNIQUE

CREATE CONSTRAINT ON (movie:Movie) ASSERT movie.id IS UNIQUE

Now importing the relationships is a matter of finding the nodes and then creating relationships
between them.

For this query we’ll use USING PERIODIC COMMIT (see Section 12.9, “Using Periodic Commit” [213]) which
is helpful for queries that operate on large CSV files. This hint tells Neo4j that the query might build up
inordinate amounts of transaction state, and so needs to be periodically committed. In this case we
also set the limit to 500 rows per commit.

USING PERIODIC COMMIT 500

LOAD CSV WITH HEADERS FROM "http://neo4j.com/docs/2.3.0/csv/import/roles.csv" AS csvLine

MATCH (person:Person { id: toInt(csvLine.personId)}),(movie:Movie { id: toInt(csvLine.movieId)})

CREATE (person)-[:PLAYED { role: csvLine.role }]->(movie)

roles.csv

personId,movieId,role

1,1,Bud Fox

4,1,Carl Fox

3,1,Gordon Gekko

4,2,A.J. MacInerney

3,2,President Andrew Shepherd

5,3,Ellis Boyd 'Red' Redding

Finally, as the id property was only necessary to import the relationships, we can drop the constraints
and the id property from all movie and person nodes.

DROP CONSTRAINT ON (person:Person) ASSERT person.id IS UNIQUE

DROP CONSTRAINT ON (movie:Movie) ASSERT movie.id IS UNIQUE

MATCH (n)

WHERE n:Person OR n:Movie

REMOVE n.id

Writing Clauses

213

12.9. Using Periodic Commit
Note
See Section 12.8, “Importing CSV files with Cypher” [211] on how to import data from CSV
files.

Importing large amounts of data using LOAD CSV with a single Cypher query may fail due to memory
constraints. This will manifest itself as an OutOfMemoryError.

For this situation only, Cypher provides the global USING PERIODIC COMMIT query hint for updating
queries using LOAD CSV. You can optionally set the limit for the number of rows per commit like so: USING
PERIODIC COMMIT 500.

PERIODIC COMMIT will process the rows until the number of rows reaches a limit. Then the current
transaction will be committed and replaced with a newly opened transaction. If no limit is set, a default
value will be used.

See the section called “Importing large amounts of data” [184] in Section 11.6, “Load CSV” [183] for
examples of USING PERIODIC COMMIT with and without setting the number of rows per commit.

Important
Using periodic commit will prevent running out of memory when importing large amounts
of data. However, it will also break transactional isolation and thus it should only be used
where needed.

214

Chapter 13. Functions

This chapter contains information on all functions in Cypher. Note that related information exists in
Section 9.4, “Operators” [124].

Note
Most functions in Cypher will return NULL if an input parameter is NULL.

Functions

215

13.1. Predicates
Predicates are boolean functions that return true or false for a given set of input. They are most
commonly used to filter out subgraphs in the WHERE part of a query.

See also the section called “Comparison operators” [124].

Figure 13.1. Graph

nam e = 'Daniel'
age = 54
eyes = 'brown'

Spouse

array = ['one', ' two', ' three']
nam e = 'Eskil'
age = 41
eyes = 'blue'

foo, bar

nam e = 'Alice'
age = 38
eyes = 'brown'

nam e = 'Charlie'
age = 53
eyes = 'green'

KNOWS

nam e = 'Bob'
age = 25
eyes = 'blue'

KNOWS

KNOWS KNOWS MARRIED

ALL
Tests whether a predicate holds for all element of this collection collection.

Syntax: ALL(identifier in collection WHERE predicate)

Arguments:

• collection: An expression that returns a collection
• identifier: This is the identifier that can be used from the predicate.
• predicate: A predicate that is tested against all items in the collection.

Query

MATCH p=(a)-[*1..3]->(b)

WHERE a.name='Alice' AND b.name='Daniel' AND ALL (x IN nodes(p) WHERE x.age > 30)

RETURN p

All nodes in the returned paths will have an age property of at least 30.

Result
p

[Node[2]{name:"Alice", age:38, eyes:"brown"}, :KNOWS[1]{}, Node[4]{name:"Charlie", age:53,

 eyes:"green"}, :KNOWS[3]{}, Node[0]{name:"Daniel", age:54, eyes:"brown"}]

1 row

ANY
Tests whether a predicate holds for at least one element in the collection.

Syntax: ANY(identifier in collection WHERE predicate)

Functions

216

Arguments:

• collection: An expression that returns a collection
• identifier: This is the identifier that can be used from the predicate.
• predicate: A predicate that is tested against all items in the collection.

Query

MATCH (a)

WHERE a.name='Eskil' AND ANY (x IN a.array WHERE x = "one")

RETURN a

All nodes in the returned paths has at least one one value set in the array property named array.

Result
a

Node[1]{array:["one", "two", "three"], name:"Eskil", age:41, eyes:"blue"}

1 row

NONE
Returns true if the predicate holds for no element in the collection.

Syntax: NONE(identifier in collection WHERE predicate)
Arguments:

• collection: An expression that returns a collection
• identifier: This is the identifier that can be used from the predicate.
• predicate: A predicate that is tested against all items in the collection.

Query

MATCH p=(n)-[*1..3]->(b)

WHERE n.name='Alice' AND NONE (x IN nodes(p) WHERE x.age = 25)

RETURN p

No nodes in the returned paths has a age property set to 25.

Result
p

[Node[2]{name:"Alice", age:38, eyes:"brown"}, :KNOWS[1]{}, Node[4]{name:"Charlie", age:53, eyes:"green"}]

[Node[2]{name:"Alice", age:38, eyes:"brown"}, :KNOWS[1]{}, Node[4]{name:"Charlie", age:53,

 eyes:"green"}, :KNOWS[3]{}, Node[0]{name:"Daniel", age:54, eyes:"brown"}]

2 rows

SINGLE
Returns true if the predicate holds for exactly one of the elements in the collection.

Syntax: SINGLE(identifier in collection WHERE predicate)
Arguments:

• collection: An expression that returns a collection
• identifier: This is the identifier that can be used from the predicate.
• predicate: A predicate that is tested against all items in the collection.

Query

MATCH p=(n)-->(b)

Functions

217

WHERE n.name='Alice' AND SINGLE (var IN nodes(p) WHERE var.eyes = "blue")

RETURN p

Exactly one node in every returned path will have the eyes property set to "blue".

Result
p

[Node[2]{name:"Alice", age:38, eyes:"brown"}, :KNOWS[0]{}, Node[3]{name:"Bob", age:25, eyes:"blue"}]

1 row

EXISTS
Returns true if a match for the pattern exists in the graph, or the property exists in the node,
relationship or map.

Syntax: EXISTS(pattern-or-property)
Arguments:

• pattern-or-property: A pattern or a property (in the form identifier.prop).

Query

MATCH (n)

WHERE EXISTS(n.name)

RETURN n.name AS name, EXISTS((n)-[:MARRIED]->()) AS is_married

This query returns all the nodes with a name property along with a boolean true/false indicating if they
are married.

Result
name is_married

"Daniel" false

"Eskil" false

"Alice" false

"Bob" true

"Charlie" false

5 rows

Functions

218

13.2. Scalar functions
Scalar functions return a single value.

Important
The LENGTH and SIZE functions are quite similar, and so it is important to take note of the
difference. Due to backwards compatibility LENGTH currently works on four types: strings,
paths, collections and pattern expressions. However, for clarity it is recommended to only
use LENGTH on strings and paths, and use the new SIZE function on collections and pattern
expressions. LENGTH on those types may be deprecated in future.

Figure 13.2. Graph

nam e = 'Daniel'
age = 54
eyes = 'brown'

Spouse

array = ['one', ' two', ' three']
nam e = 'Eskil'
age = 41
eyes = 'blue'

foo, bar

nam e = 'Alice'
age = 38
eyes = 'brown'

nam e = 'Charlie'
age = 53
eyes = 'green'

KNOWS

nam e = 'Bob'
age = 25
eyes = 'blue'

KNOWS

KNOWS KNOWS MARRIED

SIZE
To return or filter on the size of a collection, use the SIZE() function.

Syntax: SIZE(collection)

Arguments:

• collection: An expression that returns a collection

Query

RETURN size(['Alice', 'Bob']) AS col

The number of items in the collection is returned by the query.

Result
col

2

1 row

SIZE of pattern expression
This is the same SIZE() method described before, but instead of passing in a collection directly, you
provide a pattern expression that can be used in a match query to provide a new set of results. The size
of the result is calculated, not the length of the expression itself.

Functions

219

Syntax: SIZE(pattern expression)

Arguments:

• pattern expression: A pattern expression that returns a collection

Query

MATCH (a)

WHERE a.name='Alice'

RETURN size((a)-->()-->()) AS fof

The number of sub-graphs matching the pattern expression is returned by the query.

Result
fof

3

1 row

LENGTH
To return or filter on the length of a path, use the LENGTH() function.

Syntax: LENGTH(path)

Arguments:

• path: An expression that returns a path

Query

MATCH p=(a)-->(b)-->(c)

WHERE a.name='Alice'

RETURN length(p)

The length of the path p is returned by the query.

Result
length(p)

2

2

2

3 rows

LENGTH of string
To return or filter on the length of a string, use the LENGTH() function.

Syntax: LENGTH(string)

Arguments:

• string: An expression that returns a string

Query

MATCH (a)

WHERE length(a.name)> 6

RETURN length(a.name)

The length of the name Charlie is returned by the query.

Functions

220

Result
length(a.name)

7

1 row

TYPE
Returns a string representation of the relationship type.

Syntax: TYPE(relationship)

Arguments:

• relationship: A relationship.

Query

MATCH (n)-[r]->()

WHERE n.name='Alice'

RETURN type(r)

The relationship type of r is returned by the query.

Result
type(r)

"KNOWS"

"KNOWS"

2 rows

ID
Returns the id of the relationship or node.

Syntax: ID(property-container)

Arguments:

• property-container: A node or a relationship.

Query

MATCH (a)

RETURN id(a)

This returns the node id for three nodes.

Result
id(a)

0

1

2

3

4

5 rows

COALESCE
Returns the first non-NULL value in the list of expressions passed to it. In case all arguments are NULL,
NULL will be returned.

Functions

221

Syntax: COALESCE(expression [, expression]*)

Arguments:

• expression: The expression that might return NULL.

Query

MATCH (a)

WHERE a.name='Alice'

RETURN coalesce(a.hairColor, a.eyes)

Result
coalesce(a.hairColor, a.eyes)

"brown"

1 row

HEAD
HEAD returns the first element in a collection.

Syntax: HEAD(expression)

Arguments:

• expression: This expression should return a collection of some kind.

Query

MATCH (a)

WHERE a.name='Eskil'

RETURN a.array, head(a.array)

The first node in the path is returned.

Result
a.array head(a.array)

["one", "two", "three"] "one"

1 row

LAST
LAST returns the last element in a collection.

Syntax: LAST(expression)

Arguments:

• expression: This expression should return a collection of some kind.

Query

MATCH (a)

WHERE a.name='Eskil'

RETURN a.array, last(a.array)

The last node in the path is returned.

Result
a.array last(a.array)

["one", "two", "three"] "three"

1 row

Functions

222

TIMESTAMP
TIMESTAMP returns the difference, measured in milliseconds, between the current time and midnight,
January 1, 1970 UTC. It will return the same value during the whole one query, even if the query is a
long running one.

Syntax: TIMESTAMP()
Arguments:
Query

RETURN timestamp()

The time in milliseconds is returned.

Result
timestamp()

1445037145128

1 row

STARTNODE
STARTNODE returns the starting node of a relationship

Syntax: STARTNODE(relationship)
Arguments:

• relationship: An expression that returns a relationship

Query

MATCH (x:foo)-[r]-()

RETURN startNode(r)

Result
startNode(r)

Node[2]{name:"Alice", age:38, eyes:"brown"}

Node[2]{name:"Alice", age:38, eyes:"brown"}

2 rows

ENDNODE
ENDNODE returns the end node of a relationship

Syntax: ENDNODE(relationship)
Arguments:

• relationship: An expression that returns a relationship

Query

MATCH (x:foo)-[r]-()

RETURN endNode(r)

Result
endNode(r)

Node[4]{name:"Charlie", age:53, eyes:"green"}

Node[3]{name:"Bob", age:25, eyes:"blue"}

2 rows

Functions

223

TOINT
TOINT converts the argument to an integer. A string is parsed as if it was an integer number. If the
parsing fails, NULL will be returned. A floating point number will be cast into an integer.

Syntax: TOINT(expression)
Arguments:

• expression: An expression that returns anything

Query

RETURN toInt("42"), toInt("not a number")

Result
toInt("42") toInt("not a number")

42 <null>

1 row

TOFLOAT
TOFLOAT converts the argument to a float. A string is parsed as if it was an floating point number. If the
parsing fails, NULL will be returned. An integer will be cast to a floating point number.

Syntax: TOFLOAT(expression)

Arguments:

• expression: An expression that returns anything

Query

RETURN toFloat("11.5"), toFloat("not a number")

Result
toFloat("11.5") toFloat("not a number")

11. 5 <null>

1 row

Functions

224

13.3. Collection functions
Collection functions return collections of things — nodes in a path, and so on.

See also the section called “Collection operators” [124].

Figure 13.3. Graph

nam e = 'Daniel'
age = 54
eyes = 'brown'

Spouse

array = ['one', ' two', ' three']
nam e = 'Eskil'
age = 41
eyes = 'blue'

foo, bar

nam e = 'Alice'
age = 38
eyes = 'brown'

nam e = 'Charlie'
age = 53
eyes = 'green'

KNOWS

nam e = 'Bob'
age = 25
eyes = 'blue'

KNOWS

KNOWS KNOWS MARRIED

NODES
Returns all nodes in a path.

Syntax: NODES(path)

Arguments:

• path: A path.

Query

MATCH p=(a)-->(b)-->(c)

WHERE a.name='Alice' AND c.name='Eskil'

RETURN nodes(p)

All the nodes in the path p are returned by the example query.

Result
nodes(p)

[Node[2]{name:"Alice", age:38, eyes:"brown"}, Node[3]{name:"Bob", age:25, eyes:"blue"}, Node[1]{array:

["one", "two", "three"], name:"Eskil", age:41, eyes:"blue"}]

1 row

RELATIONSHIPS
Returns all relationships in a path.

Syntax: RELATIONSHIPS(path)

Arguments:

• path: A path.

Functions

225

Query

MATCH p=(a)-->(b)-->(c)

WHERE a.name='Alice' AND c.name='Eskil'

RETURN relationships(p)

All the relationships in the path p are returned.

Result
relationships(p)

[:KNOWS[0]{}, :MARRIED[4]{}]

1 row

LABELS
Returns a collection of string representations for the labels attached to a node.

Syntax: LABELS(node)
Arguments:

• node: Any expression that returns a single node

Query

MATCH (a)

WHERE a.name='Alice'

RETURN labels(a)

The labels of n is returned by the query.

Result
labels(a)

["foo", "bar"]

1 row

KEYS
Returns a collection of string representations for the property names of a node, relationship, or map.

Syntax: KEYS(property-container)
Arguments:

• property-container: A node, a relationship, or a literal map.

Query

MATCH (a)

WHERE a.name='Alice'

RETURN keys(a)

The name of the properties of n is returned by the query.

Result
keys(a)

["name", "age", "eyes"]

1 row

EXTRACT
To return a single property, or the value of a function from a collection of nodes or relationships, you
can use EXTRACT. It will go through a collection, run an expression on every element, and return the

Functions

226

results in an collection with these values. It works like the map method in functional languages such as
Lisp and Scala.

Syntax: EXTRACT(identifier in collection | expression)

Arguments:

• collection: An expression that returns a collection
• identifier: The closure will have an identifier introduced in it’s context. Here you decide which

identifier to use.
• expression: This expression will run once per value in the collection, and produces the result

collection.

Query

MATCH p=(a)-->(b)-->(c)

WHERE a.name='Alice' AND b.name='Bob' AND c.name='Daniel'

RETURN extract(n IN nodes(p)| n.age) AS extracted

The age property of all nodes in the path are returned.

Result
extracted

[38, 25, 54]

1 row

FILTER
FILTER returns all the elements in a collection that comply to a predicate.

Syntax: FILTER(identifier in collection WHERE predicate)

Arguments:

• collection: An expression that returns a collection
• identifier: This is the identifier that can be used from the predicate.
• predicate: A predicate that is tested against all items in the collection.

Query

MATCH (a)

WHERE a.name='Eskil'

RETURN a.array, filter(x IN a.array WHERE size(x)= 3)

This returns the property named array and a list of values in it, which have size 3.

Result
a.array filter(x in a.array WHERE size(x) = 3)

["one", "two", "three"] ["one", "two"]

1 row

TAIL
TAIL returns all but the first element in a collection.

Syntax: TAIL(expression)

Arguments:

• expression: This expression should return a collection of some kind.

Query

Functions

227

MATCH (a)

WHERE a.name='Eskil'

RETURN a.array, tail(a.array)

This returns the property named array and all elements of that property except the first one.

Result
a.array tail(a.array)

["one", "two", "three"] ["two", "three"]

1 row

RANGE
Returns numerical values in a range with a non-zero step value step. Range is inclusive in both ends.

Syntax: RANGE(start, end [, step])

Arguments:

• start: A numerical expression.
• end: A numerical expression.
• step: A numerical expression.

Query

RETURN range(0,10), range(2,18,3)

Two lists of numbers are returned.

Result
range(0,10) range(2,18,3)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [2, 5, 8, 11, 14, 17]

1 row

REDUCE
To run an expression against individual elements of a collection, and store the result of the expression
in an accumulator, you can use REDUCE. It will go through a collection, run an expression on every
element, storing the partial result in the accumulator. It works like the fold or reduce method in
functional languages such as Lisp and Scala.

Syntax: REDUCE(accumulator = initial, identifier in collection | expression)

Arguments:

• accumulator: An identifier that will hold the result and the partial results as the collection is iterated
• initial: An expression that runs once to give a starting value to the accumulator
• collection: An expression that returns a collection
• identifier: The closure will have an identifier introduced in it’s context. Here you decide which

identifier to use.
• expression: This expression will run once per value in the collection, and produces the result value.

Query

MATCH p=(a)-->(b)-->(c)

WHERE a.name='Alice' AND b.name='Bob' AND c.name='Daniel'

RETURN reduce(totalAge = 0, n IN nodes(p)| totalAge + n.age) AS reduction

The age property of all nodes in the path are summed and returned as a single value.

Functions

228

Result
reduction

117

1 row

Functions

229

13.4. Mathematical functions
These functions all operate on numerical expressions only, and will return an error if used on any other
values.

See also the section called “Mathematical operators” [124].

Figure 13.4. Graph

nam e = 'Daniel'
age = 54
eyes = 'brown'

Spouse

array = ['one', ' two', ' three']
nam e = 'Eskil'
age = 41
eyes = 'blue'

foo, bar

nam e = 'Alice'
age = 38
eyes = 'brown'

nam e = 'Charlie'
age = 53
eyes = 'green'

KNOWS

nam e = 'Bob'
age = 25
eyes = 'blue'

KNOWS

KNOWS KNOWS MARRIED

ABS
ABS returns the absolute value of a number.

Syntax: ABS(expression)

Arguments:

• expression: A numeric expression.

Query

MATCH (a),(e)

WHERE a.name = 'Alice' AND e.name = 'Eskil'

RETURN a.age, e.age, abs(a.age - e.age)

The absolute value of the age difference is returned.

Result
a.age e.age abs(a.age - e.age)

38 41 3. 0

1 row

ACOS
ACOS returns the arccosine of the expression, in radians.

Syntax: ACOS(expression)

Arguments:

• expression: A numeric expression.

Functions

230

Query

RETURN acos(0.5)

The arccosine of 0.5.

Result
acos(0.5)

1. 0471975511965979

1 row

ASIN
ASIN returns the arcsine of the expression, in radians.

Syntax: ASIN(expression)

Arguments:

• expression: A numeric expression.

Query

RETURN asin(0.5)

The arcsine of 0.5.

Result
asin(0.5)

0. 5235987755982989

1 row

ATAN
ATAN returns the arctangent of the expression, in radians.

Syntax: ATAN(expression)

Arguments:

• expression: A numeric expression.

Query

RETURN atan(0.5)

The arctangent of 0.5.

Result
atan(0.5)

0. 4636476090008061

1 row

ATAN2
ATAN2 returns the arctangent2 of a set of coordinates, in radians.

Syntax: ATAN2(expression , expression)

Arguments:

• expression: A numeric expression for y.

Functions

231

• expression: A numeric expression for x.

Query

RETURN atan2(0.5, 0.6)

The arctangent2 of 0.5, 0.6.

Result
atan2(0.5, 0.6)

0. 6947382761967033

1 row

CEIL
CEIL returns the smallest integer greater than or equal to the number.

Syntax: CEIL(expression)

Arguments:

• expression: A numeric expression.

Query

RETURN ceil(0.1)

The ceil of 0.1

Result
ceil(0.1)

1. 0

1 row

COS
COS returns the cosine of the expression.

Syntax: COS(expression)

Arguments:

• expression: A numeric expression.

Query

RETURN cos(0.5)

The cosine of 0.5 is returned.

Result
cos(0.5)

0. 8775825618903728

1 row

COT
COT returns the cotangent of the expression.

Syntax: COT(expression)

Arguments:

Functions

232

• expression: A numeric expression.

Query

RETURN cot(0.5)

The cotangent of 0.5 is returned.

Result
cot(0.5)

1. 830487721712452

1 row

DEGREES
DEGREES converts radians to degrees.

Syntax: DEGREES(expression)
Arguments:

• expression: A numeric expression.

Query

RETURN degrees(3.14159)

The number of degrees in something close to pi.

Result
degrees(3.14159)

179. 99984796050427

1 row

E
E returns the constant, e.

Syntax: E()
Arguments:
Query

RETURN e()

The constant e is returned (the base of natural log).

Result
e()

2. 718281828459045

1 row

EXP
EXP returns the value e raised to the power of the expression.

Syntax: EXP(expression)
Arguments:

• expression: A numeric expression.

Query

Functions

233

RETURN exp(2)

The exp of 2 is returned: e2.

Result
exp(2)

7. 38905609893065

1 row

FLOOR
FLOOR returns the greatest integer less than or equal to the expression.

Syntax: FLOOR(expression)

Arguments:

• expression: A numeric expression.

Query

RETURN floor(0.9)

The floor of 0.9 is returned.

Result
floor(0.9)

0. 0

1 row

HAVERSIN
HAVERSIN returns half the versine of the expression.

Syntax: HAVERSIN(expression)

Arguments:

• expression: A numeric expression.

Query

RETURN haversin(0.5)

The haversine of 0.5 is returned.

Result
haversin(0.5)

0. 06120871905481362

1 row

Spherical distance using the haversin function
The haversin function may be used to compute the distance on the surface of a sphere between two
points (each given by their latitude and longitude). In this example the spherical distance (in km)
between Berlin in Germany (at lat 52.5, lon 13.4) and San Mateo in California (at lat 37.5, lon -122.3) is
calculated using an average earth radius of 6371 km.

Query

CREATE (ber:City { lat: 52.5, lon: 13.4 }),(sm:City { lat: 37.5, lon: -122.3 })

RETURN 2 * 6371 * asin(sqrt(haversin(radians(sm.lat - ber.lat))+ cos(radians(sm.lat))*

Functions

234

 cos(radians(ber.lat))* haversin(radians(sm.lon - ber.lon)))) AS dist

The distance between Berlin and San Mateo is returned (about 9129 km).

Result
dist

9129. 969740051658

1 row
Nodes created: 2
Properties set: 4
Labels added: 2

LOG
LOG returns the natural logarithm of the expression.

Syntax: LOG(expression)

Arguments:

• expression: A numeric expression.

Query

RETURN log(27)

The log of 27 is returned.

Result
log(27)

3. 295836866004329

1 row

LOG10
LOG10 returns the base 10 logarithm of the expression.

Syntax: LOG10(expression)

Arguments:

• expression: A numeric expression.

Query

RETURN log10(27)

The log10 of 27 is returned.

Result
log10(27)

1. 4313637641589874

1 row

PI
PI returns the mathematical constant pi.

Syntax: PI()

Arguments:

Query

Functions

235

RETURN pi()

The constant pi is returned.

Result
pi()

3. 141592653589793

1 row

RADIANS
RADIANS converts degrees to radians.

Syntax: RADIANS(expression)

Arguments:

• expression: A numeric expression.

Query

RETURN radians(180)

The number of radians in 180 is returned (pi).

Result
radians(180)

3. 141592653589793

1 row

RAND
RAND returns a random double between 0 and 1.0.

Syntax: RAND(expression)

Arguments:

• expression: A numeric expression.

Query

RETURN rand() AS x1

A random number is returned.

Result
x1

0. 10866206023708813

1 row

ROUND
ROUND returns the numerical expression, rounded to the nearest integer.

Syntax: ROUND(expression)

Arguments:

• expression: A numerical expression.

Query

Functions

236

RETURN round(3.141592)

Result
round(3.141592)

3. 0

1 row

SIGN
SIGN returns the signum of a number — zero if the expression is zero, -1 for any negative number, and 1
for any positive number.

Syntax: SIGN(expression)

Arguments:

• expression: A numerical expression

Query

RETURN sign(-17), sign(0.1)

Result
sign(-17) sign(0.1)

-1. 0 1. 0

1 row

SIN
SIN returns the sine of the expression.

Syntax: SIN(expression)

Arguments:

• expression: A numeric expression.

Query

RETURN sin(0.5)

The sine of 0.5 is returned.

Result
sin(0.5)

0. 479425538604203

1 row

SQRT
SQRT returns the square root of a number.

Syntax: SQRT(expression)

Arguments:

• expression: A numerical expression

Query

RETURN sqrt(256)

Functions

237

Result
sqrt(256)

16. 0

1 row

TAN
TAN returns the tangent of the expression.

Syntax: TAN(expression)

Arguments:

• expression: A numeric expression.

Query

RETURN tan(0.5)

The tangent of 0.5 is returned.

Result
tan(0.5)

0. 5463024898437905

1 row

Functions

238

13.5. String functions
These functions all operate on string expressions only, and will return an error if used on any other
values. The exception to this rule is TOSTRING(), which also accepts numbers.

See also the section called “String operators” [124].

Figure 13.5. Graph

nam e = 'Daniel'
age = 54
eyes = 'brown'

Spouse

array = ['one', ' two', ' three']
nam e = 'Eskil'
age = 41
eyes = 'blue'

foo, bar

nam e = 'Alice'
age = 38
eyes = 'brown'

nam e = 'Charlie'
age = 53
eyes = 'green'

KNOWS

nam e = 'Bob'
age = 25
eyes = 'blue'

KNOWS

KNOWS KNOWS MARRIED

STR
STR returns a string representation of the expression. If the expression returns a string the result willbe
wrapped in quotation marks.

Syntax: STR(expression)

Arguments:

• expression: An expression that returns anything

Query

RETURN str(1), str("hello")

Result
str(1) str("hello")

"1" ""hello""

1 row

Note
The STR() function is deprecated from Neo4j version 2.3 and onwards. This means it may be
removed in a future Neo4j major release.

REPLACE
REPLACE returns a string with the search string replaced by the replace string. It replaces all occurrences.

Syntax: REPLACE(original, search, replace)

Arguments:

Functions

239

• original: An expression that returns a string
• search: An expression that returns a string to search for
• replace: An expression that returns the string to replace the search string with

Query

RETURN replace("hello", "l", "w")

Result
replace("hello", "l", "w")

"hewwo"

1 row

SUBSTRING
SUBSTRING returns a substring of the original, with a 0-based index start and length. If length is omitted,
it returns a substring from start until the end of the string.

Syntax: SUBSTRING(original, start [, length])

Arguments:

• original: An expression that returns a string
• start: An expression that returns a positive number
• length: An expression that returns a positive number

Query

RETURN substring("hello", 1, 3), substring("hello", 2)

Result
substring("hello", 1, 3) substring("hello", 2)

"ell" "llo"

1 row

LEFT
LEFT returns a string containing the left n characters of the original string.

Syntax: LEFT(original, length)

Arguments:

• original: An expression that returns a string
• n: An expression that returns a positive number

Query

RETURN left("hello", 3)

Result
left("hello", 3)

"hel"

1 row

RIGHT
RIGHT returns a string containing the right n characters of the original string.

Syntax: RIGHT(original, length)

Functions

240

Arguments:

• original: An expression that returns a string
• n: An expression that returns a positive number

Query

RETURN right("hello", 3)

Result
right("hello", 3)

"llo"

1 row

LTRIM
LTRIM returns the original string with whitespace removed from the left side.

Syntax: LTRIM(original)

Arguments:

• original: An expression that returns a string

Query

RETURN ltrim(" hello")

Result
ltrim(" hello")

"hello"

1 row

RTRIM
RTRIM returns the original string with whitespace removed from the right side.

Syntax: RTRIM(original)

Arguments:

• original: An expression that returns a string

Query

RETURN rtrim("hello ")

Result
rtrim("hello ")

"hello"

1 row

TRIM
TRIM returns the original string with whitespace removed from both sides.

Syntax: TRIM(original)

Arguments:

• original: An expression that returns a string

Functions

241

Query

RETURN trim(" hello ")

Result
trim(" hello ")

"hello"

1 row

LOWER
LOWER returns the original string in lowercase.

Syntax: LOWER(original)

Arguments:

• original: An expression that returns a string

Query

RETURN lower("HELLO")

Result
lower("HELLO")

"hello"

1 row

UPPER
UPPER returns the original string in uppercase.

Syntax: UPPER(original)

Arguments:

• original: An expression that returns a string

Query

RETURN upper("hello")

Result
upper("hello")

"HELLO"

1 row

SPLIT
SPLIT returns the sequence of strings witch are delimited by split patterns.

Syntax: SPLIT(original, splitPattern)

Arguments:

• original: An expression that returns a string
• splitPattern: The string to split the original string with

Query

RETURN split("one,two", ",")

Functions

242

Result
split("one,two", ",")

["one", "two"]

1 row

REVERSE
REVERSE returns the original string reversed.

Syntax: REVERSE(original)

Arguments:

• original: An expression that returns a string

Query

RETURN reverse("anagram")

Result
reverse("anagram")

"margana"

1 row

TOSTRING
TOSTRING converts the argument to a string. It converts integral and floating point numbers to strings,
and if called with a string will leave it unchanged.

Syntax: TOSTRING(expression)

Arguments:

• expression: An expression that returns a number or a string

Query

RETURN toString(11.5), toString("already a string")

Result
toString(11.5) toString("already a string")

"11. 5" "already a string"

1 row

243

Chapter 14. Schema

Neo4j 2.0 introduced an optional schema for the graph, based around the concept of labels. Labels are
used in the specification of indexes, and for defining constraints on the graph. Together, indexes and
constraints are the schema of the graph. Cypher includes data definition language (DDL) statements for
manipulating the schema.

Schema

244

14.1. Indexes
A database index is a redundant copy of information in the database for the purpose of making
retrieving said data more efficient. This comes at the cost of additional storage space and slower writes,
so deciding what to index and what not to index is an important and often non-trivial task.

Cypher allows the creation of indexes over a property for all nodes that have a given label. Once
an index has been created, it will automatically be managed and kept up to date by the database
whenever the graph is changed. Neo4j will automatically pick up and start using the index once it has
been created and brought online.

Create an index
To create an index on a property for all nodes that have a label, use CREATE INDEX ON. Note that the index
is not immediately available, but will be created in the background.

Query

CREATE INDEX ON :Person(name)

Result
(empty result)

Drop an index
To drop an index on all nodes that have a label and property combination, use the DROP INDEX clause.

Query

DROP INDEX ON :Person(name)

Result
(empty result)

Indexes removed: 1

Use index
There is usually no need to specify which indexes to use in a query, Cypher will figure that out by itself.
For example the query below will use the Person(name) index, if it exists. If you want Cypher to use
specific indexes, you can enforce it using hints. See Section 10.8, “Using” [152].

Query

MATCH (person:Person { name: 'Andres' })

RETURN person

Query Plan

+-----------------+----------------+------+---------+-------------+---------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+---------------+

| +ProduceResults | 1 | 1 | 0 | person | person |

| | +----------------+------+---------+-------------+---------------+

| +NodeIndexSeek | 1 | 1 | 2 | person | :Person(name) |

+-----------------+----------------+------+---------+-------------+---------------+

Total database accesses: 2

Use index with WHERE using equality
Indexes are also automatically used for equality comparisons of an indexed property in the WHERE
clause. If you want Cypher to use specific indexes, you can enforce it using hints. See Section 10.8,
“Using” [152].

Schema

245

Query

MATCH (person:Person)

WHERE person.name = 'Andres'

RETURN person

Query Plan

+-----------------+----------------+------+---------+-------------+---------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+---------------+

| +ProduceResults | 1 | 1 | 0 | person | person |

| | +----------------+------+---------+-------------+---------------+

| +NodeIndexSeek | 1 | 1 | 2 | person | :Person(name) |

+-----------------+----------------+------+---------+-------------+---------------+

Total database accesses: 2

Use index with WHERE using inequality
Indexes are also automatically used for inequality (range) comparisons of an indexed property in
the WHERE clause. If you want Cypher to use specific indexes, you can enforce it using hints. See
Section 10.8, “Using” [152].

Query

MATCH (person:Person)

WHERE person.name > 'B'

RETURN person

Query Plan

+-----------------------+----------------+------+---------+-------------+---------------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------------+----------------+------+---------+-------------+---------------------------------+

| +ProduceResults | 33 | 1 | 0 | person | person |

| | +----------------+------+---------+-------------+---------------------------------+

| +NodeIndexSeekByRange | 33 | 1 | 2 | person | :Person(name) > { AUTOSTRING0} |

+-----------------------+----------------+------+---------+-------------+---------------------------------+

Total database accesses: 2

Use index with IN
The IN predicate on person.name in the following query will use the Person(name) index, if it exists. If you
want Cypher to use specific indexes, you can enforce it using hints. See Section 10.8, “Using” [152].

Query

MATCH (person:Person)

WHERE person.name IN ['Andres', 'Mark']

RETURN person

Query Plan

+-----------------+----------------+------+---------+-------------+---------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+---------------+

| +ProduceResults | 2 | 2 | 0 | person | person |

| | +----------------+------+---------+-------------+---------------+

| +NodeIndexSeek | 2 | 2 | 4 | person | :Person(name) |

+-----------------+----------------+------+---------+-------------+---------------+

Total database accesses: 4

Schema

246

Use index with STARTS WITH
The STARTS WITH predicate on person.name in the following query will use the Person(name) index, if it
exists.

Note
The similar operators ENDS WITH and CONTAINS cannot currently be solved using indexes.

Query

MATCH (person:Person)

WHERE person.name STARTS WITH 'And'

RETURN person

Query Plan

+-----------------------+----------------+------+---------+-------------+---+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------------+----------------+------+---------+-------------+---+

| +ProduceResults | 26 | 1 | 0 | person | person |

| | +----------------+------+---------+-------------+---+

| +NodeIndexSeekByRange | 26 | 1 | 2 | person | :Person(name STARTS WITH { AUTOSTRING0}) |

+-----------------------+----------------+------+---------+-------------+---+

Total database accesses: 2

Use index when checking for the existence of a property
The has(p.name) predicate in the following query will use the Person(name) index, if it exists.

Query

MATCH (p:Person)

WHERE HAS (p.name)

RETURN p

Query Plan

+-----------------+----------------+------+---------+-------------+---------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+---------------+

| +ProduceResults | 2 | 2 | 0 | p | p |

| | +----------------+------+---------+-------------+---------------+

| +NodeIndexScan | 2 | 2 | 3 | p | :Person(name) |

+-----------------+----------------+------+---------+-------------+---------------+

Total database accesses: 3

Schema

247

14.2. Constraints
Neo4j helps enforce data integrity with the use of constraints. Constraints can be applied
to either nodes or relationships. Unique node property constraints can be created, as well
as node and relationship property existence constraints.

You can use unique property constraints to ensure that property values are unique for all nodes with
a specific label. Unique constraints do not mean that all nodes have to have a unique value for the
properties — nodes without the property are not subject to this rule.

You can use property existence constraints to ensure that a property exists for all nodes with a specific
label or for all relationships with a specific type. All queries that try to create new nodes or relationships
without the property, or queries that try to remove the mandatory property will now fail.

Note
Property existence constraints are only available in the Neo4j Enterprise Edition. Note that
databases with property existence constraints cannot be opened using Neo4j Community
Edition.

You can have multiple constraints for a given label and you can also combine unique and property
existence constraints on the same property.

Remember that adding constraints is an atomic operation that can take a while — all existing data has
to be scanned before Neo4j can turn the constraint “on”.

Note that adding a unique property constraint on a property will also add an index on that property, so
you cannot add such an index separately. Cypher will use that index for lookups just like other indexes.
If you drop a unique property constraint and still want an index on the property, you will have to create
the index.

The existing constraints can be listed using the REST API, see Section 21.16, “Constraints” [369].

Unique node property constraints

Create uniqueness constraint
To create a constraint that makes sure that your database will never contain more than one node with a
specific label and one property value, use the IS UNIQUE syntax.

Query

CREATE CONSTRAINT ON (book:Book) ASSERT book.isbn IS UNIQUE

Result
(empty result)

Unique constraints added: 1

Drop uniqueness constraint
By using DROP CONSTRAINT, you remove a constraint from the database.

Query

DROP CONSTRAINT ON (book:Book) ASSERT book.isbn IS UNIQUE

Result
(empty result)

Unique constraints removed: 1

Create a node that complies with unique property constraints
Create a Book node with an isbn that isn’t already in the database.

Schema

248

Query

CREATE (book:Book { isbn: '1449356265', title: 'Graph Databases' })

Result
(empty result)

Nodes created: 1
Properties set: 2
Labels added: 1

Create a node that breaks a unique property constraint
Create a Book node with an isbn that is already used in the database.

Query

CREATE (book:Book { isbn: '1449356265', title: 'Graph Databases' })

In this case the node isn’t created in the graph.

Error message

Node 0 already exists with label Book and property "isbn"=[1449356265]

Failure to create a unique property constraint due to conflicting nodes
Create a unique property constraint on the property isbn on nodes with the Book label when there are
two nodes with the same isbn.

Query

CREATE CONSTRAINT ON (book:Book) ASSERT book.isbn IS UNIQUE

In this case the constraint can’t be created because it is violated by existing data. We may choose to use
Section 14.1, “Indexes” [244] instead or remove the offending nodes and then re-apply the constraint.

Error message

Unable to create CONSTRAINT ON (book:Book) ASSERT book.isbn IS UNIQUE:

Multiple nodes with label `Book` have property `isbn` = '1449356265':

 node(0)

 node(1)

Node property existence constraints

Create node property existence constraint
To create a constraint that makes sure that all nodes with a certain label have a certain property, use
the ASSERT exists(identifier.propertyName) syntax.

Query

CREATE CONSTRAINT ON (book:Book) ASSERT exists(book.isbn)

Result
(empty result)

Property existence constraints added: 1

Drop node property existence constraint
By using DROP CONSTRAINT, you remove a constraint from the database.

Query

DROP CONSTRAINT ON (book:Book) ASSERT exists(book.isbn)

Schema

249

Result
(empty result)

Property existence constraints removed: 1

Create a node that complies with property existence constraints
Create a Book node with an existing isbn property.

Query

CREATE (book:Book { isbn: '1449356265', title: 'Graph Databases' })

Result
(empty result)

Nodes created: 1
Properties set: 2
Labels added: 1

Create a node that breaks a property existence constraint
Trying to create a Book node without an isbn property, given a property existence constraint on
:Book(isbn).

Query

CREATE (book:Book { title: 'Graph Databases' })

In this case the node isn’t created in the graph.

Error message

Node 1 with label "Book" must have the property "isbn" due to a constraint

Removing an existence constrained node property
Trying to remove the isbn property from an existing node book, given a property existence constraint on
:Book(isbn).

Query

MATCH (book:Book { title: 'Graph Databases' })

REMOVE book.isbn

In this case the property is not removed.

Error message

Node 0 with label "Book" must have the property "isbn" due to a constraint

Failure to create a node property existence constraint due to existing node
Create a constraint on the property isbn on nodes with the Book label when there already exists a node
without an isbn.

Query

CREATE CONSTRAINT ON (book:Book) ASSERT exists(book.isbn)

In this case the constraint can’t be created because it is violated by existing data. We may choose to
remove the offending nodes and then re-apply the constraint.

Error message

Unable to create CONSTRAINT ON (book:Book) ASSERT exists(book.isbn):

Node(0) with label `Book` has no value for property `isbn`

Schema

250

Relationship property existence constraints

Create relationship property existence constraint
To create a constraint that makes sure that all relationships with a certain type have a certain property,
use the ASSERT exists(identifier.propertyName) syntax.

Query

CREATE CONSTRAINT ON ()-[like:LIKED]-() ASSERT exists(like.day)

Result
(empty result)

Property existence constraints added: 1

Drop relationship property existence constraint
To remove a constraint from the database, use DROP CONSTRAINT.

Query

DROP CONSTRAINT ON ()-[like:LIKED]-() ASSERT exists(like.day)

Result
(empty result)

Property existence constraints removed: 1

Create a relationship that complies with property existence constraints
Create a LIKED relationship with an existing day property.

Query

CREATE (user:User)-[like:LIKED { day: 'yesterday' }]->(book:Book)

Result
(empty result)

Nodes created: 2
Relationships created: 1
Properties set: 1
Labels added: 2

Create a relationship that breaks a property existence constraint
Trying to create a LIKED relationship without a day property, given a property existence constraint
:LIKED(day).

Query

CREATE (user:User)-[like:LIKED]->(book:Book)

In this case the relationship isn’t created in the graph.

Error message

Relationship 1 with type "LIKED" must have the property "day" due to a constraint

Removing an existence constrained relationship property
Trying to remove the day property from an existing relationship like of type LIKED, given a property
existence constraint :LIKED(day).

Query

MATCH (user:User)-[like:LIKED]->(book:Book)

Schema

251

REMOVE like.day

In this case the property is not removed.

Error message

Relationship 0 with type "LIKED" must have the property "day" due to a constraint

Failure to create a relationship property existence constraint due to existing relationship
Create a constraint on the property day on relationships with the LIKED type when there already exists a
relationship without a property named day.

Query

CREATE CONSTRAINT ON ()-[like:LIKED]-() ASSERT exists(like.day)

In this case the constraint can’t be created because it is violated by existing data. We may choose to
remove the offending relationships and then re-apply the constraint.

Error message

Unable to create CONSTRAINT ON ()-[liked:LIKED]-() ASSERT exists(liked.day):

Relationship(0) with type `LIKED` has no value for property `day`

Schema

252

14.3. Statistics
When you issue a Cypher query, it gets compiled to an execution plan (see Chapter 16, Execution
Plans [259]) that can run and answer your question. To produce an efficient plan for your query,
Neo4j needs information about your database, such as the schema — what indexes and constraints do
exist? Neo4j will also use statistical information it keeps about your database to optimize the execution
plan. With this information, Neo4j can decide which access pattern leads to the best performing plans.

The statistical information that Neo4j keeps is:

1. The number of nodes with a certain label.
2. Selectivity per index.
3. The number of relationships by type.
4. The number of relationships by type, ending or starting from a node with a specific label.

Neo4j keeps the statistics up to date in two different ways. For label counts for example, the number
is updated whenever you set or remove a label from a node. For indexes, Neo4j needs to scan the full
index to produce the selectivity number. Since this is potentially a very time-consuming operation,
these numbers are collected in the background when enough data on the index has been changed.

Configuration options

index_background_sampling_enabledControls whether indexes will automatically be re-sampled when they
have been updated enough. The Cypher query planner depends on
accurate statistics to create efficient plans, so it is important it is kept
up to date as the database evolves.

Tip
If background sampling is turned off, make sure to trigger
manual sampling when data has been updated.

index_sampling_update_percentageControls how large portion of the index has to have been updated
before a new sampling run is triggered.

dbms.cypher.statistics_divergence_thresholdControls how much the above statistical information is allowed to
change before an execution plan is considered stale and has to be
replanned. If the relative change in any of statistics is larger than this
threshold, the plan will be thrown away and a new one will be created.
A threshold of 0.0 means always replan, and a value of 1.0 means
never replan.

Managing statistics from the shell
Usage:

schema sample -a will sample all indexes.
schema sample -l Person -p

name

will sample the index for label Person on property name (if existing).

schema sample -a -f will force a sample of all indexes.
schema sample -f -l :Person -

p name

will force sampling of a specific index.

253

Chapter 15. Query Tuning

Neo4j works very hard to execute queries as fast as possible.

However, when optimizing for maximum query execution performance, it may be helpful to rephrase
queries using knowledge about the domain and the application.

The overall goal of manual query performance optimization is to ensure that only necessary data is
retrieved from the graph. At least data should get filtered out as early as possible in order to reduce
the amount of work that has to be done at later stages of query execution. This also goes for what gets
returned: avoid returning whole nodes and relationships — instead, pick the data you need and return
only that. You should also make sure to set an upper limit on variable length patterns, so they don’t
cover larger portions of the dataset than needed.

Each Cypher query gets optimized and transformed into an execution plan by the Cypher execution
engine. To minimize the resources used for this, make sure to use parameters instead of literals when
possible. This allows Cypher to re-use your queries instead of having to parse and build new execution
plans.

To read more about the execution plan operators mentioned in this chapter, see Chapter 16, Execution
Plans [259].

Query Tuning

254

15.1. How are queries executed?
Each query is turned into an execution plan by something called the execution planner. The execution
plan tells Neo4j which operations to perform when executing the query. Two different execution
planning strategies are included in Neo4j:

Rule This planner has rules that are used to produce execution plans. The planner considers
available indexes, but does not use statistical information to guide the query compilation.

Cost This planner uses the statistics service in Neo4j to assign cost to alternative plans and picks
the cheapest one. While this should lead to superior execution plans in most cases, it is still
under development.

By default, Neo4j 2.2 will use the cost planner for some queries, but not all. You can force
it to use a specific planner by using the query.planner.version configuration setting (see
dbms.cypher.planner [467]), or by prepending your query with CYPHER planner=cost or CYPHER
planner=rule. Neo4j might still not use the planner you selected — not all queries are solvable by the
cost planner at this point. Note that using PLANNER COST or PLANNER RULE in order to switch between
planners has been deprecated and will stop working in future versions.

You can see which planner was used by looking at the execution plan.

Note
When Cypher is building execution plans, it looks at the schema to see if it can find indexes
it can use. These index decisions are only valid until the schema changes, so adding or
removing indexes leads to the execution plan cache being flushed.

Query Tuning

255

15.2. How do I profile a query?
There are two options to choose from when you want to analyze a query by looking at its execution
plan:

EXPLAIN If you want to see the execution plan but not run the statement, prepend your Cypher
statement with EXPLAIN. The statement will always return an empty result and make no
changes to the database.

PROFILE If you want to run the statement and see which operators are doing most of the work,
use PROFILE. This will run your statement and keep track of how many rows pass through
each operator, and how much each operator needs to interact with the storage layer to
retrieve the necessary data. Please note that profiling your query uses more resources, so
you should not profile unless you are actively working on a query.

See Chapter 16, Execution Plans [259] for a detailed explanation of each of the operators contained in
an execution plan.

Tip
Being explicit about what types and labels you expect relationships and nodes to have in
your query helps Neo4j use the best possible statistical information, which leads to better
execution plans. This means that when you know that a relationship can only be of a certain
type, you should add that to the query. The same goes for labels, where declaring labels on
both the start and end nodes of a relationship helps Neo4j find the best way to execute the
statement.

Query Tuning

256

15.3. Basic query tuning example
We’ll start with a basic example to help you get the hang of profiling queries. The following examples
will use a movies data set.

Let’s start by importing the data:

LOAD CSV WITH HEADERS FROM "http://neo4j.com/docs/2.3.0/csv/query-tuning/movies.csv" AS line

MERGE (m:Movie { title:line.title })

ON CREATE SET m.released = toInt(line.released), m.tagline = line.tagline

LOAD CSV WITH HEADERS FROM 'http://neo4j.com/docs/2.3.0/csv/query-tuning/actors.csv' AS line

MATCH (m:Movie { title:line.title })

MERGE (p:Person { name:line.name })

ON CREATE SET p.born = toInt(line.born)

MERGE (p)-[:ACTED_IN { roles:split(line.roles,";")}]->(m)

LOAD CSV WITH HEADERS FROM 'http://neo4j.com/docs/2.3.0/csv/query-tuning/directors.csv' AS line

MATCH (m:Movie { title:line.title })

MERGE (p:Person { name:line.name })

ON CREATE SET p.born = toInt(line.born)

MERGE (p)-[:DIRECTED]->(m)

Let’s say we want to write a query to find Tom Hanks. The naive way of doing this would be to write the
following:

MATCH (p { name:"Tom Hanks" })

RETURN p

This query will find the Tom Hanks node but as the number of nodes in the database increase it will
become slower and slower. We can profile the query to find out why that is.

You can learn more about the options for profiling queries in Section 15.2, “How do I profile a
query?” [255] but in this case we’re going to prefix our query with PROFILE:

PROFILE

MATCH (p { name:"Tom Hanks" })

RETURN p

+-----------------+----------------+------+---------+-------------+---------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+---------------------------+

| +ProduceResults | 16 | 1 | 0 | p | p |

| | +----------------+------+---------+-------------+---------------------------+

| +Filter | 16 | 1 | 163 | p | p.name == { AUTOSTRING0} |

| | +----------------+------+---------+-------------+---------------------------+

| +AllNodesScan | 163 | 163 | 164 | p | |

+-----------------+----------------+------+---------+-------------+---------------------------+

Total database accesses: 327

The first thing to keep in mind when reading execution plans is that you need to read from the bottom
up.

In that vein, starting from the last row, the first thing we notice is that the value in the Rows column
seems high given there is only one node with the name property Tom Hanks in the database. If we look
across to the Operator column we’ll see that AllNodesScan has been used which means that the query
planner scanned through all the nodes in the database.

Moving up to the previous row we see the Filter operator which will check the name property on each of
the nodes passed through by AllNodesScan.

Query Tuning

257

This seems like an inefficient way of finding Tom Hanks given that we are looking at many nodes that
aren’t even people and therefore aren’t what we’re looking for.

The solution to this problem is that whenever we’re looking for a node we should specify a label to help
the query planner narrow down the search space. For this query we’d need to add a Person label.

MATCH (p:Person { name:"Tom Hanks" })

RETURN p

This query will be faster than the first one but as the number of people in our database increase we
again notice that the query slows down.

Again we can profile the query to work out why:

PROFILE

MATCH (p:Person { name:"Tom Hanks" })

RETURN p

+------------------+----------------+------+---------+-------------+---------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+------------------+----------------+------+---------+-------------+---------------------------+

| +ProduceResults | 13 | 1 | 0 | p | p |

| | +----------------+------+---------+-------------+---------------------------+

| +Filter | 13 | 1 | 125 | p | p.name == { AUTOSTRING0} |

| | +----------------+------+---------+-------------+---------------------------+

| +NodeByLabelScan | 125 | 125 | 126 | p | :Person |

+------------------+----------------+------+---------+-------------+---------------------------+

Total database accesses: 251

This time the Rows value on the last row has reduced so we’re not scanning some nodes that we were
before which is a good start. The NodeByLabelScan operator indicates that we achieved this by first
doing a linear scan of all the Person nodes in the database.

Once we’ve done that we again scan through all those nodes using the Filter operator, comparing the
name property of each one.

This might be acceptable in some cases but if we’re going to be looking up people by name frequently
then we’ll see better performance if we create an index on the name property for the Person label:

CREATE INDEX ON :Person(name)

Now if we run the query again it will run more quickly:

MATCH (p:Person { name:"Tom Hanks" })

RETURN p

Let’s profile the query to see why that is:

PROFILE

MATCH (p:Person { name:"Tom Hanks" })

RETURN p

+-----------------+----------------+------+---------+-------------+---------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+---------------+

| +ProduceResults | 1 | 1 | 0 | p | p |

| | +----------------+------+---------+-------------+---------------+

| +NodeIndexSeek | 1 | 1 | 2 | p | :Person(name) |

+-----------------+----------------+------+---------+-------------+---------------+

Total database accesses: 2

Our execution plan is down to a single row and uses the Node Index Seek operator which does a
schema index seek (see Section 14.1, “Indexes” [244]) to find the appropriate node.

Query Tuning

258

259

Chapter 16. Execution Plans

Neo4j breaks down the work of executing a query into small pieces called operators. Each operator is
responsible for a small part of the overall query. The operators are connected together in a pattern
called a execution plan.

Each operator is annotated with statistics.

Rows The number of rows that the operator produced. Only available if the query was
profiled.

EstimatedRows If Neo4j used the cost-based compiler you will see the estimated number of rows
that will be produced by the operator. The compiler uses this estimate to choose
a suitable execution plan.

DbHits Each operator will ask the Neo4j storage engine to do work such as retrieving or
updating data. A database hit is an abstract unit of this storage engine work.

See Section 15.2, “How do I profile a query?” [255] for how to view the execution plan for your query.

For a deeper understanding of how each operator works, see the relevant section. Operators are
grouped into high-level categories. Please remember that the statistics of the actual database where
the queries run on will decide the plan used. There is no guarantee that a specific query will always be
solved with the same plan.

Execution Plans

260

16.1. Starting point operators
These operators find parts of the graph from which to start.

All Nodes Scan
Reads all nodes from the node store. The identifier that will contain the nodes is seen in the arguments.
If your query is using this operator, you are very likely to see performance problems on any non-trivial
database.

Query

MATCH (n)

RETURN n

Query Plan

+-----------------+----------------+------+---------+-------------+-------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+-------+

| +ProduceResults | 35 | 35 | 0 | n | n |

| | +----------------+------+---------+-------------+-------+

| +AllNodesScan | 35 | 35 | 36 | n | |

+-----------------+----------------+------+---------+-------------+-------+

Total database accesses: 36

Directed Relationship By Id Seek
Reads one or more relationships by id from the relationship store. Produces both the relationship and
the nodes on either side.

Query

MATCH (n1)-[r]->()

WHERE id(r)= 0

RETURN r, n1

Query Plan

+-----------------------------------+----------------+------+---------+-----------------

+--+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other

 |

+-----------------------------------+----------------+------+---------+-----------------

+--+

| +ProduceResults | 1 | 1 | 0 | n1, r | r, n1

 |

| | +----------------+------+---------+-----------------

+--+

| +DirectedRelationshipByIdSeekPipe | 1 | 1 | 1 | anon[17], n1, r | EntityByIdRhs(SingleSeekArg({

 AUTOINT0})) |

+-----------------------------------+----------------+------+---------+-----------------

+--+

Total database accesses: 1

Node by Id seek
Reads one or more nodes by id from the node store.

Query

MATCH (n)

WHERE id(n)= 0

Execution Plans

261

RETURN n

Query Plan

+-----------------+----------------+------+---------+-------------+-------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+-------+

| +ProduceResults | 1 | 1 | 0 | n | n |

| | +----------------+------+---------+-------------+-------+

| +NodeByIdSeek | 1 | 1 | 1 | n | |

+-----------------+----------------+------+---------+-------------+-------+

Total database accesses: 1

Node by label scan
Using the label index, fetches all nodes with a specific label on them from the node label index.

Query

MATCH (person:Person)

RETURN person

Query Plan

+------------------+----------------+------+---------+-------------+---------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+------------------+----------------+------+---------+-------------+---------+

| +ProduceResults | 14 | 14 | 0 | person | person |

| | +----------------+------+---------+-------------+---------+

| +NodeByLabelScan | 14 | 14 | 15 | person | :Person |

+------------------+----------------+------+---------+-------------+---------+

Total database accesses: 15

Node index seek
Finds nodes using an index seek. The node identifier and the index used is shown in the arguments of
the operator. If the index is a unique index, the operator is called NodeUniqueIndexSeek instead.

Query

MATCH (location:Location { name: "Malmo" })

RETURN location

Query Plan

+-----------------+----------------+------+---------+-------------+-----------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+-----------------+

| +ProduceResults | 1 | 1 | 0 | location | location |

| | +----------------+------+---------+-------------+-----------------+

| +NodeIndexSeek | 1 | 1 | 2 | location | :Location(name) |

+-----------------+----------------+------+---------+-------------+-----------------+

Total database accesses: 2

Node index range seek
Finds nodes using an index seek where the value of the property matches a given prefix string. This
operator can be used for STARTS WITH and comparators such as <, >, <= and >=

Query

MATCH (l:Location)

Execution Plans

262

WHERE l.name STARTS WITH 'Lon'

RETURN l

Query Plan

+-----------------------+----------------+------+---------+-------------+---+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------------+----------------+------+---------+-------------+---+

| +ProduceResults | 26 | 1 | 0 | l | l |

| | +----------------+------+---------+-------------+---+

| +NodeIndexSeekByRange | 26 | 1 | 2 | l | :Location(name STARTS WITH { AUTOSTRING0}) |

+-----------------------+----------------+------+---------+-------------+---+

Total database accesses: 2

Node index scan
An index scan goes through all values stored in an index, and can be used to find all nodes with a
particular label having a specified property (e.g. exists(n.prop)).

Query

MATCH (l:Location)

WHERE HAS (l.name)

RETURN l

Query Plan

+-----------------+----------------+------+---------+-------------+-----------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+-----------------+

| +ProduceResults | 10 | 10 | 0 | l | l |

| | +----------------+------+---------+-------------+-----------------+

| +NodeIndexScan | 10 | 10 | 11 | l | :Location(name) |

+-----------------+----------------+------+---------+-------------+-----------------+

Total database accesses: 11

Undirected Relationship By Id Seek
Reads one or more relationships by id from the relationship store. For each relationship, two rows are
produced with start and end nodes arranged differently.

Query

MATCH (n1)-[r]-()

WHERE id(r)= 1

RETURN r, n1

Query Plan

+---------------------------------+----------------+------+---------+-----------------+-------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+---------------------------------+----------------+------+---------+-----------------+-------+

| +ProduceResults | 1 | 2 | 0 | n1, r | r, n1 |

| | +----------------+------+---------+-----------------+-------+

| +UndirectedRelationshipByIdSeek | 1 | 2 | 1 | anon[16], n1, r | |

+---------------------------------+----------------+------+---------+-----------------+-------+

Total database accesses: 1

Execution Plans

263

16.2. Expand operators
Thes operators explore the graph by expanding graph patterns.

Expand All
Given a start node, expand-all will follow relationships coming in or out, depending on the pattern
relationship. Can also handle variable length pattern relationships.

Query

MATCH (p:Person { name: "me" })-[:FRIENDS_WITH]->(fof)

RETURN fof

Query Plan

+-----------------+----------------+------+---------+------------------+----------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+------------------+----------------------------+

| +ProduceResults | 0 | 1 | 0 | fof | fof |

| | +----------------+------+---------+------------------+----------------------------+

| +Expand(All) | 0 | 1 | 2 | anon[30], fof, p | (p)-[:FRIENDS_WITH]->(fof) |

| | +----------------+------+---------+------------------+----------------------------+

| +NodeIndexSeek | 1 | 1 | 2 | p | :Person(name) |

+-----------------+----------------+------+---------+------------------+----------------------------+

Total database accesses: 4

Expand Into
When both the start and end node have already been found, expand-into is used to find all connecting
relationships between the two nodes.

Query

MATCH (p:Person { name: "me" })-[:FRIENDS_WITH]->(fof)-->(p)

RETURN fof

Query Plan

+-----------------+----------------+------+---------+----------------------------+----------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+----------------------------+----------------------------+

| +ProduceResults | 0 | 0 | 0 | fof | fof |

| | +----------------+------+---------+----------------------------+----------------------------+

| +Filter | 0 | 0 | 0 | anon[30], anon[53], fof, p | NOT(anon[30] == anon[53]) |

| | +----------------+------+---------+----------------------------+----------------------------+

| +Expand(Into) | 0 | 0 | 0 | anon[30], anon[53], fof, p | (p)-[:FRIENDS_WITH]->(fof) |

| | +----------------+------+---------+----------------------------+----------------------------+

| +Expand(All) | 0 | 0 | 1 | anon[53], fof, p | (p)<--(fof) |

| | +----------------+------+---------+----------------------------+----------------------------+

| +NodeIndexSeek | 1 | 1 | 2 | p | :Person(name) |

+-----------------+----------------+------+---------+----------------------------+----------------------------+

Total database accesses: 3

Optional Expand All
Optional expand traverses relationships from a given node, and makes sure that predicates are
evaluated before producing rows.

If no matching relationships are found, a single row with NULL for the relationship and end node
identifier is produced.

Query

Execution Plans

264

MATCH (p:Person)

OPTIONAL MATCH (p)-[works_in:WORKS_IN]->(l)

WHERE works_in.duration > 180

RETURN p, l

Query Plan

+----------------------+----------------+------+---------+----------------+------------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+----------------------+----------------+------+---------+----------------+------------------------------+

| +ProduceResults | 14 | 15 | 0 | l, p | p, l |

| | +----------------+------+---------+----------------+------------------------------+

| +OptionalExpand(All) | 14 | 15 | 44 | l, p, works_in | (p)-[works_in:WORKS_IN]->(l) |

| | +----------------+------+---------+----------------+------------------------------+

| +NodeByLabelScan | 14 | 14 | 15 | p | :Person |

+----------------------+----------------+------+---------+----------------+------------------------------+

Total database accesses: 59

Execution Plans

265

16.3. Combining operators
Node Hash Join
Using a hash table, a node hash join joins the inputs coming from the left with the inputs coming from
the right. The join key is specified in the arguments of the operator.

Query

MATCH (andy:Person { name:'Andreas' })-[:WORKS_IN]->(loc)<-[:WORKS_IN]-(matt:Person { name:'Mattis'

 })

RETURN loc

Query Plan

+------------------+----------------+------+---------+-------------------------------------+---------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+------------------+----------------+------+---------+-------------------------------------+---------------------------+

| +ProduceResults | 35 | 0 | 0 | loc | loc |

| | +----------------+------+---------+-------------------------------------+---------------------------+

| +Filter | 35 | 0 | 0 | anon[37], anon[56], andy, loc, matt | NOT(anon[37] == anon[56]) |

| | +----------------+------+---------+-------------------------------------+---------------------------+

| +NodeHashJoin | 35 | 0 | 0 | anon[37], anon[56], andy, loc, matt | loc |

| |\ +----------------+------+---------+-------------------------------------+---------------------------+

| | +Expand(All) | 35 | 0 | 0 | anon[56], loc, matt | (matt)-[:WORKS_IN]->(loc) |

| | | +----------------+------+---------+-------------------------------------+---------------------------+

| | +NodeIndexSeek | 1 | 0 | 1 | matt | :Person(name) |

| | +----------------+------+---------+-------------------------------------+---------------------------+

| +Expand(All) | 35 | 0 | 1 | anon[37], andy, loc | (andy)-[:WORKS_IN]->(loc) |

| | +----------------+------+---------+-------------------------------------+---------------------------+

| +NodeIndexSeek | 1 | 1 | 2 | andy | :Person(name) |

+------------------+----------------+------+---------+-------------------------------------+---------------------------+

Total database accesses: 4

Apply
Apply works by performing a nested loop. Every row being produced on the left hand side of the Apply
operator will be fed to the Argument operator on the right hand side, and then Apply will yield the
results coming from the RHS. Apply, being a nested loop, can be seen as a warning that a better plan
was not found.

Query

MATCH (p:Person)-[:FRIENDS_WITH]->(f)

WITH p, count(f) AS fs

WHERE fs > 0

OPTIONAL MATCH (p)-[:WORKS_IN*1..2]->(city)

RETURN p, city

Query Plan

+---------------------------+----------------+------+---------+----------------------------------+--------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+---------------------------+----------------+------+---------+----------------------------------+--------------------------+

| +ProduceResults | 1 | 2 | 0 | city, p | p, city |

| | +----------------+------+---------+----------------------------------+--------------------------+

| +Apply | 1 | 2 | 0 | anon[92], anon[126], city, fs, p | |

| |\ +----------------+------+---------+----------------------------------+--------------------------+

| | +Apply | 1 | 2 | 0 | anon[92], anon[126], city, fs, p | |

| | |\ +----------------+------+---------+----------------------------------+--------------------------+

| | | +Optional | 1 | 2 | 0 | anon[126], city, p | |

| | | | +----------------+------+---------+----------------------------------+--------------------------+

| | | +VarLengthExpand(All) | 1 | 2 | 6 | anon[126], city, p | (p)-[:WORKS_IN*]->(city) |

Execution Plans

266

| | | | +----------------+------+---------+----------------------------------+--------------------------+

| | | +Argument | 1 | 2 | 0 | p | |

| | | +----------------+------+---------+----------------------------------+--------------------------+

| | +Filter | 1 | 2 | 0 | anon[92], fs, p | anon[92] |

| | | +----------------+------+---------+----------------------------------+--------------------------+

| | +Argument | 1 | 2 | 0 | anon[92], fs, p | |

| | +----------------+------+---------+----------------------------------+--------------------------+

| +Projection | 1 | 2 | 0 | anon[92], fs, p | p; fs; fs > { AUTOINT0} |

| | +----------------+------+---------+----------------------------------+--------------------------+

| +EagerAggregation | 1 | 2 | 0 | fs, p | p |

| | +----------------+------+---------+----------------------------------+--------------------------+

| +Expand(All) | 2 | 2 | 16 | anon[17], f, p | (p)-[:FRIENDS_WITH]->(f) |

| | +----------------+------+---------+----------------------------------+--------------------------+

| +NodeByLabelScan | 14 | 14 | 15 | p | :Person |

+---------------------------+----------------+------+---------+----------------------------------+--------------------------+

Total database accesses: 37

Anti Semi Apply
Tests for the absence of a pattern predicate. A pattern predicate that is prepended by NOT is solved with
AntiSemiApply.

Query

MATCH (me:Person { name: "me" }),(other:Person)

WHERE NOT (me)-[:FRIENDS_WITH]->(other)

RETURN other

Query Plan

+--------------------+----------------+------+---------+---------------------+-------------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+--------------------+----------------+------+---------+---------------------+-------------------------------+

| +ProduceResults | 4 | 13 | 0 | other | other |

| | +----------------+------+---------+---------------------+-------------------------------+

| +AntiSemiApply | 4 | 13 | 0 | me, other | |

| |\ +----------------+------+---------+---------------------+-------------------------------+

| | +Expand(Into) | 0 | 0 | 47 | anon[73], me, other | (me)-[:FRIENDS_WITH]->(other) |

| | | +----------------+------+---------+---------------------+-------------------------------+

| | +Argument | 14 | 14 | 0 | me, other | |

| | +----------------+------+---------+---------------------+-------------------------------+

| +CartesianProduct | 14 | 14 | 0 | me, other | |

| |\ +----------------+------+---------+---------------------+-------------------------------+

| | +NodeByLabelScan | 14 | 14 | 15 | other | :Person |

| | +----------------+------+---------+---------------------+-------------------------------+

| +NodeIndexSeek | 1 | 1 | 2 | me | :Person(name) |

+--------------------+----------------+------+---------+---------------------+-------------------------------+

Total database accesses: 64

Let Anti Semi Apply
Tests for the absence of a pattern predicate. When a query contains multiple pattern predicates
LetSemiApply will be used to evaluate the first of these. It will record the result of evaluating the
predicate but will leave any filtering to another operator. The following query will find all the people
who don’t have anyfriend or who work somewhere. The LetSemiApply operator will be used to check for
the absence of the FRIENDS_WITH relationship from each person.

Query

MATCH (other:Person)

WHERE NOT ((other)-[:FRIENDS_WITH]->()) OR (other)-[:WORKS_IN]->()

RETURN other

Execution Plans

267

Query Plan

+--------------------+----------------+------+---------+---------------------------+-----------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+--------------------+----------------+------+---------+---------------------------+-----------------------------+

| +ProduceResults | 11 | 14 | 0 | other | other |

| | +----------------+------+---------+---------------------------+-----------------------------+

| +SelectOrSemiApply | 11 | 14 | 0 | anon[42], other | anon[42] |

| |\ +----------------+------+---------+---------------------------+-----------------------------+

| | +Expand(All) | 15 | 0 | 2 | anon[82], anon[96], other | (other)-[:WORKS_IN]->() |

| | | +----------------+------+---------+---------------------------+-----------------------------+

| | +Argument | 14 | 2 | 0 | other | |

| | +----------------+------+---------+---------------------------+-----------------------------+

| +LetAntiSemiApply | 14 | 14 | 0 | anon[42], other | |

| |\ +----------------+------+---------+---------------------------+-----------------------------+

| | +Expand(All) | 2 | 0 | 14 | anon[50], anon[68], other | (other)-[:FRIENDS_WITH]->() |

| | | +----------------+------+---------+---------------------------+-----------------------------+

| | +Argument | 14 | 14 | 0 | other | |

| | +----------------+------+---------+---------------------------+-----------------------------+

| +NodeByLabelScan | 14 | 14 | 15 | other | :Person |

+--------------------+----------------+------+---------+---------------------------+-----------------------------+

Total database accesses: 31

Let Semi Apply
Tests for the existence of a pattern predicate. When a query contains multiple pattern predicates
LetSemiApply will be used to evaluate the first of these. It will record the result of evaluating the
predicate but will leave any filtering to a another operator. The following query will find all the people
who have a friend or who work somewhere. The LetSemiApply operator will be used to check for the
existence of the FRIENDS_WITH relationship from each person.

Query

MATCH (other:Person)

WHERE (other)-[:FRIENDS_WITH]->() OR (other)-[:WORKS_IN]->()

RETURN other

Query Plan

+--------------------+----------------+------+---------+---------------------------+-----------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+--------------------+----------------+------+---------+---------------------------+-----------------------------+

| +ProduceResults | 13 | 14 | 0 | other | other |

| | +----------------+------+---------+---------------------------+-----------------------------+

| +SelectOrSemiApply | 13 | 14 | 0 | anon[38], other | anon[38] |

| |\ +----------------+------+---------+---------------------------+-----------------------------+

| | +Expand(All) | 15 | 0 | 12 | anon[77], anon[91], other | (other)-[:WORKS_IN]->() |

| | | +----------------+------+---------+---------------------------+-----------------------------+

| | +Argument | 14 | 12 | 0 | other | |

| | +----------------+------+---------+---------------------------+-----------------------------+

| +LetSemiApply | 14 | 14 | 0 | anon[38], other | |

| |\ +----------------+------+---------+---------------------------+-----------------------------+

| | +Expand(All) | 2 | 0 | 14 | anon[46], anon[64], other | (other)-[:FRIENDS_WITH]->() |

| | | +----------------+------+---------+---------------------------+-----------------------------+

| | +Argument | 14 | 14 | 0 | other | |

| | +----------------+------+---------+---------------------------+-----------------------------+

| +NodeByLabelScan | 14 | 14 | 15 | other | :Person |

+--------------------+----------------+------+---------+---------------------------+-----------------------------+

Total database accesses: 41

Select Or Anti Semi Apply
Tests for the absence of a pattern predicate and evaluates a predicate.

Execution Plans

268

Query

MATCH (other:Person)

WHERE other.age > 25 OR NOT (other)-[:FRIENDS_WITH]->()

RETURN other

Query Plan

+------------------------+----------------+------+---------+---------------------------+-----------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+------------------------+----------------+------+---------+---------------------------+-----------------------------+

| +ProduceResults | 4 | 12 | 0 | other | other |

| | +----------------+------+---------+---------------------------+-----------------------------+

| +SelectOrAntiSemiApply | 4 | 12 | 28 | other | other.age > { AUTOINT0} |

| |\ +----------------+------+---------+---------------------------+-----------------------------+

| | +Expand(All) | 2 | 0 | 14 | anon[68], anon[86], other | (other)-[:FRIENDS_WITH]->() |

| | | +----------------+------+---------+---------------------------+-----------------------------+

| | +Argument | 14 | 14 | 0 | other | |

| | +----------------+------+---------+---------------------------+-----------------------------+

| +NodeByLabelScan | 14 | 14 | 15 | other | :Person |

+------------------------+----------------+------+---------+---------------------------+-----------------------------+

Total database accesses: 57

Select Or Semi Apply
Tests for the existence of a pattern predicate and evaluates a predicate. This operator allows for the
mixing of normal predicates and pattern predicates that check for the existing of a pattern. First the
normal expression predicate is evaluated, and only if it returns FALSE the costly pattern predicate
evaluation is performed.

Query

MATCH (other:Person)

WHERE other.age > 25 OR (other)-[:FRIENDS_WITH]->()

RETURN other

Query Plan

+--------------------+----------------+------+---------+---------------------------+-----------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+--------------------+----------------+------+---------+---------------------------+-----------------------------+

| +ProduceResults | 11 | 2 | 0 | other | other |

| | +----------------+------+---------+---------------------------+-----------------------------+

| +SelectOrSemiApply | 11 | 2 | 28 | other | other.age > { AUTOINT0} |

| |\ +----------------+------+---------+---------------------------+-----------------------------+

| | +Expand(All) | 2 | 0 | 14 | anon[64], anon[82], other | (other)-[:FRIENDS_WITH]->() |

| | | +----------------+------+---------+---------------------------+-----------------------------+

| | +Argument | 14 | 14 | 0 | other | |

| | +----------------+------+---------+---------------------------+-----------------------------+

| +NodeByLabelScan | 14 | 14 | 15 | other | :Person |

+--------------------+----------------+------+---------+---------------------------+-----------------------------+

Total database accesses: 57

Semi Apply
Tests for the existence of a pattern predicate. SemiApply takes a row from it’s child operator and feeds
it to the Argument operator on the right hand side of SemiApply. If the right hand side operator tree
yields at least one row, the row from the left hand side is yielded by the SemiApply operator. This makes
SemiApply a filtering operator, used mostly for pattern predicates in queries.

Query

MATCH (other:Person)

Execution Plans

269

WHERE (other)-[:FRIENDS_WITH]->()

RETURN other

Query Plan

+------------------+----------------+------+---------+---------------------------+-----------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+------------------+----------------+------+---------+---------------------------+-----------------------------+

| +ProduceResults | 11 | 2 | 0 | other | other |

| | +----------------+------+---------+---------------------------+-----------------------------+

| +SemiApply | 11 | 2 | 0 | other | |

| |\ +----------------+------+---------+---------------------------+-----------------------------+

| | +Expand(All) | 2 | 0 | 14 | anon[46], anon[64], other | (other)-[:FRIENDS_WITH]->() |

| | | +----------------+------+---------+---------------------------+-----------------------------+

| | +Argument | 14 | 14 | 0 | other | |

| | +----------------+------+---------+---------------------------+-----------------------------+

| +NodeByLabelScan | 14 | 14 | 15 | other | :Person |

+------------------+----------------+------+---------+---------------------------+-----------------------------+

Total database accesses: 29

Triadic
Triadic is used to solve triangular queries, such as the very common "find my friend-of-friends that are
not already my friend". It does so by putting all the "friends" in a set, and use that set to check if the
friend-of-friends are already connected to me.

Query

MATCH (me:Person)-[:FRIENDS_WITH]-()-[:FRIENDS_WITH]-(other)

WHERE NOT (me)-[:FRIENDS_WITH]-(other)

RETURN other

Query Plan

+-------------------+----------------+------+---------+---+----------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-------------------+----------------+------+---------+---+----------------------------+

| +ProduceResults | 0 | 2 | 0 | other | other |

| | +----------------+------+---------+---+----------------------------+

| +TriadicSelection | 0 | 2 | 0 | anon[18], anon[35], anon[37], me, other | me, anon[35], other |

| |\ +----------------+------+---------+---+----------------------------+

| | +Filter | 0 | 2 | 0 | anon[18], anon[35], anon[37], me, other | NOT(anon[18] == anon[37]) |

| | | +----------------+------+---------+---+----------------------------+

| | +Expand(All) | 0 | 6 | 10 | anon[18], anon[35], anon[37], me, other | ()-[:FRIENDS_WITH]-(other) |

| | | +----------------+------+---------+---+----------------------------+

| | +Argument | 4 | 4 | 0 | anon[18], anon[35], me | |

| | +----------------+------+---------+---+----------------------------+

| +Expand(All) | 4 | 4 | 18 | anon[18], anon[35], me | (me)-[:FRIENDS_WITH]-() |

| | +----------------+------+---------+---+----------------------------+

| +NodeByLabelScan | 14 | 14 | 15 | me | :Person |

+-------------------+----------------+------+---------+---+----------------------------+

Total database accesses: 43

Execution Plans

270

16.4. Row operators
These operators take rows produced by another operator and transform them to a different set of rows

Eager
For isolation purposes this operator makes sure that operations that affect subsequent operations are
executed fully for the whole dataset before continuing execution. Otherwise it could trigger endless
loops, matching data again, that was just created. The Eager operator can cause high memory usage
when importing data or migrating graph structures. In such cases split up your operations into simpler
steps e.g. you can import nodes and relationships separately. Alternatively return the records to be
updated and run an update statement afterwards.

Query

MATCH (p:Person)

MERGE (:Person:Clone { name:p.name })

Query Plan

+--------------+------+---------+-------------+----------------------------------+

| Operator | Rows | DB Hits | Identifiers | Other |

+--------------+------+---------+-------------+----------------------------------+

| +EmptyResult | 0 | 0 | | |

| | +------+---------+-------------+----------------------------------+

| +UpdateGraph | 14 | 195 | anon[23], p | MergeNode; p.name; :Person(name) |

| | +------+---------+-------------+----------------------------------+

| +Eager | 14 | 0 | p | |

| | +------+---------+-------------+----------------------------------+

| +NodeByLabel | 14 | 15 | p | :Person |

+--------------+------+---------+-------------+----------------------------------+

Total database accesses: 210

Distinct
Removes duplicate rows from the incoming stream of rows.

Query

MATCH (l:Location)<-[:WORKS_IN]-(p:Person)

RETURN DISTINCT l

Query Plan

+------------------+----------------+------+---------+----------------+----------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+------------------+----------------+------+---------+----------------+----------------------+

| +ProduceResults | 14 | 6 | 0 | l | l |

| | +----------------+------+---------+----------------+----------------------+

| +Distinct | 14 | 6 | 0 | l | l |

| | +----------------+------+---------+----------------+----------------------+

| +Filter | 15 | 15 | 15 | anon[19], l, p | p:Person |

| | +----------------+------+---------+----------------+----------------------+

| +Expand(All) | 15 | 15 | 25 | anon[19], l, p | (l)<-[:WORKS_IN]-(p) |

| | +----------------+------+---------+----------------+----------------------+

| +NodeByLabelScan | 10 | 10 | 11 | l | :Location |

+------------------+----------------+------+---------+----------------+----------------------+

Total database accesses: 51

Eager Aggregation
Eagerly loads underlying results and stores it in a hash-map, using the grouping keys as the keys for the
map.

Execution Plans

271

Query

MATCH (l:Location)<-[:WORKS_IN]-(p:Person)

RETURN l.name AS location, COLLECT(p.name) AS people

Query Plan

+-------------------+----------------+------+---------+--------------------------+----------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-------------------+----------------+------+---------+--------------------------+----------------------+

| +ProduceResults | 4 | 6 | 0 | location, people | location, people |

| | +----------------+------+---------+--------------------------+----------------------+

| +EagerAggregation | 4 | 6 | 15 | location, people | location |

| | +----------------+------+---------+--------------------------+----------------------+

| +Projection | 15 | 15 | 15 | anon[19], l, location, p | l.name; p |

| | +----------------+------+---------+--------------------------+----------------------+

| +Filter | 15 | 15 | 15 | anon[19], l, p | p:Person |

| | +----------------+------+---------+--------------------------+----------------------+

| +Expand(All) | 15 | 15 | 25 | anon[19], l, p | (l)<-[:WORKS_IN]-(p) |

| | +----------------+------+---------+--------------------------+----------------------+

| +NodeByLabelScan | 10 | 10 | 11 | l | :Location |

+-------------------+----------------+------+---------+--------------------------+----------------------+

Total database accesses: 81

Filter
Filters each row coming from the child operator, only passing through rows that evaluate the predicates
to TRUE.

Query

MATCH (p:Person)

WHERE p.name =~ "^a.*"

RETURN p

Query Plan

+------------------+----------------+------+---------+-------------+-----------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+------------------+----------------+------+---------+-------------+-----------------------------+

| +ProduceResults | 14 | 0 | 0 | p | p |

| | +----------------+------+---------+-------------+-----------------------------+

| +Filter | 14 | 0 | 14 | p | p.name ~= /{ AUTOSTRING0}/ |

| | +----------------+------+---------+-------------+-----------------------------+

| +NodeByLabelScan | 14 | 14 | 15 | p | :Person |

+------------------+----------------+------+---------+-------------+-----------------------------+

Total database accesses: 29

Limit
Returns the first n rows from the incoming input.

Query

MATCH (p:Person)

RETURN p

LIMIT 3

Query Plan

+------------------+----------------+------+---------+-------------+------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+------------------+----------------+------+---------+-------------+------------+

| +ProduceResults | 3 | 3 | 0 | p | p |

Execution Plans

272

| | +----------------+------+---------+-------------+------------+

| +Limit | 3 | 3 | 0 | p | Literal(3) |

| | +----------------+------+---------+-------------+------------+

| +NodeByLabelScan | 14 | 3 | 4 | p | :Person |

+------------------+----------------+------+---------+-------------+------------+

Total database accesses: 4

Projection
For each row from its input, projection evaluates a set of expressions and produces a row with the
results of the expressions.

Query

RETURN "hello" AS greeting

Query Plan

+-----------------+----------------+------+---------+-------------+-----------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+-----------------+

| +ProduceResults | 1 | 1 | 0 | greeting | greeting |

| | +----------------+------+---------+-------------+-----------------+

| +Projection | 1 | 1 | 0 | greeting | { AUTOSTRING0} |

+-----------------+----------------+------+---------+-------------+-----------------+

Total database accesses: 0

Skip
Skips n rows from the incoming rows

Query

MATCH (p:Person)

RETURN p

ORDER BY p.id

SKIP 1

Query Plan

+------------------+----------------+------+---------+--------------------------+-----------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+------------------+----------------+------+---------+--------------------------+-----------------------+

| +ProduceResults | 14 | 13 | 0 | p | p |

| | +----------------+------+---------+--------------------------+-----------------------+

| +Projection | 14 | 13 | 0 | anon[35], anon[59], p, p | anon[35] |

| | +----------------+------+---------+--------------------------+-----------------------+

| +Skip | 14 | 13 | 0 | anon[35], anon[59], p | { AUTOINT0} |

| | +----------------+------+---------+--------------------------+-----------------------+

| +Sort | 14 | 14 | 0 | anon[35], anon[59], p | anon[59] |

| | +----------------+------+---------+--------------------------+-----------------------+

| +Projection | 14 | 14 | 28 | anon[35], anon[59], p | anon[35]; anon[35].id |

| | +----------------+------+---------+--------------------------+-----------------------+

| +Projection | 14 | 14 | 0 | anon[35], p | p |

| | +----------------+------+---------+--------------------------+-----------------------+

| +NodeByLabelScan | 14 | 14 | 15 | p | :Person |

+------------------+----------------+------+---------+--------------------------+-----------------------+

Total database accesses: 43

Sort
Sorts rows by a provided key.

Execution Plans

273

Query

MATCH (p:Person)

RETURN p

ORDER BY p.name

Query Plan

+------------------+----------------+------+---------+--------------------------+-------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+------------------+----------------+------+---------+--------------------------+-------------------------+

| +ProduceResults | 14 | 14 | 0 | p | p |

| | +----------------+------+---------+--------------------------+-------------------------+

| +Projection | 14 | 14 | 0 | anon[24], anon[37], p, p | anon[24] |

| | +----------------+------+---------+--------------------------+-------------------------+

| +Sort | 14 | 14 | 0 | anon[24], anon[37], p | anon[37] |

| | +----------------+------+---------+--------------------------+-------------------------+

| +Projection | 14 | 14 | 14 | anon[24], anon[37], p | anon[24]; anon[24].name |

| | +----------------+------+---------+--------------------------+-------------------------+

| +Projection | 14 | 14 | 0 | anon[24], p | p |

| | +----------------+------+---------+--------------------------+-------------------------+

| +NodeByLabelScan | 14 | 14 | 15 | p | :Person |

+------------------+----------------+------+---------+--------------------------+-------------------------+

Total database accesses: 29

Top
Returns the first n rows sorted by a provided key. The physical operator is called Top. Instead of sorting
the whole input, only the top X rows are kept.

Query

MATCH (p:Person)

RETURN p

ORDER BY p.name

LIMIT 2

Query Plan

+------------------+----------------+------+---------+--------------------------+-------------------------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+------------------+----------------+------+---------+--------------------------+-------------------------+

| +ProduceResults | 2 | 2 | 0 | p | p |

| | +----------------+------+---------+--------------------------+-------------------------+

| +Projection | 2 | 2 | 0 | anon[24], anon[37], p, p | anon[24] |

| | +----------------+------+---------+--------------------------+-------------------------+

| +Top | 2 | 2 | 0 | anon[24], anon[37], p | Literal(2); |

| | +----------------+------+---------+--------------------------+-------------------------+

| +Projection | 14 | 14 | 14 | anon[24], anon[37], p | anon[24]; anon[24].name |

| | +----------------+------+---------+--------------------------+-------------------------+

| +Projection | 14 | 14 | 0 | anon[24], p | p |

| | +----------------+------+---------+--------------------------+-------------------------+

| +NodeByLabelScan | 14 | 14 | 15 | p | :Person |

+------------------+----------------+------+---------+--------------------------+-------------------------+

Total database accesses: 29

Union
Union concatenates the results from the right plan after the results of the left plan.

Query

MATCH (p:Location)

Execution Plans

274

RETURN p.name

UNION ALL MATCH (p:Country)

RETURN p.name

Query Plan

+--------------------+----------------+------+---------+-------------+-----------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+--------------------+----------------+------+---------+-------------+-----------+

| +ProduceResults | 10 | 11 | 0 | p.name | p.name |

| | +----------------+------+---------+-------------+-----------+

| +Union | 10 | 11 | 0 | p.name | |

| |\ +----------------+------+---------+-------------+-----------+

| | +Projection | 1 | 1 | 1 | p, p.name | p.name |

| | | +----------------+------+---------+-------------+-----------+

| | +NodeByLabelScan | 1 | 1 | 2 | p | :Country |

| | +----------------+------+---------+-------------+-----------+

| +Projection | 10 | 10 | 10 | p, p.name | p.name |

| | +----------------+------+---------+-------------+-----------+

| +NodeByLabelScan | 10 | 10 | 11 | p | :Location |

+--------------------+----------------+------+---------+-------------+-----------+

Total database accesses: 24

Unwind
Takes a collection of values and returns one row per item in the collection.

Query

UNWIND range(1,5) AS value

RETURN value;

Query Plan

+-----------------+----------------+------+---------+-------------+-------+

| Operator | Estimated Rows | Rows | DB Hits | Identifiers | Other |

+-----------------+----------------+------+---------+-------------+-------+

| +ProduceResults | 10 | 5 | 0 | value | value |

| | +----------------+------+---------+-------------+-------+

| +UNWIND | 10 | 5 | 0 | value | |

| | +----------------+------+---------+-------------+-------+

| +Argument | 1 | 1 | 0 | | |

+-----------------+----------------+------+---------+-------------+-------+

Total database accesses: 0

Execution Plans

275

16.5. Update Operators
These operators are used in queries that update the graph.

Constraint Operation
Creates a constraint on a (label,property) pair. The following query will create a unique constraint on
the name property of nodes with the Country label.
Query

CREATE CONSTRAINT ON (c:Country) ASSERT c.name IS UNIQUE

Query Plan

+----------------------+------+---------+

| Operator | Rows | DB Hits |

+----------------------+------+---------+

| +ConstraintOperation | 0 | 3 |

+----------------------+------+---------+

Total database accesses: 3

Empty Result
Eagerly loads everything coming in to the EmptyResult operator and discards it.
Query

CREATE (:Person)

Query Plan

+--------------+------+---------+-------------+------------+

| Operator | Rows | DB Hits | Identifiers | Other |

+--------------+------+---------+-------------+------------+

| +EmptyResult | 0 | 0 | | |

| | +------+---------+-------------+------------+

| +UpdateGraph | 1 | 2 | anon[7] | CreateNode |

+--------------+------+---------+-------------+------------+

Total database accesses: 2

Update Graph
Applies updates to the graph.
Query

CREATE (:Person { name: "Alistair" })

Query Plan

+--------------+------+---------+-------------+------------+

| Operator | Rows | DB Hits | Identifiers | Other |

+--------------+------+---------+-------------+------------+

| +EmptyResult | 0 | 0 | | |

| | +------+---------+-------------+------------+

| +UpdateGraph | 1 | 4 | anon[7] | CreateNode |

+--------------+------+---------+-------------+------------+

Total database accesses: 4

Merge Into
When both the start and end node have already been found, merge-into is used to find all connecting
relationships or creating a new relationship between the two nodes.

Execution Plans

276

Query

MATCH (p:Person { name: "me" }),(f:Person { name: "Andres" })

MERGE (p)-[:FRIENDS_WITH]->(f)

Query Plan

+--------------+------+---------+----------------+--------------------------------+

| Operator | Rows | DB Hits | Identifiers | Other |

+--------------+------+---------+----------------+--------------------------------+

| +EmptyResult | 0 | 0 | | |

| | +------+---------+----------------+--------------------------------+

| +Merge(Into) | 1 | 5 | anon[68], f, p | (p)-[:FRIENDS_WITH]->(f) |

| | +------+---------+----------------+--------------------------------+

| +SchemaIndex | 1 | 2 | f, p | { AUTOSTRING1}; :Person(name) |

| | +------+---------+----------------+--------------------------------+

| +SchemaIndex | 1 | 2 | p | { AUTOSTRING0}; :Person(name) |

+--------------+------+---------+----------------+--------------------------------+

Total database accesses: 9

Part IV. Reference
The reference part is the authoritative source for details on Neo4j usage. It covers details on
capabilities, transactions, indexing and queries among other topics.

278

17. Capabilities ... 279
17.1. Data Security ... 280
17.2. Data Integrity ... 281
17.3. Data Integration .. 282
17.4. Availability and Reliability ... 283
17.5. Capacity ... 284

18. Transaction Management .. 285
18.1. Interaction cycle .. 286
18.2. Isolation levels ... 287
18.3. Default locking behavior ... 288
18.4. Deadlocks .. 289
18.5. Delete semantics ... 292
18.6. Creating unique nodes .. 293
18.7. Transaction events .. 294

19. Data Import .. 295
20. Graph Algorithms ... 296
21. REST API ... 297

21.1. Transactional Cypher HTTP endpoint ... 298
21.2. Neo4j Status Codes ... 307
21.3. REST API Authentication and Authorization ... 311
21.4. Service root ... 315
21.5. Streaming .. 316
21.6. Legacy Cypher HTTP endpoint ... 317
21.7. Property values ... 331
21.8. Nodes .. 332
21.9. Relationships ... 337
21.10. Relationship types ... 348
21.11. Node properties .. 349
21.12. Relationship properties ... 353
21.13. Node labels ... 359
21.14. Node degree .. 365
21.15. Indexing ... 367
21.16. Constraints .. 369
21.17. Traversals ... 373
21.18. Graph Algorithms .. 400
21.19. Batch operations ... 407
21.20. Legacy indexing ... 415
21.21. Unique Indexing .. 421
21.22. WADL Support ... 431
21.23. Using the REST API from WebLogic .. 432

22. Deprecations .. 433

279

Chapter 17. Capabilities

Capabilities

280

17.1. Data Security
Some data may need to be protected from unauthorized access (e.g., theft, modification). Neo4j
does not deal with data encryption explicitly, but supports all means built into the Java programming
language and the JVM to protect data by encrypting it before storing.

Furthermore, data can be easily secured by running on an encrypted datastore at the file system level.
Finally, data protection should be considered in the upper layers of the surrounding system in order to
prevent problems with scraping, malicious data insertion, and other threats.

Capabilities

281

17.2. Data Integrity
In order to keep data consistent, a good database needs mechanisms and structures that guarantee
the integrity of all stored data. In Neo4j, data integrity is guaranteed both for graph elements (Nodes,
Relationships and Properties) and for non-graph data, such as the indexes. Neo4j’s transactional
architecture ensures that data is protected and provides for fast recovery from an unexpected failure,
without the need to rebuild internal indexes or other costly operations.

Capabilities

282

17.3. Data Integration
Most enterprises rely primarily on relational databases to store their data, but this may cause
performance limitations. In some of these cases, Neo4j can be used as an extension to supplement
search/lookup for faster decision making. However, in any situation where multiple data repositories
contain the same data, synchronization can be an issue.

In some applications, it is acceptable for the search platform to be slightly out of sync with the
relational database. In others, tight data integrity (eg., between Neo4j and RDBMS) is necessary.
Typically, this has to be addressed for data changing in real-time and for bulk data changes happening
in the RDBMS.

A few strategies for synchronizing integrated data follows.

Event-based Synchronization
In this scenario, all data stores, both RDBMS and Neo4j, are fed with domain-specific events via
an event bus. Thus, the data held in the different backends is not actually synchronized but rather
replicated.

Periodic Synchronization
Another viable scenario is the periodic export of the latest changes in the RDBMS to Neo4j via some
form of SQL query. This allows a small amount of latency in the synchronization, but has the advantage
of using the RDBMS as the master for all data purposes. The same process can be applied with Neo4j
as the master data source.

Periodic Full Export/Import of Data
Using the Batch Inserter tools for Neo4j, even large amounts of data can be imported into the database
in very short times. Thus, a full export from the RDBMS and import into Neo4j becomes possible. If the
propagation lag between the RDBMS and Neo4j is not a big issue, this is a very viable solution.

Capabilities

283

17.4. Availability and Reliability
Most mission-critical systems require the database subsystem to be accessible at all times. Neo4j
ensures availability and reliability through a few different strategies.

Operational Availability
In order not to create a single point of failure, Neo4j supports different approaches which provide
transparent fallback and/or recovery from failures.

Online backup (Cold spare)
In this approach, a single instance of the master database is used, with Online Backup enabled. In
case of a failure, the backup files can be mounted onto a new Neo4j instance and reintegrated into the
application.

Online Backup High Availability (Hot spare)
Here, a Neo4j "backup" instance listens to online transfers of changes from the master. In the event of
a failure of the master, the backup is already running and can directly take over the load.

High Availability cluster
This approach uses a cluster of database instances, with one (read/write) master and a number of
(read-only) slaves. Failing slaves can simply be restarted and brought back online. Alternatively, a new
slave may be added by cloning an existing one. Should the master instance fail, a new master will be
elected by the remaining cluster nodes.

Disaster Recovery/ Resiliency
In cases of a breakdown of major part of the IT infrastructure, there need to be mechanisms in place
that enable the fast recovery and regrouping of the remaining services and servers. In Neo4j, there are
different components that are suitable to be part of a disaster recovery strategy.

Prevention

• Online Backup High Availability to other locations outside the current data center.
• Online Backup to different file system locations: this is a simpler form of backup, applying changes

directly to backup files; it is thus more suited for local backup scenarios.
• Neo4j High Availability cluster: a cluster of one write-master Neo4j server and a number of read-

slaves, getting transaction logs from the master. Write-master failover is handled by quorum election
among the read-slaves for a new master.

Detection

• SNMP and JMX monitoring can be used for the Neo4j database.

Correction

• Online Backup: A new Neo4j server can be started directly on the backed-up files and take over new
requests.

• Neo4j High Availability cluster: A broken Neo4j read slave can be reinserted into the cluster, getting
the latest updates from the master. Alternatively, a new server can be inserted by copying an existing
server and applying the latest updates to it.

Capabilities

284

17.5. Capacity
File Sizes
Neo4j relies on Java’s Non-blocking I/O subsystem for all file handling. Furthermore, while the storage
file layout is optimized for interconnected data, Neo4j does not require raw devices. Thus, file sizes are
only limited by the underlying operating system’s capacity to handle large files. Physically, there is no
built-in limit of the file handling capacity in Neo4j.

Neo4j has a built-in page cache, that will cache the contents of the storage files. If there is not enough
RAM to keep the storage files resident, then Neo4j will page parts of the files in and out as necessary,
while keeping the most popular parts of the files resident at all times. Thus, ACID speed degrades
gracefully as RAM becomes the limiting factor.

Read speed
Enterprises want to optimize the use of hardware to deliver the maximum business value from
available resources. Neo4j’s approach to reading data provides the best possible usage of all available
hardware resources. Neo4j does not block or lock any read operations; thus, there is no danger for
deadlocks in read operations and no need for read transactions. With a threaded read access to the
database, queries can be run simultaneously on as many processors as may be available. This provides
very good scale-up scenarios with bigger servers.

Write speed
Write speed is a consideration for many enterprise applications. However, there are two different
scenarios:

1. sustained continuous operation and
2. bulk access (e.g., backup, initial or batch loading).

To support the disparate requirements of these scenarios, Neo4j supports two modes of writing to the
storage layer.

In transactional, ACID-compliant normal operation, isolation level is maintained and read operations
can occur at the same time as the writing process. At every commit, the data is persisted to disk and
can be recovered to a consistent state upon system failures. This requires disk write access and a real
flushing of data. Thus, the write speed of Neo4j on a single server in continuous mode is limited by the
I/O capacity of the hardware. Consequently, the use of fast SSDs is highly recommended for production
scenarios.

Neo4j has a Batch Inserter that operates directly on the store files. This mode does not provide
transactional security, so it can only be used when there is a single write thread. Because data is written
sequentially, and never flushed to the logical logs, huge performance boosts are achieved. The Batch
Inserter is optimized for non-transactional bulk import of large amounts of data.

Data size
In Neo4j, data size is mainly limited by the address space of the primary keys for Nodes, Relationships,
Properties and RelationshipTypes. Currently, the address space is as follows:

nodes 235 (∼ 34 billion)
relationships 235 (∼ 34 billion)
properties 236 to 238 depending on property types (maximum

∼ 274 billion, always at least ∼ 68 billion)
relationship types 216 (∼ 65 000)

285

Chapter 18. Transaction Management

In order to fully maintain data integrity and ensure good transactional behavior, Neo4j supports the
ACID properties:

• atomicity: If any part of a transaction fails, the database state is left unchanged.
• consistency: Any transaction will leave the database in a consistent state.
• isolation: During a transaction, modified data cannot be accessed by other operations.
• durability: The DBMS can always recover the results of a committed transaction.

Specifically:

• All database operations that access the graph, indexes, or the schema must be performed in a
transaction.

• The default isolation level is READ_COMMITTED.
• Data retrieved by traversals is not protected from modification by other transactions.
• Non-repeatable reads may occur (i.e., only write locks are acquired and held until the end of the

transaction).
• One can manually acquire write locks on nodes and relationships to achieve higher level of isolation

(SERIALIZABLE).
• Locks are acquired at the Node and Relationship level.
• Deadlock detection is built into the core transaction management.

Transaction Management

286

18.1. Interaction cycle
All database operations that access the graph, indexes, or the schema must be performed in a
transaction. Transactions are thread confined and can be nested as “flat nested transactions”. Flat
nested transactions means that all nested transactions are added to the scope of the top level
transaction. A nested transaction can mark the top level transaction for rollback, meaning the entire
transaction will be rolled back. To only rollback changes made in a nested transaction is not possible.

The interaction cycle of working with transactions looks like this:

1. Begin a transaction.
2. Perform database operations.
3. Mark the transaction as successful or not.
4. Finish the transaction.

It is very important to finish each transaction. The transaction will not release the locks or memory it
has acquired until it has been finished. The idiomatic use of transactions in Neo4j is to use a try-finally
block, starting the transaction and then try to perform the write operations. The last operation in the
try block should mark the transaction as successful while the finally block should finish the transaction.
Finishing the transaction will perform commit or rollback depending on the success status.

Caution
All modifications performed in a transaction are kept in memory. This means that very large
updates have to be split into several top level transactions to avoid running out of memory.
It must be a top level transaction since splitting up the work in many nested transactions will
just add all the work to the top level transaction.

In an environment that makes use of thread pooling other errors may occur when failing to finish a
transaction properly. Consider a leaked transaction that did not get finished properly. It will be tied
to a thread and when that thread gets scheduled to perform work starting a new (what looks to be a)
top level transaction it will actually be a nested transaction. If the leaked transaction state is “marked
for rollback” (which will happen if a deadlock was detected) no more work can be performed on that
transaction. Trying to do so will result in error on each call to a write operation.

Transaction Management

287

18.2. Isolation levels
Transactions in Neo4j use a read-committed isolation level, which means they will see data as soon as it
has been committed and will not see data in other transactions that have not yet been committed. This
type of isolation is weaker than serialization but offers significant performance advantages whilst being
sufficient for the overwhelming majority of cases.

In addition, the Neo4j Java API (see Part VII, “Advanced Usage” [558]) enables explicit locking of nodes
and relationships. Using locks gives the opportunity to simulate the effects of higher levels of isolation
by obtaining and releasing locks explicitly. For example, if a write lock is taken on a common node or
relationship, then all transactions will serialize on that lock — giving the effect of a serialization isolation
level.

Lost Updates in Cypher
In Cypher it is possible to acquire write locks to simulate improved isolation in some cases. Consider
the case where multiple concurrent Cypher queries increment the value of a property. Due to the
limitations of the read-committed isolation level, the increments will not result in a deterministic final
value.

For example, the following query, if run by one hundred concurrent clients, will very likely not
increment the property n.prop to 100, but some value lower than 100.

MATCH (n:X {id: 42})

SET n.prop = n.prop + 1

This is because all queries will read the value of n.prop within their own transaction. They will not
see the incremented value from any other transaction that has not yet committed. In the worst case
scenario the final value could be as low as 1, if all threads perform the read before any has committed
their transaction.

To ensure deterministic behavior, it is necessary to grab a write lock on the node in question. In Cypher
there is no explicit support for this, but we can work around this limitation by writing to a temporary
property.

MATCH (n:X {id: 42})

SET n._LOCK_ = true

SET n.prop = n.prop + 1

REMOVE n._LOCK_

The existence of the SET n._LOCK_ statement before the read of the n.prop read ensures the lock
is acquired before the read action, and no updates will be lost due to enforced serialization of all
concurrent queries on that specific node.

Transaction Management

288

18.3. Default locking behavior
• When adding, changing or removing a property on a node or relationship a write lock will be taken on

the specific node or relationship.
• When creating or deleting a node a write lock will be taken for the specific node.
• When creating or deleting a relationship a write lock will be taken on the specific relationship and

both its nodes.

The locks will be added to the transaction and released when the transaction finishes.

Transaction Management

289

18.4. Deadlocks
Understanding deadlocks
Since locks are used it is possible for deadlocks to happen. Neo4j will however detect any deadlock
(caused by acquiring a lock) before they happen and throw an exception. Before the exception is
thrown the transaction is marked for rollback. All locks acquired by the transaction are still being held
but will be released when the transaction is finished (in the finally block as pointed out earlier). Once
the locks are released other transactions that were waiting for locks held by the transaction causing the
deadlock can proceed. The work performed by the transaction causing the deadlock can then be retried
by the user if needed.

Experiencing frequent deadlocks is an indication of concurrent write requests happening in such a
way that it is not possible to execute them while at the same time live up to the intended isolation and
consistency. The solution is to make sure concurrent updates happen in a reasonable way. For example
given two specific nodes (A and B), adding or deleting relationships to both these nodes in random
order for each transaction will result in deadlocks when there are two or more transactions doing that
concurrently. One solution is to make sure that updates always happens in the same order (first A then
B). Another solution is to make sure that each thread/transaction does not have any conflicting writes
to a node or relationship as some other concurrent transaction. This can for example be achieved by
letting a single thread do all updates of a specific type.

Important
Deadlocks caused by the use of other synchronization than the locks managed by Neo4j can
still happen. Since all operations in the Neo4j API are thread safe unless specified otherwise,
there is no need for external synchronization. Other code that requires synchronization
should be synchronized in such a way that it never performs any Neo4j operation in the
synchronized block.

Deadlock handling example code
Below you’ll find examples of how deadlocks can be handled in server extensions/plugins or when
using Neo4j embedded.

Tip
The full source code used for the code snippets can be found at DeadlockDocTest.java1.

When dealing with deadlocks in code, there are several issues you may want to address:

• Only do a limited amount of retries, and fail if a threshold is reached.
• Pause between each attempt to allow the other transaction to finish before trying again.
• A retry-loop can be useful not only for deadlocks, but for other types of transient errors as well.

In the following sections you’ll find example code in Java which shows how this can be implemented.

Handling deadlocks using TransactionTemplate
If you don’t want to write all the code yourself, there is a class called TransactionTemplate2 that will help
you achieve what’s needed. Below is an example of how to create, customize, and use this template for
retries in transactions.

First, define the base template:

TransactionTemplate template = new TransactionTemplate().retries(5).backoff(3, TimeUnit.SECONDS);

1 https://github.com/neo4j/neo4j/blob/2.3.0/community/kernel/src/test/java/examples/DeadlockDocTest.java
2 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/helpers/TransactionTemplate.html

https://github.com/neo4j/neo4j/blob/2.3.0/community/kernel/src/test/java/examples/DeadlockDocTest.java
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/helpers/TransactionTemplate.html
https://github.com/neo4j/neo4j/blob/2.3.0/community/kernel/src/test/java/examples/DeadlockDocTest.java
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/helpers/TransactionTemplate.html

Transaction Management

290

Next, specify the database to use and a function to execute:

Object result = template.with(graphDatabaseService).execute(new Function<Transaction, Object>()

{

 @Override

 public Object apply(Transaction transaction) throws RuntimeException

 {

 Object result = null;

 return result;

 }

});

The operations that could lead to a deadlock should go into the apply method.

The TransactionTemplate uses a fluent API for configuration, and you can choose whether to set
everything at once, or (as in the example) provide some details just before using it. The template allows
setting a predicate for what exceptions to retry on, and also allows for easy monitoring of events that
take place.

Handling deadlocks using a retry loop
If you want to roll your own retry-loop code, see below for inspiration. Here’s an example of what a
retry block might look like:

Throwable txEx = null;

int RETRIES = 5;

int BACKOFF = 3000;

for (int i = 0; i < RETRIES; i++)

{

 try (Transaction tx = graphDatabaseService.beginTx())

 {

 Object result = doStuff(tx);

 tx.success();

 return result;

 }

 catch (Throwable ex)

 {

 txEx = ex;

 // Add whatever exceptions to retry on here

 if (!(ex instanceof DeadlockDetectedException))

 {

 break;

 }

 }

 // Wait so that we don't immediately get into the same deadlock

 if (i < RETRIES - 1)

 {

 try

 {

 Thread.sleep(BACKOFF);

 }

 catch (InterruptedException e)

 {

 throw new TransactionFailureException("Interrupted", e);

 }

 }

}

if (txEx instanceof TransactionFailureException)

{

 throw ((TransactionFailureException) txEx);

}

else if (txEx instanceof Error)

Transaction Management

291

{

 throw ((Error) txEx);

}

else if (txEx instanceof RuntimeException)

{

 throw ((RuntimeException) txEx);

}

else

{

 throw new TransactionFailureException("Failed", txEx);

}

The above is the gist of what such a retry block would look like, and which you can customize to fit your
needs.

Transaction Management

292

18.5. Delete semantics
When deleting a node or a relationship all properties for that entity will be automatically removed but
the relationships of a node will not be removed.

Caution
Neo4j enforces a constraint (upon commit) that all relationships must have a valid
start node and end node. In effect this means that trying to delete a node that still has
relationships attached to it will throw an exception upon commit. It is however possible
to choose in which order to delete the node and the attached relationships as long as no
relationships exist when the transaction is committed.

The delete semantics can be summarized in the following bullets:

• All properties of a node or relationship will be removed when it is deleted.
• A deleted node can not have any attached relationships when the transaction commits.
• It is possible to acquire a reference to a deleted relationship or node that has not yet been

committed.
• Any write operation on a node or relationship after it has been deleted (but not yet committed) will

throw an exception
• After commit trying to acquire a new or work with an old reference to a deleted node or relationship

will throw an exception.

Transaction Management

293

18.6. Creating unique nodes
In many use cases, a certain level of uniqueness is desired among entities. You could for instance
imagine that only one user with a certain e-mail address may exist in a system. If multiple concurrent
threads naively try to create the user, duplicates will be created. There are three main strategies for
ensuring uniqueness, and they all work across High Availability and single-instance deployments.

Single thread
By using a single thread, no two threads will even try to create a particular entity simultaneously. On
High Availability, an external single-threaded client can perform the operations on the cluster.

Get or create
The preferred way to get or create a unique node is to use unique constraints and Cypher. See the
section called “Get or create unique node using Cypher and unique constraints” [601] for more
information.

By using put-if-absent3 functionality, entity uniqueness can be guaranteed using a legacy index. Here
the legacy index acts as the lock and will only lock the smallest part needed to guaranteed uniqueness
across threads and transactions.

See the section called “Get or create unique node using a legacy index” [601] for how to do this using
the core Java API. When using the REST API, see Section 21.21, “Unique Indexing” [421].

Pessimistic locking

Important
While this is a working solution, please consider using the preferred the section called “Get
or create” [293] instead.

By using explicit, pessimistic locking, unique creation of entities can be achieved in a multi-threaded
environment. It is most commonly done by locking on a single or a set of common nodes.

See the section called “Pessimistic locking for node creation” [602] for how to do this using the core
Java API.

3 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#putIfAbsent%28T,%20java.lang.String,
%20java.lang.Object%29

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#putIfAbsent%28T,%20java.lang.String,%20java.lang.Object%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#putIfAbsent%28T,%20java.lang.String,%20java.lang.Object%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#putIfAbsent%28T,%20java.lang.String,%20java.lang.Object%29

Transaction Management

294

18.7. Transaction events
Transaction event handlers can be registered to receive Neo4j Transaction events. Once it has been
registered at a GraphDatabaseService instance it will receive events about what has happened in
each transaction which is about to be committed. Handlers won’t get notified about transactions
which haven’t performed any write operation or won’t be committed (either if Transaction�success()
hasn’t been called or the transaction has been marked as failed Transaction�failure(). Right before
a transaction is about to be committed the beforeCommit method is called with the entire diff of
modifications made in the transaction. At this point the transaction is still running so changes can still
be made. However there’s no guarantee that other handlers will see such changes since the order in
which handlers are executed is undefined. This method can also throw an exception and will, in such
a case, prevent the transaction from being committed (where a call to afterRollback will follow). If
beforeCommit is successfully executed in all registered handlers the transaction will be committed and
the afterCommit method will be called with the same transaction data as well as the object returned
from beforeCommit. In afterCommit the transaction has been closed and so accessing data outside of what
TransactionData covers requires a new transaction to be opened. TransactionEventHandler gets notified
about transactions that has any change accessible via TransactionData so some indexing and schema
changes will not be triggering these events.

295

Chapter 19. Data Import

For importing data using Cypher and CSV, see Section 12.8, “Importing CSV files with Cypher” [211].

For high-performance data import, see Chapter 29, Import tool [529].

296

Chapter 20. Graph Algorithms

Neo4j graph algorithms is a component that contains Neo4j implementations of some common
algorithms for graphs. It includes algorithms like:

• Shortest paths,
• all paths,
• all simple paths,
• Dijkstra and
• A*.

The graph algorithms are included with Neo4j.

For usage examples, see Section 21.18, “Graph Algorithms” [400] (REST API) and Section 33.10, “Graph
Algorithm examples” [598] (embedded database). The shortest path algorithm can be used from
Cypher as well, see the section called “Shortest path” [162].

297

Chapter 21. REST API

The Neo4j REST API is designed with discoverability in mind, so that you can start with a GET on
the Section 21.4, “Service root” [315] and from there discover URIs to perform other requests.
The examples below uses URIs in the examples; they are subject to change in the future, so for
future-proofness discover URIs where possible, instead of relying on the current layout. The default
representation is json1, both for responses and for data sent with POST/PUT requests.

Below follows a listing of ways to interact with the REST API. For language bindings to the REST API, see
Chapter 7, Languages [96].

To interact with the JSON interface you must explicitly set the request header Accept:application/json
for those requests that responds with data. You should also set the header Content-Type:application/
json if your request sends data, for example when you’re creating a relationship. The examples include
the relevant request and response headers.

The server supports streaming results, with better performance and lower memory overhead. See
Section 21.5, “Streaming” [316] for more information.

1 http://www.json.org/

http://www.json.org/
http://www.json.org/

REST API

298

21.1. Transactional Cypher HTTP endpoint
The default way to interact with Neo4j is by using this endpoint.

The Neo4j transactional HTTP endpoint allows you to execute a series of Cypher statements within
the scope of a transaction. The transaction may be kept open across multiple HTTP requests, until
the client chooses to commit or roll back. Each HTTP request can include a list of statements, and for
convenience you can include statements along with a request to begin or commit a transaction.

The server guards against orphaned transactions by using a timeout. If there are no requests for a
given transaction within the timeout period, the server will roll it back. You can configure the timeout
in the server configuration, by setting org.neo4j.server.transaction.timeout to the number of seconds
before timeout. The default timeout is 60 seconds.

The key difference between the transactional HTTP endpoint for Cypher and the Cypher endpoint (see
Section 21.6, “Legacy Cypher HTTP endpoint” [317]) is the ability to use the same transaction across
multiple HTTP requests. The Cypher endpoint always attempts to commit a transaction at the end of
each HTTP request. There has also been improvements to the serialization format.

Note

• Literal line breaks are not allowed inside Cypher statements.
• Open transactions are not shared among members of an HA cluster. Therefore, if you use

this endpoint in an HA cluster, you must ensure that all requests for a given transaction
are sent to the same Neo4j instance.

• Cypher queries with USING PERIODIC COMMIT (see Section 12.9, “Using Periodic
Commit” [213]) may only be executed when creating a new transaction and immediately
committing it with a single HTTP request (see the section called “Begin and commit a
transaction in one request” [298] for how to do that).

• The serialization format for Cypher results is mostly the same as the Cypher endpoint.
However, the format for raw entities is slightly less verbose and does not include
hypermedia links.

Tip
In order to speed up queries in repeated scenarios, try not to use literals but replace
them with parameters wherever possible. This will let the server cache query plans. See
Section 8.5, “Parameters” [113] for more information.

Begin and commit a transaction in one request
If there is no need to keep a transaction open across multiple HTTP requests, you can begin a
transaction, execute statements, and commit with just a single HTTP request.

Example request

• POST http://localhost:7474/db/data/transaction/commit
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "statements" : [{

 "statement" : "CREATE (n) RETURN id(n)"

 }]

}

Example response

• 200: OK
• Content-Type: application/json

REST API

299

{

 "results" : [{

 "columns" : ["id(n)"],

 "data" : [{

 "row" : [18]

 }]

 }],

 "errors" : []

}

Execute multiple statements
You can send multiple Cypher statements in the same request. The response will contain the result of
each statement.

Example request

• POST http://localhost:7474/db/data/transaction/commit
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "statements" : [{

 "statement" : "CREATE (n) RETURN id(n)"

 }, {

 "statement" : "CREATE (n {props}) RETURN n",

 "parameters" : {

 "props" : {

 "name" : "My Node"

 }

 }

 }]

}

Example response

• 200: OK
• Content-Type: application/json

{

 "results" : [{

 "columns" : ["id(n)"],

 "data" : [{

 "row" : [14]

 }]

 }, {

 "columns" : ["n"],

 "data" : [{

 "row" : [{

 "name" : "My Node"

 }]

 }]

 }],

 "errors" : []

}

Begin a transaction
You begin a new transaction by posting zero or more Cypher statements to the transaction endpoint.
The server will respond with the result of your statements, as well as the location of your open
transaction.

Example request

REST API

300

• POST http://localhost:7474/db/data/transaction
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "statements" : [{

 "statement" : "CREATE (n {props}) RETURN n",

 "parameters" : {

 "props" : {

 "name" : "My Node"

 }

 }

 }]

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/transaction/9

{

 "commit" : "http://localhost:7474/db/data/transaction/9/commit",

 "results" : [{

 "columns" : ["n"],

 "data" : [{

 "row" : [{

 "name" : "My Node"

 }]

 }]

 }],

 "transaction" : {

 "expires" : "Fri, 16 Oct 2015 22:19:06 +0000"

 },

 "errors" : []

}

Execute statements in an open transaction
Given that you have an open transaction, you can make a number of requests, each of which executes
additional statements, and keeps the transaction open by resetting the transaction timeout.

Example request

• POST http://localhost:7474/db/data/transaction/11
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "statements" : [{

 "statement" : "CREATE (n) RETURN n"

 }]

}

Example response

• 200: OK
• Content-Type: application/json

{

 "commit" : "http://localhost:7474/db/data/transaction/11/commit",

REST API

301

 "results" : [{

 "columns" : ["n"],

 "data" : [{

 "row" : [{ }]

 }]

 }],

 "transaction" : {

 "expires" : "Fri, 16 Oct 2015 22:19:06 +0000"

 },

 "errors" : []

}

Execute statements in an open transaction in REST format for the return
Given that you have an open transaction, you can make a number of requests, each of which executes
additional statements, and keeps the transaction open by resetting the transaction timeout. Specifying
the REST format will give back full Neo4j Rest API representations of the Neo4j Nodes, Relationships and
Paths, if returned.

Example request

• POST http://localhost:7474/db/data/transaction/1
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "statements" : [{

 "statement" : "CREATE (n) RETURN n",

 "resultDataContents" : ["REST"]

 }]

}

Example response

• 200: OK
• Content-Type: application/json

{

 "commit" : "http://localhost:7474/db/data/transaction/1/commit",

 "results" : [{

 "columns" : ["n"],

 "data" : [{

 "rest" : [{

 "labels" : "http://localhost:7474/db/data/node/12/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/12/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/12/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/12/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/12",

 "property" : "http://localhost:7474/db/data/node/12/properties/{key}",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/12/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/12/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/12/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/12/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/12/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/12/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/12/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 12,

 "labels" : []

 },

 "data" : { }

 }]

 }]

REST API

302

 }],

 "transaction" : {

 "expires" : "Fri, 16 Oct 2015 22:19:02 +0000"

 },

 "errors" : []

}

Reset transaction timeout of an open transaction
Every orphaned transaction is automatically expired after a period of inactivity. This may be prevented
by resetting the transaction timeout.

The timeout may be reset by sending a keep-alive request to the server that executes an empty list
of statements. This request will reset the transaction timeout and return the new time at which the
transaction will expire as an RFC1123 formatted timestamp value in the “transaction” section of the
response.

Example request

• POST http://localhost:7474/db/data/transaction/2
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "statements" : []

}

Example response

• 200: OK
• Content-Type: application/json

{

 "commit" : "http://localhost:7474/db/data/transaction/2/commit",

 "results" : [],

 "transaction" : {

 "expires" : "Fri, 16 Oct 2015 22:19:05 +0000"

 },

 "errors" : []

}

Commit an open transaction
Given you have an open transaction, you can send a commit request. Optionally, you submit additional
statements along with the request that will be executed before committing the transaction.

Example request

• POST http://localhost:7474/db/data/transaction/6/commit
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "statements" : [{

 "statement" : "CREATE (n) RETURN id(n)"

 }]

}

Example response

• 200: OK
• Content-Type: application/json

REST API

303

{

 "results" : [{

 "columns" : ["id(n)"],

 "data" : [{

 "row" : [17]

 }]

 }],

 "errors" : []

}

Rollback an open transaction
Given that you have an open transaction, you can send a rollback request. The server will rollback the
transaction. Any further statements trying to run in this transaction will fail immediately.

Example request

• DELETE http://localhost:7474/db/data/transaction/3
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "results" : [],

 "errors" : []

}

Include query statistics
By setting includeStats to true for a statement, query statistics will be returned for it.

Example request

• POST http://localhost:7474/db/data/transaction/commit
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "statements" : [{

 "statement" : "CREATE (n) RETURN id(n)",

 "includeStats" : true

 }]

}

Example response

• 200: OK
• Content-Type: application/json

{

 "results" : [{

 "columns" : ["id(n)"],

 "data" : [{

 "row" : [16]

 }],

 "stats" : {

 "contains_updates" : true,

 "nodes_created" : 1,

 "nodes_deleted" : 0,

REST API

304

 "properties_set" : 0,

 "relationships_created" : 0,

 "relationship_deleted" : 0,

 "labels_added" : 0,

 "labels_removed" : 0,

 "indexes_added" : 0,

 "indexes_removed" : 0,

 "constraints_added" : 0,

 "constraints_removed" : 0

 }

 }],

 "errors" : []

}

Return results in graph format
If you want to understand the graph structure of nodes and relationships returned by your query, you
can specify the "graph" results data format. For example, this is useful when you want to visualise the
graph structure. The format collates all the nodes and relationships from all columns of the result, and
also flattens collections of nodes and relationships, including paths.

Example request

• POST http://localhost:7474/db/data/transaction/commit
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "statements" : [{

 "statement" : "CREATE (bike:Bike { weight: 10 }) CREATE (frontWheel:Wheel { spokes: 3 }) CREATE (backWheel:Wheel

 { spokes: 32 }) CREATE p1 = (bike)-[:HAS { position: 1 }]->(frontWheel) CREATE p2 = (bike)-[:HAS { position: 2 }]-

>(backWheel) RETURN bike, p1, p2",

 "resultDataContents" : ["row", "graph"]

 }]

}

Example response

• 200: OK
• Content-Type: application/json

{

 "results" : [{

 "columns" : ["bike", "p1", "p2"],

 "data" : [{

 "row" : [{

 "weight" : 10

 }, [{

 "weight" : 10

 }, {

 "position" : 1

 }, {

 "spokes" : 3

 }], [{

 "weight" : 10

 }, {

 "position" : 2

 }, {

 "spokes" : 32

 }]],

 "graph" : {

 "nodes" : [{

 "id" : "19",

REST API

305

 "labels" : ["Bike"],

 "properties" : {

 "weight" : 10

 }

 }, {

 "id" : "21",

 "labels" : ["Wheel"],

 "properties" : {

 "spokes" : 32

 }

 }, {

 "id" : "20",

 "labels" : ["Wheel"],

 "properties" : {

 "spokes" : 3

 }

 }],

 "relationships" : [{

 "id" : "9",

 "type" : "HAS",

 "startNode" : "19",

 "endNode" : "20",

 "properties" : {

 "position" : 1

 }

 }, {

 "id" : "10",

 "type" : "HAS",

 "startNode" : "19",

 "endNode" : "21",

 "properties" : {

 "position" : 2

 }

 }]

 }

 }]

 }],

 "errors" : []

}

Handling errors
The result of any request against the transaction endpoint is streamed back to the client. Therefore
the server does not know whether the request will be successful or not when it sends the HTTP status
code.

Because of this, all requests against the transactional endpoint will return 200 or 201 status code,
regardless of whether statements were successfully executed. At the end of the response payload, the
server includes a list of errors that occurred while executing statements. If this list is empty, the request
completed successfully.

If any errors occur while executing statements, the server will roll back the transaction.

In this example, we send the server an invalid statement to demonstrate error handling.

For more information on the status codes, see Section 21.2, “Neo4j Status Codes” [307].

Example request

• POST http://localhost:7474/db/data/transaction/10/commit
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "statements" : [{

REST API

306

 "statement" : "This is not a valid Cypher Statement."

 }]

}

Example response

• 200: OK
• Content-Type: application/json

{

 "results" : [],

 "errors" : [{

 "code" : "Neo.ClientError.Statement.InvalidSyntax",

 "message" : "Invalid input 'T': expected <init> (line 1, column 1 (offset: 0))\n\"This is not a valid Cypher Statement.

\"\n ^"

 }]

}

REST API

307

21.2. Neo4j Status Codes
The transactional endpoint may in any response include zero or more status codes, indicating issues or
information for the client. Each status code follows the same format: "Neo.[Classification].[Category].
[Title]". The fact that a status code is returned by the server does always mean there is a fatal error.
Status codes can also indicate transient problems that may go away if you retry the request.

What the effect of the status code is can be determined by its classification.

Note
This is not the same thing as HTTP status codes. Neo4j Status Codes are returned in the
response body, at the very end of the response.

Classifications

Classification Description Effect on
transaction

ClientError The Client sent a bad request - changing the request might
yield a successful outcome.

Rollback

ClientNotification There are notifications about the request sent by the client. None

DatabaseError The database failed to service the request. Rollback

TransientError The database cannot service the request right now, retrying
later might yield a successful outcome.

Rollback

Status codes
This is a complete list of all status codes Neo4j may return, and what they mean.

Status Code Description

Neo. ClientError. General. ReadOnly This is a read only database, writing or modifying
the database is not allowed.

Neo. ClientError. LegacyIndex. NoSuchIndex The request (directly or indirectly) referred to a
index that does not exist.

Neo. ClientError. Request. Invalid The client provided an invalid request.

Neo. ClientError. Request. InvalidFormat The client provided a request that was missing
required fields, or had values that are not allowed.

Neo. ClientError. Schema. ConstraintAlreadyExists Unable to perform operation because it would
clash with a pre-existing constraint.

Neo. ClientError. Schema.

 ConstraintVerificationFailure

Unable to create constraint because data that
exists in the database violates it.

Neo. ClientError. Schema. ConstraintViolation A constraint imposed by the database was
violated.

Neo. ClientError. Schema. IllegalTokenName A token name, such as a label, relationship type or
property key, used is not valid. Tokens cannot be
empty strings and cannot be null.

Neo. ClientError. Schema. IndexAlreadyExists Unable to perform operation because it would
clash with a pre-existing index.

Neo. ClientError. Schema. IndexBelongsToConstraint A requested operation can not be performed on
the specified index because the index is part of
a constraint. If you want to drop the index, for
instance, you must drop the constraint.

REST API

308

Status Code Description

Neo. ClientError. Schema. IndexLimitReached The maximum number of index entries supported
has been reached, no more entities can be
indexed.

Neo. ClientError. Schema. LabelLimitReached The maximum number of labels supported has
been reached, no more labels can be created.

Neo. ClientError. Schema. NoSuchConstraint The request (directly or indirectly) referred to a
constraint that does not exist.

Neo. ClientError. Schema. NoSuchIndex The request (directly or indirectly) referred to an
index that does not exist.

Neo. ClientError. Security. AuthenticationFailed The client provided an incorrect username and/or
password.

Neo. ClientError. Security. AuthenticationRateLimit The client has provided incorrect authentication
details too many times in a row.

Neo. ClientError. Security. AuthorizationFailed The client does not have privileges to perform the
operation requested.

Neo. ClientError. Statement. ArithmeticError Invalid use of arithmetic, such as dividing by zero.

Neo. ClientError. Statement. ConstraintViolation A constraint imposed by the statement is violated
by the data in the database.

Neo. ClientError. Statement. EntityNotFound The statement is directly referring to an entity that
does not exist.

Neo. ClientError. Statement. InvalidArguments The statement is attempting to perform
operations using invalid arguments

Neo. ClientError. Statement. InvalidSemantics The statement is syntactically valid, but expresses
something that the database cannot do.

Neo. ClientError. Statement. InvalidSyntax The statement contains invalid or unsupported
syntax.

Neo. ClientError. Statement. InvalidType The statement is attempting to perform
operations on values with types that are not
supported by the operation.

Neo. ClientError. Statement. NoSuchLabel The statement is referring to a label that does not
exist.

Neo. ClientError. Statement. NoSuchProperty The statement is referring to a property that does
not exist.

Neo. ClientError. Statement. ParameterMissing The statement is referring to a parameter that was
not provided in the request.

Neo. ClientError. Transaction. ConcurrentRequest There were concurrent requests accessing the
same transaction, which is not allowed.

Neo. ClientError. Transaction.

 EventHandlerThrewException

A transaction event handler threw an exception.
The transaction will be rolled back.

Neo. ClientError. Transaction. HookFailed Transaction hook failure.

Neo. ClientError. Transaction. InvalidType The transaction is of the wrong type to service the
request. For instance, a transaction that has had
schema modifications performed in it cannot be
used to subsequently perform data operations,
and vice versa.

Neo. ClientError. Transaction. MarkedAsFailed Transaction was marked as both successful
and failed. Failure takes precedence and so this

REST API

309

Status Code Description
transaction was rolled back although it may have
looked like it was going to be committed

Neo. ClientError. Transaction. UnknownId The request referred to a transaction that does not
exist.

Neo. ClientError. Transaction. ValidationFailed Transaction changes did not pass validation checks

Neo. ClientNotification. Statement. CartesianProduct This query builds a cartesian product between
disconnected patterns.

Neo. ClientNotification. Statement.

 DeprecationWarning

This feature is deprecated and will be removed in
future versions.

Neo. ClientNotification. Statement.

 DynamicPropertyWarning

Queries using dynamic properties will use neither
index seeks nor index scans for those properties

Neo. ClientNotification. Statement. EagerWarning The execution plan for this query contains the
Eager operator, which forces all dependent
data to be materialized in main memory before
proceeding

Neo. ClientNotification. Statement.

 IndexMissingWarning

Adding a schema index may speed up this query.

Neo. ClientNotification. Statement.

 JoinHintUnfulfillableWarning

The database was unable to plan a hinted join.

Neo. ClientNotification. Statement.

 JoinHintUnsupportedWarning

Queries with join hints are not supported by the
RULE planner.

Neo. ClientNotification. Statement.

 LabelMissingWarning

The provided label is not in the database.

Neo. ClientNotification. Statement.

 PlannerUnsupportedWarning

This query is not supported by the COST planner.

Neo. ClientNotification. Statement.

 PropertyNameMissingWarning

The provided property name is not in the database

Neo. ClientNotification. Statement.

 RelTypeMissingWarning

The provided relationship type is not in the
database.

Neo. ClientNotification. Statement.

 RuntimeUnsupportedWarning

This query is not supported by the compiled
runtime.

Neo. ClientNotification. Statement.

 UnboundedPatternWarning

The provided pattern is unbounded, consider
adding an upper limit to the number of node
hops.

Neo. DatabaseError. General. CorruptSchemaRule A malformed schema rule was encountered.
Please contact your support representative.

Neo. DatabaseError. General. FailedIndex The request (directly or indirectly) referred to an
index that is in a failed state. The index needs to
be dropped and recreated manually.

Neo. DatabaseError. General. UnknownFailure An unknown failure occurred.

Neo. DatabaseError. Schema.

 ConstraintCreationFailure

Creating a requested constraint failed.

Neo. DatabaseError. Schema. ConstraintDropFailure The database failed to drop a requested
constraint.

Neo. DatabaseError. Schema. DuplicateSchemaRule The request referred to a schema rule that defined
multiple times.

REST API

310

Status Code Description

Neo. DatabaseError. Schema. IndexCreationFailure Failed to create an index.

Neo. DatabaseError. Schema. IndexDropFailure The database failed to drop a requested index.

Neo. DatabaseError. Schema. NoSuchLabel The request accessed a label that did not exist.

Neo. DatabaseError. Schema. NoSuchPropertyKey The request accessed a property that does not
exist.

Neo. DatabaseError. Schema. NoSuchRelationshipType The request accessed a relationship type that does
not exist.

Neo. DatabaseError. Schema. NoSuchSchemaRule The request referred to a schema rule that does
not exist.

Neo. DatabaseError. Statement. ExecutionFailure The database was unable to execute the
statement.

Neo. DatabaseError. Transaction. CouldNotBegin The database was unable to start the transaction.

Neo. DatabaseError. Transaction. CouldNotCommit The database was unable to commit the
transaction.

Neo. DatabaseError. Transaction. CouldNotRollback The database was unable to roll back the
transaction.

Neo. DatabaseError. Transaction. CouldNotWriteToLog The database was unable to write transaction to
log.

Neo. DatabaseError. Transaction. ReleaseLocksFailed The transaction was unable to release one or more
of its locks.

Neo. TransientError. General. DatabaseUnavailable The database is not currently available to serve
your request, refer to the database logs for more
details. Retrying your request at a later time may
succeed.

Neo. TransientError. Network. UnknownFailure An unknown network failure occurred, a retry may
resolve the issue.

Neo. TransientError. Schema. ModifiedConcurrently The database schema was modified while this
transaction was running, the transaction should be
retried.

Neo. TransientError. Security. ModifiedConcurrently The user was modified concurrently to this
request.

Neo. TransientError. Statement.

 ExternalResourceFailure

The external resource is not available

Neo. TransientError. Transaction. AcquireLockTimeout The transaction was unable to acquire a lock,
for instance due to a timeout or the transaction
thread being interrupted.

Neo. TransientError. Transaction. ConstraintsChanged Database constraints changed since the start of
this transaction

Neo. TransientError. Transaction. DeadlockDetected This transaction, and at least one more
transaction, has acquired locks in a way that it will
wait indefinitely, and the database has aborted
it. Retrying this transaction will most likely be
successful.

REST API

311

21.3. REST API Authentication and Authorization
In order to prevent unauthorized access to Neo4j, the REST API supports authorization and
authentication. When enabled, requests to the REST API must be authorized using the username
and password of a valid user. Authorization is enabled by default, see the section called “Server
authentication and authorization” [501] for how to disable it.

When Neo4j is first installed you can authenticate with the default user neo4j and the default password
neo4j. However, the default password must be changed (see the section called “User status and
password changing” [312]) before access to resources will be permitted. This can easily be done via
the Neo4j Browser, or via direct HTTP calls.

The username and password combination is local to each Neo4j instance. If you wish to have multiple
instances in a cluster, you should ensure that all instances share the same credential. For automated
deployments, you may also copy security configuration from another Neo4j instance (see the section
called “Copying security configuration from one instance to another” [314]).

Authenticating

Missing authorization
If an Authorization header is not supplied, the server will reply with an error.

Example request

• GET http://localhost:7474/db/data/
• Accept: application/json; charset=UTF-8

Example response

• 401: Unauthorized
• Content-Type: application/json; charset=UTF-8
• WWW-Authenticate: None

{

 "errors" : [{

 "message" : "No authorization header supplied.",

 "code" : "Neo.ClientError.Security.AuthorizationFailed"

 }]

}

Authenticate to access the server
Authenticate by sending a username and a password to Neo4j using HTTP Basic Auth. Requests should
include an Authorization header, with a value of Basic <payload>, where "payload" is a base64 encoded
string of "username:password".

Example request

• GET http://localhost:7474/user/neo4j
• Accept: application/json; charset=UTF-8
• Authorization: Basic bmVvNGo6c2VjcmV0

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "username" : "neo4j",

 "password_change" : "http://localhost:7474/user/neo4j/password",

REST API

312

 "password_change_required" : false

}

Incorrect authentication
If an incorrect username or password is provided, the server replies with an error.

Example request

• POST http://localhost:7474/db/data/
• Accept: application/json; charset=UTF-8
• Authorization: Basic bmVvNGo6aW5jb3JyZWN0

Example response

• 401: Unauthorized
• Content-Type: application/json; charset=UTF-8
• WWW-Authenticate: None

{

 "errors" : [{

 "message" : "Invalid username or password.",

 "code" : "Neo.ClientError.Security.AuthorizationFailed"

 }]

}

Required password changes
In some cases, like the very first time Neo4j is accessed, the user will be required to choose a new
password. The database will signal that a new password is required and deny access.

See the section called “User status and password changing” [312] for how to set a new password.

Example request

• GET http://localhost:7474/db/data/
• Accept: application/json; charset=UTF-8
• Authorization: Basic bmVvNGo6bmVvNGo=

Example response

• 403: Forbidden
• Content-Type: application/json; charset=UTF-8

{

 "password_change" : "http://localhost:7474/user/neo4j/password",

 "errors" : [{

 "message" : "User is required to change their password.",

 "code" : "Neo.ClientError.Security.AuthorizationFailed"

 }]

}

User status and password changing

User status
Given that you know the current password, you can ask the server for the user status.

Example request

• GET http://localhost:7474/user/neo4j
• Accept: application/json; charset=UTF-8

REST API

313

• Authorization: Basic bmVvNGo6c2VjcmV0

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "username" : "neo4j",

 "password_change" : "http://localhost:7474/user/neo4j/password",

 "password_change_required" : false

}

User status on first access
On first access, and using the default password, the user status will indicate that the users password
requires changing.

Example request

• GET http://localhost:7474/user/neo4j
• Accept: application/json; charset=UTF-8
• Authorization: Basic bmVvNGo6bmVvNGo=

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "username" : "neo4j",

 "password_change" : "http://localhost:7474/user/neo4j/password",

 "password_change_required" : true

}

Changing the user password
Given that you know the current password, you can ask the server to change a users password. You can
choose any password you like, as long as it is different from the current password.

Example request

• POST http://localhost:7474/user/neo4j/password
• Accept: application/json; charset=UTF-8
• Authorization: Basic bmVvNGo6bmVvNGo=
• Content-Type: application/json

{

 "password" : "secret"

}

Example response

• 200: OK

Access when auth is disabled

When auth is disabled
When auth has been disabled in the configuration, requests can be sent without an Authorization
header.

REST API

314

Example request

• GET http://localhost:7474/db/data/
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "extensions" : { },

 "node" : "http://localhost:7474/db/data/node",

 "node_index" : "http://localhost:7474/db/data/index/node",

 "relationship_index" : "http://localhost:7474/db/data/index/relationship",

 "extensions_info" : "http://localhost:7474/db/data/ext",

 "relationship_types" : "http://localhost:7474/db/data/relationship/types",

 "batch" : "http://localhost:7474/db/data/batch",

 "cypher" : "http://localhost:7474/db/data/cypher",

 "indexes" : "http://localhost:7474/db/data/schema/index",

 "constraints" : "http://localhost:7474/db/data/schema/constraint",

 "transaction" : "http://localhost:7474/db/data/transaction",

 "node_labels" : "http://localhost:7474/db/data/labels",

 "neo4j_version" : "2.3.0"

}

Copying security configuration from one instance to another
In many cases, such as automated deployments, you may want to start a Neo4j instance with pre-
configured authentication and authorization. This is possible by copying the auth database file from a
pre-existing Neo4j instance to your new instance.

This file is located at data/dbms/auth, and simply copying that file into a new Neo4j instance will transfer
your password and authorization token.

REST API

315

21.4. Service root
Get service root
The service root is your starting point to discover the REST API. It contains the basic starting points for
the database, and some version and extension information.

Figure 21.1. Final Graph

Example request

• GET http://localhost:7474/db/data/
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "extensions" : { },

 "node" : "http://localhost:7474/db/data/node",

 "node_index" : "http://localhost:7474/db/data/index/node",

 "relationship_index" : "http://localhost:7474/db/data/index/relationship",

 "extensions_info" : "http://localhost:7474/db/data/ext",

 "relationship_types" : "http://localhost:7474/db/data/relationship/types",

 "batch" : "http://localhost:7474/db/data/batch",

 "cypher" : "http://localhost:7474/db/data/cypher",

 "indexes" : "http://localhost:7474/db/data/schema/index",

 "constraints" : "http://localhost:7474/db/data/schema/constraint",

 "transaction" : "http://localhost:7474/db/data/transaction",

 "node_labels" : "http://localhost:7474/db/data/labels",

 "neo4j_version" : "2.3.0"

}

REST API

316

21.5. Streaming
All responses from the REST API can be transmitted as JSON streams, resulting in better performance
and lower memory overhead on the server side. To use streaming, supply the header X-Stream: true
with each request.

Example request

• GET http://localhost:7474/db/data/
• Accept: application/json
• X-Stream: true

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8; stream=true

{

 "extensions" : { },

 "node" : "http://localhost:7474/db/data/node",

 "node_index" : "http://localhost:7474/db/data/index/node",

 "relationship_index" : "http://localhost:7474/db/data/index/relationship",

 "extensions_info" : "http://localhost:7474/db/data/ext",

 "relationship_types" : "http://localhost:7474/db/data/relationship/types",

 "batch" : "http://localhost:7474/db/data/batch",

 "cypher" : "http://localhost:7474/db/data/cypher",

 "indexes" : "http://localhost:7474/db/data/schema/index",

 "constraints" : "http://localhost:7474/db/data/schema/constraint",

 "transaction" : "http://localhost:7474/db/data/transaction",

 "node_labels" : "http://localhost:7474/db/data/labels",

 "neo4j_version" : "2.3.0"

}

REST API

317

21.6. Legacy Cypher HTTP endpoint
Note
This endpoint is deprecated. Please transition to using the new transactional endpoint (see
Section 21.1, “Transactional Cypher HTTP endpoint” [298]). Among other things it allows you
to run multiple Cypher statements in the same transaction.

The Neo4j REST API allows querying with Cypher, see Part III, “Cypher Query Language” [102]. The
results are returned as a list of string headers (columns), and a data part, consisting of a list of all rows,
every row consisting of a list of REST representations of the field value — Node, Relationship, Path or any
simple value like String.

Tip
In order to speed up queries in repeated scenarios, try not to use literals but replace them
with parameters wherever possible in order to let the server cache query plans, see the
section called “Use parameters” [317] for details. Also see Section 8.5, “Parameters” [113]
for where parameters can be used.

Use parameters
Cypher supports queries with parameters which are submitted as JSON.

MATCH (x { name: { startName }})-[r]-(friend)

WHERE friend.name = { name }

RETURN TYPE(r)

Figure 21.2. Final Graph

Node[10115]

nam e = 'you'

Node[10116]

nam e = 'I'

know

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "query" : "MATCH (x {name: {startName}})-[r]-(friend) WHERE friend.name = {name} RETURN TYPE(r)",

 "params" : {

 "startName" : "I",

 "name" : "you"

 }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

REST API

318

 "columns" : ["TYPE(r)"],

 "data" : [["know"]]

}

Create a node
Create a node with a label and a property using Cypher. See the request for the parameter sent with
the query.

CREATE (n:Person { name : { name }})

RETURN n

Figure 21.3. Final Graph

Node[10102] : Person

nam e = 'Andres'

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "query" : "CREATE (n:Person { name : {name} }) RETURN n",

 "params" : {

 "name" : "Andres"

 }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "columns" : ["n"],

 "data" : [[{

 "labels" : "http://localhost:7474/db/data/node/10102/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/10102/relationships/out",

 "data" : {

 "name" : "Andres"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/10102/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/10102/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/10102",

 "property" : "http://localhost:7474/db/data/node/10102/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/10102/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/10102/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/10102/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/10102/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/10102/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/10102/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/10102/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 10102,

 "labels" : ["Person"]

 }

 }]]

}

REST API

319

Create a node with multiple properties
Create a node with a label and multiple properties using Cypher. See the request for the parameter
sent with the query.

CREATE (n:Person { props })

RETURN n

Figure 21.4. Final Graph

Node[10099] : Person

children = 3
awesom e = t rue
nam e = 'Michael'
posit ion = 'Developer'

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "query" : "CREATE (n:Person { props }) RETURN n",

 "params" : {

 "props" : {

 "position" : "Developer",

 "name" : "Michael",

 "awesome" : true,

 "children" : 3

 }

 }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "columns" : ["n"],

 "data" : [[{

 "labels" : "http://localhost:7474/db/data/node/10099/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/10099/relationships/out",

 "data" : {

 "position" : "Developer",

 "awesome" : true,

 "name" : "Michael",

 "children" : 3

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/10099/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/10099/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/10099",

 "property" : "http://localhost:7474/db/data/node/10099/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/10099/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/10099/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/10099/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/10099/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/10099/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/10099/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/10099/relationships/in/{-list|&|types}",

 "metadata" : {

REST API

320

 "id" : 10099,

 "labels" : ["Person"]

 }

 }]]

}

Create multiple nodes with properties
Create multiple nodes with properties using Cypher. See the request for the parameter sent with the
query.

UNWIND { props } AS map

CREATE (n:Person)

SET n = map

RETURN n

Figure 21.5. Final Graph

Node[10102] : Person

nam e = 'Andres'

Node[10103] : Person

nam e = 'Andres'
posit ion = 'Developer'

Node[10104] : Person

nam e = 'Michael'
posit ion = 'Developer'

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "query" : "UNWIND {props} as map CREATE (n:Person) SET n = map RETURN n",

 "params" : {

 "props" : [{

 "name" : "Andres",

 "position" : "Developer"

 }, {

 "name" : "Michael",

 "position" : "Developer"

 }]

 }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "columns" : ["n"],

 "data" : [[{

 "labels" : "http://localhost:7474/db/data/node/10103/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/10103/relationships/out",

 "data" : {

 "position" : "Developer",

 "name" : "Andres"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/10103/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/10103/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/10103",

 "property" : "http://localhost:7474/db/data/node/10103/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/10103/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/10103/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/10103/relationships/in",

 "extensions" : { },

REST API

321

 "create_relationship" : "http://localhost:7474/db/data/node/10103/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/10103/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/10103/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/10103/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 10103,

 "labels" : ["Person"]

 }

 }], [{

 "labels" : "http://localhost:7474/db/data/node/10104/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/10104/relationships/out",

 "data" : {

 "position" : "Developer",

 "name" : "Michael"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/10104/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/10104/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/10104",

 "property" : "http://localhost:7474/db/data/node/10104/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/10104/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/10104/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/10104/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/10104/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/10104/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/10104/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/10104/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 10104,

 "labels" : ["Person"]

 }

 }]]

}

Set all properties on a node using Cypher
Set all properties on a node.

CREATE (n:Person { name: 'this property is to be deleted' })

SET n = { props }

RETURN n

Figure 21.6. Final Graph

Node[10130] : Person

children = 3
awesom e = t rue
firstNam e = 'Michael'
posit ion = 'Developer'

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "query" : "CREATE (n:Person { name: 'this property is to be deleted' }) SET n = { props } RETURN n",

 "params" : {

 "props" : {

 "position" : "Developer",

 "firstName" : "Michael",

 "awesome" : true,

 "children" : 3

REST API

322

 }

 }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "columns" : ["n"],

 "data" : [[{

 "labels" : "http://localhost:7474/db/data/node/10130/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/10130/relationships/out",

 "data" : {

 "position" : "Developer",

 "awesome" : true,

 "children" : 3,

 "firstName" : "Michael"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/10130/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/10130/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/10130",

 "property" : "http://localhost:7474/db/data/node/10130/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/10130/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/10130/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/10130/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/10130/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/10130/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/10130/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/10130/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 10130,

 "labels" : ["Person"]

 }

 }]]

}

Send a query
A simple query returning all nodes connected to some node, returning the node and the name
property, if it exists, otherwise NULL:

MATCH (x { name: 'I' })-[r]->(n)

RETURN type(r), n.name, n.age

Figure 21.7. Final Graph

Node[10122]

nam e = 'you'

Node[10123]

nam e = 'him '
age = 25

Node[10124]

nam e = 'I'

know know

Example request

• POST http://localhost:7474/db/data/cypher

REST API

323

• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "query" : "MATCH (x {name: 'I'})-[r]->(n) RETURN type(r), n.name, n.age",

 "params" : { }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "columns" : ["type(r)", "n.name", "n.age"],

 "data" : [["know", "him", 25], ["know", "you", null]]

}

Return paths
Paths can be returned just like other return types.

MATCH path =(x { name: 'I' })--(friend)

RETURN path, friend.name

Figure 21.8. Final Graph

Node[10128]

nam e = 'you'

Node[10129]

nam e = 'I'

know

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "query" : "MATCH path = (x {name: 'I'})--(friend) RETURN path, friend.name",

 "params" : { }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "columns" : ["path", "friend.name"],

 "data" : [[{

 "directions" : ["->"],

 "start" : "http://localhost:7474/db/data/node/10129",

 "nodes" : ["http://localhost:7474/db/data/node/10129", "http://localhost:7474/db/data/node/10128"],

 "length" : 1,

 "relationships" : ["http://localhost:7474/db/data/relationship/59"],

 "end" : "http://localhost:7474/db/data/node/10128"

REST API

324

 }, "you"]]

}

Nested results
When sending queries that return nested results like list and maps, these will get serialized into nested
JSON representations according to their types.

MATCH (n)

WHERE n.name IN ['I', 'you']

RETURN collect(n.name)

Figure 21.9. Final Graph

Node[10125]

nam e = 'you'

Node[10126]

nam e = 'I'

know

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "query" : "MATCH (n) WHERE n.name in ['I', 'you'] RETURN collect(n.name)",

 "params" : { }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "columns" : ["collect(n.name)"],

 "data" : [[["you", "I"]]]

}

Retrieve query metadata
By passing in an additional GET parameter when you execute Cypher queries, metadata about the
query will be returned, such as how many labels were added or removed by the query.

MATCH (n { name: 'I' })

SET n:Actor

REMOVE n:Director

RETURN labels(n)

Figure 21.10. Final Graph

Node[10127] : Actor

nam e = 'I'

Example request

REST API

325

• POST http://localhost:7474/db/data/cypher?includeStats=true
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "query" : "MATCH (n {name: 'I'}) SET n:Actor REMOVE n:Director RETURN labels(n)",

 "params" : { }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "columns" : ["labels(n)"],

 "data" : [[["Actor"]]],

 "stats" : {

 "relationships_created" : 0,

 "nodes_deleted" : 0,

 "relationship_deleted" : 0,

 "indexes_added" : 0,

 "properties_set" : 0,

 "constraints_removed" : 0,

 "indexes_removed" : 0,

 "labels_removed" : 1,

 "constraints_added" : 0,

 "labels_added" : 1,

 "nodes_created" : 0,

 "contains_updates" : true

 }

}

Errors
Errors on the server will be reported as a JSON-formatted message, exception name and stacktrace.

MATCH (x { name: 'I' })

RETURN x.dummy/0

Figure 21.11. Final Graph

Node[10108]

nam e = 'you'

Node[10109]

nam e = 'I'

know

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "query" : "MATCH (x {name: 'I'}) RETURN x.dummy/0",

 "params" : { }

REST API

326

}

Example response

• 400: Bad Request
• Content-Type: application/json; charset=UTF-8

{

 "message": "/ by zero",

 "exception": "BadInputException",

 "fullname": "org.neo4j.server.rest.repr.BadInputException",

 "stackTrace": [

 "org.neo4j.server.rest.repr.RepresentationExceptionHandlingIterable.exceptionOnNext(RepresentationExceptionHandlingIterable.java:39)",

 "org.neo4j.helpers.collection.ExceptionHandlingIterable$1.next(ExceptionHandlingIterable.java:55)",

 "org.neo4j.helpers.collection.IteratorWrapper.next(IteratorWrapper.java:47)",

 "org.neo4j.server.rest.repr.ListRepresentation.serialize(ListRepresentation.java:64)",

 "org.neo4j.server.rest.repr.Serializer.serialize(Serializer.java:75)",

 "org.neo4j.server.rest.repr.MappingSerializer.putList(MappingSerializer.java:61)",

 "org.neo4j.server.rest.repr.CypherResultRepresentation.serialize(CypherResultRepresentation.java:58)",

 "org.neo4j.server.rest.repr.MappingRepresentation.serialize(MappingRepresentation.java:41)",

 "org.neo4j.server.rest.repr.OutputFormat.assemble(OutputFormat.java:245)",

 "org.neo4j.server.rest.repr.OutputFormat.formatRepresentation(OutputFormat.java:177)",

 "org.neo4j.server.rest.repr.OutputFormat.response(OutputFormat.java:160)",

 "org.neo4j.server.rest.repr.OutputFormat.ok(OutputFormat.java:73)",

 "org.neo4j.server.rest.web.CypherService.cypher(CypherService.java:127)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

],

 "cause": {

 "message": "/ by zero",

 "errors": [

 {

 "message": "/ by zero",

 "code": "Neo.ClientError.Statement.ArithmeticError"

 }

],

 "cause": {

 "message": "/ by zero",

 "errors": [

 {

 "message": "/ by zero",

 "code": "Neo.ClientError.Statement.ArithmeticError"

 }

],

 "cause": {

 "message": "/ by zero",

 "errors": [

 {

 "message": "/ by zero",

 "code": "Neo.ClientError.Statement.ArithmeticError"

 }

],

 "cause": {

 "errors": [

 {

 "code": "Neo.DatabaseError.General.UnknownFailure",

 "stackTrace": "org.neo4j.cypher.internal.frontend.v2_3.ArithmeticException\n\tat

 org.neo4j.cypher.internal.compiler.v2_3.commands.expressions.Divide.apply(Divide.scala:36)\n\tat

 org.neo4j.cypher.internal.compiler.v2_3.pipes.ProjectionPipe$$anonfun$internalCreateResults$1$$anonfun$apply

$1.apply(ProjectionPipe.scala:48)\n\tat org.neo4j.cypher.internal.compiler.v2_3.pipes.ProjectionPipe$$anonfun

$internalCreateResults$1$$anonfun$apply$1.apply(ProjectionPipe.scala:46)\n\tat scala.collection.immutable.Map

REST API

327

$Map1.foreach(Map.scala:116)\n\tat org.neo4j.cypher.internal.compiler.v2_3.pipes.ProjectionPipe$$anonfun

$internalCreateResults$1.apply(ProjectionPipe.scala:46)\n\tat org.neo4j.cypher.internal.compiler.v2_3.pipes.ProjectionPipe

$$anonfun$internalCreateResults$1.apply(ProjectionPipe.scala:45)\n\tat scala.collection.Iterator$$anon

$11.next(Iterator.scala:370)\n\tat scala.collection.Iterator$$anon$11.next(Iterator.scala:370)\n\tat

 org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator$$anonfun$next$1.apply(ResultIterator.scala:75)\n\tat

 org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator$$anonfun$next$1.apply(ResultIterator.scala:72)\n\tat

 org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator$$anonfun$failIfThrows$1.apply(ResultIterator.scala:121)\n

\tat org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator.decoratedCypherException(ResultIterator.scala:130)\n

\tat org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator.failIfThrows(ResultIterator.scala:119)\n

\tat org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator.next(ResultIterator.scala:72)\n\tat

 org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator.next(ResultIterator.scala:50)\n\tat

 org.neo4j.cypher.internal.compiler.v2_3.PipeExecutionResult.next(PipeExecutionResult.scala:77)\n\tat

 org.neo4j.cypher.internal.compiler.v2_3.PipeExecutionResult$$anon$2.next(PipeExecutionResult.scala:70)\n\tat

 org.neo4j.cypher.internal.compiler.v2_3.PipeExecutionResult$$anon$2.next(PipeExecutionResult.scala:68)\n

\tat org.neo4j.cypher.internal.compatibility.ExecutionResultWrapperFor2_3$$anon$1$$anonfun$next

$1.apply(CompatibilityFor2_3.scala:226)\n\tat org.neo4j.cypher.internal.compatibility.ExecutionResultWrapperFor2_3$$anon1

$anonfun$next$1.apply(CompatibilityFor2_3.scala:226)\n\tat

 org.neo4j.cypher.internal.compatibility.exceptionHandlerFor2_3$.runSafely(CompatibilityFor2_3.scala:114)\n\tat

 org.neo4j.cypher.internal.compatibility.ExecutionResultWrapperFor2_3$$anon$1.next(CompatibilityFor2_3.scala:226)\n\tat

 org.neo4j.cypher.internal.compatibility.ExecutionResultWrapperFor2_3$$anon$1.next(CompatibilityFor2_3.scala:221)\n

\tat org.neo4j.cypher.javacompat.ExecutionResult.next(ExecutionResult.java:233)\n

\tat org.neo4j.cypher.javacompat.ExecutionResult.next(ExecutionResult.java:55)\n\tat

 org.neo4j.helpers.collection.ExceptionHandlingIterable$1.next(ExceptionHandlingIterable.java:53)\n

\tat org.neo4j.helpers.collection.IteratorWrapper.next(IteratorWrapper.java:47)\n\tat

 org.neo4j.server.rest.repr.ListRepresentation.serialize(ListRepresentation.java:64)\n

\tat org.neo4j.server.rest.repr.Serializer.serialize(Serializer.java:75)\n\tat

 org.neo4j.server.rest.repr.MappingSerializer.putList(MappingSerializer.java:61)\n\tat

 org.neo4j.server.rest.repr.CypherResultRepresentation.serialize(CypherResultRepresentation.java:58)\n

\tat org.neo4j.server.rest.repr.MappingRepresentation.serialize(MappingRepresentation.java:41)\n

\tat org.neo4j.server.rest.repr.OutputFormat.assemble(OutputFormat.java:245)\n\tat

 org.neo4j.server.rest.repr.OutputFormat.formatRepresentation(OutputFormat.java:177)\n

\tat org.neo4j.server.rest.repr.OutputFormat.response(OutputFormat.java:160)\n\tat

 org.neo4j.server.rest.repr.OutputFormat.ok(OutputFormat.java:73)\n\tat

 org.neo4j.server.rest.web.CypherService.cypher(CypherService.java:127)\n\tat

 sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)\n\tat

 sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)\n\tat

 sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)\n\tat

 java.lang.reflect.Method.invoke(Method.java:606)\n\tat com.sun.jersey.spi.container.JavaMethodInvokerFactory

$1.invoke(JavaMethodInvokerFactory.java:60)\n\tat

 com.sun.jersey.server.impl.model.method.dispatch.AbstractResourceMethodDispatchProvider

$ResponseOutInvoker._dispatch(AbstractResourceMethodDispatchProvider.java:205)\n\tat

 com.sun.jersey.server.impl.model.method.dispatch.ResourceJavaMethodDispatcher.dispatch(ResourceJavaMethodDispatcher.java:75)\n

\tat org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)\n

\tat com.sun.jersey.server.impl.uri.rules.HttpMethodRule.accept(HttpMethodRule.java:302)\n\tat

 com.sun.jersey.server.impl.uri.rules.ResourceClassRule.accept(ResourceClassRule.java:108)\n\tat

 com.sun.jersey.server.impl.uri.rules.RightHandPathRule.accept(RightHandPathRule.java:147)\n\tat

 com.sun.jersey.server.impl.uri.rules.RootResourceClassesRule.accept(RootResourceClassesRule.java:84)\n\tat

 com.sun.jersey.server.impl.application.WebApplicationImpl._handleRequest(WebApplicationImpl.java:1542)\n\tat

 com.sun.jersey.server.impl.application.WebApplicationImpl._handleRequest(WebApplicationImpl.java:1473)\n

\tat com.sun.jersey.server.impl.application.WebApplicationImpl.handleRequest(WebApplicationImpl.java:1419)\n

\tat com.sun.jersey.server.impl.application.WebApplicationImpl.handleRequest(WebApplicationImpl.java:1409)\n

\tat com.sun.jersey.spi.container.servlet.WebComponent.service(WebComponent.java:409)\n\tat

 com.sun.jersey.spi.container.servlet.ServletContainer.service(ServletContainer.java:558)\n\tat

 com.sun.jersey.spi.container.servlet.ServletContainer.service(ServletContainer.java:733)\n\tat

 javax.servlet.http.HttpServlet.service(HttpServlet.java:790)\n\tat

 org.eclipse.jetty.servlet.ServletHolder.handle(ServletHolder.java:800)\n\tat

 org.eclipse.jetty.servlet.ServletHandler$CachedChain.doFilter(ServletHandler.java:1669)\n\tat

 org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)\n

\tat org.eclipse.jetty.servlet.ServletHandler$CachedChain.doFilter(ServletHandler.java:1652)\n

\tat org.eclipse.jetty.servlet.ServletHandler.doHandle(ServletHandler.java:585)\n\tat

 org.eclipse.jetty.server.session.SessionHandler.doHandle(SessionHandler.java:221)\n\tat

 org.eclipse.jetty.server.handler.ContextHandler.doHandle(ContextHandler.java:1125)\n

\tat org.eclipse.jetty.servlet.ServletHandler.doScope(ServletHandler.java:515)\n\tat

 org.eclipse.jetty.server.session.SessionHandler.doScope(SessionHandler.java:185)\n\tat

 org.eclipse.jetty.server.handler.ContextHandler.doScope(ContextHandler.java:1059)\n

REST API

328

\tat org.eclipse.jetty.server.handler.ScopedHandler.handle(ScopedHandler.java:141)\n

\tat org.eclipse.jetty.server.handler.HandlerList.handle(HandlerList.java:52)\n\tat

 org.eclipse.jetty.server.handler.HandlerWrapper.handle(HandlerWrapper.java:97)\n\tat

 org.eclipse.jetty.server.Server.handle(Server.java:497)\n\tat

 org.eclipse.jetty.server.HttpChannel.handle(HttpChannel.java:310)\n\tat

 org.eclipse.jetty.server.HttpConnection.onFillable(HttpConnection.java:248)\n\tat org.eclipse.jetty.io.AbstractConnection

$2.run(AbstractConnection.java:540)\n\tat org.eclipse.jetty.util.thread.QueuedThreadPool.runJob(QueuedThreadPool.java:620)\n

\tat org.eclipse.jetty.util.thread.QueuedThreadPool$3.run(QueuedThreadPool.java:540)\n\tat

 java.lang.Thread.run(Thread.java:745)\n"

 }

],

 "exception": "ArithmeticException",

 "fullname": "org.neo4j.cypher.internal.frontend.v2_3.ArithmeticException",

 "stackTrace": [

 "org.neo4j.cypher.internal.compiler.v2_3.commands.expressions.Divide.apply(Divide.scala:36)",

 "org.neo4j.cypher.internal.compiler.v2_3.pipes.ProjectionPipe$$anonfun$internalCreateResults$1$$anonfun$apply

$1.apply(ProjectionPipe.scala:48)",

 "org.neo4j.cypher.internal.compiler.v2_3.pipes.ProjectionPipe$$anonfun$internalCreateResults$1$$anonfun$apply

$1.apply(ProjectionPipe.scala:46)",

 "scala.collection.immutable.Map$Map1.foreach(Map.scala:116)",

 "org.neo4j.cypher.internal.compiler.v2_3.pipes.ProjectionPipe$$anonfun$internalCreateResults

$1.apply(ProjectionPipe.scala:46)",

 "org.neo4j.cypher.internal.compiler.v2_3.pipes.ProjectionPipe$$anonfun$internalCreateResults

$1.apply(ProjectionPipe.scala:45)",

 "scala.collection.Iterator$$anon$11.next(Iterator.scala:370)",

 "scala.collection.Iterator$$anon$11.next(Iterator.scala:370)",

 "org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator$$anonfun$next$1.apply(ResultIterator.scala:75)",

 "org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator$$anonfun$next$1.apply(ResultIterator.scala:72)",

 "org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator$$anonfun$failIfThrows$1.apply(ResultIterator.scala:121)",

 "org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator.decoratedCypherException(ResultIterator.scala:130)",

 "org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator.failIfThrows(ResultIterator.scala:119)",

 "org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator.next(ResultIterator.scala:72)",

 "org.neo4j.cypher.internal.compiler.v2_3.ClosingIterator.next(ResultIterator.scala:50)",

 "org.neo4j.cypher.internal.compiler.v2_3.PipeExecutionResult.next(PipeExecutionResult.scala:77)",

 "org.neo4j.cypher.internal.compiler.v2_3.PipeExecutionResult$$anon$2.next(PipeExecutionResult.scala:70)",

 "org.neo4j.cypher.internal.compiler.v2_3.PipeExecutionResult$$anon$2.next(PipeExecutionResult.scala:68)",

 "org.neo4j.cypher.internal.compatibility.ExecutionResultWrapperFor2_3$$anon$1$$anonfun$next

$1.apply(CompatibilityFor2_3.scala:226)",

 "org.neo4j.cypher.internal.compatibility.ExecutionResultWrapperFor2_3$$anon$1$$anonfun$next

$1.apply(CompatibilityFor2_3.scala:226)",

 "org.neo4j.cypher.internal.compatibility.exceptionHandlerFor2_3$.runSafely(CompatibilityFor2_3.scala:114)",

 "org.neo4j.cypher.internal.compatibility.ExecutionResultWrapperFor2_3$$anon

$1.next(CompatibilityFor2_3.scala:226)",

 "org.neo4j.cypher.internal.compatibility.ExecutionResultWrapperFor2_3$$anon

$1.next(CompatibilityFor2_3.scala:221)",

 "org.neo4j.cypher.javacompat.ExecutionResult.next(ExecutionResult.java:233)",

 "org.neo4j.cypher.javacompat.ExecutionResult.next(ExecutionResult.java:55)",

 "org.neo4j.helpers.collection.ExceptionHandlingIterable$1.next(ExceptionHandlingIterable.java:53)",

 "org.neo4j.helpers.collection.IteratorWrapper.next(IteratorWrapper.java:47)",

 "org.neo4j.server.rest.repr.ListRepresentation.serialize(ListRepresentation.java:64)",

 "org.neo4j.server.rest.repr.Serializer.serialize(Serializer.java:75)",

 "org.neo4j.server.rest.repr.MappingSerializer.putList(MappingSerializer.java:61)",

 "org.neo4j.server.rest.repr.CypherResultRepresentation.serialize(CypherResultRepresentation.java:58)",

 "org.neo4j.server.rest.repr.MappingRepresentation.serialize(MappingRepresentation.java:41)",

 "org.neo4j.server.rest.repr.OutputFormat.assemble(OutputFormat.java:245)",

 "org.neo4j.server.rest.repr.OutputFormat.formatRepresentation(OutputFormat.java:177)",

 "org.neo4j.server.rest.repr.OutputFormat.response(OutputFormat.java:160)",

 "org.neo4j.server.rest.repr.OutputFormat.ok(OutputFormat.java:73)",

 "org.neo4j.server.rest.web.CypherService.cypher(CypherService.java:127)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

]

REST API

329

 },

 "exception": "ArithmeticException",

 "fullname": "org.neo4j.cypher.ArithmeticException",

 "stackTrace": [

 "org.neo4j.cypher.internal.compatibility.exceptionHandlerFor2_3$.arithmeticException(CompatibilityFor2_3.scala:61)",

 "org.neo4j.cypher.internal.compatibility.exceptionHandlerFor2_3$.arithmeticException(CompatibilityFor2_3.scala:58)",

 "org.neo4j.cypher.internal.frontend.v2_3.ArithmeticException.mapToPublic(CypherException.scala:111)",

 "org.neo4j.cypher.internal.compatibility.exceptionHandlerFor2_3$.runSafely(CompatibilityFor2_3.scala:119)",

 "org.neo4j.cypher.internal.compatibility.ExecutionResultWrapperFor2_3$$anon$1.next(CompatibilityFor2_3.scala:226)",

 "org.neo4j.cypher.internal.compatibility.ExecutionResultWrapperFor2_3$$anon$1.next(CompatibilityFor2_3.scala:221)",

 "org.neo4j.cypher.javacompat.ExecutionResult.next(ExecutionResult.java:233)",

 "org.neo4j.cypher.javacompat.ExecutionResult.next(ExecutionResult.java:55)",

 "org.neo4j.helpers.collection.ExceptionHandlingIterable$1.next(ExceptionHandlingIterable.java:53)",

 "org.neo4j.helpers.collection.IteratorWrapper.next(IteratorWrapper.java:47)",

 "org.neo4j.server.rest.repr.ListRepresentation.serialize(ListRepresentation.java:64)",

 "org.neo4j.server.rest.repr.Serializer.serialize(Serializer.java:75)",

 "org.neo4j.server.rest.repr.MappingSerializer.putList(MappingSerializer.java:61)",

 "org.neo4j.server.rest.repr.CypherResultRepresentation.serialize(CypherResultRepresentation.java:58)",

 "org.neo4j.server.rest.repr.MappingRepresentation.serialize(MappingRepresentation.java:41)",

 "org.neo4j.server.rest.repr.OutputFormat.assemble(OutputFormat.java:245)",

 "org.neo4j.server.rest.repr.OutputFormat.formatRepresentation(OutputFormat.java:177)",

 "org.neo4j.server.rest.repr.OutputFormat.response(OutputFormat.java:160)",

 "org.neo4j.server.rest.repr.OutputFormat.ok(OutputFormat.java:73)",

 "org.neo4j.server.rest.web.CypherService.cypher(CypherService.java:127)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

]

 },

 "exception": "QueryExecutionKernelException",

 "fullname": "org.neo4j.kernel.impl.query.QueryExecutionKernelException",

 "stackTrace": [

 "org.neo4j.cypher.javacompat.ExecutionResult.converted(ExecutionResult.java:391)",

 "org.neo4j.cypher.javacompat.ExecutionResult.next(ExecutionResult.java:237)",

 "org.neo4j.cypher.javacompat.ExecutionResult.next(ExecutionResult.java:55)",

 "org.neo4j.helpers.collection.ExceptionHandlingIterable$1.next(ExceptionHandlingIterable.java:53)",

 "org.neo4j.helpers.collection.IteratorWrapper.next(IteratorWrapper.java:47)",

 "org.neo4j.server.rest.repr.ListRepresentation.serialize(ListRepresentation.java:64)",

 "org.neo4j.server.rest.repr.Serializer.serialize(Serializer.java:75)",

 "org.neo4j.server.rest.repr.MappingSerializer.putList(MappingSerializer.java:61)",

 "org.neo4j.server.rest.repr.CypherResultRepresentation.serialize(CypherResultRepresentation.java:58)",

 "org.neo4j.server.rest.repr.MappingRepresentation.serialize(MappingRepresentation.java:41)",

 "org.neo4j.server.rest.repr.OutputFormat.assemble(OutputFormat.java:245)",

 "org.neo4j.server.rest.repr.OutputFormat.formatRepresentation(OutputFormat.java:177)",

 "org.neo4j.server.rest.repr.OutputFormat.response(OutputFormat.java:160)",

 "org.neo4j.server.rest.repr.OutputFormat.ok(OutputFormat.java:73)",

 "org.neo4j.server.rest.web.CypherService.cypher(CypherService.java:127)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

]

 },

 "exception": "QueryExecutionException",

 "fullname": "org.neo4j.graphdb.QueryExecutionException",

 "stackTrace": [

 "org.neo4j.kernel.impl.query.QueryExecutionKernelException.asUserException(QueryExecutionKernelException.java:35)",

 "org.neo4j.cypher.javacompat.ExecutionResult.converted(ExecutionResult.java:391)",

 "org.neo4j.cypher.javacompat.ExecutionResult.next(ExecutionResult.java:237)",

 "org.neo4j.cypher.javacompat.ExecutionResult.next(ExecutionResult.java:55)",

 "org.neo4j.helpers.collection.ExceptionHandlingIterable$1.next(ExceptionHandlingIterable.java:53)",

 "org.neo4j.helpers.collection.IteratorWrapper.next(IteratorWrapper.java:47)",

REST API

330

 "org.neo4j.server.rest.repr.ListRepresentation.serialize(ListRepresentation.java:64)",

 "org.neo4j.server.rest.repr.Serializer.serialize(Serializer.java:75)",

 "org.neo4j.server.rest.repr.MappingSerializer.putList(MappingSerializer.java:61)",

 "org.neo4j.server.rest.repr.CypherResultRepresentation.serialize(CypherResultRepresentation.java:58)",

 "org.neo4j.server.rest.repr.MappingRepresentation.serialize(MappingRepresentation.java:41)",

 "org.neo4j.server.rest.repr.OutputFormat.assemble(OutputFormat.java:245)",

 "org.neo4j.server.rest.repr.OutputFormat.formatRepresentation(OutputFormat.java:177)",

 "org.neo4j.server.rest.repr.OutputFormat.response(OutputFormat.java:160)",

 "org.neo4j.server.rest.repr.OutputFormat.ok(OutputFormat.java:73)",

 "org.neo4j.server.rest.web.CypherService.cypher(CypherService.java:127)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

]

 },

 "errors": [

 {

 "message": "/ by zero",

 "code": "Neo.ClientError.Request.InvalidFormat"

 }

]

}

REST API

331

21.7. Property values
The REST API allows setting properties on nodes and relationships through direct RESTful operations.
However, there are restrictions as to what types of values can be used as property values. Allowed
value types are as follows:

• Numbers: Both integer values, with capacity as Java’s Long type, and floating points, with capacity as
Java’s Double.

• Booleans.
• Strings.
• Arrays of the basic types above.

Arrays
There are two important points to be made about array values. First, all values in the array must be of
the same type. That means either all integers, all floats, all booleans or all strings. Mixing types is not
currently supported.

Second, storing empty arrays is only possible given certain preconditions. Because the JSON transfer
format does not contain type information for arrays, type is inferred from the values in the array. If the
array is empty, the Neo4j Server cannot determine the type. In these cases, it will check if an array is
already stored for the given property, and will use the stored array’s type when storing the empty array.
If no array exists already, the server will reject the request.

Property keys
You can list all property keys ever used in the database. This includes and property keys you have used,
but deleted.

There is currently no way to tell which ones are in use and which ones are not, short of walking the
entire set of properties in the database.

List all property keys
Example request

• GET http://localhost:7474/db/data/propertykeys
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

["cost", "non-existent", "property_1445033985922_2", "property_1445033985922_1", "property_1445033985687_1", "since", "name",

 "property_1445033985846_1", "property_1445033985963_1", "happy", "property_1445033985728_1", "property_1445033985635_1",

 "property_1445033985521_1"]

REST API

332

21.8. Nodes
Create node

Figure 21.12. Final Graph

Node[8]

Example request

• POST http://localhost:7474/db/data/node
• Accept: application/json; charset=UTF-8

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/node/8

{

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/8/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/8/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/8/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/8/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/8",

 "property" : "http://localhost:7474/db/data/node/8/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/8/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/8/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/8/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/8/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/8/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/8/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/8/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 8,

 "labels" : []

 },

 "data" : { }

}

Create node with properties

Figure 21.13. Final Graph

Node[4]

foo = 'bar'

Example request

• POST http://localhost:7474/db/data/node
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "foo" : "bar"

REST API

333

}

Example response

• 201: Created
• Content-Length: 1209
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/node/4

{

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/4/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/4/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/4/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/4/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/4",

 "property" : "http://localhost:7474/db/data/node/4/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/4/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/4/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/4/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/4/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/4/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/4/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/4/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 4,

 "labels" : []

 },

 "data" : {

 "foo" : "bar"

 }

}

Get node
Note that the response contains URI/templates for the available operations for getting properties and
relationships.

Figure 21.14. Final Graph

Node[10093]

Example request

• GET http://localhost:7474/db/data/node/10093
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/10093/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/10093/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/10093/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/10093/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/10093",

 "property" : "http://localhost:7474/db/data/node/10093/properties/{key}",

REST API

334

 "properties" : "http://localhost:7474/db/data/node/10093/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/10093/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/10093/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/10093/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/10093/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/10093/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/10093/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 10093,

 "labels" : []

 },

 "data" : { }

}

Get non-existent node

Figure 21.15. Final Graph

Node[10097]

Example request

• GET http://localhost:7474/db/data/node/1009700000
• Accept: application/json; charset=UTF-8

Example response

• 404: Not Found
• Content-Type: application/json; charset=UTF-8

{

 "message": "Cannot find node with id [1009700000] in database.",

 "exception": "NodeNotFoundException",

 "fullname": "org.neo4j.server.rest.web.NodeNotFoundException",

 "stackTrace": [

 "org.neo4j.server.rest.web.DatabaseActions.node(DatabaseActions.java:174)",

 "org.neo4j.server.rest.web.DatabaseActions.getNode(DatabaseActions.java:219)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.getNode(RestfulGraphDatabase.java:279)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

],

 "cause": {

 "message": "Node 1009700000 not found",

 "errors": [

 {

 "message": "Node 1009700000 not found",

 "code": "Neo.ClientError.Statement.EntityNotFound"

 }

],

 "cause": {

 "message": "Unable to load NODE with id 1009700000.",

 "errors": [

 {

 "message": "Unable to load NODE with id 1009700000.",

 "code": "Neo.ClientError.Statement.EntityNotFound"

 }

],

 "exception": "EntityNotFoundException",

 "fullname": "org.neo4j.kernel.api.exceptions.EntityNotFoundException",

REST API

335

 "stackTrace": [

 "org.neo4j.kernel.impl.factory.GraphDatabaseFacade.getNodeById(GraphDatabaseFacade.java:228)",

 "org.neo4j.server.rest.web.DatabaseActions.node(DatabaseActions.java:170)",

 "org.neo4j.server.rest.web.DatabaseActions.getNode(DatabaseActions.java:219)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.getNode(RestfulGraphDatabase.java:279)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

]

 },

 "exception": "NotFoundException",

 "fullname": "org.neo4j.graphdb.NotFoundException",

 "stackTrace": [

 "org.neo4j.kernel.impl.factory.GraphDatabaseFacade.getNodeById(GraphDatabaseFacade.java:228)",

 "org.neo4j.server.rest.web.DatabaseActions.node(DatabaseActions.java:170)",

 "org.neo4j.server.rest.web.DatabaseActions.getNode(DatabaseActions.java:219)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.getNode(RestfulGraphDatabase.java:279)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

]

 },

 "errors": [

 {

 "message": "Cannot find node with id [1009700000] in database.",

 "code": "Neo.ClientError.Statement.EntityNotFound"

 }

]

}

Delete node
Figure 21.16. Starting Graph

Node[5]

Figure 21.17. Final Graph

Example request

• DELETE http://localhost:7474/db/data/node/5
• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

Nodes with relationships cannot be deleted
The relationships on a node has to be deleted before the node can be deleted.

Tip
You can use DETACH DELETE in Cypher to delete nodes and their relationships in one go.

REST API

336

Figure 21.18. Starting Graph

Node[12]

Node[13]

LOVES

Example request

• DELETE http://localhost:7474/db/data/node/12
• Accept: application/json; charset=UTF-8

Example response

• 409: Conflict
• Content-Type: application/json; charset=UTF-8

{

 "message": "The node with id 12 cannot be deleted. Check that the node is orphaned before deletion.",

 "exception": "ConstraintViolationException",

 "fullname": "org.neo4j.graphdb.ConstraintViolationException",

 "stackTrace": [

 "org.neo4j.server.rest.web.DatabaseActions.deleteNode(DatabaseActions.java:228)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.deleteNode(RestfulGraphDatabase.java:293)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

],

 "errors": [

 {

 "message": "The node with id 12 cannot be deleted. Check that the node is orphaned before deletion.",

 "code": "Neo.ClientError.Schema.ConstraintViolation"

 }

]

}

REST API

337

21.9. Relationships
Relationships are a first class citizen in the Neo4j REST API. They can be accessed either stand-alone or
through the nodes they are attached to.

The general pattern to get relationships from a node is:

GET http://localhost:7474/db/data/node/123/relationships/{dir}/{-list|&|types}

Where dir is one of all, in, out and types is an ampersand-separated list of types. See the examples
below for more information.

Get Relationship by ID

Figure 21.19. Final Graph

Node[31]

nam e = 'you'

Node[32]

nam e = 'I'

know

Example request

• GET http://localhost:7474/db/data/relationship/13
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "extensions" : { },

 "start" : "http://localhost:7474/db/data/node/32",

 "property" : "http://localhost:7474/db/data/relationship/13/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/13",

 "properties" : "http://localhost:7474/db/data/relationship/13/properties",

 "type" : "know",

 "end" : "http://localhost:7474/db/data/node/31",

 "metadata" : {

 "id" : 13,

 "type" : "know"

 },

 "data" : { }

}

Create relationship
Upon successful creation of a relationship, the new relationship is returned.

REST API

338

Figure 21.20. Starting Graph

Node[0]

nam e = 'Sara'

Node[1]

nam e = 'Joe'

knows

Figure 21.21. Final Graph

Node[0]

nam e = 'Sara'

Node[1]

nam e = 'Joe'

LOVES knows

Example request

• POST http://localhost:7474/db/data/node/1/relationships
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "to" : "http://localhost:7474/db/data/node/0",

 "type" : "LOVES"

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/relationship/1

{

 "extensions" : { },

 "start" : "http://localhost:7474/db/data/node/1",

 "property" : "http://localhost:7474/db/data/relationship/1/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/1",

 "properties" : "http://localhost:7474/db/data/relationship/1/properties",

 "type" : "LOVES",

 "end" : "http://localhost:7474/db/data/node/0",

 "metadata" : {

 "id" : 1,

 "type" : "LOVES"

 },

 "data" : { }

}

Create a relationship with properties
Upon successful creation of a relationship, the new relationship is returned.

REST API

339

Figure 21.22. Starting Graph

Node[10]

nam e = 'Sara'

Node[11]

nam e = 'Joe'

knows

Figure 21.23. Final Graph

Node[10]

nam e = 'Sara'

Node[11]

nam e = 'Joe'

LOVES
foo = 'bar' knows

Example request

• POST http://localhost:7474/db/data/node/11/relationships
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "to" : "http://localhost:7474/db/data/node/10",

 "type" : "LOVES",

 "data" : {

 "foo" : "bar"

 }

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/relationship/8

{

 "extensions" : { },

 "start" : "http://localhost:7474/db/data/node/11",

 "property" : "http://localhost:7474/db/data/relationship/8/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/8",

 "properties" : "http://localhost:7474/db/data/relationship/8/properties",

 "type" : "LOVES",

 "end" : "http://localhost:7474/db/data/node/10",

 "metadata" : {

 "id" : 8,

 "type" : "LOVES"

 },

 "data" : {

REST API

340

 "foo" : "bar"

 }

}

Delete relationship

Figure 21.24. Starting Graph

Node[17]

nam e = 'Juliet '

Node[18]

nam e = 'Rom eo'

LOVES
cost = 'high'

Figure 21.25. Final Graph

Node[17]

nam e = 'Juliet '

Node[18]

nam e = 'Rom eo'

Example request

• DELETE http://localhost:7474/db/data/relationship/6
• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

Get all properties on a relationship

Figure 21.26. Final Graph

Node[23]

nam e = 'Juliet '

Node[24]

nam e = 'Rom eo'

LOVES
since = '1day'
cost = 'high'

Example request

• GET http://localhost:7474/db/data/relationship/9/properties
• Accept: application/json; charset=UTF-8

Example response

REST API

341

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "since" : "1day",

 "cost" : "high"

}

Set all properties on a relationship

Figure 21.27. Starting Graph

Node[21]

nam e = 'Juliet '

Node[22]

nam e = 'Rom eo'

LOVES
cost = 'high'

Figure 21.28. Final Graph

Node[33]

nam e = 'Juliet '

Node[34]

nam e = 'Rom eo'

LOVES
happy = false

Example request

• PUT http://localhost:7474/db/data/relationship/14/properties
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "happy" : false

}

Example response

• 204: No Content

REST API

342

Get single property on a relationship
Figure 21.29. Final Graph

Node[25]

nam e = 'Juliet '

Node[26]

nam e = 'Rom eo'

LOVES
cost = 'high'

Example request

• GET http://localhost:7474/db/data/relationship/10/properties/cost
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

"high"

Set single property on a relationship
Figure 21.30. Starting Graph

Node[21]

nam e = 'Juliet '

Node[22]

nam e = 'Rom eo'

LOVES
cost = 'high'

Figure 21.31. Final Graph

Node[21]

nam e = 'Juliet '

Node[22]

nam e = 'Rom eo'

LOVES
cost = 'deadly'

Example request

• PUT http://localhost:7474/db/data/relationship/8/properties/cost

REST API

343

• Accept: application/json; charset=UTF-8
• Content-Type: application/json

"deadly"

Example response

• 204: No Content

Get all relationships

Figure 21.32. Final Graph

Node[328]

Node[331]

HATES

Node[329]

LIKES

Node[330]

LIKES

Node[332]

Example request

• GET http://localhost:7474/db/data/node/328/relationships/all
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "start" : "http://localhost:7474/db/data/node/328",

 "data" : { },

 "self" : "http://localhost:7474/db/data/relationship/205",

 "property" : "http://localhost:7474/db/data/relationship/205/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/205/properties",

 "type" : "HATES",

 "extensions" : { },

 "end" : "http://localhost:7474/db/data/node/331",

 "metadata" : {

 "id" : 205,

 "type" : "HATES"

 }

}, {

 "start" : "http://localhost:7474/db/data/node/330",

 "data" : { },

 "self" : "http://localhost:7474/db/data/relationship/204",

 "property" : "http://localhost:7474/db/data/relationship/204/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/204/properties",

REST API

344

 "type" : "LIKES",

 "extensions" : { },

 "end" : "http://localhost:7474/db/data/node/328",

 "metadata" : {

 "id" : 204,

 "type" : "LIKES"

 }

}, {

 "start" : "http://localhost:7474/db/data/node/328",

 "data" : { },

 "self" : "http://localhost:7474/db/data/relationship/203",

 "property" : "http://localhost:7474/db/data/relationship/203/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/203/properties",

 "type" : "LIKES",

 "extensions" : { },

 "end" : "http://localhost:7474/db/data/node/329",

 "metadata" : {

 "id" : 203,

 "type" : "LIKES"

 }

}]

Get incoming relationships

Figure 21.33. Final Graph

Node[347]

Node[350]

HATES

Node[348]

LIKES

Node[349]

LIKES

Node[351]

Example request

• GET http://localhost:7474/db/data/node/347/relationships/in
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "start" : "http://localhost:7474/db/data/node/349",

 "data" : { },

 "self" : "http://localhost:7474/db/data/relationship/215",

 "property" : "http://localhost:7474/db/data/relationship/215/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/215/properties",

 "type" : "LIKES",

 "extensions" : { },

REST API

345

 "end" : "http://localhost:7474/db/data/node/347",

 "metadata" : {

 "id" : 215,

 "type" : "LIKES"

 }

}]

Get outgoing relationships

Figure 21.34. Final Graph

Node[372]

Node[375]

HATES

Node[373]

LIKES

Node[374]

LIKES

Node[376]

Example request

• GET http://localhost:7474/db/data/node/372/relationships/out
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "start" : "http://localhost:7474/db/data/node/372",

 "data" : { },

 "self" : "http://localhost:7474/db/data/relationship/231",

 "property" : "http://localhost:7474/db/data/relationship/231/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/231/properties",

 "type" : "HATES",

 "extensions" : { },

 "end" : "http://localhost:7474/db/data/node/375",

 "metadata" : {

 "id" : 231,

 "type" : "HATES"

 }

}, {

 "start" : "http://localhost:7474/db/data/node/372",

 "data" : { },

 "self" : "http://localhost:7474/db/data/relationship/229",

 "property" : "http://localhost:7474/db/data/relationship/229/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/229/properties",

 "type" : "LIKES",

 "extensions" : { },

 "end" : "http://localhost:7474/db/data/node/373",

 "metadata" : {

REST API

346

 "id" : 229,

 "type" : "LIKES"

 }

}]

Get typed relationships
Note that the "&" needs to be encoded like "%26" for example when using cURL2 from the terminal.

Figure 21.35. Final Graph

Node[303]

Node[306]

HATES

Node[304]

LIKES

Node[305]

LIKES

Node[307]

Example request

• GET http://localhost:7474/db/data/node/303/relationships/all/LIKES&HATES
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "start" : "http://localhost:7474/db/data/node/303",

 "data" : { },

 "self" : "http://localhost:7474/db/data/relationship/190",

 "property" : "http://localhost:7474/db/data/relationship/190/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/190/properties",

 "type" : "HATES",

 "extensions" : { },

 "end" : "http://localhost:7474/db/data/node/306",

 "metadata" : {

 "id" : 190,

 "type" : "HATES"

 }

}, {

 "start" : "http://localhost:7474/db/data/node/305",

 "data" : { },

 "self" : "http://localhost:7474/db/data/relationship/189",

 "property" : "http://localhost:7474/db/data/relationship/189/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/189/properties",

 "type" : "LIKES",

 "extensions" : { },

2 http://curl.haxx.se/

http://curl.haxx.se/
http://curl.haxx.se/

REST API

347

 "end" : "http://localhost:7474/db/data/node/303",

 "metadata" : {

 "id" : 189,

 "type" : "LIKES"

 }

}, {

 "start" : "http://localhost:7474/db/data/node/303",

 "data" : { },

 "self" : "http://localhost:7474/db/data/relationship/188",

 "property" : "http://localhost:7474/db/data/relationship/188/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/188/properties",

 "type" : "LIKES",

 "extensions" : { },

 "end" : "http://localhost:7474/db/data/node/304",

 "metadata" : {

 "id" : 188,

 "type" : "LIKES"

 }

}]

Get relationships on a node without relationships

Figure 21.36. Final Graph

Node[357]

Node[360]

HATES

Node[358]

LIKES

Node[359]

LIKES

Node[361]

Example request

• GET http://localhost:7474/db/data/node/361/relationships/all
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[]

REST API

348

21.10. Relationship types
Get relationship types
Example request

• GET http://localhost:7474/db/data/relationship/types
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json

["LOVES", "KNOWS"]

REST API

349

21.11. Node properties
Set property on node
Setting different properties will retain the existing ones for this node. Note that a single value are
submitted not as a map but just as a value (which is valid JSON) like in the example below.

Figure 21.37. Final Graph

Node[392]

foo2 = 'bar2'
foo = 'bar'

Example request

• PUT http://localhost:7474/db/data/node/392/properties/foo
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

"bar"

Example response

• 204: No Content

Update node properties
This will replace all existing properties on the node with the new set of attributes.

Figure 21.38. Final Graph

Node[390]

age = '18'

Node[391]

nam e = ' joe'

knows

Example request

• PUT http://localhost:7474/db/data/node/390/properties
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "age" : "18"

}

Example response

• 204: No Content

REST API

350

Get properties for node
Figure 21.39. Final Graph

Node[449]

foo = 'bar'

Example request

• GET http://localhost:7474/db/data/node/449/properties
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "foo" : "bar"

}

Get property for node
Get a single node property from a node.

Figure 21.40. Final Graph

Node[448]

foo = 'bar'

Example request

• GET http://localhost:7474/db/data/node/448/properties/foo
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

"bar"

Property values can not be null
This example shows the response you get when trying to set a property to null.

Example request

• POST http://localhost:7474/db/data/node
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "foo" : null

}

Example response

• 400: Bad Request

REST API

351

• Content-Type: application/json; charset=UTF-8

{

 "message": "Could not set property \"foo\", unsupported type: null",

 "exception": "PropertyValueException",

 "fullname": "org.neo4j.server.rest.web.PropertyValueException",

 "stackTrace": [

 "org.neo4j.server.rest.domain.PropertySettingStrategy.setProperty(PropertySettingStrategy.java:141)",

 "org.neo4j.server.rest.domain.PropertySettingStrategy.setProperties(PropertySettingStrategy.java:88)",

 "org.neo4j.server.rest.web.DatabaseActions.createNode(DatabaseActions.java:205)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.createNode(RestfulGraphDatabase.java:252)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

],

 "errors": [

 {

 "message": "Could not set property \"foo\", unsupported type: null",

 "code": "Neo.ClientError.Statement.InvalidArguments"

 }

]

}

Property values can not be nested
Nesting properties is not supported. You could for example store the nested JSON as a string instead.

Example request

• POST http://localhost:7474/db/data/node/
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "foo" : {

 "bar" : "baz"

 }

}

Example response

• 400: Bad Request
• Content-Type: application/json; charset=UTF-8

{

 "message": "Could not set property \"foo\", unsupported type: {bar\u003dbaz}",

 "exception": "PropertyValueException",

 "fullname": "org.neo4j.server.rest.web.PropertyValueException",

 "stackTrace": [

 "org.neo4j.server.rest.domain.PropertySettingStrategy.setProperty(PropertySettingStrategy.java:141)",

 "org.neo4j.server.rest.domain.PropertySettingStrategy.setProperties(PropertySettingStrategy.java:88)",

 "org.neo4j.server.rest.web.DatabaseActions.createNode(DatabaseActions.java:205)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.createNode(RestfulGraphDatabase.java:252)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

],

 "errors": [

 {

 "message": "Could not set property \"foo\", unsupported type: {bar\u003dbaz}",

 "code": "Neo.ClientError.Statement.InvalidArguments"

REST API

352

 }

]

}

Delete all properties from node

Figure 21.41. Starting Graph

Node[379]

jim = 'tobias'

Figure 21.42. Final Graph

Node[379]

Example request

• DELETE http://localhost:7474/db/data/node/379/properties
• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

Delete a named property from a node
To delete a single property from a node, see the example below.

Figure 21.43. Starting Graph

Node[378]

nam e = 'tobias'

Figure 21.44. Final Graph

Node[378]

Example request

• DELETE http://localhost:7474/db/data/node/378/properties/name
• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

REST API

353

21.12. Relationship properties
Update relationship properties

Figure 21.45. Starting Graph

Node[10139]

Node[10140]

KNOWS

Figure 21.46. Final Graph

Node[10139]

Node[10140]

KNOWS
jim = 'tobias'

Example request

• PUT http://localhost:7474/db/data/relationship/64/properties
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "jim" : "tobias"

}

Example response

• 204: No Content

REST API

354

Remove properties from a relationship

Figure 21.47. Starting Graph

Node[13]

nam e = 'Juliet '

Node[14]

nam e = 'Rom eo'

LOVES
cost = 'high'

Figure 21.48. Final Graph

Node[13]

nam e = 'Juliet '

Node[14]

nam e = 'Rom eo'

LOVES

Example request

• DELETE http://localhost:7474/db/data/relationship/4/properties
• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

Remove property from a relationship
See the example request below.

Figure 21.49. Starting Graph

Node[19]

nam e = 'Juliet '

Node[20]

nam e = 'Rom eo'

LOVES
cost = 'high'

REST API

355

Figure 21.50. Final Graph

Node[19]

nam e = 'Juliet '

Node[20]

nam e = 'Rom eo'

LOVES

Example request

• DELETE http://localhost:7474/db/data/relationship/7/properties/cost
• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

Remove non-existent property from a relationship
Attempting to remove a property that doesn’t exist results in an error.

Figure 21.51. Starting Graph

Node[15]

nam e = 'Juliet '

Node[16]

nam e = 'Rom eo'

LOVES
cost = 'high'

Example request

• DELETE http://localhost:7474/db/data/relationship/5/properties/non-existent
• Accept: application/json; charset=UTF-8

Example response

• 404: Not Found
• Content-Type: application/json; charset=UTF-8

{

 "message": "Relationship[5] does not have a property \"non-existent\"",

 "exception": "NoSuchPropertyException",

 "fullname": "org.neo4j.server.rest.web.NoSuchPropertyException",

 "stackTrace": [

 "org.neo4j.server.rest.web.DatabaseActions.removeRelationshipProperty(DatabaseActions.java:670)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.deleteRelationshipProperty(RestfulGraphDatabase.java:812)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

REST API

356

 "java.lang.Thread.run(Thread.java:745)"

],

 "errors": [

 {

 "message": "Relationship[5] does not have a property \"non-existent\"",

 "code": "Neo.ClientError.Statement.NoSuchProperty"

 }

]

}

Remove properties from a non-existing relationship
Attempting to remove all properties from a relationship which doesn’t exist results in an error.

Example request

• DELETE http://localhost:7474/db/data/relationship/1234/properties
• Accept: application/json; charset=UTF-8

Example response

• 404: Not Found
• Content-Type: application/json; charset=UTF-8

{

 "message": "org.neo4j.graphdb.NotFoundException: Relationship 1234 not found",

 "exception": "RelationshipNotFoundException",

 "fullname": "org.neo4j.server.rest.web.RelationshipNotFoundException",

 "stackTrace": [

 "org.neo4j.server.rest.web.DatabaseActions.relationship(DatabaseActions.java:188)",

 "org.neo4j.server.rest.web.DatabaseActions.removeAllRelationshipProperties(DatabaseActions.java:660)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.deleteAllRelationshipProperties(RestfulGraphDatabase.java:792)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

],

 "cause": {

 "message": "Relationship 1234 not found",

 "errors": [

 {

 "message": "Relationship 1234 not found",

 "code": "Neo.ClientError.Statement.EntityNotFound"

 }

],

 "cause": {

 "message": "Unable to load RELATIONSHIP with id 1234.",

 "errors": [

 {

 "message": "Unable to load RELATIONSHIP with id 1234.",

 "code": "Neo.ClientError.Statement.EntityNotFound"

 }

],

 "exception": "EntityNotFoundException",

 "fullname": "org.neo4j.kernel.api.exceptions.EntityNotFoundException",

 "stackTrace": [

 "org.neo4j.kernel.impl.factory.GraphDatabaseFacade.getRelationshipById(GraphDatabaseFacade.java:248)",

 "org.neo4j.server.rest.web.DatabaseActions.relationship(DatabaseActions.java:184)",

 "org.neo4j.server.rest.web.DatabaseActions.removeAllRelationshipProperties(DatabaseActions.java:660)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.deleteAllRelationshipProperties(RestfulGraphDatabase.java:792)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

REST API

357

 "java.lang.Thread.run(Thread.java:745)"

]

 },

 "exception": "NotFoundException",

 "fullname": "org.neo4j.graphdb.NotFoundException",

 "stackTrace": [

 "org.neo4j.kernel.impl.factory.GraphDatabaseFacade.getRelationshipById(GraphDatabaseFacade.java:248)",

 "org.neo4j.server.rest.web.DatabaseActions.relationship(DatabaseActions.java:184)",

 "org.neo4j.server.rest.web.DatabaseActions.removeAllRelationshipProperties(DatabaseActions.java:660)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.deleteAllRelationshipProperties(RestfulGraphDatabase.java:792)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

]

 },

 "errors": [

 {

 "message": "org.neo4j.graphdb.NotFoundException: Relationship 1234 not found",

 "code": "Neo.ClientError.Statement.EntityNotFound"

 }

]

}

Remove property from a non-existing relationship
Attempting to remove a property from a relationship which doesn’t exist results in an error.

Example request

• DELETE http://localhost:7474/db/data/relationship/1234/properties/cost
• Accept: application/json; charset=UTF-8

Example response

• 404: Not Found
• Content-Type: application/json; charset=UTF-8

{

 "message": "org.neo4j.graphdb.NotFoundException: Relationship 1234 not found",

 "exception": "RelationshipNotFoundException",

 "fullname": "org.neo4j.server.rest.web.RelationshipNotFoundException",

 "stackTrace": [

 "org.neo4j.server.rest.web.DatabaseActions.relationship(DatabaseActions.java:188)",

 "org.neo4j.server.rest.web.DatabaseActions.removeRelationshipProperty(DatabaseActions.java:666)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.deleteRelationshipProperty(RestfulGraphDatabase.java:812)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

],

 "cause": {

 "message": "Relationship 1234 not found",

 "errors": [

 {

 "message": "Relationship 1234 not found",

 "code": "Neo.ClientError.Statement.EntityNotFound"

 }

],

 "cause": {

 "message": "Unable to load RELATIONSHIP with id 1234.",

 "errors": [

 {

 "message": "Unable to load RELATIONSHIP with id 1234.",

REST API

358

 "code": "Neo.ClientError.Statement.EntityNotFound"

 }

],

 "exception": "EntityNotFoundException",

 "fullname": "org.neo4j.kernel.api.exceptions.EntityNotFoundException",

 "stackTrace": [

 "org.neo4j.kernel.impl.factory.GraphDatabaseFacade.getRelationshipById(GraphDatabaseFacade.java:248)",

 "org.neo4j.server.rest.web.DatabaseActions.relationship(DatabaseActions.java:184)",

 "org.neo4j.server.rest.web.DatabaseActions.removeRelationshipProperty(DatabaseActions.java:666)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.deleteRelationshipProperty(RestfulGraphDatabase.java:812)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

]

 },

 "exception": "NotFoundException",

 "fullname": "org.neo4j.graphdb.NotFoundException",

 "stackTrace": [

 "org.neo4j.kernel.impl.factory.GraphDatabaseFacade.getRelationshipById(GraphDatabaseFacade.java:248)",

 "org.neo4j.server.rest.web.DatabaseActions.relationship(DatabaseActions.java:184)",

 "org.neo4j.server.rest.web.DatabaseActions.removeRelationshipProperty(DatabaseActions.java:666)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.deleteRelationshipProperty(RestfulGraphDatabase.java:812)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

]

 },

 "errors": [

 {

 "message": "org.neo4j.graphdb.NotFoundException: Relationship 1234 not found",

 "code": "Neo.ClientError.Statement.EntityNotFound"

 }

]

}

REST API

359

21.13. Node labels
Adding a label to a node

Figure 21.52. Starting Graph

Node[10147]

nam e = 'Clint Eastwood'

Figure 21.53. Final Graph

Node[10147] : Person

nam e = 'Clint Eastwood'

Example request

• POST http://localhost:7474/db/data/node/10147/labels
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

"Person"

Example response

• 204: No Content

Adding multiple labels to a node
Figure 21.54. Starting Graph

Node[10158]

nam e = 'Clint Eastwood'

Figure 21.55. Final Graph

Node[10158] : Person, Actor

nam e = 'Clint Eastwood'

Example request

• POST http://localhost:7474/db/data/node/10158/labels
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

["Person", "Actor"]

Example response

• 204: No Content

Adding a label with an invalid name
Labels with empty names are not allowed, however, all other valid strings are accepted as label names.
Adding an invalid label to a node will lead to a HTTP 400 response.

REST API

360

Example request

• POST http://localhost:7474/db/data/node/10165/labels
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

""

Example response

• 400: Bad Request
• Content-Type: application/json; charset=UTF-8

{

 "message": "Unable to add label, see nested exception.",

 "exception": "BadInputException",

 "fullname": "org.neo4j.server.rest.repr.BadInputException",

 "stackTrace": [

 "org.neo4j.server.rest.web.DatabaseActions.addLabelToNode(DatabaseActions.java:319)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.addNodeLabel(RestfulGraphDatabase.java:446)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

],

 "cause": {

 "message": "Invalid label name \u0027\u0027.",

 "errors": [

 {

 "message": "Invalid label name \u0027\u0027.",

 "code": "Neo.ClientError.Schema.ConstraintViolation"

 }

],

 "cause": {

 "message": "\u0027\u0027 is not a valid token name. Only non-null, non-empty strings are allowed.",

 "errors": [

 {

 "message": "\u0027\u0027 is not a valid token name. Only non-null, non-empty strings are allowed.",

 "code": "Neo.ClientError.Schema.IllegalTokenName"

 }

],

 "exception": "IllegalTokenNameException",

 "fullname": "org.neo4j.kernel.api.exceptions.schema.IllegalTokenNameException",

 "stackTrace": [

 "org.neo4j.kernel.impl.api.DataIntegrityValidatingStatementOperations.checkValidTokenName(DataIntegrityValidatingStatementOperations.java:280)",

 "org.neo4j.kernel.impl.api.DataIntegrityValidatingStatementOperations.labelGetOrCreateForName(DataIntegrityValidatingStatementOperations.java:91)",

 "org.neo4j.kernel.impl.api.OperationsFacade.labelGetOrCreateForName(OperationsFacade.java:783)",

 "org.neo4j.kernel.impl.core.NodeProxy.addLabel(NodeProxy.java:620)",

 "org.neo4j.server.rest.web.DatabaseActions.addLabelToNode(DatabaseActions.java:314)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.addNodeLabel(RestfulGraphDatabase.java:446)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

]

 },

 "exception": "ConstraintViolationException",

 "fullname": "org.neo4j.graphdb.ConstraintViolationException",

 "stackTrace": [

 "org.neo4j.kernel.impl.core.NodeProxy.addLabel(NodeProxy.java:631)",

REST API

361

 "org.neo4j.server.rest.web.DatabaseActions.addLabelToNode(DatabaseActions.java:314)",

 "org.neo4j.server.rest.web.RestfulGraphDatabase.addNodeLabel(RestfulGraphDatabase.java:446)",

 "java.lang.reflect.Method.invoke(Method.java:606)",

 "org.neo4j.server.rest.transactional.TransactionalRequestDispatcher.dispatch(TransactionalRequestDispatcher.java:139)",

 "org.neo4j.server.rest.web.CollectUserAgentFilter.doFilter(CollectUserAgentFilter.java:69)",

 "java.lang.Thread.run(Thread.java:745)"

]

 },

 "errors": [

 {

 "message": "Unable to add label, see nested exception.",

 "code": "Neo.ClientError.Request.InvalidFormat"

 }

]

}

Replacing labels on a node
This removes any labels currently on a node, and replaces them with the labels passed in as the
request body.

Figure 21.56. Starting Graph

Node[10148] : Person

nam e = 'Clint Eastwood'

Figure 21.57. Final Graph

Node[10148] : Director, Actor

nam e = 'Clint Eastwood'

Example request

• PUT http://localhost:7474/db/data/node/10148/labels
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

["Actor", "Director"]

Example response

• 204: No Content

Removing a label from a node

Figure 21.58. Starting Graph

Node[10149] : Person

nam e = 'Clint Eastwood'

Figure 21.59. Final Graph

Node[10149]

nam e = 'Clint Eastwood'

Example request

REST API

362

• DELETE http://localhost:7474/db/data/node/10149/labels/Person
• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

Removing a non-existent label from a node
Figure 21.60. Starting Graph

Node[10150]

nam e = 'Clint Eastwood'

Figure 21.61. Final Graph

Node[10150]

nam e = 'Clint Eastwood'

Example request

• DELETE http://localhost:7474/db/data/node/10150/labels/Person
• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

Listing labels for a node
Figure 21.62. Final Graph

Node[10154] : Director, Actor

nam e = 'Clint Eastwood'

Example request

• GET http://localhost:7474/db/data/node/10154/labels
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

["Director", "Actor"]

Get all nodes with a label
Figure 21.63. Final Graph

Node[10159] : Director

nam e = 'Steven Spielberg'

Node[10160] : Director, Actor

nam e = 'Clint Eastwood'

Node[10161] : Actor

nam e = 'Donald Sutherland'

REST API

363

Example request

• GET http://localhost:7474/db/data/label/Actor/nodes
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "labels" : "http://localhost:7474/db/data/node/10160/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/10160/relationships/out",

 "data" : {

 "name" : "Clint Eastwood"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/10160/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/10160/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/10160",

 "property" : "http://localhost:7474/db/data/node/10160/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/10160/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/10160/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/10160/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/10160/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/10160/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/10160/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/10160/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 10160,

 "labels" : ["Director", "Actor"]

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/10161/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/10161/relationships/out",

 "data" : {

 "name" : "Donald Sutherland"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/10161/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/10161/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/10161",

 "property" : "http://localhost:7474/db/data/node/10161/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/10161/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/10161/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/10161/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/10161/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/10161/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/10161/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/10161/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 10161,

 "labels" : ["Actor"]

 }

}]

Get nodes by label and property
You can retrieve all nodes with a given label and property by passing one property as a query
parameter. Notice that the property value is JSON-encoded and then URL-encoded.

If there is an index available on the label/property combination you send, that index will be used. If no
index is available, all nodes with the given label will be filtered through to find matching nodes.

REST API

364

Currently, it is not possible to search using multiple properties.

Figure 21.64. Final Graph

Node[10162] : Person

nam e = 'Steven Spielberg'

Node[10163] : Person

nam e = 'Clint Eastwood'

Node[10164] : Person

Example request

• GET http://localhost:7474/db/data/label/Person/nodes?name=%22Clint+Eastwood%22
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "labels" : "http://localhost:7474/db/data/node/10163/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/10163/relationships/out",

 "data" : {

 "name" : "Clint Eastwood"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/10163/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/10163/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/10163",

 "property" : "http://localhost:7474/db/data/node/10163/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/10163/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/10163/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/10163/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/10163/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/10163/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/10163/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/10163/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 10163,

 "labels" : ["Person"]

 }

}]

List all labels
Example request

• GET http://localhost:7474/db/data/labels
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

["Person", "Actor", "Director"]

REST API

365

21.14. Node degree
The node degree is the number of relationships associated with a node. Neo4j stores the degree for
each node, making this a useful mechanism to quickly get the number of relationships a node has. You
can also optionally filter degree by direction and/or relationship type.

Get the degree of a node
Return the total number of relationships associated with a node.

Figure 21.65. Final Graph

Node[45]

nam e = 'Johan'

Node[46]

nam e = 'Root '

knows

Node[47]

nam e = 'Mat t ias'

knows

Example request

• GET http://localhost:7474/db/data/node/46/degree/all
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

2

Get the degree of a node by direction
Return the number of relationships of a particular direction for a node. Specify all, in or out.

Figure 21.66. Final Graph

Node[48]

nam e = 'Johan'

Node[49]

nam e = 'Root '

knows

Node[50]

nam e = 'Mat t ias'

knows

Example request

• GET http://localhost:7474/db/data/node/49/degree/out
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

REST API

366

2

Get the degree of a node by direction and types
If you are only interested in the degree of a particular relationship type, or a set of relationship types,
you specify relationship types after the direction. You can combine multiple relationship types by using
the & character.

Figure 21.67. Final Graph

Node[41]

nam e = 'Cookie'

Node[42]

nam e = 'Johan'

Node[43]

nam e = 'Root '

LIKES KNOWS

Node[44]

nam e = 'Mat t ias'

KNOWS

Example request

• GET http://localhost:7474/db/data/node/43/degree/out/KNOWS&LIKES
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

3

REST API

367

21.15. Indexing
Note
This documents schema based indexes, a feature that was introduced in Neo4j 2.0, see
Section 21.20, “Legacy indexing” [415] for legacy indexing.

For more details about indexes and the optional schema in Neo4j, see the section called “Schema” [9].

Create index
<p/> This will start a background job in the database that will create and populate the index. You can
check the status of your index by listing all the indexes for the relevant label.

Example request

• POST http://localhost:7474/db/data/schema/index/label_1445033990455_1
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "property_keys" : ["property_1445033990455_1"]

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "label" : "label_1445033990455_1",

 "property_keys" : ["property_1445033990455_1"]

}

List indexes for a label
Example request

• GET http://localhost:7474/db/data/schema/index/label_1445033990253_1
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "property_keys" : ["property_1445033990253_1"],

 "label" : "label_1445033990253_1"

}]

Drop index
Drop index

Example request

• DELETE http://localhost:7474/db/data/schema/index/label_1445033990375_1/property_1445033990375_1
• Accept: application/json; charset=UTF-8

Example response

REST API

368

• 204: No Content

REST API

369

21.16. Constraints
Create uniqueness constraint
Create a uniqueness constraint on a property.

Example request

• POST http://localhost:7474/db/data/schema/constraint/label_1445033985635_1/uniqueness/
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "property_keys" : ["property_1445033985635_1"]

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "label" : "label_1445033985635_1",

 "type" : "UNIQUENESS",

 "property_keys" : ["property_1445033985635_1"]

}

Get a specific uniqueness constraint
Get a specific uniqueness constraint for a label and a property.

Example request

• GET http://localhost:7474/db/data/schema/constraint/label_1445033985963_1/uniqueness/
property_1445033985963_1

• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "property_keys" : ["property_1445033985963_1"],

 "label" : "label_1445033985963_1",

 "type" : "UNIQUENESS"

}]

Get all uniqueness constraints for a label
Example request

• GET http://localhost:7474/db/data/schema/constraint/label_1445033985922_1/uniqueness/
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

REST API

370

 "property_keys" : ["property_1445033985922_2"],

 "label" : "label_1445033985922_1",

 "type" : "UNIQUENESS"

}, {

 "property_keys" : ["property_1445033985922_1"],

 "label" : "label_1445033985922_1",

 "type" : "UNIQUENESS"

}]

Drop uniqueness constraint
Drop uniqueness constraint for a label and a property.

Example request

• DELETE http://localhost:7474/db/data/schema/constraint/label_1445033985521_1/uniqueness/
property_1445033985521_1

• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

Get a specific node property existence constraint
Get a specific node property existence constraint for a label and a property.

Example request

• GET http://localhost:7474/db/data/schema/constraint/label_1445036828857_1/existence/
property_1445036828857_1

• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "property_keys" : ["property_1445036828857_1"],

 "label" : "label_1445036828857_1",

 "type" : "NODE_PROPERTY_EXISTENCE"

}]

Get all node property existence constraints for a label
Example request

• GET http://localhost:7474/db/data/schema/constraint/label_1445036828973_1/existence/
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "property_keys" : ["property_1445036828973_1"],

 "label" : "label_1445036828973_1",

 "type" : "NODE_PROPERTY_EXISTENCE"

}, {

REST API

371

 "property_keys" : ["property_1445036828973_2"],

 "label" : "label_1445036828973_1",

 "type" : "NODE_PROPERTY_EXISTENCE"

}]

Get all constraints for a label
Example request

• GET http://localhost:7474/db/data/schema/constraint/label_1445033985846_1
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "property_keys" : ["property_1445033985846_1"],

 "label" : "label_1445033985846_1",

 "type" : "UNIQUENESS"

}]

Get a specific relationship property existence constraint
Get a specific relationship property existence constraint for a label and a property.

Example request

• GET http://localhost:7474/db/data/schema/relationship/constraint/relationshipType_1445036826982_1/
existence/property_1445036826982_1

• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "relationshipType" : "relationshipType_1445036826982_1",

 "property_keys" : ["property_1445036826982_1"],

 "type" : "RELATIONSHIP_PROPERTY_EXISTENCE"

}]

Get all relationship property existence constraints for a type
Example request

• GET http://localhost:7474/db/data/schema/relationship/constraint/relationshipType_1445036828697_1/
existence/

• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "relationshipType" : "relationshipType_1445036828697_1",

 "property_keys" : ["property_1445036828697_2"],

 "type" : "RELATIONSHIP_PROPERTY_EXISTENCE"

REST API

372

}, {

 "relationshipType" : "relationshipType_1445036828697_1",

 "property_keys" : ["property_1445036828697_1"],

 "type" : "RELATIONSHIP_PROPERTY_EXISTENCE"

}]

Get all constraints
Example request

• GET http://localhost:7474/db/data/schema/constraint
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "property_keys" : ["property_1445033985635_1"],

 "label" : "label_1445033985635_1",

 "type" : "UNIQUENESS"

}, {

 "property_keys" : ["property_1445033985687_1"],

 "label" : "label_1445033985687_1",

 "type" : "UNIQUENESS"

}]

REST API

373

21.17. Traversals
Warning
The Traversal REST Endpoint executes arbitrary Javascript code under the hood as part
of the evaluators definitions. In hosted and open environments, this can constitute a
security risk. In these case, consider using declarative approaches like Part III, “Cypher Query
Language” [102] or write your own server side plugin executing the interesting traversals
with the Java API (see Section 32.1, “Server Plugins” [561]) or secure your server, see
Chapter 27, Security [500].

Traversals are performed from a start node. The traversal is controlled by the URI and the body sent
with the request.

returnType The kind of objects in the response is determined by traverse/{returnType} in the URL.
returnType can have one of these values:
• node

• relationship

• path: contains full representations of start and end node, the rest are URIs.
• fullpath: contains full representations of all nodes and relationships.

To decide how the graph should be traversed you can use these parameters in the request body:

order Decides in which order to visit nodes. Possible values:
• breadth_first: see Breadth-first search3.
• depth_first: see Depth-first search4

relationships Decides which relationship types and directions should be followed. The
direction can be one of:
• all

• in

• out

uniqueness Decides how uniqueness should be calculated. For details on different
uniqueness values see the Java API on Uniqueness5. Possible values:
• node_global

• none

• relationship_global

• node_path

• relationship_path

prune_evaluator Decides whether the traverser should continue down that path or if it should
be pruned so that the traverser won’t continue down that path. You can write
your own prune evaluator as (see the section called “Traversal using a return
filter” [374] or use the built-in none prune evaluator.

return_filter Decides whether the current position should be included in the result. You can
provide your own code for this (see the section called “Traversal using a return
filter” [374]), or use one of the built-in filters:
• all

• all_but_start_node

max_depth Is a short-hand way of specifying a prune evaluator which prunes after a
certain depth. If not specified a max depth of 1 is used and if a prune_evaluator
is specified instead of a max_depth, no max depth limit is set.

3 http://en.wikipedia.org/wiki/Breadth-first_search
4 http://en.wikipedia.org/wiki/Depth-first_search
5 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html

http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html

REST API

374

The position object in the body of the return_filter and prune_evaluator is a Path6 object representing
the path from the start node to the current traversal position.

Out of the box, the REST API supports JavaScript code in filters and evaluators. The script body will be
executed in a Java context which has access to the full Neo4j Java API7. See the examples for the exact
syntax of the request.

Traversal using a return filter
In this example, the none prune evaluator is used and a return filter is supplied in order to return all
names containing "t". The result is to be returned as nodes and the max depth is set to 3.

Figure 21.68. Final Graph

Node[437]

nam e = 'Sara'

Node[438]

nam e = 'Johan'

Node[439]

nam e = 'Em il'

knows

Node[442]

nam e = 'Peter'

knows

Node[441]

nam e = 'Tobias'

knows

loves

Node[440]

nam e = 'Root '

knows

Node[443]

nam e = 'Mat t ias'

knows

Example request

• POST http://localhost:7474/db/data/node/440/traverse/node
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "order" : "breadth_first",

 "return_filter" : {

 "body" : "position.endNode().getProperty('name').toLowerCase().contains('t')",

 "language" : "javascript"

 },

 "prune_evaluator" : {

6 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Path.html
7 http://neo4j.com/docs/2.3.0/javadocs/

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Path.html
http://neo4j.com/docs/2.3.0/javadocs/
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Path.html
http://neo4j.com/docs/2.3.0/javadocs/

REST API

375

 "body" : "position.length() > 10",

 "language" : "javascript"

 },

 "uniqueness" : "node_global",

 "relationships" : [{

 "direction" : "all",

 "type" : "knows"

 }, {

 "direction" : "all",

 "type" : "loves"

 }],

 "max_depth" : 3

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "labels" : "http://localhost:7474/db/data/node/440/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/440/relationships/out",

 "data" : {

 "name" : "Root"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/440/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/440/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/440",

 "property" : "http://localhost:7474/db/data/node/440/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/440/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/440/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/440/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/440/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/440/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/440/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/440/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 440,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/443/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/443/relationships/out",

 "data" : {

 "name" : "Mattias"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/443/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/443/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/443",

 "property" : "http://localhost:7474/db/data/node/443/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/443/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/443/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/443/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/443/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/443/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/443/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/443/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 443,

 "labels" : []

 }

}, {

REST API

376

 "labels" : "http://localhost:7474/db/data/node/442/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/442/relationships/out",

 "data" : {

 "name" : "Peter"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/442/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/442/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/442",

 "property" : "http://localhost:7474/db/data/node/442/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/442/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/442/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/442/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/442/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/442/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/442/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/442/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 442,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/441/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/441/relationships/out",

 "data" : {

 "name" : "Tobias"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/441/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/441/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/441",

 "property" : "http://localhost:7474/db/data/node/441/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/441/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/441/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/441/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/441/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/441/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/441/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/441/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 441,

 "labels" : []

 }

}]

Return relationships from a traversal

Figure 21.69. Final Graph

Node[432]

nam e = 'car'

Node[433]

nam e = 'you'

Node[434]

nam e = 'I'

own know

Example request

• POST http://localhost:7474/db/data/node/434/traverse/relationship

REST API

377

• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "order" : "breadth_first",

 "uniqueness" : "none",

 "return_filter" : {

 "language" : "builtin",

 "name" : "all"

 }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "start" : "http://localhost:7474/db/data/node/434",

 "data" : { },

 "self" : "http://localhost:7474/db/data/relationship/260",

 "property" : "http://localhost:7474/db/data/relationship/260/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/260/properties",

 "type" : "own",

 "extensions" : { },

 "end" : "http://localhost:7474/db/data/node/432",

 "metadata" : {

 "id" : 260,

 "type" : "own"

 }

}, {

 "start" : "http://localhost:7474/db/data/node/434",

 "data" : { },

 "self" : "http://localhost:7474/db/data/relationship/259",

 "property" : "http://localhost:7474/db/data/relationship/259/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/259/properties",

 "type" : "know",

 "extensions" : { },

 "end" : "http://localhost:7474/db/data/node/433",

 "metadata" : {

 "id" : 259,

 "type" : "know"

 }

}]

Return paths from a traversal

Figure 21.70. Final Graph

Node[422]

nam e = 'car'

Node[423]

nam e = 'you'

Node[424]

nam e = 'I'

own know

Example request

REST API

378

• POST http://localhost:7474/db/data/node/424/traverse/path
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "order" : "breadth_first",

 "uniqueness" : "none",

 "return_filter" : {

 "language" : "builtin",

 "name" : "all"

 }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "directions" : [],

 "start" : "http://localhost:7474/db/data/node/424",

 "nodes" : ["http://localhost:7474/db/data/node/424"],

 "length" : 0,

 "relationships" : [],

 "end" : "http://localhost:7474/db/data/node/424"

}, {

 "directions" : ["->"],

 "start" : "http://localhost:7474/db/data/node/424",

 "nodes" : ["http://localhost:7474/db/data/node/424", "http://localhost:7474/db/data/node/423"],

 "length" : 1,

 "relationships" : ["http://localhost:7474/db/data/relationship/251"],

 "end" : "http://localhost:7474/db/data/node/423"

}, {

 "directions" : ["->"],

 "start" : "http://localhost:7474/db/data/node/424",

 "nodes" : ["http://localhost:7474/db/data/node/424", "http://localhost:7474/db/data/node/422"],

 "length" : 1,

 "relationships" : ["http://localhost:7474/db/data/relationship/252"],

 "end" : "http://localhost:7474/db/data/node/422"

}]

Traversal returning nodes below a certain depth
Here, all nodes at a traversal depth below 3 are returned.

REST API

379

Figure 21.71. Final Graph

Node[425]

nam e = 'Sara'

Node[426]

nam e = 'Johan'

Node[427]

nam e = 'Em il'

knows

Node[429]

nam e = 'Tobias'

knows

Node[430]

nam e = 'Peter'

knows

loves

Node[428]

nam e = 'Root '

knows

Node[431]

nam e = 'Mat t ias'

knows

Example request

• POST http://localhost:7474/db/data/node/428/traverse/node
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "return_filter" : {

 "body" : "position.length()<3;",

 "language" : "javascript"

 },

 "prune_evaluator" : {

 "name" : "none",

 "language" : "builtin"

 }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "labels" : "http://localhost:7474/db/data/node/428/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/428/relationships/out",

 "data" : {

 "name" : "Root"

 },

REST API

380

 "all_typed_relationships" : "http://localhost:7474/db/data/node/428/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/428/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/428",

 "property" : "http://localhost:7474/db/data/node/428/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/428/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/428/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/428/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/428/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/428/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/428/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/428/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 428,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/431/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/431/relationships/out",

 "data" : {

 "name" : "Mattias"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/431/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/431/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/431",

 "property" : "http://localhost:7474/db/data/node/431/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/431/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/431/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/431/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/431/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/431/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/431/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/431/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 431,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/426/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/426/relationships/out",

 "data" : {

 "name" : "Johan"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/426/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/426/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/426",

 "property" : "http://localhost:7474/db/data/node/426/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/426/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/426/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/426/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/426/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/426/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/426/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/426/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 426,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/427/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/427/relationships/out",

 "data" : {

 "name" : "Emil"

REST API

381

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/427/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/427/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/427",

 "property" : "http://localhost:7474/db/data/node/427/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/427/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/427/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/427/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/427/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/427/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/427/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/427/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 427,

 "labels" : []

 }

}]

Creating a paged traverser
Paged traversers are created by POST-ing a traversal description to the link identified by the
paged_traverser key in a node representation. When creating a paged traverser, the same options apply
as for a regular traverser, meaning that node, path, or fullpath, can be targeted.
Example request

• POST http://localhost:7474/db/data/node/297/paged/traverse/node
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "prune_evaluator" : {

 "language" : "builtin",

 "name" : "none"

 },

 "return_filter" : {

 "language" : "javascript",

 "body" : "position.endNode().getProperty('name').contains('1');"

 },

 "order" : "depth_first",

 "relationships" : {

 "type" : "NEXT",

 "direction" : "out"

 }

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/node/297/paged/traverse/

node/48dacfa01c624b889e8a46ab5f836fbd

[{

 "labels" : "http://localhost:7474/db/data/node/298/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/298/relationships/out",

 "data" : {

 "name" : "1"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/298/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/298/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/298",

 "property" : "http://localhost:7474/db/data/node/298/properties/{key}",

REST API

382

 "properties" : "http://localhost:7474/db/data/node/298/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/298/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/298/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/298/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/298/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/298/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/298/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 298,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/307/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/307/relationships/out",

 "data" : {

 "name" : "10"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/307/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/307/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/307",

 "property" : "http://localhost:7474/db/data/node/307/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/307/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/307/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/307/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/307/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/307/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/307/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/307/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 307,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/308/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/308/relationships/out",

 "data" : {

 "name" : "11"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/308/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/308/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/308",

 "property" : "http://localhost:7474/db/data/node/308/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/308/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/308/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/308/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/308/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/308/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/308/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/308/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 308,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/309/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/309/relationships/out",

 "data" : {

 "name" : "12"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/309/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/309/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/309",

REST API

383

 "property" : "http://localhost:7474/db/data/node/309/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/309/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/309/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/309/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/309/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/309/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/309/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/309/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 309,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/310/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/310/relationships/out",

 "data" : {

 "name" : "13"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/310/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/310/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/310",

 "property" : "http://localhost:7474/db/data/node/310/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/310/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/310/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/310/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/310/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/310/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/310/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/310/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 310,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/311/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/311/relationships/out",

 "data" : {

 "name" : "14"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/311/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/311/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/311",

 "property" : "http://localhost:7474/db/data/node/311/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/311/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/311/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/311/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/311/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/311/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/311/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/311/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 311,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/312/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/312/relationships/out",

 "data" : {

 "name" : "15"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/312/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/312/traverse/{returnType}",

REST API

384

 "self" : "http://localhost:7474/db/data/node/312",

 "property" : "http://localhost:7474/db/data/node/312/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/312/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/312/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/312/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/312/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/312/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/312/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/312/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 312,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/313/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/313/relationships/out",

 "data" : {

 "name" : "16"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/313/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/313/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/313",

 "property" : "http://localhost:7474/db/data/node/313/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/313/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/313/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/313/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/313/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/313/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/313/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/313/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 313,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/314/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/314/relationships/out",

 "data" : {

 "name" : "17"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/314/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/314/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/314",

 "property" : "http://localhost:7474/db/data/node/314/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/314/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/314/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/314/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/314/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/314/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/314/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/314/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 314,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/315/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/315/relationships/out",

 "data" : {

 "name" : "18"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/315/relationships/all/{-list|&|types}",

REST API

385

 "traverse" : "http://localhost:7474/db/data/node/315/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/315",

 "property" : "http://localhost:7474/db/data/node/315/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/315/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/315/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/315/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/315/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/315/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/315/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/315/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 315,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/316/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/316/relationships/out",

 "data" : {

 "name" : "19"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/316/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/316/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/316",

 "property" : "http://localhost:7474/db/data/node/316/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/316/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/316/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/316/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/316/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/316/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/316/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/316/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 316,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/318/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/318/relationships/out",

 "data" : {

 "name" : "21"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/318/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/318/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/318",

 "property" : "http://localhost:7474/db/data/node/318/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/318/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/318/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/318/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/318/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/318/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/318/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/318/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 318,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/328/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/328/relationships/out",

 "data" : {

 "name" : "31"

 },

REST API

386

 "all_typed_relationships" : "http://localhost:7474/db/data/node/328/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/328/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/328",

 "property" : "http://localhost:7474/db/data/node/328/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/328/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/328/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/328/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/328/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/328/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/328/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/328/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 328,

 "labels" : []

 }

}]

Paging through the results of a paged traverser
Paged traversers hold state on the server, and allow clients to page through the results of a traversal.
To progress to the next page of traversal results, the client issues a HTTP GET request on the paged
traversal URI which causes the traversal to fill the next page (or partially fill it if insufficient results are
available).
Note that if a traverser expires through inactivity it will cause a 404 response on the next GET request.
Traversers' leases are renewed on every successful access for the same amount of time as originally
specified.
When the paged traverser reaches the end of its results, the client can expect a 404 response as the
traverser is disposed by the server.
Example request

• GET http://localhost:7474/db/data/node/330/paged/traverse/node/9e6b27399d9e4cce8c1744b0e0f25cc3
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "labels" : "http://localhost:7474/db/data/node/661/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/661/relationships/out",

 "data" : {

 "name" : "331"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/661/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/661/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/661",

 "property" : "http://localhost:7474/db/data/node/661/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/661/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/661/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/661/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/661/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/661/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/661/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/661/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 661,

 "labels" : []

 }

}, {

REST API

387

 "labels" : "http://localhost:7474/db/data/node/671/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/671/relationships/out",

 "data" : {

 "name" : "341"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/671/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/671/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/671",

 "property" : "http://localhost:7474/db/data/node/671/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/671/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/671/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/671/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/671/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/671/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/671/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/671/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 671,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/681/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/681/relationships/out",

 "data" : {

 "name" : "351"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/681/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/681/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/681",

 "property" : "http://localhost:7474/db/data/node/681/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/681/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/681/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/681/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/681/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/681/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/681/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/681/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 681,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/691/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/691/relationships/out",

 "data" : {

 "name" : "361"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/691/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/691/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/691",

 "property" : "http://localhost:7474/db/data/node/691/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/691/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/691/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/691/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/691/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/691/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/691/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/691/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 691,

 "labels" : []

 }

REST API

388

}, {

 "labels" : "http://localhost:7474/db/data/node/701/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/701/relationships/out",

 "data" : {

 "name" : "371"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/701/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/701/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/701",

 "property" : "http://localhost:7474/db/data/node/701/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/701/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/701/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/701/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/701/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/701/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/701/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/701/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 701,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/711/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/711/relationships/out",

 "data" : {

 "name" : "381"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/711/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/711/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/711",

 "property" : "http://localhost:7474/db/data/node/711/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/711/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/711/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/711/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/711/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/711/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/711/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/711/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 711,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/721/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/721/relationships/out",

 "data" : {

 "name" : "391"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/721/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/721/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/721",

 "property" : "http://localhost:7474/db/data/node/721/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/721/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/721/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/721/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/721/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/721/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/721/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/721/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 721,

 "labels" : []

REST API

389

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/731/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/731/relationships/out",

 "data" : {

 "name" : "401"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/731/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/731/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/731",

 "property" : "http://localhost:7474/db/data/node/731/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/731/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/731/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/731/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/731/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/731/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/731/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/731/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 731,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/740/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/740/relationships/out",

 "data" : {

 "name" : "410"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/740/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/740/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/740",

 "property" : "http://localhost:7474/db/data/node/740/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/740/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/740/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/740/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/740/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/740/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/740/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/740/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 740,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/741/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/741/relationships/out",

 "data" : {

 "name" : "411"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/741/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/741/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/741",

 "property" : "http://localhost:7474/db/data/node/741/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/741/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/741/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/741/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/741/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/741/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/741/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/741/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 741,

REST API

390

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/742/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/742/relationships/out",

 "data" : {

 "name" : "412"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/742/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/742/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/742",

 "property" : "http://localhost:7474/db/data/node/742/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/742/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/742/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/742/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/742/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/742/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/742/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/742/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 742,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/743/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/743/relationships/out",

 "data" : {

 "name" : "413"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/743/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/743/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/743",

 "property" : "http://localhost:7474/db/data/node/743/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/743/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/743/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/743/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/743/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/743/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/743/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/743/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 743,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/744/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/744/relationships/out",

 "data" : {

 "name" : "414"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/744/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/744/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/744",

 "property" : "http://localhost:7474/db/data/node/744/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/744/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/744/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/744/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/744/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/744/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/744/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/744/relationships/in/{-list|&|types}",

 "metadata" : {

REST API

391

 "id" : 744,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/745/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/745/relationships/out",

 "data" : {

 "name" : "415"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/745/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/745/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/745",

 "property" : "http://localhost:7474/db/data/node/745/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/745/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/745/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/745/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/745/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/745/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/745/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/745/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 745,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/746/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/746/relationships/out",

 "data" : {

 "name" : "416"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/746/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/746/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/746",

 "property" : "http://localhost:7474/db/data/node/746/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/746/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/746/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/746/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/746/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/746/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/746/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/746/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 746,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/747/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/747/relationships/out",

 "data" : {

 "name" : "417"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/747/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/747/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/747",

 "property" : "http://localhost:7474/db/data/node/747/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/747/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/747/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/747/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/747/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/747/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/747/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/747/relationships/in/{-list|&|types}",

REST API

392

 "metadata" : {

 "id" : 747,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/748/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/748/relationships/out",

 "data" : {

 "name" : "418"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/748/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/748/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/748",

 "property" : "http://localhost:7474/db/data/node/748/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/748/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/748/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/748/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/748/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/748/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/748/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/748/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 748,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/749/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/749/relationships/out",

 "data" : {

 "name" : "419"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/749/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/749/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/749",

 "property" : "http://localhost:7474/db/data/node/749/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/749/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/749/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/749/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/749/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/749/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/749/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/749/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 749,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/751/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/751/relationships/out",

 "data" : {

 "name" : "421"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/751/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/751/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/751",

 "property" : "http://localhost:7474/db/data/node/751/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/751/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/751/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/751/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/751/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/751/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/751/relationships/all",

REST API

393

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/751/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 751,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/761/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/761/relationships/out",

 "data" : {

 "name" : "431"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/761/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/761/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/761",

 "property" : "http://localhost:7474/db/data/node/761/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/761/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/761/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/761/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/761/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/761/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/761/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/761/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 761,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/771/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/771/relationships/out",

 "data" : {

 "name" : "441"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/771/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/771/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/771",

 "property" : "http://localhost:7474/db/data/node/771/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/771/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/771/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/771/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/771/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/771/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/771/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/771/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 771,

 "labels" : []

 }

}]

Paged traverser page size
The default page size is 50 items, but depending on the application larger or smaller pages sizes might
be appropriate. This can be set by adding a pageSize query parameter.

Example request

• POST http://localhost:7474/db/data/node/33/paged/traverse/node?pageSize=1
• Accept: application/json
• Content-Type: application/json

{

 "prune_evaluator" : {

REST API

394

 "language" : "builtin",

 "name" : "none"

 },

 "return_filter" : {

 "language" : "javascript",

 "body" : "position.endNode().getProperty('name').contains('1');"

 },

 "order" : "depth_first",

 "relationships" : {

 "type" : "NEXT",

 "direction" : "out"

 }

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/node/33/paged/traverse/

node/74b09240a38647b094a5d7fa03bdd011

[{

 "labels" : "http://localhost:7474/db/data/node/34/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/34/relationships/out",

 "data" : {

 "name" : "1"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/34/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/34/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/34",

 "property" : "http://localhost:7474/db/data/node/34/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/34/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/34/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/34/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/34/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/34/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/34/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/34/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 34,

 "labels" : []

 }

}]

Paged traverser timeout
The default timeout for a paged traverser is 60 seconds, but depending on the application larger or
smaller timeouts might be appropriate. This can be set by adding a leaseTime query parameter with the
number of seconds the paged traverser should last.
Example request

• POST http://localhost:7474/db/data/node/807/paged/traverse/node?leaseTime=10
• Accept: application/json
• Content-Type: application/json

{

 "prune_evaluator" : {

 "language" : "builtin",

 "name" : "none"

 },

 "return_filter" : {

 "language" : "javascript",

REST API

395

 "body" : "position.endNode().getProperty('name').contains('1');"

 },

 "order" : "depth_first",

 "relationships" : {

 "type" : "NEXT",

 "direction" : "out"

 }

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/node/807/paged/traverse/node/

f370a5fa26ce40738dbe8f442458962a

[{

 "labels" : "http://localhost:7474/db/data/node/808/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/808/relationships/out",

 "data" : {

 "name" : "1"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/808/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/808/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/808",

 "property" : "http://localhost:7474/db/data/node/808/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/808/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/808/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/808/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/808/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/808/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/808/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/808/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 808,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/817/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/817/relationships/out",

 "data" : {

 "name" : "10"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/817/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/817/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/817",

 "property" : "http://localhost:7474/db/data/node/817/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/817/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/817/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/817/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/817/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/817/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/817/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/817/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 817,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/818/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/818/relationships/out",

 "data" : {

REST API

396

 "name" : "11"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/818/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/818/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/818",

 "property" : "http://localhost:7474/db/data/node/818/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/818/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/818/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/818/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/818/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/818/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/818/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/818/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 818,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/819/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/819/relationships/out",

 "data" : {

 "name" : "12"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/819/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/819/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/819",

 "property" : "http://localhost:7474/db/data/node/819/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/819/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/819/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/819/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/819/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/819/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/819/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/819/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 819,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/820/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/820/relationships/out",

 "data" : {

 "name" : "13"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/820/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/820/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/820",

 "property" : "http://localhost:7474/db/data/node/820/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/820/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/820/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/820/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/820/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/820/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/820/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/820/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 820,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/821/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/821/relationships/out",

REST API

397

 "data" : {

 "name" : "14"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/821/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/821/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/821",

 "property" : "http://localhost:7474/db/data/node/821/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/821/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/821/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/821/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/821/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/821/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/821/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/821/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 821,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/822/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/822/relationships/out",

 "data" : {

 "name" : "15"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/822/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/822/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/822",

 "property" : "http://localhost:7474/db/data/node/822/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/822/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/822/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/822/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/822/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/822/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/822/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/822/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 822,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/823/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/823/relationships/out",

 "data" : {

 "name" : "16"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/823/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/823/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/823",

 "property" : "http://localhost:7474/db/data/node/823/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/823/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/823/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/823/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/823/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/823/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/823/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/823/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 823,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/824/labels",

REST API

398

 "outgoing_relationships" : "http://localhost:7474/db/data/node/824/relationships/out",

 "data" : {

 "name" : "17"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/824/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/824/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/824",

 "property" : "http://localhost:7474/db/data/node/824/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/824/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/824/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/824/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/824/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/824/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/824/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/824/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 824,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/825/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/825/relationships/out",

 "data" : {

 "name" : "18"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/825/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/825/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/825",

 "property" : "http://localhost:7474/db/data/node/825/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/825/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/825/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/825/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/825/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/825/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/825/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/825/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 825,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/826/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/826/relationships/out",

 "data" : {

 "name" : "19"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/826/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/826/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/826",

 "property" : "http://localhost:7474/db/data/node/826/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/826/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/826/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/826/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/826/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/826/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/826/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/826/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 826,

 "labels" : []

 }

}, {

REST API

399

 "labels" : "http://localhost:7474/db/data/node/828/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/828/relationships/out",

 "data" : {

 "name" : "21"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/828/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/828/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/828",

 "property" : "http://localhost:7474/db/data/node/828/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/828/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/828/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/828/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/828/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/828/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/828/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/828/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 828,

 "labels" : []

 }

}, {

 "labels" : "http://localhost:7474/db/data/node/838/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/838/relationships/out",

 "data" : {

 "name" : "31"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/838/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/838/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/838",

 "property" : "http://localhost:7474/db/data/node/838/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/838/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/838/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/838/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/838/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/838/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/838/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/838/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 838,

 "labels" : []

 }

}]

REST API

400

21.18. Graph Algorithms
Neo4j comes with a number of built-in graph algorithms. They are performed from a start node. The
traversal is controlled by the URI and the body sent with the request. These are the parameters that can
be used:

algorithm The algorithm to choose. If not set, default is shortestPath. algorithm can have one of
these values:
• shortestPath

• allSimplePaths

• allPaths

• dijkstra (optionally with cost_property and default_cost parameters)
max_depth The maximum depth as an integer for the algorithms like shortestPath, where

applicable. Default is 1.

Find all shortest paths
The shortestPath algorithm can find multiple paths between the same nodes, like in this example.

Figure 21.72. Final Graph

Node[240]

nam e = 'f '

Node[241]

nam e = 'g'

to

Node[242]

nam e = 'd'

to
Node[243]

nam e = 'e'

to

to

Node[244]

nam e = 'b'

to

Node[245]

nam e = 'c'

to

to

to

Node[246]

nam e = 'a'

to

to

Example request

• POST http://localhost:7474/db/data/node/246/paths
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

REST API

401

{

 "to" : "http://localhost:7474/db/data/node/241",

 "max_depth" : 3,

 "relationships" : {

 "type" : "to",

 "direction" : "out"

 },

 "algorithm" : "shortestPath"

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "directions" : ["->", "->"],

 "start" : "http://localhost:7474/db/data/node/246",

 "nodes" : ["http://localhost:7474/db/data/node/246", "http://localhost:7474/db/data/node/245", "http://localhost:7474/db/

data/node/241"],

 "length" : 2,

 "relationships" : ["http://localhost:7474/db/data/relationship/152", "http://localhost:7474/db/data/relationship/161"],

 "end" : "http://localhost:7474/db/data/node/241"

}, {

 "directions" : ["->", "->"],

 "start" : "http://localhost:7474/db/data/node/246",

 "nodes" : ["http://localhost:7474/db/data/node/246", "http://localhost:7474/db/data/node/242", "http://localhost:7474/db/

data/node/241"],

 "length" : 2,

 "relationships" : ["http://localhost:7474/db/data/relationship/153", "http://localhost:7474/db/data/relationship/159"],

 "end" : "http://localhost:7474/db/data/node/241"

}]

Find one of the shortest paths
If no path algorithm is specified, a shortestPath algorithm with a max depth of 1 will be chosen. In this
example, the max_depth is set to 3 in order to find the shortest path between a maximum of 3 linked
nodes.

REST API

402

Figure 21.73. Final Graph

Node[233]

nam e = 'f '

Node[234]

nam e = 'g'

to

Node[235]

nam e = 'd'

to
Node[236]

nam e = 'e'

to

to

Node[237]

nam e = 'b'

to

Node[238]

nam e = 'c'

to

to

to

Node[239]

nam e = 'a'

to

to

Example request

• POST http://localhost:7474/db/data/node/239/path
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "to" : "http://localhost:7474/db/data/node/234",

 "max_depth" : 3,

 "relationships" : {

 "type" : "to",

 "direction" : "out"

 },

 "algorithm" : "shortestPath"

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "directions" : ["->", "->"],

 "start" : "http://localhost:7474/db/data/node/239",

 "nodes" : ["http://localhost:7474/db/data/node/239", "http://localhost:7474/db/data/node/238", "http://localhost:7474/db/

data/node/234"],

 "length" : 2,

REST API

403

 "relationships" : ["http://localhost:7474/db/data/relationship/142", "http://localhost:7474/db/data/relationship/151"],

 "end" : "http://localhost:7474/db/data/node/234"

}

Execute a Dijkstra algorithm and get a single path
This example is running a Dijkstra algorithm over a graph with different cost properties on different
relationships. Note that the request URI ends with /path which means a single path is what we want
here.

Figure 21.74. Final Graph

Node[247]

nam e = 'f '

Node[249]

nam e = 'e'

to
cost = 1.2

Node[248]

nam e = 'd'

to
cost = 0.5

Node[250]

nam e = 'b'

to
cost = 0.5

Node[251]

nam e = 'c'

to
cost = 0.5

Node[252]

nam e = 'a'

to
cost = 0.5

to
cost = 1.5

to
cost = 0.5

Example request

• POST http://localhost:7474/db/data/node/252/path
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "to" : "http://localhost:7474/db/data/node/249",

 "cost_property" : "cost",

 "relationships" : {

 "type" : "to",

 "direction" : "out"

 },

 "algorithm" : "dijkstra"

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

REST API

404

{

 "directions" : ["->", "->", "->"],

 "weight" : 1.5,

 "start" : "http://localhost:7474/db/data/node/252",

 "nodes" : ["http://localhost:7474/db/data/node/252", "http://localhost:7474/db/data/node/251", "http://localhost:7474/db/

data/node/248", "http://localhost:7474/db/data/node/249"],

 "length" : 3,

 "relationships" : ["http://localhost:7474/db/data/relationship/163", "http://localhost:7474/db/data/relationship/165",

 "http://localhost:7474/db/data/relationship/166"],

 "end" : "http://localhost:7474/db/data/node/249"

}

Execute a Dijkstra algorithm with equal weights on relationships
The following is executing a Dijkstra search on a graph with equal weights on all relationships. This
example is included to show the difference when the same graph structure is used, but the path weight
is equal to the number of hops.

Figure 21.75. Final Graph

Node[253]

nam e = 'f '

Node[255]

nam e = 'e'

to
cost = 1

Node[254]

nam e = 'd'

to
cost = 1

Node[256]

nam e = 'b'

to
cost = 1

Node[257]

nam e = 'c'

to
cost = 1

Node[258]

nam e = 'a'

to
cost = 1

to
cost = 1

to
cost = 1

Example request

• POST http://localhost:7474/db/data/node/258/path
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "to" : "http://localhost:7474/db/data/node/255",

 "cost_property" : "cost",

 "relationships" : {

 "type" : "to",

 "direction" : "out"

 },

REST API

405

 "algorithm" : "dijkstra"

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "directions" : ["->", "->"],

 "weight" : 2.0,

 "start" : "http://localhost:7474/db/data/node/258",

 "nodes" : ["http://localhost:7474/db/data/node/258", "http://localhost:7474/db/data/node/253", "http://localhost:7474/db/

data/node/255"],

 "length" : 2,

 "relationships" : ["http://localhost:7474/db/data/relationship/171", "http://localhost:7474/db/data/relationship/175"],

 "end" : "http://localhost:7474/db/data/node/255"

}

Execute a Dijkstra algorithm and get multiple paths
This example is running a Dijkstra algorithm over a graph with different cost properties on different
relationships. Note that the request URI ends with /paths which means we want multiple paths
returned, in case they exist.

Figure 21.76. Final Graph

Node[227]

nam e = 'f '

Node[229]

nam e = 'e'

to
cost = 1.0

Node[228]

nam e = 'd'

to
cost = 0.5

Node[230]

nam e = 'b'

to
cost = 0.5

Node[231]

nam e = 'c'

to
cost = 0.5

Node[232]

nam e = 'a'

to
cost = 0.5

to
cost = 1.5

to
cost = 0.5

Example request

• POST http://localhost:7474/db/data/node/232/paths
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

REST API

406

{

 "to" : "http://localhost:7474/db/data/node/229",

 "cost_property" : "cost",

 "relationships" : {

 "type" : "to",

 "direction" : "out"

 },

 "algorithm" : "dijkstra"

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "directions" : ["->", "->"],

 "weight" : 1.5,

 "start" : "http://localhost:7474/db/data/node/232",

 "nodes" : ["http://localhost:7474/db/data/node/232", "http://localhost:7474/db/data/node/227", "http://localhost:7474/db/

data/node/229"],

 "length" : 2,

 "relationships" : ["http://localhost:7474/db/data/relationship/137", "http://localhost:7474/db/data/relationship/141"],

 "end" : "http://localhost:7474/db/data/node/229"

}, {

 "directions" : ["->", "->", "->"],

 "weight" : 1.5,

 "start" : "http://localhost:7474/db/data/node/232",

 "nodes" : ["http://localhost:7474/db/data/node/232", "http://localhost:7474/db/data/node/231", "http://localhost:7474/db/

data/node/228", "http://localhost:7474/db/data/node/229"],

 "length" : 3,

 "relationships" : ["http://localhost:7474/db/data/relationship/136", "http://localhost:7474/db/data/relationship/138",

 "http://localhost:7474/db/data/relationship/139"],

 "end" : "http://localhost:7474/db/data/node/229"

}]

REST API

407

21.19. Batch operations
Batch operations lets you execute multiple API calls through a single HTTP call. This
improves performance for large insert and update operations significantly.

This service is transactional. If any of the operations performed fails (returns a non-2xx HTTP status
code), the transaction will be rolled back and no changes will be applied.

Important
You cannot use this resource to execute Cypher queries with USING PERIODIC COMMIT.

Execute multiple operations in batch
The batch service expects an array of job descriptions as input, each job description describing an
action to be performed via the normal server API.

Each job description should contain a to attribute, with a value relative to the data API root (so http://
localhost:7474/db/data/node becomes just /node), and a method attribute containing HTTP verb to use.

Optionally you may provide a body attribute, and an id attribute to help you keep track of responses,
although responses are guaranteed to be returned in the same order the job descriptions are received.

The following figure outlines the different parts of the job descriptions:

Figure 21.77. Starting Graph

Node[408]

nam e = 'John'

Node[409]

nam e = 'Joe'

knows

Figure 21.78. Final Graph

Node[408]

nam e = 'John'

Node[409]

age = 1

knows

Node[410]

age = 1

Node[411]

age = 1

Example request

http://localhost:7474/db/data/node
http://localhost:7474/db/data/node

REST API

408

• POST http://localhost:7474/db/data/batch
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

[{

 "method" : "PUT",

 "to" : "/node/409/properties",

 "body" : {

 "age" : 1

 },

 "id" : 0

}, {

 "method" : "GET",

 "to" : "/node/409",

 "id" : 1

}, {

 "method" : "POST",

 "to" : "/node",

 "body" : {

 "age" : 1

 },

 "id" : 2

}, {

 "method" : "POST",

 "to" : "/node",

 "body" : {

 "age" : 1

 },

 "id" : 3

}]

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "id" : 0,

 "from" : "/node/409/properties"

}, {

 "id" : 1,

 "body" : {

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/409/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/409/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/409/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/409/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/409",

 "property" : "http://localhost:7474/db/data/node/409/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/409/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/409/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/409/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/409/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/409/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/409/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/409/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 409,

 "labels" : []

 },

 "data" : {

 "age" : 1

 }

REST API

409

 },

 "from" : "/node/409"

}, {

 "id" : 2,

 "location" : "http://localhost:7474/db/data/node/410",

 "body" : {

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/410/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/410/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/410/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/410/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/410",

 "property" : "http://localhost:7474/db/data/node/410/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/410/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/410/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/410/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/410/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/410/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/410/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/410/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 410,

 "labels" : []

 },

 "data" : {

 "age" : 1

 }

 },

 "from" : "/node"

}, {

 "id" : 3,

 "location" : "http://localhost:7474/db/data/node/411",

 "body" : {

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/411/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/411/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/411/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/411/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/411",

 "property" : "http://localhost:7474/db/data/node/411/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/411/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/411/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/411/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/411/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/411/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/411/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/411/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 411,

 "labels" : []

 },

 "data" : {

 "age" : 1

 }

 },

 "from" : "/node"

}]

Refer to items created earlier in the same batch job
The batch operation API allows you to refer to the URI returned from a created resource in subsequent
job descriptions, within the same batch call.

Use the {[JOB ID]} special syntax to inject URIs from created resources into JSON strings in subsequent
job descriptions.

REST API

410

Figure 21.79. Final Graph

Node[401]

nam e = 'bob'

Node[402]

age = 12

KNOWS
since = '2010'

Example request

• POST http://localhost:7474/db/data/batch
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

[{

 "method" : "POST",

 "to" : "/node",

 "id" : 0,

 "body" : {

 "name" : "bob"

 }

}, {

 "method" : "POST",

 "to" : "/node",

 "id" : 1,

 "body" : {

 "age" : 12

 }

}, {

 "method" : "POST",

 "to" : "{0}/relationships",

 "id" : 3,

 "body" : {

 "to" : "{1}",

 "data" : {

 "since" : "2010"

 },

 "type" : "KNOWS"

 }

}, {

 "method" : "POST",

 "to" : "/index/relationship/my_rels",

 "id" : 4,

 "body" : {

 "key" : "since",

 "value" : "2010",

 "uri" : "{3}"

 }

}]

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "id" : 0,

REST API

411

 "location" : "http://localhost:7474/db/data/node/401",

 "body" : {

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/401/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/401/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/401/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/401/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/401",

 "property" : "http://localhost:7474/db/data/node/401/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/401/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/401/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/401/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/401/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/401/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/401/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/401/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 401,

 "labels" : []

 },

 "data" : {

 "name" : "bob"

 }

 },

 "from" : "/node"

}, {

 "id" : 1,

 "location" : "http://localhost:7474/db/data/node/402",

 "body" : {

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/402/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/402/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/402/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/402/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/402",

 "property" : "http://localhost:7474/db/data/node/402/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/402/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/402/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/402/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/402/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/402/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/402/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/402/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 402,

 "labels" : []

 },

 "data" : {

 "age" : 12

 }

 },

 "from" : "/node"

}, {

 "id" : 3,

 "location" : "http://localhost:7474/db/data/relationship/239",

 "body" : {

 "extensions" : { },

 "start" : "http://localhost:7474/db/data/node/401",

 "property" : "http://localhost:7474/db/data/relationship/239/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/239",

 "properties" : "http://localhost:7474/db/data/relationship/239/properties",

 "type" : "KNOWS",

 "end" : "http://localhost:7474/db/data/node/402",

 "metadata" : {

 "id" : 239,

REST API

412

 "type" : "KNOWS"

 },

 "data" : {

 "since" : "2010"

 }

 },

 "from" : "http://localhost:7474/db/data/node/401/relationships"

}, {

 "id" : 4,

 "location" : "http://localhost:7474/db/data/index/relationship/my_rels/since/2010/239",

 "body" : {

 "extensions" : { },

 "start" : "http://localhost:7474/db/data/node/401",

 "property" : "http://localhost:7474/db/data/relationship/239/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/239",

 "properties" : "http://localhost:7474/db/data/relationship/239/properties",

 "type" : "KNOWS",

 "end" : "http://localhost:7474/db/data/node/402",

 "metadata" : {

 "id" : 239,

 "type" : "KNOWS"

 },

 "data" : {

 "since" : "2010"

 },

 "indexed" : "http://localhost:7474/db/data/index/relationship/my_rels/since/2010/239"

 },

 "from" : "/index/relationship/my_rels"

}]

Execute multiple operations in batch streaming

Figure 21.80. Final Graph

Node[106]

nam e = 'bob'

Node[107]

age = 12

KNOWS
since = '2010'

Node[109]

nam e = 'Tobias Tester'

Node[110]

nam e = 'Andres Tester'

FRIENDS
nam e = 'tobias-andres'

FRIENDS
nam e = 'andres-tobias'

Node[112]

age = 1

Node[114]

nam e = 'John'

Node[115]

age = 1

knows

Node[116]

age = 1

Node[117]

age = 1

Example request

• POST http://localhost:7474/db/data/batch
• Accept: application/json
• Content-Type: application/json
• X-Stream: true

[{

 "method" : "PUT",

 "to" : "/node/115/properties",

 "body" : {

 "age" : 1

 },

 "id" : 0

}, {

 "method" : "GET",

 "to" : "/node/115",

 "id" : 1

}, {

REST API

413

 "method" : "POST",

 "to" : "/node",

 "body" : {

 "age" : 1

 },

 "id" : 2

}, {

 "method" : "POST",

 "to" : "/node",

 "body" : {

 "age" : 1

 },

 "id" : 3

}]

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "id" : 0,

 "from" : "/node/115/properties",

 "body" : null,

 "status" : 204

}, {

 "id" : 1,

 "from" : "/node/115",

 "body" : {

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/115/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/115/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/115/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/115/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/115",

 "property" : "http://localhost:7474/db/data/node/115/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/115/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/115/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/115/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/115/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/115/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/115/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/115/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 115,

 "labels" : []

 },

 "data" : {

 "age" : 1

 }

 },

 "status" : 200

}, {

 "id" : 2,

 "from" : "/node",

 "body" : {

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/116/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/116/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/116/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/116/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/116",

 "property" : "http://localhost:7474/db/data/node/116/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/116/properties",

REST API

414

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/116/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/116/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/116/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/116/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/116/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/116/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 116,

 "labels" : []

 },

 "data" : {

 "age" : 1

 }

 },

 "location" : "http://localhost:7474/db/data/node/116",

 "status" : 201

}, {

 "id" : 3,

 "from" : "/node",

 "body" : {

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/117/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/117/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/117/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/117/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/117",

 "property" : "http://localhost:7474/db/data/node/117/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/117/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/117/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/117/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/117/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/117/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/117/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/117/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 117,

 "labels" : []

 },

 "data" : {

 "age" : 1

 }

 },

 "location" : "http://localhost:7474/db/data/node/117",

 "status" : 201

}]

REST API

415

21.20. Legacy indexing
Note
This documents the legacy indexing in Neo4j, which is no longer the preferred way to handle
indexes. Consider looking at Section 21.15, “Indexing” [367].

An index can contain either nodes or relationships.

Note
To create an index with default configuration, simply start using it by adding nodes/
relationships to it. It will then be automatically created for you.

What default configuration means depends on how you have configured your database. If you haven’t
changed any indexing configuration, it means the indexes will be using a Lucene-based backend.

All the examples below show you how to do operations on node indexes, but all of them are just as
applicable to relationship indexes. Simple change the "node" part of the URL to "relationship".

If you want to customize the index settings, see the section called “Create node index with
configuration” [415].

Create node index

Note
Instead of creating the index this way, you can simply start to use it, and it will be created
automatically with default configuration.

Example request

• POST http://localhost:7474/db/data/index/node/
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "name" : "index_1445034018778_1"

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/index/node/index_1445034018778_1/

{

 "template" : "http://localhost:7474/db/data/index/node/index_1445034018778_1/{key}/{value}"

}

Create node index with configuration
This request is only necessary if you want to customize the index settings. If you are happy with the
defaults, you can just start indexing nodes/relationships, as non-existent indexes will automatically be
created as you do. See Section 35.10, “Configuration and fulltext indexes” [629] for more information
on index configuration.

Example request

• POST http://localhost:7474/db/data/index/node/
• Accept: application/json; charset=UTF-8

REST API

416

• Content-Type: application/json

{

 "name" : "fulltext",

 "config" : {

 "type" : "fulltext",

 "provider" : "lucene"

 }

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/index/node/fulltext/

{

 "template" : "http://localhost:7474/db/data/index/node/fulltext/{key}/{value}",

 "type" : "fulltext",

 "provider" : "lucene"

}

Delete node index
Example request

• DELETE http://localhost:7474/db/data/index/node/index_1445034018142_1
• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

List node indexes
Example request

• GET http://localhost:7474/db/data/index/node/
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "index_1445034018037_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034018037_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "index_1445034017958_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034017958_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "index_1445034017766_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034017766_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

REST API

417

 "index_1445034018281_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034018281_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "index_1445034018235_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034018235_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "index_1445034017783_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034017783_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "index_1445034017770_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034017770_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "index_1445034018188_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034018188_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "index_1445034018278_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034018278_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "index_1445034017953_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034017953_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "index_1445034017757_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034017757_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "index_1445034017908_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034017908_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "node_auto_index" : {

 "template" : "http://localhost:7474/db/data/index/node/node_auto_index/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "index_1445034018072_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034018072_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 },

 "index_1445034017996_1" : {

 "template" : "http://localhost:7474/db/data/index/node/index_1445034017996_1/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 }

}

Add node to index
Associates a node with the given key/value pair in the given index.

REST API

418

Note
Spaces in the URI have to be encoded as %20.

Caution
This does not overwrite previous entries. If you index the same key/value/item combination
twice, two index entries are created. To do update-type operations, you need to delete the
old entry before adding a new one.

Example request

• POST http://localhost:7474/db/data/index/node/index_1445034017958_1
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "value" : "some value",

 "uri" : "http://localhost:7474/db/data/node/266",

 "key" : "some-key"

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/index/node/index_1445034017958_1/some-key/some%20value/266

{

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/266/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/266/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/266/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/266/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/266",

 "property" : "http://localhost:7474/db/data/node/266/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/266/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/266/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/266/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/266/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/266/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/266/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/266/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 266,

 "labels" : []

 },

 "data" : { },

 "indexed" : "http://localhost:7474/db/data/index/node/index_1445034017958_1/some-key/some%20value/266"

}

Remove all entries with a given node from an index
Example request

• DELETE http://localhost:7474/db/data/index/node/index_1445034018235_1/271
• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

REST API

419

Remove all entries with a given node and key from an index
Example request

• DELETE http://localhost:7474/db/data/index/node/index_1445034018421_1/kvkey2/274
• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

Remove all entries with a given node, key and value from an index
Example request

• DELETE http://localhost:7474/db/data/index/node/index_1445034017996_1/kvkey1/value1/267
• Accept: application/json; charset=UTF-8

Example response

• 204: No Content

Find node by exact match

Note
Spaces in the URI have to be encoded as %20.

Example request

• GET http://localhost:7474/db/data/index/node/index_1445034018708_1/key/the%2520value
• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "indexed" : "http://localhost:7474/db/data/index/node/index_1445034018708_1/key/the%2520value/282",

 "labels" : "http://localhost:7474/db/data/node/282/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/282/relationships/out",

 "data" : { },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/282/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/282/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/282",

 "property" : "http://localhost:7474/db/data/node/282/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/282/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/282/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/282/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/282/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/282/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/282/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/282/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 282,

REST API

420

 "labels" : []

 }

}]

Find node by query
The query language used here depends on what type of index you are querying. The default index type
is Lucene, in which case you should use the Lucene query language here. Below an example of a fuzzy
search over multiple keys.

See: http://lucene.apache.org/core/3_6_2/queryparsersyntax.html

Getting the results with a predefined ordering requires adding the parameter

order=ordering

where ordering is one of index, relevance or score. In this case an additional field will be added to each
result, named score, that holds the float value that is the score reported by the query result.

Example request

• GET http://localhost:7474/db/data/index/node/index_1445034018658_1?query=Name:Build~0.1%20AND
%20Gender:Male

• Accept: application/json; charset=UTF-8

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

[{

 "labels" : "http://localhost:7474/db/data/node/281/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/281/relationships/out",

 "data" : {

 "Name" : "Builder"

 },

 "all_typed_relationships" : "http://localhost:7474/db/data/node/281/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/281/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/281",

 "property" : "http://localhost:7474/db/data/node/281/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/281/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/281/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/281/relationships/in",

 "extensions" : { },

 "create_relationship" : "http://localhost:7474/db/data/node/281/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/281/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/281/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/281/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 281,

 "labels" : []

 }

}]

http://lucene.apache.org/core/3_6_2/queryparsersyntax.html

REST API

421

21.21. Unique Indexing
Note
As of Neo4j 2.0, unique constraints have been added. These make Neo4j enforce
the uniqueness, guaranteeing that uniqueness is maintained. See the section called
“Constraints” [10] for details about this. For most cases, the unique constraints should be
used rather than the features described below.

For uniqueness enforcements, there are two modes:

• URL Parameter uniqueness=get_or_create: Create a new node/relationship and index it if no existing
one can be found. If an existing node/relationship is found, discard the sent data and return the
existing node/relationship.

• URL Parameter uniqueness=create_or_fail: Create a new node/relationship if no existing one can be
found in the index. If an existing node/relationship is found, return a conflict error.

For more information, see Section 18.6, “Creating unique nodes” [293].

Get or create unique node (create)
The node is created if it doesn’t exist in the unique index already.

Example request

• POST http://localhost:7474/db/data/index/node/index_1445034018615_1?uniqueness=get_or_create
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Tobias",

 "properties" : {

 "name" : "Tobias",

 "sequence" : 1

 }

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/index/node/index_1445034018615_1/name/Tobias/280

{

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/280/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/280/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/280/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/280/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/280",

 "property" : "http://localhost:7474/db/data/node/280/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/280/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/280/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/280/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/280/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/280/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/280/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/280/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 280,

 "labels" : []

REST API

422

 },

 "data" : {

 "sequence" : 1,

 "name" : "Tobias"

 },

 "indexed" : "http://localhost:7474/db/data/index/node/index_1445034018615_1/name/Tobias/280"

}

Get or create unique node (existing)
Here, a node is not created but the existing unique node returned, since another node is indexed with
the same data already. The node data returned is then that of the already existing node.
Example request

• POST http://localhost:7474/db/data/index/node/index_1445034018188_1?uniqueness=get_or_create
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Peter",

 "properties" : {

 "name" : "Peter",

 "sequence" : 2

 }

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/index/node/index_1445034018188_1/name/Peter/270

{

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/270/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/270/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/270/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/270/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/270",

 "property" : "http://localhost:7474/db/data/node/270/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/270/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/270/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/270/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/270/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/270/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/270/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/270/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 270,

 "labels" : []

 },

 "data" : {

 "sequence" : 1,

 "name" : "Peter"

 },

 "indexed" : "http://localhost:7474/db/data/index/node/index_1445034018188_1/name/Peter/270"

}

Create a unique node or return fail (create)
Here, in case of an already existing node, an error should be returned. In this example, no existing
indexed node is found and a new node is created.

REST API

423

Example request

• POST http://localhost:7474/db/data/index/node/index_1445034018569_1?uniqueness=create_or_fail
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Tobias",

 "properties" : {

 "name" : "Tobias",

 "sequence" : 1

 }

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/index/node/index_1445034018569_1/name/Tobias/279

{

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/279/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/279/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/279/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/279/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/279",

 "property" : "http://localhost:7474/db/data/node/279/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/279/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/279/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/279/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/279/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/279/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/279/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/279/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 279,

 "labels" : []

 },

 "data" : {

 "sequence" : 1,

 "name" : "Tobias"

 },

 "indexed" : "http://localhost:7474/db/data/index/node/index_1445034018569_1/name/Tobias/279"

}

Create a unique node or return fail (fail)
Here, in case of an already existing node, an error should be returned. In this example, an existing node
indexed with the same data is found and an error is returned.

Example request

• POST http://localhost:7474/db/data/index/node/index_1445034017908_1?uniqueness=create_or_fail
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Peter",

 "properties" : {

REST API

424

 "name" : "Peter",

 "sequence" : 2

 }

}

Example response

• 409: Conflict
• Content-Type: application/json; charset=UTF-8

{

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/264/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/264/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/264/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/264/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/264",

 "property" : "http://localhost:7474/db/data/node/264/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/264/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/264/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/264/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/264/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/264/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/264/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/264/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 264,

 "labels" : []

 },

 "data" : {

 "sequence" : 1,

 "name" : "Peter"

 },

 "indexed" : "http://localhost:7474/db/data/index/node/index_1445034017908_1/name/Peter/264"

}

Add an existing node to unique index (not indexed)
Associates a node with the given key/value pair in the given unique index.

In this example, we are using create_or_fail uniqueness.

Example request

• POST http://localhost:7474/db/data/index/node/index_1445034018460_1?uniqueness=create_or_fail
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "value" : "some value",

 "uri" : "http://localhost:7474/db/data/node/275",

 "key" : "some-key"

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/index/node/index_1445034018460_1/some-key/some%20value/275

{

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/275/labels",

REST API

425

 "outgoing_relationships" : "http://localhost:7474/db/data/node/275/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/275/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/275/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/275",

 "property" : "http://localhost:7474/db/data/node/275/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/275/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/275/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/275/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/275/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/275/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/275/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/275/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 275,

 "labels" : []

 },

 "data" : { },

 "indexed" : "http://localhost:7474/db/data/index/node/index_1445034018460_1/some-key/some%20value/275"

}

Add an existing node to unique index (already indexed)
In this case, the node already exists in the index, and thus we get a HTTP 409 status response, as we
have set the uniqueness to create_or_fail.

Example request

• POST http://localhost:7474/db/data/index/node/index_1445034018533_1?uniqueness=create_or_fail
• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "value" : "some value",

 "uri" : "http://localhost:7474/db/data/node/278",

 "key" : "some-key"

}

Example response

• 409: Conflict
• Content-Type: application/json; charset=UTF-8

{

 "extensions" : { },

 "labels" : "http://localhost:7474/db/data/node/277/labels",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/277/relationships/out",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/277/relationships/all/{-list|&|types}",

 "traverse" : "http://localhost:7474/db/data/node/277/traverse/{returnType}",

 "self" : "http://localhost:7474/db/data/node/277",

 "property" : "http://localhost:7474/db/data/node/277/properties/{key}",

 "properties" : "http://localhost:7474/db/data/node/277/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/277/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/277/relationships/in",

 "create_relationship" : "http://localhost:7474/db/data/node/277/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/277/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/277/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/277/relationships/in/{-list|&|types}",

 "metadata" : {

 "id" : 277,

 "labels" : []

 },

 "data" : {

 "some-key" : "some value"

REST API

426

 },

 "indexed" : "http://localhost:7474/db/data/index/node/index_1445034018533_1/some-key/some%20value/277"

}

Get or create unique relationship (create)
Create a unique relationship in an index. If a relationship matching the given key and value already
exists in the index, it will be returned. If not, a new relationship will be created.

Note
The type and direction of the relationship is not regarded when determining uniqueness.

Example request

• POST http://localhost:7474/db/data/index/relationship/index_1445034013414_1/?
uniqueness=get_or_create

• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Tobias",

 "start" : "http://localhost:7474/db/data/node/31",

 "end" : "http://localhost:7474/db/data/node/32",

 "type" : "knowledge"

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/index/relationship/index_1445034013414_1/name/Tobias/8

{

 "extensions" : { },

 "start" : "http://localhost:7474/db/data/node/31",

 "property" : "http://localhost:7474/db/data/relationship/8/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/8",

 "properties" : "http://localhost:7474/db/data/relationship/8/properties",

 "type" : "knowledge",

 "end" : "http://localhost:7474/db/data/node/32",

 "metadata" : {

 "id" : 8,

 "type" : "knowledge"

 },

 "data" : {

 "name" : "Tobias"

 },

 "indexed" : "http://localhost:7474/db/data/index/relationship/index_1445034013414_1/name/Tobias/8"

}

Get or create unique relationship (existing)
Here, in case of an already existing relationship, the sent data is ignored and the existing relationship
returned.

Example request

• POST http://localhost:7474/db/data/index/relationship/index_1445034013450_1?
uniqueness=get_or_create

REST API

427

• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Peter",

 "start" : "http://localhost:7474/db/data/node/35",

 "end" : "http://localhost:7474/db/data/node/36",

 "type" : "KNOWS"

}

Example response

• 200: OK
• Content-Type: application/json; charset=UTF-8

{

 "extensions" : { },

 "start" : "http://localhost:7474/db/data/node/33",

 "property" : "http://localhost:7474/db/data/relationship/9/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/9",

 "properties" : "http://localhost:7474/db/data/relationship/9/properties",

 "type" : "KNOWS",

 "end" : "http://localhost:7474/db/data/node/34",

 "metadata" : {

 "id" : 9,

 "type" : "KNOWS"

 },

 "data" : { },

 "indexed" : "http://localhost:7474/db/data/index/relationship/index_1445034013450_1/name/Peter/9"

}

Create a unique relationship or return fail (create)
Here, in case of an already existing relationship, an error should be returned. In this example, no
existing relationship is found and a new relationship is created.

Example request

• POST http://localhost:7474/db/data/index/relationship/index_1445034013552_1?
uniqueness=create_or_fail

• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Tobias",

 "start" : "http://localhost:7474/db/data/node/43",

 "end" : "http://localhost:7474/db/data/node/44",

 "type" : "KNOWS"

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/index/relationship/index_1445034013552_1/name/Tobias/12

{

 "extensions" : { },

REST API

428

 "start" : "http://localhost:7474/db/data/node/43",

 "property" : "http://localhost:7474/db/data/relationship/12/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/12",

 "properties" : "http://localhost:7474/db/data/relationship/12/properties",

 "type" : "KNOWS",

 "end" : "http://localhost:7474/db/data/node/44",

 "metadata" : {

 "id" : 12,

 "type" : "KNOWS"

 },

 "data" : {

 "name" : "Tobias"

 },

 "indexed" : "http://localhost:7474/db/data/index/relationship/index_1445034013552_1/name/Tobias/12"

}

Create a unique relationship or return fail (fail)
Here, in case of an already existing relationship, an error should be returned. In this example, an
existing relationship is found and an error is returned.

Example request

• POST http://localhost:7474/db/data/index/relationship/index_1445034013299_1?
uniqueness=create_or_fail

• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Peter",

 "start" : "http://localhost:7474/db/data/node/23",

 "end" : "http://localhost:7474/db/data/node/24",

 "type" : "KNOWS"

}

Example response

• 409: Conflict
• Content-Type: application/json; charset=UTF-8

{

 "extensions" : { },

 "start" : "http://localhost:7474/db/data/node/21",

 "property" : "http://localhost:7474/db/data/relationship/4/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/4",

 "properties" : "http://localhost:7474/db/data/relationship/4/properties",

 "type" : "KNOWS",

 "end" : "http://localhost:7474/db/data/node/22",

 "metadata" : {

 "id" : 4,

 "type" : "KNOWS"

 },

 "data" : { },

 "indexed" : "http://localhost:7474/db/data/index/relationship/index_1445034013299_1/name/Peter/4"

}

Add an existing relationship to a unique index (not indexed)
If a relationship matching the given key and value already exists in the index, it will be returned. If not,
an HTTP 409 (conflict) status will be returned in this case, as we are using create_or_fail.

It’s possible to use get_or_create uniqueness as well.

REST API

429

Note
The type and direction of the relationship is not regarded when determining uniqueness.

Example request

• POST http://localhost:7474/db/data/index/relationship/index_1445034013258_1?
uniqueness=create_or_fail

• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Peter",

 "uri" : "http://localhost:7474/db/data/relationship/3"

}

Example response

• 201: Created
• Content-Type: application/json; charset=UTF-8
• Location: http://localhost:7474/db/data/index/relationship/index_1445034013258_1/name/Peter/3

{

 "extensions" : { },

 "start" : "http://localhost:7474/db/data/node/19",

 "property" : "http://localhost:7474/db/data/relationship/3/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/3",

 "properties" : "http://localhost:7474/db/data/relationship/3/properties",

 "type" : "KNOWS",

 "end" : "http://localhost:7474/db/data/node/20",

 "metadata" : {

 "id" : 3,

 "type" : "KNOWS"

 },

 "data" : { },

 "indexed" : "http://localhost:7474/db/data/index/relationship/index_1445034013258_1/name/Peter/3"

}

Add an existing relationship to a unique index (already indexed)
Example request

• POST http://localhost:7474/db/data/index/relationship/index_1445034013335_1?
uniqueness=create_or_fail

• Accept: application/json; charset=UTF-8
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Peter",

 "uri" : "http://localhost:7474/db/data/relationship/6"

}

Example response

• 409: Conflict
• Content-Type: application/json; charset=UTF-8

{

REST API

430

 "extensions" : { },

 "start" : "http://localhost:7474/db/data/node/25",

 "property" : "http://localhost:7474/db/data/relationship/5/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/5",

 "properties" : "http://localhost:7474/db/data/relationship/5/properties",

 "type" : "KNOWS",

 "end" : "http://localhost:7474/db/data/node/26",

 "metadata" : {

 "id" : 5,

 "type" : "KNOWS"

 },

 "data" : { },

 "indexed" : "http://localhost:7474/db/data/index/relationship/index_1445034013335_1/name/Peter/5"

}

REST API

431

21.22. WADL Support
The Neo4j REST API is a truly RESTful interface relying on hypermedia controls (links) to advertise
permissible actions to users. Hypermedia is a dynamic interface style where declarative constructs
(semantic markup) are used to inform clients of their next legal choices just in time.

Caution
RESTful APIs cannot be modeled by static interface description languages like WSDL or
WADL.

However for some use cases, developers may wish to expose WADL descriptions of the Neo4j REST API,
particularly when using tooling that expects such.

In those cases WADL generation may be enabled by adding to your server’s conf/neo4j.properties file:

unsupported_wadl_generation_enabled=true

Caution
WADL is not an officially supported part of the Neo4j server API because WADL is
insufficiently expressive to capture the set of potential interactions a client can drive
with Neo4j server. Expect the WADL description to be incomplete, and in some cases
contradictory to the real API. In any cases where the WADL description disagrees with
the REST API, the REST API should be considered authoritative. WADL generation may be
withdrawn at any point in the Neo4j release cycle.

REST API

432

21.23. Using the REST API from WebLogic
When deploying an application to WebLogic you may run into problems when Neo4j responds with an
HTTP status of 204 No Content. The response does not contain an entity body in such cases.

This can cause WebLogic to throw java.net.SocketTimeoutException: Read timed out for no obvious
reason.

If you encounter this, please try setting UseSunHttpHandler to true. You can for example do this by adding
the following to the WebLogic startup script:

-DUseSunHttpHandler=true

The WebLogic startup script is called bin\startWebLogic.sh (bin/startWebLogic.cmd on Windows).

433

Chapter 22. Deprecations

This section outlines deprecations in Neo4j 2.3.0 or earlier in order to help you find a smoother
transition path to future releases. All features listed below may be removed in a future major release.

Cypher ExecutionEngine There’s no need to use ExecutionEngine anymore. Instead, use the
execute1 methods on GraphDatabaseService. ExecutionEngine and the
related classes/interfaces have been deprecated, see the javadocs for
details.

Embedded Java API See Deprecated list in Javadoc2.
Graph Matching The graph-matching component will be removed in future releases.
Windows scripts The .bat files used to operate the database and tools on Windows

are being phased out and will be removed in future releases, in favor
of modern, equivalent PowerShell scripts. For more information, see
Section 23.3, “Windows PowerShell module” [441].

STR() function The STR() function is deprecated from Neo4j version 2.3 and onwards.
HAS() function The HAS() function is deprecated from Neo4j version 2.3 and onwards.

Please use EXISTS() instead.
Bare node patterns The usage of node identifiers without enclosing them in parentheses,

such as in MATCH n-->m RETURN n.prop, is deprecated from Neo4j
version 2.3 and onwards. Please use MATCH (n)-->(m) RETURN n.prop
instead.

Create nodes from a
parameter list of maps

The syntax CREATE (:X {param}), where param is a list of maps, is
deprecated in Neo4j version 2.3 and onwards. To achieve the same
functionality, use UNWIND instead: UNWIND {param} as props CREATE (n:X)
SET n = props

1 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/GraphDatabaseService.html#execute(java.lang.String)
2 http://neo4j.com/docs/2.3.0/javadocs/deprecated-list.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/GraphDatabaseService.html#execute(java.lang.String)
http://neo4j.com/docs/2.3.0/javadocs/deprecated-list.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/GraphDatabaseService.html#execute(java.lang.String)
http://neo4j.com/docs/2.3.0/javadocs/deprecated-list.html

Part V. Operations
This part describes how to install and maintain a Neo4j installation. This includes topics such as backing
up the database and monitoring the health of the database as well as diagnosing issues.

435

23. Installation & Deployment ... 436
23.1. System Requirements ... 437
23.2. Server Installation ... 438
23.3. Windows PowerShell module ... 441
23.4. Upgrading .. 444
23.5. Setup for remote debugging .. 446
23.6. Usage Data Collector .. 447

24. Configuration & Performance .. 448
24.1. Introduction ... 449
24.2. Server Configuration ... 450
24.3. Server Performance Tuning .. 454
24.4. Performance Guide ... 455
24.5. Logical logs .. 459
24.6. Compressed storage of property values .. 460
24.7. Memory mapped IO settings .. 462
24.8. Configuration Settings Reference ... 464

25. High Availability .. 472
25.1. Architecture ... 473
25.2. HA Setup and configuration ... 474
25.3. How Neo4j HA operates ... 480
25.4. Arbiter Instances ... 481
25.5. Upgrade of a Neo4j HA Cluster .. 482
25.6. High Availability setup tutorial .. 484
25.7. REST endpoint for HA status information .. 490
25.8. Setting up HAProxy as a load balancer .. 492

26. Backup .. 495
26.1. Introducing Backup ... 496
26.2. Performing Backups .. 498
26.3. Restoring Your Data .. 499

27. Security ... 500
27.1. Securing access to the Neo4j Server .. 501

28. Monitoring .. 506
28.1. Adjusting remote JMX access to the Neo4j Server ... 507
28.2. How to connect to a Neo4j instance using JMX and JConsole .. 508
28.3. How to connect to the JMX monitoring programmatically ... 511
28.4. Reference of supported JMX MBeans ... 512
28.5. Metrics Reporting .. 522

436

Chapter 23. Installation & Deployment

Neo4j is accessed as a standalone server, either directly through a REST interface or through a
language-specific driver.

Neo4j can be installed as a server, running either as a headless application or system service. For
information on installing The Neo4j Server, see Section 23.2, “Server Installation” [438].

For running Neo4j in high availability mode, see Chapter 25, High Availability [472].

Installation & Deployment

437

23.1. System Requirements
Memory constrains graph size, disk I/O constrains read/write performance, as always.

CPU
Performance is generally memory or I/O bound for large graphs, and compute bound for graphs which
fit in memory.

Minimum Intel Core i3
Recommended Intel Core i7

Memory
More memory allows even larger graphs, but runs the risk of inducing larger Garbage Collection
operations.

Minimum 2GB
Recommended 16—32GB or more

Disk
Aside from capacity, the performance characteristics of the disk are the most important when selecting
storage.

Minimum 10GB SATA
Recommended SSD w/ SATA

Filesystem
For proper ACID behavior, the filesystem must support flush (fsync, fdatasync).

Minimum ext4 (or similar)
Recommended ext4, ZFS

Software
Neo4j is Java-based.

Java OpenJDK 8 (preferred) or 71 or Oracle Java 8 (preferred) or 72

Operating Systems Linux, HP UX, Windows 2012 for production; additionally Windows XP, Mac
OS X for development.

Architectures x86, Power8 (OpenJDK 8 only)

Important
You must use an up-to-date Java release as there are bugs in earlier releases which may
affect Neo4j.

1 http://openjdk.java.net/
2 http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://openjdk.java.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openjdk.java.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installation & Deployment

438

23.2. Server Installation
Deployment Scenarios
As a developer, you may wish to download Neo4j and run it locally on your desktop computer. We
recommend this as an easy way to discover Neo4j.

• For Windows, see the section called “Windows” [438].
• For Unix/Linux, see the section called “Linux” [439].
• For OSX, see the section called “Mac OSX” [439].

As a systems administrator, you may wish to install Neo4j using a packaging system so you can ensure
that a cluster of machines have identical installs. See the section called “Linux Packages” [439] for
more information on this.

For information on High Availability, please refer to Chapter 25, High Availability [472].

Prerequisites
With the exception of our Windows and Mac Installers, you’ll need a Java Virtual Machine installed on
your computer. We recommend that you install OpenJDK 8 (preferred) or 73 or Oracle Java 8 (preferred)
or 74.

Setting Proper File Permissions
When installing Neo4j Server, keep in mind that the bin/neo4j executable will need to be run by
some OS system user, and that user will need write permissions to some files/directories. This goes
specifically for the data/graph.db directory. That user will also need execute permissions on other files,
such as those in bin/.

It is recommended to either choose or create a user who will own and manage the Neo4j Server. This
user should own the entire Neo4j directory, so make sure to untar/unzip it as this user and not with
sudo (UNIX/Linux/OSx) etc.

If data/graph.db is not writable by the user Neo4j won’t be able to write anything either to the store or
its log files. As a result any logs would be appended to console.log. The following error message would
indicate a possible permissions issue: Write transactions to database disabled.

Windows

Windows Installer

1. Download the version that you want from http://neo4j.com/download/.
• Select the appropriate version and architecture for your platform.

2. Double-click the downloaded installer file.
3. Follow the prompts.

Note
The installer will prompt to be granted Administrator privileges. Newer versions of Windows
come with a SmartScreen feature that may prevent the installer from running — you can
make it run anyway by clicking "More info" on the "Windows protected your PC" screen.

Tip
If you install Neo4j using the windows installer and you already have an existing instance
of Neo4j the installer will select a new install directory by default. If you specify the same
directory it will ask if you want to upgrade. This should proceed without issue although

3 http://openjdk.java.net/
4 http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://openjdk.java.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://neo4j.com/download/
http://openjdk.java.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installation & Deployment

439

some users have reported a JRE is damaged error. If you see this error simply install Neo4j
into a different location.

Windows Console Application

1. Download the latest release from http://neo4j.com/download/.
• Select the appropriate Zip distribution.

2. Right-click the downloaded file, click Extract All.
• Refer to the top-level extracted directory as: NEO4J_HOME

3. Consult Section 23.3, “Windows PowerShell module” [441] for how to start or install Neo4j.

Note
Some users have reported problems on Windows when using the ZoneAlarm firewall. If you
are having problems getting large responses from the server, or if the web interface does
not work, try disabling ZoneAlarm. Contact ZoneAlarm support to get information on how to
resolve this.

Linux

Linux Packages

• For Debian packages, see the instructions at http://debian.neo4j.org/.

After installation you may have to do some platform specific configuration and performance tuning. For
that, refer to Section 24.4, “Performance Guide” [455].

Unix Console Application

1. Download the latest release from http://neo4j.com/download/.
• Select the appropriate tar.gz distribution for your platform.

2. Extract the contents of the archive, using: tar -xf <filename>
• Refer to the top-level extracted directory as: NEO4J_HOME

3. Change directory to: $NEO4J_HOME
• Run: ./bin/neo4j console

4. Stop the server by typing Ctrl-C in the console.

Linux Service
The neo4j command can also be used with start, stop, restart or status instead of console. By using
these actions, you can create a Neo4j service. See the neo4j man page for further details.

Caution
This approach to running Neo4j as a server is deprecated. We strongly advise you to run
Neo4j from a package where feasible.

You can build your own init.d script. See for instance the Linux Standard Base specification on system
initialization5, or one of the many samples6 and tutorials7.

Mac OSX

Mac OSX Installer

1. Download the .dmg installer that you want from http://neo4j.com/download/.

5 http://refspecs.linuxfoundation.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/tocsysinit.html
6 https://gist.github.com/chrisvest/7673244
7 http://www.linux.com/learn/tutorials/442412-managing-linux-daemons-with-init-scripts

http://neo4j.com/download/
http://debian.neo4j.org/
http://neo4j.com/download/
http://refspecs.linuxfoundation.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/tocsysinit.html
http://refspecs.linuxfoundation.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/tocsysinit.html
https://gist.github.com/chrisvest/7673244
http://www.linux.com/learn/tutorials/442412-managing-linux-daemons-with-init-scripts
http://neo4j.com/download/
http://refspecs.linuxfoundation.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/tocsysinit.html
https://gist.github.com/chrisvest/7673244
http://www.linux.com/learn/tutorials/442412-managing-linux-daemons-with-init-scripts

Installation & Deployment

440

2. Click the downloaded installer file.
3. Drag the Neo4j icon into the Applications folder.

Tip
If you install Neo4j using the Mac installer and already have an existing instance of Neo4j the
installer will ensure that both the old and new versions can co-exist on your system.

Running Neo4j from the Terminal
The server can be started in the background from the terminal with the command neo4j start, and
then stopped again with neo4j stop. The server can also be started in the foreground with neo4j
console — then it’s log output will be printed to the terminal.

The neo4j-shell command can be used to interact with Neo4j from the command line using Cypher. It
will automatically connect to any server that is running on localhost with the default port, otherwise
it will show a help message. You can alternatively start the shell with an embedded Neo4j instance,
by using the -path path/to/data argument — note that only a single instance of Neo4j can access the
database files at a time.

OSX Service
Use the standard OSX system tools to create a service based on the neo4j command.

A note on Java on OS X Mavericks
Unlike previous versions, OS X Mavericks does not come with Java pre-installed. You might encounter
that the first time you run Neo4j, where OS X will trigger a popup offering you to install Java SE 6.

Java SE 6 is incompatible with Neo4j 2.3.0, so we strongly advise you to skip installing Java SE 6 if you
have no other uses for it. Instead, for Neo4j 2.3.0 we recommend you install Java SE 8 (preferred) or 7
from Oracle (http://www.oracle.com/technetwork/java/javase/downloads/index.html) as that is what we
support for production use.

Multiple Server instances on one machine
Neo4j can be set up to run as several instances on one machine, providing for instance several
databases for development.

For how to set this up, see the section called “Alternative setup: Creating a local cluster for
testing” [487]. Just use the Neo4j edition of your choice, follow the guide and remember to not set the
servers to run in HA mode.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installation & Deployment

441

23.3. Windows PowerShell module
The Neo4j PowerShell module allows administrators to:

• audit and set Neo4j configuration settings,
• install, start and stop Neo4j Windows® Services
• and start tools, such as Neo4j Shell and Neo4j Import.

The PowerShell module is installed as part of the ZIP file8 distributions of Neo4j.

System Requirements

• Requires PowerShell v2.0 or above.
• Supported on either 32 or 64 bit operating systems.

How do I import the module?
The module file is located in the bin directory of your Neo4j installation, i.e. where you unzipped the
downloaded file. For example, if Neo4j was installed in C:\Neo4j then the module would be imported
like this:

Import-Module C:\Neo4j\bin\Neo4j-Management.psd1

This will add the module to the current session.

Note
On Windows it is sometimes necessary to Unblock a downloaded zip file before you can
import its contents as a module. If you right-click on the zip file and choose "Properties" you
will get a dialog. Bottom-right on that dialog you will find an "Unblock" button. Click that.
Then you should be able to import the module.

Note
Running scripts has to be enabled on the system. This can for example be achieved by
executing the following from an elevated PowerShell prompt:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

For more information see About execution policies9.

Once the module has been imported you can start an interactive console version of a Neo4j Server like
this:

'C:\Neo4j' | Start-Neo4jServer -Console -Wait

To stop the server, issue ctrl-c in the console window that was created by the command.

How do I get help about the module?
Once the module is imported you can query the available commands like this:

Get-Command -Module Neo4j-Management

The output should be similar to the following:

CommandType Name Version Source

----------- ---- ------- ------

Function Get-Neo4jHome 2.3.0 Neo4j-Management

Function Get-Neo4jServer 2.3.0 Neo4j-Management

Function Get-Neo4jSetting 2.3.0 Neo4j-Management

8 http://neo4j.com/download/
9 http://go.microsoft.com/fwlink/?LinkID=135

http://neo4j.com/download/
http://go.microsoft.com/fwlink/?LinkID=135
http://neo4j.com/download/
http://go.microsoft.com/fwlink/?LinkID=135

Installation & Deployment

442

Function Initialize-Neo4jHACluster 2.3.0 Neo4j-Management

Function Initialize-Neo4jServer 2.3.0 Neo4j-Management

Function Install-Neo4jArbiter 2.3.0 Neo4j-Management

Function Install-Neo4jServer 2.3.0 Neo4j-Management

Function Remove-Neo4jSetting 2.3.0 Neo4j-Management

Function Restart-Neo4jArbiter 2.3.0 Neo4j-Management

Function Restart-Neo4jServer 2.3.0 Neo4j-Management

Function Set-Neo4jSetting 2.3.0 Neo4j-Management

Function Start-Neo4jArbiter 2.3.0 Neo4j-Management

Function Start-Neo4jBackup 2.3.0 Neo4j-Management

Function Start-Neo4jImport 2.3.0 Neo4j-Management

Function Start-Neo4jServer 2.3.0 Neo4j-Management

Function Start-Neo4jShell 2.3.0 Neo4j-Management

Function Stop-Neo4jArbiter 2.3.0 Neo4j-Management

Function Stop-Neo4jServer 2.3.0 Neo4j-Management

Function Uninstall-Neo4jArbiter 2.3.0 Neo4j-Management

Function Uninstall-Neo4jServer 2.3.0 Neo4j-Management

The module also supports the standard PowerShell help commands.

Get-Help Initialize-Neo4jServer

To see examples for a command, do like this:

Get-Help Initialize-Neo4jServer -examples

Basic Examples

• Retrieve basic information about the Neo4j Server e.g. Version and Edition.

Get-Neo4jServer C:\Neo4j

• Retrieve all of the settings of a Neo4j Server and display in a nice table

'C:\Neo4j' | Get-Neo4jSetting | `

Select ConfigurationFile, Name, Value | `

Format-Table

• The module uses the pipeline so you can export the settings, modify or filter them. For example, only
show settings with the value of True:

'C:\Neo4j' | Get-Neo4jSetting | `

Where { $_.Value -eq 'True' } | `

Select ConfigurationFile, Name, Value | `

Format-Table

• Quickly configure a Neo4j Server from saved settings in a CSV file.

Import-CSV -Path 'C:\Neo4jSettings.CSV' | Set-Neo4jSetting -Force

Advanced examples

• You can quickly configure and start an interactive console version of a Neo4j Server like this:

'C:\Neo4j' | `

Initialize-Neo4jServer -ListenOnIPAddress 127.0.0.1 -PassThru | `

Start-Neo4jServer -Console -Wait

To stop the server, issue ctrl-c in the console window that was created by the command.
• You can quickly configure and start a Service version of a Neo4j Server.

Note
The following must be executed from an elevated PowerShell prompt, where the Neo4j
module has been imported into the session.

Installation & Deployment

443

'C:\Neo4j' | `

Initialize-Neo4jServer -ListenOnIPAddress 127.0.0.1 -PassThru | `

Install-Neo4jServer -PassThru | `

Start-Neo4jServer

To stop the server do this:

'C:\Neo4j' | Stop-Neo4jServer

• Create a three node cluster on the local computer. This example assumes three installations of the
Enterprise version of Neo4j installed at C:\Neo4j-1,C:\Neo4j-2 and C:\Neo4j-3.

'C:\Neo4j-1' |

Initialize-Neo4jServer `

 -ListenOnIPAddress 127.0.0.1 `

 -HTTPPort 7474 `

 -OnlineBackupServer '127.0.0.1:6362' `

 -PassThru |

Initialize-Neo4jHACluster `

 -ServerID 1 `

 -InitialHosts '127.0.0.1:5001' `

 -ClusterServer '127.0.0.1:5001' `

 -HAServer '127.0.0.1:6001' `

 -PassThru |

Start-Neo4jServer -Console

'C:\Neo4j-2' |

Initialize-Neo4jServer `

 -ListenOnIPAddress 127.0.0.1 `

 -HTTPPort 7475 `

 -ClearExistingDatabase `

 -OnlineBackupServer '127.0.0.1:6363' `

 -PassThru |

Initialize-Neo4jHACluster `

 -ServerID 2 `

 -InitialHosts '127.0.0.1:5001' `

 -ClusterServer '127.0.0.1:5002' `

 -HAServer '127.0.0.1:6002' `

 -DisallowClusterInit `

 -PassThru |

Start-Neo4jServer -Console

'C:\Neo4j-3' |

Initialize-Neo4jServer `

 -ListenOnIPAddress 127.0.0.1 `

 -HTTPPort 7476 `

 -ClearExistingDatabase `

 -OnlineBackupServer '127.0.0.1:6364' `

 -PassThru |

Initialize-Neo4jHACluster `

 -ServerID 3 `

 -InitialHosts '127.0.0.1:5001' `

 -ClusterServer '127.0.0.1:5003' `

 -HAServer '127.0.0.1:6003' `

 -DisallowClusterInit `

 -PassThru |

Start-Neo4jServer -Console

Common PowerShell parameters
The module commands support the common PowerShell parameters of Verbose, Debug, WhatIf etc.

Installation & Deployment

444

23.4. Upgrading
Important
This section describes upgrading a single Neo4j instance. Upgrading a Neo4j HA cluster
(Neo4j Enterprise) requires a very specific process be followed. Please see Section 25.5,
“Upgrade of a Neo4j HA Cluster” [482].

A database created by an older version of Neo4j will be upgraded during startup when opened by
Neo4j 2.3.0. While this upgrade will occur automatically for minor changes, larger migrations require
explicit configuration before Neo4j will start.

Each Neo4j version supports upgrading from a limited number of previous versions. These upgrades
are either automatic, or require explicit configuration to allow them.

In this release of Neo4j, the following upgrades are permitted.

1.9.x → 2.3.0 Explicit configuration is required
2.0.x → 2.3.0 Explicit configuration is required
2.1.x → 2.3.0 Explicit configuration is required

Note
Downgrade is only supported between Neo4j versions that allow for automatic store
upgrades. This typically means only within patch releases of the same Neo4j version.

Automatic Store Upgrade
To perform a normal store upgrade (for minor changes to the database store):

1. Cleanly shut down the older version of Neo4j, if it is running.
2. Install Neo4j 2.3.0, and set it up to use the same database store directory (typically data/graph.db).
3. Make a copy of the database.

Important
It is strongly advised to make a copy of the database store directory at this time, to use
as a backup in case rollback/downgrade is required. This is not necessary if a backup has
been made using the online backup tool, available with Neo4j Enterprise.

4. Start up Neo4j.
5. Any database store upgrade required will occur during startup.

Explicit Store Upgrade
To perform an explicit store upgrade (required for significant changes to the database store):

1. Install Neo4j 2.3.0, and set it up to use the same database store directory (typically data/graph.db).
2. Cleanly shut down the older version of Neo4j, if it is running.
3. Set the Neo4j configuration parameter allow_store_upgrade=true in your conf/neo4j.properties file.

Neo4j will fail to start without this configuration set.
4. Start up Neo4j.
5. The database store upgrade will occur during startup.
6. The allow_store_upgrade configuration parameter should be removed, set to false or commented

out.
7. Information about the upgrade and a progress indicator are logged into the messages.log file, inside

the database store directory.

Caution
An explicit upgrade will require substantial free disk space, as it must make an entire copy of
the database store. The upgraded store version may also require larger store files overall. It

Installation & Deployment

445

is suggested to have available free disk space equivalent to at least 1.5 times the size of the
existing store.

Note
Cypher compatibility: The Cypher language is rapidly evolving, and may change
between Neo4j versions (although not between patch releases). However, Neo4j supports
compatibility directives for Cypher, that allow explicitly selecting a language version.
This is possible to do for individual statements, or globally, as described in the Cypher
Compatibility section.

Installation & Deployment

446

23.5. Setup for remote debugging
In order to configure the Neo4j server for remote debugging sessions, the Java debugging parameters
need to be passed to the Java process through the configuration. They live in the conf/neo4j-
wrapper.properties file.

In order to specify the parameters, add a line for the additional Java arguments like this:

� Java Additional Parameters

wrapper.java.additional.1=-Dorg.neo4j.server.properties=conf/neo4j-server.properties

wrapper.java.additional.2=-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=5005 \

 -Xdebug-Xnoagent-Djava.compiler=NONE\

 -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

This configuration will start a Neo4j server ready for remote debugging attachement at localhost and
port 5005. Use these parameters to attach to the process from Eclipse, IntelliJ or your remote debugger
of choice after starting the server.

Installation & Deployment

447

23.6. Usage Data Collector
The Neo4j Usage Data Collector is a sub-system that gathers usage data, reporting it to the UDC-
server at udc.neo4j.org. It is easy to disable, and does not collect any data that is confidential. For more
information about what is being sent, see below.

The Neo4j team uses this information as a form of automatic, effortless feedback from the Neo4j
community. We want to verify that we are doing the right thing by matching download statistics with
usage statistics. After each release, we can see if there is a larger retention span of the server software.

The data collected is clearly stated here. If any future versions of this system collect additional data, we
will clearly announce those changes.

The Neo4j team is very concerned about your privacy. We do not disclose any personally identifiable
information.

Technical Information
To gather good statistics about Neo4j usage, UDC collects this information:

• Kernel version: The build number, and if there are any modifications to the kernel.
• Store id: A randomized globally unique id created at the same time a database is created.
• Ping count: UDC holds an internal counter which is incremented for every ping, and reset for every

restart of the kernel.
• Source: This is either "neo4j" or "maven". If you downloaded Neo4j from the Neo4j website, it’s

"neo4j", if you are using Maven to get Neo4j, it will be "maven".
• Java version: The referrer string shows which version of Java is being used.
• Registration id: For registered server instances.
• Tags about the execution context (e.g. test, language, web-container, app-container, spring, ejb).
• Neo4j Edition (community, enterprise).
• A hash of the current cluster name (if any).
• Distribution information for Linux (rpm, dpkg, unknown).
• User-Agent header for tracking usage of REST client drivers
• MAC address to uniquely identify instances behind firewalls.
• The number of processors on the server.
• The amount of memory on the server.
• The JVM heap size.
• The number of nodes, relationships, labels and properties in the database.

After startup, UDC waits for ten minutes before sending the first ping. It does this for two reasons; first,
we don’t want the startup to be slower because of UDC, and secondly, we want to keep pings from
automatic tests to a minimum. The ping to the UDC servers is done with a HTTP GET.

How to disable UDC
UDC is easily turned off by disabling it in the database configuration. In conf/neo4j.properties for Neo4j
server or in the configuration passed to the database in embedded mode.

Usage Data Collector configuration settings

• neo4j.ext.udc.enabled: Enable the UDC extension.

neo4j.ext.udc.enabled
Description Enable the UDC extension.
Valid values neo4j. ext. udc. enabled is a boolean.
Default value true

448

Chapter 24. Configuration & Performance

In order to get optimum performance out of Neo4j for your application there are a few parameters that
can be tweaked. The two main components that can be configured are the Neo4j caches and the JVM
that Neo4j runs in. The following sections describe how to tune these.

Configuration & Performance

449

24.1. Introduction
To gain good performance, these are the things to look into first:

• Make sure the JVM is not spending too much time performing garbage collection. The goal is to
have a large enough heap to make sure that heavy/peak load will not result in so called GC-trashing.
Performance can drop as much as two orders of magnitude when GC-trashing happens.

• Start the JVM with the -server flag and a good sized heap. Having too large heap may also hurt
performance so you may have to try some different heap sizes.

• Use a concurrent garbage collector. We find that -XX:+UseG1GC works well in most use-cases.
• Give the Neo4j page cache generous amounts of memory. On a dedicated server, there are four big

memory allocations you need to balance: the operating system, the Neo4j JVM, the Neo4j page cache
and the paging memory for the Lucene indexes.
• The operating system on a dedicated server can usually make do with 1 to 2 GBs of memory, but

the more physical memory the machine has, the more memory the operating system will need.
• The Neo4j JVM needs enough heap memory for the transaction state and query processing, plus

some head-room for the garbage collector. Because the heap memory needs are so workload
dependent, it is common to see configurations from 1 GB, up to 32 GBs of heap memory.

• The Neo4j page cache should preferably have enough memory to keep the entire data set in
memory, which is to say, the page cache should be big enough to fit all of the neostore.* files that
are not neostore.transaction.db.* files.

• Lastly, leave enough memory for the operating system page cache, to fit the contents of the index
and schema directories, since it will impact index lookup performance if the indexes cannot fit in
memory.

See the Section 24.4, “Performance Guide” [455] chapter for more information on how to tune Neo4j.

How to add configuration settings
When the database is given no configuration, it will try to use reasonable defaults. This is seldom
optimal, however, because the database and the JVM have no knowledge about your workload or your
performance requirements.

The way you configure Neo4j depend on your mode of deployment; whether you are using the
database as an embedded library, or as a server.

Embedded When creating the embedded Neo4j instance it is possible to pass in parameters
contained in a map where keys and values are strings, see the section called “Starting an
embedded database with configuration settings” [576] for an example.

Server When using the Neo4j REST server, see Section 24.2, “Server Configuration” [450] for
how to add configuration settings for the database to the server.

Configuration & Performance

450

24.2. Server Configuration
Quick info

• The server’s primary configuration file is found under conf/neo4j-server.properties.
• Low-level performance tuning parameters and configuration of legacy indexes and the

remote shell are found in conf/neo4j.properties.
• Configuration of the daemonizing wrapper is found in conf/neo4j-wrapper.properties.
• HTTP logging configuration is found in conf/neo4j-http-logging.xml.

Important server configuration parameters
The main configuration file for the server can be found at conf/neo4j-server.properties. This file contains
several important settings, and although the defaults are sensible administrators might choose to make
changes (especially to the port settings).

Set the location on disk of the database directory like this:

org.neo4j.server.database.location=data/graph.db

Note
On Windows systems, absolute locations including drive letters need to read "c:/data/db".

Specify the HTTP server port supporting data, administrative, and UI access:

org.neo4j.server.webserver.port=7474

Specify the client accept pattern for the webserver (default is 127.0.0.1, localhost only):

�allow any client to connect

org.neo4j.server.webserver.address=0.0.0.0

For securing the Neo4j Server, see also Chapter 27, Security [500]

Set the location of the round-robin database directory which gathers metrics on the running server
instance:

org.neo4j.server.webadmin.rrdb.location=data/graph.db/../rrd

Set the URI path for the REST data API through which the database is accessed. This should be a relative
path.

org.neo4j.server.webadmin.data.uri=/db/data/

Setting the management URI for the administration API that the Webadmin tool uses. This should be a
relative path.

org.neo4j.server.webadmin.management.uri=/db/manage

Force the server to use IPv4 network addresses, in conf/neo4j-wrapper.conf under the section Java
Additional Parameters add a new paramter:

wrapper.java.additional=-Djava.net.preferIPv4Stack=true

Specify the number of threads used by the Neo4j Web server to control the level of concurrent HTTP
requests that the server will service.

Configuration & Performance

451

org.neo4j.server.webserver.maxthreads=200

Note
The default value is the number of CPUs reported available by the JVM, limited to a
maximum of 500. The limit can be exceeded by specifying a larger value.

The server guards against orphaned transactions by using a timeout. If there are no requests for a
given transaction within the timeout period, the server will roll it back. You can configure the timeout
period by setting the following property to the number of seconds before timeout. The default timeout
is 60 seconds.

org.neo4j.server.transaction.timeout=60

Low-level performance tuning parameters can be explicitly set by referring to the following property:

org.neo4j.server.db.tuning.properties=neo4j.properties

If this property isn’t set, the server will look for a file called neo4j.properties in the same directory as the
neo4j-server.properties file.

If this property isn’t set, and there is no neo4j.properties file in the default configuration directory, then
the server will log a warning. Subsequently at runtime the database engine will attempt tune itself
based on the prevailing conditions.

Neo4j Database performance configuration
The fine-tuning of the low-level Neo4j graph database engine is specified in a separate properties file,
conf/neo4j.properties.

The graph database engine has a range of performance tuning options which are enumerated in
Section 24.3, “Server Performance Tuning” [454]. Note that other factors than Neo4j tuning should
be considered when performance tuning a server, including general server load, memory and file
contention, and even garbage collection penalties on the JVM, though such considerations are beyond
the scope of this configuration document.

HTTP logging configuration
As well as logging events happening within the Neo4j server, it is possible to log the HTTP requests and
responses that the server consumes and produces. Configuring HTTP logging requires operators to
enable and configure the logger and where it will log; and then to optionally configure the log format.

Important
By default the HTTP logger uses Common Log Format1 meaning that most Web server tooling
can automtically consume such logs. In general users should only enable HTTP logging,
select an output directory, and if necessary alter the rollover and retention policies.

To enable HTTP logging, edit the conf/neo4j-server.properties file to resemble the following:

org.neo4j.server.http.log.enabled=true

org.neo4j.server.http.log.config=conf/neo4j-http-logging.xml

Using org.neo4j.server.http.log.enabled=true tells the server that HTTP logging is enabled.
HTTP logging can be disabled completely by setting this property to false. The setting
org.neo4j.server.http.log.config=conf/neo4j-http-logging.xml specifies the logging format and rollover
policy file that governs how HTTP log output is presented and archived. The defaults provided with
Neo4j server uses an hourly log rotation and Common Log Format.

If logging is set up to use log files then the server will check that the log file directory exists and is
writable. If this check fails, then the server will not start and will report the failure to another available
channel like standard out.

1 http://en.wikipedia.org/wiki/Common_Log_Format

http://en.wikipedia.org/wiki/Common_Log_Format
http://en.wikipedia.org/wiki/Common_Log_Format

Configuration & Performance

452

Tip
Neo4j server now has experimental support for logging full request and response bodies. It
is enabled by setting the following property in neo4j-server.properties:

org.neo4j.server.http.unsafe.content_log.enabled=true

The following logging pattern must also be specified in neo4j-http-logging.xml:

<pattern>%fullRequest\n\n%fullResponse</pattern>

This functionality fully duplicates HTTP requests and responses, logging them out to disk. As
such it is strongly advised to not run this in a production setting because of the potential
to constrain performance. However it can prove useful in testing and pre-production
environments.

Using X-Forwarded-Proto and X-Forwarded-Host to parameterize the base
URI for REST responses
There are occasions, for example when you want to host Neo4j server behind a proxy (e.g. one that
handles HTTPS traffic), and still have Neo4j respect the base URI of that externally visible proxy.

Ordinarily Neo4j uses the HOST header of the HTTP request to construct URIs in its responses. Where
a proxy is involved however, this is often undesirable. Instead Neo4j uses the X-Forwarded-Host and
X-Forwarded-Proto headers provided by proxies to parameterize the URIs in the responses from the
database’s REST API. From the outside it looks as if the proxy generated that payload. If an X-Forwarded-
Host header value contains more than one address (X-Forwarded-Host allows comma-and-space
separated lists of addresses), Neo4j picks the first, which represents the client request.

In order to take advantage of this functionality your proxy server must be configured to transmit these
headers to the Neo4j server. Failure to transmit both X-Forwarded-Host and X-Forwarded-Proto headers
will result in the original base URI being used.

Enabling logging from the garbage collector
To get garbage collection logging output you have to pass the corresponding option to the server JVM
executable by setting the following value in conf/neo4j-wrapper.conf:

wrapper.java.additional=-Xloggc:data/log/neo4j-gc.log

This line is already present and needs uncommenting. Note also that logging is not directed to console.
You will find the logging statements in data/log/ne4j-gc.log or whatever directory you set the option to.

Web Interface configuration settings

Whitelist for remote guides in Browser
The Browser can :play guides from remote locations. You can specify a whitelist of hosts from where
the Browser will be allowed to fetch content from.

In the conf/neo4j-server.properties file:

� To allow default hosts

dbms.browser.remote_content_hostname_whitelist="http://guides.neo4j.com,https://guides.neo4j.com,http://localhost,https://

localhost"

� To allow all hosts (enterprise edition only)

dbms.browser.remote_content_hostname_whitelist="*"

Outgoing connections for Browser
The Browser can load services and data from remote locations and with this configuration this can be
restricted.

Configuration & Performance

453

In the conf/neo4j-server.properties file:

dbms.security.allow_outgoing_browser_connections=true

Disabling console types in Webadmin
You may, for security reasons, want to disable the the Neo4j Shell in Webadmin. Shells allow arbitrary
code execution, and so they could constitute a security risk if you do not trust all users of your Neo4j
Server.

In the conf/neo4j-server.properties file:

� To disable all shells:

org.neo4j.server.manage.console_engines=

� To enable only the Neo4j Shell:

org.neo4j.server.manage.console_engines=shell

Configuration & Performance

454

24.3. Server Performance Tuning
At the heart of the Neo4j server is a regular Neo4j storage engine instance. That engine can be tuned in
the same way as the other embedded configurations, using the same file format. The only difference is
that the server must be told where to find the fine-tuning configuration.

Quick info

• The conf/neo4j.properties file is a standard configuration file that databases load in order to
tune their memory use

Specifying Neo4j tuning properties
The conf/neo4j-server.properties file in the server distribution, is the main configuration file for
the server. In this file we can specify a second properties file that contains the database tuning
settings (that is, the neo4j.properties file). This is done by setting a single property to point to a valid
neo4j.properties file:

org.neo4j.server.db.tuning.properties={neo4j.properties file}

On restarting the server the tuning enhancements specified in the neo4j.properties file will be loaded
and configured into the underlying database engine.

Specifying JVM tuning properties
Tuning the standalone server is achieved by editing the neo4j-wrapper.conf file in the conf directory of
NEO4J_HOME.

Edit the following properties:

neo4j-wrapper.conf JVM tuning properties
Property Name Meaning

wrapper. java. initmemory initial heap size (in MB)

wrapper. java. maxmemory maximum heap size (in MB)

wrapper. java. additional additional literal JVM parameter

For more information on the tuning properties, see Section 24.4, “Performance Guide” [455].

Configuration & Performance

455

24.4. Performance Guide
This is the Neo4j performance guide. It will attempt to give you guidance on how to tune Neo4j to
achieve maximum performance.

Try this first
The first thing to look at, when Neo4j is not performing as expected, is to make sure that your Cypher
queries do not do more work than they have to. For instance, a query might, unbeknownst to the
author, mandate the production of a large cartesian product; or it might perform an expensive label-
scan, because a certain label/property combination isn’t indexed. The Chapter 15, Query Tuning [253]
chapter has more information on how to investigate Cypher performance issues.

The second thing to look at, is to make sure that the Neo4j Java process has enough memory to do
its work. If there is not enough memory to keep the JVM heap resident, then the OS will swap it out
to storage. When a garbage collection happens, the swapped out heap memory has to be swapped
in again, and something else will have to be swapped out. This swap-thrashing effect has a dramatic
impact on the performance of the database, rendering it practically unusable. A well-tuned Neo4j
database should not have any swap activity in its steady-state.

Next, make sure the JVM has enough memory, and isn’t spending too much time in garbage collection.
The goal is to have a large enough heap so heavy/peak load will not result in so called GC-trashing.
Performance can drop as much as two orders of a magnitude when GC-thrashing happens.

Start the JVM with -server flag and -Xmx<good sized heap>, f.ex. -Xmx512m for 512 MiB memory or -Xmx3g
for 3GiB memory. Having too large heap may also hurt performance so you may have to try out some
different heap sizes. Make sure you are using a concurrent garbage collector. We find that -XX:+UseG1GC
works well in most use-cases.

The next thing to look at, is the file caching memory. Neo4j uses its own page cache for the store files,
and relies on the operating system for caching the index files. Make sure that the dbms.pagecache.memory
setting (in neo4j.properties) is large enough to fit the entire store, if possible. But also make sure that
you are not allocating so much memory to the JVM and the Neo4j page cache, that there is no memory
left for the operating system to cache the Lucene index files. For more information on configuration see
Chapter 24, Configuration & Performance [448].

Configuring heap size and GC
The size of the JVM heap is an important aspect of the performance of any Java application. The heap
is separated into an old generation and a young generation. New objects are allocated in the young
generation, and then later moved to the old generation if they stay live (in use) for long enough. When
a generation fills up, the garbage collector performs a collection, during which all other threads in the
process are paused. The young generation is quick to collect since the pause time correlates with the
live set of objects, and is independent of the size of the young generation. In the old generation, pause
times roughly correlates with the size of the heap. For this reason, the heap should ideally be sized and
tuned such that transaction and query state never makes it to the old generation.

Note
When using Neo4j Server, JVM configuration goes into the conf/neo4j-wrapper.conf file, see
Section 24.2, “Server Configuration” [450].

In server deployments, the heap size is configured with the wrapper.java.maxmemory (in MBs) setting in
the neo4j-wrapper.conf file. For embedded, you specify the heap size by giving the -Xmx???m command
line flag to the java process, where the ??? is the maximum heap size in MBs. The initial size of the heap
is specified by the wrapper.java.initmemory setting, or with the -Xms???m flag, or chosen heuristically
by the JVM itself if left unspecified. The JVM will automatically grow the heap as needed, up to the
maximum size. The growing of the heap requires a full GC cycle, so if you know that you will need all
the heap memory, you can set the initial heap size and the maximum heap size to the same value, and
avoid the GC pauses that would otherwise be required to grow the heap.

Configuration & Performance

456

Guidelines for heap size
Number of
entities

RAM size Heap
configuration

Reserved RAM for
the OS

10M 2GB 512MB ~1GB
100M 8GB+ 1-4GB 1-2GB
1B+ 16GB-32GB+ 4GB+ 1-2GB

The ratio of the size between the old generation and the new generation of the heap, is controlled by
the -XX:NewRatio=N flag, where N is typically between 2 and 8 by default. A ratio of 2 means that the old
generation size, divided by the new generation size, is equal to 2. In other words, two thirds of the heap
memory will be dedicated to the old generation. A ratio of 3 will dedicate three quarters of the heap
to the old generation, and a ratio of 1 will keep the two generations about the same size. A ratio of 1 is
quite aggressive, but may be necessary if your transactions changes a lot of data. Having a large new
generation can also be important if you run Cypher queries that needs to keep a lot of data resident,
e.g. for sorting big result sets.
If the new generation is too small, short-lived objects might be moved to the old generation too soon.
This is called premature promotion, and will slow the database down by increasing the frequency of old
generation GC cycles. If the new generation is too big, the GC might decide that the old generation does
not have enough space to fit all the objects it expects to promote from the new to the old generation.
This turns new generation GC cycles into old generation GC cycles, again slowing the database down.
Running more concurrent threads means that more allocations can take place in a given span of time,
in turn increasing the pressure on the new generation in particular.
Be aware that configuring a heap size larger than 32 GiBs will disable a feature in the JVM called
Compressed OOPs. When the heap size is less than 32 GiBs, the JVM can compress object references
to only use 32 bits. This saves a lot of heap memory, and means that the gains from a larger heap are
small or even negative, if you cannot give it at least 64 GiBs.
Neo4j has a number of long-lived objects, that stay around in the old generation, effectively for the
lifetime of the Java process. To process them efficiently, and without adversely affecting the GC pause
time, we recommend using a concurrent garbage collector.

Tip
The recommended garbage collector to use when running Neo4j in production is the
G1 garbage collector. G1 is turned on by default in server deployments. For embedded
deployments, it can be turned on by supplying -XX:+UseG1GC as a JVM parameter.

Tuning the specific GC algorithm depends on both the JVM version and the workload. It is
recommended that you test your GC settings under realistic load for days or weeks. Problems like heap
fragmentation can take a long time to surface.

Disks, RAM and other tips
As always, as with any persistence solution, performance depends a lot on the persistence media used.
Better disks equals better performance.
If you have multiple disks or persistence media available it may be a good idea to split the store files
and transaction logs across those disks. Having the store files running on disks with low seek time
can do wonders for read operations. Today a typical mechanical drive has an average seek time of
about 5ms. This can cause a query or traversal to be very slow when the amount of RAM assigned to
the page cache is too small. A new good SATA enabled SSD has an average seek time of less than 100
microseconds, meaning those scenarios will execute at least 50 times faster. However, this is still tens
or hundreds of times slower than accessing RAM.
To avoid hitting disk you need more RAM. On a standard mechanical drive you can handle graphs with
a few tens of millions of primitives (nodes, relationships and properties) with 2-3 GBs of RAM. A server
with 8-16 GBs of RAM can handle graphs with hundreds of millions of primitives, and a good server
with 16-64 GBs can handle billions of primitives. However, if you invest in a good SSD you will be able to
handle much larger graphs on less RAM.

Configuration & Performance

457

Use tools like dstat or vmstat to gather information when your application is running. If the swap or
paging numbers are high, then its a sign that the Lucene indexes don’t quite fit in memory. In this case,
queries that do index lookups will have high latencies.

When Neo4j starts up, its page cache is empty and needs to warm up. This can take a while, especially
for large stores, so it’s not uncommon to see a long period with many blocks being read from the drive,
and high IO wait times.

Neo4j also flushes its page cache in the background, so it is not uncommon to see a steady trickle of
blocks being written to the drive, during steady-state. This background flushing only produces a small
amount of IO wait, however. If the IO wait times are high during steady-state, then it might be a sign
that Neo4j is bottle-necked on the random IO performance of the drive. The best drives for running
Neo4j are fast SSDs that can take lots of random IOPS.

Linux file system tuning
Databases often produce many small and random reads when querying data, and few sequential writes
when committing changes. Neo4j is no different in this regard.

By default, most Linux distributions schedules IO requests using the Completely Fair Queuing (CFQ)
algorithm, which provides a good balance between throughput and latency. The particular IO workload
of a database, however, is better served by the Deadline scheduler. The Deadline scheduler gives
preference to read requests, and processes them as soon as possible. This tends to decrease the
latency of reads, while the latency of writes goes up. Since the writes are usually sequential, their
lingering in the IO queue increases the change of overlapping or adjacent write requests being merged
together. This effectively reduces the number of writes that are sent to the drive.

On Linux, the IO scheduler for a drive, in this case sda, can be changed at runtime like this:

$ echo 'deadline' > /sys/block/sda/queue/scheduler

$ cat /sys/block/sda/queue/scheduler

noop [deadline] cfq

Another recommended practice is to disable file and directory access time updates. This way, the file
system won’t have to issue writes that update this meta-data, thus improving write performance. You
do this by setting the noatime,nodiratime mount options in your fstab, or when you issue your disk
mount command.

There may be other tuning options relevant to your specific file system of choice, but make sure that
barriers are enabled. Barriers prevent certain reorderings of writes. They are important for maintaining
the integrity of the transaction log, in case a power failure happens.

Setting the number of open files
Linux platforms impose an upper limit on the number of concurrent files a user may have open. This
number is reported for the current user and session with the ulimit -n command:

user@localhost:~$ ulimit -n

1024

The usual default of 1024 is often not enough, especially when many indexes are used or a server
installation sees too many connections — network sockets count against that limit as well. Users are
therefore encouraged to increase that limit to a healthy value of 40000 or more, depending on usage
patterns. Setting this value via the ulimit command is possible only for the root user and that for that
session only. To set the value system wide you have to follow the instructions for your platform.

What follows is the procedure to set the open file descriptor limit to 40k for user neo4j under Ubuntu
10.04 and later. If you opted to run the neo4j service as a different user, change the first field in step 2
accordingly.

1. Become root since all operations that follow require editing protected system files.

user@localhost:~$ sudo su -

Configuration & Performance

458

Password:

root@localhost:~$

2. Edit /etc/security/limits.conf and add these two lines:

neo4j soft nofile 40000

neo4j hard nofile 40000

3. Edit /etc/pam.d/su and uncomment or add the following line:

session required pam_limits.so

4. A restart is required for the settings to take effect.
After the above procedure, the neo4j user will have a limit of 40000 simultaneous open files. If you
continue experiencing exceptions on Too many open files or Could not stat() directory then you may
have to raise that limit further.

Configuration & Performance

459

24.5. Logical logs
Logical logs in Neo4j are the journal of which operations happens and are the source of truth in
scenarios where the database needs to be recovered after a crash or similar. Logs are rotated every
now and then (defaults to when they surpass 25 Mb in size) and the amount of legacy logs to keep
can be configured. Purpose of keeping a history of logical logs include being able to serve incremental
backups as well as keeping an HA cluster running.

For any given configuration at least the latest non-empty logical log will be kept, but configuration can
be supplied to control how much more to keep. There are several different means of controlling it and
the format in which configuration is supplied is:

keep_logical_logs=<true/false>

keep_logical_logs=<amount> <type>

For example:

� Will keep logical logs indefinitely

keep_logical_logs=true

� Will keep only the most recent non-empty log

keep_logical_logs=false

� Will keep logical logs which contains any transaction committed within 30 days

keep_logical_logs=30 days

� Will keep logical logs which contains any of the most recent 500 000 transactions

keep_logical_logs=500k txs

Full list:

Type Description Example

files Number of most recent logical log files to
keep

"10 files"

size Max disk size to allow log files to occupy "300M size" or
"1G size"

txs Number of latest transactions to keep Keep "250k txs" or "5M
txs"

hours Keep logs which contains any transaction
committed within N hours from current time

"10 hours"

days Keep logs which contains any transaction
committed within N days from current time

"50 days"

Configuration & Performance

460

24.6. Compressed storage of property values
Neo4j can in many cases compress and inline the storage of property values, such as short arrays and
strings.

Compressed storage of short arrays
Neo4j will try to store your primitive arrays in a compressed way, so as to save disk space and possibly
an I/O operation. To do that, it employs a "bit-shaving" algorithm that tries to reduce the number of bits
required for storing the members of the array. In particular:

1. For each member of the array, it determines the position of leftmost set bit.
2. Determines the largest such position among all members of the array.
3. It reduces all members to that number of bits.
4. Stores those values, prefixed by a small header.

That means that when even a single negative value is included in the array then the original size of the
primitives will be used.

There is a possibility that the result can be inlined in the property record if:

• It is less than 24 bytes after compression.
• It has less than 64 members.

For example, an array long[] {0L, 1L, 2L, 4L} will be inlined, as the largest entry (4) will require 3 bits
to store so the whole array will be stored in 4 × 3 = 12 bits. The array long[] {-1L, 1L, 2L, 4L} however
will require the whole 64 bits for the -1 entry so it needs 64 × 4 = 32 bytes and it will end up in the
dynamic store.

Compressed storage of short strings
Neo4j will try to classify your strings in a short string class and if it manages that it will treat it
accordingly. In that case, it will be stored without indirection in the property store, inlining it instead in
the property record, meaning that the dynamic string store will not be involved in storing that value,
leading to reduced disk footprint. Additionally, when no string record is needed to store the property, it
can be read and written in a single lookup, leading to performance improvements and less disk space
required.

The various classes for short strings are:

• Numerical, consisting of digits 0..9 and the punctuation space, period, dash, plus, comma and
apostrophe.

• Date, consisting of digits 0..9 and the punctuation space dash, colon, slash, plus and comma.
• Hex (lower case), consisting of digits 0..9 and lower case letters a..f
• Hex (upper case), consisting of digits 0..9 and upper case letters a..f
• Upper case, consisting of upper case letters A..Z, and the punctuation space, underscore, period,

dash, colon and slash.
• Lower case, like upper but with lower case letters a..z instead of upper case
• E-mail, consisting of lower case letters a..z and the punctuation comma, underscore, period, dash,

plus and the at sign (@).
• URI, consisting of lower case letters a..z, digits 0..9 and most punctuation available.
• Alpha-numerical, consisting of both upper and lower case letters a..zA..z, digits 0..9 and punctuation

space and underscore.
• Alpha-symbolical, consisting of both upper and lower case letters a..zA..Z and the punctuation space,

underscore, period, dash, colon, slash, plus, comma, apostrophe, at sign, pipe and semicolon.
• European, consisting of most accented european characters and digits plus punctuation space, dash,

underscore and period — like latin1 but with less punctuation.

Configuration & Performance

461

• Latin 1.
• UTF-8.

In addition to the string’s contents, the number of characters also determines if the string can be
inlined or not. Each class has its own character count limits, which are

Character count limits
String class Character

count
limit

Numerical, Date and Hex 54

Uppercase, Lowercase and E-mail 43

URI, Alphanumerical and
Alphasymbolical

36

European 31

Latin1 27

UTF-8 14

That means that the largest inline-able string is 54 characters long and must be of the Numerical class
and also that all Strings of size 14 or less will always be inlined.

Also note that the above limits are for the default 41 byte PropertyRecord layout — if that parameter is
changed via editing the source and recompiling, the above have to be recalculated.

Configuration & Performance

462

24.7. Memory mapped IO settings
Introduction

Quick info

• The page cache is sometimes called low level cache, file system cache or file buffer cache.
• It caches the Neo4j data as stored on the durable media.
• The default configuration of the cache relies on heuristics and assumes that the machine is

dedicated to running Neo4j, so you might want to tune it yourself to get the most out of the
available memory.

• There is just one setting for the file buffer cache: dbms.pagecache.memory — it specifies how
much memory Neo4j is allowed to use for this cache.

Each file in the Neo4j store is accessed through the Neo4j page cache, when reading from, or writing
to, the store files. Since there is only one page cache, there is only one setting for specifying how much
memory Neo4j is allowed to use for page caching. The shared page cache ensures that memory is split
across the various store files in the most optimal manner 2, depending on how the database is used
and what data is popular.

The memory for the page cache is allocated outside the normal Java heap, so you need to take both the
Java heap, and the page cache, into consideration in your capacity planning. Other processes running
on the OS will impact the availability of such memory. Neo4j will require all of the heap memory of
the JVM, plus the memory to be used for the page cache, to be available as physical memory. Other
processes may thus not use more than what is available after the configured memory allocation is
made for Neo4j.

Important
Make sure that your system is configured such that it will never need to swap. If memory
belonging to the Neo4j process gets swapped out, it can lead to considerable performance
degradation.

The amount of memory available to the page cache is configured using the dbms.pagecache.memory
setting. With that setting, you specify the number of bytes available to the page cache, e.g. 150m og 4g.
The default page memory setting is 50% of the machines memory, after subtracting the memory that is
reserved for the Java heap.

For optimal performance, you will want to have as much of your data fit in the page cache as possible.
You can sum up the size of all the *store.db* files in your store file directory, to figure out how big a
page cache you need to fit all your data. For instance, on a posix system you can look at the total of
running $ du -hc *store.db* in your data/graph.db directory. Obviously the store files will grow as you
add more nodes, relationships and properties, so configuring more page cache memory than you have
data, is recommended when possible.

Configuration

Parameter Possible values Effect

dbms. pagecache. memory The maximum amount of
memory to use for the page
cache, either in bytes, or
greater byte-like units, such

The amount of memory to use for
mapping the store files, in a unit
of bytes. This will automatically
be rounded down to the nearest
whole page. This value cannot

2This is an informal comparison to the store-specific memory mapping settings of previous versions of Neo4j. We are not claiming
that our page replacement algorithms are optimal in the formal sense. Truly optimal page replacement algorithms require
knowledge of events arbitrarily far into the future.

Configuration & Performance

463

Parameter Possible values Effect
as 100m for 100 mega-bytes, or
4g for 4 giga-bytes.

be zero. For extremely small and
memory constrained deployments,
it is recommended to still reserve
at least a couple of megabytes for
the page cache.

dump_configuration true or false If set to true the current
configuration settings will be
written to the default system
output, mostly the console or the
logfiles.

When configuring the amount of memory allowed for the page cache and the JVM heap, make sure to
also leave room for the operating systems page cache, and other programs and services the system
might want to run. It is important to configure the memory usage, such that the Neo4j JVM process
won’t need to use any swap memory, as this will cause a significant drag on the performance of the
system.

When reading the configuration parameters on startup Neo4j will automatically configure the
parameters that are not specified. The cache size will be configured based on the available memory
on the computer, with the assumption that the machine is dedicated to running Neo4j. Specifically,
Neo4j will look at how much memory the machine has, subtract the JVM heap allocation from that, and
then use 50% of what is left for the page cache. This is the default configuration when nothing else is
specified.

Batch insert example
Read general information on batch insertion in Chapter 36, Batch Insertion [632].

The configuration should suit the data set you are about to inject using BatchInsert. Lets say we have a
random-like graph with 10M nodes and 100M relationships. Each node (and maybe some relationships)
have different properties of string and Java primitive types. The important thing is that the page cache
has enough memory to work with, that it doesn’t slow down the BatchInserter:

dbms.pagecache.memory=4g

The configuration above will more or less fit the entire graph in memory. A rough formula to calculate
the memory needed can look like this:

bytes_needed = number_of_nodes * 15

 + number_of_relationships * 34

 + number_of_properties * 64

Note that the size of the individual property very much depends on what data it contains. The numbers
given in the above formula are only a rough estimate.

Configuration & Performance

464

24.8. Configuration Settings Reference
On this page you’ll find the main configuration settings you can use with Neo4j. They can be set in the
conf/neo4j.properties file when using the Neo4j Server (see Section 24.2, “Server Configuration” [450]).
If you use the embedded database, you can pass them in as a map (see the section called “Starting an
embedded database with configuration settings” [576]).

For additional configuration settings, see:

• Section 24.2, “Server Configuration” [450]
• Settings for the remote shell extension [543]
• High Availability configuration settings [475]
• Cluster configuration settings [477]
• Online backup configuration settings [496]
• Consistency check configuration settings [496]
• Usage Data Collector configuration settings [447]
• Metrics settings [523]

List of configuration settings

• allow_file_urls: Determines if Cypher will allow using file URLs when loading data using LOAD CSV.
• allow_store_upgrade: Whether to allow a store upgrade in case the current version of the database

starts against an older store version.
• cypher_parser_version: Set this to specify the default parser (language version).
• dbms.checkpoint.interval.time: Configures the time interval between check-points.
• dbms.checkpoint.interval.tx: Configures the transaction interval between check-points.
• dbms.cypher.hints.error: Set this to specify the behavior when Cypher planner or runtime hints

cannot be fulfilled.
• dbms.cypher.min_replan_interval: The minimum lifetime of a query plan before a query is considered

for replanning.
• dbms.cypher.planner: Set this to specify the default planner for the default language version.
• dbms.cypher.statistics_divergence_threshold: The threshold when a plan is considered stale.
• dbms.pagecache.memory: The amount of memory to use for mapping the store files, in bytes (or

kilobytes with the k suffix, megabytes with m and gigabytes with g).
• dbms.pagecache.swapper: Specify which page swapper to use for doing paged IO.
• dbms.querylog.enabled: Log executed queries that takes longer than the configured threshold.
• dbms.querylog.filename: Log executed queries that take longer than the configured threshold.
• dbms.querylog.max_archives: Maximum number of history files for the query log.
• dbms.querylog.rotation.threshold: Specifies at which file size the query log will auto-rotate.
• dbms.querylog.threshold: If the execution of query takes more time than this threshold, the query is

logged - provided query logging is enabled.
• dbms.security.load_csv_file_url_root: Sets the root directory for file URLs used with the Cypher LOAD

CSV clause.
• dense_node_threshold: Relationship count threshold for considering a node to be dense.
• dump_configuration: Print out the effective Neo4j configuration after startup.
• index_background_sampling_enabled: Enable or disable background index sampling.
• index_sampling_buffer_size: Size of buffer used by index sampling.
• index_sampling_update_percentage: Percentage of index updates of total index size required before

sampling of a given index is triggered.
• keep_logical_logs: Make Neo4j keep the logical transaction logs for being able to backup the

database.
• logical_log_rotation_threshold: Specifies at which file size the logical log will auto-rotate.

Configuration & Performance

465

• lucene_searcher_cache_size: The maximum number of open Lucene index searchers.
• query_cache_size: The number of Cypher query execution plans that are cached.
• read_only: Only allow read operations from this Neo4j instance.
• relationship_grab_size: How many relationships to read at a time during iteration.
• store.internal_log.level: Log level threshold.
• store.internal_log.max_archives: Maximum number of history files for the internal log.
• store.internal_log.rotation_threshold: Threshold for rotation of the internal log.

Deprecated settings

• batched_writes: Whether or not transactions are appended to the log in batches.
• cache_type: The type of cache to use for nodes and relationships.
• log_mapped_memory_stats: Log memory mapping statistics regularly.
• log_mapped_memory_stats_filename: The file where memory mapping statistics will be recorded.
• log_mapped_memory_stats_interval: The number of records to be loaded between regular logging of

memory mapping statistics.
• neostore.nodestore.db.mapped_memory: The size to allocate for memory mapping the node store.
• neostore.propertystore.db.arrays.mapped_memory: The size to allocate for memory mapping the

array property store.
• neostore.propertystore.db.index.keys.mapped_memory: The size to allocate for memory mapping

the store for property key strings.
• neostore.propertystore.db.index.mapped_memory: The size to allocate for memory mapping the

store for property key indexes.
• neostore.propertystore.db.mapped_memory: The size to allocate for memory mapping the property

value store.
• neostore.propertystore.db.strings.mapped_memory: The size to allocate for memory mapping the

string property store.
• neostore.relationshipstore.db.mapped_memory: The size to allocate for memory mapping the

relationship store.
• store_dir: The directory where the database files are located.
• use_memory_mapped_buffers: Use memory mapped buffers for accessing the native storage layer.

allow_file_urls
Description Determines if Cypher will allow using file URLs when loading data using LOAD CSV.

Setting this value to false will cause Neo4j to fail LOAD CSV clauses that load data
from the file system.

Valid values allow_file_urls is a boolean.
Default value true

allow_store_upgrade
Description Whether to allow a store upgrade in case the current version of the database

starts against an older store version. Setting this to true does not guarantee
successful upgrade, it just allows an upgrade to be performed.

Valid values allow_store_upgrade is a boolean.
Default value false

batched_writes
Description Whether or not transactions are appended to the log in batches.
Valid values batched_writes is a boolean.
Default value true

Deprecated Write batching can no longer be turned off.

Configuration & Performance

466

cache_type
Description The type of cache to use for nodes and relationships. This configuration setting

is no longer applicable from Neo4j 2.3. Configuration has been simplified to only
require tuning of the page cache.

Valid values cache_type is a string.
Default value deprecated

Deprecated The cache_type configuration setting has been deprecated.

cypher_parser_version
Description Set this to specify the default parser (language version).
Valid values cypher_parser_version is one of 1. 9, 2. 2, 2. 3, default.
Default value default

dbms.checkpoint.interval.time
Description Configures the time interval between check-points. The database will not check-

point more often than this (unless check pointing is triggered by a different
event), but might check-point less often than this interval, if performing a check-
point takes longer time than the configured interval. A check-point is a point in
the transaction logs, from which recovery would start from. Longer check-point
intervals typically means that recovery will take longer to complete in case of a
crash. On the other hand, a longer check-point interval can also reduce the I/
O load that the database places on the system, as each check-point implies a
flushing and forcing of all the store files. The default is 5m for a check-point every
5 minutes. Other supported units are s for seconds, and ms for milliseconds.

Valid values dbms. checkpoint. interval. time is a duration (valid units are ms, s, m).
Default value 5m

dbms.checkpoint.interval.tx
Description Configures the transaction interval between check-points. The database will not

check-point more often than this (unless check pointing is triggered by a different
event), but might check-point less often than this interval, if performing a check-
point takes longer time than the configured interval. A check-point is a point in
the transaction logs, from which recovery would start from. Longer check-point
intervals typically means that recovery will take longer to complete in case of a
crash. On the other hand, a longer check-point interval can also reduce the I/
O load that the database places on the system, as each check-point implies a
flushing and forcing of all the store files. The default is 100000 for a check-point
every 100000 transactions.

Valid values dbms. checkpoint. interval. tx is an integer which is minimum 1.
Default value 100000

dbms.cypher.hints.error
Description Set this to specify the behavior when Cypher planner or runtime hints cannot be

fulfilled. If true, then non-conformance will result in an error, otherwise only a
warning is generated.

Valid values dbms. cypher. hints. error is a boolean.
Default value false

dbms.cypher.min_replan_interval
Description The minimum lifetime of a query plan before a query is considered for

replanning.

Configuration & Performance

467

Valid values dbms. cypher. min_replan_interval is a duration (valid units are ms, s, m).
Default value 1s

dbms.cypher.planner
Description Set this to specify the default planner for the default language version.
Valid values dbms. cypher. planner is one of COST, RULE, default.
Default value default

dbms.cypher.statistics_divergence_threshold
Description The threshold when a plan is considered stale. If any of the underlying statistics

used to create the plan has changed more than this value, the plan is considered
stale and will be replanned. A value of 0 means always replan, and 1 means never
replan.

Valid values dbms. cypher. statistics_divergence_threshold is a double which is minimum 0. 0,
and is maximum 1. 0.

Default value 0. 5

dbms.pagecache.memory
Description The amount of memory to use for mapping the store files, in bytes (or kilobytes

with the k suffix, megabytes with m and gigabytes with g). If Neo4j is running on a
dedicated server, then it is generally recommended to leave about 2-4 gigabytes
for the operating system, give the JVM enough heap to hold all your transaction
state and query context, and then leave the rest for the page cache. The default
page cache memory assumes the machine is dedicated to running Neo4j, and is
heuristically set to 50% of RAM minus the max Java heap size.

Valid values dbms. pagecache. memory is a byte size (valid multipliers are k, m, g, K, M, G) which is
minimum 245760.

Default value 3444033536

dbms.pagecache.swapper
Description Specify which page swapper to use for doing paged IO. This is only used when

integrating with proprietary storage technology.
Valid values dbms. pagecache. swapper is a string.

dbms.querylog.enabled
Description Log executed queries that takes longer than the configured threshold. NOTE: This

feature is only available in the Neo4j Enterprise Edition.
Valid values dbms. querylog. enabled is a boolean.
Default value false

dbms.querylog.filename
Description Log executed queries that take longer than the configured threshold.
Valid values dbms. querylog. filename is a path.

dbms.querylog.max_archives
Description Maximum number of history files for the query log.
Valid values dbms. querylog. max_archives is an integer which is minimum 1.
Default value 7

Configuration & Performance

468

dbms.querylog.rotation.threshold
Description Specifies at which file size the query log will auto-rotate. 0 means that no rotation

will automatically occur based on file size.
Valid values dbms. querylog. rotation. threshold is a byte size (valid multipliers are k, m, g, K, M, G)

which is minimum 0, and is maximum 9223372036854775807.
Default value 20m

dbms.querylog.threshold
Description If the execution of query takes more time than this threshold, the query is logged

- provided query logging is enabled. Defaults to 0 seconds, that is all queries are
logged.

Valid values dbms. querylog. threshold is a duration (valid units are ms, s, m).
Default value 0s

dbms.security.load_csv_file_url_root
Description Sets the root directory for file URLs used with the Cypher LOAD CSV clause. This

must be set to a single directory, restricting access to only those files within that
directory and its subdirectories.

Valid values dbms. security. load_csv_file_url_root is a path.

dense_node_threshold
Description Relationship count threshold for considering a node to be dense.
Valid values dense_node_threshold is an integer which is minimum 1.
Default value 50

dump_configuration
Description Print out the effective Neo4j configuration after startup.
Valid values dump_configuration is a boolean.
Default value false

index_background_sampling_enabled
Description Enable or disable background index sampling.
Valid values index_background_sampling_enabled is a boolean.
Default value true

index_sampling_buffer_size
Description Size of buffer used by index sampling.
Valid values index_sampling_buffer_size is a byte size (valid multipliers are k, m, g, K, M, G) which

is minimum 1048576, and is maximum 2147483647.
Default value 64m

index_sampling_update_percentage
Description Percentage of index updates of total index size required before sampling of a

given index is triggered.
Valid values index_sampling_update_percentage is an integer which is minimum 0.
Default value 5

keep_logical_logs
Description Make Neo4j keep the logical transaction logs for being able to backup the

database. Can be used for specifying the threshold to prune logical logs after.

Configuration & Performance

469

For example "10 days" will prune logical logs that only contains transactions
older than 10 days from the current time, or "100k txs" will keep the 100k latest
transactions and prune any older transactions.

Valid values keep_logical_logs is a string which must be true/false or of format
<number><optional unit> <type> for example 100M size for limiting logical log space
on disk to 100Mb, or 200k txs for limiting the number of transactions to keep to
200 000.

Default value 7 days

log_mapped_memory_stats
Description Log memory mapping statistics regularly.
Valid values log_mapped_memory_stats is a boolean.
Default value false

Deprecated This is no longer used.

log_mapped_memory_stats_filename
Description The file where memory mapping statistics will be recorded.
Valid values log_mapped_memory_stats_filename is a path which is relative to store_dir.
Default value mapped_memory_stats. log

Deprecated This is no longer used.

log_mapped_memory_stats_interval
Description The number of records to be loaded between regular logging of memory mapping

statistics.
Valid values log_mapped_memory_stats_interval is an integer.
Default value 1000000

Deprecated This is no longer used.

logical_log_rotation_threshold
Description Specifies at which file size the logical log will auto-rotate. 0 means that no rotation

will automatically occur based on file size.
Valid values logical_log_rotation_threshold is a byte size (valid multipliers are k, m, g, K, M, G)

which is minimum 1048576.
Default value 250M

lucene_searcher_cache_size
Description The maximum number of open Lucene index searchers.
Valid values lucene_searcher_cache_size is an integer which is minimum 1.
Default value 2147483647

neostore.nodestore.db.mapped_memory
Description The size to allocate for memory mapping the node store.
Valid values neostore. nodestore. db. mapped_memory is a byte size (valid multipliers are k, m, g, K, M,

G).
Deprecated Replaced by the dbms. pagecache. memory setting.

neostore.propertystore.db.arrays.mapped_memory
Description The size to allocate for memory mapping the array property store.

Configuration & Performance

470

Valid values neostore. propertystore. db. arrays. mapped_memory is a byte size (valid multipliers
are k, m, g, K, M, G).

Deprecated Replaced by the dbms. pagecache. memory setting.

neostore.propertystore.db.index.keys.mapped_memory
Description The size to allocate for memory mapping the store for property key strings.
Valid values neostore. propertystore. db. index. keys. mapped_memory is a byte size (valid

multipliers are k, m, g, K, M, G).
Deprecated Replaced by the dbms. pagecache. memory setting.

neostore.propertystore.db.index.mapped_memory
Description The size to allocate for memory mapping the store for property key indexes.
Valid values neostore. propertystore. db. index. mapped_memory is a byte size (valid multipliers are

k, m, g, K, M, G).
Deprecated Replaced by the dbms. pagecache. memory setting.

neostore.propertystore.db.mapped_memory
Description The size to allocate for memory mapping the property value store.
Valid values neostore. propertystore. db. mapped_memory is a byte size (valid multipliers are k, m, g,

K, M, G).
Deprecated Replaced by the dbms. pagecache. memory setting.

neostore.propertystore.db.strings.mapped_memory
Description The size to allocate for memory mapping the string property store.
Valid values neostore. propertystore. db. strings. mapped_memory is a byte size (valid multipliers

are k, m, g, K, M, G).
Deprecated Replaced by the dbms. pagecache. memory setting.

neostore.relationshipstore.db.mapped_memory
Description The size to allocate for memory mapping the relationship store.
Valid values neostore. relationshipstore. db. mapped_memory is a byte size (valid multipliers are k,

m, g, K, M, G).
Deprecated Replaced by the dbms. pagecache. memory setting.

query_cache_size
Description The number of Cypher query execution plans that are cached.
Valid values query_cache_size is an integer which is minimum 0.
Default value 1000

read_only
Description Only allow read operations from this Neo4j instance. This mode still requires write

access to the directory for lock purposes.
Valid values read_only is a boolean.
Default value false

relationship_grab_size
Description How many relationships to read at a time during iteration.
Valid values relationship_grab_size is an integer which is minimum 1.

Configuration & Performance

471

Default value 100

store.internal_log.level
Description Log level threshold.
Valid values store. internal_log. level is one of DEBUG, INFO, WARN, ERROR, NONE.
Default value INFO

store.internal_log.max_archives
Description Maximum number of history files for the internal log.
Valid values store. internal_log. max_archives is an integer which is minimum 1.
Default value 7

store.internal_log.rotation_threshold
Description Threshold for rotation of the internal log.
Valid values store. internal_log. rotation_threshold is a byte size (valid multipliers are k, m, g, K,

M, G) which is minimum 0, and is maximum 9223372036854775807.
Default value 20m

store_dir
Description The directory where the database files are located.
Valid values store_dir is a path.
Deprecated This is no longer used.

use_memory_mapped_buffers
Description Use memory mapped buffers for accessing the native storage layer.
Valid values use_memory_mapped_buffers is a boolean.
Default value true

Deprecated This setting has been obsoleted. Neo4j no longer relies on the memory-mapping
capabilities of the operating system.

472

Chapter 25. High Availability

Note
The High Availability features are only available in the Neo4j Enterprise Edition.

Neo4j High Availability or “Neo4j HA” provides the following two main features:

1. It enables a fault-tolerant database architecture, where several Neo4j slave databases can be
configured to be exact replicas of a single Neo4j master database. This allows the end-user system to
be fully functional and both read and write to the database in the event of hardware failure.

2. It enables a horizontally scaling read-mostly architecture that enables the system to handle more read
load than a single Neo4j database instance can handle.

High Availability

473

25.1. Architecture
Neo4j HA has been designed to make the transition from single machine to multi machine operation
simple, by not having to change the already existing application.

Consider an existing application with Neo4j embedded and running on a single machine. To deploy
such an application in a multi machine setup the only required change is to switch the creation of the
GraphDatabaseService from GraphDatabaseFactory to HighlyAvailableGraphDatabaseFactory. Since both
implement the same interface, no additional changes are required.

Figure 25.1. Multiple Neo4j instances in HA mode

When running Neo4j in HA mode there is always a single master and zero or more slaves. Compared to
other master-slave replication setups Neo4j HA can handle write requests on all machines so there is
no need to redirect those to the master specifically.

A slave will handle writes by synchronizing with the master to preserve consistency. Writes to master
can be configured to be optimistically pushed to 0 or more slaves. By optimistically we mean the
master will try to push to slaves before the transaction completes but if it fails the transaction will still
be successful (different from normal replication factor). All updates will however propagate from the
master to other slaves eventually so a write from one slave may not be immediately visible on all other
slaves. This is the only difference between multiple machines running in HA mode compared to single
machine operation. All other ACID characteristics are the same.

High Availability

474

25.2. HA Setup and configuration
Neo4j HA can be set up to accommodate differing requirements for load, fault tolerance and available
hardware.

In HA mode, Neo4j instances form a cluster. The instances monitor each others' availability to take
account of instances joining and leaving the cluster. They elect one instance to be the master, and
designate the other instances to be slaves.

For installation instructions of a High Availability cluster see Section 25.6, “High Availability setup
tutorial” [484].

Specifying cluster members
Specify the instances that should form the cluster by supplying ha.initial_hosts, a comma-separated
list of URLs. When each instance starts, if it can contact any of the initial hosts, then it will form a cluster
with them, otherwise it will start its own cluster.

Note that the parameter is called ha.initial_hosts because it’s only used when instances initially join
the cluster. This means that you can extend the cluster without changing the configuration of existing
instances.

Server configuration
If you are running Neo4j server, specify org.neo4j.server.database.mode=HA in conf/neo4j-
server.properties.

Settings available in the Enterprise server

• dbms.browser.credential_timeout: Configure the Neo4j Browser to time out logged in users after this
idle period.

• dbms.browser.remote_content_hostname_whitelist: Whitelist of hosts for the Neo4j Browser to be
allowed to fetch content from.

• dbms.browser.store_credentials: Configure the Neo4j Browser to store or not store user credentials.
• dbms.security.allow_outgoing_browser_connections: Configure the policy for outgoing Neo4j Browser

connections.
• org.neo4j.server.database.mode: Configure the operating mode of the database - SINGLE for stand-

alone operation or 'HA’for operating as a member in a cluster.

dbms.browser.credential_timeout
Description Configure the Neo4j Browser to time out logged in users after this idle period.

Setting this to 0 indicates no limit.
Valid values dbms. browser. credential_timeout is a duration (valid units are ms, s, m).
Default value 0

dbms.browser.remote_content_hostname_whitelist
Description Whitelist of hosts for the Neo4j Browser to be allowed to fetch content from.
Valid values dbms. browser. remote_content_hostname_whitelist is a string.
Default value

dbms.browser.store_credentials
Description Configure the Neo4j Browser to store or not store user credentials.
Valid values dbms. browser. store_credentials is a boolean.
Default value true

dbms.security.allow_outgoing_browser_connections
Description Configure the policy for outgoing Neo4j Browser connections.

High Availability

475

Valid values dbms. security. allow_outgoing_browser_connections is a boolean.
Default value true

org.neo4j.server.database.mode
Description Configure the operating mode of the database - SINGLE for stand-alone operation

or 'HA’for operating as a member in a cluster.
Valid values org. neo4j. server. database. mode is a string.
Default value SINGLE

Database configuration
HA configuration parameters should be supplied alongside general Neo4j parameters in conf/
neo4j.properties. There are many configurable parameters. In most cases it isn’t necessary to modify the
default values. The only parameters that need to be specified are ha.server_id and ha.initial_hosts.

High Availability configuration settings

• dbms.security.ha_status_auth_enabled: Enable public access to the HA status endpoints.
• ha.branched_data_policy: Policy for how to handle branched data.
• ha.com_chunk_size: Max size of the data chunks that flows between master and slaves in HA.
• ha.lock_read_timeout: Timeout for taking remote (write) locks on slaves.
• ha.max_concurrent_channels_per_slave: Maximum number of connections a slave can have to the

master.
• ha.pull_apply_batch_size: Size of batches of transactions applied on slaves when pulling from master.
• ha.pull_interval: Interval of pulling updates from master.
• ha.read_timeout: How long a slave will wait for response from master before giving up.
• ha.server: Hostname and port to bind the HA server.
• ha.slave_only: Whether this instance should only participate as slave in cluster.
• ha.state_switch_timeout: Timeout for waiting for instance to become master or slave.
• ha.tx_push_factor: The amount of slaves the master will ask to replicate a committed transaction.
• ha.tx_push_strategy: Push strategy of a transaction to a slave during commit.

dbms.security.ha_status_auth_enabled
Description Enable public access to the HA status endpoints.
Valid values dbms. security. ha_status_auth_enabled is a boolean.
Default value true

ha.branched_data_policy
Description Policy for how to handle branched data.
Valid values ha. branched_data_policy is one of keep_all, keep_last, keep_none.
Default value keep_all

ha.com_chunk_size
Description Max size of the data chunks that flows between master and slaves in HA. Bigger

size may increase throughput, but may also be more sensitive to variations in
bandwidth, whereas lower size increases tolerance for bandwidth variations.

Valid values ha. com_chunk_size is a byte size (valid multipliers are k, m, g, K, M, G) which is
minimum 1024.

Default value 2M

ha.lock_read_timeout
Description Timeout for taking remote (write) locks on slaves. Defaults to .

High Availability

476

Valid values ha. lock_read_timeout is a duration (valid units are ms, s, m).
Default value 20s

ha.max_concurrent_channels_per_slave
Description Maximum number of connections a slave can have to the master.
Valid values ha. max_concurrent_channels_per_slave is an integer which is minimum 1.
Default value 20

ha.pull_apply_batch_size
Description Size of batches of transactions applied on slaves when pulling from master.
Valid values ha. pull_apply_batch_size is an integer.
Default value 100

ha.pull_interval
Description Interval of pulling updates from master.
Valid values ha. pull_interval is a duration (valid units are ms, s, m).
Default value 0s

ha.read_timeout
Description How long a slave will wait for response from master before giving up.
Valid values ha. read_timeout is a duration (valid units are ms, s, m).
Default value 20s

ha.server
Description Hostname and port to bind the HA server.
Valid values ha. server is a hostname and port.
Default value 0. 0. 0. 0:6001-6011

ha.slave_only
Description Whether this instance should only participate as slave in cluster. If set to true, it

will never be elected as master.
Valid values ha. slave_only is a boolean.
Default value false

ha.state_switch_timeout
Description Timeout for waiting for instance to become master or slave.
Valid values ha. state_switch_timeout is a duration (valid units are ms, s, m).
Default value 120s

ha.tx_push_factor
Description The amount of slaves the master will ask to replicate a committed transaction.
Valid values ha. tx_push_factor is an integer which is minimum 0.
Default value 1

ha.tx_push_strategy
Description Push strategy of a transaction to a slave during commit.
Valid values ha. tx_push_strategy is one of round_robin, fixed.

High Availability

477

Default value fixed

Cluster configuration settings

• ha.allow_init_cluster: Whether to allow this instance to create a cluster if unable to join.
• ha.broadcast_timeout: Timeout for broadcasting values in cluster.
• ha.cluster_name: The name of a cluster.
• ha.cluster_server: Host and port to bind the cluster management communication.
• ha.configuration_timeout: Timeout for waiting for configuration from an existing cluster member

during cluster join.
• ha.default_timeout: Default timeout used for clustering timeouts.
• ha.election_timeout: Timeout for waiting for other members to finish a role election.
• ha.heartbeat_interval: How often heartbeat messages should be sent.
• ha.heartbeat_timeout: Timeout for heartbeats between cluster members.
• ha.initial_hosts: A comma-separated list of other members of the cluster to join.
• ha.join_timeout: Timeout for joining a cluster.
• ha.learn_timeout: Timeout for learning values.
• ha.leave_timeout: Timeout for waiting for cluster leave to finish.
• ha.paxos_timeout: Default timeout for all Paxos timeouts.
• ha.phase1_timeout: Timeout for Paxos phase 1.
• ha.phase2_timeout: Timeout for Paxos phase 2.
• ha.server_id: Id for a cluster instance.

ha.allow_init_cluster
Description Whether to allow this instance to create a cluster if unable to join.
Valid values ha. allow_init_cluster is a boolean.
Default value true

ha.broadcast_timeout
Description Timeout for broadcasting values in cluster. Must consider end-to-end duration of

Paxos algorithm. This value is the default value for the and settings.
Valid values ha. broadcast_timeout is a duration (valid units are ms, s, m).
Default value 30s

ha.cluster_name
Description The name of a cluster.
Valid values ha. cluster_name is a string which must be a valid cluster name.
Default value neo4j. ha

ha.cluster_server
Description Host and port to bind the cluster management communication.
Valid values ha. cluster_server is a hostname and port.
Default value 0. 0. 0. 0:5001-5099

ha.configuration_timeout
Description Timeout for waiting for configuration from an existing cluster member during

cluster join.
Valid values ha. configuration_timeout is a duration (valid units are ms, s, m).
Default value 1s

High Availability

478

ha.default_timeout
Description Default timeout used for clustering timeouts. Override specific timeout settings

with proper values if necessary. This value is the default value for the , and
settings.

Valid values ha. default_timeout is a duration (valid units are ms, s, m).
Default value 5s

ha.election_timeout
Description Timeout for waiting for other members to finish a role election. Defaults to .
Valid values ha. election_timeout is a duration (valid units are ms, s, m).
Default value 5s

ha.heartbeat_interval
Description How often heartbeat messages should be sent. Defaults to .
Valid values ha. heartbeat_interval is a duration (valid units are ms, s, m).
Default value 5s

ha.heartbeat_timeout
Description Timeout for heartbeats between cluster members. Should be at least twice that of

.
Valid values ha. heartbeat_timeout is a duration (valid units are ms, s, m).
Default value 11s

ha.initial_hosts
Description A comma-separated list of other members of the cluster to join.
Valid values ha. initial_hosts is a list separated by "," where items are a hostname and port.
Mandatory The ha. initial_hosts configuration setting is mandatory.

ha.join_timeout
Description Timeout for joining a cluster. Defaults to .
Valid values ha. join_timeout is a duration (valid units are ms, s, m).
Default value 30s

ha.learn_timeout
Description Timeout for learning values. Defaults to .
Valid values ha. learn_timeout is a duration (valid units are ms, s, m).
Default value 5s

ha.leave_timeout
Description Timeout for waiting for cluster leave to finish. Defaults to .
Valid values ha. leave_timeout is a duration (valid units are ms, s, m).
Default value 30s

ha.paxos_timeout
Description Default timeout for all Paxos timeouts. Defaults to . This value is the default value

for the , and settings.
Valid values ha. paxos_timeout is a duration (valid units are ms, s, m).
Default value 5s

High Availability

479

ha.phase1_timeout
Description Timeout for Paxos phase 1. Defaults to .
Valid values ha. phase1_timeout is a duration (valid units are ms, s, m).
Default value 5s

ha.phase2_timeout
Description Timeout for Paxos phase 2. Defaults to .
Valid values ha. phase2_timeout is a duration (valid units are ms, s, m).
Default value 5s

ha.server_id
Description Id for a cluster instance. Must be unique within the cluster.
Valid values ha. server_id is an instance id, which has to be a valid integer.
Mandatory The ha. server_id configuration setting is mandatory.

High Availability

480

25.3. How Neo4j HA operates
A Neo4j HA cluster operates cooperatively — each database instance contains the logic needed in order
to coordinate with the other members of the cluster. On startup a Neo4j HA database instance will try
to connect to an existing cluster specified by configuration. If the cluster exists, the instance will join it
as a slave. Otherwise the cluster will be created and the instance will become its master.

When performing a write transaction on a slave each write operation will be synchronized with the
master (locks will be acquired on both master and slave). When the transaction commits it will first be
committed on the master and then, if successful, on the slave. To ensure consistency, a slave has to be
up to date with the master before performing a write operation. This is built into the communication
protocol between the slave and master, so that updates will be applied to a slave communicating with
its master automatically.

Write transactions performed directly through the master will execute in the same way as running
in normal non-HA mode. On success the transaction will be pushed out to a configurable number of
slaves (default one slave). This is done optimistically meaning if the push fails the transaction will still
be successful. It’s also possible to configure push factor to 0 for higher write performance when writing
directly through the master, although increasing the risk of losing any transaction not yet pulled by
another slave if the master goes down.

Slaves can also be configured to pull updates asynchronously by setting the ha.pull_interval [476]
option.

Whenever a Neo4j database becomes unavailable, by means of for example hardware failure or
network outages, the other database instances in the cluster will detect that and mark it as temporarily
failed. A database instance that becomes available after being unavailable will automatically catch
up with the cluster. If the master goes down another (best suited) member will be elected and have
its role switched from slave to master after a quorum has been reached within the cluster. When the
new master has performed its role switch it will broadcast its availability to all the other members of
the cluster. Normally a new master is elected and started within just a few seconds and during this
time no writes can take place (the writes will block or in rare cases throw an exception). The only time
this is not true is when an old master had changes that did not get replicated to any other member
before becoming unavailable. If the new master is elected and performs changes before the old master
recovers, there will be two "branches" of the database after the point where the old master became
unavailable. The old master will move away its database (its "branch") and download a full copy from
the new master, to become available as a slave in the cluster.

All this can be summarized as:

• Write transactions can be performed on any database instance in a cluster.
• Neo4j HA is fault tolerant and can continue to operate from any number of machines down to a

single machine.
• Slaves will be automatically synchronized with the master on write operations.
• If the master fails a new master will be elected automatically.
• The cluster automatically handles instances becoming unavailable (for example due to network

issues), and also makes sure to accept them as members in the cluster when they are available again.
• Transactions are atomic, consistent and durable but eventually propagated out to other slaves.
• Updates to slaves are eventually consistent by nature but can be configured to be pushed

optimistically from master during commit.
• If the master goes down any running write transaction will be rolled back and new transactions will

block or fail until a new master has become available.
• Reads are highly available and the ability to handle read load scales with more database instances in

the cluster.

High Availability

481

25.4. Arbiter Instances
A typical deployment of Neo4j will use a cluster of 3 machines to provide fault-tolerance and read
scalability. This setup is described in Section 25.6, “High Availability setup tutorial” [484].

While having at least 3 instances is necessary for failover to happen in case the master becomes
unavailable, it is not required for all instances to run the full Neo4j stack, which includes the database
engine. Instead, what is called arbiter instances can be deployed. They can be regarded as cluster
participants in that their role is to take part in master elections with the single purpose of breaking ties
in the election process. That makes possible a scenario where you have a cluster of 2 Neo4j database
instances and an additional arbiter instance and still enjoy tolerance of a single failure of either of the 3
instances.

Arbiter instances are configured in the same way as Neo4j HA members are — through the conf/
neo4j.properties file. Settings that are not cluster specific are of course ignored, so you can easily start
up an arbiter instance in place of a properly configured Neo4j instance.

To start an arbiter instance, call

neo4j_home$./bin/neo4j-arbiter start

You can also stop, install and remove it as a service and ask for it’s status in exactly the same way as for
Neo4j instances. See also Section 23.2, “Server Installation” [438].

High Availability

482

25.5. Upgrade of a Neo4j HA Cluster
Caution
Before attempting any of the upgrades described here, please backup your database store!

To upgrade a Neo4j HA cluster to Neo4j 2.3.0 requires following a specific process which ensures that
the cluster remains consistent and all cluster instances are able to join and participate following their
upgrade.

Neo4j 2.3.0 does not support rolling upgrades, only the standard upgrade procedure is available.

Important
After upgrade is complete, existing backups will not be suitable for updating via the
incremental online backup. Please ensure that the first backup after upgrading uses an
empty target directory, and thus performs a full backup.

Standard upgrade
In order to perform a cluster upgrade to Neo4j 2.3.0, you need to first upgrade the database store on a
single instance, and then allow that store to propagate out to slaves.

Steps
The following process is recommended:

Backup

• Before anything else, backup your database store!

Shut down the cluster

• Shut down all instances. This is usually best done one instance after the other, rather than all at once.
It is also strongly recommended to shut down the master of the cluster last.

Upgrade the database store on the previous master

1. Install Neo4j 2.3.0 on the previous master, keeping the database store (typically data/graph.db) from
the previous version.

2. Disable HA in the configuration, by setting org.neo4j.server.database.mode=SINGLE.
3. Upgrade as described for a single instance of Neo4j (this may involve configuring with

allow_store_upgrade=true, as described in "Explicit Upgrades").
4. Once upgraded, shut down Neo4j again.
5. Re-enable HA in the configuration, by setting org.neo4j.server.database.mode=HA again.

Upgrade the slaves

• Install Neo4j 2.3.0 on all previous slaves and remove their database store (typically data/graph.db).
Slaves should not be started with a previous store present.

• Note: The security configuration of the master is not propagated to the slaves. See the section called
“Copying security configuration from one instance to another” [314] for more information.

Restart the cluster

1. Start the previous master instance.
2. Start each slave, one after the other. Once each slave has joined the cluster, it will sync the store

from the master instance.

High Availability

483

Tip
For larger databases, it is possible to manually copy the database store from the previous
master after it has completed the upgrade to the slaves before starting them. This will avoid
the need for them to sync from the master when starting.

Downgrading
Downgrade is only supported between Neo4j versions between which automatic upgrades are
possible. This typically means only within patch releases of the same Neo4j version. See Section 23.4,
“Upgrading” [444] for more information.

Downgrade follows the same process as for standard upgrade.

High Availability

484

25.6. High Availability setup tutorial
This guide will help you understand how to configure and deploy a Neo4j High Availability cluster. Two
scenarios will be considered:

• Configuring three instances to be deployed on three separate machines in a setting similar to what
might be encountered in a production environment.

• Modifying the former to make it possible to run a cluster of three instances on the same physical
machine, which is particularly useful during development.

Background
Each instance in a Neo4j HA cluster must be assigned an integer ID, which serves as its unique
identifier. At startup, a Neo4j instance contacts the other instances specified in the ha.initial_hosts
configuration option.

When an instance establishes a connection to any other, it determines the current state of the cluster
and ensures that it is eligible to join. To be eligible the Neo4j instance must host the same database
store as other members of the cluster (although it is allowed to be in an older state), or be a new
deployment without a database store.

Explicitly configure IP Addresses/Hostnames for a cluster
Neo4j will attempt to configure IP addresses for itself in the absence of explicit
configuration. However in typical operational environments where machines have multiple
network cards and support IPv4 and IPv6 it is strongly recommended that the operator
explicitly sets the IP address/hostname configuration for each machine in the cluster.

Let’s examine the available settings and the values they accept.

ha.server_id
ha.server_id is the cluster identifier for each instance. It must be a positive integer and must be unique
among all Neo4j instances in the cluster.

For example, ha.server_id=1.

ha.cluster_server
ha.cluster_server is an address/port setting that specifies where the Neo4j instance will listen for
cluster communications (like hearbeat messages). The default port is 5001. In the absence of a specified
IP address, Neo4j will attempt to find a valid interface for binding. While this behavior typically results
in a well-behaved server, it is strongly recommended that users explicitly choose an IP address bound to
the network interface of their choosing to ensure a coherent cluster deployment.

For example, ha.cluster_server=192.168.33.22:5001 will listen for cluster communications on the
network interface bound to the 192.168.33.0 subnet on port 5001.

ha.initial_hosts
ha.initial_hosts is a comma separated list of address/port pairs, which specify how to reach other
Neo4j instances in the cluster (as configured via their ha.cluster_server option). These hostname/ports
will be used when the Neo4j instances start, to allow them to find and join the cluster. Specifying an
instance’s own address is permitted.

Warning
Do not use any whitespace in this configuration option.

For example, ha.initial_hosts=192.168.33.22:5001,192.168.33.21:5001 will attempt to reach Neo4j
instances listening on 192.168.33.22 on port 5001 and 192.168.33.21 on port 5001 on the 192.168.33.0
subnet.

High Availability

485

ha.server
ha.server is an address/port setting that specifies where the Neo4j instance will listen for transactions
(changes to the graph data) from the cluster master. The default port is 6001. In the absence of a
specified IP address, Neo4j will attempt to find a valid interface for binding. While this behavior typically
results in a well-behaved server, it is strongly recommended that users explicitly choose an IP address
bound to the network interface of their choosing to ensure a coherent cluster topology.

ha.server must user a different port to ha.cluster_server.

For example, ha.server=192.168.33.22:6001 will listen for cluster communications on the network
interface bound to the 192.168.33.0 subnet on port 6001.

Address/port format
The ha.cluster_server and ha.server configuration options are specified as <IP
address>:<port>.

For ha.server the IP address must be the address assigned to one of the host’s network
interfaces.

For ha.cluster_server the IP address must be the address assigned to one of the host’s
network interfaces, or the value 0.0.0.0, which will cause Neo4j to listen on every network
interface.

Either the address or the port can be omitted, in which case the default for that part will be
used. If the address is omitted, then the port must be preceded with a colon (eg. :5001).

The syntax for setting the port range is: <hostname>:<first port>[-<second port>]. In this
case, Neo4j will test each port in sequence, and select the first that is unused. Note that
this usage is not permitted when the hostname is specified as 0.0.0.0 (the "all interfaces"
address).

Getting started: Setting up a production cluster

Download and configure

• Download Neo4j Enterprise from the Neo4j download site1, and unpack on three separate machines.
• Configure the HA related settings for each installation as outlined below. Note that all three

installations have the same configuration except for the ha.server_id property.

Neo4j instance
#1 — neo4j-01.local

conf/neo4j.properties

� Unique server id for this Neo4j instance

� can not be negative id and must be unique

ha.server_id = 1

� List of other known instances in this cluster

ha.initial_hosts = neo4j-01.local:5001,neo4j-02.local:5001,neo4j-03.local:5001

� Alternatively, use IP addresses:

�ha.initial_hosts = 192.168.0.20:5001,192.168.0.21:5001,192.168.0.22:5001

conf/neo4j-server.properties

� HA - High Availability

� SINGLE - Single mode, default.

org.neo4j.server.database.mode=HA

� Let the webserver only listen on the specified IP.

org.neo4j.server.webserver.address=0.0.0.0

Neo4j instance
#2 — neo4j-02.local

conf/neo4j.properties

1 http://neo4j.com/download/

http://neo4j.com/download/
http://neo4j.com/download/

High Availability

486

� Unique server id for this Neo4j instance

� can not be negative id and must be unique

ha.server_id = 2

� List of other known instances in this cluster

ha.initial_hosts = neo4j-01.local:5001,neo4j-02.local:5001,neo4j-03.local:5001

� Alternatively, use IP addresses:

�ha.initial_hosts = 192.168.0.20:5001,192.168.0.21:5001,192.168.0.22:5001

conf/neo4j-server.properties

� HA - High Availability

� SINGLE - Single mode, default.

org.neo4j.server.database.mode=HA

� Let the webserver only listen on the specified IP.

org.neo4j.server.webserver.address=0.0.0.0

Neo4j instance
#3 — neo4j-03.local

conf/neo4j.properties

� Unique server id for this Neo4j instance

� can not be negative id and must be unique

ha.server_id = 1

� List of other known instances in this cluster

ha.initial_hosts = neo4j-01.local:5001,neo4j-02.local:5001,neo4j-03.local:5001

� Alternatively, use IP addresses:

�ha.initial_hosts = 192.168.0.20:5001,192.168.0.21:5001,192.168.0.22:5001

conf/neo4j-server.properties

� HA - High Availability

� SINGLE - Single mode, default.

org.neo4j.server.database.mode=HA

� Let the webserver only listen on the specified IP.

org.neo4j.server.webserver.address=0.0.0.0

Start the Neo4j Servers
Start the Neo4j servers as usual. Note that the startup order does not matter.

neo4j-01$./bin/neo4j start

neo4j-02$./bin/neo4j start

neo4j-03$./bin/neo4j start

Startup Time
When running in HA mode, the startup script returns immediately instead of waiting for the
server to become available. This is because the instance does not accept any requests until
a cluster has been formed. In the example above this happens when you start the second
instance. To keep track of the startup state you can follow the messages in console.log — the
path is printed before the startup script returns.

Now, you should be able to access the three servers and check their HA status. Open the locations
below in a web browser and issue the following command in the editor after having set a password for
the database: :play sysinfo

• http://neo4j-01.local:7474/
• http://neo4j-02.local:7474/
• http://neo4j-03.local:7474/

http://neo4j-01.local:7474/
http://neo4j-02.local:7474/
http://neo4j-03.local:7474/

High Availability

487

Tip
You can replace database #3 with an arbiter instance, see Section 25.4, “Arbiter
Instances” [481].

That’s it! You now have a Neo4j HA cluster of three instances running. You can start by making a
change on any instance and those changes will be propagated between them. For more HA related
configuration options take a look at Section 25.2, “HA Setup and configuration” [474].

Alternative setup: Creating a local cluster for testing
If you want to start a cluster similar to the one described above, but for development and testing
purposes, it is convenient to run all Neo4j instances on the same machine. This is easy to achieve,
although it requires some additional configuration as the defaults will conflict with each other.
Furthermore, the default dbms.pagecache.memory assumes that Neo4j has the machine to itself. If we
in this example assume that the machine has 4 gigabytes of memory, and that each JVM consumes
500 megabytes of memory, then we can allocate 500 megabytes of memory to the page cache of each
server.

Download and configure

1. Download Neo4j Enterprise from the Neo4j download site2, and unpack into three separate
directories on your test machine.

2. Configure the HA related settings for each installation as outlined below.

Neo4j instance #1 — ~/
neo4j-01

conf/neo4j.properties

� Reduce the default page cache memory allocation

dbms.pagecache.memory=500m

� Port to listen to for incoming backup requests.

online_backup_server = 127.0.0.1:6366

� Unique server id for this Neo4j instance

� can not be negative id and must be unique

ha.server_id = 1

� List of other known instances in this cluster

ha.initial_hosts = 127.0.0.1:5001,127.0.0.1:5002,127.0.0.1:5003

� IP and port for this instance to bind to for communicating cluster information

� with the other neo4j instances in the cluster.

ha.cluster_server = 127.0.0.1:5001

� IP and port for this instance to bind to for communicating data with the

� other neo4j instances in the cluster.

ha.server = 127.0.0.1:6363

conf/neo4j-server.properties

� HA - High Availability

� SINGLE - Single mode, default.

org.neo4j.server.database.mode=HA

� http port (for all data, administrative, and UI access)

org.neo4j.server.webserver.port=7474

� https port (for all data, administrative, and UI access)

org.neo4j.server.webserver.https.port=7484

2 http://neo4j.com/download/

http://neo4j.com/download/
http://neo4j.com/download/

High Availability

488

Neo4j instance #2 — ~/
neo4j-02

conf/neo4j.properties

� Reduce the default page cache memory allocation

dbms.pagecache.memory=500m

� Port to listen to for incoming backup requests.

online_backup_server = 127.0.0.1:6367

� Unique server id for this Neo4j instance

� can not be negative id and must be unique

ha.server_id = 2

� List of other known instances in this cluster

ha.initial_hosts = 127.0.0.1:5001,127.0.0.1:5002,127.0.0.1:5003

� IP and port for this instance to bind to for communicating cluster information

� with the other neo4j instances in the cluster.

ha.cluster_server = 127.0.0.1:5002

� IP and port for this instance to bind to for communicating data with the

� other neo4j instances in the cluster.

ha.server = 127.0.0.1:6364

conf/neo4j-server.properties

� HA - High Availability

� SINGLE - Single mode, default.

org.neo4j.server.database.mode=HA

� http port (for all data, administrative, and UI access)

org.neo4j.server.webserver.port=7475

� https port (for all data, administrative, and UI access)

org.neo4j.server.webserver.https.port=7485

Neo4j instance #3 — ~/
neo4j-03

conf/neo4j.properties

� Reduce the default page cache memory allocation

dbms.pagecache.memory=500m

� Port to listen to for incoming backup requests.

online_backup_server = 127.0.0.1:6368

� Unique server id for this Neo4j instance

� can not be negative id and must be unique

ha.server_id = 3

� List of other known instances in this cluster

ha.initial_hosts = 127.0.0.1:5001,127.0.0.1:5002,127.0.0.1:5003

� IP and port for this instance to bind to for communicating cluster information

� with the other neo4j instances in the cluster.

ha.cluster_server = 127.0.0.1:5003

� IP and port for this instance to bind to for communicating data with the

� other neo4j instances in the cluster.

ha.server = 127.0.0.1:6365

conf/neo4j-server.properties

� HA - High Availability

� SINGLE - Single mode, default.

org.neo4j.server.database.mode=HA

� http port (for all data, administrative, and UI access)

High Availability

489

org.neo4j.server.webserver.port=7476

� https port (for all data, administrative, and UI access)

org.neo4j.server.webserver.https.port=7486

Start the Neo4j Servers
Start the Neo4j servers as usual. Note that the startup order does not matter.

localhost:~/neo4j-01$./bin/neo4j start

localhost:~/neo4j-02$./bin/neo4j start

localhost:~/neo4j-03$./bin/neo4j start

Now, you should be able to access the three servers and check their HA status. Open the locations
below in a web browser and issue the following command in the editor after having set a password for
the database: :play sysinfo

• http://127.0.0.1:7474/
• http://127.0.0.1:7475/
• http://127.0.0.1:7476/

http://127.0.0.1:7474/
http://127.0.0.1:7475/
http://127.0.0.1:7476/

High Availability

490

25.7. REST endpoint for HA status information
Introduction
A common use case for Neo4j HA clusters is to direct all write requests to the master while using slaves
for read operations, distributing the read load across the cluster and and gain failover capabilities for
your deployment. The most common way to achieve this is to place a load balancer in front of the HA
cluster, an example being shown with HA Proxy. As you can see in that guide, it makes use of a REST
endpoint to discover which instance is the master and direct write load to it. In this section, we’ll deal
with this REST endpoint and explain its semantics.

The endpoints
Each HA instance comes with 3 endpoints regarding its HA status. They are complimentary but each
may be used depending on your load balancing needs and your production setup. Those are:

• /db/manage/server/ha/master

• /db/manage/server/ha/slave

• /db/manage/server/ha/available

The /master and /slave endpoints can be used to direct write and non-write traffic respectively to
specific instances. This is the optimal way to take advantage of Neo4j’s scaling characteristics. The /
available endpoint exists for the general case of directing arbitrary request types to instances that are
available for transaction processing.

To use the endpoints, perform an HTTP GET operation on either and the following will be returned:

HA REST endpoint responses
Endpoint Instance

State
Returned Code Body text

Master 200 OK true

Slave 404 Not Found false/db/manage/server/ha/master

Unknown 404 Not Found UNKNOWN

Master 404 Not Found false

Slave 200 OK true/db/manage/server/ha/slave

Unknown 404 Not Found UNKNOWN

Master 200 OK master

Slave 200 OK slave
/db/manage/server/

ha/available
Unknown 404 Not Found UNKNOWN

Examples
From the command line, a common way to ask those endpoints is to use curl. With no arguments, curl
will do an HTTP GET on the URI provided and will output the body text, if any. If you also want to get the
response code, just add the -v flag for verbose output. Here are some examples:

• Requesting master endpoint on a running master with verbose output

�> curl -v localhost:7474/db/manage/server/ha/master

* About to connect() to localhost port 7474 (�0)

* Trying ::1...

* connected

* Connected to localhost (::1) port 7474 (�0)

> GET /db/manage/server/ha/master HTTP/1.1

> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5

> Host: localhost:7474

High Availability

491

> Accept: */*

>

< HTTP/1.1 200 OK

< Content-Type: text/plain

< Access-Control-Allow-Origin: *

< Transfer-Encoding: chunked

< Server: Jetty(6.1.25)

<

* Connection �0 to host localhost left intact

true* Closing connection �0

• Requesting slave endpoint on a running master without verbose output:

�> curl localhost:7474/db/manage/server/ha/slave

false

• Finally, requesting the master endpoint on a slave with verbose output

�> curl -v localhost:7475/db/manage/server/ha/master

* About to connect() to localhost port 7475 (�0)

* Trying ::1...

* connected

* Connected to localhost (::1) port 7475 (�0)

> GET /db/manage/server/ha/master HTTP/1.1

> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5

> Host: localhost:7475

> Accept: */*

>

< HTTP/1.1 404 Not Found

< Content-Type: text/plain

< Access-Control-Allow-Origin: *

< Transfer-Encoding: chunked

< Server: Jetty(6.1.25)

<

* Connection �0 to host localhost left intact

false* Closing connection �0

Unknown status
The UNKNOWN status exists to describe when a Neo4j instance is neither master nor slave. For
example, the instance could be transitioning between states (master to slave in a recovery
scenario or slave being promoted to master in the event of failure). If the UNKNOWN status is
returned, the client should not treat the instance as a master or a slave and should instead
pick another instance in the cluster to use, wait for the instance to transit from the UNKNOWN
state, or undertake restorative action via systems admin.

High Availability

492

25.8. Setting up HAProxy as a load balancer
In the Neo4j HA architecture, the cluster is typically fronted by a load balancer. In this section we will
explore how to set up HAProxy to perform load balancing across the HA cluster.

For this tutorial we will assume a Linux environment with HAProxy already installed. See http://
haproxy.1wt.eu/ for downloads and installation instructions.

Configuring HAProxy
HAProxy can be configured in many ways. The full documentation is available at their website.

For this example, we will configure HAProxy to load balance requests to three HA servers. Simply write
the follow configuration to /etc/haproxy.cfg:

global

 daemon

 maxconn 256

defaults

 mode http

 timeout connect 5000ms

 timeout client 50000ms

 timeout server 50000ms

frontend http-in

 bind *:80

 default_backend neo4j

backend neo4j

 option httpchk GET /db/manage/server/ha/available

 server s1 10.0.1.10:7474 maxconn 32

 server s2 10.0.1.11:7474 maxconn 32

 server s3 10.0.1.12:7474 maxconn 32

listen admin

 bind *:8080

 stats enable

HAProxy can now be started by running:

/usr/sbin/haproxy -f /etc/haproxy.cfg

You can connect to http://<ha-proxy-ip>:8080/haproxy?stats to view the status dashboard. This
dashboard can be moved to run on port 80, and authentication can also be added. See the HAProxy
documentation for details on this.

Optimizing for reads and writes
Neo4j provides a catalogue of health check URLs (see Section 25.7, “REST endpoint for HA status
information” [490]) that HAProxy (or any load balancer for that matter) can use to distinguish machines
using HTTP response codes. In the example above we used the /available endpoint, which directs
requests to machines that are generally available for transaction processing (they are alive!).

However, it is possible to have requests directed to slaves only, or to the master only. If you are able to
distinguish in your application between requests that write, and requests that only read, then you can
take advantage of two (logical) load balancers: one that sends all your writes to the master, and one
that sends all your read-only requests to a slave. In HAProxy you build logical load balancers by adding
multiple backends.

The trade-off here is that while Neo4j allows slaves to proxy writes for you, this indirection
unnecessarily ties up resources on the slave and adds latency to your write requests. Conversely, you
don’t particularly want read traffic to tie up resources on the master; Neo4j allows you to scale out for

http://haproxy.1wt.eu/
http://haproxy.1wt.eu/
http://<ha-proxy-ip>:8080/haproxy?stats

High Availability

493

reads, but writes are still constrained to a single instance. If possible, that instance should exclusively
do writes to ensure maximum write performance.

The following example excludes the master from the set of machines using the /slave endpoint.

global

 daemon

 maxconn 256

defaults

 mode http

 timeout connect 5000ms

 timeout client 50000ms

 timeout server 50000ms

frontend http-in

 bind *:80

 default_backend neo4j-slaves

backend neo4j-slaves

 option httpchk GET /db/manage/server/ha/slave

 server s1 10.0.1.10:7474 maxconn 32 check

 server s2 10.0.1.11:7474 maxconn 32 check

 server s3 10.0.1.12:7474 maxconn 32 check

listen admin

 bind *:8080

 stats enable

Note
In practice, writing to a slave is uncommon. While writing to slaves has the benefit of
ensuring that data is persisted in two places (the slave and the master), it comes at a
cost. The cost is that the slave must immediately become consistent with the master by
applying any missing transactions and then synchronously apply the new transaction with
the master. This is a more expensive operation than writing to the master and having the
master push changes to one or more slaves.

Cache-based sharding with HAProxy
Neo4j HA enables what is called cache-based sharding. If the dataset is too big to fit into the cache of
any single machine, then by applying a consistent routing algorithm to requests, the caches on each
machine will actually cache different parts of the graph. A typical routing key could be user ID.

In this example, the user ID is a query parameter in the URL being requested. This will route the same
user to the same machine for each request.

global

 daemon

 maxconn 256

defaults

 mode http

 timeout connect 5000ms

 timeout client 50000ms

 timeout server 50000ms

frontend http-in

 bind *:80

 default_backend neo4j-slaves

backend neo4j-slaves

 balance url_param user_id

 server s1 10.0.1.10:7474 maxconn 32

 server s2 10.0.1.11:7474 maxconn 32

High Availability

494

 server s3 10.0.1.12:7474 maxconn 32

listen admin

 bind *:8080

 stats enable

Naturally the health check and query parameter-based routing can be combined to only route requests
to slaves by user ID. Other load balancing algorithms are also available, such as routing by source IP
(source), the URI (uri) or HTTP headers(hdr()).

495

Chapter 26. Backup

Note
The Backup features are only available in the Neo4j Enterprise Edition.

Backup

496

26.1. Introducing Backup
Backups are performed over the network, from a running Neo4j server and into a local copy of the
database store (the backup). The backup is run using the neo4j-backup tool, which is provided alongside
Neo4j Enterprise.

Important
Neo4j Server must be configured to run a backup service. This is enabled via the
configuration parameter online_backup_enabled, and is enabled by default. The interface and
port the backup service listens on is configured via the parameter online_backup_server and
defaults to the loopback interface and port 6362. It is typical to reconfigure this to listen on
an external interface, by setting online_backup_server=<my-host-ip-address>:6362. It can also
be configured to listen on all interfaces by setting online_backup_server=0.0.0.0:6362.

Performing a backup requires specifying the target host, an optional port, and the backup location. The
backup tool will automatically select a full or incremental backup, based on whether an existing backup
is present at that location.

The relevant configuration settings are found below.

Online backup configuration settings

• online_backup_enabled: Enable support for running online backups.
• online_backup_server: Listening server for online backups.

online_backup_enabled
Description Enable support for running online backups.
Valid values online_backup_enabled is a boolean.
Default value true

online_backup_server
Description Listening server for online backups.
Valid values online_backup_server is a hostname and port.
Default value 0. 0. 0. 0:6362-6372

Consistency check configuration settings

• consistency_check_graph: Perform checks between nodes, relationships, properties, types and
tokens.

• consistency_check_indexes: Perform checks on indexes.
• consistency_check_label_scan_store: Perform checks on the label scan store.
• consistency_check_property_owners: Perform optional additional checking on property ownership.
• consistency_check_report_file: File name for inconsistencies log file.

consistency_check_graph
Description Perform checks between nodes, relationships, properties, types and tokens.
Valid values consistency_check_graph is a boolean.
Default value true

consistency_check_indexes
Description Perform checks on indexes. Checking indexes is more expensive than checking

the native stores, so it may be useful to turn off this check for very large
databases.

Valid values consistency_check_indexes is a boolean.

Backup

497

Default value true

consistency_check_label_scan_store
Description Perform checks on the label scan store. Checking this store is more expensive

than checking the native stores, so it may be useful to turn off this check for very
large databases.

Valid values consistency_check_label_scan_store is a boolean.
Default value true

consistency_check_property_owners
Description Perform optional additional checking on property ownership. This can detect a

theoretical inconsistency where a property could be owned by multiple entities.
However, the check is very expensive in time and memory, so it is skipped by
default.

Valid values consistency_check_property_owners is a boolean.
Default value false

consistency_check_report_file
Description File name for inconsistencies log file. If not specified, logs to a file in the store

directory.
Valid values consistency_check_report_file is a path.

Backup

498

26.2. Performing Backups
Tip
When using Neo4j in embedded mode, the way to perform backup is still the same.

Backup Commands

� Performing a full backup: create a blank directory and run the backup tool

mkdir /mnt/backup/neo4j-backup

./bin/neo4j-backup -host 192.168.1.34 -to /mnt/backup/neo4j-backup

� Performing an incremental backup: just specify the location of your previous backup

./bin/neo4j-backup -host 192.168.1.34 -to /mnt/backup/neo4j-backup

� Performing an incremental backup where the service is listening on a non-default port

./bin/neo4j-backup -host 192.168.1.34 -port 9999 -to /mnt/backup/neo4j-backup

Incremental Backups
An incremental backup is performed whenever an existing backup directory is specified. The backup
tool will then copy any new transactions from the Neo4j server and apply them to the backup. The
result will be an updated backup that is consistent with the current server state.

However, the incremental backup may fail for a number of reasons:

• If the existing directory doesn’t contain a valid backup.
• If the existing directory contains a backup of a different database store.
• If the existing directory contains a backup from a previous database version.

Note
Note that when copying the outstanding transactions, the backup tool needs access to the
historical logical logs. These logical logs are kept by Neo4j and automatically removed after
a period of time, based on the keep_logical_logs configuration. If the required logical logs
have already been removed, the backup tool will do a full backup instead.

Online Backup from Java
In order to programmatically backup your data full or subsequently incremental from a JVM based
program, you need to write Java code like the following:

OnlineBackup backup = OnlineBackup.from("127.0.0.1");

backup.full(backupPath.getPath());

assertTrue("Should be consistent", backup.isConsistent());

backup.incremental(backupPath.getPath());

For more information, please see the Javadocs for OnlineBackup1.

1 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/backup/OnlineBackup.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/backup/OnlineBackup.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/backup/OnlineBackup.html

Backup

499

26.3. Restoring Your Data
The Neo4j backups are fully functional databases. To use a backup, all you need to do replace your
database folder with the backup. Just make sure the database isn’t running while replacing the folder.

To restore from backup in a clustered environment, follow these steps:

1. Shut down all instances in the cluster.
2. Restore the backup to the individual database folders.
3. Restart the instances.

Make sure there’s at least one neostore.transaction.db.nnn file included in the backup. If there isn’t, start
up one instance in stand-alone mode first, and issue one updating transaction against it (any sort of
write, like creating a node). Then copy that database to all instances in your cluster.

500

Chapter 27. Security

Neo4j in itself does not enforce security on the data level. However, there are different aspects that
should be considered when using Neo4j in different scenarios. See Section 27.1, “Securing access to the
Neo4j Server” [501] for details.

Security

501

27.1. Securing access to the Neo4j Server
Secure the port and remote client connection accepts
By default, the Neo4j Server is bundled with a Web server that binds to host localhost on port 7474,
answering only requests from the local machine.

This is configured in the conf/neo4j-server.properties file:

� http port (for all data, administrative, and UI access)

org.neo4j.server.webserver.port=7474

� Let the webserver only listen on the specified IP. Default is localhost (only

� accept local connections). Uncomment to allow any connection.

�org.neo4j.server.webserver.address=0.0.0.0

If you want the server to listen to external hosts, configure the Web server in the conf/neo4j-
server.properties by setting the property org.neo4j.server.webserver.address=0.0.0.0 which will cause
the server to bind to all available network interfaces. Note that firewalls et cetera have to be configured
accordingly as well.

Server authentication and authorization
Neo4j requires clients to supply authentication credentials when accessing the REST API. Without valid
credentials, access to the database will be forbidden.

The authentication and authorization data is stored under data/dbms/auth. If necessary, this file can
be copied over to other neo4j instances to ensure they share the same username/password (see the
section called “Copying security configuration from one instance to another” [314]).

Please refer to Section 21.3, “REST API Authentication and Authorization” [311] for additional details.
When accessing Neo4j over unsecured networks, make sure HTTPS is configured and used for access
(see the section called “HTTPS support” [501]).

If necessary, authentication may be disabled. This will allow any client to access the database without
supplying authentication credentials.

� Disable authorization

dbms.security.auth_enabled=false

Warning
Disabling authentication is not recommended, and should only be done if the operator
has a good understanding of their network security, including protection against cross-site
scripting (XSS)1 attacks via web browsers. Developers should not disable authentication if
they have a local installation using the default listening ports.

HTTPS support
The Neo4j server includes built in support for SSL encrypted communication over HTTPS. The first time
the server starts, it automatically generates a self-signed SSL certificate and a private key. Because the
certificate is self signed, it is not safe to rely on for production use, instead, you should provide your
own key and certificate for the server to use.

To provide your own key and certificate, replace the generated key and certificate, or change the conf/
neo4j-server.properties file to set the location of your certificate and key:

� Certificate location (auto generated if the file does not exist)

dbms.security.tls_certificate_file=ssl/snakeoil.cert

� Private key location (auto generated if the file does not exist)

dbms.security.tls_key_file=ssl/snakeoil.key

1 http://en.wikipedia.org/wiki/Cross-site_scripting

http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting

Security

502

Note that the key should be unencrypted. Make sure you set correct permissions on the private key, so
that only the Neo4j server user can read/write it.

Neo4j also supports chained SSL certificates. This requires to have all certificates in PEM format
combined in one file and the private key needs to be in DER format.

You can set what port the HTTPS connector should bind to in the same configuration file, as well as turn
HTTPS off:

� Turn https-support on/off

org.neo4j.server.webserver.https.enabled=true

� https port (for all data, administrative, and UI access)

org.neo4j.server.webserver.https.port=443

Arbitrary code execution

Important
The Neo4j server exposes remote scripting functionality by default that allow full access to
the underlying system. Exposing your server without implementing a security layer presents
a substantial security vulnerability.

By default, the Neo4j Server comes with some places where arbitrary code code execution can happen.
These are the Section 21.17, “Traversals” [373] REST endpoints. To secure these, either disable them
completely by removing offending plugins from the server classpath, or secure access to these URLs
through proxies or Authorization Rules. Also, the Java Security Manager, see http://docs.oracle.com/
javase/7/docs/technotes/guides/security/index.html, can be used to secure parts of the codebase.

Server authorization rules
Administrators may require more fine-grained security policies in addition to the basic authorization
and/or IP-level restrictions on the Web server. Neo4j server supports administrators in allowing or
disallowing access the specific aspects of the database based on credentials that users or applications
provide.

To facilitate domain-specific authorization policies in Neo4j Server, security rules can
be implemented and registered with the server. This makes scenarios like user and
role based security and authentication against external lookup services possible. See
org.neo4j.server.rest.security.SecurityRule in the javadocs downloadable from Maven Central
(org.neo4j.app:neo4j-server)2.

Caution
The use of Server Authorization Rules may interact unexpectedly with the built-in
authentication and authorization (see the section called “Server authentication and
authorization” [501]), if enabled.

Enforcing Server Authorization Rules
In this example, a (dummy) failing security rule is registered to deny access to all URIs to the server by
listing the rules class in neo4j-server.properties:

org.neo4j.server.rest.security_rules=my.rules.PermanentlyFailingSecurityRule

with the rule source code of:

public class PermanentlyFailingSecurityRule implements SecurityRule

{

 public static final String REALM = "WallyWorld"; // as per RFC2617 :-)

2 http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j.app%22%20AND%20a%3A%22neo4j-server%22

http://docs.oracle.com/javase/7/docs/technotes/guides/security/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/index.html
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j.app%22%20AND%20a%3A%22neo4j-server%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j.app%22%20AND%20a%3A%22neo4j-server%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j.app%22%20AND%20a%3A%22neo4j-server%22

Security

503

 @Override

 public boolean isAuthorized(HttpServletRequest request)

 {

 return false; // always fails - a production implementation performs

 // deployment-specific authorization logic here

 }

 @Override

 public String forUriPath()

 {

 return "/*";

 }

 @Override

 public String wwwAuthenticateHeader()

 {

 return SecurityFilter.basicAuthenticationResponse(REALM);

 }

}

With this rule registered, any access to the server will be denied. In a production-quality
implementation the rule will likely lookup credentials/claims in a 3rd-party directory service (e.g. LDAP)
or in a local database of authorized users.

Example request

• POST http://localhost:7474/db/data/node
• Accept: application/json; charset=UTF-8

Example response

• 401: Unauthorized
• WWW-Authenticate: Basic realm="WallyWorld"

Using Wildcards to Target Security Rules
In this example, a security rule is registered to deny access to all URIs to the server by listing the rule(s)
class(es) in neo4j-server.properties. In this case, the rule is registered using a wildcard URI path (where
* characters can be used to signify any part of the path). For example /users* means the rule will be
bound to any resources under the /users root path. Similarly /users*type* will bind the rule to resources
matching URIs like /users/fred/type/premium.

org.neo4j.server.rest.security_rules=my.rules.PermanentlyFailingSecurityRuleWithWildcardPath

with the rule source code of:

public String forUriPath()

{

 return "/protected/*";

}

With this rule registered, any access to URIs under /protected/ will be denied by the server. Using
wildcards allows flexible targeting of security rules to arbitrary parts of the server’s API, including any
unmanaged extensions or managed plugins that have been registered.

Example request

• GET http://localhost:7474/protected/tree/starts/here/dummy/more/stuff
• Accept: application/json

Example response

Security

504

• 401: Unauthorized
• WWW-Authenticate: Basic realm="WallyWorld"

Using Complex Wildcards to Target Security Rules
In this example, a security rule is registered to deny access to all URIs matching a complex pattern. The
config looks like this:

org.neo4j.server.rest.security_rules=my.rules.PermanentlyFailingSecurityRuleWithComplexWildcardPath

with the rule source code of:

public class PermanentlyFailingSecurityRuleWithComplexWildcardPath implements SecurityRule

{

 public static final String REALM = "WallyWorld"; // as per RFC2617 :-)

 @Override

 public boolean isAuthorized(HttpServletRequest request)

 {

 return false;

 }

 @Override

 public String forUriPath()

 {

 return "/protected/*/something/else/*/final/bit";

 }

 @Override

 public String wwwAuthenticateHeader()

 {

 return SecurityFilter.basicAuthenticationResponse(REALM);

 }

}

Example request

• GET http://localhost:7474/protected/wildcard_replacement/x/y/z/something/else/
more_wildcard_replacement/a/b/c/final/bit/more/stuff

• Accept: application/json

Example response

• 401: Unauthorized
• WWW-Authenticate: Basic realm="WallyWorld"

Security in depth
Although the Neo4j server has a number of security features built-in (see the above chapters), for
sensitive deployments it is often sensible to front against the outside world it with a proxy like Apache
mod_proxy 3.

This provides a number of advantages:

• Control access to the Neo4j server to specific IP addresses, URL patterns and IP ranges. This can be
used to make for instance only the /db/data namespace accessible to non-local clients, while the /db/
admin URLs only respond to a specific IP address.

3http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

Security

505

<Proxy *>

 Order Deny,Allow

 Deny from all

 Allow from 192.168.0

</Proxy>

While it is possible to develop plugins using Neo4j’s SecurityRule (see above), operations
professionals would often prefer to configure proxy servers such as Apache. However, it should be
noted that in cases where both approaches are being used, they will work harmoniously provided
that the behavior is consistent across proxy server and SecurityRule plugins.

• Run Neo4j Server as a non-root user on a Linux/Unix system on a port < 1000 (e.g. port 80) using

ProxyPass /neo4jdb/data http://localhost:7474/db/data

ProxyPassReverse /neo4jdb/data http://localhost:7474/db/data

• Simple load balancing in a clustered environment to load-balance read load using the Apache
mod_proxy_balancer 4 plugin

<Proxy balancer://mycluster>

BalancerMember http://192.168.1.50:80

BalancerMember http://192.168.1.51:80

</Proxy>

ProxyPass /test balancer://mycluster

Neo4j Web Interface Security
For configuration settings to consider in order to get the level of security you want to achieve, see the
section called “Web Interface configuration settings” [452].

4http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

506

Chapter 28. Monitoring

Note
Most of the monitoring features are only available in the Enterprise edition of Neo4j.

In order to be able to continuously get an overview of the health of a Neo4j database, there are
different levels of monitoring facilities available. Most of these are exposed through JMX1. Neo4j
Enterprise also has the ability to automatically report metrics to commonly used monitoring systems,
like Graphite2 and Ganglia3.

1 http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
2 http://graphite.wikidot.com
3 http://ganglia.sourceforge.net

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://graphite.wikidot.com
http://ganglia.sourceforge.net
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://graphite.wikidot.com
http://ganglia.sourceforge.net

Monitoring

507

28.1. Adjusting remote JMX access to the Neo4j Server
Per default, the Neo4j Enterprise Server edition does not allow remote JMX connections, since the
relevant options in the conf/neo4j-wrapper.conf configuration file are commented out. To enable this
feature, you have to remove the � characters from the various com.sun.management.jmxremote options
there.

When commented in, the default values are set up to allow remote JMX connections with certain roles,
refer to the conf/jmx.password, conf/jmx.access and conf/neo4j-wrapper.conf files for details.

Make sure that conf/jmx.password has the correct file permissions. The owner of the file has to be the
user that will run the service, and the permissions should be read only for that user. On Unix systems,
this is 0600.

On Windows, follow the tutorial at http://docs.oracle.com/javase/7/docs/technotes/guides/
management/security-windows.html to set the correct permissions. If you are running the service
under the Local System Account, the user that owns the file and has access to it should be SYSTEM.

With this setup, you should be able to connect to JMX monitoring of the Neo4j server using <IP-OF-
SERVER>:3637, with the username monitor and the password Neo4j.

Note that it is possible that you have to update the permissions and/or ownership of the conf/
jmx.password and conf/jmx.access files — refer to the relevant section in conf/neo4j-wrapper.conf for
details.

Warning
For maximum security, please adjust at least the password settings in conf/jmx.password for
a production installation.

For more details, see: http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html.

http://docs.oracle.com/javase/7/docs/technotes/guides/management/security-windows.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/security-windows.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html

Monitoring

508

28.2. How to connect to a Neo4j instance using JMX and
JConsole
First, start your embedded database or the Neo4j Server, for instance using

$NEO4j_HOME/bin/neo4j start

Now, start JConsole with

$JAVA_HOME/bin/jconsole

Connect to the process running your Neo4j database instance:

Figure 28.1. Connecting JConsole to the Neo4j Java process

Now, beside the MBeans exposed by the JVM, you will see an org.neo4j section in the MBeans tab.
Under that, you will have access to all the monitoring information exposed by Neo4j.

Monitoring

509

For opening JMX to remote monitoring access, please see Section 28.1, “Adjusting remote JMX access to
the Neo4j Server” [507] and the JMX documention4. When using Neo4j in embedded mode, make sure
to pass the com.sun.management.jmxremote.port=portNum or other configuration as JVM parameters to your
running Java process.

4 http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html

http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html

Monitoring

510

Figure 28.2. Neo4j MBeans View

Monitoring

511

28.3. How to connect to the JMX monitoring
programmatically
In order to programmatically connect to the Neo4j JMX server, there are some convenience methods
in the Neo4j Management component to help you find out the most commonly used monitoring
attributes of Neo4j. See Section 33.11, “Reading a management attribute” [600] for an example.

Once you have access to this information, you can use it to for instance expose the values to SNMP5 or
other monitoring systems.

5 http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

Monitoring

512

28.4. Reference of supported JMX MBeans
MBeans exposed by Neo4j

• Branched Store: Information about the branched stores present in this HA cluster member.
• Configuration: The configuration parameters used to configure Neo4j.
• Diagnostics: Diagnostics provided by Neo4j.
• High Availability: Information about an instance participating in a HA cluster.
• Index sampler: Handle index sampling.
• Kernel: Information about the Neo4j kernel.
• Locking: Information about the Neo4j lock status.
• Memory Mapping: The status of Neo4j memory mapping.
• Page cache: Information about the Neo4j page cache.
• Primitive count: Estimates of the numbers of different kinds of Neo4j primitives.
• Store file sizes: Information about the sizes of the different parts of the Neo4j graph store.
• Transactions: Information about the Neo4j transaction manager.

Note
For additional information on the primitive datatypes (int, long etc.) used in the JMX
attributes, please see Property value types [582] in the section called “Properties” [7].

MBean Branched Store (org.neo4j.management.BranchedStore) Attributes
Name Description Type Read Write

Information about the branched stores present in this HA cluster member

BranchedStores A list of the branched stores org. neo4j. management.

 BranchedStoreInfo[]

as CompositeData[]

yes no

MBean Configuration (org.neo4j.jmx.impl.ConfigurationBean) Attributes
Name Description Type Read Write

The configuration parameters used to configure Neo4j

allow_ store_ upgrade Whether to allow a store upgrade in
case the current version of the database
starts against an older store version.
Setting this to true does not guarantee
successful upgrade, it just allows an
upgrade to be performed.

String yes no

array_ block_ size Specifies the block size for storing arrays.
This parameter is only honored when the
store is created, otherwise it is ignored.
The default block size is 120 bytes, and
the overhead of each block is the same
as for string blocks, i.e., 8 bytes.

String yes no

batch_ inserter_ batch_

 size

Specifies number of operations that
batch inserter will try to group into
one batch before flushing data into
underlying storage.

String yes no

batched_ writes Whether or not transactions are
appended to the log in batches

String yes no

cache_ type The type of cache to use for nodes and
relationships. This configuration setting
is no longer applicable from Neo4j 2.3.

String yes no

Monitoring

513

Name Description Type Read Write
Configuration has been simplified to only
require tuning of the page cache.

cypher_ parser_ version Set this to specify the default parser
(language version).

String yes no

dbms. checkpoint.

 interval. time

Configures the time interval between
check-points. The database will not
check-point more often than this (unless
check pointing is triggered by a different
event), but might check-point less
often than this interval, if performing
a check-point takes longer time than
the configured interval. A check-point
is a point in the transaction logs, from
which recovery would start from. Longer
check-point intervals typically means that
recovery will take longer to complete
in case of a crash. On the other hand,
a longer check-point interval can also
reduce the I/O load that the database
places on the system, as each check-
point implies a flushing and forcing of
all the store files. The default is 5m for
a check-point every 5 minutes. Other
supported units are s for seconds, and
ms for milliseconds.

String yes no

dbms. checkpoint.

 interval. tx

Configures the transaction interval
between check-points. The database
will not check-point more often than
this (unless check pointing is triggered
by a different event), but might check-
point less often than this interval, if
performing a check-point takes longer
time than the configured interval. A
check-point is a point in the transaction
logs, from which recovery would start
from. Longer check-point intervals
typically means that recovery will take
longer to complete in case of a crash.
On the other hand, a longer check-point
interval can also reduce the I/O load that
the database places on the system, as
each check-point implies a flushing and
forcing of all the store files. The default
is 100000 for a check-point every 100000
transactions.

String yes no

dbms. cypher. compiler_

 tracing

Enable tracing of compilation in cypher. String yes no

dbms. cypher. hints.

 error

Set this to specify the behavior when
Cypher planner or runtime hints
cannot be fulfilled. If true, then non-
conformance will result in an error,
otherwise only a warning is generated.

String yes no

Monitoring

514

Name Description Type Read Write

dbms. cypher. planner Set this to specify the default planner for
the default language version.

String yes no

dbms. cypher. runtime Set this to specify the default runtime for
the default language version.

String yes no

dbms. pagecache. memory The amount of memory to use for
mapping the store files, in bytes (or
kilobytes with the k suffix, megabytes
with m and gigabytes with g). If Neo4j is
running on a dedicated server, then it is
generally recommended to leave about
2-4 gigabytes for the operating system,
give the JVM enough heap to hold all
your transaction state and query context,
and then leave the rest for the page
cache. The default page cache memory
assumes the machine is dedicated to
running Neo4j, and is heuristically set to
50% of RAM minus the max Java heap
size.

String yes no

dbms. pagecache.

 pagesize

Target size for pages of mapped
memory. If set to 0, then a reasonable
default is chosen, depending on the
storage device used.

String yes no

dbms. pagecache.

 swapper

Specify which page swapper to use for
doing paged IO. This is only used when
integrating with proprietary storage
technology.

String yes no

dbms. querylog. enabled Log executed queries that takes longer
than the configured threshold. NOTE:
This feature is only available in the Neo4j
Enterprise Edition.

String yes no

dbms. querylog.

 filename

Log executed queries that take longer
than the configured threshold

String yes no

dbms. querylog. max_

 archives

Maximum number of history files for the
query log.

String yes no

dbms. querylog.

 rotation. threshold

Specifies at which file size the query log
will auto-rotate. 0 means that no rotation
will automatically occur based on file
size.

String yes no

dbms. querylog.

 threshold

If the execution of query takes more time
than this threshold, the query is logged
- provided query logging is enabled.
Defaults to 0 seconds, that is all queries
are logged.

String yes no

dense_ node_ threshold Relationship count threshold for
considering a node to be dense

String yes no

dump_ configuration Print out the effective Neo4j
configuration after startup.

String yes no

edition Configuration attribute String yes no

ephemeral Configuration attribute String yes no

Monitoring

515

Name Description Type Read Write

forced_ kernel_ id An identifier that uniquely identifies this
graph database instance within this JVM.
Defaults to an auto-generated number
depending on how many instance are
started in this JVM.

String yes no

gc_ monitor_ threshold The amount of time in ms the monitor
thread has to be blocked before logging
a message it was blocked.

String yes no

gc_ monitor_ wait_ time Amount of time in ms the GC monitor
thread will wait before taking another
measurement.

String yes no

ha. initial_ hosts Configuration attribute String yes no

ha. server_ id Configuration attribute String yes no

index_ background_

 sampling_ enabled

Enable or disable background index
sampling

String yes no

index_ sampling_

 buffer_ size

Size of buffer used by index sampling String yes no

index_ sampling_

 update_ percentage

Percentage of index updates of total
index size required before sampling of a
given index is triggered

String yes no

intercept_

 deserialized_

 transactions

Determines whether any
TransactionInterceptors loaded will
intercept externally received transactions
(for example in HA) before they reach the
logical log and are applied to the store.

String yes no

jmx. port Configuration attribute String yes no

keep_ logical_ logs Make Neo4j keep the logical transaction
logs for being able to backup the
database. Can be used for specifying
the threshold to prune logical logs after.
For example "10 days" will prune logical
logs that only contains transactions
older than 10 days from the current
time, or "100k txs" will keep the 100k
latest transactions and prune any older
transactions.

String yes no

label_ block_ size Specifies the block size for storing labels
exceeding in-lined space in node record.
This parameter is only honored when the
store is created, otherwise it is ignored.
The default block size is 60 bytes, and
the overhead of each block is the same
as for string blocks, i.e., 8 bytes.

String yes no

log_ mapped_ memory_

 stats_ filename

The file where memory mapping
statistics will be recorded.

String yes no

log_ mapped_ memory_

 stats_ interval

The number of records to be loaded
between regular logging of memory
mapping statistics.

String yes no

Monitoring

516

Name Description Type Read Write

log_ mapped_ memory_

 stats

Log memory mapping statistics regularly. String yes no

logical_ log_ rotation_

 threshold

Specifies at which file size the logical log
will auto-rotate. 0 means that no rotation
will automatically occur based on file
size.

String yes no

neostore. nodestore.

 db. mapped_ memory

The size to allocate for memory mapping
the node store.

String yes no

neostore.

 propertystore. db.

 arrays. mapped_ memory

The size to allocate for memory mapping
the array property store.

String yes no

neostore.

 propertystore. db.

 index. keys. mapped_

 memory

The size to allocate for memory mapping
the store for property key strings.

String yes no

neostore.

 propertystore. db.

 index. mapped_ memory

The size to allocate for memory mapping
the store for property key indexes.

String yes no

neostore.

 propertystore. db.

 mapped_ memory

The size to allocate for memory mapping
the property value store.

String yes no

neostore.

 propertystore. db.

 strings. mapped_ memory

The size to allocate for memory mapping
the string property store.

String yes no

neostore.

 relationshipstore. db.

 mapped_ memory

The size to allocate for memory mapping
the relationship store.

String yes no

node_ auto_ indexing Controls the auto indexing feature
for nodes. Setting it to false shuts
it down, while true enables it by
default for properties listed in the
node_keys_indexable setting.

String yes no

node_ keys_ indexable A list of property names (comma
separated) that will be indexed by
default. This applies to nodes only.

String yes no

online_ backup_ enabled Enable support for running online
backups

String yes no

online_ backup_ server Listening server for online backups String yes no

read_ only Only allow read operations from this
Neo4j instance. This mode still requires
write access to the directory for lock
purposes.

String yes no

rebuild_ idgenerators_

 fast

Use a quick approach for rebuilding the
ID generators. This give quicker recovery
time, but will limit the ability to reuse the
space of deleted entities.

String yes no

relationship_ auto_

 indexing

Controls the auto indexing feature
for relationships. Setting it to false
shuts it down, while true enables it

String yes no

Monitoring

517

Name Description Type Read Write
by default for properties listed in the
relationship_keys_indexable setting.

relationship_ grab_

 size

How many relationships to read at a time
during iteration

String yes no

relationship_ keys_

 indexable

A list of property names (comma
separated) that will be indexed by
default. This applies to relationships only.

String yes no

remote_ shell_ enabled Enable a remote shell server which
Neo4j Shell clients can log in to.

String yes no

remote_ shell_ host Remote host for shell. By default, the
shell server listens only on the loopback
interface, but you can specify the IP
address of any network interface or use
0. 0. 0. 0 for all interfaces.

String yes no

remote_ shell_ name The name of the shell. String yes no

remote_ shell_ port The port the shell will listen on. String yes no

remote_ shell_ read_

 only

Read only mode. Will only allow read
operations.

String yes no

store. internal_ log.

 debug_ contexts

Internal log contexts that should output
debug level logging

String yes no

store. internal_ log.

 level

Log level threshold. String yes no

store. internal_ log.

 location

The location of the internal diagnostics
log.

String yes no

store. internal_ log.

 max_ archives

Maximum number of history files for the
internal log.

String yes no

store. internal_ log.

 rotation_ threshold

Minimum time (in seconds) after last
rotation of the internal log before it may
be rotated again.

String yes no

store. interval. log.

 rotation

Maximum time interval for log rotation
to wait for active transaction completion

String yes no

store_ dir The directory where the database files
are located.

String yes no

string_ block_ size Specifies the block size for storing
strings. This parameter is only honored
when the store is created, otherwise it
is ignored. Note that each character in a
string occupies two bytes, meaning that
a block size of 120 (the default size) will
hold a 60 character long string before
overflowing into a second block. Also
note that each block carries an overhead
of 8 bytes. This means that if the block
size is 120, the size of the stored records
will be 128 bytes.

String yes no

transaction_ start_

 timeout

The maximum amount of time to wait
for the database to become available,
when starting a new transaction.

String yes no

Monitoring

518

Name Description Type Read Write

use_ memory_ mapped_

 buffers

Use memory mapped buffers for
accessing the native storage layer.

String yes no

MBean Diagnostics (org.neo4j.management.Diagnostics) Attributes
Name Description Type Read Write

Diagnostics provided by Neo4j

DiagnosticsProviders A list of the ids for the registered
diagnostics providers.

List (java. util. List) yes no

MBean Diagnostics (org.neo4j.management.Diagnostics) Operations
Name Description ReturnType Signature

dumpAll Dump diagnostics information to
JMX

String (no parameters)

dumpToLog Dump diagnostics information to the
log.

void (no parameters)

dumpToLog Dump diagnostics information to the
log.

void java. lang. String

extract Operation exposed for management String java. lang. String

MBean High Availability (org.neo4j.management.HighAvailability) Attributes
Name Description Type Read Write

Information about an instance participating in a HA cluster

Alive Whether this instance is alive or not boolean yes no

Available Whether this instance is available or not boolean yes no

InstanceId The identifier used to identify this server
in the HA cluster

String yes no

InstancesInCluster Information about all instances in this
cluster

org. neo4j. management.

 ClusterMemberInfo[]

as CompositeData[]

yes no

LastCommittedTxId The latest transaction id present in this
instance’s store

long yes no

LastUpdateTime The time when the data on this instance
was last updated from the master

String yes no

Role The role this instance has in the cluster String yes no

MBean High Availability (org.neo4j.management.HighAvailability) Operations
Name Description ReturnType Signature

update (If this is a slave) Update the
database on this instance with the
latest transactions from the master

String (no parameters)

MBean Kernel (org.neo4j.jmx.Kernel) Attributes
Name Description Type Read Write

Information about the Neo4j kernel

KernelStartTime The time from which this Neo4j instance
was in operational mode.

Date (java. util. Date) yes no

KernelVersion The version of Neo4j String yes no

Monitoring

519

Name Description Type Read Write

MBeanQuery An ObjectName that can be used as a
query for getting all management beans
for this Neo4j instance.

javax. management.

 ObjectName

yes no

ReadOnly Whether this is a read only instance boolean yes no

StoreCreationDate The time when this Neo4j graph store
was created.

Date (java. util. Date) yes no

StoreDirectory The location where the Neo4j store is
located

String yes no

StoreId An identifier that, together with store
creation time, uniquely identifies this
Neo4j graph store.

String yes no

StoreLogVersion The current version of the Neo4j store
logical log.

long yes no

MBean Locking (org.neo4j.management.LockManager) Attributes
Name Description Type Read Write

Information about the Neo4j lock status

Locks Information about all locks held by Neo4j java. util. List<org.

 neo4j. kernel.

 info. LockInfo> as

CompositeData[]

yes no

NumberOf

 AvertedDeadlocks

The number of lock sequences that
would have lead to a deadlock situation
that Neo4j has detected and averted (by
throwing DeadlockDetectedException).

long yes no

MBean Locking (org.neo4j.management.LockManager) Operations
Name Description ReturnType Signature

getContendedLocks getContendedLocks java. util.

 List<org. neo4j.

 kernel. info.

 LockInfo> as

CompositeData[]

long

MBean Memory Mapping (org.neo4j.management.MemoryMapping) Attributes
Name Description Type Read Write

The status of Neo4j memory mapping

MemoryPools Get information about each pool of
memory mapped regions from store files
with memory mapping enabled

org. neo4j. management.

 WindowPoolInfo[] as

CompositeData[]

yes no

MBean Page cache (org.neo4j.management.PageCache) Attributes
Name Description Type Read Write

Information about the Neo4j page cache

BytesRead Number of bytes read from durable
storage

long yes no

BytesWritten Number of bytes written to durable
storage

long yes no

Monitoring

520

Name Description Type Read Write

EvictionExceptions Number of exceptions caught during
page eviction

long yes no

Evictions Number of page evictions long yes no

Faults Number of page faults long yes no

FileMappings Number of files that have been mapped
into the page cache

long yes no

FileUnmappings Number of files that have been
unmapped from the page cache

long yes no

Flushes Number of page flushes long yes no

Pins Number of page pins long yes no

Unpins Number of page unpins long yes no

MBean Primitive count (org.neo4j.jmx.Primitives) Attributes
Name Description Type Read Write

Estimates of the numbers of different kinds of Neo4j primitives

NumberOf NodeIds InUse An estimation of the number of nodes
used in this Neo4j instance

long yes no

NumberOf PropertyIds

 InUse

An estimation of the number of
properties used in this Neo4j instance

long yes no

NumberOf

 RelationshipIds InUse

An estimation of the number of
relationships used in this Neo4j instance

long yes no

NumberOf

 RelationshipTypeIds

 InUse

The number of relationship types used in
this Neo4j instance

long yes no

MBean Store file sizes (org.neo4j.jmx.StoreFile) Attributes
Name Description Type Read Write

Information about the sizes of the different parts of the Neo4j graph store

ArrayStoreSize The amount of disk space used to store
array properties, in bytes.

long yes no

LogicalLogSize The amount of disk space used by the
current Neo4j logical log, in bytes.

long yes no

NodeStoreSize The amount of disk space used to store
nodes, in bytes.

long yes no

PropertyStoreSize The amount of disk space used to store
properties (excluding string values and
array values), in bytes.

long yes no

RelationshipStoreSize The amount of disk space used to store
relationships, in bytes.

long yes no

StringStoreSize The amount of disk space used to store
string properties, in bytes.

long yes no

TotalStoreSize The total disk space used by this Neo4j
instance, in bytes.

long yes no

MBean Transactions (org.neo4j.management.TransactionManager) Attributes
Name Description Type Read Write

Information about the Neo4j transaction manager

Monitoring

521

Name Description Type Read Write

LastCommittedTxId The id of the latest committed
transaction

long yes no

NumberOf Committed

 Transactions

The total number of committed
transactions

long yes no

NumberOf Opened

 Transactions

The total number started transactions long yes no

NumberOf Open

 Transactions

The number of currently open
transactions

long yes no

NumberOf RolledBack

 Transactions

The total number of rolled back
transactions

long yes no

PeakNumberOf

 Concurrent

 Transactions

The highest number of transactions ever
opened concurrently

long yes no

MBean Index sampler (org.neo4j.management.IndexSamplingManager) Operations
Name Description ReturnType Signature

triggerIndexSampling triggerIndexSampling void java. lang. String,

 java. lang. String,

 boolean

Monitoring

522

28.5. Metrics Reporting
Note
Metrics reporting is only available in the Neo4j Enterprise Edition.

Introducing Metrics
Neo4j Enterprise can be configured to continuously export Neo4j-specific metrics to Graphite, Ganglia,
or CSV files. This makes it easy to monitor the health of running Neo4j instances.
Neo4j Enterprise can expose metrics for the following parts of the database, and does so by default:

// default setting for enabling all supported metrics

metrics.enabled=true

// default setting for enabling all Neo4j specific metrics

metrics.neo4j.enabled=true

// setting for exposing metrics about transactions; number of transactions started, committed, etc.

metrics.neo4j.tx.enabled=true

// setting for exposing metrics about the Neo4j page cache; page faults, evictions, flushes and exceptions, etc.

metrics.neo4j.pagecache.enabled=true

// setting for exposing metrics about approximately entities are in the database; nodes, relationships, properties, etc.

metrics.neo4j.counts.enabled=true

// setting for exposing metrics about the network usage of the HA cluster component

metrics.neo4j.network.enabled=true

Graphite Configuration
For Graphite integration add the following settings to neo4j.properties:

metrics.graphite.enabled=true // default is 'false'

metrics.graphite.server=<ip>:2003

metrics.graphite.interval=<how often to send data, defaults to 3s>

metrics.prefix=<Neo4j instance name, e.g. wwwneo1>

Start the Neo4j Server and connect to Graphite via a web browser in order to monitor your Neo4j
metrics.

Ganglia Configuration
For Ganglia integration add the following settings to neo4j.properties:

metrics.ganglia.enabled=true // default is 'false'

metrics.ganglia.server=<ip>:8469

metrics.ganglia.interval=<how often to send data, defaults to 3s>

metrics.prefix=<Neo4j instance name, e.g. wwwneo1>

Export to CSV Configuration
For storing metrics in local CSV files add the following settings to neo4j.properties:

metrics.csv.enabled=true // default is 'false'

metrics.csv.path=<file or directory path, defaults to "metrics/" in the store directory>

metrics.csv.file=<single/split, if split then each metric gets its own file in given directory>

metrics.csv.interval=<how often to store data, defaults to 3s>

Note
The CSV exporter does not automatically rotate the output files, so it is recommended to
also set up a CRON job to periodically archive the files.

Monitoring

523

Configuration Settings Reference for Metrics

Metrics settings

• metrics.csv.enabled: Set to true to enable exporting metrics to CSV files.
• metrics.csv.file: Write to a single CSV file or to multiple files.
• metrics.csv.interval: The reporting interval for the CSV files.
• metrics.csv.path: The target location of the CSV files.
• metrics.enabled: The default enablement value for all the supported metrics.
• metrics.ganglia.enabled: Set to true to enable exporting metrics to Ganglia.
• metrics.ganglia.interval: The reporting interval for Ganglia.
• metrics.ganglia.server: The hostname or IP address of the Ganglia server.
• metrics.graphite.enabled: Set to true to enable exporting metrics to Graphite.
• metrics.graphite.interval: The reporting interval for Graphite.
• metrics.graphite.server: The hostname or IP address of the Graphite server.
• metrics.jvm.buffers.enabled: Enable reporting metrics about the buffer pools of the HA cluster

component.
• metrics.jvm.gc.enabled: Enable reporting metrics about the duration of garbage collections of the HA

cluster component.
• metrics.jvm.memory.enabled: Enable reporting metrics about the memory usage of the HA cluster

component.
• metrics.jvm.threads.enabled: Enable reporting metrics about the current number of threads running

on the HA cluster component.
• metrics.neo4j.counts.enabled: Enable reporting metrics about approximately how many entities are

in the database.
• metrics.neo4j.enabled: The default enablement value for all Neo4j specific support metrics.
• metrics.neo4j.network.enabled: Enable reporting metrics about the network usage of the HA cluster

component.
• metrics.neo4j.pagecache.enabled: Enable reporting metrics about the Neo4j page cache.
• metrics.neo4j.tx.enabled: Enable reporting metrics about transactions.
• metrics.prefix: A common prefix for the reported metrics field names.

metrics.csv.enabled
Description Set to true to enable exporting metrics to CSV files.
Valid values metrics. csv. enabled is a boolean.
Default value false

metrics.csv.file
Description Write to a single CSV file or to multiple files. Set to single (the default) for

reporting the metrics in a single CSV file (given by), with a column per metrics
field. Or set to split to produce a CSV file for each metrics field, in a directory
given by .

Valid values metrics. csv. file is one of single, split.
Default value single

metrics.csv.interval
Description The reporting interval for the CSV files. That is, how often new rows with numbers

are appended to the CSV files.
Valid values metrics. csv. interval is a duration (valid units are ms, s, m).
Default value 3s

Monitoring

524

metrics.csv.path
Description The target location of the CSV files. Depending on the setting, this is either the

path to an individual CSV file, that have each of the reported metrics fields as
columns, or it is a path to a directory wherein a CSV file per reported field will be
written. Relative paths will be intepreted relative to the configured Neo4j store
directory.

Valid values metrics. csv. path is a path which is relative to store_dir.
Default value metrics. csv

metrics.enabled
Description The default enablement value for all the supported metrics. Set this to false

to turn off all metrics by default. The individual settings can then be used to
selectively re-enable specific metrics.

Valid values metrics. enabled is a boolean.
Default value true

metrics.ganglia.enabled
Description Set to true to enable exporting metrics to Ganglia.
Valid values metrics. ganglia. enabled is a boolean.
Default value false

metrics.ganglia.interval
Description The reporting interval for Ganglia. That is, how often to send updated metrics to

Ganglia.
Valid values metrics. ganglia. interval is a duration (valid units are ms, s, m).
Default value 3s

metrics.ganglia.server
Description The hostname or IP address of the Ganglia server.
Valid values metrics. ganglia. server is a hostname and port.
Default value :8469

metrics.graphite.enabled
Description Set to true to enable exporting metrics to Graphite.
Valid values metrics. graphite. enabled is a boolean.
Default value false

metrics.graphite.interval
Description The reporting interval for Graphite. That is, how often to send updated metrics to

Graphite.
Valid values metrics. graphite. interval is a duration (valid units are ms, s, m).
Default value 3s

metrics.graphite.server
Description The hostname or IP address of the Graphite server.
Valid values metrics. graphite. server is a hostname and port.
Default value :2003

metrics.jvm.buffers.enabled
Description Enable reporting metrics about the buffer pools of the HA cluster component.

Monitoring

525

Valid values metrics. jvm. buffers. enabled is a boolean.
Default value true

metrics.jvm.gc.enabled
Description Enable reporting metrics about the duration of garbage collections of the HA

cluster component.
Valid values metrics. jvm. gc. enabled is a boolean.
Default value true

metrics.jvm.memory.enabled
Description Enable reporting metrics about the memory usage of the HA cluster component.
Valid values metrics. jvm. memory. enabled is a boolean.
Default value true

metrics.jvm.threads.enabled
Description Enable reporting metrics about the current number of threads running on the HA

cluster component.
Valid values metrics. jvm. threads. enabled is a boolean.
Default value true

metrics.neo4j.counts.enabled
Description Enable reporting metrics about approximately how many entities are in the

database; nodes, relationships, properties, etc.
Valid values metrics. neo4j. counts. enabled is a boolean.
Default value true

metrics.neo4j.enabled
Description The default enablement value for all Neo4j specific support metrics. Set this to

false to turn off all Neo4j specific metrics by default. The individual metrics. neo4j.
 * metrics can then be turned on selectively.

Valid values metrics. neo4j. enabled is a boolean.
Default value true

metrics.neo4j.network.enabled
Description Enable reporting metrics about the network usage of the HA cluster component.
Valid values metrics. neo4j. network. enabled is a boolean.
Default value true

metrics.neo4j.pagecache.enabled
Description Enable reporting metrics about the Neo4j page cache; page faults, evictions,

flushes, exceptions, etc.
Valid values metrics. neo4j. pagecache. enabled is a boolean.
Default value true

metrics.neo4j.tx.enabled
Description Enable reporting metrics about transactions; number of transactions started,

committed, etc.
Valid values metrics. neo4j. tx. enabled is a boolean.
Default value true

Monitoring

526

metrics.prefix
Description A common prefix for the reported metrics field names. By default, this is either

be neo4j, or a computed value based on the cluster and instance names, when
running in an HA configuration.

Valid values metrics. prefix is a string.
Default value neo4j

Part VI. Tools
The Tools part describes available Neo4j tools and how to use them.

528

29. Import tool ... 529
29.1. CSV file header format .. 530
29.2. Command line usage .. 531
29.3. Import tool examples .. 533

30. Web Interface ... 541
31. Neo4j Shell ... 542

31.1. Starting the shell ... 543
31.2. Passing options and arguments ... 545
31.3. Enum options .. 546
31.4. Filters ... 547
31.5. Node titles ... 548
31.6. How to use (individual commands) .. 549
31.7. An example shell session .. 554
31.8. A Matrix example .. 555

529

Chapter 29. Import tool

The import tool is used to create a new Neo4j database from data in CSV files.

This chapter explains how to use the tool, format the input data and concludes with an example
bringing everything together.

These are some things you’ll need to keep in mind when creating your input files:

• Fields are comma separated by default but a different delimiter can be specified.
• All files must use the same delimiter.
• Multiple data sources can be used for both nodes and relationships.
• A data source can optionally be provided using multiple files.
• A header which provides information on the data fields must be on the first row of each data source.
• Fields without corresponding information in the header will not be read.
• UTF-8 encoding is used.

Tip
Indexes are not created during the import. Instead you’ll need to add indexes afterwards
(see the section called “Indexes” [9]).

Note
Data cannot be imported into an existing database using this tool.

• If you want to load small to medium sized CSV files see Section 11.6, “Load CSV” [183].
• If you want to bulk import into an existing database see Chapter 36, Batch

Insertion [632].

Import tool

530

29.1. CSV file header format
The header row of each data source specifies how the fields should be interpreted. The same delimiter
is used for the header row as for the rest of the data.

The header contains information for each field, with the format: <name>:<field_type>. The <name> is used
as the property key for values, and ignored in other cases. The following <field_type> settings can be
used for both nodes and relationships:

Property value Use one of int, long, float, double, boolean, byte, short, char, string to designate
the data type. If no data type is given, this defaults to string. To define an array
type, append [] to the type. Array values are by default delimited by a ;, but a
different delimiter can be specified.

IGNORE Ignore this field completely.

See below for the specifics of node and relationship data source headers.

Nodes
The following field types do additionally apply to node data sources:

ID Each node must have a unique id which is used during the import. The ids are used to find
the correct nodes when creating relationships. Note that the id has to be unique across all
nodes in the import, even nodes with different labels.

LABEL Read one or more labels from this field. For multiple labels, the values are separated by the
array delimiter.

Relationships
For relationship data sources, there’s three mandatory fields:

TYPE The relationship type to use for the relationship.
START_ID The id of the start node of the relationship to create.
END_ID The id of the end node of the relationship to create.

ID spaces
The import tool assumes that node identifiers are unique across node files. If this isn’t the case then we
can define an id space. Id spaces are defined in the ID field of node files.

For example, to specify the Person id space we would use the field type ID(Person) in our persons
node file. We also need to reference that id space in our relationships file i.e. START_ID(Person) or
END_ID(Person).

Import tool

531

29.2. Command line usage
Linux
Under Unix/Linux/OSX, the command is named neo4j-import. Depending on the installation type, the
tool is either available globally, or used by executing ./bin/neo4j-import from inside the installation
directory.

Windows
For help with running the import tool using Windows PowerShell, see Section 23.3, “Windows
PowerShell module” [441].

Options

--into <store-dir> Database directory to import into. Must not contain existing database.

--nodes[:Label1:Label2]
"<file1>,<file2>,…"

Node CSV header and data. Multiple files will be logically seen as
one big file from the perspective of the importer. The first line must
contain the header. Multiple data sources like these can be specified
in one import, where each data source has its own header. Note that
file groups must be enclosed in quotation marks.

--
relationships[:RELATIONSHIP_TYPE]
"<file1>,<file2>,…"

Relationship CSV header and data. Multiple files will be logically seen
as one big file from the perspective of the importer. The first line must
contain the header. Multiple data sources like these can be specified
in one import, where each data source has its own header. Note that
file groups must be enclosed in quotation marks.

--delimiter <delimiter-
character>

Delimiter character, or TAB, between values in CSV data. The default
option is ,.

--array-delimiter <array-
delimiter-character>

Delimiter character, or TAB, between array elements within a value in
CSV data. The default option is ;.

--quote <quotation-
character>

Character to treat as quotation character for values in CSV data. The
default option is ". Quotes inside quotes escaped like """Go away"", he
said." and "\"Go away\", he said." are supported. If you have set "'"
to be used as the quotation character, you could write the previous
example like this instead: '"Go away", he said.'

--multiline-fields <true/
false>

Whether or not fields from input source can span multiple lines, i.e.
contain newline characters. Default value: false

--input-encoding <character
set>

Character set that input data is encoded in. Provided value must be
one out of the available character sets in the JVM, as provided by
Charset#availableCharsets(). If no input encoding is provided, the
default character set of the JVM will be used.

--ignore-empty-strings
<true/false>

Whether or not empty string fields, i.e. "" from input source are
ignored, i.e. treated as null. Default value: false

--id-type <id-type> One out of [STRING, INTEGER, ACTUAL] and specifies how ids in node/
relationship input files are treated. STRING: arbitrary strings for identifying
nodes. INTEGER: arbitrary integer values for identifying nodes. ACTUAL:
(advanced) actual node ids. The default option is STRING. Default value:
STRING

--processors <max processor
count>

(advanced) Max number of processors used by the importer. Defaults
to the number of available processors reported by the JVM. There is a

Import tool

532

certain amount of minimum threads needed so for that reason there
is no lower bound for this value. For optimal performance this value
shouldn’t be greater than the number of available processors.

--stacktrace <true/false> Enable printing of error stack traces.

--bad-tolerance <max
number of bad entries>

Number of bad entries before the import is considered failed. This
tolerance threshold is about relationships refering to missing nodes.
Format errors in input data are still treated as errors. Default value:
1000

--skip-bad-relationships
<true/false>

Whether or not to skip importing relationships that refers to missing
node ids, i.e. either start or end node id/group referring to node that
wasn’t specified by the node input data. Skipped nodes will be logged,
containing at most number of entites specified by bad-tolerance.
Default value: true

--skip-duplicate-nodes <true/
false>

Whether or not to skip importing nodes that have the same id/group.
In the event of multiple nodes within the same group having the same
id, the first encountered will be imported whereas consecutive such
nodes will be skipped. Skipped nodes will be logged, containing at
most number of entites specified by bad-tolerance. Default value:
false

Output and statistics
While an import is running through its different stages, some statistics and figures are printed in the
console. The general interpretation of that output is to look at the horizontal line, which is divided up
into sections, each section representing one type of work going on in parallel with the other sections.
The wider a section is, the more time is spent there relative to the other sections, the widest being the
bottleneck, also marked with *. If a section has a double line, instead of just a single line, it means that
multiple threads are executing the work in that section. To the far right a number is displayed telling
how many entities (nodes or relationships) have been processed by that stage.

As an example:

[*>:20,25 MB/s------------------|PREPARE(3)====================|RELATIONSHIP(2)===============] 16M

Would be interpreted as:

• > data being read, and perhaps parsed, at 20,25 MB/s, data that is being passed on to …
• PREPARE preparing the data for …
• RELATIONSHIP creating actual relationship records and …
• v writing the relationships to the store. This step isn’t visible in this example, because it’s so cheap

compared to the other sections.

Observing the section sizes can give hints about where performance can be improved. In the example
above, the bottleneck is the data read section (marked with >), which might indicate that the disk is
being slow, or is poorly handling simultaneous read and write operations (since the last section often
revolves around writing to disk).

Verbose error information
In some cases if an unexpected error occurs it might be useful to supply the command line option --
stacktrace to the import (and rerun the import to actually see the additional information). This will have
the error printed with additional debug information, useful for both developers and issue reporting.

Import tool

533

29.3. Import tool examples
Let’s look at a few examples. We’ll use a data set containing movies, actors and roles.

Tip
While you’ll usually want to store your node identifier as a property on the node for looking
it up later, it’s not mandatory. If you don’t want the identifier to be persisted then don’t
specify a property name in the :ID field.

Basic example
First we’ll look at the movies. Each movie has an id, which is used to refer to it in other data sources, a
title and a year Along with these properties we’ll also add the node labels Movie and Sequel.

By default the import tool expects CSV files to be comma delimited.

movies.csv

movieId:ID,title,year:int,:LABEL

tt0133093,"The Matrix",1999,Movie

tt0234215,"The Matrix Reloaded",2003,Movie;Sequel

tt0242653,"The Matrix Revolutions",2003,Movie;Sequel

Next up are the actors. They have an id - in this case a shorthand - and a name and all have the Actor
label.

actors.csv

personId:ID,name,:LABEL

keanu,"Keanu Reeves",Actor

laurence,"Laurence Fishburne",Actor

carrieanne,"Carrie-Anne Moss",Actor

Finally we have the roles that an actor plays in a movie which will be represented by relationships in
the database. In order to create a relationship between nodes we refer to the ids used in actors.csv
and movies.csv in the START_ID and END_ID fields. We also need to provide a relationship type (in this case
ACTS_IN) in the :TYPE field.

roles.csv

:START_ID,role,:END_ID,:TYPE

keanu,"Neo",tt0133093,ACTED_IN

keanu,"Neo",tt0234215,ACTED_IN

keanu,"Neo",tt0242653,ACTED_IN

laurence,"Morpheus",tt0133093,ACTED_IN

laurence,"Morpheus",tt0234215,ACTED_IN

laurence,"Morpheus",tt0242653,ACTED_IN

carrieanne,"Trinity",tt0133093,ACTED_IN

carrieanne,"Trinity",tt0234215,ACTED_IN

carrieanne,"Trinity",tt0242653,ACTED_IN

With all data in place, we execute the following command:

neo4j-import --into path_to_target_directory --nodes movies.csv --nodes actors.csv --relationships roles.csv

We’re now ready to start up a database from the target directory. (see Section 23.2, “Server
Installation” [438])

Once we’ve got the database up and running we can add appropriate indexes. (see Section 3.6, “Labels,
Constraints and Indexes” [32].)

Import tool

534

Tip
It is possible to import only nodes using the import tool - just don’t specify a relationships
file when calling neo4j-import. If you do this you’ll need to create relationships later by
another method - the import tool only works for initial graph population.

Customizing configuration options
We can customize the configuration options that the import tool uses (see the section called
“Options” [531]) if our data doesn’t fit the default format. The following CSV files are delimited by ;, use
| as their array delimiter and use ' for quotes.

movies2.csv

movieId:ID;title;year:int;:LABEL

tt0133093;'The Matrix';1999;Movie

tt0234215;'The Matrix Reloaded';2003;Movie|Sequel

tt0242653;'The Matrix Revolutions';2003;Movie|Sequel

actors2.csv

personId:ID;name;:LABEL

keanu;'Keanu Reeves';Actor

laurence;'Laurence Fishburne';Actor

carrieanne;'Carrie-Anne Moss';Actor

roles2.csv

:START_ID;role;:END_ID;:TYPE

keanu;'Neo';tt0133093;ACTED_IN

keanu;'Neo';tt0234215;ACTED_IN

keanu;'Neo';tt0242653;ACTED_IN

laurence;'Morpheus';tt0133093;ACTED_IN

laurence;'Morpheus';tt0234215;ACTED_IN

laurence;'Morpheus';tt0242653;ACTED_IN

carrieanne;'Trinity';tt0133093;ACTED_IN

carrieanne;'Trinity';tt0234215;ACTED_IN

carrieanne;'Trinity';tt0242653;ACTED_IN

We can then import these files with the following command line options:

neo4j-import --into path_to_target_directory --nodes movies2.csv --nodes actors2.csv --relationships roles2.csv --delimiter

 ";" --array-delimiter "|" --quote "'"

Using separate header files
When dealing with very large CSV files it’s more convenient to have the header in a separate file. This
makes it easier to edit the header as you avoid having to open a huge data file just to change it.

Tip
import-tool can also process single file compressed archives. e.g. --nodes nodes.csv.gz or --
relationships rels.zip

We’ll use the same data as in the previous example but put the headers in separate files.

movies3-header.csv

movieId:ID,title,year:int,:LABEL

movies3.csv

tt0133093,"The Matrix",1999,Movie

Import tool

535

tt0234215,"The Matrix Reloaded",2003,Movie;Sequel

tt0242653,"The Matrix Revolutions",2003,Movie;Sequel

actors3-header.csv

personId:ID,name,:LABEL

actors3.csv

keanu,"Keanu Reeves",Actor

laurence,"Laurence Fishburne",Actor

carrieanne,"Carrie-Anne Moss",Actor

roles3-header.csv

:START_ID,role,:END_ID,:TYPE

roles3.csv

keanu,"Neo",tt0133093,ACTED_IN

keanu,"Neo",tt0234215,ACTED_IN

keanu,"Neo",tt0242653,ACTED_IN

laurence,"Morpheus",tt0133093,ACTED_IN

laurence,"Morpheus",tt0234215,ACTED_IN

laurence,"Morpheus",tt0242653,ACTED_IN

carrieanne,"Trinity",tt0133093,ACTED_IN

carrieanne,"Trinity",tt0234215,ACTED_IN

carrieanne,"Trinity",tt0242653,ACTED_IN

Note how the file groups are enclosed in quotation marks in the command:

neo4j-import --into path_to_target_directory --nodes "movies3-header.csv,movies3.csv" --nodes "actors3-header.csv,actors3.csv"

 --relationships "roles3-header.csv,roles3.csv"

Multiple input files
As well as using a separate header file you can also provide multiple nodes or relationships files. This
may be useful when processing the output from a Hadoop pipeline for example. Files within such
an input group can be specified with multiple match strings, delimited by ,, where each match string
can be either: the exact file name or a regular expression matching one or more files. Multiple matching
files will be sorted according to their characters and their natural number sort order for file names
containing numbers.

movies4-header.csv

movieId:ID,title,year:int,:LABEL

movies4-part1.csv

tt0133093,"The Matrix",1999,Movie

tt0234215,"The Matrix Reloaded",2003,Movie;Sequel

movies4-part2.csv

tt0242653,"The Matrix Revolutions",2003,Movie;Sequel

actors4-header.csv

personId:ID,name,:LABEL

actors4-part1.csv

keanu,"Keanu Reeves",Actor

laurence,"Laurence Fishburne",Actor

Import tool

536

actors4-part2.csv

carrieanne,"Carrie-Anne Moss",Actor

roles4-header.csv

:START_ID,role,:END_ID,:TYPE

roles4-part1.csv

keanu,"Neo",tt0133093,ACTED_IN

keanu,"Neo",tt0234215,ACTED_IN

keanu,"Neo",tt0242653,ACTED_IN

laurence,"Morpheus",tt0133093,ACTED_IN

laurence,"Morpheus",tt0234215,ACTED_IN

roles4-part2.csv

laurence,"Morpheus",tt0242653,ACTED_IN

carrieanne,"Trinity",tt0133093,ACTED_IN

carrieanne,"Trinity",tt0234215,ACTED_IN

carrieanne,"Trinity",tt0242653,ACTED_IN

The call to neo4j-import would look like this:

neo4j-import --into path_to_target_directory --nodes "movies4-header.csv,movies4-part1.csv,movies4-part2.csv" --nodes

 "actors4-header.csv,actors4-part1.csv,actors4-part2.csv" --relationships "roles4-header.csv,roles4-part1.csv,roles4-

part2.csv"

Types and labels

Using the same label for every node
If you want to use the same node label(s) for every node in your nodes file you can do this by specifying
the appropriate value as an option to neo4j-import. In this example we’ll put the label Movie on every
node specified in movies5.csv:

movies5.csv

movieId:ID,title,year:int

tt0133093,"The Matrix",1999

Tip
There’s then no need to specify the :LABEL field in the node file if you pass it as a command
line option. If you do then both the label provided in the file and the one provided on the
command line will be added to the node.

In this case, we’ll put the labels Movie and Sequel on the nodes specified in sequels5.csv.

sequels5.csv

movieId:ID,title,year:int

tt0234215,"The Matrix Reloaded",2003

tt0242653,"The Matrix Revolutions",2003

actors5.csv

personId:ID,name

keanu,"Keanu Reeves"

laurence,"Laurence Fishburne"

carrieanne,"Carrie-Anne Moss"

roles5.csv

Import tool

537

:START_ID,role,:END_ID,:TYPE

keanu,"Neo",tt0133093,ACTED_IN

keanu,"Neo",tt0234215,ACTED_IN

keanu,"Neo",tt0242653,ACTED_IN

laurence,"Morpheus",tt0133093,ACTED_IN

laurence,"Morpheus",tt0234215,ACTED_IN

laurence,"Morpheus",tt0242653,ACTED_IN

carrieanne,"Trinity",tt0133093,ACTED_IN

carrieanne,"Trinity",tt0234215,ACTED_IN

carrieanne,"Trinity",tt0242653,ACTED_IN

The call to neo4j-import would look like this:

neo4j-import --into path_to_target_directory --nodes:Movie movies5.csv --nodes:Movie:Sequel sequels5.csv --nodes:Actor

 actors5.csv --relationships roles5.csv

Using the same relationship type for every relationship
If you want to use the same relationship type for every relationship in your relationships file you can
do this by specifying the appropriate value as an option to neo4j-import. In this example we’ll put the
relationship type ACTS_IN on every relationship specified in roles6.csv:

movies6.csv

movieId:ID,title,year:int,:LABEL

tt0133093,"The Matrix",1999,Movie

tt0234215,"The Matrix Reloaded",2003,Movie;Sequel

tt0242653,"The Matrix Revolutions",2003,Movie;Sequel

actors6.csv

personId:ID,name,:LABEL

keanu,"Keanu Reeves",Actor

laurence,"Laurence Fishburne",Actor

carrieanne,"Carrie-Anne Moss",Actor

roles6.csv

:START_ID,role,:END_ID

keanu,"Neo",tt0133093

keanu,"Neo",tt0234215

keanu,"Neo",tt0242653

laurence,"Morpheus",tt0133093

laurence,"Morpheus",tt0234215

laurence,"Morpheus",tt0242653

carrieanne,"Trinity",tt0133093

carrieanne,"Trinity",tt0234215

carrieanne,"Trinity",tt0242653

Tip
If you provide a relationship type on the command line and in the relationships file the one
in the file will be applied.

The call to neo4j-import would look like this:

neo4j-import --into path_to_target_directory --nodes movies6.csv --nodes actors6.csv --relationships:ACTED_IN roles6.csv

Property types
The type for properties specified in nodes and relationships files is defined in the header row. (see
Section 29.1, “CSV file header format” [530])

Import tool

538

The following example creates a small graph containing one actor and one movie connected by an
ACTED_IN relationship. There is a roles property on the relationship which contains an array of the
characters played by the actor in a movie.

movies10.csv

movieId:ID,title,year:int,:LABEL

tt0099892,"Joe Versus the Volcano",1990,Movie

actors10.csv

personId:ID,name,:LABEL

keanu,"Keanu Reeves",Actor

laurence,"Laurence Fishburne",Actor

carrieanne,"Carrie-Anne Moss",Actor

laurence,"Laurence Harvey",Actor

roles10.csv

:START_ID,roles:string[],:END_ID,:TYPE

meg,"DeDe;Angelica Graynamore;Patricia Graynamore",tt0099892,ACTED_IN

The arguments to neo4j-import would be the following:

neo4j-import --into path_to_target_directory --nodes movies10.csv --nodes actors10.csv --relationships roles10.csv

ID handling
Each node processed by neo4j-import must provide a unique id. We use this id to find the correct nodes
when creating relationships.

Working with sequential or auto incrementing identifiers
The import tool makes the assumption that identifiers are unique across node files. This may not be
the case for data sets which use sequential, auto incremented or otherwise colliding identifiers. Those
data sets can define id spaces where identifiers are unique within their respective id space.

For example if movies and people both use sequential identifiers then we would define Movie and Actor
id spaces.

movies7.csv

movieId:ID(Movie),title,year:int,:LABEL

1,"The Matrix",1999,Movie

2,"The Matrix Reloaded",2003,Movie;Sequel

3,"The Matrix Revolutions",2003,Movie;Sequel

actors7.csv

personId:ID(Actor),name,:LABEL

1,"Keanu Reeves",Actor

2,"Laurence Fishburne",Actor

3,"Carrie-Anne Moss",Actor

We also need to reference the appropriate id space in our relationships file so it knows which nodes to
connect together:

roles7.csv

:START_ID(Actor),role,:END_ID(Movie)

1,"Neo",1

1,"Neo",2

1,"Neo",3

2,"Morpheus",1

2,"Morpheus",2

Import tool

539

2,"Morpheus",3

3,"Trinity",1

3,"Trinity",2

3,"Trinity",3

The command line arguments would remain the same as before:

neo4j-import --into path_to_target_directory --nodes movies7.csv --nodes actors7.csv --relationships:ACTED_IN roles7.csv

Bad input data
The import tool has a threshold of how many bad entities (nodes/relationships) to tolerate and skip
before failing the import. By default 1000 bad entities are tolerated. A bad tolerance of 0 will as an
example fail the import on the first bad entity. For more information, see the --bad-tolerance option.

There are different types of bad input, which we will look into.

Relationships referring to missing nodes
Relationships that refer to missing node ids, either for :START_ID or :END_ID are considered bad
relationships. Whether or not such relationships are skipped is controlled with --skip-bad-relationships
flag which can have the values true or false or no value, which means true. Specifying false means that
any bad relationship is considered an error and will fail the import. For more information, see the --
skip-bad-relationships option.

In the following example there is a missing emil node referenced in the roles file.

movies9.csv

movieId:ID,title,year:int,:LABEL

tt0133093,"The Matrix",1999,Movie

tt0234215,"The Matrix Reloaded",2003,Movie;Sequel

tt0242653,"The Matrix Revolutions",2003,Movie;Sequel

actors9.csv

personId:ID,name,:LABEL

keanu,"Keanu Reeves",Actor

laurence,"Laurence Fishburne",Actor

carrieanne,"Carrie-Anne Moss",Actor

roles9.csv

:START_ID,role,:END_ID,:TYPE

keanu,"Neo",tt0133093,ACTED_IN

keanu,"Neo",tt0234215,ACTED_IN

keanu,"Neo",tt0242653,ACTED_IN

laurence,"Morpheus",tt0133093,ACTED_IN

laurence,"Morpheus",tt0234215,ACTED_IN

laurence,"Morpheus",tt0242653,ACTED_IN

carrieanne,"Trinity",tt0133093,ACTED_IN

carrieanne,"Trinity",tt0234215,ACTED_IN

carrieanne,"Trinity",tt0242653,ACTED_IN

emil,"Emil",tt0133093,ACTED_IN

The command line arguments would remain the same as before:

neo4j-import --into path_to_target_directory --nodes movies9.csv --nodes actors9.csv --relationships roles9.csv

Since there was only one bad relationship the import process will complete successfully and a not-
imported.bad file will be created and populated with the bad relationships.

not-imported.bad

InputRelationship:

Import tool

540

 source: roles9.csv:11

 properties: [role, Emil]

 startNode: emil

 endNode: tt0133093

 type: ACTED_IN

 refering to missing node emil

Multiple nodes with same id within same id space
Nodes that specify :ID which has already been specified within the id space are considered bad nodes.
Whether or not such nodes are skipped is controlled with --skip-duplicate-nodes flag which can have
the values true or false or no value, which means true. Specifying false means that any duplicate node
is considered an error and will fail the import. For more information, see the --skip-duplicate-nodes
option.

In the following example there is a node id that is specified twice within the same id space.

actors10.csv

personId:ID,name,:LABEL

keanu,"Keanu Reeves",Actor

laurence,"Laurence Fishburne",Actor

carrieanne,"Carrie-Anne Moss",Actor

laurence,"Laurence Harvey",Actor

neo4j-import --into path_to_target_directory --nodes actors10.csv --skip-duplicate-nodes

Since there was only one bad node the import process will complete successfully and a not-
imported.bad file will be created and populated with the bad node.

not-imported.bad

Id 'laurence' is defined more than once in global id space, at least at actors10.csv:3 and actors10.csv:5

541

Chapter 30. Web Interface

The Neo4j Web Interface is the primary user interface for Neo4j.

The tool is available at http://127.0.0.1:7474/ after you have installed the Neo4j Server.

See the tool itself for more information!

http://127.0.0.1:7474/

542

Chapter 31. Neo4j Shell

Neo4j shell is a command-line shell for running Cypher queries. There’s also commands to get
information about the database. In addition, you can browse the graph, much like how the Unix shell
along with commands like cd, ls and pwd can be used to browse your local file system.

It’s a nice tool for development and debugging. This guide will show you how to get it going!

Neo4j Shell

543

31.1. Starting the shell
When used together with a Neo4j server, simply issue the following at the command line:

./bin/neo4j-shell

For help with running shell using Windows PowerShell, see Section 23.3, “Windows PowerShell
module” [441].

For the full list of options, see the reference in the Shell manual page.

To connect to a running Neo4j database, use the section called “Read-only mode” [544] for local
databases and see the section called “Enabling the shell server” [543] for remote databases.

You need to make sure that the shell jar file is on the classpath when you start up your Neo4j instance.

Enabling the shell server
Shell is enabled from the main configuration of Neo4j, see Section 24.8, “Configuration Settings
Reference” [464]. Here’s the available settings:

Settings for the remote shell extension

• remote_shell_enabled: Enable a remote shell server which Neo4j Shell clients can log in to.
• remote_shell_host: Remote host for shell.
• remote_shell_name: The name of the shell.
• remote_shell_port: The port the shell will listen on.
• remote_shell_read_only: Read only mode.

remote_shell_enabled
Description Enable a remote shell server which Neo4j Shell clients can log in to.
Valid values remote_shell_enabled is a boolean.
Default value false

remote_shell_host
Description Remote host for shell. By default, the shell server listens only on the loopback

interface, but you can specify the IP address of any network interface or use 0. 0.
 0. 0 for all interfaces.

Valid values remote_shell_host is a string which must be a valid name.
Default value 127. 0. 0. 1

remote_shell_name
Description The name of the shell.
Valid values remote_shell_name is a string which must be a valid name.
Default value shell

remote_shell_port
Description The port the shell will listen on.
Valid values remote_shell_port is an integer which must be a valid port number (is in the range

0 to 65535).
Default value 1337

remote_shell_read_only
Description Read only mode. Will only allow read operations.
Valid values remote_shell_read_only is a boolean.

Neo4j Shell

544

Default value false

There are two ways to start the shell, either by connecting to a remote shell server or by pointing it to a
Neo4j store path.

Connecting to a shell server
To start the shell and connect to a running server, run:

neo4j-shell

Alternatively supply -port and -name options depending on how the remote shell server was enabled.
Then you’ll get the shell prompt like this:

neo4j-sh (0)$

Pointing the shell to a path
To start the shell by just pointing it to a Neo4j store path you run the shell jar file. Given that the right
neo4j-kernel-<version>.jar and jta jar files are in the same path as your neo4j-shell-<version>.jar file you
run it with:

$ neo4j-shell -path path/to/neo4j-db

Read-only mode
By issuing the -readonly switch when starting the shell with a store path, changes cannot be made to
the database during the session.

$ neo4j-shell -readonly -path path/to/neo4j-db

Run a command and then exit
It is possible to tell the shell to just start, execute a command and then exit. This opens up for uses of
background jobs and also handling of huge output of f.ex. an ls command where you then could pipe
the output to less or another reader of your choice, or even to a file.

And even to another neo4j-shell, e.g. for importing a dump of another database or cypher result. When
used with command mode the shell will not output a welcome message. So some examples of usage:

$ neo4j-shell -c "cd -a 24 && set name Mattias"

$ neo4j-shell -c "trav -r KNOWS" | less

Pass Neo4j configuration options
By setting the -config switch, you can provide a properties file that will be used to configure your Neo4j
instance, if started in embedded mode.

$ neo4j-shell -config conf/neo4j.properties -path mydb

Execute a file and then exit
To execute commands from a file and then exit just provide a -file filename. This is faster than piping
to the shell which still handles the input as if it was user input.

For example reading a dump file directly from the command line and executing it against the given
database. For example:

$ neo4j-shell -file export.cql > result.txt

Supplying - as the filename reads from stdin instead.

Neo4j Shell

545

31.2. Passing options and arguments
Passing options and arguments to your commands is very similar to many CLI commands in an *nix
environment. Options are prefixed with a - and can contain one or more options. Some options expect
a value to be associated with it. Arguments are string values which aren’t prefixed with -. Let’s look at ls
as an example:

ls -r -f KNOWS:out -v 12345 will make a verbose listing of node 12345's outgoing relationships of type
KNOWS. The node id, 12345, is an argument to ls which tells it to do the listing on that node instead of the
current node (see pwd command). However a shorter version of this can be written:

ls -rfv KNOWS:out 12345. Here all three options are written together after a single - prefix. Even though
f is in the middle it gets associated with the KNOWS:out value. The reason for this is that the ls command
doesn’t expect any values associated with the r or v options. So, it can infer the right values for the
rights options.

Neo4j Shell

546

31.3. Enum options
Some options expects a value which is one of the values in an enum, f.ex. direction part of relationship
type filtering where there’s INCOMING, OUTGOING and BOTH. All such values can be supplied in an easier way.
It’s enough that you write the start of the value and the interpreter will find what you really meant. F.ex.
out, in, i or even INCOMING.

Neo4j Shell

547

31.4. Filters
Some commands makes use of filters for varying purposes. F.ex. -f in ls and in trav. A filter
is supplied as a json1 object (w/ or w/o the surrounding {} brackets. Both keys and values
can contain regular expressions for a more flexible matching. An example of a filter could be
.*url.*:http.*neo4j.*,name:Neo4j. The filter option is also accompanied by the options -i and -l which
stands for ignore case (ignore casing of the characters) and loose matching (it’s considered a match even
if the filter value just matches a part of the compared value, not necessarily the entire value). So for a
case-insensitive, loose filter you can supply a filter with -f -i -l or -fil for short.

1 http://www.json.org/

http://www.json.org/
http://www.json.org/

Neo4j Shell

548

31.5. Node titles
To make it easier to navigate your graph the shell can display a title for each node, f.ex. in ls -r. It
will display the relationships as well as the nodes on the other side of the relationships. The title is
displayed together with each node and its best suited property value from a list of property keys.

If you’re standing on a node which has two KNOWS relationships to other nodes it’d be difficult to know
which friend is which. The title feature addresses this by reading a list of property keys and grabbing
the first existing property value of those keys and displays it as a title for the node. So you may specify
a list (with or without regular expressions), f.ex: name,title.*,caption and the title for each node will
be the property value of the first existing key in that list. The list is defined by the client (you) using
the TITLE_KEYS environment variable (see the section called “Environment variables” [550]) and the
default being .*name.*,.*title.*

Neo4j Shell

549

31.6. How to use (individual commands)
The shell is modeled after Unix shells like bash that you use to walk around your local file system. It
has some of the same commands, like cd and ls. When you first start the shell (see instructions above),
you will get a list of all the available commands. Use man <command> to get more info about a particular
command. Some notes:

Comments
Single line comments, which will be ignored, can be made by using the prefix //. Example:

// This is a comment

Current node/relationship and path
You have a current node/relationship and a "current path" (like a current working directory in bash) that
you’ve traversed so far. When the shell first starts you are not positioned on any entity, but you can
cd your way through the graph (check your current path at any time with the pwd command). cd can be
used in different ways:

• cd <node-id> will traverse one relationship to the supplied node id. The node must have a direct
relationship to the current node.

• cd -a <node-id> will do an absolute path change, which means the supplied node doesn’t have to
have a direct relationship to the current node.

• cd -r <relationship-id> will traverse to a relationship instead of a node. The relationship must have
the current node as either start or end point. To see the relationship ids use the ls -vr command on
nodes.

• cd -ar <relationship-id> will do an absolute path change which means the relationship can be any
relationship in the graph.

• cd .. will traverse back one step to the previous location, removing the last path item from your
current path (pwd).

• cd start (only if your current location is a relationship). Traverses to the start node of the relationship.
• cd end (only if your current location is a relationship). Traverses to the end node of the relationship.

Listing the contents of a node/relationship
List contents of the current node/relationship (or any other node) with the ls command. Please note
that it will give an empty output if the current node/relationship has no properties or relationships (for
example in the case of a brand new graph). ls can take a node id as argument as well as filters, see
Section 31.4, “Filters” [547] and for information about how to specify direction see Section 31.3, “Enum
options” [546]. Use man ls for more info.

Creating nodes and relationships
You create new nodes by connecting them with relationships to the current node. For example, mkrel -
t A_RELATIONSHIP_TYPE -d OUTGOING -c will create a new node (-c) and draw to it an OUTGOING relationship
of type A_RELATIONSHIP_TYPE from the current node. If you already have two nodes which you’d like
to draw a relationship between (without creating a new node) you can do for example, mkrel -t
A_RELATIONSHIP_TYPE -d OUTGOING -n <other-node-id> and it will just create a new relationship between
the current node and that other node.

Setting, renaming and removing properties
Property operations are done with the set, mv and rm commands. These commands operates on the
current node/relationship.

Use set <key> <value>, optionally with the -t option (for value type), to set a property. Supports every
type of value that Neo4j supports. Examples of a property of type int:

$ set -t int age 29

Neo4j Shell

550

And an example of setting a double[] property:

$ set -t double[] my_values [1.4,12.2,13]

Example of setting a String property containing a JSON string:

mkrel -c -d i -t DOMAIN_OF --np "{'app':'foobar'}"

• rm <key> removes a property.
• mv <key> <new-key> renames a property from one key to another.

Deleting nodes and relationships
Deletion of nodes and relationships is done with the rmnode and rmrel commands. rmnode can delete
nodes, if the node to be deleted still has relationships they can also be deleted by supplying -f option.
rmrel can delete relationships, it tries to ensure connectedness in the graph, but relationships can be
deleted regardless with the -f option. rmrel can also delete the node on the other side of the deleted
relationship if it’s left with no more relationships, see -d option.

Environment variables
The shell uses environment variables a-la bash to keep session information, such as the current path
and more. The commands for this mimics the bash commands export and env. For example you can at
anytime issue a export STACKTRACES=true command to set the STACKTRACES environment variable to true.
This will then result in stacktraces being printed if an exception or error should occur. Allowed values
are all parseable JSON strings, so maps {age:10,name:"Mattias"} and arrays [1,2,3] are also supported.

Variables can also be assigned to each other. E.g. a=b will result in a containing the value of b.

This becomes especially interesting as all shell variables are automatically passed to cypher statements
as parameters. That makes it easy to query for certain start nodes or create nodes and relationships
with certain provided properties (as maps).

Values are removed by setting them to null or an empty value. List environment variables using env

Executing groovy/python scripts
The shell has support for executing scripts, such as Groovy2 and Python3 (via Jython4). As of now the
scripts (*.groovy, *.py) must exist on the server side and gets called from a client with for example, gsh
--renamePerson 1234 "Mathias" "Mattias" --doSomethingElse where the scripts renamePerson.groovy
and doSomethingElse.groovy must exist on the server side in any of the paths given by the GSH_PATH
environment variable (defaults to .:src:src/script). This variable is like the java classpath, separated by a
:. The python/jython scripts can be executed with the jsh in a similar fashion, however the scripts have
the .py extension and the environment variable for the paths is JSH_PATH.

When writing the scripts assume that there’s made available an args variable (a String[]) which
contains the supplied arguments. In the case of the renamePerson example above the array would
contain ["1234", "Mathias", "Mattias"]. Also please write your outputs to the out variable, such as
out.println("My tracing text") so that it will be printed at the shell client instead of the server.

Traverse
You can traverse the graph with the trav command which allows for simple traversing from the current
node. You can supply which relationship types (w/ regex matching) and optionally direction as well
as property filters for matching nodes. In addition to that you can supply a command line to execute
for each match. An example: trav -o depth -r KNOWS:both,HAS_.*:incoming -c "ls $n". Which means
traverse depth first for relationships with type KNOWS disregarding direction and incoming relationships
with type matching HAS_.* and do a ls <matching node> for each match. The node filtering is supplied

2 http://groovy.codehaus.org
3 http://www.python.org
4 http://www.jython.org

http://groovy.codehaus.org
http://www.python.org
http://www.jython.org
http://groovy.codehaus.org
http://www.python.org
http://www.jython.org

Neo4j Shell

551

with the -f option, see Section 31.4, “Filters” [547]. See Section 31.3, “Enum options” [546] for the
traversal order option. Even relationship types/directions are supplied using the same format as filters.

Query with Cypher
You can use Cypher to query the graph. For that, use the match or start command. You can also use
create statements to create nodes and relationships and use the cypher VERSION prefix to select a
certain cypher version.

Tip
Cypher queries need to be terminated by a semicolon ;.

Cypher commands are given all shell variables as parameters and the special self parameter for the
current node or relationship.

• start n = node(0) return n; will give you a listing of the node with ID 0
• cypher 1.9 start n = node(0) return n; will execute the query with Cypher version 1.9
• START n = node({self}) MATCH (n)-[:KNOWS]->(friend) RETURN friend; will return the nodes connected

to the current node.
• START n=node({me}) CREATE (me)-[r:KNOWS]->(friend {props}); will create the friend and the

relationship according to the variables available.

Listing Indexes and Constraints
The schema command allows to list all existing indexes and constraints together with their current
status.

Note
This command does not list legacy indexes. For working with legacy indexes, please see the
section called “Legacy Indexing” [551].

List all indexes and constraints:

schema

List indexes or constraints on :Person nodes for the property name:

schema -l :Person -p name

The schema command supports the following parameters:

• -l :Label only list indexes or constraints for the given label :Label
• -p propertyKey only list indexes or constraints for the given property key propertyKey
• -v if an index is in the FAILED state, print a verbose error cause if available

Indexes and constraints can be created or removed using Cypher or the Java Core API. They are
updated automatically whenever the graph is changed. See the section called “Schema” [9] for more
information.

Legacy Indexing
It’s possible to query and manipulate legacy indexes via the index command.

Example: index -i persons name (will index the name for the current node or relationship in the
"persons" legacy index).

• -g will do exact lookup in the legacy index and display hits. You can supply -c with a command to be
executed for each hit.

Neo4j Shell

552

• -q will ask the legacy index a query and display hits. You can supply -c with a command to be
executed for each hit.

• --cd will change current location to the hit from the query. It’s just a convenience for using the -c
option.

• --ls will do a listing of the contents for each hit. It’s just a convenience for using the -c option.
• -i will index a key-value pair into a legacy index for the current node/relationship. If no value is given

the property value for that key for the current node is used as value.
• -r will remove a key-value pair (if it exists) from a legacy index for the current node/relationship. Key

and value are optional.
• -t will set the legacy index type to work with, for example index -t Relationship --delete friends will

delete the friends relationship index.

Transactions
It is useful to be able to test changes, and then being able to commit or rollback said changes.

Transactions can be nested. With a nested transaction, a commit does not write any changes to disk,
except for the top level transaction. A rollback, however works regardless of the level of the transaction.
It will roll back all open transactions.

• begin transaction Starts a transaction.
• commit Commits a transaction.
• rollback Rollbacks all open transactions.

Dumping the database or Cypher statement results

Experimental feature
The dump command has incomplete functionality. It might not work for your use case or data
size.

As a simple way of exporting a database or a subset of it, the dump command converts the graph of a
Cypher result or the whole database into a single Cypher create statement.

Examples:

• dump dumps the whole database as single cypher create statement
• dump START n=node({self}) MATCH p=(n)-[r:KNOWS*]->(m) RETURN n,r,m; dumps the transitive friendship

graph of the current node.
• neo4j-shell -path db1 -c 'dump MATCH p=(n:Person {name:"Mattias"})-[r:KNOWS]->(m) RETURN p;' |

neo4j-shell -path db2 -file - imports the subgraph of the first database (db1) into the second (db2)

Example Dump Scripts

 � create a new node and go to it

 neo4j-sh (?)$ mknode --cd --np "{'name':'Neo'}"

 � create a relationship

 neo4j-sh (Neo,0)$ mkrel -c -d i -t LIKES --np "{'app':'foobar'}"

 � Export the cypher statement results

 neo4j-sh (Neo,0)$ dump MATCH (n)-[r]-(m) WHERE n = {self} return n,r,m;

 begin

 create (_0 {`name`:"Neo"})

 create (_1 {`app`:"foobar"})

 create _1-[:`LIKES`]->_0

 ;

 commit

 � create an index

Neo4j Shell

553

 neo4j-sh (?)$ create index on :Person(name);

 +-------------------+

 | No data returned. |

 +-------------------+

 Indexes added: 1

 1012 ms

 � create one labeled node and a relationship

 neo4j-sh (?)$ create (m:Person:Hacker {name:'Mattias'}), (m)-[:KNOWS]->(m);

 +-------------------+

 | No data returned. |

 +-------------------+

 Nodes created: 1

 Relationships created: 1

 Properties set: 1

 Labels added: 2

 507 ms

 � Export the whole database including indexes

 neo4j-sh (?)$ dump

 begin

 create index on :`Person`(`name`)

 create (_0:`Person`:`Hacker` {`name`:"Mattias"})

 create _0-[:`KNOWS`]->_0

 ;

 commit

Neo4j Shell

554

31.7. An example shell session
 � Create a node

 neo4j-sh (?)$ mknode --cd

 � where are we?

 neo4j-sh (0)$ pwd

 Current is (0)

 (0)

 � On the current node, set the key "name" to value "Jon"

 neo4j-sh (0)$ set name "Jon"

 � send a cypher query

 neo4j-sh (Jon,0)$ match n where id(n) = 0 return n;

 +---------------------+

 | n |

 +---------------------+

 | Node[0]{name:"Jon"} |

 +---------------------+

 1 row

 385 ms

 � make an incoming relationship of type LIKES, create the end node with the node properties specified.

 neo4j-sh (Jon,0)$ mkrel -c -d i -t LIKES --np "{'app':'foobar'}"

 � where are we?

 neo4j-sh (Jon,0)$ ls

 *name =[Jon]

 (me)<-[:LIKES]-(1)

 � change to the newly created node

 neo4j-sh (Jon,0)$ cd 1

 � list relationships, including relationship id

 neo4j-sh (1)$ ls -avr

 (me)-[:LIKES,0]->(Jon,0)

 � create one more KNOWS relationship and the end node

 neo4j-sh (1)$ mkrel -c -d i -t KNOWS --np "{'name':'Bob'}"

 � print current history stack

 neo4j-sh (1)$ pwd

 Current is (1)

 (Jon,0)-->(1)

 � verbose list relationships

 neo4j-sh (1)$ ls -avr

 (me)-[:LIKES,0]->(Jon,0)

 (me)<-[:KNOWS,1]-(Bob,2)

Neo4j Shell

555

31.8. A Matrix example
This example is creating a graph of the characters in the Matrix via the shell and then executing Cypher
queries against it:

Figure 31.1. Shell Matrix Example

nam e = 'Thom as Andersson'

ROOT

nam e = 'Morpheus'

KNOWS
age = 3

nam e = 'Trinity '

KNOWS

KNOWS
age = 90

nam e = 'Cypher'

KNOWS

nam e = 'Agent Sm ith'

KNOWS

nam e = 'The Architect '

CODED_BY

The following is a sample shell session creating the Matrix graph and querying it.

 � Create a reference node

 neo4j-sh (?)$ mknode --cd

 � create the Thomas Andersson node

 neo4j-sh (0)$ mkrel -t ROOT -c -v

 Node (1) created

 Relationship [:ROOT,0] created

 � go to the new node

 neo4j-sh (0)$ cd 1

Neo4j Shell

556

 � set the name property

 neo4j-sh (1)$ set name "Thomas Andersson"

 � create Thomas direct friends

 neo4j-sh (Thomas Andersson,1)$ mkrel -t KNOWS -cv

 Node (2) created

 Relationship [:KNOWS,1] created

 � go to the new node

 neo4j-sh (Thomas Andersson,1)$ cd 2

 � set the name property

 neo4j-sh (2)$ set name "Trinity"

 � go back in the history stack

 neo4j-sh (Trinity,2)$ cd ..

 � create Thomas direct friends

 neo4j-sh (Thomas Andersson,1)$ mkrel -t KNOWS -cv

 Node (3) created

 Relationship [:KNOWS,2] created

 � go to the new node

 neo4j-sh (Thomas Andersson,1)$ cd 3

 � set the name property

 neo4j-sh (3)$ set name "Morpheus"

 � create relationship to Trinity

 neo4j-sh (Morpheus,3)$ mkrel -t KNOWS 2

 � list the relationships of node 3

 neo4j-sh (Morpheus,3)$ ls -rv

 (me)-[:KNOWS,3]->(Trinity,2)

 (me)<-[:KNOWS,2]-(Thomas Andersson,1)

 � change the current position to relationship �2

 neo4j-sh (Morpheus,3)$ cd -r 2

 � set the age property on the relationship

 neo4j-sh [:KNOWS,2]$ set -t int age 3

 � back to Morpheus

 neo4j-sh [:KNOWS,2]$ cd ..

 � next relationship

 neo4j-sh (Morpheus,3)$ cd -r 3

 � set the age property on the relationship

 neo4j-sh [:KNOWS,3]$ set -t int age 90

 � position to the start node of the current relationship

 neo4j-sh [:KNOWS,3]$ cd start

 � new node

 neo4j-sh (Morpheus,3)$ mkrel -t KNOWS -c

 � list relationships on the current node

 neo4j-sh (Morpheus,3)$ ls -r

 (me)-[:KNOWS]->(4)

 (me)-[:KNOWS]->(Trinity,2)

 (me)<-[:KNOWS]-(Thomas Andersson,1)

Neo4j Shell

557

 � go to Cypher

 neo4j-sh (Morpheus,3)$ cd 4

 � set the name

 neo4j-sh (4)$ set name Cypher

 � create new node from Cypher

 neo4j-sh (Cypher,4)$ mkrel -ct KNOWS

 � list relationships

 neo4j-sh (Cypher,4)$ ls -r

 (me)-[:KNOWS]->(5)

 (me)<-[:KNOWS]-(Morpheus,3)

 � go to the Agent Smith node

 neo4j-sh (Cypher,4)$ cd 5

 � set the name

 neo4j-sh (5)$ set name "Agent Smith"

 � outgoing relationship and new node

 neo4j-sh (Agent Smith,5)$ mkrel -cvt CODED_BY

 Node (6) created

 Relationship [:CODED_BY,6] created

 � go there

 neo4j-sh (Agent Smith,5)$ cd 6

 � set the name

 neo4j-sh (6)$ set name "The Architect"

 � go to the first node in the history stack

 neo4j-sh (The Architect,6)$ cd

 � Morpheus' friends, looking up Morpheus by name in the Neo4j autoindex

 neo4j-sh (?)$ start morpheus = node:node_auto_index(name='Morpheus') match morpheus-[:KNOWS]-zionist return zionist.name;

 +--------------------+

 | zionist.name |

 +--------------------+

 | "Cypher" |

 | "Trinity" |

 | "Thomas Andersson" |

 +--------------------+

 3 rows

 122 ms

 � Morpheus' friends, looking up Morpheus by name in the Neo4j autoindex

 neo4j-sh (?)$ cypher 2.2 start morpheus = node:node_auto_index(name='Morpheus') match morpheus-[:KNOWS]-zionist return

 zionist.name;

 +--------------------+

 | zionist.name |

 +--------------------+

 | "Cypher" |

 | "Trinity" |

 | "Thomas Andersson" |

 +--------------------+

 3 rows

 989 ms

Part VII. Advanced Usage
This part contains information on advanced usage of Neo4j. Among the topics covered are embedding
Neo4j in your own software and writing plugins for the Neo4j Server.

You might want to keep the Neo4j JavaDocs5 handy while reading!

5 http://neo4j.com/docs/2.3.0/javadocs/

http://neo4j.com/docs/2.3.0/javadocs/
http://neo4j.com/docs/2.3.0/javadocs/

559

32. Extending the Neo4j Server ... 560
32.1. Server Plugins .. 561
32.2. Unmanaged Extensions .. 565
32.3. Testing your extension .. 570
32.4. Installing Plugins and Extensions in Neo4j Desktop .. 572

33. Using Neo4j embedded in Java applications ... 573
33.1. Include Neo4j in your project ... 574
33.2. Hello World .. 579
33.3. Property values ... 582
33.4. User database with indexes ... 583
33.5. User database with legacy index .. 585
33.6. Managing resources when using long running transactions ... 586
33.7. Basic unit testing ... 587
33.8. Traversal .. 589
33.9. Domain entities ... 597
33.10. Graph Algorithm examples ... 598
33.11. Reading a management attribute ... 600
33.12. How to create unique nodes .. 601
33.13. Terminating a running transaction ... 603
33.14. Execute Cypher Queries from Java ... 605
33.15. Query Parameters ... 607

34. The Traversal Framework .. 609
34.1. Main concepts ... 610
34.2. Traversal Framework Java API ... 611

35. Legacy Indexing .. 617
35.1. Introduction ... 618
35.2. Create .. 619
35.3. Delete .. 620
35.4. Add .. 621
35.5. Remove .. 623
35.6. Update ... 624
35.7. Search .. 625
35.8. Relationship indexes ... 627
35.9. Scores .. 628
35.10. Configuration and fulltext indexes ... 629
35.11. Extra features for Lucene indexes .. 630

36. Batch Insertion ... 632
36.1. Batch Inserter Examples ... 633
36.2. Index Batch Insertion .. 635

560

Chapter 32. Extending the Neo4j Server

The Neo4j Server can be extended by either plugins or unmanaged extensions.

Extending the Neo4j Server

561

32.1. Server Plugins
Quick info

• The server’s functionality can be extended by adding plugins.
• Plugins are user-specified code which extend the capabilities of the database, nodes, or

relationships.
• The neo4j server will then advertise the plugin functionality within representations as clients

interact via HTTP.

Plugins provide an easy way to extend the Neo4j REST API with new functionality, without the need to
invent your own API. Think of plugins as server-side scripts that can add functions for retrieving and
manipulating nodes, relationships, paths, properties or indices.

Tip
If you want to have full control over your API, and are willing to put in the effort, and
understand the risks, then Neo4j server also provides hooks for unmanaged extensions
based on JAX-RS.

The needed classes reside in the org.neo4j:server-api1 jar file. See the linked page for downloads and
instructions on how to include it using dependency management. For Maven projects, add the Server
API dependencies in your pom.xml like this:

<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>server-api</artifactId>

 <version>2.3.0</version>

</dependency>

To create a plugin, your code must inherit from the ServerPlugin2 class. Your plugin should also:

• ensure that it can produce an (Iterable of) Node, Relationship or Path, any Java primitive or String or an
instance of a org.neo4j.server.rest.repr.Representation

• specify parameters,
• specify a point of extension and of course
• contain the application logic.
• make sure that the discovery point type in the @PluginTarget and the @Source parameter are of the

same type.

Note
If your plugin class has any constructors defined it must also have a no-arguments
constructor defined.

An example of a plugin which augments the database (as opposed to nodes or relationships) follows:

Get all nodes or relationships plugin

@Description("An extension to the Neo4j Server for getting all nodes or relationships")

public class GetAll extends ServerPlugin

{

 @Name("get_all_nodes")

 @Description("Get all nodes from the Neo4j graph database")

 @PluginTarget(GraphDatabaseService.class)

 public Iterable<Node> getAllNodes(@Source GraphDatabaseService graphDb)

1 http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22server-api%22
2 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/server/plugins/ServerPlugin.html

http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22server-api%22
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/server/plugins/ServerPlugin.html
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22server-api%22
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/server/plugins/ServerPlugin.html

Extending the Neo4j Server

562

 {

 ArrayList<Node> nodes = new ArrayList<>();

 try (Transaction tx = graphDb.beginTx())

 {

 for (Node node : GlobalGraphOperations.at(graphDb).getAllNodes())

 {

 nodes.add(node);

 }

 tx.success();

 }

 return nodes;

 }

 @Description("Get all relationships from the Neo4j graph database")

 @PluginTarget(GraphDatabaseService.class)

 public Iterable<Relationship> getAllRelationships(@Source GraphDatabaseService graphDb)

 {

 List<Relationship> rels = new ArrayList<>();

 try (Transaction tx = graphDb.beginTx())

 {

 for (Relationship rel : GlobalGraphOperations.at(graphDb).getAllRelationships())

 {

 rels.add(rel);

 }

 tx.success();

 }

 return rels;

 }

}

The full source code is found here: GetAll.java3

Find the shortest path between two nodes plugin

public class ShortestPath extends ServerPlugin

{

 @Description("Find the shortest path between two nodes.")

 @PluginTarget(Node.class)

 public Iterable<Path> shortestPath(

 @Source Node source,

 @Description("The node to find the shortest path to.")

 @Parameter(name = "target") Node target,

 @Description("The relationship types to follow when searching for the shortest path(s). " +

 "Order is insignificant, if omitted all types are followed.")

 @Parameter(name = "types", optional = true) String[] types,

 @Description("The maximum path length to search for, default value (if omitted) is 4.")

 @Parameter(name = "depth", optional = true) Integer depth)

 {

 PathExpander<?> expander;

 List<Path> paths = new ArrayList<>();

 if (types == null)

 {

 expander = PathExpanders.allTypesAndDirections();

 }

 else

 {

 PathExpanderBuilder expanderBuilder = PathExpanderBuilder.empty();

 for (int i = 0; i < types.length; i++)

 {

 expanderBuilder = expanderBuilder.add(DynamicRelationshipType.withName(types[i]));

 }

 expander = expanderBuilder.build();

3 https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/
GetAll.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/GetAll.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/GetAll.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/GetAll.java

Extending the Neo4j Server

563

 }

 try (Transaction tx = source.getGraphDatabase().beginTx())

 {

 PathFinder<Path> shortestPath = GraphAlgoFactory.shortestPath(expander,

 depth == null ? 4 : depth.intValue());

 for (Path path : shortestPath.findAllPaths(source, target))

 {

 paths.add(path);

 }

 tx.success();

 }

 return paths;

 }

}

The full source code is found here: ShortestPath.java4

To deploy the code, simply compile it into a .jar file and place it onto the server classpath (which by
convention is the plugins directory under the Neo4j server home directory).

Caution
Whilst Neo4j is tested to run on JVM 8, Neo4j server is currently compiled using JDK 7, to
ensure compatibility for JVM 7 deployments. When compiling plugins for Neo4j Server, we
strongly recommend using JDK 7 also.

Tip
Make sure the directories listings are retained in the jarfile by either building with default
Maven, or with jar -cvf myext.jar *, making sure to jar directories instead of specifying
single files.

The .jar file must include the file META-INF/services/org.neo4j.server.plugins.ServerPlugin with the fully
qualified name of the implementation class. This is an example with multiple entries, each on a
separate line:

org.neo4j.examples.server.plugins.DepthTwo

org.neo4j.examples.server.plugins.GetAll

org.neo4j.examples.server.plugins.ShortestPath

The code above makes an extension visible in the database representation (via the @PluginTarget
annotation) whenever it is served from the Neo4j Server. Simply changing the @PluginTarget parameter
to Node.class or Relationship.class allows us to target those parts of the data model should we wish.
The functionality extensions provided by the plugin are automatically advertised in representations on
the wire. For example, clients can discover the extension implemented by the above plugin easily by
examining the representations they receive as responses from the server, e.g. by performing a GET on
the default database URI:

curl -v http://localhost:7474/db/data/

The response to the GET request will contain (by default) a JSON container that itself contains a
container called "extensions" where the available plugins are listed. In the following case, we only have
the GetAll plugin registered with the server, so only its extension functionality is available. Extension
names will be automatically assigned, based on method names, if not specifically specified using the
@Name annotation.

{

"extensions-info" : "http://localhost:7474/db/data/ext",

"node" : "http://localhost:7474/db/data/node",

"node_index" : "http://localhost:7474/db/data/index/node",

4 https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/
ShortestPath.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/ShortestPath.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/ShortestPath.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/ShortestPath.java

Extending the Neo4j Server

564

"relationship_index" : "http://localhost:7474/db/data/index/relationship",

"reference_node" : "http://localhost:7474/db/data/node/0",

"extensions_info" : "http://localhost:7474/db/data/ext",

"extensions" : {

 "GetAll" : {

 "get_all_nodes" : "http://localhost:7474/db/data/ext/GetAll/graphdb/get_all_nodes",

 "get_all_relationships" : "http://localhost:7474/db/data/ext/GetAll/graphdb/getAllRelationships"

 }

}

Performing a GET on one of the two extension URIs gives back the meta information about the service:

curl http://localhost:7474/db/data/ext/GetAll/graphdb/get_all_nodes

{

 "extends" : "graphdb",

 "description" : "Get all nodes from the Neo4j graph database",

 "name" : "get_all_nodes",

 "parameters" : []

}

To use it, just POST to this URL, with parameters as specified in the description and encoded as JSON
data content. For example for calling the shortest path extension (URI gotten from a GET to http://
localhost:7474/db/data/node/123):

curl -X POST http://localhost:7474/db/data/ext/ShortestPath/node/123/shortestPath \

 -H "Content-Type: application/json" \

 -d '{"target":"http://localhost:7474/db/data/node/456", "depth":"5"}'

If everything is OK a response code 200 and a list of zero or more items will be returned. If nothing is
returned (null returned from extension) an empty result and response code 204 will be returned. If the
extension throws an exception response code 500 and a detailed error message is returned.

Extensions that do any kind of database operation will have to manage their own transactions, i.e.
transactions aren’t managed automatically. Note that the results of traversals or execution of graph
algorithms should be exhausted inside the transaction before returning the result.

Through this model, any plugin can naturally fit into the general hypermedia scheme that Neo4j
espouses — meaning that clients can still take advantage of abstractions like Nodes, Relationships and
Paths with a straightforward upgrade path as servers are enriched with plugins (old clients don’t break).

http://localhost:7474/db/data/node/123
http://localhost:7474/db/data/node/123

Extending the Neo4j Server

565

32.2. Unmanaged Extensions
Sometimes you’ll want finer grained control over your application’s interactions with Neo4j than cypher
provides. For these situations you can use the unmanaged extension API.

Caution
This is a sharp tool, allowing users to deploy arbitrary JAX-RS5 classes to the server so
be careful when using this. In particular it’s easy to consume lots of heap space on the
server and degrade performance. If in doubt please ask for help via one of the community
channels (see Preface [v]).

Introduction to unmanaged extensions
The first step when writing an unmanaged extension is to create a project which includes dependencies
to the JAX-RS and Neo4j core jars. In Maven this would be achieved by adding the following lines to the
pom file:

<dependency>

 <groupId>javax.ws.rs</groupId>

 <artifactId>javax.ws.rs-api</artifactId>

 <version>2.0</version>

 <scope>provided</scope>

</dependency>

<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j</artifactId>

 <version>2.3.0</version>

 <scope>provided</scope>

</dependency>

Now we’re ready to write our extension.

In our code we’ll interact with the database using GraphDatabaseService which we can get access to by
using the @Context annotation. The following examples serves as a template which you can base your
extension on:

Unmanaged extension example

@Path("/helloworld")

public class HelloWorldResource

{

 private final GraphDatabaseService database;

 public HelloWorldResource(@Context GraphDatabaseService database)

 {

 this.database = database;

 }

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 @Path("/{nodeId}")

 public Response hello(@PathParam("nodeId") long nodeId)

 {

 // Do stuff with the database

 return Response.status(Status.OK).entity(

 ("Hello World, nodeId=" + nodeId).getBytes(Charset.forName("UTF-8"))).build();

 }

}

5 http://en.wikipedia.org/wiki/JAX-RS

http://en.wikipedia.org/wiki/JAX-RS
http://en.wikipedia.org/wiki/JAX-RS

Extending the Neo4j Server

566

The full source code is found here: HelloWorldResource.java6

Having built your code, the resulting jar file (and any custom dependencies) should be placed in the
$NEO4J_SERVER_HOME/plugins directory. We also need to tell Neo4j where to look for the extension by
adding some configuration in the conf/neo4j-server.properties file:

�Comma separated list of JAXRS packages containing JAXRS Resource, one package name for each mountpoint.

org.neo4j.server.thirdparty_jaxrs_classes=org.neo4j.examples.server.unmanaged=/examples/unmanaged

Our hello method will now respond to GET requests at the URI: http://{neo4j_server}:{neo4j_port}/
examples/unmanaged/helloworld/{nodeId}. e.g.

curl http://localhost:7474/examples/unmanaged/helloworld/123

which results in

Hello World, nodeId=123

Caution
Whilst Neo4j is tested to run on JVM 8, Neo4j server is currently compiled using JDK 7, to
ensure compatibility for JVM 7 deployments. When compiling plugins for Neo4j Server, we
strongly recommend using JDK 7 also.

Streaming JSON responses
When writing unmanaged extensions we have greater control over the amount of memory that
our Neo4j queries use. If we keep too much state around it can lead to more frequent full Garbage
Collection and subsequent unresponsiveness by the Neo4j server.
A common way that state can creep in is the creation of JSON objects to represent the result of a
query which we then send back to our application. Neo4j’s Transactional Cypher HTTP endpoint (see
Section 21.1, “Transactional Cypher HTTP endpoint” [298]) streams responses back to the client and we
should follow in its footsteps.
For example, the following unmanaged extension streams an array of a person’s colleagues:
Unmanaged extension streaming example

@Path("/colleagues")

public class ColleaguesResource

{

 private GraphDatabaseService graphDb;

 private final ObjectMapper objectMapper;

 private static final DynamicRelationshipType ACTED_IN = DynamicRelationshipType.withName("ACTED_IN");

 private static final Label PERSON = DynamicLabel.label("Person");

 public ColleaguesResource(@Context GraphDatabaseService graphDb)

 {

 this.graphDb = graphDb;

 this.objectMapper = new ObjectMapper();

 }

 @GET

 @Path("/{personName}")

 public Response findColleagues(final @PathParam("personName") String personName)

 {

 StreamingOutput stream = new StreamingOutput()

 {

 @Override

 public void write(OutputStream os) throws IOException, WebApplicationException

 {

 JsonGenerator jg = objectMapper.getJsonFactory().createJsonGenerator(os, JsonEncoding.UTF8);

6 https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/
HelloWorldResource.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/HelloWorldResource.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/HelloWorldResource.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/HelloWorldResource.java

Extending the Neo4j Server

567

 jg.writeStartObject();

 jg.writeFieldName("colleagues");

 jg.writeStartArray();

 try (Transaction tx = graphDb.beginTx();

 ResourceIterator<Node> persons = graphDb.findNodes(PERSON, "name", personName))

 {

 while (persons.hasNext())

 {

 Node person = persons.next();

 for (Relationship actedIn : person.getRelationships(ACTED_IN, OUTGOING))

 {

 Node endNode = actedIn.getEndNode();

 for (Relationship colleagueActedIn : endNode.getRelationships(ACTED_IN, INCOMING))

 {

 Node colleague = colleagueActedIn.getStartNode();

 if (!colleague.equals(person))

 {

 jg.writeString(colleague.getProperty("name").toString());

 }

 }

 }

 }

 tx.success();

 }

 jg.writeEndArray();

 jg.writeEndObject();

 jg.flush();

 jg.close();

 }

 };

 return Response.ok().entity(stream).type(MediaType.APPLICATION_JSON).build();

 }

}

The full source code is found here: ColleaguesResource.java7

As well as depending on JAX-RS API this example also uses Jackson — a Java JSON library. You’ll need to
add the following dependency to your Maven POM file (or equivalent):

<dependency>

 <groupId>org.codehaus.jackson</groupId>

 <artifactId>jackson-mapper-asl</artifactId>

 <version>1.9.7</version>

</dependency>

Our findColleagues method will now respond to GET requests at the URI: http://{neo4j_server}:
{neo4j_port}/examples/unmanaged/colleagues/{personName}. For example:

curl http://localhost:7474/examples/unmanaged/colleagues/Keanu%20Reeves

which results in

{"colleagues":["Hugo Weaving","Carrie-Anne Moss","Laurence Fishburne"]}

Using Cypher in an unmanaged extension
You can execute Cypher queries by using the GraphDatabaseService that is injected into the extension.

7 https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/
ColleaguesResource.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/ColleaguesResource.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/ColleaguesResource.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/ColleaguesResource.java

Extending the Neo4j Server

568

Note
In Neo4j versions prior to 2.2 you had to retrieve an ExecutionEngine to execute queries.
This has been deprecated, and we recommend you to update any existing code to use
GraphDatabaseService instead.

For example, the following unmanaged extension retrieves a person’s colleagues using Cypher:

Unmanaged extension Cypher execution example

@Path("/colleagues-cypher-execution")

public class ColleaguesCypherExecutionResource

{

 private final ObjectMapper objectMapper;

 private GraphDatabaseService graphDb;

 public ColleaguesCypherExecutionResource(@Context GraphDatabaseService graphDb)

 {

 this.graphDb = graphDb;

 this.objectMapper = new ObjectMapper();

 }

 @GET

 @Path("/{personName}")

 public Response findColleagues(final @PathParam("personName") String personName)

 {

 final Map<String, Object> params = MapUtil.map("personName", personName);

 StreamingOutput stream = new StreamingOutput()

 {

 @Override

 public void write(OutputStream os) throws IOException, WebApplicationException

 {

 JsonGenerator jg = objectMapper.getJsonFactory().createJsonGenerator(os, JsonEncoding.UTF8);

 jg.writeStartObject();

 jg.writeFieldName("colleagues");

 jg.writeStartArray();

 try (Transaction tx = graphDb.beginTx();

 Result result = graphDb.execute(colleaguesQuery(), params))

 {

 while (result.hasNext())

 {

 Map<String,Object> row = result.next();

 jg.writeString(((Node) row.get("colleague")).getProperty("name").toString());

 }

 tx.success();

 }

 jg.writeEndArray();

 jg.writeEndObject();

 jg.flush();

 jg.close();

 }

 };

 return Response.ok().entity(stream).type(MediaType.APPLICATION_JSON).build();

 }

 private String colleaguesQuery()

 {

 return "MATCH (p:Person {name: {personName} })-[:ACTED_IN]->()<-[:ACTED_IN]-(colleague) RETURN colleague";

 }

}8 https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/
ColleaguesCypherExecutionResource.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/ColleaguesCypherExecutionResource.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/ColleaguesCypherExecutionResource.java

Extending the Neo4j Server

569

The full source code is found here: ColleaguesCypherExecutionResource.java8

Our findColleagues method will now respond to GET requests at the URI: http://{neo4j_server}:
{neo4j_port}/examples/unmanaged/colleagues-cypher-execution/{personName}. e.g.

curl http://localhost:7474/examples/unmanaged/colleagues-cypher-execution/Keanu%20Reeves

which results in

{"colleagues":["Hugo Weaving","Carrie-Anne Moss","Laurence Fishburne"]}

https://github.com/neo4j/neo4j/blob/2.3.0/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/ColleaguesCypherExecutionResource.java

Extending the Neo4j Server

570

32.3. Testing your extension
Neo4j provides tools to help you write integration tests for your extensions. You can access this toolkit
by adding the following test dependency to your project:

<dependency>

 <groupId>org.neo4j.test</groupId>

 <artifactId>neo4j-harness</artifactId>

 <version>2.3.0</version>

 <scope>test</scope>

</dependency>

The test toolkit provides a mechanism to start a Neo4j instance with custom configuration and with
extensions of your choice. It also provides mechanisms to specify data fixtures to include when starting
Neo4j.

Usage example

@Path("")

public static class MyUnmanagedExtension

{

 @GET

 public Response myEndpoint()

 {

 return Response.ok().build();

 }

}

@Test

public void testMyExtension() throws Exception

{

 // Given

 try (ServerControls server = TestServerBuilders.newInProcessBuilder()

 .withExtension("/myExtension", MyUnmanagedExtension.class)

 .newServer())

 {

 // When

 HTTP.Response response = HTTP.GET(server.httpURI().resolve("myExtension").toString());

 // Then

 assertEquals(200, response.status());

 }

}

@Test

public void testMyExtensionWithFunctionFixture() throws Exception

{

 // Given

 try (ServerControls server = TestServerBuilders.newInProcessBuilder()

 .withExtension("/myExtension", MyUnmanagedExtension.class)

 .withFixture(new Function<GraphDatabaseService, Void>()

 {

 @Override

 public Void apply(GraphDatabaseService graphDatabaseService) throws RuntimeException

 {

 try (Transaction tx = graphDatabaseService.beginTx())

 {

 graphDatabaseService.createNode(DynamicLabel.label("User"));

 tx.success();

 }

 return null;

 }

 })

 .newServer())

Extending the Neo4j Server

571

 {

 // When

 Result result = server.graph().execute("MATCH (n:User) return n");

 // Then

 assertEquals(1, IteratorUtil.count(result));

 }

}

The full source code of the example is found here: ExtensionTestingDocTest.java9

Note the use of server.httpURI().resolve("myExtension") to ensure that the correct base URI is used.

If you are using the JUnit test framework, there is a JUnit rule available as well.

JUnit example

@Rule

public Neo4jRule neo4j = new Neo4jRule()

 .withFixture("CREATE (admin:Admin)")

 .withFixture(new Function<GraphDatabaseService, Void>()

 {

 @Override

 public Void apply(GraphDatabaseService graphDatabaseService) throws RuntimeException

 {

 try (Transaction tx = graphDatabaseService.beginTx())

 {

 graphDatabaseService.createNode(DynamicLabel.label("Admin"));

 tx.success();

 }

 return null;

 }

 });

@Test

public void shouldWorkWithServer() throws Exception

{

 // Given

 URI serverURI = neo4j.httpURI();

 // When I access the server

 HTTP.Response response = HTTP.GET(serverURI.toString());

 // Then it should reply

 assertEquals(200, response.status());

 // and we have access to underlying GraphDatabaseService

 try (Transaction tx = neo4j.getGraphDatabaseService().beginTx()) {

 assertEquals(2, IteratorUtil.count(

 neo4j.getGraphDatabaseService().findNodes(DynamicLabel.label("Admin"))

));

 tx.success();

 }

}

9 https://github.com/neo4j/neo4j/blob/2.3.0/community/neo4j-harness/src/test/java/org/neo4j/harness/doc/
ExtensionTestingDocTest.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/neo4j-harness/src/test/java/org/neo4j/harness/doc/ExtensionTestingDocTest.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/neo4j-harness/src/test/java/org/neo4j/harness/doc/ExtensionTestingDocTest.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/neo4j-harness/src/test/java/org/neo4j/harness/doc/ExtensionTestingDocTest.java

Extending the Neo4j Server

572

32.4. Installing Plugins and Extensions in Neo4j Desktop
Neo4j Desktop can also be extended with server plugins and extensions. Neo4j Desktop will add all jars
in %ProgramFiles%\Neo4j Community\plugins to the classpath, but please note that nested directories for
plugins are currently not supported.

Otherwise server plugins and extensions are subject to the same rules as usual. Please note when
configuring server extensions that neo4j-server.properties for Neo4j Desktop lives in %APPDATA%\Neo4j
Community.

573

Chapter 33. Using Neo4j embedded in Java
applications

It’s easy to use Neo4j embedded in Java applications. In this chapter you will find everything
needed — from setting up the environment to doing something useful with your data.

Using Neo4j embedded in Java applications

574

33.1. Include Neo4j in your project
After selecting the appropriate edition for your platform, embed Neo4j in your Java application by
including the Neo4j library jars in your build. The following sections will show how to do this by either
altering the build path directly or by using dependency management.

Add Neo4j to the build path
Get the Neo4j libraries from one of these sources:

• Extract a Neo4j download1 zip/tarball, and use the jar files found in the lib/ directory.
• Use the jar files available from Maven Central Repository2

Add the jar files to your project:

JDK tools Append to -classpath
Eclipse • Right-click on the project and then go Build Path → Configure Build Path. In the

dialog, choose Add External JARs, browse to the Neo4j lib/ directory and select all
of the jar files.

• Another option is to use User Libraries3.
IntelliJ IDEA See Libraries, Global Libraries, and the Configure Library dialog4

NetBeans • Right-click on the Libraries node of the project, choose Add JAR/Folder, browse to
the Neo4j lib/ directory and select all of the jar files.

• You can also handle libraries from the project node, see Managing a Project’s
Classpath5.

Editions
The following table outlines the available editions and their names for use with dependency
management tools.

Tip
Follow the links in the table for details on dependency configuration with Apache Maven,
Apache Buildr, Apache Ivy, Groovy Grape, Grails, Scala SBT!

Neo4j editions
Edition Dependency Description License

Community org.neo4j:neo4j6 a high performance,
fully ACID transactional
graph database

GPLv3

Enterprise org.neo4j:neo4j-
enterprise7

adding advanced
monitoring, online
backup and High
Availability clustering

AGPLv3

Note
The listed dependencies do not contain the implementation, but pulls it in transitively.

1 http://neo4j.com/download/
2 http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22
3 http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/buildpath/ref-preferences-
user-libraries.htm
4 http://www.jetbrains.com/idea/webhelp/configuring-project-and-global-libraries.html
5 http://netbeans.org/kb/docs/java/project-setup.html#projects-classpath
6 http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
7 http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22

http://neo4j.com/download/
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22
http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/buildpath/ref-preferences-user-libraries.htm
http://www.jetbrains.com/idea/webhelp/configuring-project-and-global-libraries.html
http://netbeans.org/kb/docs/java/project-setup.html#projects-classpath
http://netbeans.org/kb/docs/java/project-setup.html#projects-classpath
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://neo4j.com/download/
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22
http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/buildpath/ref-preferences-user-libraries.htm
http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/buildpath/ref-preferences-user-libraries.htm
http://www.jetbrains.com/idea/webhelp/configuring-project-and-global-libraries.html
http://netbeans.org/kb/docs/java/project-setup.html#projects-classpath
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22

Using Neo4j embedded in Java applications

575

For more information regarding licensing, see the Licensing Guide8.

Javadocs can be downloaded packaged in jar files from Maven Central or read at javadocs9.

Add Neo4j as a dependency
You can either go with the top-level artifact from the table above or include the individual components
directly. The examples included here use the top-level artifact approach.

Maven
Add the dependency to your project along the lines of the snippet below. This is usually done in the
pom.xml file found in the root directory of the project.

Maven dependency

<project>

...

 <dependencies>

 <dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j</artifactId>

 <version>2.3.0</version>

 </dependency>

 ...

 </dependencies>

...

</project>

Where the artifactId is found in the editions table.

Eclipse and Maven
For development in Eclipse10, it is recommended to install the m2e plugin11 and let Maven manage the
project build classpath instead, see above. This also adds the possibility to build your project both via
the command line with Maven and have a working Eclipse setup for development.

Ivy
Make sure to resolve dependencies from Maven Central, for example using this configuration in your
ivysettings.xml file:

<ivysettings>

 <settings defaultResolver="main"/>

 <resolvers>

 <chain name="main">

 <filesystem name="local">

 <artifact pattern="${ivy.settings.dir}/repository/[artifact]-[revision].[ext]" />

 </filesystem>

 <ibiblio name="maven_central" root="http://repo1.maven.org/maven2/" m2compatible="true"/>

 </chain>

 </resolvers>

</ivysettings>

With that in place you can add Neo4j to the mix by having something along these lines to your ivy.xml
file:

..

<dependencies>

 ..

 <dependency org="org.neo4j" name="neo4j" rev="2.3.0"/>

8 http://www.neo4j.org/learn/licensing
9 http://neo4j.com/docs/2.3.0/javadocs/
10 http://www.eclipse.org
11 http://www.eclipse.org/m2e/

http://www.neo4j.org/learn/licensing
http://neo4j.com/docs/2.3.0/javadocs/
http://www.eclipse.org
http://www.eclipse.org/m2e/
http://www.neo4j.org/learn/licensing
http://neo4j.com/docs/2.3.0/javadocs/
http://www.eclipse.org
http://www.eclipse.org/m2e/

Using Neo4j embedded in Java applications

576

 ..

</dependencies>

..

Where the name is found in the editions table above

Gradle
The example below shows an example gradle build script for including the Neo4j libraries.

def neo4jVersion = "2.3.0"

apply plugin: 'java'

repositories {

 mavenCentral()

}

dependencies {

 compile "org.neo4j:neo4j:${neo4jVersion}"

}

Where the coordinates (org.neo4j:neo4j in the example) are found in the editions table above.

Starting and stopping
To create a new database or open an existing one you instantiate a GraphDatabaseService12.

graphDb = new GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

registerShutdownHook(graphDb);

Note
The GraphDatabaseService instance can be shared among multiple threads. Note however
that you can’t create multiple instances pointing to the same database.

To stop the database, call the shutdown() method:

graphDb.shutdown();

To make sure Neo4j is shut down properly you can add a shutdown hook:

private static void registerShutdownHook(final GraphDatabaseService graphDb)

{

 // Registers a shutdown hook for the Neo4j instance so that it

 // shuts down nicely when the VM exits (even if you "Ctrl-C" the

 // running application).

 Runtime.getRuntime().addShutdownHook(new Thread()

 {

 @Override

 public void run()

 {

 graphDb.shutdown();

 }

 });

}

Starting an embedded database with configuration settings
To start Neo4j with configuration settings, a Neo4j properties file can be loaded like this:

GraphDatabaseService graphDb = new GraphDatabaseFactory()

 .newEmbeddedDatabaseBuilder(testDirectory.graphDbDir())

 .loadPropertiesFromFile(pathToConfig + "neo4j.properties")

 .newGraphDatabase();

Configuration settings can also be applied programmatically, like so:

12 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/GraphDatabaseService.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/GraphDatabaseService.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/GraphDatabaseService.html

Using Neo4j embedded in Java applications

577

GraphDatabaseService graphDb = new GraphDatabaseFactory()

 .newEmbeddedDatabaseBuilder(testDirectory.graphDbDir())

 .setConfig(GraphDatabaseSettings.pagecache_memory, "512M")

 .setConfig(GraphDatabaseSettings.string_block_size, "60")

 .setConfig(GraphDatabaseSettings.array_block_size, "300")

 .newGraphDatabase();

For configuration settings, see Chapter 24, Configuration & Performance [448].

Starting an embedded read-only instance
If you want a read-only view of the database, create an instance this way:

graphDb = new GraphDatabaseFactory().newEmbeddedDatabaseBuilder(

 "target/read-only-db/location")

 .setConfig(GraphDatabaseSettings.read_only, "true")

 .newGraphDatabase();

Obviously the database has to already exist in this case.

Note
Concurrent access to the same database files by multiple (read-only or write) instances is
not supported.

Controlling Logging
Neo4j provides logging via its own org.neo4j.logging.Log13 layer, and does not natively use any existing
Java logging framework. All logging events produced by Neo4j have a name, a level and a message. The
name is a FQCN (fully qualified class name).

Neo4j uses the following log levels:

ERROR For serious errors that are almost always fatal
WARN For events that are serious, but not fatal
INFO Informational events
DEBUG Debugging events

To enable logging, an implementation of org.neo4j.logging.LogProvider14 must be provided to the
GraphDatabaseFactory15, as follows:

LogProvider logProvider = new MyCustomLogProvider(output);

graphDb = new GraphDatabaseFactory().setUserLogProvider(logProvider).newEmbeddedDatabase(DB_PATH);

Neo4j also includes a binding for SLF4J, which is available in the neo4j-slf4j library jar. This can be
obtained via maven:

<project>

...

 <dependencies>

 <dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j-slf4j</artifactId>

 <version>2.3.0</version>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 </dependency>

13 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/logging/Log.html
14 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/logging/LogProvider.html
15 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/GraphDatabaseFactory.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/logging/Log.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/logging/LogProvider.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/GraphDatabaseFactory.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/logging/Log.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/logging/LogProvider.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/GraphDatabaseFactory.html

Using Neo4j embedded in Java applications

578

 ...

 </dependencies>

...

</project>

To use this binding, simply pass an instance of org.neo4j.logging.slf4j.Slf4jLogProvider16 to the
GraphDatabaseFactory17, as follows:

graphDb = new GraphDatabaseFactory().setUserLogProvider(new Slf4jLogProvider()).newEmbeddedDatabase(DB_PATH);

All log output can then be controlled via SLF4J configuration.

16 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/logging/slf4j/Slf4jLogProvider.html
17 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/GraphDatabaseFactory.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/logging/slf4j/Slf4jLogProvider.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/GraphDatabaseFactory.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/logging/slf4j/Slf4jLogProvider.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/GraphDatabaseFactory.html

Using Neo4j embedded in Java applications

579

33.2. Hello World
Learn how to create and access nodes and relationships. For information on project setup, see
Section 33.1, “Include Neo4j in your project” [574].

Remember, from Section 2.1, “The Neo4j Graph Database” [5], that a Neo4j graph consists of:

• Nodes that are connected by
• Relationships, with
• Properties on both nodes and relationships.

All relationships have a type. For example, if the graph represents a social network, a relationship type
could be KNOWS. If a relationship of the type KNOWS connects two nodes, that probably represents two
people that know each other. A lot of the semantics (that is the meaning) of a graph is encoded in the
relationship types of the application. And although relationships are directed they are equally well
traversed regardless of which direction they are traversed.

Tip
The source code of this example is found here: EmbeddedNeo4j.java18

Prepare the database
Relationship types can be created by using an enum. In this example we only need a single relationship
type. This is how to define it:

private static enum RelTypes implements RelationshipType

{

 KNOWS

}

We also prepare some variables to use:

GraphDatabaseService graphDb;

Node firstNode;

Node secondNode;

Relationship relationship;

The next step is to start the database server. Note that if the directory given for the database doesn’t
already exist, it will be created.

graphDb = new GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

registerShutdownHook(graphDb);

Note that starting a database server is an expensive operation, so don’t start up a new instance
every time you need to interact with the database! The instance can be shared by multiple threads.
Transactions are thread confined.

As seen, we register a shutdown hook that will make sure the database shuts down when the JVM exits.
Now it’s time to interact with the database.

Wrap operations in a transaction
All operations have to be performed in a transaction. This is a conscious design decision, since we
believe transaction demarcation to be an important part of working with a real enterprise database.
Now, transaction handling in Neo4j is very easy:

try (Transaction tx = graphDb.beginTx())

18 https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/
EmbeddedNeo4j.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4j.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4j.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4j.java

Using Neo4j embedded in Java applications

580

{

 // Database operations go here

 tx.success();

}

For more information on transactions, see Chapter 18, Transaction Management [285] and Java API for
Transaction19.

Note
For brevity, we do not spell out wrapping of operations in a transaction throughout the
manual.

Create a small graph
Now, let’s create a few nodes. The API is very intuitive. Feel free to have a look at the Neo4j Javadocs20.
They’re included in the distribution, as well. Here’s how to create a small graph consisting of two nodes,
connected with one relationship and some properties:

firstNode = graphDb.createNode();

firstNode.setProperty("message", "Hello, ");

secondNode = graphDb.createNode();

secondNode.setProperty("message", "World!");

relationship = firstNode.createRelationshipTo(secondNode, RelTypes.KNOWS);

relationship.setProperty("message", "brave Neo4j ");

We now have a graph that looks like this:

Figure 33.1. Hello World Graph

m essage = 'Hello, '

m essage = 'World! '

KNOWS
m essage = 'brave Neo4j '

Print the result
After we’ve created our graph, let’s read from it and print the result.

System.out.print(firstNode.getProperty("message"));

System.out.print(relationship.getProperty("message"));

System.out.print(secondNode.getProperty("message"));

Which will output:

Hello, brave Neo4j World!

Remove the data
In this case we’ll remove the data before committing:

// let's remove the data

firstNode.getSingleRelationship(RelTypes.KNOWS, Direction.OUTGOING).delete();

19 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Transaction.html
20 http://neo4j.com/docs/2.3.0/javadocs/

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Transaction.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Transaction.html
http://neo4j.com/docs/2.3.0/javadocs/
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Transaction.html
http://neo4j.com/docs/2.3.0/javadocs/

Using Neo4j embedded in Java applications

581

firstNode.delete();

secondNode.delete();

Note that deleting a node which still has relationships when the transaction commits will fail. This is to
make sure relationships always have a start node and an end node.

Shut down the database server
Finally, shut down the database server when the application finishes:

graphDb.shutdown();

Using Neo4j embedded in Java applications

582

33.3. Property values
Both nodes and relationships can have properties.

Properties are named values where the name is a string. Property values can be either a primitive or an
array of one primitive type. For example String, int and int[] values are valid for properties.

NULL is not a valid property value.
NULLs can instead be modeled by the absence of a key.

Property value types
Type Description Value range

boolean true/false

byte 8-bit integer -128 to 127, inclusive

short 16-bit integer -32768 to 32767, inclusive

int 32-bit integer -2147483648 to 2147483647, inclusive

long 64-bit integer -9223372036854775808 to
9223372036854775807, inclusive

float 32-bit IEEE 754 floating-point number

double 64-bit IEEE 754 floating-point number

char 16-bit unsigned integers representing
Unicode characters

u0000 to uffff (0 to 65535)

String sequence of Unicode characters

For further details on float/double values, see Java Language Specification21.

21 http://docs.oracle.com/javase/specs/jls/se5.0/html/typesValues.html#4.2.3

http://docs.oracle.com/javase/specs/jls/se5.0/html/typesValues.html#4.2.3
http://docs.oracle.com/javase/specs/jls/se5.0/html/typesValues.html#4.2.3

Using Neo4j embedded in Java applications

583

33.4. User database with indexes
You have a user database, and want to retrieve users by name using indexes.

Tip
The source code used in this example is found here:
EmbeddedNeo4jWithNewIndexing.java22

To begin with, we start the database server:

GraphDatabaseService graphDb = new GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

Then we have to configure the database to index users by name. This only needs to be done once.

IndexDefinition indexDefinition;

try (Transaction tx = graphDb.beginTx())

{

 Schema schema = graphDb.schema();

 indexDefinition = schema.indexFor(DynamicLabel.label("User"))

 .on("username")

 .create();

 tx.success();

}

Indexes are populated asynchronously when they are first created. It is possible to use the core API to
wait for index population to complete:

try (Transaction tx = graphDb.beginTx())

{

 Schema schema = graphDb.schema();

 schema.awaitIndexOnline(indexDefinition, 10, TimeUnit.SECONDS);

}

It’s time to add the users:

try (Transaction tx = graphDb.beginTx())

{

 Label label = DynamicLabel.label("User");

 // Create some users

 for (int id = 0; id < 100; id++)

 {

 Node userNode = graphDb.createNode(label);

 userNode.setProperty("username", "user" + id + "@neo4j.org");

 }

 System.out.println("Users created");

 tx.success();

}

Note
Please read Section 33.6, “Managing resources when using long running
transactions” [586] on how to properly close ResourceIterators returned from index
lookups.

And here’s how to find a user by id:

Label label = DynamicLabel.label("User");

int idToFind = 45;

22 https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/
EmbeddedNeo4jWithNewIndexing.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithNewIndexing.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithNewIndexing.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithNewIndexing.java

Using Neo4j embedded in Java applications

584

String nameToFind = "user" + idToFind + "@neo4j.org";

try (Transaction tx = graphDb.beginTx())

{

 try (ResourceIterator<Node> users =

 graphDb.findNodes(label, "username", nameToFind))

 {

 ArrayList<Node> userNodes = new ArrayList<>();

 while (users.hasNext())

 {

 userNodes.add(users.next());

 }

 for (Node node : userNodes)

 {

 System.out.println("The username of user " + idToFind + " is " + node.getProperty("username"));

 }

 }

}

When updating the name of a user, the index is updated as well:

try (Transaction tx = graphDb.beginTx())

{

 Label label = DynamicLabel.label("User");

 int idToFind = 45;

 String nameToFind = "user" + idToFind + "@neo4j.org";

 for (Node node : loop(graphDb.findNodes(label, "username", nameToFind)))

 {

 node.setProperty("username", "user" + (idToFind + 1) + "@neo4j.org");

 }

 tx.success();

}

When deleting a user, it is automatically removed from the index:

try (Transaction tx = graphDb.beginTx())

{

 Label label = DynamicLabel.label("User");

 int idToFind = 46;

 String nameToFind = "user" + idToFind + "@neo4j.org";

 for (Node node : loop(graphDb.findNodes(label, "username", nameToFind)))

 {

 node.delete();

 }

 tx.success();

}

In case we change our data model, we can drop the index as well:

try (Transaction tx = graphDb.beginTx())

{

 Label label = DynamicLabel.label("User");

 for (IndexDefinition indexDefinition : graphDb.schema()

 .getIndexes(label))

 {

 // There is only one index

 indexDefinition.drop();

 }

 tx.success();

}

Using Neo4j embedded in Java applications

585

33.5. User database with legacy index
Unless you have specific reasons to use the legacy indexing, see Section 33.4, “User database with
indexes” [583] instead.

Note
Please read Section 33.6, “Managing resources when using long running
transactions” [586] on how to properly close ResourceIterators returned from index
lookups.

You have a user database, and want to retrieve users by name using the legacy indexing system.

Tip
The source code used in this example is found here: EmbeddedNeo4jWithIndexing.java23

We have created two helper methods to handle user names and adding users to the database:

private static String idToUserName(final int id)

{

 return "user" + id + "@neo4j.org";

}

private static Node createAndIndexUser(final String username)

{

 Node node = graphDb.createNode();

 node.setProperty(USERNAME_KEY, username);

 nodeIndex.add(node, USERNAME_KEY, username);

 return node;

}

The next step is to start the database server:

graphDb = new GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

registerShutdownHook();

It’s time to add the users:

try (Transaction tx = graphDb.beginTx())

{

 nodeIndex = graphDb.index().forNodes("nodes");

 // Create some users and index their names with the IndexService

 for (int id = 0; id < 100; id++)

 {

 createAndIndexUser(idToUserName(id));

 }

And here’s how to find a user by Id:

int idToFind = 45;

String userName = idToUserName(idToFind);

Node foundUser = nodeIndex.get(USERNAME_KEY, userName).getSingle();

System.out.println("The username of user " + idToFind + " is "

 + foundUser.getProperty(USERNAME_KEY));

23 https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/
EmbeddedNeo4jWithIndexing.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithIndexing.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithIndexing.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithIndexing.java

Using Neo4j embedded in Java applications

586

33.6. Managing resources when using long running
transactions
It is necessary to always open a transaction when accessing the database. Inside a long running
transaction it is good practice to ensure that any ResourceIterator24s obtained inside the transaction are
closed as early as possible. This is either achieved by just exhausting the iterator or by explicitly calling
its close method.

What follows is an example of how to work with a ResourceIterator. As we don’t exhaust the iterator, we
will close it explicitly using the close() method.

Label label = DynamicLabel.label("User");

int idToFind = 45;

String nameToFind = "user" + idToFind + "@neo4j.org";

try (Transaction tx = graphDb.beginTx();

 ResourceIterator<Node> users = graphDb.findNodes(label, "username", nameToFind))

{

 Node firstUserNode;

 if (users.hasNext())

 {

 firstUserNode = users.next();

 }

 users.close();

}

24 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/ResourceIterator.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/ResourceIterator.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/ResourceIterator.html

Using Neo4j embedded in Java applications

587

33.7. Basic unit testing
The basic pattern of unit testing with Neo4j is illustrated by the following example.

To access the Neo4j testing facilities you should have the neo4j-kernel tests.jar together with the neo4j-
io tests.jar on the classpath during tests. You can download them from Maven Central: org.neo4j:neo4j-
kernel25 and org.neo4j:neo4j-io26.
Using Maven as a dependency manager you would typically add this dependency together with JUnit
and Hamcrest like so:
Maven dependency

<project>

...

 <dependencies>

 <dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j-kernel</artifactId>

 <version>2.3.0</version>

 <type>test-jar</type>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j-io</artifactId>

 <version>2.3.0</version>

 <type>test-jar</type>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.12</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.hamcrest</groupId>

 <artifactId>hamcrest-all</artifactId>

 <version>1.3</version>

 <scope>test</scope>

 </dependency>

 ...

 </dependencies>

...

</project>

Observe that the <type>test-jar</type> is crucial. Without it you would get the common neo4j-kernel
jar, not the one containing the testing facilities.
With that in place, we’re ready to code our tests.

Tip
For the full source code of this example see: Neo4jBasicDocTest.java27

Before each test, create a fresh database:

@Before

25 http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
26 http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-io%22
27 https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/test/java/org/neo4j/examples/
Neo4jBasicDocTest.java

http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-io%22
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/test/java/org/neo4j/examples/Neo4jBasicDocTest.java
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-io%22
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/test/java/org/neo4j/examples/Neo4jBasicDocTest.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/test/java/org/neo4j/examples/Neo4jBasicDocTest.java

Using Neo4j embedded in Java applications

588

public void prepareTestDatabase()

{

 graphDb = new TestGraphDatabaseFactory().newImpermanentDatabase();

}

After the test has executed, the database should be shut down:

@After

public void destroyTestDatabase()

{

 graphDb.shutdown();

}

During a test, create nodes and check to see that they are there, while enclosing write operations in a
transaction.

Node n = null;

try (Transaction tx = graphDb.beginTx())

{

 n = graphDb.createNode();

 n.setProperty("name", "Nancy");

 tx.success();

}

// The node should have a valid id

assertThat(n.getId(), is(greaterThan(-1L)));

// Retrieve a node by using the id of the created node. The id's and

// property should match.

try (Transaction tx = graphDb.beginTx())

{

 Node foundNode = graphDb.getNodeById(n.getId());

 assertThat(foundNode.getId(), is(n.getId()));

 assertThat((String) foundNode.getProperty("name"), is("Nancy"));

}

If you want to set configuration parameters at database creation, it’s done like this:

GraphDatabaseService db = new TestGraphDatabaseFactory()

 .newImpermanentDatabaseBuilder()

 .setConfig(GraphDatabaseSettings.pagecache_memory, "512M")

 .setConfig(GraphDatabaseSettings.string_block_size, "60")

 .setConfig(GraphDatabaseSettings.array_block_size, "300")

 .newGraphDatabase();

Using Neo4j embedded in Java applications

589

33.8. Traversal
For reading about traversals, see Chapter 34, The Traversal Framework [609].

For more examples of traversals, see Chapter 5, Basic Data Modeling Examples [47].

The Matrix
This is the first graph we want to traverse into:

Figure 33.2. Matrix node space view

Tip
The source code of this example is found here: NewMatrix.java28

Friends and friends of friends

private Traverser getFriends(

 final Node person)

{

 TraversalDescription td = graphDb.traversalDescription()

 .breadthFirst()

 .relationships(RelTypes.KNOWS, Direction.OUTGOING)

 .evaluator(Evaluators.excludeStartPosition());

 return td.traverse(person);

}

Let’s perform the actual traversal and print the results:

int numberOfFriends = 0;

String output = neoNode.getProperty("name") + "'s friends:\n";

Traverser friendsTraverser = getFriends(neoNode);

for (Path friendPath : friendsTraverser)

{

 output += "At depth " + friendPath.length() + " => "

 + friendPath.endNode()

28 https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/
NewMatrix.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/NewMatrix.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/NewMatrix.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/NewMatrix.java

Using Neo4j embedded in Java applications

590

 .getProperty("name") + "\n";

 numberOfFriends++;

}

output += "Number of friends found: " + numberOfFriends + "\n";

Which will give us the following output:

Thomas Anderson's friends:

At depth 1 => Morpheus

At depth 1 => Trinity

At depth 2 => Cypher

At depth 3 => Agent Smith

Number of friends found: 4

Who coded the Matrix?

private Traverser findHackers(final Node startNode)

{

 TraversalDescription td = graphDb.traversalDescription()

 .breadthFirst()

 .relationships(RelTypes.CODED_BY, Direction.OUTGOING)

 .relationships(RelTypes.KNOWS, Direction.OUTGOING)

 .evaluator(

 Evaluators.includeWhereLastRelationshipTypeIs(RelTypes.CODED_BY));

 return td.traverse(startNode);

}

Print out the result:

String output = "Hackers:\n";

int numberOfHackers = 0;

Traverser traverser = findHackers(getNeoNode());

for (Path hackerPath : traverser)

{

 output += "At depth " + hackerPath.length() + " => "

 + hackerPath.endNode()

 .getProperty("name") + "\n";

 numberOfHackers++;

}

output += "Number of hackers found: " + numberOfHackers + "\n";

Now we know who coded the Matrix:

Hackers:

At depth 4 => The Architect

Number of hackers found: 1

Walking an ordered path
This example shows how to use a path context holding a representation of a path.

Tip
The source code of this example is found here: OrderedPath.java29

Create a toy graph

Node A = db.createNode();

Node B = db.createNode();

Node C = db.createNode();

29 https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/orderedpath/
OrderedPath.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/orderedpath/OrderedPath.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/orderedpath/OrderedPath.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/orderedpath/OrderedPath.java

Using Neo4j embedded in Java applications

591

Node D = db.createNode();

A.createRelationshipTo(C, REL2);

C.createRelationshipTo(D, REL3);

A.createRelationshipTo(B, REL1);

B.createRelationshipTo(C, REL2);

A

B

REL1

C

REL2

REL2

D

REL3

Now, the order of relationships (REL1 → REL2 → REL3) is stored in an ArrayList. Upon traversal, the
Evaluator can check against it to ensure that only paths are included and returned that have the
predefined order of relationships:

Define how to walk the path

final ArrayList<RelationshipType> orderedPathContext = new ArrayList<RelationshipType>();

orderedPathContext.add(REL1);

orderedPathContext.add(withName("REL2"));

orderedPathContext.add(withName("REL3"));

TraversalDescription td = db.traversalDescription()

 .evaluator(new Evaluator()

 {

 @Override

 public Evaluation evaluate(final Path path)

 {

 if (path.length() == 0)

 {

 return Evaluation.EXCLUDE_AND_CONTINUE;

 }

 RelationshipType expectedType = orderedPathContext.get(path.length() - 1);

 boolean isExpectedType = path.lastRelationship()

 .isType(expectedType);

 boolean included = path.length() == orderedPathContext.size() && isExpectedType;

 boolean continued = path.length() < orderedPathContext.size() && isExpectedType;

 return Evaluation.of(included, continued);

 }

 })

 .uniqueness(Uniqueness.NODE_PATH);

Using Neo4j embedded in Java applications

592

Note that we set the uniqueness to Uniqueness.NODE_PATH30 as we want to be able to revisit the same
node dureing the traversal, but not the same path.

Perform the traversal and print the result

Traverser traverser = td.traverse(A);

PathPrinter pathPrinter = new PathPrinter("name");

for (Path path : traverser)

{

 output += Paths.pathToString(path, pathPrinter);

}

Which will output:

(A)--[REL1]-->(B)--[REL2]-->(C)--[REL3]-->(D)

In this case we use a custom class to format the path output. This is how it’s done:

static class PathPrinter implements Paths.PathDescriptor<Path>

{

 private final String nodePropertyKey;

 public PathPrinter(String nodePropertyKey)

 {

 this.nodePropertyKey = nodePropertyKey;

 }

 @Override

 public String nodeRepresentation(Path path, Node node)

 {

 return "(" + node.getProperty(nodePropertyKey, "") + ")";

 }

 @Override

 public String relationshipRepresentation(Path path, Node from, Relationship relationship)

 {

 String prefix = "--", suffix = "--";

 if (from.equals(relationship.getEndNode()))

 {

 prefix = "<--";

 }

 else

 {

 suffix = "-->";

 }

 return prefix + "[" + relationship.getType().name() + "]" + suffix;

 }

}

Uniqueness of Paths in traversals
This example is demonstrating the use of node uniqueness. Below an imaginary domain graph with
Principals that own pets that are descendant to other pets.

30 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html#NODE_PATH

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html#NODE_PATH
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html#NODE_PATH

Using Neo4j embedded in Java applications

593

Figure 33.3. Descendants Example Graph

Node[0]

nam e = 'Pet1'

Node[1]

nam e = 'Pet2'

Node[2]

nam e = 'Pet0'

descendant descendant

Node[3]

nam e = 'Pet3'

descendant

Node[4]

nam e = 'Principal1'

owns owns

Node[5]

nam e = 'Principal2'

owns

In order to return all descendants of Pet0 which have the relation owns to Principal1 (Pet1 and Pet3), the
Uniqueness of the traversal needs to be set to NODE_PATH rather than the default NODE_GLOBAL so that
nodes can be traversed more that once, and paths that have different nodes but can have some nodes
in common (like the start and end node) can be returned.

final Node target = data.get().get("Principal1");

TraversalDescription td = db.traversalDescription()

 .uniqueness(Uniqueness.NODE_PATH)

 .evaluator(new Evaluator()

{

 @Override

 public Evaluation evaluate(Path path)

 {

 boolean endNodeIsTarget = path.endNode().equals(target);

 return Evaluation.of(endNodeIsTarget, !endNodeIsTarget);

 }

});

Traverser results = td.traverse(start);

This will return the following paths:

(2)--[descendant,2]-->(3)<--[owns,5]--(4)

(2)--[descendant,0]-->(0)<--[owns,3]--(4)

In the default path.toString() implementation, (1)--[knows,2]-->(4) denotes a node with ID=1 having a
relationship with ID 2 or type knows to a node with ID-4.

Let’s create a new TraversalDescription from the old one, having NODE_GLOBAL uniqueness to see the
difference.

Tip
The TraversalDescription object is immutable, so we have to use the new instance returned
with the new uniqueness setting.

TraversalDescription nodeGlobalTd = td.uniqueness(Uniqueness.NODE_GLOBAL);

results = nodeGlobalTd.traverse(start);

Now only one path is returned:

(2)--[descendant,2]-->(3)<--[owns,5]--(4)

Social network

Note
The following example uses the new enhanced traversal API.

Using Neo4j embedded in Java applications

594

Social networks (know as social graphs out on the web) are natural to model with a graph. This example
shows a very simple social model that connects friends and keeps track of status updates.

Tip
The source code of the example is found here: socnet31

Simple social model

Figure 33.4. Social network data model

The data model for a social network is pretty simple: Persons with names and StatusUpdates with
timestamped text. These entities are then connected by specific relationships.

• Person

• friend: relates two distinct Person instances (no self-reference)
• status: connects to the most recent StatusUpdate

• StatusUpdate

• next: points to the next StatusUpdate in the chain, which was posted before the current one

Status graph instance
The StatusUpdate list for a Person is a linked list. The head of the list (the most recent status) is found by
following status. Each subsequent StatusUpdate is connected by next.

Here’s an example where Andreas Kollegger micro-blogged his way to work in the morning:

31 https://github.com/neo4j/neo4j/tree/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/socnet

https://github.com/neo4j/neo4j/tree/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/socnet
https://github.com/neo4j/neo4j/tree/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/socnet

Using Neo4j embedded in Java applications

595

Andreas Kollegger

started designing this graph m odel
9:30 am

status

rode m y awesom e Skeppshult to work
8:45 am

next

is get t ing used to m uesli for breakfast
8:00 am

next

To read the status updates, we can create a traversal, like so:

TraversalDescription traversal = graphDb().traversalDescription()

 .depthFirst()

 .relationships(NEXT);

This gives us a traverser that will start at one StatusUpdate, and will follow the chain of updates until
they run out. Traversers are lazy loading, so it’s performant even when dealing with thousands of
statuses — they are not loaded until we actually consume them.

Activity stream
Once we have friends, and they have status messages, we might want to read our friends status'
messages, in reverse time order — latest first. To do this, we go through these steps:

1. Gather all friend’s status update iterators in a list — latest date first.
2. Sort the list.
3. Return the first item in the list.
4. If the first iterator is exhausted, remove it from the list. Otherwise, get the next item in that iterator.
5. Go to step 2 until there are no iterators left in the list.

Animated, the sequence looks like this32.

The code looks like:

PositionedIterator<StatusUpdate> first = statuses.get(0);

StatusUpdate returnVal = first.current();

if (!first.hasNext())

{

 statuses.remove(0);

}

else

32 http://www.slideshare.net/systay/pattern-activity-stream

http://www.slideshare.net/systay/pattern-activity-stream
http://www.slideshare.net/systay/pattern-activity-stream

Using Neo4j embedded in Java applications

596

{

 first.next();

 sort();

}

return returnVal;

Using Neo4j embedded in Java applications

597

33.9. Domain entities
This page demonstrates one way to handle domain entities when using Neo4j. The principle at use is to
wrap the entities around a node (the same approach can be used with relationships as well).

Tip
The source code of the examples is found here: Person.java33

First off, store the node and make it accessible inside the package:

private final Node underlyingNode;

Person(Node personNode)

{

 this.underlyingNode = personNode;

}

protected Node getUnderlyingNode()

{

 return underlyingNode;

}

Delegate attributes to the node:

public String getName()

{

 return (String)underlyingNode.getProperty(NAME);

}

Make sure to override these methods:

@Override

public int hashCode()

{

 return underlyingNode.hashCode();

}

@Override

public boolean equals(Object o)

{

 return o instanceof Person &&

 underlyingNode.equals(((Person)o).getUnderlyingNode());

}

@Override

public String toString()

{

 return "Person[" + getName() + "]";

}

33 https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/socnet/
Person.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/socnet/Person.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/socnet/Person.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/socnet/Person.java

Using Neo4j embedded in Java applications

598

33.10. Graph Algorithm examples
For details on the graph algorithm usage, see the Javadocs34.

Tip
The source code used in the example is found here: PathFindingDocTest.java35

Calculating the shortest path (least number of relationships) between two nodes:

Node startNode = graphDb.createNode();

Node middleNode1 = graphDb.createNode();

Node middleNode2 = graphDb.createNode();

Node middleNode3 = graphDb.createNode();

Node endNode = graphDb.createNode();

createRelationshipsBetween(startNode, middleNode1, endNode);

createRelationshipsBetween(startNode, middleNode2, middleNode3, endNode);

// Will find the shortest path between startNode and endNode via

// "MY_TYPE" relationships (in OUTGOING direction), like f.ex:

//

// (startNode)-->(middleNode1)-->(endNode)

//

PathFinder<Path> finder = GraphAlgoFactory.shortestPath(

 PathExpanders.forTypeAndDirection(ExampleTypes.MY_TYPE, Direction.OUTGOING), 15);

Iterable<Path> paths = finder.findAllPaths(startNode, endNode);

Using Dijkstra’s algorithm36 to calculate cheapest path between node A and B where each relationship
can have a weight (i.e. cost) and the path(s) with least cost are found.

PathFinder<WeightedPath> finder = GraphAlgoFactory.dijkstra(

 PathExpanders.forTypeAndDirection(ExampleTypes.MY_TYPE, Direction.BOTH), "cost");

WeightedPath path = finder.findSinglePath(nodeA, nodeB);

// Get the weight for the found path

path.weight();

Using A*37 to calculate the cheapest path between node A and B, where cheapest is for example the
path in a network of roads which has the shortest length between node A and B. Here’s our example
graph:

34 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphalgo/GraphAlgoFactory.html
35 https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/test/java/org/neo4j/examples/
PathFindingDocTest.java
36 http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
37 http://en.wikipedia.org/wiki/A*_search_algorithm

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphalgo/GraphAlgoFactory.html
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/test/java/org/neo4j/examples/PathFindingDocTest.java
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphalgo/GraphAlgoFactory.html
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/test/java/org/neo4j/examples/PathFindingDocTest.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/test/java/org/neo4j/examples/PathFindingDocTest.java
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm

Using Neo4j embedded in Java applications

599

Node nodeA = createNode("name", "A", "x", 0d, "y", 0d);

Node nodeB = createNode("name", "B", "x", 7d, "y", 0d);

Node nodeC = createNode("name", "C", "x", 2d, "y", 1d);

Relationship relAB = createRelationship(nodeA, nodeC, "length", 2d);

Relationship relBC = createRelationship(nodeC, nodeB, "length", 3d);

Relationship relAC = createRelationship(nodeA, nodeB, "length", 10d);

EstimateEvaluator<Double> estimateEvaluator = new EstimateEvaluator<Double>()

{

 @Override

 public Double getCost(final Node node, final Node goal)

 {

 double dx = (Double) node.getProperty("x") - (Double) goal.getProperty("x");

 double dy = (Double) node.getProperty("y") - (Double) goal.getProperty("y");

 double result = Math.sqrt(Math.pow(dx, 2) + Math.pow(dy, 2));

 return result;

 }

};

PathFinder<WeightedPath> astar = GraphAlgoFactory.aStar(

 PathExpanders.allTypesAndDirections(),

 CommonEvaluators.doubleCostEvaluator("length"), estimateEvaluator);

WeightedPath path = astar.findSinglePath(nodeA, nodeB);

Using Neo4j embedded in Java applications

600

33.11. Reading a management attribute
The JmxUtils38 class includes methods to access Neo4j management beans. The common JMX service
can be used as well, but from your code you probably rather want to use the approach outlined here.

Tip
The source code of the example is found here: JmxDocTest.java39

This example shows how to get the start time of a database:

private static Date getStartTimeFromManagementBean(

 GraphDatabaseService graphDbService)

{

 ObjectName objectName = JmxUtils.getObjectName(graphDbService, "Kernel");

 Date date = JmxUtils.getAttribute(objectName, "KernelStartTime");

 return date;

}

Depending on which Neo4j edition you are using different sets of management beans are available.

• For all editions, see the org.neo4j.jmx40 package.
• For the Enterprise edition, see the org.neo4j.management41 package as well.

38 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/jmx/JmxUtils.html
39 https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/test/java/org/neo4j/examples/
JmxDocTest.java
40 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/jmx/package-summary.html
41 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/management/package-summary.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/jmx/JmxUtils.html
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/test/java/org/neo4j/examples/JmxDocTest.java
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/jmx/package-summary.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/management/package-summary.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/jmx/JmxUtils.html
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/test/java/org/neo4j/examples/JmxDocTest.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/test/java/org/neo4j/examples/JmxDocTest.java
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/jmx/package-summary.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/management/package-summary.html

Using Neo4j embedded in Java applications

601

33.12. How to create unique nodes
This section is about how to ensure uniqueness of a property when creating nodes. For an overview of
the topic, see Section 18.6, “Creating unique nodes” [293].

Get or create unique node using Cypher and unique constraints
Create a unique constraint

try (Transaction tx = graphdb.beginTx())

{

 graphdb.schema()

 .constraintFor(DynamicLabel.label("User"))

 .assertPropertyIsUnique("name")

 .create();

 tx.success();

}

Use MERGE to create a unique node

Node result = null;

ResourceIterator<Node> resultIterator = null;

try (Transaction tx = graphDb.beginTx())

{

 String queryString = "MERGE (n:User {name: {name}}) RETURN n";

 Map<String, Object> parameters = new HashMap<>();

 parameters.put("name", username);

 resultIterator = graphDb.execute(queryString, parameters).columnAs("n");

 result = resultIterator.next();

 tx.success();

 return result;

}

Get or create unique node using a legacy index

Important
While this is a working solution, please consider using the preferred solution at the section
called “Get or create unique node using Cypher and unique constraints” [601] instead.

By using put-if-absent42 functionality, entity uniqueness can be guaranteed using an index.

Here the index acts as the lock and will only lock the smallest part needed to guarantee uniqueness
across threads and transactions. To get the more high-level get-or-create functionality make use of
UniqueFactory

43 as seen in the example below.

Create a factory for unique nodes at application start

try (Transaction tx = graphDb.beginTx())

{

 UniqueFactory.UniqueNodeFactory result = new UniqueFactory.UniqueNodeFactory(graphDb, "users")

 {

 @Override

 protected void initialize(Node created, Map<String, Object> properties)

 {

 created.addLabel(DynamicLabel.label("User"));

 created.setProperty("name", properties.get("name"));

 }

 };

 tx.success();

42 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#putIfAbsent%28T,%20java.lang.String,
%20java.lang.Object%29
43 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/UniqueFactory.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#putIfAbsent%28T,%20java.lang.String,%20java.lang.Object%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/UniqueFactory.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#putIfAbsent%28T,%20java.lang.String,%20java.lang.Object%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#putIfAbsent%28T,%20java.lang.String,%20java.lang.Object%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/UniqueFactory.html

Using Neo4j embedded in Java applications

602

 return result;

}

Use the unique node factory to get or create a node

try (Transaction tx = graphDb.beginTx())

{

 Node node = factory.getOrCreate("name", username);

 tx.success();

 return node;

}

Pessimistic locking for node creation

Important
While this is a working solution, please consider using the preferred solution at the section
called “Get or create unique node using Cypher and unique constraints” [601] instead.

One might be tempted to use Java synchronization for pessimistic locking, but this is dangerous. By
mixing locks in Neo4j and in the Java runtime, it is easy to produce deadlocks that are not detectable
by Neo4j. As long as all locking is done by Neo4j, all deadlocks will be detected and avoided. Also, a
solution using manual synchronization doesn’t ensure uniqueness in an HA environment.

This example uses a single “lock node” for locking. We create it only as a place to put locks, nothing else.

Create a lock node at application start

try (Transaction tx = graphDb.beginTx())

{

 final Node lockNode = graphDb.createNode();

 tx.success();

 return lockNode;

}

Use the lock node to ensure nodes are not created concurrently

try (Transaction tx = graphDb.beginTx())

{

 Index<Node> usersIndex = graphDb.index().forNodes("users");

 Node userNode = usersIndex.get("name", username).getSingle();

 if (userNode != null)

 {

 return userNode;

 }

 tx.acquireWriteLock(lockNode);

 userNode = usersIndex.get("name", username).getSingle();

 if (userNode == null)

 {

 userNode = graphDb.createNode(DynamicLabel.label("User"));

 usersIndex.add(userNode, "name", username);

 userNode.setProperty("name", username);

 }

 tx.success();

 return userNode;

}

Note that finishing the transaction will release the lock on the lock node.

Using Neo4j embedded in Java applications

603

33.13. Terminating a running transaction
Sometimes you may want to terminate (abort) a long running transaction from another thread.

Tip
The source code used in this example is found here: TerminateTransactions.java44

To begin with, we start the database server:

GraphDatabaseService graphDb = new GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

Now we start creating an infinite binary tree of nodes in the database, as an example of a long running
transaction.

RelationshipType relType = DynamicRelationshipType.withName("CHILD");

Queue<Node> nodes = new LinkedList<>();

int depth = 1;

try (Transaction tx = graphDb.beginTx())

{

 Node rootNode = graphDb.createNode();

 nodes.add(rootNode);

 for (; true; depth++) {

 int nodesToExpand = nodes.size();

 for (int i = 0; i < nodesToExpand; ++i) {

 Node parent = nodes.remove();

 Node left = graphDb.createNode();

 Node right = graphDb.createNode();

 parent.createRelationshipTo(left, relType);

 parent.createRelationshipTo(right, relType);

 nodes.add(left);

 nodes.add(right);

 }

 }

}

catch (TransactionTerminatedException ignored)

{

 return String.format("Created tree up to depth %s in 1 sec", depth);

}

After waiting for some time, we decide to terminate the transaction. This is done from a separate
thread.

tx.terminate();

Running this will execute the long running transaction for about one second and prints the maximum
depth of the tree that was created before the transaction was terminated. No changes are actually
made to the data — because the transaction has been terminated, the end result is as if no operations
were performed.

Example output

Created tree up to depth 14 in 1 sec

44 https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/
TerminateTransactions.java

https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/TerminateTransactions.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/TerminateTransactions.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/TerminateTransactions.java

Using Neo4j embedded in Java applications

604

Finally, let’s shut down the database again.

graphDb.shutdown();

Using Neo4j embedded in Java applications

605

33.14. Execute Cypher Queries from Java
Tip
The full source code of the example: JavaQuery.java45

In Java, you can use the Cypher query language as per the example below. First, let’s add some data.

GraphDatabaseService db = new GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

try (Transaction tx = db.beginTx())

{

 Node myNode = db.createNode();

 myNode.setProperty("name", "my node");

 tx.success();

}

Execute a query:

try (Transaction ignored = db.beginTx();

 Result result = db.execute("match (n {name: 'my node'}) return n, n.name"))

{

 while (result.hasNext())

 {

 Map<String,Object> row = result.next();

 for (Entry<String,Object> column : row.entrySet())

 {

 rows += column.getKey() + ": " + column.getValue() + "; ";

 }

 rows += "\n";

 }

}

In the above example, we also show how to iterate over the rows of the Result46.
The code will generate:

n.name: my node; n: Node[0];

Caution
When using an Result, you should consume the entire result (iterate over all rows using
next(), iterating over the iterator from columnAs() or calling for example resultAsString()).
Failing to do so will not properly clean up resources used by the Result object, leading to
unwanted behavior, such as leaking transactions. In case you don’t want to iterate over all
of the results, make sure to invoke close() as soon as you are done, to release the resources
tied to the result.

Tip
Using a try-with-resources statement47 will make sure that the result is closed at the end of
the statement. This is the recommended way to handle results.

You can also get a list of the columns in the result like this:

List<String> columns = result.columns();

45 https://github.com/neo4j/neo4j/blob/2.3.0/community/cypher/docs/cypher-docs/src/test/java/org/neo4j/cypher/example/
JavaQuery.java
46 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Result.html
47 http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

https://github.com/neo4j/neo4j/blob/2.3.0/community/cypher/docs/cypher-docs/src/test/java/org/neo4j/cypher/example/JavaQuery.java
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Result.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://github.com/neo4j/neo4j/blob/2.3.0/community/cypher/docs/cypher-docs/src/test/java/org/neo4j/cypher/example/JavaQuery.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/cypher/docs/cypher-docs/src/test/java/org/neo4j/cypher/example/JavaQuery.java
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Result.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

Using Neo4j embedded in Java applications

606

This gives us:

[n, n.name]

To fetch the result items from a single column, do like below. In this case we’ll have to read the property
from the node and not from the result.

Iterator<Node> n_column = result.columnAs("n");

for (Node node : IteratorUtil.asIterable(n_column))

{

 nodeResult = node + ": " + node.getProperty("name");

}

In this case there’s only one node in the result:

Node[0]: my node

Only use this if the result only contains a single column, or you are only interested in a single column of
the result.

Note
resultAsString(), writeAsStringTo(), columnAs() cannot be called more than once on the
same Result object, as they consume the result. In the same way, part of the result gets
consumed for every call to next(). You should instead use only one and if you need the
facilities of the other methods on the same query result instead create a new Result.

For more information on the Java interface to Cypher, see the Java API48.

For more information and examples for Cypher, see Part III, “Cypher Query Language” [102] and
Chapter 5, Basic Data Modeling Examples [47].

48 http://neo4j.com/docs/2.3.0/javadocs/index.html

http://neo4j.com/docs/2.3.0/javadocs/index.html
http://neo4j.com/docs/2.3.0/javadocs/index.html

Using Neo4j embedded in Java applications

607

33.15. Query Parameters
For more information on parameters see Section 8.5, “Parameters” [113].

Below follows example of how to use parameters when executing Cypher queries from Java.

Node id

Map<String, Object> params = new HashMap<String, Object>();

params.put("id", 0);

String query = "MATCH n WHERE id(n) = {id} RETURN n.name";

Result result = db.execute(query, params);

Node object

Map<String, Object> params = new HashMap<String, Object>();

params.put("node", andreasNode);

String query = "MATCH n WHERE n = {node} RETURN n.name";

Result result = db.execute(query, params);

Multiple node ids

Map<String, Object> params = new HashMap<String, Object>();

params.put("ids", Arrays.asList(0, 1, 2));

String query = "MATCH n WHERE id(n) in {ids} RETURN n.name";

Result result = db.execute(query, params);

String literal

Map<String, Object> params = new HashMap<String, Object>();

params.put("name", "Johan");

String query = "MATCH (n) WHERE n.name = {name} RETURN n";

Result result = db.execute(query, params);

Index value

Map<String, Object> params = new HashMap<String, Object>();

params.put("value", "Michaela");

String query = "START n=node:people(name = {value}) RETURN n";

Result result = db.execute(query, params);

Index query

Map<String, Object> params = new HashMap<String, Object>();

params.put("query", "name:Andreas");

String query = "START n=node:people({query}) RETURN n";

Result result = db.execute(query, params);

Numeric parameters for SKIP and LIMIT

Map<String, Object> params = new HashMap<String, Object>();

params.put("s", 1);

params.put("l", 1);

String query = "MATCH (n) RETURN n.name SKIP {s} LIMIT {l}";

Result result = db.execute(query, params);

Regular expression

Map<String, Object> params = new HashMap<String, Object>();

params.put("regex", ".*h.*");

String query = "MATCH (n) WHERE n.name =~ {regex} RETURN n.name";

Result result = db.execute(query, params);

Create node with properties

Using Neo4j embedded in Java applications

608

Map<String, Object> props = new HashMap<String, Object>();

props.put("name", "Andres");

props.put("position", "Developer");

Map<String, Object> params = new HashMap<String, Object>();

params.put("props", props);

String query = "CREATE ({props})";

db.execute(query, params);

Create multiple nodes with properties

Map<String, Object> n1 = new HashMap<String, Object>();

n1.put("name", "Andres");

n1.put("position", "Developer");

n1.put("awesome", true);

Map<String, Object> n2 = new HashMap<String, Object>();

n2.put("name", "Michael");

n2.put("position", "Developer");

n2.put("children", 3);

Map<String, Object> params = new HashMap<String, Object>();

List<Map<String, Object>> maps = Arrays.asList(n1, n2);

params.put("props", maps);

String query = "CREATE (n:Person {props}) RETURN n";

db.execute(query, params);

Setting all properties on node

Map<String, Object> n1 = new HashMap<>();

n1.put("name", "Andres");

n1.put("position", "Developer");

Map<String, Object> params = new HashMap<>();

params.put("props", n1);

String query = "MATCH (n) WHERE n.name='Michaela' SET n = {props}";

db.execute(query, params);

609

Chapter 34. The Traversal Framework

The Neo4j Traversal API1 is a callback based, lazily executed way of specifying desired movements
through a graph in Java. Some traversal examples are collected under Section 33.8, “Traversal” [589].

You can also use The Cypher Query Language as a powerful declarative way to query the graph.

1 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/package-summary.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/package-summary.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/package-summary.html

The Traversal Framework

610

34.1. Main concepts
Here follows a short explanation of all different methods that can modify or add to a traversal
description.

• Pathexpanders — define what to traverse, typically in terms of relationship direction and type.
• Order — for example depth-first or breadth-first.
• Uniqueness — visit nodes (relationships, paths) only once.
• Evaluator — decide what to return and whether to stop or continue traversal beyond the current

position.
• Starting nodes where the traversal will begin.

Traversal Descript ion

Traverser

applies

Uniqueness

avoid duplicates

Evaluator

return and prune policy

Prune/Cont inue

Order

where to go next

PathExpander

what to t raverse

Relat ionship Type

Depth First Breadth First Direct ionUnique NodesUnique Relat ionships Unique Paths NoneInclude/Exclude

Paths

result as

Nodes

result as

Relat ionships

result as

A Node
start ing point of

See Section 34.2, “Traversal Framework Java API” [611] for more details.

The Traversal Framework

611

34.2. Traversal Framework Java API
The traversal framework consists of a few main interfaces in addition to Node and Relationship:
TraversalDescription, Evaluator, Traverser and Uniqueness are the main ones. The Path interface
also has a special purpose in traversals, since it is used to represent a position in the graph when
evaluating that position. Furthermore the PathExpander (replacing RelationshipExpander and Expander)
interface is central to traversals, but users of the API rarely need to implement it. There are also a set of
interfaces for advanced use, when explicit control over the traversal order is required: BranchSelector,
BranchOrderingPolicy and TraversalBranch.

TraversalDescription
The TraversalDescription2 is the main interface used for defining and initializing traversals. It is
not meant to be implemented by users of the traversal framework, but rather to be provided
by the implementation of the traversal framework as a way for the user to describe traversals.
TraversalDescription instances are immutable and its methods returns a new TraversalDescription that
is modified compared to the object the method was invoked on with the arguments of the method.

Relationships
Adds a relationship type to the list of relationship types to traverse. By default that list is empty and it
means that it will traverse all relationships, regardless of type. If one or more relationships are added
to this list only the added types will be traversed. There are two methods, one including direction3 and
another one excluding direction4, where the latter traverses relationships in both directions5.

Evaluator
Evaluator

6s are used for deciding, at each position (represented as a Path): should the traversal
continue, and/or should the node be included in the result. Given a Path, it asks for one of four actions
for that branch of the traversal:

• Evaluation.INCLUDE_AND_CONTINUE: Include this node in the result and continue the traversal
• Evaluation.INCLUDE_AND_PRUNE: Include this node in the result, but don’t continue the traversal
• Evaluation.EXCLUDE_AND_CONTINUE: Exclude this node from the result, but continue the traversal
• Evaluation.EXCLUDE_AND_PRUNE: Exclude this node from the result and don’t continue the traversal

More than one evaluator can be added. Note that evaluators will be called for all positions the traverser
encounters, even for the start node.

Traverser
The Traverser7 object is the result of invoking traverse()8 of a TraversalDescription object. It represents
a traversal positioned in the graph, and a specification of the format of the result. The actual traversal is
performed lazily each time the next()-method of the iterator of the Traverser is invoked.

Uniqueness
Sets the rules for how positions can be revisited during a traversal as stated in Uniqueness9. Default if
not set is NODE_GLOBAL10.

2 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html
3 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
4 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
5 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Direction.html#BOTH
6 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Evaluator.html
7 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Traverser.html
8 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/
TraversalDescription.html#traverse(org.neo4j.graphdb.Node)
9 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html
10 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html#NODE_GLOBAL

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Direction.html#BOTH
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Evaluator.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Traverser.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#traverse(org.neo4j.graphdb.Node)
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html#NODE_GLOBAL
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Direction.html#BOTH
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Evaluator.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Traverser.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#traverse(org.neo4j.graphdb.Node)
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#traverse(org.neo4j.graphdb.Node)
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html#NODE_GLOBAL

The Traversal Framework

612

A Uniqueness can be supplied to the TraversalDescription to dictate under what circumstances a
traversal may revisit the same position in the graph. The various uniqueness levels that can be used in
Neo4j are:

• NONE: Any position in the graph may be revisited.
• NODE_GLOBAL uniqueness: No node in the entire graph may be visited more than once. This could

potentially consume a lot of memory since it requires keeping an in-memory data structure
remembering all the visited nodes.

• RELATIONSHIP_GLOBAL uniqueness: no relationship in the entire graph may be visited more than once.
For the same reasons as NODE_GLOBAL uniqueness, this could use up a lot of memory. But since graphs
typically have a larger number of relationships than nodes, the memory overhead of this uniqueness
level could grow even quicker.

• NODE_PATH uniqueness: A node may not occur previously in the path reaching up to it.
• RELATIONSHIP_PATH uniqueness: A relationship may not occur previously in the path reaching up to it.
• NODE_RECENT uniqueness: Similar to NODE_GLOBAL uniqueness in that there is a global collection of visited

nodes each position is checked against. This uniqueness level does however have a cap on how
much memory it may consume in the form of a collection that only contains the most recently visited
nodes. The size of this collection can be specified by providing a number as the second argument to
the TraversalDescription.uniqueness()-method along with the uniqueness level.

• RELATIONSHIP_RECENT uniqueness: Works like NODE_RECENT uniqueness, but with relationships instead of
nodes.

Depth First / Breadth First
These are convenience methods for setting preorder depth-first11/ breadth-first12

BranchSelector|ordering policies. The same result can be achieved by calling the order13

method with ordering policies from BranchOrderingPolicies14, or to write your own
BranchSelector/BranchOrderingPolicy and pass in.

Order — How to move through branches?
A more generic version of depthFirst/breadthFirst methods in that it allows an arbitrary
BranchOrderingPolicy

15 to be injected into the description.

BranchSelector
A BranchSelector/BranchOrderingPolicy is used for selecting which branch of the traversal to attempt
next. This is used for implementing traversal orderings. The traversal framework provides a few basic
ordering implementations:

• BranchOrderingPolicies.PREORDER_DEPTH_FIRST: Traversing depth first, visiting each node before visiting
its child nodes.

• BranchOrderingPolicies.POSTORDER_DEPTH_FIRST: Traversing depth first, visiting each node after visiting
its child nodes.

• BranchOrderingPolicies.PREORDER_BREADTH_FIRST: Traversing breadth first, visiting each node before
visiting its child nodes.

• BranchOrderingPolicies.POSTORDER_BREADTH_FIRST: Traversing breadth first, visiting each node after
visiting its child nodes.

Note
Please note that breadth first traversals have a higher memory overhead than depth first
traversals.

11 http://en.wikipedia.org/wiki/Depth-first_search
12 http://en.wikipedia.org/wiki/Breadth-first_search
13 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#order
14 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/BranchOrderingPolicies.html
15 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/BranchOrderingPolicy.html

http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#order
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/BranchOrderingPolicies.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/BranchOrderingPolicy.html
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#order
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/BranchOrderingPolicies.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/BranchOrderingPolicy.html

The Traversal Framework

613

BranchSelectors carries state and hence needs to be uniquely instantiated for each traversal. Therefore
it is supplied to the TraversalDescription through a BranchOrderingPolicy interface, which is a factory of
BranchSelector instances.

A user of the Traversal framework rarely needs to implement his own BranchSelector or
BranchOrderingPolicy, it is provided to let graph algorithm implementors provide their own
traversal orders. The Neo4j Graph Algorithms package contains for example a BestFirst order
BranchSelector/BranchOrderingPolicy that is used in BestFirst search algorithms such as A* and Dijkstra.

BranchOrderingPolicy
A factory for creating BranchSelectors to decide in what order branches are returned (where a branch’s
position is represented as a Path16 from the start node to the current node). Common policies are
depth-first

17 and breadth-first18 and that’s why there are convenience methods for those. For
example, calling TraversalDescription�depthFirst()19 is equivalent to:

description.order(BranchOrderingPolicies.PREORDER_DEPTH_FIRST);

TraversalBranch
An object used by the BranchSelector to get more branches from a certain branch. In essence these
are a composite of a Path and a RelationshipExpander that can be used to get new TraversalBranch20es
from the current one.

Path
A Path21 is a general interface that is part of the Neo4j API. In the traversal API of Neo4j the use of Paths
are twofold. Traversers can return their results in the form of the Paths of the visited positions in the
graph that are marked for being returned. Path objects are also used in the evaluation of positions in
the graph, for determining if the traversal should continue from a certain point or not, and whether a
certain position should be included in the result set or not.

PathExpander/RelationshipExpander
The traversal framework use PathExpanders (replacing RelationshipExpander) to discover the relationships
that should be followed from a particular path to further branches in the traversal.

Expander
A more generic version of relationships where a RelationshipExpander is injected, defining all
relationships to be traversed for any given node.

The Expander interface is an extension of the RelationshipExpander interface that makes it possible to
build customized versions of an Expander. The implementation of TraversalDescription uses this to
provide methods for defining which relationship types to traverse, this is the usual way a user of the
API would define a RelationshipExpander — by building it internally in the TraversalDescription.

All the RelationshipExpanders provided by the Neo4j traversal framework also implement the
Expander interface. For a user of the traversal API it is easier to implement the PathExpander/
RelationshipExpander interface, since it only contains one method — the method for getting the
relationships from a path/node, the methods that the Expander interface adds are just for building new
Expanders.

16 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Path.html
17 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()
18 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#breadthFirst()
19 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()
20 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalBranch.html
21 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Path.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Path.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#breadthFirst()
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalBranch.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Path.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Path.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#breadthFirst()
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalBranch.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Path.html

The Traversal Framework

614

How to use the Traversal framework
A traversal description22 is built using a fluent interface and such a description can then spawn
traversers23.

Figure 34.1. Traversal Example Graph

Node[0]

nam e = 'Lars'

Node[5]

nam e = 'Dirk'

KNOWS

Node[4]

nam e = 'Peter'

KNOWS

Node[1]

nam e = 'Sara'

Node[2]

nam e = 'Ed'

KNOWS

Node[3]

nam e = 'Lisa'

KNOWS

Node[6]

nam e = 'Joe'

LIKES

KNOWS

KNOWS

With the definition of the RelationshipTypes as

private enum Rels implements RelationshipType

{

 LIKES, KNOWS

}

The graph can be traversed with for example the following traverser, starting at the “Joe” node:

for (Path position : db.traversalDescription()

 .depthFirst()

 .relationships(Rels.KNOWS)

 .relationships(Rels.LIKES, Direction.INCOMING)

 .evaluator(Evaluators.toDepth(5))

 .traverse(node))

{

 output += position + "\n";

}

22 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html
23 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Traverser.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Traverser.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Traverser.html

The Traversal Framework

615

The traversal will output:

(6)

(6)<--[LIKES,1]--(3)

(6)<--[LIKES,1]--(3)--[KNOWS,6]-->(0)

(6)<--[LIKES,1]--(3)--[KNOWS,6]-->(0)<--[KNOWS,5]--(2)

(6)<--[LIKES,1]--(3)--[KNOWS,6]-->(0)--[KNOWS,4]-->(5)

(6)<--[LIKES,1]--(3)--[KNOWS,6]-->(0)--[KNOWS,4]-->(5)--[KNOWS,3]-->(4)

(6)<--[LIKES,1]--(3)--[KNOWS,6]-->(0)--[KNOWS,4]-->(5)--[KNOWS,3]-->(4)--[KNOWS,2]-->(1)

Since TraversalDescription24s are immutable it is also useful to create template descriptions which
holds common settings shared by different traversals. For example, let’s start with this traverser:

friendsTraversal = db.traversalDescription()

 .depthFirst()

 .relationships(Rels.KNOWS)

 .uniqueness(Uniqueness.RELATIONSHIP_GLOBAL);

This traverser would yield the following output (we will keep starting from the “Joe” node):

(6)

(6)--[KNOWS,0]-->(1)

(6)--[KNOWS,0]-->(1)<--[KNOWS,2]--(4)

(6)--[KNOWS,0]-->(1)<--[KNOWS,2]--(4)<--[KNOWS,3]--(5)

(6)--[KNOWS,0]-->(1)<--[KNOWS,2]--(4)<--[KNOWS,3]--(5)<--[KNOWS,4]--(0)

(6)--[KNOWS,0]-->(1)<--[KNOWS,2]--(4)<--[KNOWS,3]--(5)<--[KNOWS,4]--(0)<--[KNOWS,6]--(3)

(6)--[KNOWS,0]-->(1)<--[KNOWS,2]--(4)<--[KNOWS,3]--(5)<--[KNOWS,4]--(0)<--[KNOWS,5]--(2)

Now let’s create a new traverser from it, restricting depth to three:

for (Path path : friendsTraversal

 .evaluator(Evaluators.toDepth(3))

 .traverse(node))

{

 output += path + "\n";

}

This will give us the following result:

(6)

(6)--[KNOWS,0]-->(1)

(6)--[KNOWS,0]-->(1)<--[KNOWS,2]--(4)

(6)--[KNOWS,0]-->(1)<--[KNOWS,2]--(4)<--[KNOWS,3]--(5)

Or how about from depth two to four? That’s done like this:

for (Path path : friendsTraversal

 .evaluator(Evaluators.fromDepth(2))

 .evaluator(Evaluators.toDepth(4))

 .traverse(node))

{

 output += path + "\n";

}

This traversal gives us:

(6)--[KNOWS,0]-->(1)<--[KNOWS,2]--(4)

(6)--[KNOWS,0]-->(1)<--[KNOWS,2]--(4)<--[KNOWS,3]--(5)

(6)--[KNOWS,0]-->(1)<--[KNOWS,2]--(4)<--[KNOWS,3]--(5)<--[KNOWS,4]--(0)

For various useful evaluators, see the Evaluators25 Java API or simply implement the Evaluator26

interface yourself.

24 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html
25 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Evaluators.html
26 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Evaluator.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Evaluators.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Evaluator.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Evaluators.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Evaluator.html

The Traversal Framework

616

If you’re not interested in the Path27s, but the Node28s you can transform the traverser into an iterable of
nodes29 like this:

for (Node currentNode : friendsTraversal

 .traverse(node)

 .nodes())

{

 output += currentNode.getProperty("name") + "\n";

}

In this case we use it to retrieve the names:

Joe

Sara

Peter

Dirk

Lars

Lisa

Ed

Relationships30 are fine as well, here’s how to get them:

for (Relationship relationship : friendsTraversal

 .traverse(node)

 .relationships())

{

 output += relationship.getType().name() + "\n";

}

Here the relationship types are written, and we get:

KNOWS

KNOWS

KNOWS

KNOWS

KNOWS

KNOWS

Tip
The source code for the traversers in this example is available at: TraversalExample.java31

27 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Path.html
28 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Node.html
29 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Traverser.html#nodes()
30 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Traverser.html#relationships()
31 https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/
TraversalExample.java

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Path.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Node.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Traverser.html#nodes()
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Traverser.html#relationships()
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/TraversalExample.java
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Path.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Node.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Traverser.html#nodes()
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/traversal/Traverser.html#relationships()
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/TraversalExample.java
https://github.com/neo4j/neo4j/blob/2.3.0/community/embedded-examples/src/main/java/org/neo4j/examples/TraversalExample.java

617

Chapter 35. Legacy Indexing

Note
This is not the same as indexes defined in the schema, the documentation below is for the
legacy indexing in Neo4j.

This chapter focuses on how to use the Manual Indexes. As of Neo4j 2.0, this is not the favored method
of indexing data in Neo4j, instead we recommend defining indexes in the database schema.

However, support for legacy indexes remains, because certain features, such as uniqueness
constraints, are not yet handled by the new indexes.

Legacy Indexing

618

35.1. Introduction
Legacy Indexing operations are part of the Neo4j index API1.

Each index is tied to a unique, user-specified name (for example "first_name" or "books") and can index
either nodes2 or relationships3.

The default index implementation is provided by the neo4j-lucene-index component, which is included
in the standard Neo4j download. It can also be downloaded separately from http://repo1.maven.org/
maven2/org/neo4j/neo4j-lucene-index/ . For Maven users, the neo4j-lucene-index component has the
coordinates org.neo4j:neo4j-lucene-index and should be used with the same version of org.neo4j:neo4j-
kernel. Different versions of the index and kernel components are not compatible in the general case.
Both components are included transitively by the org.neo4j:neo4j:pom artifact which makes it simple to
keep the versions in sync.

For initial import of data using indexes, see Section 36.2, “Index Batch Insertion” [635].

Note
All modifying index operations must be performed inside a transaction, as with any
modifying operation in Neo4j.

1 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/package-summary.html
2 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Node.html
3 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Relationship.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/package-summary.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Node.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Relationship.html
http://repo1.maven.org/maven2/org/neo4j/neo4j-lucene-index/
http://repo1.maven.org/maven2/org/neo4j/neo4j-lucene-index/
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/package-summary.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Node.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/Relationship.html

Legacy Indexing

619

35.2. Create
An index is created if it doesn’t exist when you ask for it. Unless you give it a custom configuration, it
will be created with default configuration and backend.

To set the stage for our examples, let’s create some indexes to begin with:

IndexManager index = graphDb.index();

Index<Node> actors = index.forNodes("actors");

Index<Node> movies = index.forNodes("movies");

RelationshipIndex roles = index.forRelationships("roles");

This will create two node indexes and one relationship index with default configuration. See
Section 35.8, “Relationship indexes” [627] for more information specific to relationship indexes.

See Section 35.10, “Configuration and fulltext indexes” [629] for how to create fulltext indexes.

You can also check if an index exists like this:

IndexManager index = graphDb.index();

boolean indexExists = index.existsForNodes("actors");

Legacy Indexing

620

35.3. Delete
Indexes can be deleted. When deleting, the entire contents of the index will be removed as well as its
associated configuration. An index can be created with the same name at a later point in time.

IndexManager index = graphDb.index();

Index<Node> actors = index.forNodes("actors");

actors.delete();

Note that the actual deletion of the index is made during the commit of the surrounding transaction.
Calls made to such an index instance after delete()4 has been called are invalid inside that transaction
as well as outside (if the transaction is successful), but will become valid again if the transaction is rolled
back.

4 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#delete%28%29

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#delete%28%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#delete%28%29

Legacy Indexing

621

35.4. Add
Each index supports associating any number of key-value pairs with any number of entities (nodes or
relationships), where each association between entity and key-value pair is performed individually. To
begin with, let’s add a few nodes to the indexes:

// Actors

Node reeves = graphDb.createNode();

reeves.setProperty("name", "Keanu Reeves");

actors.add(reeves, "name", reeves.getProperty("name"));

Node bellucci = graphDb.createNode();

bellucci.setProperty("name", "Monica Bellucci");

actors.add(bellucci, "name", bellucci.getProperty("name"));

// multiple values for a field, in this case for search only

// and not stored as a property.

actors.add(bellucci, "name", "La Bellucci");

// Movies

Node theMatrix = graphDb.createNode();

theMatrix.setProperty("title", "The Matrix");

theMatrix.setProperty("year", 1999);

movies.add(theMatrix, "title", theMatrix.getProperty("title"));

movies.add(theMatrix, "year", theMatrix.getProperty("year"));

Node theMatrixReloaded = graphDb.createNode();

theMatrixReloaded.setProperty("title", "The Matrix Reloaded");

theMatrixReloaded.setProperty("year", 2003);

movies.add(theMatrixReloaded, "title", theMatrixReloaded.getProperty("title"));

movies.add(theMatrixReloaded, "year", 2003);

Node malena = graphDb.createNode();

malena.setProperty("title", "Malèna");

malena.setProperty("year", 2000);

movies.add(malena, "title", malena.getProperty("title"));

movies.add(malena, "year", malena.getProperty("year"));

Note that there can be multiple values associated with the same entity and key.

Next up, we’ll create relationships and index them as well:

// we need a relationship type

DynamicRelationshipType ACTS_IN = DynamicRelationshipType.withName("ACTS_IN");

// create relationships

Relationship role1 = reeves.createRelationshipTo(theMatrix, ACTS_IN);

role1.setProperty("name", "Neo");

roles.add(role1, "name", role1.getProperty("name"));

Relationship role2 = reeves.createRelationshipTo(theMatrixReloaded, ACTS_IN);

role2.setProperty("name", "Neo");

roles.add(role2, "name", role2.getProperty("name"));

Relationship role3 = bellucci.createRelationshipTo(theMatrixReloaded, ACTS_IN);

role3.setProperty("name", "Persephone");

roles.add(role3, "name", role3.getProperty("name"));

Relationship role4 = bellucci.createRelationshipTo(malena, ACTS_IN);

role4.setProperty("name", "Malèna Scordia");

roles.add(role4, "name", role4.getProperty("name"));

After these operations, our example graph looks like this:

Legacy Indexing

622

Figure 35.1. Movie and Actor Graph

nam e = 'Keanu Reeves'

t it le = 'The Matrix Reloaded'
year = 2003

ACTS_IN
nam e = 'Neo'

t it le = 'The Matrix '
year = 1999

ACTS_IN
nam e = 'Neo'

nam e = 'Monica Bellucci'

ACTS_IN
nam e = 'Persephone'

t it le = 'Malèna'
year = 2000

ACTS_IN
nam e = 'Malèna Scordia'

Legacy Indexing

623

35.5. Remove
Removing5 from an index is similar to adding, but can be done by supplying one of the following
combinations of arguments:

• entity
• entity, key
• entity, key, value

// completely remove bellucci from the actors index

actors.remove(bellucci);

// remove any "name" entry of bellucci from the actors index

actors.remove(bellucci, "name");

// remove the "name" -> "La Bellucci" entry of bellucci

actors.remove(bellucci, "name", "La Bellucci");

5 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#remove%28T,%20java.lang.String,
%20java.lang.Object%29

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#remove%28T,%20java.lang.String,%20java.lang.Object%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#remove%28T,%20java.lang.String,%20java.lang.Object%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#remove%28T,%20java.lang.String,%20java.lang.Object%29

Legacy Indexing

624

35.6. Update
Important
To update an index entry, the old one must be removed and a new one added. For details on
removing index entries, see Section 35.5, “Remove” [623].

Remember that a node or relationship can be associated with any number of key-value pairs in an
index. This means that you can index a node or relationship with many key-value pairs that have
the same key. In the case where a property value changes and you’d like to update the index, it’s not
enough to just index the new value — you’ll have to remove the old value as well.

Here’s a code example that demonstrates how it’s done:

// create a node with a property

// so we have something to update later on

Node fishburn = graphDb.createNode();

fishburn.setProperty("name", "Fishburn");

// index it

actors.add(fishburn, "name", fishburn.getProperty("name"));

// update the index entry

// when the property value changes

actors.remove(fishburn, "name", fishburn.getProperty("name"));

fishburn.setProperty("name", "Laurence Fishburn");

actors.add(fishburn, "name", fishburn.getProperty("name"));

Legacy Indexing

625

35.7. Search
An index can be searched in two ways, get6 and query7. The get method will return exact matches to
the given key-value pair, whereas query exposes querying capabilities directly from the backend used
by the index. For example the Lucene query syntax8 can be used directly with the default indexing
backend.

Get
This is how to search for a single exact match:

IndexHits<Node> hits = actors.get("name", "Keanu Reeves");

Node reeves = hits.getSingle();

IndexHits9 is an Iterable with some additional useful methods. For example getSingle()10 returns the
first and only item from the result iterator, or null if there isn’t any hit.
Here’s how to get a single relationship by exact matching and retrieve its start and end nodes:

Relationship persephone = roles.get("name", "Persephone").getSingle();

Node actor = persephone.getStartNode();

Node movie = persephone.getEndNode();

Finally, we can iterate over all exact matches from a relationship index:

for (Relationship role : roles.get("name", "Neo"))

{

 // this will give us Reeves twice

 Node reeves = role.getStartNode();

}

Important
In case you don’t iterate through all the hits, IndexHits.close()11 must be called explicitly.

Query
There are two query methods, one which uses a key-value signature where the value represents a
query for values with the given key only. The other method is more generic and supports querying for
more than one key-value pair in the same query.
Here’s an example using the key-query option:

for (Node actor : actors.query("name", "*e*"))

{

 // This will return Reeves and Bellucci

}

In the following example the query uses multiple keys:

for (Node movie : movies.query("title:*Matrix* AND year:1999"))

{

 // This will return "The Matrix" from 1999 only.

}

Note
Beginning a wildcard search with "*" or "?" is discouraged by Lucene, but will nevertheless
work.

6 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#get%28java.lang.String,%20java.lang.Object%29
7 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#query%28java.lang.String,%20java.lang.Object%29
8 http://lucene.apache.org/core/3_6_2/queryparsersyntax.html
9 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/IndexHits.html
10 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/IndexHits.html#getSingle%28%29
11 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/IndexHits.html#close%28%29

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#get%28java.lang.String,%20java.lang.Object%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#query%28java.lang.String,%20java.lang.Object%29
http://lucene.apache.org/core/3_6_2/queryparsersyntax.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/IndexHits.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/IndexHits.html#getSingle%28%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/IndexHits.html#close%28%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#get%28java.lang.String,%20java.lang.Object%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html#query%28java.lang.String,%20java.lang.Object%29
http://lucene.apache.org/core/3_6_2/queryparsersyntax.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/IndexHits.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/IndexHits.html#getSingle%28%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/IndexHits.html#close%28%29

Legacy Indexing

626

Caution
You can’t have any whitespace in the search term with this syntax. See the section called
“Querying with Lucene Query objects” [631] for how to do that.

Legacy Indexing

627

35.8. Relationship indexes
An index for relationships is just like an index for nodes, extended by providing support to constrain
a search to relationships with a specific start and/or end nodes These extra methods reside in the
RelationshipIndex12 interface which extends Index<Relationship>13.

Example of querying a relationship index:

// find relationships filtering on start node

// using exact matches

IndexHits<Relationship> reevesAsNeoHits;

reevesAsNeoHits = roles.get("name", "Neo", reeves, null);

Relationship reevesAsNeo = reevesAsNeoHits.iterator().next();

reevesAsNeoHits.close();

// find relationships filtering on end node

// using a query

IndexHits<Relationship> matrixNeoHits;

matrixNeoHits = roles.query("name", "*eo", null, theMatrix);

Relationship matrixNeo = matrixNeoHits.iterator().next();

matrixNeoHits.close();

And here’s an example for the special case of searching for a specific relationship type:

// find relationships filtering on end node

// using a relationship type.

// this is how to add it to the index:

roles.add(reevesAsNeo, "type", reevesAsNeo.getType().name());

// Note that to use a compound query, we can't combine committed

// and uncommitted index entries, so we'll commit before querying:

tx.success();

tx.close();

// and now we can search for it:

try (Transaction tx = graphDb.beginTx())

{

 IndexHits<Relationship> typeHits = roles.query("type:ACTS_IN AND name:Neo", null, theMatrix);

 Relationship typeNeo = typeHits.iterator().next();

 typeHits.close();

Such an index can be useful if your domain has nodes with a very large number of relationships
between them, since it reduces the search time for a relationship between two nodes. A good example
where this approach pays dividends is in time series data, where we have readings represented as a
relationship per occurrence.

12 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/RelationshipIndex.html
13 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/RelationshipIndex.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/RelationshipIndex.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/Index.html

Legacy Indexing

628

35.9. Scores
The IndexHits interface exposes scoring14 so that the index can communicate scores for the hits.
Note that the result is not sorted by the score unless you explicitly specify that. See the section called
“Sorting” [630] for how to sort by score.

IndexHits<Node> hits = movies.query("title", "The*");

for (Node movie : hits)

{

 System.out.println(movie.getProperty("title") + " " + hits.currentScore());

}

14 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/IndexHits.html#currentScore%28%29

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/IndexHits.html#currentScore%28%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/graphdb/index/IndexHits.html#currentScore%28%29

Legacy Indexing

629

35.10. Configuration and fulltext indexes
At the time of creation extra configuration can be specified to control the behavior of the index and
which backend to use. For example to create a Lucene fulltext index:

IndexManager index = graphDb.index();

Index<Node> fulltextMovies = index.forNodes("movies-fulltext",

 MapUtil.stringMap(IndexManager.PROVIDER, "lucene", "type", "fulltext"));

fulltextMovies.add(theMatrix, "title", "The Matrix");

fulltextMovies.add(theMatrixReloaded, "title", "The Matrix Reloaded");

// search in the fulltext index

Node found = fulltextMovies.query("title", "reloAdEd").getSingle();

Here’s an example of how to create an exact index which is case-insensitive:

Index<Node> index = graphDb.index().forNodes("exact-case-insensitive",

 stringMap("type", "exact", "to_lower_case", "true"));

Node node = graphDb.createNode();

index.add(node, "name", "Thomas Anderson");

assertContains(index.query("name", "\"Thomas Anderson\""), node);

assertContains(index.query("name", "\"thoMas ANDerson\""), node);

Tip
In order to search for tokenized words, the query method has to be used. The get method
will only match the full string value, not the tokens.

The configuration of the index is persisted once the index has been created. The provider configuration
key is interpreted by Neo4j, but any other configuration is passed onto the backend index (e.g. Lucene)
to interpret.

Lucene indexing configuration parameters
Parameter Possible values Effect

type exact, fulltext exact is the default and uses a Lucene keyword
analyzer15. fulltext uses a white-space tokenizer
in its analyzer.

to_lower_case true, false This parameter goes together with type: fulltext
and converts values to lower case during both
additions and querying, making the index case
insensitive. Defaults to true.

analyzer the full class name of an
Analyzer16

Overrides the type so that a custom analyzer
can be used. Note: to_lower_case still affects
lowercasing of string queries. If the custom
analyzer uppercases the indexed tokens, string
queries will not match as expected.

15 http://lucene.apache.org/core/3_6_2/api/core/org/apache/lucene/analysis/KeywordAnalyzer.html
16 http://lucene.apache.org/core/3_6_2/api/core/org/apache/lucene/analysis/Analyzer.html

http://lucene.apache.org/core/3_6_2/api/core/org/apache/lucene/analysis/KeywordAnalyzer.html
http://lucene.apache.org/core/3_6_2/api/core/org/apache/lucene/analysis/KeywordAnalyzer.html
http://lucene.apache.org/core/3_6_2/api/core/org/apache/lucene/analysis/Analyzer.html
http://lucene.apache.org/core/3_6_2/api/core/org/apache/lucene/analysis/KeywordAnalyzer.html
http://lucene.apache.org/core/3_6_2/api/core/org/apache/lucene/analysis/Analyzer.html

Legacy Indexing

630

35.11. Extra features for Lucene indexes
Numeric ranges
Lucene supports smart indexing of numbers, querying for ranges and sorting such results, and so does
its backend for Neo4j. To mark a value so that it is indexed as a numeric value, we can make use of the
ValueContext17 class, like this:

movies.add(theMatrix, "year-numeric", new ValueContext(1999).indexNumeric());

movies.add(theMatrixReloaded, "year-numeric", new ValueContext(2003).indexNumeric());

movies.add(malena, "year-numeric", new ValueContext(2000).indexNumeric());

int from = 1997;

int to = 1999;

hits = movies.query(QueryContext.numericRange("year-numeric", from, to));

Note
The same type must be used for indexing and querying. That is, you can’t index a value as a
Long and then query the index using an Integer.

By giving null as from/to argument, an open ended query is created. In the following example we are
doing that, and have added sorting to the query as well:

hits = movies.query(

 QueryContext.numericRange("year-numeric", from, null)

 .sortNumeric("year-numeric", false));

From/to in the ranges defaults to be inclusive, but you can change this behavior by using two extra
parameters:

movies.add(theMatrix, "score", new ValueContext(8.7).indexNumeric());

movies.add(theMatrixReloaded, "score", new ValueContext(7.1).indexNumeric());

movies.add(malena, "score", new ValueContext(7.4).indexNumeric());

// include 8.0, exclude 9.0

hits = movies.query(QueryContext.numericRange("score", 8.0, 9.0, true, false));

Sorting
Lucene performs sorting very well, and that is also exposed in the index backend, through the
QueryContext18 class:

hits = movies.query("title", new QueryContext("*").sort("title"));

for (Node hit : hits)

{

 // all movies with a title in the index, ordered by title

}

// or

hits = movies.query(new QueryContext("title:*").sort("year", "title"));

for (Node hit : hits)

{

 // all movies with a title in the index, ordered by year, then title

}

We sort the results by relevance (score) like this:

hits = movies.query("title", new QueryContext("The*").sortByScore());

for (Node movie : hits)

{

17 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/index/lucene/ValueContext.html
18 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/index/lucene/QueryContext.html

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/index/lucene/ValueContext.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/index/lucene/QueryContext.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/index/lucene/ValueContext.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/index/lucene/QueryContext.html

Legacy Indexing

631

 // hits sorted by relevance (score)

}

Querying with Lucene Query objects
Instead of passing in Lucene query syntax queries, you can instantiate such queries programmatically
and pass in as argument, for example:

// a TermQuery will give exact matches

Node actor = actors.query(new TermQuery(new Term("name", "Keanu Reeves"))).getSingle();

Note that the TermQuery19 is basically the same thing as using the get method on the index.

This is how to perform wildcard searches using Lucene Query Objects:

hits = movies.query(new WildcardQuery(new Term("title", "The Matrix*")));

for (Node movie : hits)

{

 System.out.println(movie.getProperty("title"));

}

Note that this allows for whitespace in the search string.

Compound queries
Lucene supports querying for multiple terms in the same query, like so:

hits = movies.query("title:*Matrix* AND year:1999");

Caution
Compound queries can’t search across committed index entries and those who haven’t got
committed yet at the same time.

Default operator
The default operator (that is whether AND or OR is used in between different terms) in a query is OR.
Changing that behavior is also done via the QueryContext20 class:

QueryContext query = new QueryContext("title:*Matrix* year:1999")

 .defaultOperator(Operator.AND);

hits = movies.query(query);

Caching
If your index lookups becomes a performance bottle neck, caching can be enabled for certain keys in
certain indexes (key locations) to speed up get requests. The caching is implemented with an LRU21

cache so that only the most recently accessed results are cached (with "results" meaning a query result
of a get request, not a single entity). You can control the size of the cache (the maximum number of
results) per index key.

// Index<Node> index = graphDb.index().forNodes("actors");

// ((LuceneIndex<Node>) index).setCacheCapacity("name", 300000);

Caution
This setting is not persisted after shutting down the database. This means: set this value
after each startup of the database if you want to keep it.

19 http://lucene.apache.org/core/3_6_2/api/core/org/apache/lucene/search/TermQuery.html
20 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/index/lucene/QueryContext.html
21 http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

http://lucene.apache.org/core/3_6_2/api/core/org/apache/lucene/search/TermQuery.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/index/lucene/QueryContext.html
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://lucene.apache.org/core/3_6_2/api/core/org/apache/lucene/search/TermQuery.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/index/lucene/QueryContext.html
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

632

Chapter 36. Batch Insertion

Neo4j has a batch insertion facility intended for initial imports, which bypasses transactions and other
checks in favor of performance. This is useful when you have a big dataset that needs to be loaded
once.

Batch insertion is included in the neo4j-kernel1 component, which is part of all Neo4j distributions and
editions.

Be aware of the following points when using batch insertion:

• The intended use is for initial import of data but you can use it on an existing database if the existing
database is shutdown first.

• Batch insertion is not thread safe.
• Batch insertion is non-transactional.
• Batch insertion is not enforcing constraints on the inserted data while inserting data.
• Batch insertion will re-populate all existing indexes and indexes created during batch insertion on

shutdown.
• Batch insertion will verify all existing constraints and constraints created during batch insertion on

shutdown.
• Unless shutdown is successfully invoked at the end of the import, the database files will be corrupt.

Warning
Always perform batch insertion in a single thread (or use synchronization to make only one
thread at a time access the batch inserter) and invoke shutdown when finished.

Warning
Since the batch insertion doesn’t enforce constraint during data loading, if the inserted
data violate any constraint the batch inserter will fail on shutdown and the database will be
inconsistent.

1 http://search.maven.org/#search|ga|1|neo4j-kernel

http://search.maven.org/#search|ga|1|neo4j-kernel
http://search.maven.org/#search|ga|1|neo4j-kernel

Batch Insertion

633

36.1. Batch Inserter Examples
Initial import
To bulk load data using the batch inserter you’ll need to write a Java application which makes use of the
low level BatchInserter2 interface.

Tip
You can’t have multiple threads using the batch inserter concurrently without external
synchronization.

You can get hold of an instance of BatchInserter by using BatchInserters3. Here’s an example of the
batch inserter in use:

BatchInserter inserter = null;

try

{

 inserter = BatchInserters.inserter(

 new File("target/batchinserter-example").getAbsolutePath());

 Label personLabel = DynamicLabel.label("Person");

 inserter.createDeferredSchemaIndex(personLabel).on("name").create();

 Map<String, Object> properties = new HashMap<>();

 properties.put("name", "Mattias");

 long mattiasNode = inserter.createNode(properties, personLabel);

 properties.put("name", "Chris");

 long chrisNode = inserter.createNode(properties, personLabel);

 RelationshipType knows = DynamicRelationshipType.withName("KNOWS");

 inserter.createRelationship(mattiasNode, chrisNode, knows, null);

}

finally

{

 if (inserter != null)

 {

 inserter.shutdown();

 }

}

When creating a relationship you can set properties on the relationship by passing in a map containing
properties rather than null as the last parameter to createRelationship.

It’s important that the call to shutdown is inside a finally block to ensure that it gets called even if
exceptions are thrown. If he batch inserter isn’t cleanly shutdown then the consistency of the store is
not guaranteed.

Tip
The source code for the examples on this page can be found here: BatchInsertDocTest.java4

2 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserter.html
3 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserters.html
4 https://github.com/neo4j/neo4j/blob/2.3.0/community/kernel/src/test/java/examples/BatchInsertDocTest.java

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserter.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserters.html
https://github.com/neo4j/neo4j/blob/2.3.0/community/kernel/src/test/java/examples/BatchInsertDocTest.java
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserter.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserters.html
https://github.com/neo4j/neo4j/blob/2.3.0/community/kernel/src/test/java/examples/BatchInsertDocTest.java

Batch Insertion

634

Setting configuration options
You can pass custom configuration options to the BatchInserter. (See the section called “Batch insert
example” [463] for information on the available options.) e.g.

Map<String, String> config = new HashMap<>();

config.put("dbms.pagecache.memory", "512m");

BatchInserter inserter = BatchInserters.inserter(

 new File("target/batchinserter-example-config").getAbsolutePath(), config);

// Insert data here ... and then shut down:

inserter.shutdown();

Alternatively you could store the configuration in a file:

batchinsert-config

dbms.pagecache.memory=8m

You can then refer to that file when initializing BatchInserter:

try (FileReader input = new FileReader(new File("target/docs/batchinsert-config").getAbsoluteFile()))

{

 Map<String, String> config = MapUtil.load(input);

 BatchInserter inserter = BatchInserters.inserter(

 "target/docs/batchinserter-example-config", config);

 // Insert data here ... and then shut down:

 inserter.shutdown();

}

Importing into an existing database
Although it’s a less common use case, the batch inserter can also be used to import data into an
existing database. However, you will need to ensure that the existing database is shut down before you
write to it.

Warning
Since the batch importer bypasses transactions there is a possibility of data inconsistency if
the import process crashes midway. We would strongly suggest you take a backup of your
existing database before using the batch inserter against it.

Batch Insertion

635

36.2. Index Batch Insertion
For general notes on batch insertion, see Chapter 36, Batch Insertion [632].

Indexing during batch insertion is done using BatchInserterIndex5 which are provided via
BatchInserterIndexProvider6. An example:

BatchInserter inserter = BatchInserters.inserter("target/neo4jdb-batchinsert");

BatchInserterIndexProvider indexProvider =

 new LuceneBatchInserterIndexProvider(inserter);

BatchInserterIndex actors =

 indexProvider.nodeIndex("actors", MapUtil.stringMap("type", "exact"));

actors.setCacheCapacity("name", 100000);

Map<String, Object> properties = MapUtil.map("name", "Keanu Reeves");

long node = inserter.createNode(properties);

actors.add(node, properties);

//make the changes visible for reading, use this sparsely, requires IO!

actors.flush();

// Make sure to shut down the index provider as well

indexProvider.shutdown();

inserter.shutdown();

The configuration parameters are the same as mentioned in Section 35.10, “Configuration and fulltext
indexes” [629].

Best practices
Here are some pointers to get the most performance out of BatchInserterIndex:

• Try to avoid flushing7 too often because each flush will result in all additions (since last flush) to be
visible to the querying methods, and publishing those changes can be a performance penalty.

• Have (as big as possible) phases where one phase is either only writes or only reads, and don’t forget
to flush after a write phase so that those changes becomes visible to the querying methods.

• Enable caching8 for keys you know you’re going to do lookups for later on to increase performance
significantly (though insertion performance may degrade slightly).

Note
Changes to the index are available for reading first after they are flushed to disk. Thus, for
optimal performance, read and lookup operations should be kept to a minimum during
batchinsertion since they involve IO and impact speed negatively.

5 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html
6 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndexProvider.html
7 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#flush%28%29
8 http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#setCacheCapacity
%28java.lang.String,%20int%29

http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndexProvider.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#flush%28%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#setCacheCapacity%28java.lang.String,%20int%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndexProvider.html
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#flush%28%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#setCacheCapacity%28java.lang.String,%20int%29
http://neo4j.com/docs/2.3.0/javadocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#setCacheCapacity%28java.lang.String,%20int%29

636

Terminology

The terminology used for Cypher and Neo4j is drawn from the worlds of database design and graph
theory. This section provides cross-linked summaries of common terms.

In some cases, multiple terms (e.g., arc, edge, relationship) may be used for the same or similar
concept. An asterisk (*) to the right of a term indicates that the term is commonly used for Neo4j and
Cypher.

acyclic for a graph or subgraph: when there is no way to start at some node n and
follow a sequence of adjacent relationships that eventually loops back to n
again. The opposite of cyclic.

adjacent nodes sharing an incident (that is, directly-connected) relationship or
relationships sharing an incident node.

aggregating expression expression that summarizes a set of values, like computing their sum or
their maximum.

arc graph theory: a synonym for a directed relationship.

array container that holds a number of elements. The element types can be the
types supported by the underlying graph storage layer, but all elements
must be of the same type.

attribute Synonym for property.

clause component of a Cypher query or command; starts with an identifying
keyword (for example CREATE). The following clauses currently exist in
Cypher: CREATE, CREATE UNIQUE, DELETE, FOREACH, LOAD CSV, MATCH, MERGE,
OPTIONAL MATCH, REMOVE, RETURN, SET, START, UNION, and WITH.

co-incident alternative term for adjacent relationships, which share a common node.

collection container that holds a number of values. The values can have mixed
types.

command a statement that operates on the database without affecting the data
graph or returning content from it.

commit successful completion of a transaction, ensuring durability of any changes
made.

constraint part of a database schema: defines a contract that the database will never
break (for example, uniqueness of a property on all nodes that have a
specific label).

cyclic The opposite of acyclic.

Cypher a special-purpose programming language for describing queries and
operations on a graph database, with accompanying natural language
concepts.

DAG a directed, acyclic graph: there are no cyclic paths and all the relationships
are directed.

data graph graph stored in the database. See also property graph.

Terminology

637

data record a unit of storage containing an arbitrary unordered collection of
properties.

degree of a node: is the number of relationships leaving or entering (if directed)
the node; loops are counted twice.

directed relationship a relationship that has a direction; that is the relationship has a source
node and a destination node. The opposite of an undirected relationship.
All relationships in a Neo4j graph are directed.

edge graph theory: a synonym for undirected relationship.

execution plan parsed and compiled statement that is ready for Neo4j to execute.
An execution plan consists of the physical operations that need to be
performed in order to achieve the intent of the statement.

execution result all statements return an execution result. For queries, this can contain an
iterator of result rows.

expression produces values; may be used in projections, as a predicate, or when
setting properties on graph elements.

graph 1. data graph,
2. property graph,
3. graph theory: set of vertices and edges.

graph database a database that uses graph-based structures (for example, nodes,
relationships, properties) to represent and store data.

graph element node or relationship that is part of a graph.

identifier identifiers are named bindings to values (for example, collections, scalars)
in a statement. For example, in MATCH n RETURN n, n is an identifier.

incident adjacent relationship attached to a node or a node attached to a
relationship.

incoming relationship pertaining to a directed relationship: from the point of view of a node n,
this is any relationship r arriving at n, exemplified by ()-[:r]->(n). The
opposite of outgoing.

index data structure that improves performance of a database by redundantly
storing the same information in a way that is faster to read.

intermediate result set of identifiers and values (record) passed from one clause to another
during query execution. This is internal to the execution of a given query.

label marks a node as a member of a named subset. A node may be assigned
zero or more labels. Labels are written as :label in Cypher (the actual
label is prefixed by a colon). Note: graph theory: This differs from
mathematical graphs, where a label applies uniquely to a single vertex.

loop a relationship that connects a node to itself.

neighbor of node: another node, connected by a common relationship; of
relationship: another relationship, connected to a common node.

node* data record within a data graph; contains an arbitrary collection of
properties. Nodes may have zero, one, or more labels and are optionally
connected by relationships. Similar to vertex.

Terminology

638

null NULL is a special marker, used to indicate that a data item does not exist in
the graph or that the value of an expression is unknown or inapplicable.

operator there are three categories of operators in Cypher:

1. Arithmetic, such as +, /, % etc.;
2. Logical, such as OR, AND, NOT etc.; and
3. Comparison, such as <, >, = etc.

outgoing relationship pertaining to a directed relationship: from the point of view of a node n, this
is any relationship r leaving n, exemplified by (n)-[:r]->(). The opposite
of incoming relationship.

parameter named value provided when running a statement. Parameters allow
Cypher to efficiently re-use execution plans without having to parse and
recompile every statement when only a literal value changes.

path collection of alternating nodes and relationships that corresponds to a
walk in the data graph.

pattern graph graph used to express the shape (that is, connectivity pattern) of the
data being searched for in the data graph. This is what MATCH and WHERE
describe in a Cypher query.

predicate expression that returns TRUE, FALSE or NULL. When used in WHERE, NULL is
treated as FALSE.

projection an operation taking result rows as both input and output data. This may
be a subset of the identifiers provided in the input, a calculation based on
single or multiple identifiers in the input, or both. The relevant clauses are
WITH and RETURN.

property graph a graph having directed, typed relationships. Each node or relationship
may have zero or more associated properties.

property* named value stored in a node or relationship. Synonym for attribute.

query statement that reads or writes data from the database

relationship type marks a relationship as a member of a named subset. A relationship must
be assigned one and only one type. For example, in the Cypher pattern
(start)-[:TYPE]->(to), TYPE is the relationship type.

relationship* data record in a property graph that associates an ordered pair of nodes.
Similar to arc and edge.

result row each query returns an iterator of result rows, which represents the result
of executing the query. Each result row is a set of key-value pairs (a
record).

rollback abort of the containing transaction, effectively undoing any changes
defined inside the transaction.

schema persistent database state that describes available indexes and enabled
constraints for the data graph.

schema command statement that updates the schema.

statement text string containing a Cypher query or command.

Terminology

639

transaction A transaction comprises a unit of work performed against a database. It is
treated in a coherent and reliable way, independent of other transactions.
A transaction, by definition, must be atomic, consistent, isolated, and
durable.

transitive closure of a graph: is a graph which contains a relationship from node x to node
y whenever there is a directed path from x to y; For example, if there is
a relationship from a to b, and another from b to c, then the transitive
closure includes a relationship from a to c.

type types classify values. Each value in Cypher has a concrete type. Supported
types are:

• string,
• boolean,
• the number types (double, integer, long),
• the map types (plain maps, nodes, and relationships),
• and collections of any concrete type.

The type hierarchy supports several other types (for example, any, scalar,
derived map, collection). These are used to classify values and collections
of values having different concrete types.

undirected relationship a relationship that doesn’t have a direction. The opposite of directed
relationship.

vertex graph theory: the fundamental unit used to form a mathematical graph
(plural: vertices). See node.

640

Appendix A. Resources

• Neo4j Cypher Refcard1.
• Neo4j Javadocs2. You can also download a javadocs.jar file from Maven Central, see

org.neo4j.doc:neo4j-javadocs3 or download it from neo4j-javadocs-2.3.0-javadoc.jar4 directly.
• Neo4j GraphGist, an online tool for creating interactive documents with executable Cypher

statements: http://gist.neo4j.org/.
• The main Neo4j site at http://neo4j.com/ is a good starting point to learn about Neo4j.
• See http://neo4j.com/developer/language-guides/ for how to use Neo4j from different programming

languages.

Below are some starting points within this manual:

• Section 2.1, “The Neo4j Graph Database” [5]
• Part III, “Cypher Query Language” [102]
• Chapter 3, Introduction to Cypher [16]
• Chapter 21, REST API [297]
• Chapter 23, Installation & Deployment [436]
• Section 23.4, “Upgrading” [444]
• Chapter 27, Security [500]

1 http://neo4j.com/docs/2.3.0/cypher-refcard/
2 http://neo4j.com/docs/2.3.0/javadocs/
3 http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j.doc%22%20AND%20a%3A%22neo4j-javadocs%22
4 http://central.maven.org/maven2/org/neo4j/doc/neo4j-javadocs/2.3.0/neo4j-javadocs-2.3.0-javadoc.jar

http://neo4j.com/docs/2.3.0/cypher-refcard/
http://neo4j.com/docs/2.3.0/javadocs/
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j.doc%22%20AND%20a%3A%22neo4j-javadocs%22
http://central.maven.org/maven2/org/neo4j/doc/neo4j-javadocs/2.3.0/neo4j-javadocs-2.3.0-javadoc.jar
http://gist.neo4j.org/
http://neo4j.com/
http://neo4j.com/developer/language-guides/
http://neo4j.com/docs/2.3.0/cypher-refcard/
http://neo4j.com/docs/2.3.0/javadocs/
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j.doc%22%20AND%20a%3A%22neo4j-javadocs%22
http://central.maven.org/maven2/org/neo4j/doc/neo4j-javadocs/2.3.0/neo4j-javadocs-2.3.0-javadoc.jar

641

Appendix B. Manpages

The Neo4j Unix manual pages are included on the following pages.

• neo4j
• neo4j-shell
• neo4j-import
• neo4j-backup
• neo4j-arbiter

Manpages

642

Name
neo4j — Neo4j Server control

Synopsis
neo4j <command>

DESCRIPTION
Neo4j is a graph database, perfect for working with highly connected data. The neo4j command is used
to control the Neo4j Server.

The preferred way to install Neo4j on Linux systems is by using prebuilt installation packages. For
information regarding Windows, see http://neo4j.com/docs/stable/powershell.html.

COMMANDS

console Start the server as an application, running as a foreground process. Stop the server using
CTRL-C.

start Start server as daemon, running as a background process.
stop Stops a running daemonized server.
restart Restarts the server.
status Current running state of the server.
info Displays configuration information, such as the current NEO4J_HOME and CLASSPATH.

FILES

conf/neo4j-server.properties Server configuration.
conf/neo4j-wrapper.conf Configuration for service wrapper.
conf/neo4j.properties Tuning configuration for the database.

http://neo4j.com/docs/stable/powershell.html

Manpages

643

Name
neo4j-shell — a command-line tool for exploring and manipulating a graph database

Synopsis
neo4j-shell [REMOTE OPTIONS]

neo4j-shell [LOCAL OPTIONS]

DESCRIPTION
Neo4j shell is a command-line shell for running Cypher queries. There’s also commands to get
information about the database. In addition, you can browse the graph, much like how the Unix shell
along with commands like cd, ls and pwd can be used to browse your local file system. The shell can
connect directly to a graph database on the file system. To access local a local database used by other
processes, use the readonly mode.

REMOTE OPTIONS

-port PORT Port of host to connect to (default: 1337).
-host HOST Domain name or IP of host to connect to (default: localhost).
-name NAME RMI name, i.e. rmi://<host>:<port>/<name> (default: shell).
-readonly Access the database in read-only mode.

LOCAL OPTIONS

-path PATH The path to the database directory. If there is no database at the location, a new
one will e created.

-pid PID Process ID to connect to.
-readonly Access the database in read-only mode.
-c COMMAND Command line to execute. After executing it the shell exits.
-file FILE File to read and execute. After executing it the shell exits. If - is supplied as

filename data is read from stdin instead.
-config CONFIG The path to the Neo4j configuration file to be used.

EXAMPLES
Examples for remote:

 neo4j-shell

 neo4j-shell -port 1337

 neo4j-shell -host 192.168.1.234 -port 1337 -name shell

 neo4j-shell -host localhost -readonly

Examples for local:

 neo4j-shell -path /path/to/db

 neo4j-shell -path /path/to/db -config /path/to/neo4j.properties

 neo4j-shell -path /path/to/db -readonly

Manpages

644

Name
neo4j-import — Neo4j Import Tool

Synopsis
neo4j-import [options]

DESCRIPTION
neo4j-import is used to create a new Neo4j database from data in CSV files. See the chapter "Import
Tool" in the Neo4j Manual for details on the CSV file format — a special kind of header is required.

For information regarding Windows, see http://neo4j.com/docs/stable/powershell.html.

OPTIONS

--into <store-dir> Database directory to import into. Must not contain existing database.
--nodes[:Label1:Label2]
"<file1>,<file2>,…"

Node CSV header and data. Multiple files will be logically seen as
one big file from the perspective of the importer. The first line must
contain the header. Multiple data sources like these can be specified
in one import, where each data source has its own header. Note that
file groups must be enclosed in quotation marks.

--
relationships[:RELATIONSHIP_TYPE]
"<file1>,<file2>,…"

Relationship CSV header and data. Multiple files will be logically seen
as one big file from the perspective of the importer. The first line must
contain the header. Multiple data sources like these can be specified
in one import, where each data source has its own header. Note that
file groups must be enclosed in quotation marks.

--delimiter <delimiter-
character>

Delimiter character, or TAB, between values in CSV data. The default
option is ,.

--array-delimiter <array-
delimiter-character>

Delimiter character, or TAB, between array elements within a value in
CSV data. The default option is ;.

--quote <quotation-
character>

Character to treat as quotation character for values in CSV data. The
default option is ". Quotes inside quotes escaped like """Go away"", he
said." and "\"Go away\", he said." are supported. If you have set "'"
to be used as the quotation character, you could write the previous
example like this instead: '"Go away", he said.'

--multiline-fields <true/
false>

Whether or not fields from input source can span multiple lines, i.e.
contain newline characters. Default value: false

--input-encoding <character
set>

Character set that input data is encoded in. Provided value must be
one out of the available character sets in the JVM, as provided by
Charset#availableCharsets(). If no input encoding is provided, the
default character set of the JVM will be used.

--ignore-empty-strings
<true/false>

Whether or not empty string fields, i.e. "" from input source are
ignored, i.e. treated as null. Default value: false

--id-type <id-type> One out of [STRING, INTEGER, ACTUAL] and specifies how ids in
node/relationship input files are treated. STRING: arbitrary strings for
identifying nodes. INTEGER: arbitrary integer values for identifying
nodes. ACTUAL: (advanced) actual node ids. The default option is
STRING. Default value: STRING

--processors <max processor
count>

(advanced) Max number of processors used by the importer. Defaults
to the number of available processors reported by the JVM. There is a
certain amount of minimum threads needed so for that reason there
is no lower bound for this value. For optimal performance this value
shouldn’t be greater than the number of available processors.

--stacktrace <true/false> Enable printing of error stack traces.

http://neo4j.com/docs/stable/powershell.html

Manpages

645

--bad-tolerance <max
number of bad entries>

Number of bad entries before the import is considered failed. This
tolerance threshold is about relationships refering to missing nodes.
Format errors in input data are still treated as errors. Default value:
1000

--skip-bad-relationships
<true/false>

Whether or not to skip importing relationships that refers to missing
node ids, i.e. either start or end node id/group referring to node that
wasn’t specified by the node input data. Skipped nodes will be logged,
containing at most number of entites specified by bad-tolerance.
Default value: true

--skip-duplicate-nodes <true/
false>

Whether or not to skip importing nodes that have the same id/group.
In the event of multiple nodes within the same group having the same
id, the first encountered will be imported whereas consecutive such
nodes will be skipped. Skipped nodes will be logged, containing at
most number of entites specified by bad-tolerance. Default value:
false

EXAMPLES
Below is a basic example, where we import movies, actors and roles from three files.

movies.csv

movieId:ID,title,year:int,:LABEL

tt0133093,"The Matrix",1999,Movie

tt0234215,"The Matrix Reloaded",2003,Movie;Sequel

tt0242653,"The Matrix Revolutions",2003,Movie;Sequel

actors.csv

personId:ID,name,:LABEL

keanu,"Keanu Reeves",Actor

laurence,"Laurence Fishburne",Actor

carrieanne,"Carrie-Anne Moss",Actor

roles.csv

:START_ID,role,:END_ID,:TYPE

keanu,"Neo",tt0133093,ACTED_IN

keanu,"Neo",tt0234215,ACTED_IN

keanu,"Neo",tt0242653,ACTED_IN

laurence,"Morpheus",tt0133093,ACTED_IN

laurence,"Morpheus",tt0234215,ACTED_IN

laurence,"Morpheus",tt0242653,ACTED_IN

carrieanne,"Trinity",tt0133093,ACTED_IN

carrieanne,"Trinity",tt0234215,ACTED_IN

carrieanne,"Trinity",tt0242653,ACTED_IN

The command will look like this:

neo4j-import --into path_to_target_directory --nodes movies.csv --nodes actors.csv --relationships roles.csv

See the Neo4j Manual for further examples.

Manpages

646

Name
neo4j-backup — Neo4j Backup Tool

Synopsis
neo4j-backup -host <host> [-port <port>] -to target_directory

DESCRIPTION
A tool to perform live backups over the network from a running Neo4j graph database onto a local
filesystem. Backups can be either full or incremental. The first backup must be a full backup, after that
incremental backups can be performed.
The source(s) are given as host:port pairs, the target is a filesystem location.
For information regarding Windows, see http://neo4j.com/docs/stable/powershell.html.

BACKUP TYPE
-full copies the entire database to a directory.
-incremental copies the changes that have taken place since the last full or incremental backup

to an existing backup store.

The backup tool will automatically detect whether it needs to do a full or an incremental backup.

SOURCE ADDRESS
Backup sources are given in the following format:
-host <host> [-port <port>]

host In single mode, the host of a source database; in HA mode, the cluster address of a cluster
member.

port In single mode, the port of a source database backup service; in HA mode, the port of a
cluster instance. If not given, the default value 6362 will be used for single mode, 5001 for HA.

IMPORTANT
Backups can only be performed on databases which have the configuration parameter
enable_online_backup=true set. That will make the backup service available on the default port (6362). To
enable the backup service on a different port use for example enable_online_backup=port=9999 instead.

EXAMPLES
� Performing a backup the first time: create a blank directory and run the backup tool

mkdir /mnt/backup/neo4j-backup

neo4j-backup -host 192.168.1.34 -to /mnt/backup/neo4j-backup

� Subsequent backups using the same _target_-directory will be incremental and therefore quick

neo4j-backup -host freja -to /mnt/backup/neo4j-backup

� Performing a backup where the service is registered on a custom port

neo4j-backup -host freja -port 9999 -to /mnt/backup/neo4j-backup

� Performing a backup from HA cluster, specifying a cluster member

./neo4j-backup -host oden -to /mnt/backup/neo4j-backup

� Performing a backup from HA cluster, specifying a cluster member registered on custom port

./neo4j-backup -host oden -port 9191 -to /mnt/backup/neo4j-backup

RESTORE FROM BACKUP
The Neo4j backups are fully functional databases. To use a backup, replace your database directory
with the backup.

http://neo4j.com/docs/stable/powershell.html

Manpages

647

Name
neo4j-arbiter — Neo4j Arbiter for High-Availability clusters

Synopsis
neo4j-arbiter <command>

DESCRIPTION
Neo4j Arbiter is a service that can help break ties in Neo4j clusters that have an even number of cluster
members.

COMMANDS

console Start the server as an application, running as a foreground process. Stop the server using
CTRL-C.

start Start server as daemon, running as a background process.
stop Stops a running daemonized server.
restart Restarts a running server.
status Current running state of the server
install Installs the server as a platform-appropriate system service.
remove Uninstalls the system service

FILES

conf/arbiter.cfg Arbiter server configuration.
conf/arbiter-wrapper.cfg Configuration for service wrapper.

	The Neo4j Manual v2.3.0
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. Neo4j Highlights
	Chapter 2. Graph Database Concepts
	2.1. The Neo4j Graph Database
	Nodes
	Relationships
	Properties
	Labels
	Label names

	Traversal
	Paths
	Schema
	Indexes
	Constraints

	2.2. Comparing Database Models
	A Graph Database transforms a RDBMS
	A Graph Database elaborates a Key-Value Store
	A Graph Database relates Column-Family
	A Graph Database navigates a Document Store

	Part II. Tutorials
	Chapter 3. Introduction to Cypher
	3.1. Background and Motivation
	Query processing
	Preparation
	Locate the initial node(s)
	Traversal and actions

	3.2. Graphs, Patterns, and Cypher
	Nodes, Relationships, and Patterns
	Simple and Complex Patterns

	Cypher Concepts
	Node Syntax
	Relationship Syntax
	Pattern Syntax
	Pattern Identifiers

	Clauses

	3.3. Patterns in Practice
	Creating Data
	Matching Patterns
	Attaching Structures
	Completing Patterns

	3.4. Getting the Results You Want
	Filtering Results
	Returning Results
	Aggregating Information
	Ordering and Pagination
	Collecting Aggregation

	3.5. How to Compose Large Statements
	Combine statements with UNION
	Use WITH to Chain Statements

	3.6. Labels, Constraints and Indexes
	Using Constraints
	Using indexes
	Labels
	Related Content

	3.7. Loading Data
	Parameters
	Importing CSV

	3.8. Utilizing Data Structures
	List Predicates
	List Processing
	Unwind Lists

	3.9. Cypher vs. SQL
	Data Model
	Sample Data
	Simple read of data
	Join
	Aggregation

	Chapter 4. Use Cypher in an application
	Chapter 5. Basic Data Modeling Examples
	5.1. Movie Database
	5.2. Social Movie Database
	5.3. Finding Paths
	5.4. Linked Lists
	5.5. TV Shows
	Data Model
	Sample Data
	Information for a show
	Information for an actor

	Chapter 6. Advanced Data Modeling Examples
	6.1. ACL structures in graphs
	Generic approach
	Technique
	Constructing the ACL
	Top-down-Traversal
	Example

	Read-permission example
	Find all files in the directory structure
	What files are owned by whom?
	Who has access to a File?

	6.2. Hyperedges
	Find Groups
	Find all groups and roles for a user
	Find common groups based on shared roles

	6.3. Basic friend finding based on social neighborhood
	6.4. Co-favorited places
	Co-favorited places — users who like x also like y
	Co-Tagged places — places related through tags

	6.5. Find people based on similar favorites
	6.6. Find people based on mutual friends and groups
	6.7. Find friends based on similar tagging
	6.8. Multirelational (social) graphs
	6.9. Implementing newsfeeds in a graph
	6.10. Boosting recommendation results
	6.11. Calculating the clustering coefficient of a network
	6.12. Pretty graphs
	Star graph
	Wheel graph
	Complete graph
	Friendship graph

	6.13. A multilevel indexing structure (path tree)
	Return zero range
	Return the full range
	Return partly shared path ranges

	6.14. Complex similarity computations
	Calculate similarities by complex calculations

	6.15. The Graphity activity stream model
	Find Activity Streams in a network without scaling penalty

	6.16. User roles in graphs
	Get the admins
	Get the group memberships of a user
	Get all groups
	Get all members of all groups

	Chapter 7. Languages
	7.1. How to use the REST API from Java
	Creating a graph through the REST API from Java
	Start the server
	Sending Cypher
	Fine-grained REST API calls
	Creating a node
	Adding properties
	Adding relationships
	Add properties to a relationship
	Querying graphs

	Phew, is that it?
	What’s next?
	Appendix: the code

	Part III. Cypher Query Language
	Chapter 8. Introduction
	8.1. What is Cypher?
	Introduction
	Structure

	8.2. Updating the graph
	The Structure of Updating Queries
	Returning data

	8.3. Transactions
	8.4. Uniqueness
	8.5. Parameters
	String literal
	Regular expression
	Case-sensitive string pattern matching
	Create node with properties
	Create multiple nodes with properties
	Setting all properties on node
	SKIP and LIMIT
	Node id
	Multiple node ids
	Index value (legacy indexes)
	Index query (legacy indexes)

	8.6. Compatibility
	Accessing entities by id via START
	Supported Language Versions

	Chapter 9. Syntax
	9.1. Values
	9.2. Expressions
	Expressions in general
	Note on string literals
	Case Expressions
	Simple CASE
	Generic CASE

	9.3. Identifiers
	9.4. Operators
	Mathematical operators
	Comparison operators
	Boolean operators
	String operators
	Collection operators
	Property operators
	Equality and Comparison of Values
	Equality

	Ordering and Comparison of Values
	Chaining Comparison Operations

	9.5. Comments
	9.6. Patterns
	Patterns for nodes
	Patterns for related nodes
	Labels
	Specifying properties
	Describing relationships
	Variable length

	Assigning to path identifiers

	9.7. Collections
	Collections in general
	List comprehension
	Literal maps

	9.8. Working with NULL
	Introduction to NULL in Cypher
	Logical operations with NULL
	The IN operator and NULL
	Expressions that return NULL

	Chapter 10. General Clauses
	10.1. Return
	Return nodes
	Return relationships
	Return property
	Return all elements
	Identifier with uncommon characters
	Column alias
	Optional properties
	Other expressions
	Unique results

	10.2. Order by
	Order nodes by property
	Order nodes by multiple properties
	Order nodes in descending order
	Ordering NULL

	10.3. Limit
	Return first part
	Return first from expression

	10.4. Skip
	Skip first three
	Return middle two
	Skip first from expression

	10.5. With
	Filter on aggregate function results
	Sort results before using collect on them
	Limit branching of your path search

	10.6. Unwind
	Unwind a collection
	Create a distinct collection
	Create nodes from a collection parameter

	10.7. Union
	Combine two queries
	Combine two queries and remove duplicates

	10.8. Using
	Query using an index hint
	Query using multiple index hints
	Hinting a label scan
	Hinting a join on a single node
	Hinting a join on multiple nodes

	Chapter 11. Reading Clauses
	11.1. Match
	Introduction
	Basic node finding
	Get all nodes
	Get all nodes with a label
	Related nodes
	Match with labels

	Relationship basics
	Outgoing relationships
	Directed relationships and identifier
	Match by relationship type
	Match by multiple relationship types
	Match by relationship type and use an identifier

	Relationships in depth
	Relationship types with uncommon characters
	Multiple relationships
	Variable length relationships
	Relationship identifier in variable length relationships
	Match with properties on a variable length path
	Zero length paths
	Named path
	Matching on a bound relationship

	Shortest path
	Single shortest path
	All shortest paths

	Get node or relationship by id
	Node by id
	Relationship by id
	Multiple nodes by id

	11.2. Optional Match
	Introduction
	Relationship
	Properties on optional elements
	Optional typed and named relationship

	11.3. Where
	Basic usage
	Boolean operations
	Filter on node label
	Filter on node property
	Filter on dynamic node property
	Property exists

	String matching
	Match the start of a string
	Match the end of a string
	Match anywhere in a string
	String matching negation

	Regular expressions
	Regular expressions
	Escaping in regular expressions
	Case insensitive regular expressions

	Using path patterns in WHERE
	Filter on patterns
	Filter on patterns using NOT
	Filter on patterns with properties
	Filtering on relationship type

	Collections
	IN operator

	Missing properties and values
	Default to false if property is missing
	Default to true if property is missing
	Filter on NULL

	Using ranges
	Simple range
	Composite range

	11.4. Start
	Get node or relationship from index
	Node by index seek
	Relationship by index seek
	Node by index query

	11.5. Aggregation
	Introduction
	COUNT
	Count nodes
	Group Count Relationship Types
	Count entities
	Count non-null values

	Statistics
	sum
	avg
	percentileDisc
	percentileCont
	stdev
	stdevp
	max
	min

	collect
	DISTINCT

	11.6. Load CSV
	CSV file format
	Import data from a CSV file
	Import data from a CSV file containing headers
	Import data from a CSV file with a custom field delimiter
	Importing large amounts of data
	Setting the rate of periodic commits
	Import data containing escaped characters

	Chapter 12. Writing Clauses
	12.1. Create
	Create nodes
	Create single node
	Create multiple nodes
	Create a node with a label
	Create a node with multiple labels
	Create node and add labels and properties
	Return created node

	Create relationships
	Create a relationship between two nodes
	Create a relationship and set properties

	Create a full path
	Use parameters with CREATE
	Create node with a parameter for the properties
	Create multiple nodes with a parameter for their properties
	Create multiple nodes with a parameter for their properties using old syntax

	12.2. Merge
	Introduction
	Merge nodes
	Merge single node with a label
	Merge single node with properties
	Merge single node specifying both label and property
	Merge single node derived from an existing node property

	Use ON CREATE and ON MATCH
	Merge with ON CREATE
	Merge with ON MATCH
	Merge with ON CREATE and ON MATCH
	Merge with ON MATCH setting multiple properties

	Merge relationships
	Merge on a relationship
	Merge on multiple relationships
	Merge on an undirected relationship
	Merge on a relationship between two existing nodes
	Merge on a relationship between an existing node and a merged node derived from a node property

	Using unique constraints with MERGE
	Merge using unique constraints creates a new node if no node is found
	Merge using unique constraints matches an existing node
	Merge with unique constraints and partial matches
	Merge with unique constraints and conflicting matches

	Using map parameters with MERGE

	12.3. Set
	Set a property
	Remove a property
	Copying properties between nodes and relationships
	Adding properties from maps
	Set a property using a parameter
	Set all properties using a parameter
	Set multiple properties using one SET clause
	Set a label on a node
	Set multiple labels on a node

	12.4. Delete
	Delete single node
	Delete all nodes and relationships
	Delete a node with all its relationships

	12.5. Remove
	Remove a property
	Remove a label from a node
	Removing multiple labels

	12.6. Foreach
	Mark all nodes along a path

	12.7. Create Unique
	Introduction
	Create unique nodes
	Create node if missing
	Create nodes with values
	Create labeled node if missing

	Create unique relationships
	Create relationship if it is missing
	Create relationship with values

	Describe complex pattern

	12.8. Importing CSV files with Cypher
	12.9. Using Periodic Commit

	Chapter 13. Functions
	13.1. Predicates
	ALL
	ANY
	NONE
	SINGLE
	EXISTS

	13.2. Scalar functions
	SIZE
	SIZE of pattern expression
	LENGTH
	LENGTH of string
	TYPE
	ID
	COALESCE
	HEAD
	LAST
	TIMESTAMP
	STARTNODE
	ENDNODE
	TOINT
	TOFLOAT

	13.3. Collection functions
	NODES
	RELATIONSHIPS
	LABELS
	KEYS
	EXTRACT
	FILTER
	TAIL
	RANGE
	REDUCE

	13.4. Mathematical functions
	ABS
	ACOS
	ASIN
	ATAN
	ATAN2
	CEIL
	COS
	COT
	DEGREES
	E
	EXP
	FLOOR
	HAVERSIN
	Spherical distance using the haversin function

	LOG
	LOG10
	PI
	RADIANS
	RAND
	ROUND
	SIGN
	SIN
	SQRT
	TAN

	13.5. String functions
	STR
	REPLACE
	SUBSTRING
	LEFT
	RIGHT
	LTRIM
	RTRIM
	TRIM
	LOWER
	UPPER
	SPLIT
	REVERSE
	TOSTRING

	Chapter 14. Schema
	14.1. Indexes
	Create an index
	Drop an index
	Use index
	Use index with WHERE using equality
	Use index with WHERE using inequality
	Use index with IN
	Use index with STARTS WITH
	Use index when checking for the existence of a property

	14.2. Constraints
	Unique node property constraints
	Create uniqueness constraint
	Drop uniqueness constraint
	Create a node that complies with unique property constraints
	Create a node that breaks a unique property constraint
	Failure to create a unique property constraint due to conflicting nodes

	Node property existence constraints
	Create node property existence constraint
	Drop node property existence constraint
	Create a node that complies with property existence constraints
	Create a node that breaks a property existence constraint
	Removing an existence constrained node property
	Failure to create a node property existence constraint due to existing node

	Relationship property existence constraints
	Create relationship property existence constraint
	Drop relationship property existence constraint
	Create a relationship that complies with property existence constraints
	Create a relationship that breaks a property existence constraint
	Removing an existence constrained relationship property
	Failure to create a relationship property existence constraint due to existing relationship

	14.3. Statistics
	Configuration options
	Managing statistics from the shell

	Chapter 15. Query Tuning
	15.1. How are queries executed?
	15.2. How do I profile a query?
	15.3. Basic query tuning example

	Chapter 16. Execution Plans
	16.1. Starting point operators
	All Nodes Scan
	Directed Relationship By Id Seek
	Node by Id seek
	Node by label scan
	Node index seek
	Node index range seek
	Node index scan
	Undirected Relationship By Id Seek

	16.2. Expand operators
	Expand All
	Expand Into
	Optional Expand All

	16.3. Combining operators
	Node Hash Join
	Apply
	Anti Semi Apply
	Let Anti Semi Apply
	Let Semi Apply
	Select Or Anti Semi Apply
	Select Or Semi Apply
	Semi Apply
	Triadic

	16.4. Row operators
	Eager
	Distinct
	Eager Aggregation
	Filter
	Limit
	Projection
	Skip
	Sort
	Top
	Union
	Unwind

	16.5. Update Operators
	Constraint Operation
	Empty Result
	Update Graph
	Merge Into

	Part IV. Reference
	Chapter 17. Capabilities
	17.1. Data Security
	17.2. Data Integrity
	17.3. Data Integration
	Event-based Synchronization
	Periodic Synchronization
	Periodic Full Export/Import of Data

	17.4. Availability and Reliability
	Operational Availability
	Online backup (Cold spare)
	Online Backup High Availability (Hot spare)
	High Availability cluster

	Disaster Recovery/ Resiliency
	Prevention
	Detection
	Correction

	17.5. Capacity
	File Sizes
	Read speed
	Write speed
	Data size

	Chapter 18. Transaction Management
	18.1. Interaction cycle
	18.2. Isolation levels
	Lost Updates in Cypher

	18.3. Default locking behavior
	18.4. Deadlocks
	Understanding deadlocks
	Deadlock handling example code
	Handling deadlocks using TransactionTemplate
	Handling deadlocks using a retry loop

	18.5. Delete semantics
	18.6. Creating unique nodes
	Single thread
	Get or create
	Pessimistic locking

	18.7. Transaction events

	Chapter 19. Data Import
	Chapter 20. Graph Algorithms
	Chapter 21. REST API
	21.1. Transactional Cypher HTTP endpoint
	Begin and commit a transaction in one request
	Execute multiple statements
	Begin a transaction
	Execute statements in an open transaction
	Execute statements in an open transaction in REST format for the return
	Reset transaction timeout of an open transaction
	Commit an open transaction
	Rollback an open transaction
	Include query statistics
	Return results in graph format
	Handling errors

	21.2. Neo4j Status Codes
	Classifications
	Status codes

	21.3. REST API Authentication and Authorization
	Authenticating
	Missing authorization
	Authenticate to access the server
	Incorrect authentication
	Required password changes

	User status and password changing
	User status
	User status on first access
	Changing the user password

	Access when auth is disabled
	When auth is disabled

	Copying security configuration from one instance to another

	21.4. Service root
	Get service root

	21.5. Streaming
	21.6. Legacy Cypher HTTP endpoint
	Use parameters
	Create a node
	Create a node with multiple properties
	Create multiple nodes with properties
	Set all properties on a node using Cypher
	Send a query
	Return paths
	Nested results
	Retrieve query metadata
	Errors

	21.7. Property values
	Arrays
	Property keys
	List all property keys

	21.8. Nodes
	Create node
	Create node with properties
	Get node
	Get non-existent node
	Delete node
	Nodes with relationships cannot be deleted

	21.9. Relationships
	Get Relationship by ID
	Create relationship
	Create a relationship with properties
	Delete relationship
	Get all properties on a relationship
	Set all properties on a relationship
	Get single property on a relationship
	Set single property on a relationship
	Get all relationships
	Get incoming relationships
	Get outgoing relationships
	Get typed relationships
	Get relationships on a node without relationships

	21.10. Relationship types
	Get relationship types

	21.11. Node properties
	Set property on node
	Update node properties
	Get properties for node
	Get property for node
	Property values can not be null
	Property values can not be nested
	Delete all properties from node
	Delete a named property from a node

	21.12. Relationship properties
	Update relationship properties
	Remove properties from a relationship
	Remove property from a relationship
	Remove non-existent property from a relationship
	Remove properties from a non-existing relationship
	Remove property from a non-existing relationship

	21.13. Node labels
	Adding a label to a node
	Adding multiple labels to a node
	Adding a label with an invalid name
	Replacing labels on a node
	Removing a label from a node
	Removing a non-existent label from a node
	Listing labels for a node
	Get all nodes with a label
	Get nodes by label and property
	List all labels

	21.14. Node degree
	Get the degree of a node
	Get the degree of a node by direction
	Get the degree of a node by direction and types

	21.15. Indexing
	Create index
	List indexes for a label
	Drop index

	21.16. Constraints
	Create uniqueness constraint
	Get a specific uniqueness constraint
	Get all uniqueness constraints for a label
	Drop uniqueness constraint
	Get a specific node property existence constraint
	Get all node property existence constraints for a label
	Get all constraints for a label
	Get a specific relationship property existence constraint
	Get all relationship property existence constraints for a type
	Get all constraints

	21.17. Traversals
	Traversal using a return filter
	Return relationships from a traversal
	Return paths from a traversal
	Traversal returning nodes below a certain depth
	Creating a paged traverser
	Paging through the results of a paged traverser
	Paged traverser page size
	Paged traverser timeout

	21.18. Graph Algorithms
	Find all shortest paths
	Find one of the shortest paths
	Execute a Dijkstra algorithm and get a single path
	Execute a Dijkstra algorithm with equal weights on relationships
	Execute a Dijkstra algorithm and get multiple paths

	21.19. Batch operations
	Execute multiple operations in batch
	Refer to items created earlier in the same batch job
	Execute multiple operations in batch streaming

	21.20. Legacy indexing
	Create node index
	Create node index with configuration
	Delete node index
	List node indexes
	Add node to index
	Remove all entries with a given node from an index
	Remove all entries with a given node and key from an index
	Remove all entries with a given node, key and value from an index
	Find node by exact match
	Find node by query

	21.21. Unique Indexing
	Get or create unique node (create)
	Get or create unique node (existing)
	Create a unique node or return fail (create)
	Create a unique node or return fail (fail)
	Add an existing node to unique index (not indexed)
	Add an existing node to unique index (already indexed)
	Get or create unique relationship (create)
	Get or create unique relationship (existing)
	Create a unique relationship or return fail (create)
	Create a unique relationship or return fail (fail)
	Add an existing relationship to a unique index (not indexed)
	Add an existing relationship to a unique index (already indexed)

	21.22. WADL Support
	21.23. Using the REST API from WebLogic

	Chapter 22. Deprecations

	Part V. Operations
	Chapter 23. Installation & Deployment
	23.1. System Requirements
	CPU
	Memory
	Disk
	Filesystem
	Software

	23.2. Server Installation
	Deployment Scenarios
	Prerequisites
	Setting Proper File Permissions
	Windows
	Windows Installer
	Windows Console Application

	Linux
	Linux Packages
	Unix Console Application
	Linux Service

	Mac OSX
	Mac OSX Installer
	Running Neo4j from the Terminal
	OSX Service
	A note on Java on OS X Mavericks

	Multiple Server instances on one machine

	23.3. Windows PowerShell module
	System Requirements
	How do I import the module?
	How do I get help about the module?
	Basic Examples
	Advanced examples
	Common PowerShell parameters

	23.4. Upgrading
	Automatic Store Upgrade
	Explicit Store Upgrade

	23.5. Setup for remote debugging
	23.6. Usage Data Collector
	Technical Information
	How to disable UDC

	Chapter 24. Configuration & Performance
	24.1. Introduction
	How to add configuration settings

	24.2. Server Configuration
	Important server configuration parameters
	Neo4j Database performance configuration
	HTTP logging configuration
	Using X-Forwarded-Proto and X-Forwarded-Host to parameterize the base URI for REST responses
	Enabling logging from the garbage collector
	Web Interface configuration settings
	Whitelist for remote guides in Browser
	Outgoing connections for Browser
	Disabling console types in Webadmin

	24.3. Server Performance Tuning
	Specifying Neo4j tuning properties
	Specifying JVM tuning properties

	24.4. Performance Guide
	Try this first
	Configuring heap size and GC
	Disks, RAM and other tips
	Linux file system tuning
	Setting the number of open files

	24.5. Logical logs
	24.6. Compressed storage of property values
	Compressed storage of short arrays
	Compressed storage of short strings

	24.7. Memory mapped IO settings
	Introduction
	Configuration

	Batch insert example

	24.8. Configuration Settings Reference

	Chapter 25. High Availability
	25.1. Architecture
	25.2. HA Setup and configuration
	Specifying cluster members
	Server configuration
	Database configuration

	25.3. How Neo4j HA operates
	25.4. Arbiter Instances
	25.5. Upgrade of a Neo4j HA Cluster
	Standard upgrade
	Steps

	Downgrading

	25.6. High Availability setup tutorial
	Background
	ha.server_id
	ha.cluster_server
	ha.initial_hosts
	ha.server

	Getting started: Setting up a production cluster
	Download and configure
	Start the Neo4j Servers

	Alternative setup: Creating a local cluster for testing
	Download and configure
	Start the Neo4j Servers

	25.7. REST endpoint for HA status information
	Introduction
	The endpoints
	Examples

	25.8. Setting up HAProxy as a load balancer
	Configuring HAProxy
	Optimizing for reads and writes
	Cache-based sharding with HAProxy

	Chapter 26. Backup
	26.1. Introducing Backup
	26.2. Performing Backups
	Backup Commands
	Incremental Backups
	Online Backup from Java

	26.3. Restoring Your Data

	Chapter 27. Security
	27.1. Securing access to the Neo4j Server
	Secure the port and remote client connection accepts
	Server authentication and authorization
	HTTPS support
	Arbitrary code execution
	Server authorization rules
	Enforcing Server Authorization Rules
	Using Wildcards to Target Security Rules
	Using Complex Wildcards to Target Security Rules

	Security in depth
	Neo4j Web Interface Security

	Chapter 28. Monitoring
	28.1. Adjusting remote JMX access to the Neo4j Server
	28.2. How to connect to a Neo4j instance using JMX and JConsole
	28.3. How to connect to the JMX monitoring programmatically
	28.4. Reference of supported JMX MBeans
	28.5. Metrics Reporting
	Introducing Metrics
	Graphite Configuration
	Ganglia Configuration
	Export to CSV Configuration
	Configuration Settings Reference for Metrics

	Part VI. Tools
	Chapter 29. Import tool
	29.1. CSV file header format
	Nodes
	Relationships
	ID spaces

	29.2. Command line usage
	Linux
	Windows
	Options
	Output and statistics
	Verbose error information

	29.3. Import tool examples
	Basic example
	Customizing configuration options
	Using separate header files
	Multiple input files
	Types and labels
	Using the same label for every node
	Using the same relationship type for every relationship

	Property types
	ID handling
	Working with sequential or auto incrementing identifiers

	Bad input data
	Relationships referring to missing nodes
	Multiple nodes with same id within same id space

	Chapter 30. Web Interface
	Chapter 31. Neo4j Shell
	31.1. Starting the shell
	Enabling the shell server
	Connecting to a shell server
	Pointing the shell to a path
	Read-only mode
	Run a command and then exit
	Pass Neo4j configuration options
	Execute a file and then exit

	31.2. Passing options and arguments
	31.3. Enum options
	31.4. Filters
	31.5. Node titles
	31.6. How to use (individual commands)
	Comments
	Current node/relationship and path
	Listing the contents of a node/relationship
	Creating nodes and relationships
	Setting, renaming and removing properties
	Deleting nodes and relationships
	Environment variables
	Executing groovy/python scripts
	Traverse
	Query with Cypher
	Listing Indexes and Constraints
	Legacy Indexing
	Transactions
	Dumping the database or Cypher statement results
	Example Dump Scripts

	31.7. An example shell session
	31.8. A Matrix example

	Part VII. Advanced Usage
	Chapter 32. Extending the Neo4j Server
	32.1. Server Plugins
	32.2. Unmanaged Extensions
	Introduction to unmanaged extensions
	Streaming JSON responses
	Using Cypher in an unmanaged extension

	32.3. Testing your extension
	32.4. Installing Plugins and Extensions in Neo4j Desktop

	Chapter 33. Using Neo4j embedded in Java applications
	33.1. Include Neo4j in your project
	Add Neo4j to the build path
	Editions
	Add Neo4j as a dependency
	Maven
	Eclipse and Maven
	Ivy
	Gradle

	Starting and stopping
	Starting an embedded database with configuration settings
	Starting an embedded read-only instance

	Controlling Logging

	33.2. Hello World
	Prepare the database
	Wrap operations in a transaction
	Create a small graph
	Print the result
	Remove the data
	Shut down the database server

	33.3. Property values
	33.4. User database with indexes
	33.5. User database with legacy index
	33.6. Managing resources when using long running transactions
	33.7. Basic unit testing
	33.8. Traversal
	The Matrix
	Walking an ordered path

	Uniqueness of Paths in traversals
	Social network
	Simple social model
	Status graph instance
	Activity stream

	33.9. Domain entities
	33.10. Graph Algorithm examples
	33.11. Reading a management attribute
	33.12. How to create unique nodes
	Get or create unique node using Cypher and unique constraints
	Get or create unique node using a legacy index
	Pessimistic locking for node creation

	33.13. Terminating a running transaction
	33.14. Execute Cypher Queries from Java
	33.15. Query Parameters

	Chapter 34. The Traversal Framework
	34.1. Main concepts
	34.2. Traversal Framework Java API
	TraversalDescription
	Relationships

	Evaluator
	Traverser
	Uniqueness
	Depth First / Breadth First

	Order — How to move through branches?
	BranchSelector
	BranchOrderingPolicy
	TraversalBranch

	Path
	PathExpander/RelationshipExpander
	Expander
	How to use the Traversal framework

	Chapter 35. Legacy Indexing
	35.1. Introduction
	35.2. Create
	35.3. Delete
	35.4. Add
	35.5. Remove
	35.6. Update
	35.7. Search
	Get
	Query

	35.8. Relationship indexes
	35.9. Scores
	35.10. Configuration and fulltext indexes
	35.11. Extra features for Lucene indexes
	Numeric ranges
	Sorting
	Querying with Lucene Query objects
	Compound queries
	Default operator
	Caching

	Chapter 36. Batch Insertion
	36.1. Batch Inserter Examples
	Initial import
	Setting configuration options
	Importing into an existing database

	36.2. Index Batch Insertion
	Best practices

	Terminology
	Appendix A. Resources
	Appendix B. Manpages
	neo4j
	neo4j-shell
	neo4j-import
	neo4j-backup
	neo4j-arbiter

